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ABSTRACT 

 

In current petroleum industry, there is a lack of effective reservoir simulators for 

modeling shale and tight sand reservoirs. An unconventional resource modeling requires 

an accurate flow characterization of complex transport mechanisms caused by the 

interactions among fractures, inorganic matrices, and organic rocks. Pore size in shale 

and tight sand reservoirs typically ranges in nanometers, which results in ultralow 

permeability (nanodarcies) and a high capillary pressure in the confined space. In such 

extremely low permeability reservoirs, adsorption/desorption and diffusive flow 

processes play important roles for a fluid flow behavior in addition to heterogeneity-

driven convective flow. 

In this study, the concept of “Diffusive Time of Flight” (DTOF) is generalized 

for multiphase and multicomponent flow problems on the basis of the asymptotic theory. 

The proposed approach consists of two decoupled steps – (1) calculation of well 

drainage volumes along a propagating ‘peak’ pressure front, and (2) numerical 

simulation based on the transformed 1-D coordinates. Geological heterogeneities 

distributed in 3-D space are integrated by tracking the propagation of ‘peak’ pressure 

front using a “Fast Marching Method” (FMM), and subsequently, the drainage volumes 

are evaluated along the outwardly propagation contours. A DTOF-based numerical 

simulation is performed by treating a series of the DTOF as a spatial coordinate. This 

approach is analogous to streamline simulation, whereby a multidimensional simulation 

is transformed into 1-D coordinates resulting in substantial savings in computational 
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time, thus allowing for high resolution simulation. However, instead of using a 

convective time of flight (CTOF), a diffusive time of flight is introduced in the modeling 

of a pressure front propagation. 

The overall workflow, which consist of the FMM and numerical simulation, is 

described in detail for single-phase, two-phase, blackoil, and compositional cases. The 

model validation is firstly performed on single-porosity systems with and without 

geological heterogeneity, then extended to multi-continuum domains including dual-

porosity fractured reservoir and triple-continuum system. The large-scale unconventional 

models are finally demonstrated in consideration of the permeability correction for shale 

gas system and capillarity incorporation for confined phase behavior in multiphase shale 

oil system. 
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NOMENCLATURE 

 

𝐴 Surface area 

𝐴𝑘 𝑘 th order pressure amplitude in Fourier domain 

𝑏 Slippage factor 

𝐵𝛼 Formation volume factor of phase 𝛼 

𝐶𝑘 Dissolved gas concentration in Kerogen 

𝐶𝑚 Adsorbed gas concentration on nanopore surface 

𝑐𝑟 Rock compressibility 

𝑐𝑡 Total compressibility 

𝑐𝛼 Fluid compressibility of phase 𝛼 

𝐷𝑐 Gas diffusion coefficient 

𝐷𝑚 Effective Knudsen diffusion coefficient 

𝐷𝑘 Knudsen diffusion coefficient 

𝐹 Dimensionless slippage factor 

𝐽 Flux 

𝐾𝑛 Knudsen number 

𝐾𝑗 K-value of component 𝑗 

𝑘 Absolute permeability 

𝑘𝑎𝑝𝑝 Apparent permeability 

𝑘𝑟𝛼 Relative permeability of phase 𝛼 

𝑘∞ Darcy permeability 
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𝑀𝑘 Permeability multiplier 

𝑀𝑤 Molecular weight 

𝑀𝜙 Exponential rock compressibility function 

𝑛 Time-step level 

𝑃 Pressure 

𝑃𝐿 Langmuir pressure 

𝑞𝛼 Unit volume production rate of phase 𝛼 at wellbore condition 

𝑞𝛼𝑠 Surface volume production rate of phase 𝛼 

�̃�𝑗 Unit molar production rate of component 𝑗 

�̃�𝑤𝑗 Well molar production rate of component 𝑗 

𝑅 Universal gas constant 

𝑟 Pore radius 

𝑆𝛼 Saturation of phase 𝛼 

𝑇 Temperature 

𝑇𝑖 Transmissibility at grid 𝑖 

𝑡 Time 

𝐮𝛼 Fluid velocity of phase 𝛼 

𝑉𝐿 Langmuir volume 

𝑉𝑝 Drainage volume 

𝑣𝑖 Derivative of drainage ‘bulk’ volume at grid 𝑖 

𝑤𝑖 Derivative of drainage ‘pore’ volume at grid 𝑖 

𝐱 Spatial location 



 

viii 

 

𝑥𝑗 Oil mole fraction of component 𝑗 

𝑦𝑗 Gas mole fraction of component 𝑗 

𝑧 Compressibility factor 

𝛼 Phase (oil, gas, or water) 

𝛼diff Diffusivity 

𝜆𝛼 Fluid mobility of phase 𝛼 

𝜆𝑡 Total mobility 

𝜇𝛼 Fluid viscosity of phase 𝛼 

𝜔 Frequency in Fourier domain 

𝜙 Porosity 

𝜙𝑗 Fugacity coefficient of component 𝑗 

𝜏 Diffusive time of flight 

𝛤 Transfer function 

𝜉𝛼 Molar density of phase 𝛼 
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CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES 

 

1.1 Asymptotic Approach 

Predicting oil and gas production from subsurface permeable media is a very 

important task in the reservoir engineering field. In general, subsurface dynamic model 

involves many mathematical and physical assumptions in order to simplify the 

description of Earth’s internal structure and to reduce the demand of computation time. 

Analytical solutions (i.e. material balance method, pressure transient analysis, rate 

transient analysis) are the most restricted or simplified models that require the reservoir 

to be isotropic and homogeneous in most cases. Numerical simulation removes such 

approximations and limitations by decomposing a continuous domain into a finite set of 

discrete counterparts. In the petroleum industry, reservoir simulation model is 

traditionally used for constructing a subsurface system associated with spatial 

heterogeneities (i.e. porosity, permeability, water saturation). The simulation outcomes 

are utilized for the purpose of improving estimation of hydrocarbon reserves, identifying 

fluid flow and geological characteristics, and more importantly, optimizing the strategies 

regarding the field developments. 

For a long time, streamline-based flow simulation has been widely recognized as 

an efficient approach for modeling fluid dynamics in porous media. The principle 

underlying the streamline simulation is to decompose the multidimensional transport 

equations into a series of 1-D equations along streamlines (Datta-Gupta and King 2007). 
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The evolution of flood fronts and the interactions between production and injection wells 

can be easily identified using the concept of convective time of flight (CTOF). 

Another important concept related to the theory of pressure propagation in 

porous media has been proposed by Lee (1982) who defined a ‘radius of investigation’ 

as the propagation distance of a ‘peak’ pressure disturbance for an impulse source or 

sink. The radius of investigation can be analytically calculated under limitations of 

homogeneous and isotropic reservoirs; however, such analytical solution is not 

applicable for complex geometries and heterogeneous media.  Datta-Gupta et al. (2011) 

generalized the concept of radius of investigation to heterogeneous field by introducing a 

diffusive time of flight (DTOF) which corresponds to the arrival time of a ‘peak’ 

pressure front. High frequency asymptotic solution of the diffusivity equation leads to 

the Eikonal equation for a pressure ‘front’ propagation in the presence of spatial 

heterogeneities (Vasco and Datta-Gupta 1999, Vasco et al. 2000, Datta-Gupta and King 

2007). This asymptotic solution can be solved very efficiently by using the Fast 

Marching Method (FMM) (Sethian 1996, Sethian 1999) as shown by Datta-Gupta et al. 

(2001) for reservoir engineering purpose. The FMM is a class of front tracking algorithm 

for solving the Eikonal equation and similar to the Dijkstra algorithm (Dijkstra 1959) 

that finds shortest path on graphs. The DTOF can be obtained along its trajectory using 

the FMM calculation. Well drainage volume is successively calculated by contouring a 

specific DTOF and by summing up the pore volumes inside the contour. Zhang et al 

(2014) proposed a DTOF-based numerical simulation associated with the transformation 

of a fluid transport coordinate from the physical 3-D space to the 1-D DTOF space. As 
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in the CTOF applied to the streamline simulation, the DTOF embodies geological 

heterogeneities and reduces 3-D heterogeneity to a 1-D homogeneous problem along its 

coordinate. This dimension reduction results in substantial savings in computational time 

and allows for high resolution reservoir simulation. 

1.2 Characteristics of Unconventional Reservoirs 

The U.S. Energy Information Administration (EIA) defines the term 

‘unconventional’ as a complex interactive function of resources characteristics, the 

available exploration and production technologies, the current economic environment, 

and the scale, frequency, and duration of production from the resources. Shale oil and 

gas reservoirs are the typical unconventional resources which contain a huge amount of 

hydrocarbons in the fine-grained sedimentary rock composed of mud from flakes of clay 

minerals and tiny fragments of other minerals. The EIA (2013) estimates that technically 

recoverable shale oil and gas resources in the U.S. comprise 58 billion barrels of crude 

oil and 665 trillion cubic feet of natural gas as of 2013, which are approximately 26% of 

the total domestic oil reserves and 27% of the total domestic natural gas reserves. They 

also suggest that, because shale oil and gas have proven to be quickly producible in large 

volume at a relatively low cost, shale oil and gas resources have revolutionized the U.S. 

oil and natural gas production, providing 29% of the total U.S. crude oil production and 

40% of the total natural gas production in 2012. Based on the success of the U.S. shale 

plays, several countries have begun to evaluate and test the production and potential of 

shale formations located in their countries.  
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The first shale play in the U.S. was started in the Barnett shale formation located 

in North-Central Texas. More than 16,000 vertical, directional, and horizontal wells have 

been drilled in the formation since the early 1990s, and by the end of 2012, 

approximately 13 trillion cubic feet of natural gas has been produced (Browning et al. 

2013). The development of the Barnett shale has changed the U.S. natural gas play map 

significantly. Browning et al. (2013) summarized the number of wells spud in the 

Barnett and the change of the well types. In the early 2000s, the drilling in the Barnett 

switched from vertical wells to horizontal wells. In the first 7 month of 2011, more than 

98% of wells (1,007 wells) drilled in the Barnett were horizontal, whereas the other 2% 

(18 wells) were vertical and directional wells. Successes of shale plays in the U.S. owe 

to the dramatic improvement in drilling efficiency and well completion technologies 

over the past several years. In the recent U.S. shale plays, the formations are drilled 

horizontally and then completed with multistage hydraulic fractures, such as the Bakken, 

Barnett, Montney, Haynesville, Marcellus, and the most recently the Eagle Ford, 

Niobrara, and Utica shales. 

Over the past decade, the transport mechanisms in unconventional reservoirs 

have been widely studied in order to better understand their characteristics (Kuila et al 

2011, Javadpour et al. 2007, Javadpour 2009, Sakhaee-Pour et al. 2012). It has been 

found that the techniques and mathematical flow models used in conventional reservoirs 

may not be adequate for unconventional reservoirs (Aguilera 2010, Michel et al. 2011, 

Swami et al. 2012, Arogundade et al. 2012). The fluid flow mechanisms in 

hydraulically-fractured shale and tight sand reservoirs are farther complicated by many 
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co-existing physical factors, such as (1) severe geological heterogeneities of the 

permeable media due to the variation among fractures, inorganic rock matrix, and 

organic matters, (2) Knudsen diffusion and slippage effects in nano-scale pores, (3) 

high-velocity turbulent flow in the perforations or hydraulic fractures, (4) 

adsorption/desorption on the surface of organic rocks, (5) geomechanics effects in 

fractured space, and (6) high capillarity in the confined system. Currently, there is no 

consensus or standardized approach on the theory and frameworks for modeling the 

transport behaviors in such complex reservoirs, although there is a growing demand in 

the area of unconventional resource evaluation and predictions. 

In shale gas reservoirs, the contained hydrocarbon usually exists in several states 

in fracture, matrix, and organic matter. Aguilera et al. (2010) suggest that gas molecules 

trapped and stored in shale can be divided into five different types: (1) gas adsorbed into 

the Kerogen material, (2) free gas trapped in inorganic matrix porosity, (3) free gas 

trapped in natural fractures, (4) free gas stored in hydraulic fractures created during the 

stimulation of the shale reservoir, and (5) free gas trapped in a pore network developed 

within the organic matter or Kerogen material. Biswas (2011) pointed out that the flow 

of gas through the fracture network in shale is the consequence of gas desorption and 

diffusion which transport it within the matrix-fracture interface.  

Nelson (2009) investigated the pore-throat distributions in sandstones, tight 

sandstones, and shales using a scanning electron microscopy (SEM) and mercury 

injection as illustrated in Fig. 1.1. The pore-throat size (diameter) of conventional 

sandstones ranges from 2 to 20 𝜇m, whereas the pore-throat size of tight sandstones 
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ranges from 20 nm to 1 𝜇m. The pore-throat size of shales ranges from 5 to 100 nm, 

which is approximately 100 times smaller than that of conventional sandstones.  

 

 

 

 

Fig. 1.1 – Pore throat sizes in sandstone, tight sandstone, and shales (Nelson 2009). 

 

 

 

A similar petrophysical investigation was conducted by Curtis et al. (2012) who 

identified the pore spaces in actual shale gas formations using SEM as shown in Fig. 1.2. 

In the figure, the dark gray material represents the organic matter, which is indicated by 

black arrows, and the white material represents the inorganic material. Pores within the 

organic matter (‘Kerogen porosity’) can be seen in the core sample of the Woodford and 

Horn River shale samples. In contrast, slit-like pores in the inorganic matrix (matrix 
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porosity) are dominant in the core sample of the Haynesville shale. The authors 

concluded that the Kerogen pore structure was found in nanometer size and occupied 40 

– 50 % of the Kerogen body. 

 

 

 

 

Fig. 1.2 – Pores in shale formation. The shale samples were taken from the (a) Woodford shale, (b) 
Haynesville shale. (C) Horn River shale, and (D) Kimmeridge shale. The pore examples are indicated 

by white arrow. (Curtis et al. 2012). 

 

 

 

In such confined situations, nano-scale pores (“nanopores”) play two important 

roles for gas flow behavior (Javadpour et al. 2007). First, for same pore volume, the 

exposed surface area in nanopores is much larger than that in micro-scale pores 

(“micropores”). The increase of the exposed surface area results in an increase of the 

volume of adsorbed gases. Suppose that there is a spherical pore covered by organic 
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material. Within this pore, gas molecules are contained in two states which are free gas 

and adsorbed gas. The volume of free gas compressed in a spherical pore is simply 

defined by the pore volume, which is 4𝜋𝑟3/3, where 𝑟 is the radius of a sphere. In 

contrast, adsorbed gases are stocked to the surface area of the pore, which is 4𝜋𝑟2. 

Consequently, the relative importance of the adsorbed gases to free gas is defined by the 

ratio of the exposed surface area to the volume of free gas, that is 3/𝑟. This implies that 

the relative importance of adsorbed gas is inversely proportional to the size of the pore.  

Secondly, nano-scale pore structures can cause the violation of the basic assumption 

behind the usage of the standard Darcy’s law due to Knudsen diffusion and slippage 

effects on the pore surface. As described above, the relative importance of pore surface 

area to pore volume is inversely proportional to the pore size. This means that the 

frequency of slippage and collision on the pore surface will increase as the pore size 

becomes smaller. The gas molecules tend to collide on the pore walls and slip at the wall 

surface instead of having the zero-velocity Hagen-Poiseuille flow. 

Traditionally, the Darcy’s law has been widely used in the petroleum engineering 

field to approximate a fluid velocity profile based on the following assumptions. 

(1) Flow direction aligns with the direction of pressure gradient. 

(2) There is no slippage and diffusion (collision) on pore wall. 

(3) Fluid flows under laminar flow conditions. 

Fig. 1.3 illustrates the relationship between the actual fluid velocity and the Darcy’s 

approximation flow. The black line shows the actual gas velocity profile as a function of 

differential pressure. The red-dot line represents the Darcy’s law based on the linear 
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approximation. In a high pressure region, the deviations of the actual flow from the 

linear flow (black-dot line) are caused by non-laminar flow (turbulent flow, Forchheimer 

flow), which often occurs in the perforations or fractures close to the wellbore of gas 

wells. In contrast, the deviations in a low pressure region are due to the slippage and 

Knudsen diffusion, which occur at very low pressure condition (1,000 psia~) or often in 

nanodarcy-scale permeable media. 

 

 

 

 

Fig. 1.3 – Fluid velocity profile as a function of differential pressure. 

 

 

 

Klinkenberg (1941) recognized gas slippage in subsurface porous media and 

observed that at very low pressure, the actual flow rate significantly deviates from the 

one predicted by the conventional linear flow approximation (Darcy’s law), a 

phenomena that is called Klinkenberg effect. He proposed the following correction to 

gas permeability accounting for its pressure dependency due to slippage on pore surface. 
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 𝑘𝑎𝑝𝑝 = 𝑘∞ (1 +
𝑏

𝑃
) (1.1) 

where 𝑘∞ denotes the permeability measured with non-slip boundary condition (Darcy’s 

permeability) and 𝑏 represents the correction factor for slippage (slippage factor). Over 

the decades, many authors have measured the apparent permeability and defined the 

Klinkenberg slippage factor based on the observations and theoretical works (Jones et al. 

1980, Sampath et al. 1982, Ertekin et al. 1986, Florence et al. 2007, Javadpour et al. 

2007, Civian 2010, Michel et al. 2011, Swami et al. 2012). Contrary to the conventional 

understanding that the Klinkenberg effect has an impact on the fluid flow at low pressure 

only, several authors observed that it affects the flow behavior for a smaller pore throat 

and for a low flowing bottom-hole pressure as well. 

1.3 Research Objectives and Thesis Outline 

The objective of this research is to extend the DTOF theory for multipurpose 

reservoir simulation including multi-continuum reservoir modeling and multiphase flow 

simulation. In addition to theoretical developments, an emphasis is placed on the 

application to unconventional reservoir modeling with the incorporation of nano-scale 

pore surface effects on gas permeability and the modification of the fluid phase behavior 

calculation in such confined reservoirs. 

This research is comprised of two main components. First, in Chapter II, the 

DTOF-based flow simulation is applied in single-phase flow problems based on the Fast 

Marching Method (FMM). This simulation procedure consists of two decoupled steps – 

(1) calculation of well drainage volumes along a pressure propagation front using the 

FMM, and (2) successive numerical simulation based on the transformed 1-D 



 

11 

 

coordinate. The continuous DTOF contour is discretized into finite sets of the 1-D grids 

using a finite difference approach. On the basis of the 1-D transport equation, the DTOF 

formulation is extended to the dual-porosity reservoir modeling with the Warren and 

Root pseudo-steady state type method (Warren and Root 1963). The DTOF-based flow 

simulation is further applied to a triple-continuum modeling to satisfy the needs of the 

additional physical mechanisms in unconventional reservoirs. In this research, the 

discussion includes the Knudsen diffusion and slippage effects, adsorption/diffusion, 

rock compaction in fractures, and gas diffusion from the organic matter. The 

unconventional reservoir characteristics are comprehensively investigated by accounting 

for the Kerogen-matrix interaction as well as the matrix-fracture interaction with the 

correction of the gas permeability. The proposed DTOF-based formulation is validated 

through a numerical simulation for synthetic single-porosity, dual-porosity, and triple-

continuum models, respectively. 

Second, in Chapter III, the DTOF theory is generalized to the multiphase and 

multicomponent flow problems. The theoretical developments of the DTOF-based 

formulation begin from the derivation of the multiphase DTOF by introducing the 

asymptotic approach to the mass balance equation. The multiphase DTOF has a similar 

form to the single-phase DTOF and amenable to the coordinate transformation by the 

use of the same way as the single-phase flow equation. This transformation requires the 

assumption that the changes of the spatially-dependent variables (pressure and 

saturation) are aligned with the DTOF gradient. In the proposed method, the reservoir 

unknowns (i.e. pressure, saturation, mole fractions) are simultaneously solved using the 
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fully implicit method. The multiphase DTOF is applied in the multiphase (blackoil) and 

multicomponent (compositional) simulations as with the single-phase simulation. The 

three-phase blackoil simulation is then extended to the dual-porosity model. An extra 

effort is put on the modeling of the confined phase behavior in nano-scale porous 

reservoirs by incorporating the capillary pressure effects on the thermodynamic 

equilibrium calculation. At the end of this chapter, several simulation results are 

presented for the validations of the blackoil and compositional reservoir models. 

In Chapter IV, the research is concluded with a summary of the key results of 

the theoretical developments and model validations. Recommendations and proposals 

for further research are also presented. 

 



 

13 

 

CHAPTER II  

MULTI-CONTINUUM MODELING BASED ON FAST MARCHING METHOD 

 

This chapter presents the DTOF-based numerical simulation for a single-phase 

fluid flow based on the Fast Marching Method (FMM). We first introduce the 

asymptotic theory for the propagation of pressure front in heterogeneous permeable 

media. The base concepts were proposed by Lee (1982) who defined the radius of 

investigation in the homogeneous field, and his theory was later generalized by Datta-

Gupta et al. (2001) for the heterogeneous permeable media. The speed of the pressure 

propagation has a form of Eikonal equation and is efficiently solved using the FMM. 

Zhang et al. (2014) proposed a new simulation method associated with the 

transformation of the fluid flow coordinate from the physical 3-D space to 1-D DTOF 

space. In this numerical simulation, the spatial variables (i.e. pressure) are solved along 

the transformed 1-D coordinate using the finite difference scheme.  In this chapter, we 

present the mathematical fundamentals and numerical details based on the convective 

fluid transport along the 1-D coordinate system. 

In addition, we focus on the application of the FMM as a tool of the modeling for 

unconventional reservoirs. Shale and tight gas reservoirs are comprised of nanodarcy 

permeable media which give rise to non-Darcy effects on the fluid flow such as Knudsen 

diffusion and slippage effect. Furthermore, there are occasions when the conventional 

single-continuum approach is not suitable for modeling shale and tight gas reservoirs 

due to its geological and geophysical characteristics. The DTOF-based numerical 
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simulation is extended to the dual-porosity modeling and further triple-continuum 

approach including a modification on the traditional Darcy’s law. 

2.1 Introduction to Fluid Flow in Porous Media 

Isothermal fluid flow through porous, permeable rock is governed by three 

fundamental equations – conservation of mass, momentum equation, and equation of 

state. The general fluid transport equation can be derived by making the assumptions 

that the mass fluxes due to the diffusion and dispersion (i.e. molecular diffusion) are 

small relative to the convective flux and that there is no chemical reaction (i.e. 

adsorption) between fluids and solids. The first equation, conservation of mass, states 

that the mass in a closed system must remain constant over time if it is not removed 

(produced) or added (injected). For single phase fluid flow, the conservation of mass is 

given by the following form. 

 
𝜕(𝜙𝜌)

𝜕𝑡
= −∇ • (𝜌𝐮) (2.1) 

where 𝜙 is porosity, 𝜌 is fluid density, and 𝐮 is the Darcy velocity. In this equation, two 

boundary conditions (inner and outer boundaries) and one initial condition are imposed 

to complete the formulation. The inner boundary is usually a sink or source (wellbore) 

from which the fluids are produced or injected, and the outer boundary is generally a no-

flow condition (closed finite domain). The initial condition is defined as the reservoir to 

be at a uniform pressure at the initial time. In the Cartesian coordinate system, the 

divergence of the fluid velocity is equal to the scalar-valued function along x-, y-, and z-

directions. 
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 ∇ • 𝐮 =
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
 (2.2) 

The second equation, momentum equation is given by a linear flow approximation 

(Darcy’s law). We neglect a gravity term for convenience. 

 𝐮 = −
𝐤

𝜇
∇𝑃 (2.3) 

In this equation, the fluid flows as a linear function of the differential pressure. 

Substituting Eq. (2.3) into Eq. (2.1) yields 

 
𝜕(𝜙𝜌)

𝜕𝑡
= ∇ • (𝜌

𝐤

𝜇
∇𝑃) (2.4) 

The third equation, the equation of state describes the relation between the system 

condition (i.e. pressure, temperature) and the static fluid state (i.e. volume, density). For 

slightly-compressible fluids (liquid), the isothermal fluid density is given by linear 

approximation in terms of pressure, using a Taylor series expansion. 

 𝜌 = 𝜌𝑜𝑒𝑐𝑓(𝑃−𝑃𝑜) ≈ 𝜌𝑜 (1 + 𝑐𝑓(𝑃 − 𝑃𝑜)) (2.5) 

where 𝑐𝑓 denotes a fluid compressibility and 𝜌𝑜 and 𝑃𝑜 are the reference fluid density 

and pressure, respectively. The porosity is also expressed as the same form. 

 𝜙 = 𝜙𝑒𝑐𝑟(𝑃−𝑃𝑜) ≈ 𝜙𝑜(1 + 𝑐𝑟(𝑃 − 𝑃𝑜)) (2.6) 

where 𝑐𝑟 denotes a rock compressibility. Substituting Eqs. (2.5) and (2.6) into Eq. (2.4) 

and carrying out the time differentiation in the left hand side of Eq. (2.4), we obtain the 

well-known diffusivity equation for slightly-compressible fluids. 

 𝜙(𝐱)𝜇𝑐𝑡

𝜕𝑃(𝐱, 𝑡)

𝜕𝑡
= ∇ • (𝑘(𝐱)∇𝑃(𝐱, 𝑡)) (2.7) 
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For compressible fluids (gas), the fluid compressibility is usually not assumed to be 

constant. In such case, the equation of state is given by the real gas law. 

 𝜌 =
𝑃𝑀𝑤

𝑧𝑅𝑇
 (2.8) 

where 𝑀𝑤 denotes molecular weight, 𝑧 represents the compressibility factor, and 𝑅 is 

universal gas constant. Using Eq. (2.8) instead of Eq. (2.5), the diffusivity equation for 

compressible fluids is written as 

 𝜙(𝐱)𝜇𝑐𝑡

𝜕𝑚(𝐱, 𝑡)

𝜕𝑡
= ∇ • (𝑘(𝐱)∇𝑚(𝐱, 𝑡)) (2.9) 

where 𝑚(𝐱, 𝑡) represents the pseudo-pressure function. 

 𝑚(𝐱, 𝑡) = 2∫
𝑃

𝑧𝜇
𝑑𝑃

𝑃

𝑃𝑜

 (2.10) 

For both slightly-compressible and compressible fluids, we have the same partial 

differential equation form which describes the fluid mass dynamics in subsurface porous 

media. 

2.2 Methods: Asymptotic Approach 

2.2.1 Asymptotic Pressure Solution 

When a single phase, slightly compressible fluid flows in a heterogeneous 

permeable media, the fluid pressure behavior is governed by the diffusivity equation. 

Rearranging Eq. (2.7), we obtain 

 𝜙(𝐱)𝜇𝑐𝑡

𝜕𝑃(𝐱, 𝑡)

𝜕𝑡
= ∇𝑘(𝐱) • ∇𝑃(𝐱, 𝑡) + 𝑘(𝐱) • ∇2𝑃(𝐱, 𝑡) (2.11) 

where 𝑃(𝐱, 𝑡) is pressure on the location 𝐱 at the time 𝑡. We consider the equation in the 

frequency domain by applying a Fourier transform. 
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 �̃�(𝐱, 𝜔) = ∫ 𝑃(𝐱, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 (2.12) 

In the frequency domain, the diffusivity equation is written as 

 𝜙(𝐱)𝜇𝑐𝑡(−𝑖𝜔)�̃�(𝐱,𝜔) = ∇𝑘(𝐱) • ∇�̃�(𝐱,𝜔) + 𝑘(𝐱) • ∇2�̃�(𝐱,𝜔) (2.13) 

The asymptotic approach attempts to find a solution of the diffusivity equation that 

mimics the one found in wave propagation and is based on the asymptotic ray theory. 

The asymptotic ray theory forms the mathematical basis for geometrical ray theory and 

has been extensively used in both electromagnetic (Virieux et al. 1994) and seismic 

wave propagation (Cerveny et al. 1978). The method has also proved suitable in the 

analysis of a front propagation in general (Sethian 1996) and petroleum engineering in 

terms of streamlines and flood fronts (Datta-Gupta and King 2007).  

Following the previous works in the diffusive electromagnetic imaging and 

hydrology (Virieux et al. 1994, Vasco et al. 2000, Datta-Gupta et al. 2001), the 

asymptotic pressure solution can be written as an infinite sum. 

 �̃�(𝐱, 𝜔) = 𝑒−√−𝑖𝜔𝜏(𝐱) ∑
𝐴𝑘(𝐱)

(√−𝑖𝜔)
𝑘

∞

𝑘=0

 (2.14) 

where 𝜏(𝐱) represents the phase of a propagating wave and thus, describes the geometry 

of a propagation front. 𝐴𝑘(𝐱) are real functions that relate to the amplitude of the wave. 

A solution of Eq. (2.14) can be interpreted on physical grounds based on the scaling 

behavior of diffusive flow. The motivation for using a solution in inverse power of 𝜔 is 

that the initial terms of the series are the most important when 𝜔 is large (high-frequency 

limit) and represent the rapidly varying components of the solution or the propagation of 
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a sharp front (Vasco et al. 2000). The functions 𝜏(𝐱) and 𝐴𝑘(𝐱) are unknowns. The 

asymptotic solution Eq. (2.14) is the sum of infinite number of functions 𝐴𝑘(𝐱), but the 

important physical quantities are represented only in the first few terms. Therefore, a 

leading-order solution of Eq. (2.14) is obtained by 

 �̃�(𝐱, 𝜔) = 𝑒−√−𝑖𝜔𝜏(𝐱)𝐴0(𝐱) (2.15) 

Notice that the first and second derivatives of Eq. (2.15) with respect to the location 𝐱 is 

written as 

 ∇�̃�(𝐱,𝜔) = −√−𝑖𝜔∇𝜏(𝐱)𝑒−√−𝑖𝜔𝜏(𝐱)𝐴0(𝐱) + 𝑒−√−𝑖𝜔𝜏(𝐱)∇𝐴0(𝐱) (2.16) 

 

∇2�̃�(𝐱,𝜔) = (−𝑖𝜔)(∇𝜏(𝐱))
2
𝑒−√−𝑖𝜔𝜏(𝐱)𝐴0(𝐱)

− √−𝑖𝜔∇2𝜏(𝐱)𝑒−√−𝑖𝜔𝜏(𝐱)𝐴0(𝐱)

− 2√−𝑖𝜔∇𝜏(𝐱)𝑒−√−𝑖𝜔𝜏(𝐱)∇𝐴0(𝐱) + 𝑒−√−𝑖𝜔𝜏(𝐱)∇2𝐴0(𝐱) 

(2.17) 

Inserting Eqs. (2.15) - (2.17) into Eq. (2.13) and arranging the equation in terms of 

powers of √−𝑖𝜔, we obtain the following quadratic equation. 

 

[𝜙(𝐱)𝜇𝑐𝑡 − 𝑘(𝐱)∇2𝜏(𝐱)]𝐴0(𝐱)(√−𝑖𝜔)
2
 

+[𝑘(𝐱)∇2𝜏(𝐱)𝐴0(𝐱) + 2𝑘(𝐱)∇𝜏(𝐱)∇𝐴0(𝐱) + ∇𝑘(𝐱)∇𝜏(𝐱)𝐴0(𝐱)]√−𝑖𝜔 

−[∇𝑘(𝐱)∇𝐴0(𝐱) + 𝑘(𝐱)∇2𝐴0(𝐱)] = 0 

(2.18) 

The first term in the left hand side of Eq. (2.18) is imaginary part, the second term is 

related to the square root of (−𝑖𝜔), and the third term is real part. Since all these three 

terms equal to zero, the first term (highest power) leads the equation for the phase 𝜏(𝑥) 

of the propagation equation. 
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 ∇𝜏(𝐱) • 𝑘(𝐱) • ∇𝜏(𝐱) = 𝜙(𝐱)𝜇𝑐𝑡 (2.19) 

Eq. (2.19) corresponds to the equation for propagation of pressure front. This equation is 

rewritten as 

 |∇𝜏(𝐱)|√𝛼diff(𝐱) = 1 (2.20) 

where 𝛼diff(𝐱) represents the propagation speed of the pressure front and is called 

‘diffusivity’, given by 

 𝛼diff(𝐱) =
𝑘(𝐱)

𝜙(𝐱)𝜇𝑐𝑡
 (2.21) 

It is important to notice that Eq. (2.20) is a form of the well-known Eikonal equation 

which explains a variety of propagation behaviors. Integrating Eq. (2.20) over the 

propagation trajectory Ʃ, we obtain 

 𝜏(𝐱) = ∫
1

√𝛼diff(𝐱)
𝑑𝑟

Ʃ

 (2.22) 

By analogy of the convective time of flight (CTOF) applied in the streamline simulation, 

we can see the pressure wave front travels with a velocity of √𝛼diff(𝐱). We define a 

‘diffusive’ time of flight (DTOF) for a propagation of a pressure front (Datta-Gupta at al. 

2001). Notice that the unit of DTOF is the square root of time which is consistent with 

scaling behavior of diffusive flow. Vasco and Finsterle (2004) pointed out that at 

transient flow conditions, these trajectories are not necessarily the streamlines and are 

strictly given by the ray equations in seismology. 
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2.2.2 Fast Marching Method 

Eq. (2.20) implies that the gradient of arrival time of pressure propagation front 

is inversely proportional to the propagation speed (square root of the diffusivity). This is 

a form of the Eikonal equation, and this equation can be solved very efficiently using a 

class of front tracking methods called “Fast Marching Method” (Sethian 1996). The 

basic framework comprises the following steps (Sethian 1999). 

(1) Label all grid nodes as unknown. 

(2) Assign 𝜏 (usually zero) to the nodes corresponding to the initial position of the 

propagating front and label them as accepted. 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered. 

(4) For each node labeled considered, update its 𝜏 based on its accepted neighbors 

using the minimum of local solutions of Eq. (2.20). 

(5) Once all nodes labeled considered have been locally updated, we pick the node 

which has the minimum 𝜏 among them and label it as accepted. 

(6) Go to step (3) until all nodes are accepted. 

In a 2-D 5-stencil Cartesian coordinate model, these steps are illustrated in Fig. 2.1 and 

explained by Xie et al. (2012). In this example, we put an arbitrary single point as the 

initial position of the propagating front and label it as accepted (solid) as shown in (a). 

Then its immediate neighbors A, B, C, and D are marked as considered (circle) as shown 

in (b). After the 𝜏 for A, B, C, and D have been updated, we pick the smallest one 

(suppose it is A) and mark it as accepted as shown in (c). Then its neighbors E, G, and F 
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are added into the considered as shown in (d). These steps will repeat for the next 

accepted point (suppose it is D) as shown in (e) and (f). The local solution of 𝜏 is 

updated with a standard finite difference notation (Sethian 1996). 

 max(𝐷𝑖𝑗
−𝑥𝜏, −𝐷𝑖𝑗

+𝑥𝜏, 0)
2
+ max(𝐷𝑖𝑗

−𝑦
𝜏, −𝐷𝑖𝑗

+𝑦
𝜏, 0)

2
=

1

𝛼diff
 (2.23) 

where 𝐷 is a gradient approximated with first-order forward finite difference scheme. In 

𝑥-direction, 𝐷𝑖𝑗
−𝑥𝜏 = (𝜏𝑖,𝑗 − 𝜏𝑖−1,𝑗)/∆𝑥 and 𝐷𝑖𝑗

+𝑥𝜏 = (𝜏𝑖+1,𝑗 − 𝜏𝑖,𝑗)/∆𝑥. Same equations 

hold in 𝑦-direction, 𝐷𝑖𝑗
−𝑦

𝜏 = (𝜏𝑖,𝑗 − 𝜏𝑖,𝑗−1)/∆𝑦 and 𝐷𝑖𝑗
+𝑦

𝜏 = (𝜏𝑖,𝑗+1 − 𝜏𝑖,𝑗)/∆𝑦. 

 

 

 

 

Fig. 2.1 – Illustration of Fast Marching MNo table of figures entries found.ethod (Xie et al. 2012). The 
circles represent ‘considered’ state and black solids denote ‘accepted’ state. 

 

 

 

Notice that the FMM is single-pass algorithm and the 𝜏 solutions are constructed 

sequentially from the small values to large value. After the FMM calculation, the 
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drainage ‘pore’ volumes are successively calculated by summing up all the pore volumes 

inside the specific 𝜏 contour. 

2.2.3 Coordinate Transformation 

The DTOF-based 1-D transport equation was first proposed by Zhang et al. 

(2014). The multidimensional fluid flow equations are decomposed into the series of 1-D 

𝜏-contours using the proposed coordinate transformation, and then the spatially 

dependent variables (pressure) are solved on each discretized 𝜏-contour. The coordinate 

transformation from the physical space to 1-D 𝜏-coordinate is achieved by assuming that 

pressure gradient aligns with 𝜏 gradient direction. 

 𝛻𝑃 =
𝜕𝑃

𝜕𝜏
∇𝜏 (2.24) 

This fundamental assumption implies that the contour surfaces of 𝜏 are identical to the 

contour surfaces of pressure. According to the propagation equation (Eq. (2.19)), the 

absolute permeability is written with relation to 𝜏. 

 𝑘 =
1

(∇𝜏)2
(𝜙𝜇𝑐𝑡)init (2.25) 

Substituting Eqs. (2.24) and (2.25) into the Darcy’s law (Eq. (2.3)), we obtain the 𝜏-

based velocity equation. 

 𝑢 = −
(𝜙𝜇𝑐𝑡)init

𝜇

1

|𝛻𝜏|

𝜕𝑃

𝜕𝜏
 (2.26) 

The basic concept behind the coordinate transformation is that we partition the 

Cartesian domain into a series of non-overlapping surface (𝜏-contour). The surface 

contour begins from the point of sink or source (inner boundary) and it evolves to the 
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entire domain, 𝛺. Consider a very thin layer of volume enclosed by two contours 

surfaces, 𝑑𝛺(𝜏) and 𝑑𝛺(𝜏 + ∆𝜏). The volume element of this thin layer, 𝑑𝑉 is 

corresponding to the product of the surface area 𝑑𝐴 and the layer thickness ∆𝜏/|∇𝜏|. 

Therefore, we have 

 𝑑𝑉 =
∇𝜏

|∇𝜏|
𝑑𝐴 (2.27) 

Zhang et al. (2014) showed the coordinate transformation of the diffusivity 

equation for both slightly-compressible (Eq. (2.7)) and compressible fluids (Eq. (2.9)), 

respectively. Here, we transform the general mass balance equation on the 𝜏-coordinate 

instead of using the diffusivity equation for the purpose of general numerical simulation. 

We take a volumetric integral of the conventional mass balance equation, Eq. (2.1) over 

the domain, 𝛺. 

 ∫
𝜕(𝜙𝜌)

𝜕𝑡
𝑑𝑉

𝛺

= −∫ ∇ • (𝜌𝐮)𝑑𝑉
𝛺

 (2.28) 

The flux term (RHS) in Eq. (2.28) is transformed to the surface integral by applying a 

divergence theorem. 

 ∫ ∇ • (𝜌𝐮)𝑑𝑉
𝛺

= ∫ (𝜌𝐮) • �⃗⃗�  𝑑𝐴
𝑑𝛺

= ∫ (𝜌𝐮) •
∇𝜏

|∇𝜏|
 𝑑𝐴

𝑑𝛺(𝜏)

 (2.29) 

As discussed above, the volume element is identical to the integral of two adjacent 

surfaces. On the other hand, the accumulation term (LHS) in Eq. (2.28) is also 

transformed to surface integral by substituting Eq. (2.27). 

 ∫
𝜕(𝜙𝜌)

𝜕𝑡
𝑑𝑉

𝛺

= ∇𝜏 ∫
𝜕(𝜙𝜌)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

 (2.30) 
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Inserting Eqs. (2.29) and (2.30) into Eq. (2.28), we obtain the surface integral form of 

the mass balance equation. 

 ∇𝜏 ∫
𝜕(𝜙𝜌)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

= −∫ (𝜌𝐮) •
∇𝜏

|∇𝜏|
 𝑑𝐴

𝑑𝛺(𝜏)

 (2.31) 

Substituting the DTOF-based velocity equation (Eq. (2.26)) into Eq. (2.31), we have 

 ∫
𝜕(𝜙𝜌)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

=
1

∇𝜏
(∫ 𝜌

(𝜙𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
•

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

) (2.32) 

Let ∆𝜏 → 0. Eq. (2.32) is rewritten as 

 ∫
𝜕(𝑀𝜙𝜌)

𝜕𝑡

𝜙init

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

=
𝜕

𝜕𝜏
(∫ 𝜌

(𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
•
𝜙init

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

) (2.33) 

where 𝜙init denotes the porosity at initial condition, and 𝑀𝜙 represents the exponential 

rock compressibility function.  

 𝑀𝜙 = 𝑒𝑐𝑟(𝑃−𝑃init) (2.34) 

Taking a surface integral of Eq. (2.27) over the 𝜏-contour, we can define the 𝑤-function. 

 ∫
𝜙init

|∇𝜏|𝑑𝛺(𝜏)

𝑑𝐴 =
𝑑𝑉𝑝

𝑑𝜏
= 𝑤(𝜏) (2.35) 

Notice that the 𝑤-function is the derivative of the drainage ‘pore’ volume 𝑉𝑝 with respect 

to the diffusive time of flight 𝜏. Substituting the 𝑤-function (Eq. (2.35)) into the both 

sides of Eq. (2.33), we obtain the following fluid transport equation along 1-D 𝜏-

coordinate. 

 𝑤(𝜏)∫
𝜕(𝑀𝜙𝜌)

𝜕𝑡
𝑑𝐴

𝑑𝛺(𝜏)

=
𝜕

𝜕𝜏
(𝑤(𝜏)∫ 𝜌

(𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
𝑑𝐴

𝑑𝛺(𝜏)

) (2.36) 



 

25 

 

In Eq. (2.36), the pressure 𝑃 is the location- and time-dependent variables. Now, we 

assume that 𝑃 is a function of 𝜏 and 𝑡 (i.e. the pressure gradient align with the 𝜏 

gradient). Therefore, we can take the terms outside the integral. Therefore, The DTOF-

based mass balance equation can be written as follows. 

 𝑤(𝜏)
𝜕(𝑀𝜙𝜌)

𝜕𝑡
=

𝜕

𝜕𝜏
(𝑤(𝜏)𝜌

(𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
) (2.37) 

Comparing the transformed mass balance equation (Eq. (2.37)) with the general mass 

balance form (Eq. (2.1)), the transformation of the flux term is defined as follows. 

 𝛻 • (𝜌𝐮) ≡ −
𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)𝜌

(𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
) (2.38) 

Notice that Eq. (2.37) is a complete 1-D transport equation that fully embeds the 

geological heterogeneities (i.e. porosity, permeability) on the 𝜏-coordinates and is 

numerically solved using a finite difference scheme. This simulation approach is quite 

similar to that of streamline approach and we solve the pressure equation along 1-D 

DTOF coordinate instead of solving the saturation equation along 1-D CTOF. The 

generalization to the anisotropic medium is written in APPENDIX A. 

2.2.4 One-Dimensional Discrete Model 

For the application of the DTOF formulation to the numerical simulation, we 

discretize the governing partial differential equation (Eq. (2.37)) in terms of space and 

time based on a finite difference method. Fig. 2.2 shows the illustration of the 1-D 

simple coordinate system discretized into finite sets of grid blocks. In this illustration, 

the two boundary conditions are imposed on its left and right edges. The inner boundary 
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(left edge) is the wellbore constrained by the bottom-hole pressure or production rate, 

and the outer boundary (right edge) is the no-flow boundary. 

 

 

 

 

Fig. 2.2 – 1-D finite difference discretization. 

 

 

 

Based on Eq. (2.38), the single-phase mass balance equation is transformed into 𝜏-

coordinate system as follows. 

 
𝜕(𝜙𝜌)

𝜕𝑡
=

𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)𝜌

(𝜇𝑐𝑡)init

𝜇

𝜕𝑃

𝜕𝜏
) + 𝜌𝑞 (2.39) 

where 𝑞 is the volumetric production rate per unit volume per unit time at wellbore. The 

source/sink (well) term is imposed on the inner boundary; hence it only appears in the 

equation at the first grid. Dividing Eq. (2.39) by the surface density 𝜌𝑠𝑐 and initial 

porosity 𝜙init, Eq. (2.39) can be written as the mass balance equation on the standard 

volume basis. 

 
𝜕

𝜕𝑡
(
𝑀𝜙

𝐵
) =

1

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)

(𝜇𝑐𝑡)init

𝐵𝜇

𝜕𝑃

𝜕𝜏
) +

1

𝜙init

𝑞

𝐵
 (2.40) 

where 𝐵 (= 𝜌𝑠𝑐/𝜌) is the formation volume factor (FVF).  

… …

No-flow 

outer boundary
Well at 

(Inner boundary)
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Suppose we discretize the flux term in Eq. (2.40) around the grid block 𝑖. The 

partial derivatives are approximated by the standard finite difference approximation 

involving the backward, forward, and central differences as follows. 

 

𝜕

𝜕𝜏
(𝐶

𝜕𝑃

𝜕𝜏
)|

𝑖
=

1

𝜏𝑖+1/2 − 𝜏𝑖−1/2
(𝐶𝑖+1/2

𝜕𝑃

𝜕𝜏
|
𝑖+1/2

− 𝐶
𝑖−

1
2

𝜕𝑃

𝜕𝜏
|
1−1/2

) 

                       =
1

∆𝜏𝑖
[𝐶𝑖+1/2 (

𝑃𝑖+1 − 𝑃𝑖

𝜏𝑖+1 − 𝜏𝑖
) − 𝐶𝑖−1/2 (

𝑃𝑖 − 𝑃𝑖−1

𝜏𝑖 − 𝜏𝑖−1
)] 

                       =
1

∆𝜏𝑖
[
𝐶𝑖+1/2

∆𝜏𝑖+1/2

(𝑃𝑖+1 − 𝑃𝑖) −
𝐶𝑖−1/2

∆𝜏𝑖−1/2

(𝑃𝑖 − 𝑃𝑖−1)] 

(2.41) 

where 𝐶 represents the grid-dependent parameter (i.e. grid volume, mobility), ∆𝜏𝑖is the 

grid length of the cell 𝑖, and ∆𝜏𝑖±1/2 is the length from the center of the grid 𝑖 to the 

center of the grid 𝑖 ± 1.Using Eq. (2.41), the flux term is discretized into the 1-D 

coordinate. 

 
𝜕

𝜕𝜏
(𝑤(𝜏)

(𝜇𝑐𝑡)init

𝐵𝜇

𝜕𝑃

𝜕𝜏
) =

𝑇𝑖−1/2𝑃𝑖−1/2 − (𝑇𝑖−1/2 − 𝑇𝑖+1/2)𝑃𝑖 + 𝑇𝑖+1/2𝑃𝑖+1

∆𝜏𝑖
 (2.42) 

where 𝑇𝑖±1/2 represents the transmissibility on the grid interface between 𝑖 and 𝑖 ± 1. 

 𝑇𝑖±1/2 =
𝑤𝑖±1/2

∆𝜏𝑖±1/2

(𝜇𝑐𝑡)init,𝑖±1/2 (
1

𝐵𝜇
)
𝑢𝑝

 (2.43) 

where the subscript 𝑢𝑝 denotes the upstream grid. The flow mobility is determined by 

the up-winding scheme. The discretized 𝑤-functions, 𝑤𝑖, 𝑤𝑖−1/2, and 𝑤𝑖+1/2 are 

obtained by central, backward, and forward differences, respectively. 

 𝑤𝑖 = (
𝑑𝑉𝑝

𝑑𝜏
)
𝑖
=

𝑉𝑝,𝑖+1/2 − 𝑉𝑝,𝑖−1/2

𝜏𝑖+1/2 − 𝜏𝑖−1/2
 (2.44) 
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 𝑤𝑖−1/2 = (
𝑑𝑉𝑝

𝑑𝜏
)
𝑖−1/2

=
𝑉𝑝,𝑖 − 𝑉𝑝,𝑖−1

𝜏𝑖 − 𝜏𝑖−1
 (2.45) 

 𝑤𝑖+1/2 = (
𝑑𝑉𝑝

𝑑𝜏
)
𝑖+1/2

=
𝑉𝑝,𝑖+1 − 𝑉𝑝,𝑖

𝜏𝑖+1 − 𝜏𝑖
 (2.46) 

Using Eq. (2.42) and carrying out the time differentiation, the finite difference equation 

of Eq. (2.40) is written as follows. 

 

𝑇𝑖−1/2
𝑛+1 𝑃𝑖−1

𝑛+1 − (𝑇𝑖−1/2
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 )𝑃𝑖
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 𝑃𝑖+1
𝑛+1 

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[(

𝑀𝜙,𝑖
𝑛+1

𝐵𝑖
𝑛+1) − (

𝑀𝜙,𝑖
𝑛

𝐵𝑖
𝑛 )] −

𝑤𝑖∆𝜏𝑖

𝜙init,𝑖

𝑞𝑛+1

𝐵𝑖
𝑛+1 

(2.47) 

where 𝑛 + 1 denotes the time-step level and 𝑀𝜙 represents the exponential rock 

compressibility function (Eq. (2.34)). Notice that the well term is imposed only on the 

first grid (𝑖 = 1) neighboring the inner boundary. 

On the 1-D grid system, ∆𝜏𝑖 is the length of the grid 𝑖 and 𝑤𝑖∆𝜏𝑖 corresponds to 

the ‘pore’ volume of the grid block 𝑖. Hence, 𝑤𝑖∆𝜏𝑖/𝜙init is equivalent to the ‘bulk’ 

volume of the grid 𝑖. As described in Eq. (2.47), the standard volume production rate is 

given by 

 𝑞𝑠
𝑛+1 =

𝑤1∆𝜏1

𝜙init

𝑞𝑛+1

𝐵1
𝑛+1 (2.48) 

where the subscript 1 denotes the first grid block and 𝑞𝑠
𝑛+1 represents the surface volume 

flow rate at the time 𝑛 + 1. Eq. (2.48) is rewritten by using the DTOF-based velocity 

equation (Eq. (2.26)). 

 𝑞𝑠
𝑛+1 =

𝑤1∆𝜏1

𝜙init
[

1

∆𝜏1

(𝜙𝜇𝑐𝑡)init,1 (
1

𝐵𝜇
)
1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
)] (2.49) 
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Rearranging Eq. (2.49), the surface production rate is calculated as follows. 

 𝑞𝑠
𝑛+1 = 𝑤1(𝜇𝑐𝑡)init,1 (

1

𝐵𝜇
)
1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (2.50) 

For each grid, we assign Eq. (2.47) as a governing equation and solve the corresponding 

spatial unknown variable 𝑃𝑖
𝑛+1. The inner boundary condition is imposed by Eq. (2.50). 

The numerical simulation procedure and derivative calculations for constructing the 

Jacobian are described in APPENDIX B. 

2.3 Approach: Multi-Continuum Modeling 

2.3.1 Dual-Porosity Model 

Fractured reservoirs are characterized by a presence of two distinct porous 

systems – fractured porous networks and fine grained matrix blocks. In naturally 

fractured reservoirs or hydraulically fractured wells, the mass exchange between matrix 

and fracture is an important component due to their geological characteristics. The 

fracture network is highly conductive, but can store very little fluid due to its very low 

porosity, while the matrix system has low conductivity and large storage capacity 

relative to the fracture. The concept of dual-porosity single-permeability (DPSP) model 

is that the two over-lapping continua, fracture system and matrix system, coexist and 

interact each other (Barenblatt et al. 1960, Warren and Root 1963, Kazemi 1979). The 

fluid transport equation in the fracture system is given by an ordinary porous medium 

with an additional connection to the matrix block, whereas the matrix blocks act only as 

a source to the fracture system. The advantage of the dual-porosity modeling is that this 

approach is computationally inexpensive compared with the Discrete Fracture Network 
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(DFN) method which incorporates all fractures in various locations with complex 

fracture geometries. Fig. 2.3 shows the illustrations of the fracture geometries in actual 

reservoir and the simplified grid block geometries in the dual-porosity model. The dual-

porosity modeling has been traditionally utilized to model the fluid flows on the various 

scale medium using two simple coordinate systems (Blair et al. 1964, Yamamoto et al. 

1971, Kazemi et al. 1979, Dean et al. 1988).  

 

 

 

 

Fig. 2.3 – Discretization of the fractured porous medium (Warren and Root 1963). 

 

 

 

In this research, the Warren and Root pseudo-steady state equation is used to 

complete the dual-porosity formulation (Warren and Root 1963). The mass balance 

equation in the fractured system is written by general mass balance equation (Eq. (2.4)) 

with the addition of a matrix-fracture mass exchange term. 

 
𝜕(𝜌𝜙𝑓)

𝜕𝑡
= 𝛻 • (𝜌

𝑘𝑓

𝜇
𝛻𝑃𝑓) − 𝜌Γ + 𝜌𝑞𝑓 (2.51) 
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where 𝜙𝑓 represents the fracture porosity, 𝑘𝑓 denotes the fracture permeability, and Γ 

represents the matrix-fracture volume transfer function. The sink or source term 𝑞𝑓 is 

imposed on the inner boundary condition of the fracture flow equation. In Eq. (2.51), the 

transfer function is given by the Darcy equation-like form (Kazemi et al. 1976). 

 Γ = 𝜎
𝑘𝑚

𝜇𝑢𝑝
(𝑃𝑓 − 𝑃𝑚) (2.52) 

where 𝜎 denotes the shape factor (fracture density) that defines the connectivity between 

the matrix block and the surrounding fracture network. It is reasonable assumption that 

the mastic-fracture volume transfer is always governed by the matrix permeability (𝑘𝑚) 

due to its low conductivity. The fluid viscosity is determined by the upstream weighting 

(i.e. if 𝑃𝑓 < 𝑃𝑚, then 𝜇 = 𝜇(𝑃𝑚)). We ignore the gravitational forces in the transfer term 

and assume a pseudo-steady state behavior in the matrix block. Based on Eqs. (2.51) and 

(2.52), we obtain the following fracture equation. 

 
𝜕(𝜌𝜙𝑓)

𝜕𝑡
= 𝛻 • (𝜌

𝑘𝑓

𝜇
𝛻𝑃𝑓) − 𝜎𝜌

𝑘𝑚

𝜇
(𝑃𝑓 − 𝑃𝑚) + 𝜌𝑞𝑓 (2.53) 

In contrast, the matrix flow equation is written as follows. 

 
𝜕(𝜌𝜙𝑚)

𝜕𝑡
= 𝜎𝜌

𝑘𝑚

𝜇
(𝑃𝑓 − 𝑃𝑚) (2.54) 

where 𝜙𝑚 and 𝑘𝑚 represent the matrix porosity and permeability, respectively. On the 

matrix coordinate system, the both inner and outer boundary conditions are imposed as 

no-flow boundary, thus the well term is absent in Eq. (2.54). The matrix system only 

plays as an additional source to the fracture system driven by the differential pressure 

between fracture and matrix blocks. 



 

32 

 

For the application of the dual-porosity modeling in the DTOF-based flow 

simulation, we make the following assumptions. 

 The FMM calculation only involves the fracture coordinate system. This means 

that the FMM calculates the front of the pressure propagation based on the 

fracture heterogeneities (𝑘𝑓 and 𝜙𝑓). The drainage volume is obtained along the 

𝜏-coordinate without consideration for the matrix system. 

 For simplifying assumption, the matrix properties (i.e. matrix porosity, 

permeability, shape factor) are assumed to be homogeneous and isotropic, 

because the geological heterogeneities of the matrix system are not accounted for 

the DTOF and successive drainage volume calculation. 

These treatments will be valid when the fracture network is the system in which the 

pressure front primarily propagates through and when the matrix serves only as fluid 

source to the fracture system. The schematic of the DTOF-based dual-porosity model is 

illustrated in Fig 2.4. 

 

 

 

 

Fig. 2.4 – Dual-porosity model on the 1-D DTOF coordinate. 
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Applying the coordinate transformation on the fracture flow equation (Eq. 

(2.38)), we obtain the DTOF-based fracture transport equation. 

 
𝜕

𝜕𝑡
(
𝜙𝑓

𝐵
) =

𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)

(𝜇𝑐𝑡)init

𝐵𝜇

𝜕𝑃𝑓

𝜕𝜏
) − 𝜎

𝑘𝑚

𝐵𝜇
(𝑃𝑓 − 𝑃𝑚) +

𝑞𝑓

𝐵
 (2.55) 

where 𝜙𝑓,init is the initial fracture porosity. Rearranging Eq. (2.55) yields the following 

fracture equation. 

 𝑤(𝜏)
𝜕

𝜕𝑡
(
𝑀𝜙

𝐵
) =

𝜕

𝜕𝜏
(𝑤(𝜏)

(𝜇𝑐𝑡)init

𝐵𝜇

𝜕𝑃𝑓

𝜕𝜏
) −

𝑤(𝜏)

𝜙𝑓,init
𝜎

𝑘𝑚

𝐵𝜇
(𝑃𝑓 − 𝑃𝑚) + 𝑞𝑠𝑓 (2.56) 

where 𝑤(𝜏)/𝜙𝑓,init represents the fracture drainage ‘bulk’ volume that is directly 

obtained from the FMM calculation. The surface volume production rate 𝑞𝑠𝑓 is 

corresponding to Eq. (2.48) and calculated using the same equation as the single-

porosity case (Eq. (2.50)). As discussed, the matrix permeability 𝑘𝑚 and shape factor 𝜎 

is treated as a constant parameter over the domain. Thus, the spatial heterogeneities that 

explicitly appears in Eq. (2.56) are the fracture drainage ‘pore’ volumes and fracture 

drainage ‘bulk’ volumes. We define the fracture drainage ‘bulk’ volume as 

 𝑣(𝜏) =
𝑤(𝜏)

𝜙𝑓,init
 (2.57) 

The DTOF-based matrix equation is obtained by multiplying the fracture drainage ‘bulk’ 

volume on the both sides of Eq. (2.54), while the equation form still remains same. 

 
𝜕

𝜕𝑡
(
𝜙𝑚

𝐵
) = 𝜎

𝑘𝑚

𝐵𝜇
(𝑃𝑓 − 𝑃𝑚) (2.58) 

Notice that the overall dual-porosity equation is obtained by substituting the matrix 

equation (Eq. (2.58)) into the fracture flow equation (Eq. (2.55)) as follows. 
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𝜕

𝜕𝑡
(
𝜙𝑓

𝐵
) +

𝜕

𝜕𝑡
(
𝜙𝑚

𝐵
) =

𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)

(𝜇𝑐𝑡)init

𝐵𝜇

𝜕𝑃𝑓

𝜕𝜏
) +

𝑞𝑓

𝐵
 (2.59) 

The above equation implies that the inter-cell fluid transport takes place only through the 

fracture networks and the fluids, which are accumulated in the 1-D matrix blocks, are 

linked only through the fracture system. 

As with the single-porosity model, the DTOF-based dual-porosity governing 

equations are discretized using a finite difference approximation. The finite difference 

equation of the fracture system is written as  

 

𝑇𝑖−1/2
𝑛+1 𝑃𝑓,𝑖−1

𝑛+1 − (𝑇𝑖−1/2
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 )𝑃𝑓,𝑖
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 𝑃𝑓,𝑖+1
𝑛+1  

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[(

𝑀𝜙,𝑖
𝑛+1

𝐵𝑖
𝑛+1) − (

𝑀𝜙,𝑖
𝑛

𝐵𝑖
𝑛 )] + 𝑣𝑖∆𝜏𝑖𝑇𝐹𝑀,𝑖

𝑛+1(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) − 𝑞𝑠𝑓
𝑛+1 

(2.60) 

where 𝑣𝑖 is the drainage ‘bulk’ volume of the grid block 𝑖 (Eq. (2.57)) and 𝑇𝐹𝑀,𝑖
𝑛+1 is the 

matrix-fracture transfer function with an upstream weighting. The well term 𝑞𝑠𝑓
𝑛+1 

appeares only in the equation of the grid neighboring the wellbore. 

 𝑇𝐹𝑀,𝑖
𝑛+1 = 𝜎𝑘𝑚 (

1

𝐵𝜇
)
𝑢𝑝

 (2.61) 

The finite difference equation of the matrix system is written as 

 
1

∆𝑡𝑛+1
[(

𝜙𝑚,𝑖
𝑛+1

𝐵𝑖
𝑛+1) − (

𝜙𝑚,𝑖
𝑛

𝐵𝑖
𝑛 )] − 𝑇𝐹𝑀,𝑖

𝑛+1(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) = 0 (2.62) 

 We assign Eqs. (2.60) and (2.62) to each discretized fracture and matrix grids, 

respectively, and solve the corresponding unknown variables, 𝑃𝑓,𝑖
𝑛+1 and 𝑃𝑚,𝑖

𝑛+1. The 

numerical simulation procedure and derivative calculations for constructing the Jacobian 

are described in APPENDIX B. 
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2.3.2 Gas Permeability in Nanoporous Media 

Knudsen number is a widely-recognized system identification parameter that 

determines a flow regime at given flow condition and fluid properties. This 

dimensionless parameter is defined by the ratio of a gas mean-free-path 𝜆 to a physical 

length (usually the pore radius 𝑟) (Civian et al. 2011). 

 𝐾𝑛 =
𝜆

𝑟
 (2.63) 

The mean-free-path 𝜆 is the average distance travelled by a moving molecule between 

successive collisions on pore wall or with another molecule. Knudsen number, which is 

given as the collision distance scaled by the pore radius, indicates the frequency of 

molecular-molecular and molecular-wall collisions when a molecule travels in the unit 

length. For ideal gas, 𝜆 is defined as follows (Civian et al. 2011). 

 𝜆 =
𝜇

𝑃
√

𝜋𝑅𝑇

2𝑀𝑤
 (2.64) 

where 𝑇 is temperature, 𝑅 is a universal gas constant, and 𝑀𝑤 is molecular weight. For 

real gas situations, the mean-free-path 𝜆 is corrected by multiplying the compressibility 

factor 𝑧 (Swami et al. 2012). 

 𝜆 =
𝜇𝑧

𝑃
√

𝜋𝑅𝑇

2𝑀𝑤
 (2.65) 

Schaaf and Chambre (1961) identified five flow regimes on the basis of Knudsen 

number as shown in Table 2.1. 
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Table 2.1 – Flow regime identification based on Knudsen number  

Knudsen Number, Kn Flow Regime 

Kn ≤ 0.001 Viscous flow 

0.001 < Kn < 0.1 Slip flow 

0.1 < Kn < 10 Transition flow 

Kn ≥ 10 Knudsen flow 

 

 

 

The Darcy’s law (viscous flow) is valid only in a fairly low Knudsen number 

range (𝐾𝑛 ≤ 0.001), whereas the non-slip boundary condition is broken as Knudsen 

number becomes higher (𝐾𝑛 > 0.001). In the slip flow regime (0.001 < 𝐾𝑛 < 0.1), the 

collisions between gas molecule and pore surface become more pronounced and 

consequently the linear flow approximation is broken down. In the transition flow (0.1 <

𝐾𝑛 < 10), the additional pore surface effect plays an important role on the fluid flow, 

that is Knudsen diffusion. Knudsen diffusion represents the diffusive flow driven by the 

collisions between the molecule and pore surface, which is different from the molecular 

diffusion driven by the molecule-molecule collision (Fig.2.5), and it occurs on the 

porous media where the physical length 𝑟 of the fluid flow path approaches comparable 

or smaller than the mean-free-path 𝜆. The transition flow is identified as the combination 

flow contributed by the convection, slippage, and Knudsen diffusion. Some authors 

(Javadpour et al. 2007, Swami et al. 2012) pointed out that most of shales and many tight 

gas reservoirs fall in the transition flow regime. At a very high Knudsen number (𝐾𝑛 ≥ 

10), the fluid flow is mainly driven by Knudsen diffusion flow, not by the convective 

drive. This regime is not frequently encountered in shales and tight gas plays. Knudsen 
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flow is usually modeled by using the molecular simulation instead of the continuum flow 

approach. 

 

 

 

 

Fig. 2.5 – Diffusion types in porous media. 

 

 

 

On the basis of the above flow regime identification, we focus on the fluid flow 

modeling for the slip and transition flow regimes. The target Knudsen number is 

0.001< 𝐾𝑛 <10 (Table 2.1). During the slip and transition flow regimes, the total mass 

flux 𝐽𝑇 in nanoporous media is governed by the Convection-Knudsen diffusion equation 

in addition to the slip surface boundary condition. 

 𝐽𝑇 = 𝐽𝐶 + 𝐽𝐾𝑛
 (2.66) 

where 𝐽𝐶  is convective mass flux, given by the Darcy’s equation with the correction of 

slippage effect. 

 𝐽𝐶 = 𝜌𝑔

𝑘∞

𝜇𝑔
𝐹∇𝑃 (2.67) 

where 𝐹 is the slippage factor. Brown et al. (1946) proposed a theoretical dimensionless 

slippage factor for slip velocity in capillary tube. 
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 𝐹 = 1 + (
8𝑅𝑇

𝜋𝑀𝑤
)
0.5 𝜇𝑔

𝑃𝑟
(
2

𝛼
− 1) (2.68) 

where 𝛼 is the tangential momentum accommodation coefficient or, simply, the part of 

gas molecules reflected diffusely from the pore wall relative to specular reflection. The 

value of 𝛼 varies theoretically in the range from 0 to 1, depending upon the pore surface 

smoothness, gas type, temperature, and pressure (Javadpour et al. 2007). In Eq. (2.66), 

the Knudsen diffusion mass flux 𝐽𝐾𝑛
 is given by the Fick’s first law with the gas 

concentration difference. 

 𝐽𝐾𝑛
= 𝐷𝑚∇𝜌𝑔 (2.69) 

where 𝐷𝑚 is the ‘effective’ Knudsen diffusion coefficient. For convenience, we use the 

gas density difference ∇𝜌𝑔 in Eq. (2.69) instead of using the gas concentration 

difference ∇𝐶. Grathwohl (1998) suggested that the Knudsen diffusion coefficient is 

scaled based on the matrix porosity and surface tortuosity due to the complexity of the 

geometry of the porous media network. The approach is to consider the porous network 

as consisting of a certain percentage of open pores (matrix porosity) and having a 

degree of interconnection resulting in the actual path of the porous media longer than 

the straight path (tortuosity). 

 𝐷𝑚 =
𝜙𝑚

𝛿
𝐷𝑘 (2.70) 

where 𝜙𝑚 represents the matrix porosity and 𝛿 denotes the tortuosity, and 𝐷𝑘 represents 

the Knudsen diffusion coefficient in a long smooth straight tube that is given by the 

function of mean molecular speed (Igwe 1987). 
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 𝐷𝑘 =
2𝑟

3
(
8𝑅𝑇

𝜋𝑀𝑤
)
0.5

 (2.71) 

Notice that the Knudsen diffusion coefficient is proportional to the pore radius and 

temperature. From Eqs. (2.66), (2.67), and (2.69), the Convection-Knudsen diffusion 

equation for nanoporous media is written as 

 𝐽𝑇𝑜𝑡𝑎𝑙 = 𝜌𝑔

𝑘∞

𝜇𝑔
𝐹∇𝑃 + 𝐷𝑚∇𝜌𝑔 = 𝜌𝑔

1

𝜇𝑔
(𝑘∞𝐹 + 𝑐𝑔𝜇𝑔𝐷𝑚)∇𝑃 (2.72) 

where 𝑐𝑔 is gas compressibility. In Eq. (2.72), we define the apparent permeability as 

follows (Javadpour et al. 2007, Swami et al. 2012). 

 𝑘𝑎𝑝𝑝 = 𝑘∞𝐹 + 𝑐𝑔𝜇𝑔𝐷𝑚 (2.73) 

Finally, the total mass flux (Eq. (2.66)) is written by the same equation form as the 

Darcy’s law on the basis of apparent permeability. 

 𝐽𝑇 = 𝜌𝑔

1

𝜇𝑔
𝑘𝑎𝑝𝑝∇𝑃 (2.74) 

The Hagen-Poiseuille equation, which assumes a laminar flow in cylindrical pipe with 

non-slip side boundary, gives a theoretical value for the Darcy permeability 𝑘∞. 

 𝑘∞ =
𝑟2

8
 (2.75) 

If the representative shape of pore is not straight cylinder, the Darcy permeability is 

also corrected based on the  porosity and pore geometry (tortuosity) as shown in Eq. 

(2.70) (Grathwohl 1998).  

 𝑘∞ =
𝜙𝑚

𝛿

𝑟2

8
 (2.76) 
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Substituting Eqs. (2.68), (2.70), (2.71) and (2.76) into Eq. (2.73), the apparent 

permeability is defined as follows. 

 

𝑘𝑎𝑝𝑝 = (
𝜙𝑚

𝛿

𝑟2

8
) [1 + (

8𝑅𝑇

𝜋𝑀𝑤
)
0.5 𝜇𝑔

𝑃𝑟
(
2

𝛼
− 1)] + 𝑐𝑔𝜇𝑔 [

𝜙𝑚

𝛿

2𝑟

3
(
8𝑅𝑇

𝜋𝑀𝑤
)
0.5

] 

          =
𝜙𝑚

𝛿
[
𝑟2

8
+ (

8𝑅𝑇

𝜋𝑀𝑤
)
0.5 𝜇𝑔𝑟

8𝑃
(
2

𝛼
− 1) +

2𝑟𝑐𝑔𝜇𝑔

3
(
8𝑅𝑇

𝜋𝑀𝑤
)
0.5

] 

(2.77) 

The apparent permeability is proportional to the pore radius and given by the pressure, 

temperature, gas properties, and pore radius. The ratio of the apparent permeability to 

the Darcy permeability (‘Permeability Ratio’) is obtained by dividing Eq. (2.77) by Eq. 

(2.76). 

 
𝑘𝑎𝑝𝑝

𝑘∞
= 1 + (

8𝑅𝑇

𝜋𝑀
)
0.5 𝜇𝑔

𝑃𝑟
(
2

𝛼
− 1) +

16𝑐𝑔𝜇𝑔

3𝑟
(
8𝑅𝑇

𝜋𝑀
)
0.5

 (2.78) 

In above expression, we see that the apparent permeability is comprised of three 

dimensionless components. First term in right hand side of Eq. (2.78) represents the 

relative importance of the viscous flow (convective permeability), that is scaled to 1. 

Second and third terms indicate the importance of the slippage and Knudsen diffusion 

relative to the viscous flow, respectively. If the permeability ratio closes to 1, the pore 

surface effects have no impact on the mass flux (purely viscous flow). If the 

permeability ratio is fairly larger than 1, the fluid flow behavior is highly affected by the 

slippage and Knudsen diffusion. Notice that the permeability ratio is proportional to the 

pressure and inversely proportional to the pore size. 
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2.3.3 Triple-Continuum Model 

Based on the pore size variation in naturally- or hydraulically-fractured shale 

reservoirs, the gas transport domain are divided into three distinct systems: (1) natural 

and hydraulic fracture networks (macro-scale porous media), (2) nanopores in matrix or 

organic matters (nano-scale porous media), and (3) organic bulk or Kerogen (not 

containing pore space). Fig 2.6 illustrates a typical gas flow process and physical 

mechanisms encountered in fractured shale reservoirs. The reservoir gas is produced 

primarily through the fracture networks, and the other two systems, nanopores and 

Kerogen content act as additional gas source to the fracture system. In this research, 

there are three distinct sources of gas compressed in the pore spaces of the three 

domains, which are the free gas in fracture and nanopores, adsorbed gas on nanopore 

surface, and dissolved gas in organic matter bulk. For each coordinate system, the shale 

gas physics are incorporated as follows. 

 Primary coordinate: Fracture network 

a. Fracture is the primary coordinate for fluid flow and production. 

b. Flow is governed by convective transport.  

c. Fractures are affected by rock compacted due to geomechanics effect. 

 Secondary coordinate: Nanopores in organic- and inorganic-rocks 

a. Two types of gases are compressed in nanopores – free gas and adsorbed 

gas. 

b. Flow is governed by the convection-Knudsen diffusion. 

 Tertiary coordinate: Organic bulk (Kerogen) 
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a. Kerogen is the hydrocarbon source and contains the dissolved gas. 

b. Dissolved gas diffuses to nanopores by concentration drive. 

 

 

 

 

Fig. 2.6 – Gas flow process in the fractured shale reservoir. 

 

 

 

The triple-continuum approach provides the generalized framework that is able 

to account for all physical effects and processes that exist in shale gas reservoirs. The 

numerical implementation involves the slippage and Knudsen diffusion effects, rock 

compaction in fractures, adsorption/diffusion, and gas diffusion from Kerogen content. 

Fig. 2.7 illustrates the gas transport processes on the triple-continuum model and the 

connectivity among the fracture, nanopores, and Kerogen systems. The approach is 

similar to the DPSP model, while the one more coordinate (Kerogen) is added outside 

the matrix system. The inter-coordinate mass transfer between the fracture and nanopore 

is governed by the convection-Knudsen diffusion flow (apparent permeability).  

 

Fracture
Organic Matter

Nanopore

Diffusion

Dissolved gas
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Fig. 2.7 – Illustration of the triple-continuum approach. 

 

 

 

The mass transfer between the nanopores and Kerogen is governed by diffusive 

transport driven by the gas concentration difference between the nanopores (adsorbed 

gas) and Kerogen bulk (dissolved gas), which is given by the Fick’s law of diffusion. 

 𝐽𝐾𝑀 = −𝜎𝜌𝑔,𝑠𝑐𝐷𝑐(𝐶𝑚 − 𝐶𝑘) (2.79) 

where 𝜎 is the shape factor, 𝜌𝑔,𝑠𝑐 is the surface gas density, 𝐷𝑐 is gas diffusion 

coefficient, 𝐶𝑘 is gas concentration dissolved in Kerogen, and 𝐶𝑚 is gas concentration 

adsorbed on the surface of nanopores. The adsorbed gas concentration on the nanopore 

surface 𝐶𝑚 is given by the Langmuir isotherm model (Langmuir 1916). 

 𝐶𝑚 = 𝑉𝐿

𝑃

𝑃𝐿 + 𝑃
 (2.80) 

where 𝑉𝐿 is Langmuir volume and 𝑃𝐿 is Langmuir pressure. Notice that the Langmuir 

volume 𝑉𝐿 has the units of scf/rcf. This is obtained from the bulk rock density 𝜌𝑏 

(gm/cc) and the adsorbed gas content 𝑉𝑚 (scf/ton). 

Organic Matter Organic Matter Organic Matter

Nanopore Nanopore Nanopore

Fracture Fracture Fracture

Diffusion

Convection and 

Knudsen Diffusion Flow to well

Convection
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 𝑉𝐿 = 0.031214𝜌𝑏𝑉𝑚 (2.81) 

Mengal et al. (2011) suggested that the approximate values of 𝜌𝑏, 𝑉𝑚, and 𝑃𝐿 in the 

Barnett shale are 2.38 (gm/cc), 96 (scf/ton), and 650 (psia), respectively. Hence, the 

Langmuir volume 𝑉𝐿 is expected to be about 7.13 (scf/rcf). 

Fig. 2.8 shows the gas flow process from organic matter bulk to nanopores. At 

static condition, the Kerogen gas concentration is in equilibrium with the adsorbed gas 

concentration. After the well production and resulting pressure depletion in the nanopore 

system, the equilibrium condition is disrupted due to desorption of the adsorbed gas 

molecules. The concentration imbalance causes the dissolved gas in the Kerogen to 

diffuse to the Kerogen-nanopore interface, and then the gas molecules start to be 

adsorbed on the pore surface.  

 

 

 

 

Fig. 2.8 – Gas diffusion from organic matter to nanopore. 

 

 

 

The mass balance in the fracture system is obtained by Eq. (2.53) including rock 

compaction effects, 𝑀𝜙 and 𝑀𝑘 and using the apparent permeability 𝑘𝑎𝑝𝑝 in the matrix-

fracture transfer term instead of the ordinary matrix permeability 𝑘𝑚. 
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𝜕

𝜕𝑡
(𝜙𝑓𝑀𝜙𝜌𝑔) = 𝛻 • (𝜌𝑔

𝑀𝑘𝑘𝑓

𝜇𝑔
𝛻𝑃𝑓) − 𝜎𝐹𝑀𝜌𝑔

𝑘𝑎𝑝𝑝

𝜇𝑔
(𝑃𝑓 − 𝑃𝑚) + 𝜌𝑔𝑞𝑓 (2.82) 

where 𝑀𝜙 and 𝑀𝑘 represent the multipliers for porosity and permeability, respectively, 

and 𝜎𝐹𝑀 denotes the shape factor of fracture-nanopore connectivity (fracture density). In 

this formulation, the porosity multiplier 𝑀𝜙 is given by the rock compaction table as a 

function of pressure instead of the conventional exponential rock compressibility 

function (Eq. (2.34)). Applying the coordinate transformation into 1-D 𝜏-coordinate (Eq. 

(2.38)), we obtain the fracture equation along 𝜏-coordinate as follows. 

 

𝜕(𝜙𝑓𝜌𝑔)

𝜕𝑡
 

=
𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
(𝑤(𝜏)𝑀𝑘𝜌𝑔

(𝜇𝑔𝑐𝑡)init

𝜇𝑔

𝜕𝑃𝑓

𝜕𝜏
) − 𝜎𝐹𝑀𝜌𝑔

𝑘𝑎𝑝𝑝

𝜇𝑔
(𝑃𝑓 − 𝑃𝑚) + 𝜌𝑔𝑞𝑓 

(2.83) 

Notice that the surface production rate 𝑞𝑠𝑓 is calculated by Eq. (2.50). For the nanopores 

system, the mass balance equation is written as 

 
𝜕

𝜕𝑡
(𝜙𝑚𝜌𝑔 + 𝜌𝑔,𝑠𝑐𝐶𝑚) = 𝜎𝐹𝑀𝜌𝑔

𝑘𝑎𝑝𝑝

𝜇𝑔
(𝑃𝑓 − 𝑃𝑚) − 𝜎𝑀𝐾𝜌𝑔,𝑠𝑐𝐷𝑐(𝐶𝑚 − 𝐶𝑘) (2.84) 

where 𝜌𝑔,𝑠𝑐 represents the gas density at standard condition (14.7 psia and 60 ℉), and 

𝜎𝑀𝐾 denotes the shape factor of nanopore-Kerogen connectivity (density of nanopores in 

organic matter). The accumulation term in Eq. (2.84) contains the mass of two states of 

gas which are free gas compressed within pore and adsorbed gas compressed on pore 

surface. The first term in the right hand side of Eq. (2.84) represents the mass transfer 

between fracture and nanopore given by the convection-Knudsen diffusion flow, and the 

second term represents the mass transfer term between nanopore and Kerogen given by 
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the diffusion flow (Eq. (2.79)). For the Kerogen system, the mass balance equation is 

written as 

 
𝜕𝐶𝑘

𝜕𝑡
= 𝜎𝑀𝐾𝐷𝑐(𝐶𝑚 − 𝐶𝑘) (2.85) 

The finite difference equation in the fracture system is 

 

𝑇𝑖−1/2
𝑛+1 𝑃𝑓,𝑖−1

𝑛+1 − (𝑇𝑖−1/2
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 )𝑃𝑓,𝑖
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 𝑃𝑓,𝑖+1
𝑛+1  

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[(

𝑀𝜙,𝑖
𝑛+1

𝐵𝑖
𝑛+1) − (

𝑀𝜙,𝑖
𝑛

𝐵𝑖
𝑛 )] + ∆𝜏𝑖𝑣𝑖𝜎

𝑘𝑎𝑝𝑝,𝑖
𝑛+1

(𝐵𝜇)𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) − 𝑞𝑠𝑓

𝑛+1 

(2.86) 

where 𝑣𝑖 is the derivative of the drainage ‘bulk’ volume of the grid block 𝑖 as defined in 

Eq. (2.57). The apparent permeability 𝑘𝑎𝑝𝑝,𝑖
𝑛+1  is calculated by Eq. (2.77) for each matrix 

block for each time-step. The finite difference equation in the matrix system is 

 

1

∆𝑡𝑛+1
[(

𝜙𝑚,𝑖
𝑛+1

𝐵𝑖
𝑛+1 + 𝐶𝑚,𝑖

𝑛+1) − (
𝜙𝑚,𝑖

𝑛

𝐵𝑖
𝑛 + 𝐶𝑚,𝑖

𝑛 )] − 𝜎
𝑘𝑎𝑝𝑝,𝑖

𝑛+1

(𝐵𝜇)𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) 

+𝜎𝑀𝐾𝐷𝑐(𝐶𝑚,𝑖
𝑛+1 − 𝐶𝑘,𝑖

𝑛 ) = 0 

(2.87) 

The finite difference equation in the Kerogen system is 

 
(𝐶𝑘,𝑖

𝑛+1 − 𝐶𝑘,𝑖
𝑛 )

∆𝑡𝑛+1
− 𝜎𝑀𝐾𝐷𝑐(𝐶𝑚,𝑖

𝑛+1 − 𝐶𝑘,𝑖
𝑛+1) = 0 (2.88) 

The governing equations of the DTOF-based triple-continuum approach are given by 

Eqs. (2.86) - (2.88), and the corresponding primary variables are the fracture pressure 

(𝑃𝑓), matrix pressure (𝑃𝑚), and Kerogen dissolved gas concentration (𝐶𝑘) for each grid. 

The numerical simulation procedure and derivative calculations for constructing the 

Jacobian are described in APPENDIX B. 
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2.4 Results and Discussions 

In this subchapter, three examples are presented for the validation of the single-

phase DTOF-based flow simulation using 2-D and 3-D heterogeneous gas reservoir 

models. The model validations include the single-porosity, dual-porosity, and triple-

continuum models as described in this chapter. The results of the DTOF-based 

simulation are compared with the predictions from a commercial blackoil simulator 

(Schlumberger© ECLIPSE100). 

2.4.1 Single-Porosity Model 

For the validation of the single-phase single-porosity model, we first present a 2-

D channel-type reservoir model. The model size is 1,200 ft, 2,400 ft, and 10 ft along x, 

y, and z directions, respectively, and the model is comprised of 60×120 (7,200) grids. 

The initial reservoir pressure is 5,000 psi at equilibrium. Fig. 2.9 shows the geological 

heterogeneities of the 2-D model. The permeability has the directionality among x-, y-, 

and z-axes ((a) – (c)), and the porosity is heterogeneously distributed ((d)). The 

formation permeability ranges from 2.3×10-3 to 2 md in horizontal and the porosity 

ranges from 0 to 5 %. 
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Fig. 2.9 – Distributions of the porosity and logarithmic permeability. 

 

 

 

Before conducting a numerical simulation, we first transform the multidimensional 

geometric heterogeneities (geometry, porosity and permeability) into 1-D heterogeneity 

along the DTOF coordinate by the FMM calculation. The DTOF map is illustrated in 

Fig. 2.10. Notice that the well is vertically placed in the center of the model. 

 

 

 

 

Fig. 2.10 – DTOF map in heterogeneous single-porosity model. 
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Fig. 2.11 shows the drainage volume curves. After the DTOF calculation, the FMM 

successively computes the well drainage volumes by summing up the pore volumes 

within the contours of DTOF along the pressure propagation trajectory ((a)). The 

drainage volume is also calculated as a function of time ((b)) using the following 

equation.  

 𝑉𝑝(𝑡) = ∑𝑉𝑝,𝑗 exp (−
𝜏𝑗

2

4𝑡
)

𝑗

 (2.89) 

The drainage pore volume monotonically evolves from the well completions and finally 

reaches a plateau (pseudo-steady state / boundary-dominant flow) which means that the 

propagation front completely touches on the model outer boundaries and there is no 

available (propagable) pore volume anymore. 

 

 

 

 

Fig. 2.11 – Drainage pore volumes as a function of (a) DTOF and (b) Time. 

 

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 1 2 3 4

D
ra

in
ag

e 
P

o
re

 V
o

lu
m

e 
(f

t3
)

DTOF

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 200 400 600

D
ra

in
ag

e
 P

o
re

 V
o

lu
m

e
 (

ft
3
)

Time (days)

(a) Vp as a function of DTOF (a) Vp as a function of TIME



 

50 

 

Once we obtain the drainage pore volume, we successively perform a numerical 

simulation based on the 1-D DTOF coordinate system. Fig. 2.12 shows the results of the 

DTOF-based simulation. The simulation results are compared with the commercial 

simulator for reference. Fig. 2.12 (a) is the predicted well gas production rate under a 

constant bottom-hole pressure constraint (3,500 psi).  Fig. 2.12 (b) is the predicted well 

bottom-hole pressure under a constant gas production rate constraint (1,000 Mscf/day). 

The both results have a good agreement with the results of the commercial simulator. 

 

 

 

 

Fig. 2.12 – Simulation results of the (a) gas production rate and (b) bottom-hole pressure. The plot 
denotes the result of the commercial simulator (ECLIPSE) and the lines represents the result of the 

DTOF-based simulation. 
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mapped back on the original Cartesian model each time-step. Fig. 2.13 (a) and (c) are 

the pressure contours at 100 days and 300 days, respectively, calculated by the 

commercial simulator. Fig. 2.13 (b) and (d) are the pressure map at the corresponding 

time-steps calculated by the DTOF-simulation. We can see the DTOF-based simulation 

captures the pressure in a highly heterogeneous geological characteristics based on its 1-

D coordinate. 

 

 

 

 

Fig. 2.13 – Pressure maps of the (a) ECLIPSE at 100 days, (b) DTOF simulation at 100 days, (c) 
ECLIPSE at 300 days, and (d) DTOF simulation at 300 days. 
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1,990 ft, 1,990 ft, and 500 ft along x, y, and z directions, respectively, and the model is 

comprised of the total 199×199×10 grids. The first 5 layers represent the matrix system 

and the other 5 layers are the fracture system. These two distinct systems are connected 

by the convective transfer function without the diffusion and slippage effects. The initial 

reservoir pressure is 5,470 psi. Fig. 2.14 shows the permeability and porosity 

distributions in the fracture coordinate. The fracture permeability is ranging from 0.32 to 

4.93 md in x direction, 0.32 to 4.98 md in y direction, and 0.034 to 0.634 md in z 

direction. The fracture porosity ranges from 0.97 to 12 %. 

 

 

 

 

Fig. 2.14 – Distributions of the fracture permeability and porosity. 
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In the matrix system, the permeability and porosity are both constant (1×10-4 md and 10 

%). The matrix rocks have a low permeability but large storage capacity relative to the 

fracture system. The well is vertically placed on the center of the model and completed 

through the five fracture layers. 

In this model, the geomechanical rock compaction is considered to account for 

the effects of the rock deformation and compaction in the fracture space. In the 

conventional stratified sandstone reservoirs, geomechanical effects on its porosity and 

permeability are generally small and usually neglected. However, in fractured reservoirs, 

such geomechanical effects can be relatively large and may have a significant impact 

particularly in near-wellbore region due to the large pressure drawdown. The resulting 

rock compaction can significantly affect to the flow conductivity and the fluid storage 

capacity in fractures space. In this model, the rock compaction is incorporated on the 

pressure and porosity as shown in Fig. 2.15. The fracture permeability (multiplier) 

changes nonlinearly as a function of pressure. The porosity (multiplier) changes linearly 

in the pressure table instead of using the conventional exponential rock compressibility 

function (Eq. (2.34)). 
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Fig. 2.15 – Rock compaction table for the fracture system. 

 

 

 

Fig. 2.16 shows the numerical simulation results of the constant well bottom-hole 

pressure and constant well rate cases. Fig. 2.16 (a) is the predicted gas production rate 

under the constant bottom-hole pressure constraint (4,000 psi). In this figure, the ‘case1’ 

represents the result without the rock compaction effect, and ‘case2’ represents the result 

with the rock compaction effect. Fig. 2.16 (b) is the predicted bottom-hole pressure 

under the constant gas rate constraint (1,000 Mscf/day). It is obvious that the rock 

compaction effect in fractures has a significant impact on the production and bottom-

hole pressure behaviors. Under the influence of the rock compaction, the rate and 

bottom-hole pressure rapidly declined because the fracture conductivity and storage 

capacity are dramatically decreased as the fracture pressure decreases.  

 

0.95

0.96

0.97

0.98

0.99

1.00

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1,000 2,000 3,000 4,000 5,000 6,000

P
o

ro
si

ty
 M

u
lt

ip
lie

r

P
e

rm
ea

b
ili

ty
 M

u
lt

ip
lie

r

Pressure (psia)

k multiplier

 multiplier



 

55 

 

 

Fig. 2.16 – Simulation results of the (a) gas production rate and (b) bottom-hole pressure. The plots 
are the commercial simulator and the lines are the DTOF-based simulation. The ‘case1’ represents 

the no rock compaction model, and ‘case2’ denotes the rock compaction model. 
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by a multistage hydraulic fracturing. The model size is 2,000 ft, 4,000 ft, and 150 ft 

along x, y, and z directions, respectively, and the model consists of the 200×400×90 

(7,200,000) grids. The first 30 layers is the fracture domain, the second 30 layers is the 

nanoporous domain, and the last 30 layers is the Kerogen bulk domain. The initial 

reservoir pressure is 1,500 psi at equilibrium for all the domains. Fig. 2.17 shows the 

fracture permeability distribution that ranges from 1×10-4 to 0.15 md in horizontal 

direction and from 1×10-6 to 1.5×10-3 md in vertical direction. The fracture porosity is 

assumed to be constant (1 %). 

 

 

 

 

Fig. 2.17 – Horizontal permeability distribution in the fracture system. 
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increased by a factor of 10,000 in the stimulated grids for all the directions. The 

hydraulic fracture permeability ranges from 1.3 to 1,532 md in horizontal direction and 

from 0.013 to 15.3 md in vertical direction. 

 

 

 

 

Fig. 2.18 – Horizontal well stimulated by the 12-stage hydraulic fracturing. 

 

 

 

The reservoir properties are summarized in Table 2.2. In the triple-continuum 

model, the apparent matrix permeability is calculated using pressure, temperature, gas 

properties, and nanopore size as described in Eq. (2.76), thus the matrix permeability is 

not explicitly input in the model. In Table 2.2, there are two shape factors that is 

fracture-matrix shape factor and Kerogen-nanopore shape factor. The latter one 

represents the density of formation porosity in inorganic- and organic-rocks. The 

adsorption/desorption processes are modeled by the Langmuir isotherm. This isotherm 

model has several assumptions.  

 The adsorption equilibrium is instantaneous (only relates to pressure, not to 

time). 
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 The adsorption layer forms only monolayer at maximum. 

 There are no phase transitions and surface diffusion in the adsorbed layer. 

This isotherm is characterized by two parameters – Langmuir pressure and Langmuir 

volume. Langmuir pressure represents the pressure at which one half of the Langmuir 

volume can be adsorbed. Langmuir volume is defined as the maximum amount of gas 

that can be adsorbed to the surface of nanopores at infinite pressure. In this model, the 

Barnett shale gas data are used (Mengal et al. 2011) as shown in Fig.2.19. 

 

 

 

 

Table 2.2 – Reservoir properties (3D triple-continuum model) 

Reservoir properties 

Initial pressure (psia) 1,500 

Temperature (degF) 250 

Matrix properties 

Porosity (fraction) 0.1 

Rock compressibility (1/psi) 1 x 10-6 

Fracture-matrix shale factor (1/ft2) 0.15 

Langmuir pressure (psi) 650 

Langmuir volume (scf/rcf) 7.13 

Kerogen properties 

Diffusion coefficient (ft/day) 0.02 

Kerogen-matrix shape factor (1/ft2) 0.15 
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Fig. 2.19 – Langmuir isotherm model (the Barnett shale gas). 

 

 

 

Fig. 2.20 illustrates the Knudsen number as a function of pressure and pore 

radius at given temperature and fluid compositions. The Knudsen number is calculated 

by Eq. (2.62) as a function of mean-free-path and pore size. When pore size is smaller 

than 100nm, the flow regime falls in slip or in transition flows at low pressure condition. 

Contrary, the viscous flow regime is appeared in micrometer pores (1,000 nm~). 

 

 

 

 

Fig. 2.20 – Knudsen number as a function of pressure and pore size at fixed gas composition and 
reservoir temperature (T = 250 ℉). 
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Fig. 2.21 shows the changes of apparent gas permeability ((a)) and permeability ratio 

((b)) as a function of pressure and pore size at given reservoir temperature and fluid 

compositions. These parameters are calculated by Eqs. (2.76) and (2.77), respectively. 

 

 

 

 

Fig. 2.21 – Permeability change due to the slippage and Knudsen diffusion effects. (a) Apparent 
permeability and (b) Permeability ratio. 
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models have a good agreement with the commercial simulator on the gas rate 

predictions. 

 

 

 

 

Fig. 2.22 – Validation results of the (a) single-porosity model and (b) dual-porosity models. The 
results are compared with the ECLIPSE. 
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assistance from low-conductive smaller nanopores. After 10 days from the first 

production, the pore size does not make a difference on the production behavior. 

 

 

 

 

Fig. 2.23 – Gas production rates with different pore size conditions (10 years). 

 

 

 

Fig 2.24 shows the volume transfer rate between fracture and matrix ((a)) and between 
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and Kerogen proceeds slowly due to its diffusive nature.  
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Fig. 2.24 – Inter-coordinate fluid transfer between (a) matrix and fracture, and (b) Kerogen and 
matrix. 
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Fig. 2.25 – Simulation results of the (a) bottom-hole pressures and (b) its derivatives 

 

 

 

The responses of the matrix and Kerogen systems are also observed by plotting the 

volume transfer rate between the fracture and matrix and between the matrix and 

Kerogen (Fig. 2.26). The instantaneous response can be seen in the 100 nm case (blue 

line), and then the smaller pores gradually activated as the pressure drawdown proceeds 

in the matrix system ((a)). Notice that the steady-state matrix-fracture transfer rate (the 

rate after 10 days) does not show difference among all the pore size cases. In contrast, 

the Kerogen system is pronounced in the late time period and essentially has no 

difference in the transfer rate for the pore size variations ((b)).  

 

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Δ
'(

m
p

)

Time, days

100 nm

50 nm

20 nm

10 nm

5 nm

1.0E+06

1.0E+07

1.0E+08

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Δ
(m

p
)

Time, days

100 nm

50 nm

20 nm

10 nm

5 nm

(a) Pressure Response 

(Pseudo-pressure)

(b) Pressure Derivative 

(Pseudo-pressure)



 

65 

 

 

Fig. 2.26 – Inter-coordinate fluid transfer between (a) matrix and fracture, and (b) Kerogen and 
matrix. 

 

 

 

2.5 Conclusions 

This chapter presented the DTOF formulation and its extension to the multi-

continuum modeling for single-phase fluid flow problems. The proposed approach is 

applicable in both compressible and slightly-compressible fluids and allows us to include 

complex well models (i.e. horizontal well with multistage hydraulic fractures) as well. 

The numerical experiments show good agreement between the proposed approach and 

conventional simulation method (commercial simulator). The power and versatility have 

been demonstrated through the model validations. The major features of this chapter are 

summarized as follows. 

 A finite difference method is used to approximate the pressure solutions of the 1-

D DTOF-based differential equations as with the conventional reservoir 

simulation approach. The 𝑤-function is constructed as a directional property 

from the drainage volume using forward, backward, and central differences. 
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 The DTOF-based flow simulation is less computationally demanding compared 

with the conventional reservoir simulation method due to the several inherent 

advantages of this approach. First, the Fast Marching Method is single-pass 

algorithm because each cell is touched essentially only once. Thus, the solution 

can be constructed sequentially from the small 𝜏 (source point) to large 𝜏 (usually 

outer boundary) along the pressure propagation path. It allows the FMM to be 

applied for large scale problems. Second, the multidimensional transport 

equations are decomposed into the series of 1-D transport equations based on the 

coordinate transformation. During the numerical computation, the sizes of the 

matrix and vector constructed for each iteration step are dramatically reduced, for 

example, from several millions to several hundreds. Third, in the transformed 1-

D coordinate, the geological heterogeneities are integrated to only one 

heterogeneous parameter that is drainage volume. The complex reservoir 

geometries (i.e. corner point grid) are also transformed to a simple 1-D grid 

coordinate. Furthermore, the drainage volume is a property monotonically 

increasing from small 𝜏 to large 𝜏. As a result, the grid complexities and spatial 

heterogeneities are considerably simplified in the DTOF formulation. 

 The DTOF formulation is extended to dual-porosity modeling. The additional 

coordinate (matrix system) is added to the 1-D fracture system under several 

assumptions: (1) the FMM is performed on the fracture coordinate without 

consideration for the matrix system and its heterogeneities, and (2) matrix 

properties (permeability, porosity, an shape factor) are constant over the domain. 
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Also, the primary variables in the matrix system are solved along the same 1-D 

coordinate as the 1-D fracture system. 

 We have proposed a generalized framework for the flow modeling of shale gas 

reservoir using the triple-continuum approach. The unconventional reservoir 

characteristics were comprehensively investigated by accounting for all the 

known physical mechanisms and its characteristics including the Knudsen 

diffusion and slippage effects, adsorption/diffusion in nanopore surfaces, rock 

compaction in fractures due to the geomechanical effect, and gas diffusion from 

Kerogen content. The numerical simulation results show that the apparent 

permeability, which governs the mass transmissibility between the fracture and 

nanopores, can change significantly in low bottom-hole flowing pressure 

conditions. The apparent permeability also shows high dependency on the matrix 

pore radius. The numerical results show that the matrix-fracture interaction has 

an impact on the early time transient behavior, while the Kerogen system is 

activated slowly due to its diffusive nature.  
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CHAPTER III 

MULTIPHASE DTOF AND ITS USE IN FLOW SIMULATION 

 

In the petroleum industry, multiphase and multicomponent flow simulations are 

essential for modeling fluid flow in porous media due to the fact that reservoir fluids are 

comprised of various types of hydrocarbon and non-hydrocarbon components. 

Subsurface reservoir is often saturated with multiphase fluids (oil, gas, and grand water) 

because of the presence of aquifer and phase transitions of the hydrocarbon components 

depending upon the dynamic reservoir conditions. A numerical simulation for solving 

this highly nonlinear differential equation problem involves linearizing and discretizing 

the phase or component flow equations in terms of space and time using the solution 

techniques (i.e. FDM, FEM, and FVM).  

This chapter is organized as follows. In Subchapter 3.1, general mass balance 

equations are introduced for multiphase and multicomponent flow modeling. In this 

research, the fully implicit method (FIM) is used for the multiphase simulations, which 

means all unknown variables are simultaneously computed by solving a linear system of 

equations. In Subchapter 3.2, the concept of the diffusive time of flight is generalized 

for multiphase and multicomponent flow problems using the asymptotic theory 

(‘multiphase DTOF’). On the basis of the multiphase DTOF, the flow domain is 

transformed from the physical coordinate to the series of 1-D coordinate associated with 

the coordinate transformation of the multiphase transport equation.  In Subchapter 3.3, 

capillary pressure effects are taken into account for the thermodynamic condition of two-
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phase vapor-liquid equilibrium (VLE) by modifying a conventional flash calculation 

procedure. The conventional thermodynamic system is assumed to be macro-scale PVT 

cell without the consideration for the IFT and capillarity effects. These effects are 

especially important for simulating a vapor-liquid phase transition in confined nano-

scale porous space such as shale, CBM, and tight reservoirs. The proposed formulations 

are validated through the numerical simulations in Subchapter 3.4. Finally, we make 

conclusions and discussions in Subchapter 3.5. 

3.1 Introduction to Multiphase Flows 

3.1.1 Three-phase Blackoil Equations 

We first see the differential equations of general blackoil situation in a porous 

medium. The reservoir fluid is saturated with three-phase state – oil, gas, and water 

phases. The oil and gas phases exchange mass between them (i.e. solution gas in oil, 

vaporized oil in gas), while the water phase does not exchange mass with the other 

hydrocarbon phases. The flow equation of phase 𝛼 (𝑤, 𝑜, 𝑔) is written by the following 

mass balance form. 

 
𝜕

𝜕𝑡
(𝜙𝜌𝛼𝑆𝛼) = −∇ • (𝜌𝛼𝐮𝛼) + 𝜌𝛼𝑞𝛼 (3.1) 

where 𝐮𝛼 is the velocity of phase 𝛼 and 𝑞𝛼 is the production or injection rate of phase 𝛼 

per unit volume per unit time at wellbore condition. The phase velocity is approximated 

by the Darcy’s law with a relative permeability. For simplicity, we neglect the gravity 

and capillary pressure. Thus, the velocity has a linear relationship to the pressure 

differential. 
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 𝐮𝛼 = −𝐤
𝑘𝑟𝛼

𝜇𝛼
𝛻𝑃 (3.2) 

In a closed domain, the outer boundary is imposed as no-flow impermeable boundary.  

The mass conservation equation is written as follows. 

 
𝜕

𝜕𝑡
(𝜙𝜌𝛼𝑆𝛼) = ∇ • (𝜌𝛼

𝑘𝑟𝛼

𝜇𝛼
𝐤𝛻𝑃) + 𝜌𝛼𝑞𝛼 (3.3) 

For water phase, the continuity of mass involves the mass of free water and the mass of 

irreducible water. 

 
𝜕

𝜕𝑡
(𝜙𝜌𝑤𝑆𝑤) = ∇ • (𝜌𝑤

𝑘𝑟𝑤

𝜇𝑤
𝐤𝛻𝑃) + 𝜌𝑤𝑞𝑤 (3.4) 

Notice that the mass density of water is defined by 

 𝜌𝑤 =
𝜌𝑤,𝑠𝑐

𝐵𝑤
 (3.5) 

where 𝜌𝑤,𝑠𝑐 denotes the surface water density and 𝐵𝑤 represents the formation volume 

factor of the water phase. 

For oil phase, the continuity of mass involves the mass of oil in the oil phase and 

mass of oil vaporized in gas phase (condensate). 

 

𝜕

𝜕𝑡
[𝜙(𝜌𝑜𝑜𝑆𝑜 + 𝑅𝑣𝜌𝑜𝑔𝑆𝑔)]

= ∇ • [𝐤 (𝜌𝑜𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑅𝑣𝜌𝑜𝑔

𝑘𝑟𝑔

𝜇𝑔
)𝛻𝑃] + 𝜌𝑜𝑜𝑞𝑜 + 𝑅𝑣𝜌𝑜𝑔𝑞𝑔 

(3.6) 

where 𝑅𝑣 represents the vaporized oil gas ratio, 𝜌𝑜𝑜 denotes the mass density of oil in the 

oil phase, and 𝜌𝑜𝑔 denotes the mass density of oil in gas phase.  

 𝜌𝑜𝑜 =
𝜌𝑜,𝑠𝑐

𝐵𝑜
, 𝜌𝑜𝑔 =

𝜌𝑜,𝑠𝑐

𝐵𝑔
 (3.7) 
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where 𝜌𝑜,𝑠𝑐 is surface oil density, and 𝐵𝑜 and 𝐵𝑔 are formation volume factor of oil and 

gas phase, respectively. For gas phase, the continuity of mass involves the mass of gas in 

the gas phase and mass of gas dissolved in oil phase (solution gas). 

 

𝜕

𝜕𝑡
[𝜙(𝜌𝑔𝑔𝑆𝑔 + 𝑅𝑠𝑜𝜌𝑔𝑜𝑆𝑜)]

= ∇ • [𝐤 (𝜌𝑔𝑔

𝑘𝑟𝑔

𝜇𝑔
+ 𝑅𝑠𝑜𝜌𝑔𝑜

𝑘𝑟𝑜

𝜇𝑜
)𝛻𝑃] + 𝜌𝑔𝑔𝑞𝑔 + 𝑅𝑠𝑜𝜌𝑔𝑜𝑞𝑜 

(3.8) 

where 𝑅𝑠𝑜 represents the solution gas oil ratio, 𝜌𝑔𝑔 denotes the volumetric mass density 

of gas in free gas phase, and 𝜌𝑔𝑜 denotes the volumetric mass density of gas dissolved in 

oil phase. 

 𝜌𝑔𝑔 =
𝜌𝑔,𝑠𝑐

𝐵𝑔
, 𝜌𝑔𝑜 =

𝜌𝑔,𝑠𝑐

𝐵𝑜
 (3.9) 

where 𝜌𝑔,𝑠𝑐 is the surface gas density.  

Dividing Eqs. (3.4), (3.6), and (3.8) by Eqs. (3.5), (3.7), and (3.9), respectively, 

we obtain the mass balance equation on the standard volume basis for the three-phase 

black oil model. The mass balance equation of water is 

 
𝜕

𝜕𝑡
(𝜙

𝑆𝑤

𝐵𝑤
) = ∇ • (𝐤

𝑘𝑟𝑤

𝐵𝑤𝜇𝑤
𝛻𝑃) +

𝑞𝑤

𝐵𝑤
 (3.10) 

The mass balance equation of oil is 

 
𝜕

𝜕𝑡
[𝜙 (

𝑆𝑜

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔

𝐵𝑔
)] = ∇ • [𝐤 (

𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
+ 𝑅𝑣

𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
)𝛻𝑃] +

𝑞𝑜

𝐵𝑜
+ 𝑅𝑣

𝑞𝑔

𝐵𝑔
 (3.11) 

The mass balance equation of gas is 

 𝜕

𝜕𝑡
[𝜙 (

𝑆𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜

𝐵𝑜
)] = ∇ • [𝐤 (

𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+ 𝑅𝑠𝑜

𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
)𝛻𝑃] +

𝑞𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑞𝑜

𝐵𝑜
 (3.12) 
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The additional equation is given by the saturation constraint. 

 𝑆𝑤 + 𝑆𝑜 + 𝑆𝑔 = 1 (3.13) 

Eqs. (3.10) – (3.13) provide the four independent equations to solve the four primary 

unknowns. In the three-phase transport process, the primary unknowns correspond to the 

pressure (𝑃) and phase saturations (𝑆𝑜 , 𝑆𝑔, 𝑆𝑤). We solve the linear system of equations 

of this partial differential equations by linearizing and discretizing into the finite space 

and time. 

3.1.2 Multicomponent Flow Equations 

The compositional flow equations consist of 𝑁𝑐 + 1 equations associated with 

the transport of the 𝑁𝑐 hydrocarbon components and water. The molar mass balance 

equation of hydrocarbon component 𝑖 is written as follows. 

 

𝜕

𝜕𝑡
[𝜙(𝑥𝑖𝜉𝑜𝑆𝑜 + 𝑦𝑖𝜉𝑔𝑆𝑔)]

= ∇ • [𝐤 (𝑥𝑖𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑦𝑖𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
)𝛻𝑃] + 𝑥𝑖𝜉𝑜𝑞𝑜 + 𝑦𝑖𝜉𝑔𝑞𝑔 

(3.14) 

where 𝑥𝑖 is the mole fraction of component 𝑖 in oil phase, 𝑦𝑖 is the mole fraction of 

component 𝑖 in gas phase,  𝜉𝑜 and 𝜉𝑔 are the oil and gas molar density, respectively, and 

𝑞𝑜 and 𝑞𝑔 are the oil and gas volumetric rate at wellbore condition, respectively.  

In this research, we assume that the water phase does not exchange mass with the 

hydrocarbon phases. Thus, the water flow equation is given by the independent mass 

balance form, which has the same form with the blackoil equation (Eq. (3.4)). The 
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thermodynamic equilibrium of the hydrocarbon phases is given by the fugacity equality 

of liquid and vapor phases for each component. 

 𝑓𝑖
𝐿(𝑃, 𝑇, 𝑥1, … , 𝑥𝑁𝑐

) = 𝑓𝑖
𝑉(𝑃, 𝑇, 𝑦1, … , 𝑦𝑁𝑐

) (3.15) 

In addition to the differential equations and fugacity equilibrium, there are two mole 

fraction constraints. 

 ∑𝑥𝑖

𝑁𝑐

𝑖=1

= 1, ∑𝑦𝑖

𝑁𝑐

𝑖=1

= 1 (3.16) 

In the transport process, there is one saturation constraints. 

 𝑆𝑜 + 𝑆𝑔 + 𝑆𝑤 = 1 (3.17) 

In multicomponent flow simulation, the fluid phase properties 𝜉𝑜, 𝜉𝑔, 𝑓𝑖
𝐿
, and 𝑓𝑖

𝑉
 are 

calculated by the three-parameter Peng-Robinson Equation of State (PR-EOS). The 

phase viscosities, 𝜇𝑜 and 𝜇𝑔, are successively calculated using the Lohrenz-Bray-Clark 

viscosity correlation based on the given phase composition and phase molar density. The 

procedure of the phase split (flash) calculation is described in APPENDIX D. If the 

reservoir is saturated with three-phase (oil, water, and gas), we solve the following 

primary unknowns. 

 𝑃, 𝑆𝑜, 𝑆𝑔, 𝑆𝑤, 𝑥1, … , 𝑥𝑁𝑐
, 𝑦1, … , 𝑦𝑁𝑐

 (3.18) 

Eqs. (3.4), and (3.14) – (3.17) provide 2𝑁𝑐 + 4 independent equations for the 2𝑁𝑐 + 4 

unknowns (Eq. (3.18)). Notice that the component-based flow equation can be 

transformed into the phase-based flow equation from by summing up the component 

equations (Eq. (3.14)) for oil and gas phases, separately. 
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𝜕

𝜕𝑡
(𝜙𝜉𝑜𝑆𝑜) = ∇ • (𝐤𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
𝛻𝑃) + 𝑥𝑖𝜉𝑜𝑞𝑜 (3.19) 

 
𝜕

𝜕𝑡
(𝜙𝜉𝑔𝑆𝑔) = ∇ • (𝐤𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
𝛻𝑃) + 𝑦𝑖𝜉𝑔𝑞𝑔 (3.20) 

If we neglect the hydrocarbon phase interactions (i.e. solution gas, vaporized oil), the 

compositional flow equations (Eqs. (3.19) and (3.20)) are equivalent to the blackoil 

equations (Eqs. (3.6) and (3.8)). Thus, the compositional flow formulation holds the 

phase mass balance. 

3.2 Development: DTOF-based Simulation for Multiphase Flows 

3.2.1 Multiphase Diffusive Time of Flight 

We generalize the DTOF from multiphase and multicomponent flow equation 

based on the asymptotic pressure solution as we showed the single-phase case in the 

previous chapter. On the basis of Eq. (3.3), the general mass balance equation of phase 

𝛼 can be written as 

 
𝜕

𝜕𝑡
(𝜙𝜌𝛼𝑆𝛼) − 𝛻(𝜌𝛼𝐤𝜆𝛼) • 𝛻𝑃 − (𝜌𝛼𝐤𝜆𝛼) • 𝛻2𝑃 = 0 (3.21) 

where 𝜆𝛼 is fluid mobility of phase 𝛼. The sink or source term is imposed on the inner 

boundary condition. Not only the blackoil equations, but the compositional equations 

also holds this phase transport equation by summing up all the component mass balance 

equation (𝑖 = 1,… , 𝑁𝑐) for phase 𝛼 as shown in Eqs. (3.19) and (3.20). After carrying 

out the time differentiation, the accumulation term in Eq. (3.21) is rearranged as follows.  
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𝜕

𝜕𝑡
(𝜙𝜌𝛼𝑆𝛼) = (

𝜕𝜙

𝜕𝑃
𝜌𝛼 + 𝜙

𝜕𝜌𝛼

𝜕𝑃
) 𝑆𝛼

𝜕𝑃

𝜕𝑡
+ 𝜙𝜌𝛼

𝜕𝑆𝛼

𝜕𝑡

= 𝜙𝜌𝛼𝑆𝛼(𝑐𝑟 + 𝑐𝛼)
𝜕𝑃

𝜕𝑡
+ 𝜙𝜌𝛼

𝜕𝑆𝛼

𝜕𝑡
 

(3.22) 

Substituting Eq. (3.22) into Eq. (3.21), the transport equation for phase 𝛼 is  

 𝜙𝑆𝛼(𝑐𝑟 + 𝑐𝛼)
𝜕𝑃

𝜕𝑡
+ 𝜙

𝜕𝑆𝛼

𝜕𝑡
−

1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼) • 𝛻𝑃 − (𝐤𝜆𝛼) • 𝛻2𝑃 = 0 (3.23) 

The global mass balance equation in the domain is obtained by summing up all the phase 

equations (Eq. (3.23)). 

 𝜙𝑐𝑡

𝜕𝑃

𝜕𝑡
+ 𝜙 ∑

𝜕𝑆𝛼

𝜕𝑡
− ∑[

1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼)] • 𝛻𝑃 − 𝐤𝜆𝑡 • 𝛻2𝑃 = 0 (3.24) 

where 𝑐𝑡 is the total compressibility factor.  

 𝑐𝑡 = 𝑐𝑟 + ∑𝑆𝛼𝑐𝛼 (3.25) 

Notice that the saturation constraint leads 

 ∑
𝜕𝑆𝛼

𝜕𝑡
= 0 (3.26) 

From Eqs. (3.24) - Eq. (3.26), the pressure equation for multiphase flow is obtained as 

follows.  

 𝜙𝑐𝑡

𝜕𝑃

𝜕𝑡
− ∑[

1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼)] • 𝛻𝑃 − 𝐤𝜆𝑡 • 𝛻2𝑃 = 0 (3.27) 

We consider the equation in the frequency domain by applying a Fourier transform.  

 𝜙𝑐𝑡(−𝑖𝜔)�̃�(𝐱,𝜔) − ∑[
1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼)] • 𝛻�̃�(𝒙,𝜔) − 𝐤𝜆𝑡 • 𝛻2�̃�(𝐱, 𝜔) = 0 (3.28) 

The leading-order solution of the pressure propagation equation is obtained using the 

same way as single phase flow case. As we see in the previous chapter, the asymptotic 
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pressure solution is expressed by Eq. (2.14). However, we will generally be interested in 

only the leading-order solution of the infinite series of the asymptotic solution. Inserting 

Eqs. (2.15) – (2.17) into Eq. (3.28) and arranging the equation in terms of powers of 

√−𝑖𝜔, we obtain the following quadratic equation. 

 

(𝜙𝑐𝑡 − 𝐤𝜆𝑡𝛻
2𝜏)𝐴0(√−𝑖𝜔)

2
 

+{𝐤𝜆𝑡𝛻
2𝜏𝐴0 + 2𝐤𝜆𝑡𝛻𝜏𝛻𝐴0 + ∑[

1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼)] 𝛻𝜏𝐴0} √−𝑖𝜔 

− {∑[
1

𝜌𝛼
𝛻(𝐤𝜌𝛼𝜆𝛼)] 𝛻𝐴0 + 𝐤𝜆𝑡𝛻

2𝐴0} = 0 

(3.29) 

The equation from is very similar to that of single phase flow case as written in Eq. 

(2.18). Consequently, the first term in Eq. (3.29) leads the equation for the front of 

pressure propagation in multiphase porous medium. 

 𝐤𝜆𝑡𝛻
2𝜏 − 𝜙𝑐𝑡 = 0 (3.30) 

Alternatively, we can rewrite Eq. (3.30) in the Eikonal equation form. 

 |𝛻𝜏|√
𝐤𝜆𝑡

𝜙𝑐𝑡
= 1 (3.31) 

As a result, we can define the multiphase diffusivity. 

 𝛼diff =
𝐤𝜆𝑡

𝜙𝑐𝑡
 (3.32) 

In a single-phase state, 𝜆𝑡 simply represents the inverse of the fluid viscosity, 

thus Eq. (3.32) is equivalent to the single-phase diffusivity (Eq. (2.21)). In a multiphase 

state, the total mobility 𝜆𝑡 and total compressibility 𝑐𝑡 are obtained by summing up all 

the saturated phase properties (i.e. oil, water, gas). In a compositional simulation, the 
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phase properties (i.e. density, viscosity, compressibility) are calculated using the phase 

split calculation (VLE flash). Therefore, the total mobility is obtained by 

 𝜆𝑡 = ∑
𝑘𝑟𝛼

𝜇𝛼
 (3.33) 

In Eq. (3.25), the isothermal compressibility of phase 𝛼 is calculated by 

 𝑐𝛼 =
1

𝜌𝛼

𝜕𝜌𝛼

𝜕𝑝
 (3.34) 

The hydrocarbon phase density in Eq. (3.34) is computed by the flash calculation as 

well. However, in the blackoil simulation, the condensing and vaporizing effects in the 

oil and gas phases (i.e. solution gas in oil, vaporized oil in gas) must be explicitly taken 

into account for the calculation of density and total mobility. In such case, the oil and 

gas densities are calculated by accounting such phase interaction effects as follows.  

 𝜌𝑜 =
𝜌𝑜,𝑠𝑐 + 𝜌𝑔,𝑠𝑐𝑅𝑠𝑜

𝐵𝑜
 (3.35) 

 𝜌𝑔 =
𝜌𝑔,𝑠𝑐 + 𝜌𝑜,𝑠𝑐𝑅𝑣

𝐵𝑔
 (3.36) 

In addition, the total mobility is defined by 

 𝜆𝑡 = ∑
𝑘𝑟𝛼

𝜇𝛼
+ 𝑅𝑠𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑅𝑣

𝑘𝑟𝑔

𝜇𝑔
 (3.37) 

On the basis of Eq. (3.32), we can also define the phase (partial) diffusivity by 

decomposing the total mobility into the sum of phase mobility. 

 𝛼diff =
𝐤𝜆𝑡

𝜙𝑐𝑡
= ∑

𝐤𝜆𝑗

𝜙𝑐𝑡
𝑗=𝑜,𝑤,𝑔

= ∑ 𝛼𝑗

𝑗=𝑜,𝑤,𝑔

 (3.38) 

where  𝛼𝑗 is the diffusivity of phase 𝑗. 
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 𝛼𝑗 =
𝐤𝜆𝑗

𝜙𝑐𝑡
 (3.39) 

where 𝜆𝑗 is the mobility of phase 𝑗. In Eq. (3.38), the total diffusivity is identical to the 

propagation speed of the pressure front in multiphase domain. Hence, the phase 

diffusivity is regarded as a partial speed that the pressure front propagates through the 

phase with. 

For example, in a two-phase oil and water case, the total diffusivity is obtained 

by the sum of the oil and water diffusivities. 

 𝛼diff =
𝐤𝜆𝑜

𝜙𝑐𝑡
+

𝐤𝜆𝑤

𝜙𝑐𝑡
= 𝛼oil + 𝛼water (3.40) 

Fig. 3.1 shows the diffusivities in two-phase oil and water domain. The initial water 

saturation ((a)) is heterogeneously distributed, while the other geological parameters (i.e. 

porosity, permeability) are constant over the domain. The total diffusivity ((b)) is given 

by summing the oil diffusivity ((c)) with the water diffusivity ((d)). 
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Fig. 3.1 – Diffusivity calculation in two-phase system. (a) Water saturation, (b) Total diffusivity, (c) 
Oil diffusivity, and (d) Water diffusivity. 

 

 

 

Substituting Eq. (3.40) into Eq. (3.31) yields the following Eikonal equation. 

 |𝛻𝜏|√𝛼oil + 𝛼water = 1 (3.41) 

Notice that the phase diffusivity cannot be used for the DTOF calculation in the FMM, 

because the Eikonal equation form in Eq. (3.41) is held only when the total diffusivity is 

used for the DTOF calculation. However, the phase diffusivity is a good measure to 

know the influence of the saturation effect to the pressure propagation in multiphase 

domain. Fig. 3.2 shows the DTOF map calculated using the same condition as Fig. 3.1. 

The two-phase DTOF ((a)) is obtained by the FMM calculation with the two-phase 

diffusivity. The oil-phase DTOF ((b)) is obtained by temporary neglecting the water-

(b) Two-phase Diffusivity (c) Oil Diffusivity (d) Water Diffusivity

(a) Water Saturation
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phase diffusivity and by simply using the oil-phase diffusivity in the FMM. The water-

phase DTOF ((c)) is also obtained in the same way. As Eq. (3.41) suggests, the DTOF is 

identical to the time when the pressure ‘front’ propagates through the multiphase domain 

with a propagation speed of total diffusivity. Therefore, (b) and (c) are obviously not 

true solutions. 

 

 

 

 

Fig. 3.2 – DTOFs in two-phase system calculated based on the (a) Two-phase diffusivity, (b) Oil-
phase diffusivity, and (c) Water-phase diffusivity. 

 

 

 

3.2.2 Coordinate Transformation 

In a single-phase flow, the diffusivity equation can be transformed into the 𝜏-

coordinate using Eq. (2.38). For a multiphase flow, the same coordinate transformation 

is applied on the multiphase flow equation using multiphase DTOF. Rearranging the 

Eikonal equation (Eq. (3.30)), absolute permeability is expressed with the relation to the 

DTOF. 

(a) Two-phase DTOF (b) Oil-phase DTOF (c) Water-phase DTOF

Neglect Neglect
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 𝐤 =
1

|𝛻𝜏|2
(
𝜙𝑐𝑡

𝜆𝑡
)

init

 (3.42) 

Substituting Eqs. (2.24) and (3.42) into the Darcy’s equation (Eq. (3.2)), the phase 

velocity is defined along the 𝜏-coordinate under the assumption that the pressure 

gradient direction aligns with the 𝜏 gradient direction. 

 𝐮 = −(
𝜙𝑐𝑡

𝜆𝑡
)
init

𝑘𝑟𝛼

𝜇𝛼

1

|𝛻𝜏|

𝜕𝑃

𝜕𝜏
 (3.43) 

We take a volumetric integral of the mass balance equation of phase 𝛼 (Eq. (3.3)) over 

the domain 𝛺. 

 ∫
𝜕(𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡
𝑑𝑉

𝛺

= −∫ ∇ • (𝜌𝛼𝐮𝛼)𝑑𝑉
𝛺

 (3.44) 

On the basis of Eq. (2.27), the flux term (RHS) in Eq. (3.44) is transformed to the 

surface integral by applying a divergence theorem. 

 ∫ ∇ • (𝜌𝛼𝐮𝛼)𝑑𝑉
𝛺

= ∫ (𝜌𝛼𝐮𝛼) • �⃗⃗�  𝑑𝐴
𝑑𝛺

= ∫ (𝜌𝛼𝐮𝛼) •
∇𝜏

|∇𝜏|
 𝑑𝐴

𝑑𝛺(𝜏)

 (3.45) 

The accumulation term (LHS) in Eq. (3.40) is also transformed to surface integral by 

substituting Eq. (2.27). 

 ∫
𝜕(𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡
𝑑𝑉

𝛺

= ∇𝜏 ∫
𝜕(𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

 (3.46) 

Inserting Eqs. (3.45) and (3.46) into Eq. (3.44), we obtain the surface integral form of 

the mass balance equation of phase 𝛼. 

 ∇𝜏 ∫
𝜕(𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

= −∫ (𝜌𝛼𝐮𝛼) •
∇𝜏

|∇𝜏|
 𝑑𝐴

𝑑𝛺(𝜏)

 (3.47) 

Substituting the DTOF-based velocity equation (Eq. (3.43)) into Eq. (3.47) yields 
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 ∫
𝜕(𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

=
1

∇𝜏
[∫ (

𝜙𝑐𝑡

𝜆𝑡
)
init

𝜌𝛼

𝑘𝑟𝛼

𝜇𝛼

𝜕𝑃

𝜕𝜏
•

1

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

] (3.48) 

Let ∆𝜏 → 0. Rearranging Eq. (3.48) yields 

 ∫
𝜕(𝑀𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡

𝜙init

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

=
𝜕

𝜕𝜏
[∫ (

𝑐𝑡

𝜆𝑡
)

init

𝜌𝛼

𝑘𝑟𝛼

𝜇𝛼

𝜕𝑃

𝜕𝜏
•
𝜙𝑖𝑛𝑖𝑡

|∇𝜏|
𝑑𝐴

𝑑𝛺(𝜏)

] (3.49) 

where 𝑀𝜙 is the exponential rock compressibility function. Based on the definition of 

the 𝑤-function (Eq. (2.35)), we rearrange Eq. (3.49) as 

 𝑤(𝜏)∫
𝜕(𝑀𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡
𝑑𝐴

𝑑𝛺(𝜏)

=
𝜕

𝜕𝜏
[𝑤(𝜏)∫ (

𝑐𝑡

𝜆𝑡
)

init

𝜌𝛼

𝑘𝑟𝛼

𝜇𝛼

𝜕𝑃

𝜕𝜏
𝑑𝐴

𝑑𝛺(𝜏)

] (3.50) 

In Eq. (3.50), the pressure 𝑃 and phase saturation 𝑆𝛼 are the location- and time-

dependent variables. Now, we assume that 𝑃 and 𝑆𝛼 are the function of 𝜏 and 𝑡 (i.e. the 

pressure gradient and saturation change align with the 𝜏 gradient). Therefore, we can 

take the terms outside the integral. The DTOF-based transport equation can be written as 

follows. 

 𝑤(𝜏)
𝜕(𝑀𝜙𝜌𝛼𝑆𝛼)

𝜕𝑡
=

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

𝜌𝛼

𝑘𝑟𝛼

𝜇𝛼

𝜕𝑃

𝜕𝜏
] (3.51) 

Comparing Eq. (3.51) with Eq. (3.1), we can define the coordinate transformation for 

the multiphase flow equation as follows.  

 𝛻 • (𝜌𝛼𝐮𝛼) ≡ −
𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

𝜌𝛼𝜆𝛼

𝜕𝑃

𝜕𝜏
] (3.52) 

The transformed flux term is very similar to the single-phase formulation (Eq. (2.38)). 

Suppose 𝜆𝑡 = 1/𝜇 (single-phase) and 𝜆𝛼 = 1/𝜇, then Eq. (3.52) is equivalent to Eq. 

(2.38). However, there is an additional constraint associated with the coordinate 
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transformation of the multiphase equation that the direction of the phase saturation 

change aligns with the 𝜏 gradient direction as well as the pressure gradient direction 

(𝑃 = 𝑃(𝜏, 𝑡) and 𝑆𝛼 = 𝑆𝛼(𝜏, 𝑡)). 

3.2.3 DTOF-based Blackoil Model 

The blackoil simulation contains up to three mass balance equations for each 

grid. The general equation form is described in Eqs. (3.10) – (3.12). Thus, we apply the 

coordinate transformation (Eq. (3.52)) of the phase transport equations for the DTOF-

based simulation. For water phase, the DTOF-based flow equation is written as 

 
𝜕

𝜕𝑡
(
𝜙𝑆𝑤

𝐵𝑤
) =

𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

𝑘𝑟𝑤

𝐵𝑤𝜇𝑤

𝜕𝑃

𝜕𝜏
] +

𝑞𝑤

𝐵𝑤
 (3.53) 

For oil phase, the DTOF-based flow equation is given by 

 

𝜕

𝜕𝑡
[𝜙 (

𝑆𝑜

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔

𝐵𝑔
)] 

=
𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)
init

(
𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
+ 𝑅𝑣

𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
)

𝜕𝑃

𝜕𝜏
] +

𝑞𝑜

𝐵𝑜
+ 𝑅𝑣

𝑞𝑔

𝐵𝑔
 

(3.54) 

For gas phase, the DTOF-based flow equation is written as  

 

𝜕

𝜕𝑡
[𝜙 (

𝑆𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜

𝐵𝑜
)] 

=
𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

(
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+ 𝑅𝑠𝑜

𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
)

𝜕𝑃

𝜕𝜏
] +

𝑞𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑞𝑜

𝐵𝑜
 

(3.55) 

In the DTOF-based simulation, the mass balances equations of Eqs. (3.53) – (3.55) are 

discretized on 1-D coordinate using the finite difference scheme as illustrated in Fig. 2.2.  

From Eqs. (3.53) – (3.55), the finite difference equation is written as follows. 

The 1-D finite difference of the water flow equation is 
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𝑇𝑤,𝑖−1/2
𝑛+1 𝑃𝑖−1

𝑛+1 − (𝑇𝑤,𝑖−1/2
𝑛+1 + 𝑇𝑤,𝑖+1/2

𝑛+1 )𝑃𝑖
𝑛+1 + 𝑇𝑤,𝑖+1/2

𝑛+1 𝑃𝑖+1
𝑛+1 

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑤

𝐵𝑤
)
𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑤

𝐵𝑤
)
𝑖

𝑛

] − 𝑞𝑤𝑠
𝑛+1 

(3.56) 

The 1-D finite difference of the oil flow equation is 

 

𝑇𝑜,𝑖−1/2
𝑛+1 𝑃𝑖−1

𝑛+1 − (𝑇𝑜,𝑖−1/2
𝑛+1 + 𝑇𝑜,𝑖+1/2

𝑛+1 )𝑃𝑖
𝑛+1 + 𝑇𝑜,𝑖+1/2

𝑛+1 𝑃𝑖+1
𝑛+1 

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑜

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔

𝐵𝑔
)

𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑜

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔

𝐵𝑔
)

𝑖

𝑛

] − 𝑞𝑜𝑠
𝑛+1 

(3.57) 

The 1-D finite difference of the gas flow equation is 

 

𝑇𝑔,𝑖−1/2
𝑛+1 𝑃𝑖−1

𝑛+1 − (𝑇𝑔,𝑖−1/2
𝑛+1 + 𝑇𝑔,𝑖+1/2

𝑛+1 )𝑃𝑖
𝑛+1 + 𝑇𝑔,𝑖+1/2

𝑛+1 𝑃𝑖+1
𝑛+1 

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜

𝐵𝑜
)

𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜

𝐵𝑜
)

𝑖

𝑛

] − 𝑞𝑔𝑠
𝑛+1 

(3.58) 

where 𝑖 denotes the grid block number on 1-D coordinate, 𝑇𝛼,𝑖±1/2
𝑛+1  represents the 

transmissibility of phase 𝛼 of the grid 𝑖 at the time 𝑛 + 1, 𝑀𝜙 is the exponential rock 

compressibility function (Eq. (2.34)), and 𝑞𝛼𝑠
𝑛+1 denotes the surface volume production 

rate of phase 𝛼 at the time 𝑛 + 1 which is imposed only on the first grid (𝑖 = 1). In Eqs. 

(3.56) – (3.58), the transmissibility is defined using the phase mobility. 

 𝑇𝛼,𝑖±1/2
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜆𝛼,𝑢𝑝
𝑛+1  (3.59) 

where 𝜆𝛼,𝑢𝑝
𝑛+1  is the mobility of phase 𝛼. For each phase, the mobility is written as 

 𝜆𝑤,𝑢𝑝
𝑛+1 = (

𝑘𝑟𝑤

𝐵𝑤𝜇𝑤
)
𝑢𝑝

𝑛+1

 (3.60) 

 𝜆𝑜,𝑢𝑝
𝑛+1 = (

𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
+ 𝑅𝑣

𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
)

𝑢𝑝

𝑛+1

 (3.61) 
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 𝜆𝑔,𝑢𝑝
𝑛+1 = (

𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+ 𝑅𝑠𝑜

𝑘𝑟𝑜

𝐵𝑜𝜇𝑜
)

𝑢𝑝

𝑛+1

 (3.62) 

Notice that the phase mobility is determined by the up-winding scheme. In Eq. (3.56) – 

(3.58), the surface production rate of phase 𝛼, 𝑞𝛼𝑠
𝑛+1 is given by 

 𝑞𝛼𝑠
𝑛+1 =

𝑤1∆𝜏1

𝜙init

𝑞𝛼
𝑛+1

𝐵𝛼
𝑛+1 (3.63) 

where 𝑞𝛼
𝑛+1 is the production rate of phase 𝛼 per unit volume per unit time and the 

constant, 𝑤1∆𝜏1/𝜙init is the ‘bulk’ volume of the grid block 𝑖 = 1. We rearrange Eq. 

(3.63) using the velocity equation (Eq. (3.43)). 

 𝑞𝛼𝑠
𝑛+1 =

𝑤1∆𝜏1

𝜙init
[

1

∆𝜏1
(
𝜙𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝛼,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
)] (3.64) 

Rearranging Eq. (3.64), the surface production rate of phase 𝛼 is obtained as follows. 

 𝑞𝛼𝑠
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝛼,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (3.65) 

In the DTOF-based blackoil simulation, Eqs. (3.56) – (3.58) are used for solving the 

three unknown variables ({𝑃, 𝑆𝑤, 𝑆𝑔} or {𝑃, 𝑆𝑤, 𝑅𝑠}) for each grid. The simulation flow 

chart is illustrated in Fig. 3.3. The Jacobian construction and numerical calculation 

procedure are described in APPENDIX C.  
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Fig. 3.3 – Flowchart of the multiphase DTOF-based simulation. 

 

 

 

3.2.4 Dual-Porosity Blackoil Modeling based on DTOF 

The blackoil dual-porosity equations are formulated by a direct extension of the 

single-phase dual-porosity modeling. In this approach, the fracture and matrix are treated 

as separate continua throughout the reservoir. As we discussed in the previous chapter, 

we holds some assumptions and constraints for the dual-porosity modeling on its DTOF 

formulation (i.e. constant matrix properties). The general mass balance equation is 

written as follows. The water mass balance in the fracture system is 

 
𝜕

𝜕𝑡
(
𝜙𝑓𝑆𝑤𝑓

𝐵𝑤
) = 𝛻 • (𝐤𝑓𝜆𝑤𝛻𝑃𝑓) − Γ𝑤 +

𝑞𝑤

𝐵𝑤
 (3.66) 

where 𝑆𝑤𝑓 is the water saturation in the fracture system. The oil mass balance in the 

fracture system is 

 𝜕

𝜕𝑡
[𝜙𝑓 (

𝑆𝑜𝑓

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑓

𝐵𝑔
)] = 𝛻 • (𝐤𝑓𝜆𝑜𝛻𝑃𝑓) − Γ𝑜 + (

𝑞𝑜

𝐵𝑜
+ 𝑅𝑣

𝑞𝑔

𝐵𝑔
) 

(3.67) 
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where 𝑆𝑜𝑓 and 𝑆𝑔𝑓 are the oil and gas saturations in the fracture system, respectively. 

The gas mass balance in the fracture system is 

 
𝜕

𝜕𝑡
[𝜙𝑓 (

𝑆𝑔𝑓

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑓

𝐵𝑜
)] = 𝛻 • (𝐤𝑓𝜆𝑔𝛻𝑃𝑓) − Γ𝑔 + (

𝑞𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑞𝑜

𝐵𝑜
) (3.68) 

In Eqs. (3.66) – (3.68), the matrix-fracture transfer function of phase 𝛼 is written as 

 Γ𝛼 = 𝜎𝑘𝑚𝜆𝛼,𝑢𝑝(𝑃𝑓 − 𝑃𝑚) (3.69) 

where 𝜎 denotes the shape factor, 𝑘𝑚 represents the matrix permeability, and 𝜆𝛼,𝑢𝑝 is the 

phase mobility defined by Eqs. (3.60) – (3.62). The mobility is determined by the up-

winding scheme. The water mass balance in the matrix system is 

 
𝜕

𝜕𝑡
(
𝜙𝑚𝑆𝑤𝑚

𝐵𝑤
) = Γ𝑤 (3.70) 

The oil mass balance in the matrix system is 

 
𝜕

𝜕𝑡
[𝜙𝑚 (

𝑆𝑜𝑚

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑚

𝐵𝑔
)] = Γ𝑜 (3.71) 

The gas mass balance in the matrix system is 

 
𝜕

𝜕𝑡
[𝜙𝑚 (

𝑆𝑔𝑚

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑚

𝐵𝑜
)] = Γ𝑔 (3.72) 

In the dual-porosity model, there is no mass transfer between the matrix blocks. 

It means that the matrix blocks are linked only through the corresponding fracture blocks 

and the fracture blocks provides the main flow path to the well production. As we see in 

the single-phase dual-porosity model, the matrix equations remain the same form even in 

the 1-D 𝜏-coordinate system while the matrix properties (𝜙𝑚, 𝑘𝑚, and 𝜎) are assumed to 

be a constant parameter. The coordinate transformation is applied for the fracture system 
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equations (Eqs. (3.66) – (3.68)) using Eq. (3.52). The transformed 1-D equations are 

written as follows. The DTOF-based water mass balance in the fracture system is 

 
𝜕

𝜕𝑡
(
𝜙𝑓𝑆𝑤𝑓

𝐵𝑤
) =

𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

𝜆𝑤

𝜕𝑃𝑓

𝜕𝜏
] − Γ𝑤 +

𝑞𝑤

𝐵𝑤
 (3.73) 

The DTOF-based oil mass balance in the fracture system is 

 

𝜕

𝜕𝑡
[𝜙𝑓 (

𝑆𝑜𝑓

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑓

𝐵𝑔
)] 

=
𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)
init

𝜆𝑜

𝜕𝑃𝑓

𝜕𝜏
] − Γ𝑜 +

𝑞𝑜

𝐵𝑜
+ 𝑅𝑣

𝑞𝑔

𝐵𝑔
 

(3.74) 

The DTOF-based gas mass balance in the fracture system is 

 

𝜕

𝜕𝑡
[𝜙𝑓 (

𝑆𝑔𝑓

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑓

𝐵𝑜
)] 

=
𝜙𝑓,init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)

init

𝜆𝑔

𝜕𝑃𝑓

𝜕𝜏
] − Γ𝑔 +

𝑞𝑔

𝐵𝑔
+ 𝑅𝑠𝑜

𝑞𝑜

𝐵𝑜
 

(3.75) 

In Eqs. (3.73) – (3.75), 𝑤(𝜏)/𝜙𝑓,init represents the drainage ‘bulk’ volume 𝑣𝑖 in the 

fracture system, that is directly computed in the FMM. The finite difference equations of 

the fracture system are written as follows. 

The 1-D finite difference of the water equation in the fracture system is 

 

𝑇𝑤𝑓,𝑖−1/2
𝑛+1 𝑃𝑓,𝑖−1

𝑛+1 − (𝑇𝑤𝑓,𝑖−1/2
𝑛+1 + 𝑇𝑤𝑓,𝑖+1/2

𝑛+1 )𝑃𝑓,𝑖
𝑛+1 + 𝑇𝑤𝑓,𝑖+1/2

𝑛+1 𝑃𝑓,𝑖+1
𝑛+1  

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑤𝑓

𝐵𝑤
)
𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑤𝑓

𝐵𝑤
)
𝑖

𝑛

] 

+𝑣𝑖∆𝜏𝑖𝜎𝑘𝑚𝜆𝑤,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) − 𝑞𝑤𝑠

𝑛+1 

(3.76) 

The 1-D finite difference of the oil equation in the fracture system is 
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𝑇𝑜𝑓,𝑖−1/2
𝑛+1 𝑃𝑓,𝑖−1

𝑛+1 − (𝑇𝑜𝑓,𝑖−1/2
𝑛+1 + 𝑇𝑜𝑓,𝑖+1/2

𝑛+1 )𝑃𝑓,𝑖
𝑛+1 + 𝑇𝑜𝑓,𝑖+1/2

𝑛+1 𝑃𝑓,𝑖+1
𝑛+1  

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑜𝑓

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑓

𝐵𝑔
)

𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑜𝑓

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑓

𝐵𝑔
)

𝑖

𝑛

] 

+𝑣𝑖∆𝜏𝑖𝜎𝑘𝑚𝜆𝑜,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) − 𝑞𝑜𝑠

𝑛+1 

(3.77) 

The 1-D finite difference of the gas equation in the fracture system is 

 

𝑇𝑔𝑓,𝑖−1/2
𝑛+1 𝑃𝑓,𝑖−1

𝑛+1 − (𝑇𝑔𝑓,𝑖−1/2
𝑛+1 + 𝑇𝑔𝑓,𝑖+1/2

𝑛+1 )𝑃𝑓,𝑖
𝑛+1 + 𝑇𝑔𝑓,𝑖+1/2

𝑛+1 𝑃𝑓,𝑖+1
𝑛+1  

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑔𝑓

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑓

𝐵𝑜
)

𝑖

𝑛+1

− 𝑀𝜙,𝑖
𝑛 (

𝑆𝑔𝑓

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑓

𝐵𝑜
)

𝑖

𝑛

] 

+𝑣𝑖∆𝜏𝑖𝜎𝑘𝑚𝜆𝑔,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) − 𝑞𝑔𝑠

𝑛+1 

(3.78) 

In Eqs. (3.76) – (3.78), the phase production rate 𝑞𝛼𝑠
𝑛+1 is calculated by Eq. (3.65). The 

finite difference equations of the matrix system are written as follows. The 1-D finite 

difference of the water equation in the matrix system is 

 
1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (
𝑆𝑤𝑚

𝐵𝑤
)
𝑖

𝑛+1

− 𝜙𝑚,𝑖
𝑛 (

𝑆𝑤𝑚

𝐵𝑤
)

𝑖

𝑛

] = 𝜎𝑘𝑚𝜆𝑤,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) (3.79) 

The 1-D finite difference of the oil equation in the fracture system is 

 

1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (
𝑆𝑜𝑚

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑚

𝐵𝑔
)

𝑖

𝑛+1

− 𝜙𝑚,𝑖
𝑛 (

𝑆𝑜𝑚

𝐵𝑜
+ 𝑅𝑣

𝑆𝑔𝑚

𝐵𝑔
)

𝑖

𝑛

] 

= 𝜎𝑘𝑚𝜆𝑜,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) 

(3.80) 

The 1-D finite difference of the gas equation in the fracture system is 

 

1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (
𝑆𝑔𝑚

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑚

𝐵𝑜
)

𝑖

𝑛+1

− 𝜙𝑚,𝑖
𝑛 (

𝑆𝑔𝑚

𝐵𝑔
+ 𝑅𝑠𝑜

𝑆𝑜𝑚

𝐵𝑜
)

𝑖

𝑛

] 

= 𝜎𝑘𝑚𝜆𝑔,𝑢𝑝
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) 

(3.81) 
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In the DTOF-based blackoil dual-porosity simulation, the above six finite difference 

equations (Eqs. (3.76) – (3.81)) are used for solving the corresponding six unknown 

variables ({𝑃𝑓 , 𝑆𝑤𝑓 , 𝑆𝑔𝑓} or {𝑃𝑓 , 𝑆𝑤𝑓 , 𝑅𝑠𝑓} in the fracture system, and {𝑃𝑚, 𝑆𝑤𝑚, 𝑆𝑔𝑚} or 

{𝑃𝑚, 𝑆𝑤𝑚, 𝑅𝑠𝑚} in the matrix system) for each 𝜏 grid. In addition, the following 

conditions must be satisfied during the simulation.  

(1) The DTOF is characterized by the fracture heterogeneity using the FMM. 

(2) At the initial state, the saturation distribution in the matrix system is uniform. 

(3) During the 1-D numerical simulation, the matrix pressure and saturations are 

solved along the 𝜏-coordinate. 

(4) The matrix geometric parameters (𝑘𝑚, 𝜙𝑚, and 𝜎) are constant. 

The numerical procedure and derivative calculations for constructing the Jacobian is 

described in APPENDIX C. 

3.2.5 DTOF-based Compositional Model 

The compositional simulation is comprised of the sets of the 𝑁𝑐 + 1 mass 

balance equations and 𝑁𝑐 fugacity equilibrium relations (total 2𝑁𝑐 + 1 primary 

equations) and the corresponding 2𝑁𝑐 + 1 primary variables (i.e. pressure, saturations, 

and oil and gas compositions) for each grid. The general mass balance equations are 

described in Eqs. (3.4) and (3.14). We apply the coordinate transformation (Eq. (3.52)) 

on the component transport equations. For hydrocarbon component 𝑗, the DTOF-based 

mass balance equation is written as 
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𝜕

𝜕𝑡
[𝜙(𝑥𝑗𝜉𝑜𝑆𝑜 + 𝑦𝑗𝜉𝑔𝑆𝑔)]

=
𝜙init

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)
𝑖𝑛𝑖𝑡

(𝑥𝑗𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑦𝑗𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
)

𝜕𝑃

𝜕𝜏
] + �̃�𝑗 

(3.82) 

where �̃�𝑗
𝑛+1 is the molar production rate of component 𝑗 per unit volume per unit time. 

Notice that the mass balance of water is given by the same equation as blackoil 

formulation (Eq. (3.53)). The finite difference equation of Eq. (3.82) is obtained by 

 

𝑇𝑗,𝑖−1/2
𝑛+1 𝑃𝑖−1

𝑛+1 − (𝑇𝑗,𝑖−1/2
𝑛+1 + 𝑇𝑗,𝑖+1/2

𝑛+1 )𝑃𝑖
𝑛+1 + 𝑇𝑗,𝑖+1/2

𝑛+1 𝑃𝑖+1
𝑛+1 

=
𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1(𝑥𝑗𝜉𝑜𝑆𝑜 + 𝑦𝑗𝜉𝑔𝑆𝑔)
𝑖

𝑛+1
− 𝑀𝜙,𝑖

𝑛 (𝑥𝑗𝜉𝑜𝑆𝑜 + 𝑦𝑗𝜉𝑔𝑆𝑔)
𝑖

𝑛
] − �̃�𝑤𝑗

𝑛+1 

(3.83) 

where 𝑇𝑗,𝑖±1/2
𝑛+1  denotes the transmissibility of component 𝑗, 𝑀𝑗 denotes the molar mass of 

component 𝑗, and �̃�𝑤𝑗 is the molar production rate of component 𝑗 on the well which is 

imposed only on the first grid (𝑖 = 1). The molar mass of component 𝑗, 𝑀𝑗 is defined by 

 𝑀𝑗 = 𝑥𝑗𝜉𝑜𝑆𝑜 + 𝑦𝑗𝜉𝑔𝑆𝑔 (3.84) 

Therefore, the overall component of the component 𝑗 is obtained by the molar based 

calculation. 

 𝑧𝑗 =
𝑀𝑗

∑𝑀𝑗
=

𝑥𝑗𝜉𝑜𝑆𝑜 + 𝑦𝑗𝜉𝑔𝑆𝑔

𝜉𝑜𝑆𝑜 + 𝜉𝑔𝑆𝑔
 (3.85) 

The transmissibility of component 𝑗 is defined by 

 𝑇𝑗,𝑖±1/2
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

(𝑥𝑗𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑦𝑗𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
)

𝑢𝑝

𝑛+1

 (3.86) 

In Eq. (3.83), the molar production rate of component 𝑗 is given by 
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 �̃�𝑤𝑗
𝑛+1 =

𝑤1∆𝜏1

𝜙init
�̃�𝑗

𝑛+1 (3.87) 

where �̃�𝑗
𝑛+1 is given by the velocity equation (Eq. (3.39)). 

 �̃�𝑤𝑗
𝑛+1 =

𝑤1∆𝜏1

𝜙init
[

1

∆𝜏1
(
𝜙𝑐𝑡

𝜆𝑡
)
init,1

(𝑥𝑗𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑦𝑗𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
)

1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
)] (3.88) 

Rearranging Eq. (3.88), the molar production rate of component 𝑗 is 

 �̃�𝑤𝑗
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

(𝑥𝑗𝜉𝑜

𝑘𝑟𝑜

𝜇𝑜
+ 𝑦𝑗𝜉𝑔

𝑘𝑟𝑔

𝜇𝑔
)

1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (3.89) 

In addition, the molar production rate of phase 𝛼 is obtained by summing up all the 

component production rate (Eq. (3.89)) for each phase, separately. 

 �̃�𝑤𝑗
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

(𝜉𝛼

𝑘𝑟𝛼

𝜇𝛼
)
1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (3.90) 

Notice that Eqs. (3.89) and (3.90) are the molar production rate at the wellbore. On the 

wellbore condition, the oil phase will contain the free oil and solution gas as well as the 

gas phase contained in the free gas and vaporized oil. The surface oil and gas volumetric 

rates are obtained by flashing the wellbore phase compositions ({𝑥𝑖} and {𝑦𝑖}) into the 

surface condition (14.6 psia and 60 ℉) as illustrated in Fig. 3.4. 
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Fig. 3.4 – Calculation of the surface condition using the flash. 

 

 

 

Suppose �̃�𝑜 and �̃�𝑔 are the molar production rate of oil and gas phase at the 

wellbore, respectively. Flashing the wellbore oil to surface condition, we obtain the 

liquid and vapor molar fractions of the wellbore oil, 𝐿𝑜 and 𝑉𝑜, and the liquid and vapor 

molar densities at the surface condition, 𝜉𝑜𝑜,𝑠𝑐 and 𝜉𝑔𝑜,𝑠𝑐. At the surface conditions, the 

wellbore oil becomes free oil and liberated gas with the molar fraction of 𝐿𝑜 and 𝑉𝑜, 

respectively. The standard volume oil (free oil) production rate from the wellbore oil is  

 𝑞𝑜𝑜,𝑠𝑐 =
𝐿𝑜

𝜉𝑜𝑜,𝑠𝑐
�̃�𝑜 (3.91) 

The standard volume gas (liberated gas) production rate from the wellbore oil is 

 𝑞𝑔𝑜,𝑠𝑐 =
𝑉𝑜

𝜉𝑔𝑜,𝑠𝑐
�̃�𝑜 (3.92) 

In contrast, flashing the wellbore gas to surface condition, we obtain the liquid and vapor 

phase fractions of the wellbore gas, 𝐿𝑔 and 𝑉𝑔, and the liquid and vapor molar densities 

at the surface condition, 𝜉𝑜𝑔,𝑠𝑐 and 𝜉𝑔𝑔,𝑠𝑐. At the surface condition, the wellbore gas 
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becomes the free gas and condensate with the molar fraction of 𝑉𝑔 and 𝐿𝑔, respectively. 

The standard volume gas (free gas) production rate from the wellbore gas is 

 𝑞𝑔𝑔,𝑠𝑐 =
𝑉𝑔

𝜉𝑔𝑔,𝑠𝑐
�̃�𝑔 (3.93) 

The standard volume oil (condensate) production rate from the wellbore gas is 

 𝑞𝑜𝑔,𝑠𝑐 =
𝐿𝑔

𝜉𝑜𝑔,𝑠𝑐
�̃�𝑔 (3.94) 

Therefore, the standard volume production rate for oil and gas phases at surface 

condition, 𝑞𝑜𝑠 and 𝑞𝑔𝑠 are calculated by 

 𝑞𝑜𝑠 = 𝑞𝑜𝑜,𝑠𝑐 + 𝑞𝑜𝑔,𝑠𝑐 (3.95) 

 𝑞𝑔𝑠 = 𝑞𝑔𝑜,𝑠𝑐 + 𝑞𝑔𝑔,𝑠𝑐 (3.96) 

In addition, the mass production rate of the component 𝑗, 𝑞𝑗,𝑚𝑎𝑠𝑠 is given by 

 𝑞𝑗,𝑚𝑎𝑠𝑠 = 𝑀𝑤,𝑗(𝑥𝑗�̃�𝑜 + 𝑦𝑗�̃�𝑔) (3.97) 

where 𝑥𝑗 and 𝑦𝑗 are the phase compositions at the wellbore condition, and 𝑀𝑤,𝑗 is the 

molecular weight of the component 𝑗. The surface volume rate of the component 𝑗 is 

 𝑞𝑗,𝑠𝑐 =
𝑥𝑗

𝜉𝑜,𝑠𝑐
�̃�𝑜 +

𝑦𝑗

𝜉𝑔,𝑠𝑐
�̃�𝑔 (3.98) 

where 𝜉𝑜,𝑠𝑐 and 𝜉𝑔,𝑠𝑐 are obtained by flashing the overall component {𝑧𝑖} (Eq. (3.85)) 

from the wellbore condition to the surface condition.  

In the three-phase condition, the primary equations solved are Eqs. (3.15), (3.56) 

and (3.83) for each grid, that is total 2𝑁𝑐 + 1 equations. If the oil or gas saturation is 

zero or water does not exist at the grid block, the number of primary equations changes 
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(i.e. if the grid is saturated with oil and water, we only calculate Eqs. (3.56) and (3.83) to 

solve for pressure, water saturation, and oil compositions). The number of phases in each 

grid block must be identified prior to constructing a residual vector and Jacobian matrix 

as summarized in Table 3.1. The numerical simulation procedure and derivative 

calculations for constructing the Jacobian are described in APPENDIX E. 

 

 

 

Table 3.1 – Primary equations and variables in compositional model 

No. Phases Number Primary Equations Primary Variables 

1  Oil 𝑁𝑐 Eq. (3.83) 𝑃, 𝑥2, … , 𝑥𝑁𝑐
 

2  Gas 𝑁𝑐 Eq. (3.83) 𝑃, 𝑦2, … , 𝑦𝑁𝑐
 

3  Oil / Water 𝑁𝑐 + 1 Eqs. (3.56) & (3.83) 𝑃, 𝑆𝑤 , 𝑥2, … , 𝑥𝑁𝑐
 

4  Gas / Water 𝑁𝑐 + 1 Eqs. (3.56) & (3.83) 𝑃, 𝑆𝑤 , 𝑦2, … , 𝑦𝑁𝑐
 

5  Oil / Gas 𝑁𝑐 Eqs. (3.56) & (3.83) 
𝑃, 𝑆𝑔 , 𝑥2, … , 𝑥𝑁𝑐

 

𝑦2, … , 𝑦𝑁𝑐
 

6  Oil / Gas / Water 2𝑁𝑐 + 1 
Eqs. (3.15), (3.56), & 

(3.83) 

𝑃, 𝑆𝑤 , 𝑆𝑔 , 𝑥2, … , 𝑥𝑁𝑐
 

𝑦2, … , 𝑦𝑁𝑐
 

 

 

 

3.3 Approach: Phase Behavior in Confined Environments 

3.3.1 Capillarity Effects on Thermodynamic Equilibrium 

The conventional vapor-liquid equilibrium calculation is usually carried out with 

the assumption that the vapor-liquid interface is flat with the contact angle of 90° and 

the capillary pressure has no influence on the static phase equilibrium. This assumption 

is valid for the phase behavior on the macro-scale porous space (i.e. PVT cell). But, in 

micro to nano-scale porous media (i.e. shale), the vapor-liquid interface has a non-flat 
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curvature, which causes the vapor and liquid phases to have a different pressure due to 

the capillarity effect. Fig. 3.5 illustrates the schematics of the vapor-liquid equilibrium in 

the closed system.  

 

 

 

 

Fig. 3.5 – Illustrations of the phase equilibrium in (a) PVT cell and (b) confined system. 

 

 

 

Shapiro et al. (2001) investigated the capillary pressure effect on the phase 

behavior. They showed a theoretical thermodynamic relation of the vapor-liquid two 

phase state in small-scale pore space and the flash calculation procedure with accounting 

for the capillary pressure effect. Qi et al. (2007) investigated an interfacial tension (IFT) 

effect on the condensate dropout in the low-permeability gas condensate reservoir. They 

concluded that, under the capillary pressure effects, the retrograde process is enhanced 

and the condensate dropout increases during the pressure depletion. Nojabaei et al. 
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(2013) observed the produced gas oil ratio on the Bakken shale oil wells, which is 

inconsistent with the prediction result of the Bakken oil sample. They reported that the 

operational flowing bottom-hole pressures in the Bakken shale wells were far below the 

predicted bubble-point pressure for a long time period, and they have not observed any 

increase of the produced GOR. They also showed the shift of the oil properties (density, 

viscosity, saturation pressures) of the Bakken shale oil sample by incorporating the 

capillary pressure on the VLE flash calculation, and concluded that, if the bubble-point 

pressure is suppressed due to the capillary pressure, the reservoir pressure can exceed the 

bubble-point pressure.  

In a small-scale confined system (i.e. nanometers), the multiphase 

thermodynamic equilibrium is achieved by letting each phase having a different 

pressure. For the vapor-liquid equilibrium, the fugacity relation is expressed by  

 𝑓𝑖
𝐿(𝑃𝐿 , 𝑇, 𝑥1, … , 𝑥𝑁𝑐

) = 𝑓𝑖
𝑉(𝑃𝑉 , 𝑇, 𝑦1, … , 𝑦𝑁𝑐

) (3.99) 

where 𝑃𝐿 and 𝑃𝑉 are the liquid and vapor phase pressure, respectively. The differential 

pressure between the liquid and vapor phases is defined by the capillary pressure. In this 

study, the capillary pressure is given on the basis of the Young-Laplace equation. 

 𝑃𝑉 − 𝑃𝐿 = 𝑃𝑐𝑔𝑜 =
2𝜎

𝑟
 (3.100) 

where 𝑃𝑐𝑔𝑜 is the capillary pressure between oil and gas phases and 𝑟 is the pore radius. 

In Eq. (3.100), we assume that the shape of the vapor-liquid interface is a sphere (𝜃 =

0°), thus, we have that cos 𝜃 = 1.  

At the dew-point condition, we have 
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 𝑦𝑖 = 𝑧𝑖   for    𝑖 = 1,… ,𝑁𝑐 (3.101) 

whereas at the bubble-point condition, we have 

 𝑥𝑖 = 𝑧𝑖   for    𝑖 = 1,… , 𝑁𝑐 (3.102) 

The surface tension  𝜎 between the oil and gas phases is calculated by the Macleod-

Sugden correlation (Whitson 1989). 

 𝜎 = [∑𝜑𝑖(𝜉𝑜𝑥𝑖 − 𝜉𝑔𝑦𝑖)

𝑁𝑐

𝑖=1

]

4

 (3.103) 

where 𝜑𝑖 is the parachor of component 𝑖. Considering Eq. (3.99), the fugacity of 

component 𝑖 is calculated as follows. 

 𝑓𝑖
𝐿 = 𝑥𝑖𝑃

𝐿𝜙𝑖
𝐿 (3.104) 

 𝑓𝑖
𝑉 = 𝑦𝑖𝑃

𝑉𝜙𝑖
𝑉 (3.105) 

Once 𝑓𝑖
𝐿, 𝑓𝑖

𝑉, 𝑃𝐿, and 𝑃𝑉 are obtained at current iteration step, the K-values are updated 

by the successive substitution method (SSM). 

 𝐾𝑖
𝑛𝑒𝑤 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉 =

𝑓𝑖
𝐿

𝑓𝑖
𝑉

𝑦𝑖

𝑥𝑖

𝑃𝑉

𝑃𝐿
=

𝑓𝑖
𝐿

𝑓𝑖
𝑉

𝑃𝑉

𝑃𝐿
𝐾𝑖

𝑜𝑙𝑑 (3.106) 

where 𝐾𝑖
𝑛𝑒𝑤 is the new K-values for next iteration step and 𝐾𝑖

𝑜𝑙𝑑 is the old K-values at 

previous iteration step. The procedure of the modified VLE flash is illustrated in Fig. 

3.6. In this procedure, the calculation is repeated until the fugacity and capillary pressure 

satisfy the convergence criteria. The tolerance is 10−6 (psia) for the maximum updates 

in the capillary pressure. Notice that the initial guess of 𝑃𝑐 is given by 𝑃𝑐 = 0. 



 

99 

 

 

Fig. 3.6 – Modified VLE flash procedure with oil-gas capillary pressure. 

 

 

 

3.3.2 Shift of Saturation Pressure in Shale Reservoirs 

We present two examples for the modified VLE flash calculation using actual 

shale reservoir samples – the Bakken shale oil sample and the shale gas reservoir sample 

in west Texas. Fig. 3.7 shows the change of the capillary pressure under the influences 

of the pore radius and reservoir pressure. After the iterative flash calculation, the surface 

tension and capillary pressure are successively calculated using the Young-Laplace 

equation (Eq. (3.100)) and Macleod-Sugden correlation (Eq. (3.103)), respectively. In 

smaller pore radius, the capillary pressure becomes several thousand psi. In the Bakken 

sample, 1 nm pore has about 2,500 psia of the capillary pressure at the reservoir pressure 

of 1,000 psia. In the gas sample, 1 nm pore has approximately 1,500 psia of the capillary 

pressure at the reservoir pressure of 1,000 psia. 
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Fig. 3.7 – Capillary pressures of the (a) Bakken oil shale sample and (b) Shale gas sample. 

 

 

 

The saturation pressures are computed by the negative flash procedure. At the 

bubble-point pressure, the liquid phase holds Eq. (3.102), while the vapor phase holds 

Eq. (3.101) at the dew-point pressure. The saturation pressures are iteratively computed 

using the standard Newton-Raphson method. The procedure is described in APPENDIX 

D. Fig. 3.8 shows the shift of the bubble-point pressure and gas saturation profile of the 

Bakken shale oil sample as a function of the pore size and reservoir temperature. In Fig. 

3.8 (a), we see that the bubble-point pressure is decreased as the pore size becomes 

smaller in all the simulated temperature conditions (150 – 300 ℉). In the pore size range 

from 1,000 nm (1 𝜇m) to 50 nm (0.05 𝜇m), the bubble-point pressures are nearly 

constant because the capillary pressure effects are negligible in such large pores. Below 

the pore size of 50 nm, the bubble-point pressures are gradually decreased as the 

capillary pressure rapidly increases. The bubble-point pressure at the pore radius of 1 nm 

is approximately 1,000 – 1,500 psi lower than that in the micrometer pore. The declining 
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trend of this bubble-point pressure is consistent with the capillary pressure change as 

shown in Fig. 3.7 (a). Because the capillary pressure becomes fairly large below the pore 

size of 10 nm, the bubble-point pressure is considerably suppressed in such pore size 

conditions. Fig. 3.8 (b) shows the simulation results of the liberation profile of the 

solution gas during the constant composition pressure depletion (CCE) at the 

temperature of 250 ℉. For each specified pore size condition, the gas begins to liberate 

at each bubble-point pressure. The solution gas liberates first in the largest pore (100 

nm), and then the PVT cell is saturated with 100% gas first in the smallest pore (2 nm). 

 

 

 

 

Fig. 3.8 – Simulation results of the Bakken oil sample at constant composition. (a) Shift of bubble-
point pressure and (b) Gas liberation processes in confined system. 

 

Fig. 3.9 shows the shift of the dew-point pressure and liquid saturation of the shale gas 

sample as a function of the pore size and reservoir temperature. In contrast to the bubble-

point system, we see that the dew-point pressure is increased as the pore size becomes 
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nearly constant because the capillary pressure is negligible. Below the pore size of 100 

nm, the dew-point pressures gradually increase as the capillary pressure rapidly 

increases. The dew-point pressure in the pore radius of 1 nm is approximately 100 – 500 

psi higher than that in the micrometer pore. Thus, the capillary pressure makes the 

saturation pressure increase in the dew-point system (gas reservoirs). Fig. 3.9 (b) shows 

the simulation results of the condensate dropout during the constant composition 

pressure depletion (CCE) at the reservoir temperature of 260 ℉. For each pore size 

condition, the condensate begins to drop from the gas phase at each dew-point pressure. 

The condensate drops first in the smallest pore (2 nm), and then the PVT cell is saturated 

with 100 % gas first in the smallest pore again. 

 

 

 

 

Fig. 3.9 – Simulation results of the shale gas sample at constant composition. (a) Shift of dew-point 
pressure and (b) Liquid dropout in confined system. 
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The shift of the confined vapor-liquid phase behavior is completely different between 

the bubble-point system (shale oil reservoirs) and dew-point system (shale gas 

reservoirs) on the modified flash calculation. In general perspective, the saturation 

pressure is reached first in the larger pores in the bubble-point system, whereas this 

achieved first in the smaller pores in the dew-point system. 

3.4 Results and Discussions 

The blackoil and compositional simulation results are presented using 1-D, 2-D, 

and 3-D models. The validations include a three-phase dual-porosity blackoil model and 

confined shale oil compositional model with the modified phase behavior calculation as 

well. The simulation results are compared with the results from a commercial simulator. 

3.4.1 Two-phase Oil-Water Model (1-D Heterogeneous) 

For the multiphase DTOF-based simulation, we start the model validation from 

the 1-D two-phase oil and water example. The model consists of the 100 x 1 x 1 grids 

with a production well placed at the left edge of the model. The porosity and 

permeability are constant (1mD and 0.1 %). The initial water saturation is 

heterogeneously distributed on the Cartesian model as illustrated in Fig. 3.10. 

 

 

 

 

Fig. 3.10 – 1-D water saturation distribution at initial state. 

 

Well
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The concept of the coordinate transformation is illustrated in Fig. 3.11. The Cartesian 

100 grids are transformed into the 1-D 100 grids along the 𝜏-coordinate. The minimum 

tau (𝜏1) corresponds to the first 𝜏-contour neighboring the wellbore, and the maximum 

tau (𝜏100) is identical to the last 𝜏-contour touching the outer boundary. The 𝜏 grids are 

uniformly discretized in this problem.  

 

 

 

 

Fig. 3.11 – Transformation of the 1-D uniform grid from the (a) Cartesian to (b) DTOF. 

 

 

 

First, we perform the FMM to calculate the drainage ‘pore’ volumes and the 

corresponding ‘water’ volumes along the 𝜏-coordinate. In multiphase flow problems, the 

diffusivity (propagation speed) is given by Eq. (3.32) for each node. As shown in 

Fig.3.12, the evolution of the drainage ‘pore’ volume (red line) has a nearly linear trend 

due to the uniform porosity distribution, while the growth of the drainage ‘water’ 

volume (blue line) deviates from the linear line due to the heterogeneous water 

saturation distribution. Notice that the both drainage ‘pore’ and ‘water’ volumes are 

monotonically increasing property propagated from the wellbore along the 𝜏-coordinate. 
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Fig. 3.12 – Drainage ‘pore’ and ‘water’ volumes along 𝝉-cordinate. 

 

 

 

Once the drainage ‘pore’ and ‘water’ volumes are obtained, the water saturations can be 

estimated along the 𝜏-coordinate using a first-order backward difference. 

 𝑆𝑤,𝑖 =
𝑉𝑤,𝑖 − 𝑉𝑤,𝑖−1

𝑉𝑝,𝑖 − 𝑉𝑝,𝑖−1
 (3.107) 

where 𝑖 denotes the number of the 𝜏-contour, and 𝑉𝑤,𝑖 and 𝑉𝑝,𝑖 represent the ‘water’ and 

‘pore’ volumes of the contour 𝑖, respectively. The drainage ‘pore’ volume 𝑉𝑝,𝑖 is 

calculated by summating the ‘pore’ volume inside the contour 𝑖. 

 𝑉𝑝,𝑖 = ∑(𝑉𝑏,𝑗𝜙𝑗)

𝑗

 (3.108) 

where the grid 𝑗 has smaller DTOF than the grid 𝑖. The corresponding ‘water’ volume 

𝑉𝑝,𝑖 is calculated by 

 𝑉𝑤,𝑖 = ∑(𝑉𝑏,𝑗𝜙𝑗𝑆𝑤,𝑗)

𝑗

 (3.109) 
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On the basis of Eq. (3.106), the initial water saturation is can be calculated along the 𝜏-

coordinate as shown in Fig. 3.13. This transformed 1-D water saturation is used as initial 

water saturation in the DTOF-based simulation.  

Finally, the simulation results are shown in Fig. 3.14. The production rates are 

calculated under the constant bottom-hole pressure constraints (3,500 psia). 

 

 

 

 

Fig. 3.13 – 1-D water saturation distribution along the 𝝉-coordinate. 

 

 

Fig. 3.14 – Simulation results. The results are compared with the ECLIPSE. 
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The pressure and water saturation distributions are also compared with the commercial 

simulator at the initial and final time-step (200 days) as shown in Fig. 3.15. Because this 

is the primary depletion problem with single production well, the saturation change is 

much smaller than the change of the reservoir pressure. 

 

 

 

 

Fig. 3.15 – Pressure and saturation comparisons on the 1-D grids. 

 

 

 

3.4.2 Three-phase Blackoil Model (2-D Heterogeneous) 

Next, we show the heterogeneous 2-D model saturated with three-phase water, 

oil, and gas. The permeability is heterogeneously distributed as shown in Fig. 3.16 (a). 

The production well is vertically placed on the center of the model. The calculated 

DTOF map is shown in Fig. 3.16 (b). 
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Fig. 3.16 – Permeability and DTOF maps in the heterogeneous 2-D model.  

 

 

 

The other reservoir parameters are summarized in Table 3.2. In addition to the free oil 

and gas, there is solution gas in oil phase as well. The oil, water, and gas saturations are 

uniformly distributed at initial condition. 

 

 

 

Table 3.2 – Reservoir parameters (2-D heterogeneous model) 

Grid Number [ - ] 100 x 100 x 1 

Grid Size [ft] 100 x 100 x 50 

Porosity [fraction] 0.2 

Initial Water Saturation [fraction] 0.3 

Initial Gas Saturation [fraction] 0.2 

Initial Solution GOR [Mscf/stb] 1.713 

Initial Pressure [psia] 5,000 

Bottom-hole Pressure [psia] 3,000 

 

 

 

The drainage volumes are calculated after the FMM as shown in Fig. 3.17 (a). 

Because the reservoir is saturated with oil, gas, and water, the phase drainage volumes 

(a) Log permeability distribution (b) Three-phase DTOF

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
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are calculated in order to obtain the water and gas saturations along the 1-D 𝜏-coodinate 

based on the same way as the previous example. As illustrated in Fig. 3.17 (b), the 

resulting transformed water and gas saturation distributions are uniform along the 𝜏-

coordinate due to the constant initial saturation input. The production rates are predicted 

under the constant bottom-hole pressure (3,000 psi) as shown in Fig. 3.18. 

 

 

 

 

Fig. 3.17 – Drainage volume and saturation distribution along the 𝝉-coordinate. 

 

 

Fig. 3.18 – Simulation results of the 2-D three-phase model. 
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3.4.3 Three-phase Blackoil Model (3-D Dual-Porosity) 

In this example, the naturally fractured reservoir model is used as described in 

Fig. 2.13. The saturation distribution is same as the previous example. First, we show the 

simulation results under the constant bottom-hole pressure constraint (4,000 psia) as 

shown in Fig.3.19. 

 

 

 

 

Fig. 3.19 – Simulation results at the constant bottom-hole pressure. (a) Oil rate and GOR, and (b) 
Water cut. 

 

 

 

Next, we show the simulation results under the constant oil rate (1 stb/day) as 

shown in Fig. 3.20. The both cases have a good agreement with the commercial 

simulator. 
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Fig. 3.20 – Simulation result at the constant oil rate. (a) BHP and (b) GOR and Water cut. 

 

 

 

3.4.4 Compositional Model (2-D Homogeneous) 

The reservoir parameters are shown in Table 3.3. The geological heterogeneities 

and water saturation are uniformly distributed at the initial condition. Notice that the 

initial oil and gas saturations are given by the flash calculation in the compositional 

simulation. 

 

 

 

Table 3.3 – Reservoir parameters (2-D homogeneous model) 

Grid Number [ - ] 596 x 596 x 1 

Grid Size [ft] 10 x 10 x 10 

Permeability [mD] 1 

Porosity [fraction] 0.1 

Water Saturation [fraction] 0.1 

Initial Pressure [psia] 2,000 

Bottom-hole Pressure [psia] 800 
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The fluid model used in the compositional model validations is the Bakken oil sample 

composition (Nobabaei et al. 2013) as summarized in Table 3.4.  

 

 

 

Table 3.4 – Bakken oil composition (Nojabaei et al. 2013) 

Component Molar Fraction 
MW 

(lb/lb-mol) 
Pcrit 
(psia) 

Tcrit 
(degR) 

C1 0.36736 16.535 655.02 335.336 

C2 0.14885 30.433 721.99 549.969 

C3 0.09334 44.097 615.76 665.970 

C4 0.05751 58.124 546.46 759.208 

C5-C6 0.06406 78.295 461.29 875.479 

C7-C12 0.15854 120.562 363.34 1053.250 

C13-C21 0.07330 220.716 249.61 1332.095 

C22-C80 0.03704 443.518 190.12 1844.491 

 

 

 

Because of the homogeneity of the model, the contour of the multiphase DTOF forms a 

circle centered on the well. The DTOF calculated by the FMM are shown in Fig. 3.21. 

 

 

 

 

Fig. 3.21 – Three-phase DTOF in the homogeneous 2-D model 
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The production behavior is shown in Fig. 3.22. The well is placed at the center of the 

model and controlled by the constant bottom-hole pressure (800 psi). 

 

 

 

  

Fig. 3.22 – Simulation results of the (a) oil rate and GOR, and (b) water cut. 

 

 

 

The pressure and gas saturation profiles are compared with the commercial simulator as 

illustrated in Figs. 3.23 and 3.24, respectively. Although the DTOF-based simulation has 

a good agreement with the commercial simulator, the difference can be seen in the gas 

saturation profile at 600 days. The commercial simulator shows the numerical dispersion 

effect along the axis directions. Notice that the numerical dispersion in the DTOF-based 

simulation is aligned with 1-D coordinate.  
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Fig. 3.23 – Comparison of the pressure profile between the commercial simulator (ECLIPSE) and 
DTOF-based simulation (FMM) 

 

 

Fig. 3.24 – Comparison of the gas saturation profile between the commercial simulator (ECLIPSE) 
and DTOF-based simulation (FMM) 
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3.4.5 Compositional Model (2-D Heterogeneous) 

In this model, the permeability is heterogeneously distributed as shown in Fig. 

3.25. All the other reservoir parameters are the same as the previous homogeneous case 

as shown in Table. 3.3. The DTOF contour is aligned with the permeability contour. The 

production rates are shown in Fig. 3.26. The pressure and saturation profiles are 

compared with the commercial simulator as illustrated in Figs. 3.27 and 3.28, 

respectively. 

 

  

 

Fig. 3.25 – Distributions of (a) permeability and (b) DTOF in the 2-D heterogeneous model 

 

  

Fig. 3.26 – Simulation results of the (a) oil rate and GOR, and (b) water cut. 
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Fig. 3.27 – Comparison of the pressure profile between the commercial simulator (ECLIPSE) and 
DTOF-based simulation (FMM) 

 

Fig. 3.28 – Comparison of the gas saturation profile between the commercial simulator (ECLIPSE) 
and DTOF-based simulation (FMM) 



 

117 

 

3.4.6 Compositional Model (3-D Confined Shale Oil) 

In this 3-D model, the modified phase behavior calculation is used in the 

compositional simulation. We use a single representative pore size as input in the 

reservoir model for the fugacity and phase property calculations. The reservoir 

parameters are summarized in Table 3.5. The reservoir permeability and porosity are 

heterogeneously distributed as shown in Fig. 3.29. The natural fractures are 

stochastically distributed in the model. 

 

 

 

Table 3.5 – Reservoir parameters (3-D confined model) 

Grid Number [ - ] 596 x 596 x 1 

Grid Size [ft] 10 x 10 x 10 

Permeability [mD] 1 

Porosity [fraction] 0.1 

Water Saturation [fraction] 0.1 

Initial Pressure [psia] 2,000 

Bottom-hole Pressure [psia] 800 

 

 

Fig. 3.29 – Distributions of the (a) Permeability and (b) Porosity in the 3-D naturally fractured 
reservoir model 
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The well is horizontally drilled and completed at the equally-spaced four grid blocks as 

illustrated in Fig. 3.30.  

 

 

 

 

Fig. 3.30 – Vertical section of the fractured model 

 

 

 

First, we perform a numerical simulation with conventional VLE flash 

calculation (no capillarity on phase equilibrium). The production rates are shown in Fig. 

3.31. The results have a good agreement with the commercial simulator. 

 

 

 

  

Fig. 3.31 – Simulation results of the (a) oil rate and GOR, and (b) water cut. The production 
behaviors are predicted without the capillarity on the phase equilibrium 
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Next, we incorporate the capillary pressure in the compositional simulation. 

Notice that pore size is used only for capillary pressure calculation, not for permeability 

correction. Also, the capillary pressure is used only for the fugacity and phase property 

calculations, as shown in Fig. 3.6, not for the transmissibility calculation. There are three 

pore size conditions – (1) unconfined (no capillarity), (2) confined in 10 nm pore, and 

(3) confined in 8 nm. The GOR behaviors are shown in Fig. 2.32. The GOR shift is 

clearly observed in the confined environments. In small pore size condition, the 

produced GOR is decreased due to the bubble-point suppression effect.  

 

 

 

 

Fig. 3.32 – Predicted GOR behavior in the confined system. The blue line represents the GOR in 
unconfined (macro-scale) pore, the green dot line denotes the GOR in 10 nm pore, and the red dot 

line represents the GOR in 8 nm pore. 

 

 

 

The oil and gas production rates are shown in Fig. 3.33. The shift of the produced GOR 

is associated by the large decrease of gas production rate relative to oil production rate. 
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Fig. 3.33 – Simulation results of the (a) oil rate and (b) gas rate in the confined reservoirs. 

 

 

 

Fig. 3.34 shows the distributions of oil saturation and pressure along the 𝜏-coordinate. 

The oil saturation is increased in the small pore space, while the reservoir pressure is not 

much affected by the pore size condition. 

 

 

 

 

Fig. 3.34 – Simulated distributions of the (a) oil saturation and (b) reservoir pressure along the 𝝉-
coordinate at the final simulation step (600 days). 
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Fig. 2.35 shows the distributions of oil and gas molar densities along the 𝜏-coordinate. 

The oil molar density becomes heavier as the pore size becomes smaller, while the gas 

molar density becomes lighter in such condition. 

 

 

 

 

Fig. 3.35 – Simulated distributions of the (a) oil molar density and (b) gas molar density along the 𝝉-
coordinate at the final simulation step (600 days). 

 

 

 

The confined environment causes the mobility change of the oil and gas phases due to its 

high capillarity effect. In the bubble-point system (oil reservoir), the relative oil volume 

is increased as shown in Fig. 3.34 but the oil phase becomes heavier at the reservoir 

condition as illustrated in Fig. 3.35, while the relative gas volume is decreased but it 

becomes easy to move due to the gas density reduction. 

3.5 Conclusions 

In this chapter, we have developed the DTOF theory for multiphase and 

multicomponent flow simulations and established the numerical algorithms. The fully 

implicit method is used as a solution technique for both blackoil and compositional 
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simulations, and then the primary variables are solved simultaneously on the 1-D 

coordinate. The DTOF-based blackoil simulation is also extended to dual-porosity 

model. The numerical experiments show good agreement between the proposed 

approach and commercial simulator. The major features of this chapter are summarized 

as follows. 

 A multiphase DTOF is derived by introducing the asymptotic theory to phase 

mass balance equation. The equation form is similar to the single-phase DTOF. 

In multiphase models, the diffusivity is calculated using total mobility and total 

compressibility for each grid. 

 The coordinate transformation is applied to the mass balance equation in each 

phase using similar approach to the single-phase equation. In this research, the 

transformed phase flow equation is not linearized in terms of pressure, which 

forces the saturation contours to align with the pressure contours. Thus, we can 

employ a fully implicit method to solve pressure and saturation simultaneously 

on the same 𝜏-coordinate under the assumption. In reality, pressure and 

saturation have a different behavior each other because the saturation is a 

hyperbolic property whereas the pressure has a parabolic nature. But the 

difference of the two properties can be mitigated when there is only single well 

and the properties cylindrically change from the well. If the profile deviates 

significant between pressure and saturation, the constraint can be removed by 

using the linearized pressure equation in the coordinate transformation. The 

resulting 1-D pressure equation will be aligned with the 𝜏-coordinate, but the 
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saturation equation is not. In this case, the pressure and saturation are solved 

separately on different coordinates based on IMPES approach (i.e. solve pressure 

equation on 1-D DTOF coordinate, and then solve saturation equation along 1-D 

streamlines). Additional research is needed for this problem. 

 In the nanoporous confined system, the vapor-liquid phase behavior significantly 

differs from that in conventional micro-scale system (PVT cell). The bubble-

point pressure is suppressed in nanoporous space due to the capillary pressure 

effect, whereas the dew-point pressure is increased. This modified phase 

equilibrium calculation has been incorporated on the compositional simulation 

model for the simulation of nanoporous confined reservoirs. In the numerical 

model experiments, we observed that the produced GOR is suppressed as the 

pore size becomes smaller, which is consistent with the observations in the 

Bakken shale oil field. 
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CHAPTER IV  

CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Conclusions 

This research is focused on the developments of the DTOF theory for 

multipurpose reservoir simulation.  

In Chapter II, the 1-D transport equation is applied to single-phase flow 

simulation and extended to the dual-porosity and triple-continuum modeling without any 

change in the conventional FMM calculation. We also proposed a generalized 

framework for modeling hydraulically fractured shale gas reservoirs incorporating all the 

known physical mechanisms into the three distinct coordinates based on the triple-

continuum approach. Particularly, an in-depth study has been done for modeling the gas 

permeability changes in naoporous media due to the slippage and Knudsen diffusion 

effects, which governs the mass transmissibility between the fracture and matrix 

systems. 

In Chapter III, the DTOF theory is generalized to multiphase and 

multicomponent flow problems. The approach is analogous to the single-phase DTOF, 

but the saturation effects are pronounced on the FMM calculation and numerical 

simulations. The numerical solution technique follows the conventional fully implicit 

simulation, but the substantial time-saving is possible by reducing the matrix dimension 

and number of flash calculations. The versatility and applicability of the DTOF theory 

have been demonstrated though the blackoil and compositional simulations. The 
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compositional simulation has been applied including the phase behavior in confined 

environment by introducing the capillary pressure in the vapor-liquid equilibrium 

calculation. The numerical model result shows a good agreement with the actual GOR 

behavior in real shale oil field. 

4.2 Recommendations 

There are several recommendations that can be made as follows. 

4.2.1 Gravity and Capillarity Effects 

In this research, the gravity and capillarity forces are neglected in the FMM 

calculation and successive DTOF-based numerical simulation. These two forces have the 

following effects on the numerical modeling. 

 The equilibrium state at initial reservoir condition (i.e. gas-oil/oil-water contact, 

compositional grading) is determined by the pressure gradient, capillarity effect, 

and geothermal gradient. In the current FMM, the capillary and gravity forces are 

not taken into account for the initial diffusivity calculation. This results in the 

following assumptions required in the FMM calculation. 

a. In a single-phase model, we assume a uniform initial reservoir pressure over 

the domain (no gravity effect). Thus, the reservoir is in equilibrium with a 

uniform viscosity and compressibility at the initial condition. 

b. In a multiphase model, we assume a uniform initial reservoir pressure over 

the domain (no gravity/no capillary effects). But the heterogeneity of the 

initial saturation distribution is accounted on the FMM calculation. 
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c. In a compositional model, we assume a uniform initial reservoir pressure (no 

gravity/no capillary effects) and uniform initial compositional distribution 

(no compositional grading) over the domain. The heterogeneity of the initial 

water saturation is accounted for the FMM calculation. 

 Due to the assumption that pressure and saturation contours are aligned with the 

𝜏 contour, we cannot directly account for a different phase pressure, which can 

cause the different pressure contour for each phase, in the DTOF formulation and 

simulations. Thus, an additional treatment is required to account for the capillary 

and gravity effects as the streamline simulation incorporate these forces using the 

operator splitting. Notice that the operator splitting cannot be used in the DTOF 

formulation, because we need to incorporate the gravity and capillarity in the 

convective flux term. 

4.2.2 IMPES Approach 

The current DTOF-based multiphase simulation adopts the fully implicit method 

to solve pressure, saturation, and mole fractions simultaneously on the 1-D DTOF 

coordinate. This approach forces saturation to have the same contour with pressure, 

because, during the coordinate transformation, we make an assumption that the 

variables, 𝑃 and 𝑆, are the function of 𝜏 and 𝑡. The constraint can be removed by using 

the linearized pressure equation in the coordinate transformation and by making an 

assumption that the pressure is the function of 𝜏 and 𝑡 in the 1-D transformed pressure 

equation. Thus, the saturation contour is not necessarily aligned with the 𝜏-coordinate in 
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this case. Furthermore, a full 1-D solution can be obtained by combining the pressure 

solution on the DTOF with the saturation solution on the CTOF. 

4.2.3 Dual-Porosity Compositional Model 

The DTOF-based formulation can be extended to the dual-porosity compositional 

simulation. The approach is similar to the single-phase and blackoil models as we 

presented. The dual-porosity equation follows the Warren and Root pseudo-steady state 

type. A compositional dual-porosity equation is written as follows. The water equation 

in the fracture system is  

 
𝜕(𝜙𝑓𝜌𝑤𝑆𝑤𝑓)

𝜕𝑡
= ∇ • (𝐤𝑓𝜆𝑤𝑓𝛻𝑃𝑓) − 𝜌𝑤Γ𝑤 + 𝜌𝑤𝑞𝑤𝑓 (4.1) 

where Γ𝑤 is the matrix-fracture transfer function for water. The component equation in 

the fracture system is 

 
𝜕(𝜙𝑓𝑚𝑖)

𝜕𝑡
= ∇ • (𝐤𝑓𝜆𝑖𝑓𝛻𝑃𝑓) − 𝜌𝑖Γ𝑖 + �̃�𝑖𝑓 (4.2) 

where 𝑚𝑖 denotes the component molar mass, 𝜆𝑖𝑓 represents the component mobility, 

and Γ𝑖 denotes the matrix-fracture mass transfer of component 𝑖 (𝑖 = 1,… ,𝑁𝑐). Notice 

that the component flow equation is molar-basis formulation and �̃�𝑖𝑓 represents the 

component molar production rate. The transfer function is defined by the Darcy like 

expression with the up-winding mobility. 

 Γ𝑖 = 𝜎𝑘𝑚𝜆𝑖,𝑢𝑝(𝑃𝑓 − 𝑃𝑚) (4.3) 

The water equation in the matrix system is 

 
𝜕(𝜙𝑚𝜌𝑤𝑆𝑤𝑚)

𝜕𝑡
= 𝜌𝑤Γ𝑤 (4.4) 
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Notice that we assume the constant matrix porosity. The component equation in the 

matrix system is 

 
𝜕(𝜙𝑚𝑚𝑖)

𝜕𝑡
= Γ𝑖 (4.5) 

The coordinate transformation from the physical space to the 1D 𝜏-coordinate (Eq. 

(3.48)) leads the following fracture equations. The water equation in the fracture system 

is 

 
𝜕(𝜙𝑓𝜌𝑤𝑆𝑤𝑓)

𝜕𝑡
=

𝜙𝑓

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)
init

𝜆𝑤𝑓

𝜕𝑃𝑓

𝜕𝜏
] − 𝜌𝑤Γ𝑤 + 𝜌𝑤𝑞𝑤𝑓 (4.6) 

The component equation in the fracture system is 

 
𝜕(𝜙𝑓𝑚𝑖)

𝜕𝑡
=

𝜙𝑓

𝑤(𝜏)

𝜕

𝜕𝜏
[𝑤(𝜏) (

𝑐𝑡

𝜆𝑡
)
init

𝜆𝑖𝑓

𝜕𝑃𝑓

𝜕𝜏
] − Γ𝑖 + �̃�𝑖𝑓 (4.7) 

In the DTOF-based compositional simulation, Eqs. (4.6) and (4.7) are the governing 

equation in the fracture system as well as Eqs. (4.4) and (4.5) are the governing equation 

in the matrix system. 

4.2.4 Data Integration and Optimization 

In the reservoir engineering field, the production data integration and field 

optimization are essentially important to better characterize the reservoir heterogeneity 

and to improve the oil recovery with minimum cost. The streamline simulation offers a 

unique advantage for such problems by calculating the sensitivity coefficients along the 

1D coordinate efficiently. The DTOF-based flow simulation is also applicable to such 

problems using an analogy of the streamline simulation. One possible method is based 

on the combinational use of the Adjoint method and travel time sensitivity calculation. 
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The Adjoint method is traditionally applied in the numerical reservoir simulation and is 

regarded as one of the most efficient approach to compute sensitivity coefficients. The 

application of the Adjoint method in the DTOF formulation leads the sensitivity along 

the 1-D coordinate (i.e. the sensitivity of bottom-hole pressure with respect to the 

drainage volume).  For future use, the all derivations are attached in APPENDIX F. 
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APPENDIX A 

GENERALIZATION OF DTOF FORMULATION TO ANISOTROPIC MEDIUM 

 

A.1 Coordinate Transformation into the DTOF Space 

The general diffusivity equation is given by 

 𝜙𝑐𝑡

𝜕𝑃

𝜕𝑡
+ ∇ • �⃗� = 0 (A.1) 

where �⃗�  is the Darcy velocity with an anisotropic permeability �⃗� ⃗
 
. 

 �⃗� = −
1

𝜇
�⃗� ⃗
 
• ∇𝑃 (A.2) 

Suppose the flow domain is given by the closed finite permeable media with a source or 

sink point (inner boundary). When the fluid flow takes place only by the convective 

transport, the fluid particle moves along the pressure gradient direction.  

 

 

 

 

Fig. A.1 – Pressure contour map and fluid path along the pressure difference. 
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Furthermore, in the primary depletion stage, the evolution of the fluid flow proceeds 

outwardly from the sink/source point and is given by the gradient of the series of the 

non-overlapping contour surfaces (pressure contours). The direction of the convective 

fluid transport is identical to the gradient direction of the contour surface, ∇𝑠, as shown 

in Fig. A.1. Therefore, the flux coordinate is transformed from the physical space to the 

series of surface contours. 

 ∇ • �⃗� ≡ −
1

𝐴(𝑠)

𝜕𝑞

𝜕𝑠
 (A.3) 

where 𝐴(𝑠) is the surface area of the contour and 𝑞 is the total flux across the surface 

contour. Substituting Eq. (A.3) into Eq. (A.1), we obtain the diffusivity equation as 

follows. 

 𝜙𝑐𝑡

𝜕𝑃

𝜕𝑡
−

1

𝐴(𝑠)

𝜕𝑞

𝜕𝑠
= 0 (A.4) 

On the contour surface, the total flux is given by 

 𝑞(𝑠, 𝑡) = −𝐴(𝑠)�̂� • �⃗�  (A.5) 

where �̂� denotes a normal vector. Consider the drainage pore volume inside the contour 

surface. 

 𝑉𝑝(𝑠) = ∫𝜙(𝑠′)𝐴(𝑠′)𝑑𝑠′

𝑠

0

 (A.6) 

Differentiating Eq. (A.6), we obtain the surface area of the contour. 

 𝐴(𝑠) =
1

𝜙(𝑠)

𝑑𝑉𝑝

𝑑𝑠
 (A.7) 

or, we have 
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 𝐴(𝑠)𝑑𝑠 =
1

𝜙(𝑠)
𝑑𝑉𝑝 (A.8) 

Inserting Eqs. (A.2) and (A.8) into Eq. (A.5), we obtain 

 

 𝑞(𝑠, 𝑡) =
1

𝜙(𝑠)
∇𝑉𝑝

1

𝜇
�⃗� ⃗
 
• ∇𝑃 (A.9) 

Now we approximate the trajectory 𝑠 by the trajectory of the pressure front propagation, 

𝜏. On the transient flow conditions, the pressure propagation trajectory is strictly given 

by the seismic ray equation and not necessarily aligned with the streamline. The gradient 

direction of the surface contour, ∇𝑠 is replaced by the gradient direction of the diffusive 

time of flight, ∇𝜏. 

 𝑞(𝜏, 𝑡) =
1

𝜙𝜇

∂𝑉𝑝

∂𝜏
(∇𝜏 • �⃗� ⃗

 
• ∇𝜏)

∂𝑃

∂𝜏
 (A.10) 

From the Eikonal equation, we have the following relationship. 

 ∇𝜏 • �⃗� ⃗
 
• ∇𝜏 = (𝜙𝜇𝑐𝑡)init 

(A.11) 

Notice that the Fast Marching Method is performed to solve for the DTOF 𝜏 on the 

initial reservoir state (i.e. the porosity, total compressibility, and fluid viscosity at the 

initial condition). Substituting Eq. (A.11) into Eq. (A.10), we obtain the flux equation 

along 𝜏. 

 𝑞(𝜏, 𝑡) =
(𝜇𝑐𝑡)init

𝜇

∂𝑉𝑝

∂𝜏

∂𝑃

∂𝜏
 (A.12) 

Now, we define the w-function as follows. 

 𝑤(𝜏) =
∂𝑉𝑝

∂𝜏
 (A.13) 
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Substituting Eqs. (A.7) and (A.12) into Eq. (A.3), we define the coordinate 

transformation as follows. 

 ∇ • �⃗� ≡ −
𝜙

𝑤(𝜏)

𝜕

𝜕𝜏
(
(𝜇𝑐𝑡)init

𝜇
𝑤(𝜏)

∂𝑃

∂𝜏
) (A.14) 

A.2 Inner Boundary Condition 

At inner boundary (𝜏 = 𝜏𝑤), the well production rate is given by Eq. (A.12). 

 𝑞𝑤(𝑡) =
(𝜇𝑐𝑡)init

𝜇

∂𝑉𝑝

∂𝜏

∂𝑃

∂𝜏
|
𝜏=𝜏𝑤

 (A.15) 

Eq. (A.15) is approximated by the first-order finite difference method. 

 𝑞𝑤(𝑡) =
(𝜇𝑐𝑡)init

𝜇(𝑃1)
(
𝑉𝑝,1 − 𝑉𝑝,𝑤

𝜏1 − 𝜏𝑤
) (

𝑃1 − 𝑃𝑤

𝜏1 − 𝜏𝑤
) (A.16) 

where 𝑞𝑤 represents the production rate at the wellbore condition. The surface rate is 

obtained by dividing Eq. (A.15) by the formation volume factor. Notice that the drainage 

volume at wellbore (𝑉𝑝,𝑤) is zero. The fluid viscosity is given by the upstream weighting. 
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APPENDIX B 

CONSTRUCTION OF JACOBIAN FOR SINGLE-PHASE FLOWS 

 

B.1 Derivatives of Finite Difference Equation 

The sets of finite difference equations are iteratively solved by using the Newton-

Raphson method. In this approach, the Jacobian matrix is constructed by differentiating 

the finite difference equations by the primary variables. Based on the 1-D discretization, 

the Jacobian forms a sparse tridiagonal matrix as shown in Fig. B.1. Notice that, in the 

rate-specified case, some non-zero values are entered in non-tridiagonal elements due to 

the well conditioning. The details are discussed later. 

 

 

 

 

Fig. B.1 – Jacobian of the single-phase single-porosity model 
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On the basis of Eq. (2.47), the finite difference equation of the grid 𝑖 at the time-

step 𝑛 + 1 is written as follows. 

 𝑓𝑖
𝑛+1 = 𝐹𝑖

𝑛+1 − 𝐴𝑖
𝑛+1 + 𝐴𝑖

𝑛 + 𝑊𝑖
𝑛+1 = 0 (B.1) 

where 𝐹𝑖
𝑛+1 is the flux term, 𝐴𝑖

𝑛+1 and 𝐴𝑖
𝑛 are the accumulation terms, and 𝑊𝑖

𝑛+1 is the 

well term. Because the well is imposed on the inner boundary, this term is appeared only 

on the first grid (𝑖 = 1).  

In a single-phase model, the primary variables correspond to the grid pressures 𝑃𝑖 (𝑀 ×

1 vector). The diagonal terms of the Jacobian are obtained by differentiating Eq. (B.1) 

by the pressure of grid 𝑖.  

 
𝜕𝑓𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝐹𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝐴𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑊𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1  (B.2) 

The derivatives in Eq. (B.2) are analytically calculated in this study. The notations of the 

equation follow Eq. (2.47). The derivative of the flux term in Eq. (B.2) is  

 

𝜕𝐹𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝑇𝑖−1/2
𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑖+1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) 

−(𝑇𝑖−1/2
𝑛+1 + 𝑇𝑖+1/2

𝑛+1 ) 

(B.3) 

In the transmissibility, flow mobility (i.e. viscosity, FVF) is determined by up-winding. 

If the upstream grid is 𝑖, that means the flow mobility is the function of the pressure of 

the grid 𝑖, the derivatives of the transmissibility in Eq. (B.3) are  

 
𝜕𝑇𝑖±1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖±1/2(𝜇𝑐𝑡)init,𝑖±1/2

∆𝜏𝑖±1/2
𝑤𝑖±1/2(𝜇𝑐𝑡)init,𝑖±1/2

𝜕

𝜕𝑃𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑖

𝑛+1

 (B.4) 

The derivative of the flow mobility in Eq. (B.4) is  
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𝜕

𝜕𝑃𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑖

𝑛+1

= −
1

𝐵𝑖
𝑛+1𝜇𝑖

𝑛+12

𝜕𝜇𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

1

𝐵𝑖
𝑛+12

𝜇𝑖
𝑛+1

𝜕𝐵𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 (B.5) 

If the upstream grid is the neighbor grid, that means the flow mobility is not related to 

the pressure of the grid 𝑖, the derivatives of the transmissibility in Eq. (B.3) are zero. 

 
𝜕𝑇𝑖−1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 0,      

𝜕𝑇𝑖+1/2
𝑛+1

𝜕𝑃𝑖
𝑛+1 = 0 (B.6) 

The derivative of the accumulation term in Eq. (B.2) is  

 
𝜕𝐴𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(

1

𝐵𝑖
𝑛+1

𝜕𝑀𝜙,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝑀𝜙,𝑖
𝑛+1

𝐵𝑖
𝑛+12

𝜕𝐵𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1) (B.7) 

where 𝑀𝜙 is the exponential rock compressibility function (𝑀𝑐𝑟
= 𝑒𝑐𝑟(𝑃−𝑃𝑖)). Its 

derivative is  

 
𝜕𝑀𝑐𝑟,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 𝑐𝑟𝑒

𝑐𝑟(𝑃−𝑃𝑖) (B.8) 

The derivative of the well term in Eq. (B.2) is appeared at 𝑖 = 1. This is calculated by 

differentiating Eq. (2.50). 

 
𝜕𝑊𝑖

𝑛+1

𝜕𝑃𝑖
1 =

𝑤1(𝜇𝑐𝑡)init,1

𝜏1 − 𝜏well
[(

1

𝐵𝜇
)
1

𝑛+1

+
𝜕

𝜕𝑃1
𝑛+1 (

1

𝐵𝜇
)
1

𝑛+1

(𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1)] (B.9) 

The off-diagonal terms of the Jacobian are obtained by differentiating the finite 

difference equation (Eq. (B.1)) by the pressure of the neighbor grids. 

 
𝜕𝑓𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝜕𝐹𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 −

𝜕𝐴𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 +

𝜕𝑊𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1  (B.10) 

Notice that the derivatives of the non-flux term in Eq. (B.10) equal zero. 

 𝜕𝐴𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0,      

𝜕𝑊𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0 (B.11) 
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The derivatives of the flux term in Eq. (B.10) is  

 
𝜕𝐹𝑖

𝑛+1

𝜕𝑃𝑖−1
𝑛+1 = 𝑇𝑖−1/2

𝑛+1 +
𝜕𝑇𝑖−1/2

𝑛+1

𝜕𝑃𝑖−1
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) (B.12) 

 
𝜕𝐹𝑖

𝑛+1

𝜕𝑃𝑖+1
𝑛+1 = 𝑇𝑖+1/2

𝑛+1 +
𝜕𝑇𝑖+1/2

𝑛+1

𝜕𝑃𝑖+1
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (B.13) 

If the upstream grid corresponds to 𝑖, the derivatives of the transmissibility in Eqs. 

(B.12) and (B.13) are zero. 

 
𝜕𝑇𝑖−1/2

𝑛+1

𝜕𝑃𝑖−1
𝑛+1 = 0,      

𝜕𝑇𝑖+1/2
𝑛+1

𝜕𝑃𝑖+1
𝑛+1 = 0 (B.14) 

If the upstream grid is neighbor grid (𝑖 ± 1), the derivatives of the transmissibility in Eq. 

(B.3) are  

 
𝜕𝑇𝑖−1/2

𝑛+1

𝜕𝑃𝑖−1
𝑛+1 =

𝑤𝑖−1/2(𝜇𝑐𝑡)init,𝑖−1/2

∆𝜏𝑖−1/2
𝑤𝑖−1/2(𝜇𝑐𝑡)init,𝑖−1/2

𝜕

𝜕𝑃𝑖−1
𝑛+1 (

1

𝐵𝜇
)
𝑖−1

𝑛+1

 (B.15) 

 
𝜕𝑇𝑖+1/2

𝑛+1

𝜕𝑃𝑖+1
𝑛+1 =

𝑤𝑖+1/2(𝜇𝑐𝑡)init,𝑖+1/2

∆𝜏𝑖+1/2
𝑤𝑖+1/2(𝜇𝑐𝑡)init,𝑖+1/2

𝜕

𝜕𝑃𝑖+1
𝑛+1 (

1

𝐵𝜇
)
𝑖+1

𝑛+1

 (B.16) 

Hence, the diagonal term of the Jacobian is constructed by using Eqs. (B.3), (B.7), and 

(B.9) as well as the off-diagonal term is constructed with Eqs. (B.12) and (B.13). 

B.2 Implicit BHP Calculation 

If the bottom-hole pressure is specified, we can explicitly calculate the production rate 

using the well equation (Eq. (2.50)). If the production rate is specified, we implicitly 

solve the bottom-hole pressure during the Newton iteration. In such case, the primary 

variable consists of a (𝑀 + 1) × 1 vactor. 

 𝐲𝑛+1 = [𝑃1
𝑛+1, 𝑃2

𝑛+1, … , 𝑃𝑀
𝑛+1, 𝑃𝑤𝑓

𝑛+1]
𝑇
 (B.17) 
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In addition to the finite difference equations, the well governing equation, that is the well 

residual equation (𝑅𝑤) is imposed on the residual. 

 𝐑𝑛+1 = [𝑓1
𝑛+1, 𝑓2

𝑛+1, … , 𝑓𝑀
𝑛+1, 𝑅𝑤

𝑛+1]𝑇 (B.18) 

The residual consists of a (𝑀 + 1) × 1 vactor. The well residual term 𝑅𝑤
𝑛+1 is obtained 

by rearranging Eq. (2.50). 

 𝑅𝑤
𝑛+1 = 𝑤1(𝜇𝑐𝑡)init,𝑖±

1
2
(

1

𝐵𝜇
)
1

𝑛+1

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) − 𝑞𝑠

𝑛+1 (B.19) 

The Jacobian consists of a (𝑀 + 1) × (𝑀 + 1) matrix as shown in Fig. B.2. 

 

 

 

 

Fig. B.2 – Jacobian of the single-phase single-porosity model with well residual terms 

 

 

 

Notice that the production rate is specified, thus this is a fixed value. The elements 

constructed in the Jacobian are the following three derivatives. 



 

144 

 

 
𝜕𝑓1

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 ,

𝜕𝑅𝑤
𝑛+1

𝜕𝑃1
𝑛+1 ,

𝜕𝑅𝑤
𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 (B.20) 

The derivative of the finite difference equation of the first grid with respect to 𝑃𝑤𝑓 is  

 
𝜕𝑓1

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 =

𝑤1(𝜇𝑐𝑡)init,1

𝜏1 − 𝜏well
(

1

𝐵𝜇
)
1

𝑛+1

 (B.21) 

The derivative of the well residual term with respect to 𝑃1 is given by 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑃1
𝑛+1 =

𝑤1(𝜇𝑐𝑡)init,1

𝜏1 − 𝜏well
[(

1

𝐵𝜇
)
1

𝑛+1

+
𝜕

𝜕𝑃1
𝑛+1 (

1

𝐵𝜇
)
1

𝑛+1

(𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1)] (B.22) 

The derivative of the well residual term with respect to 𝑃1 is given by 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = −

𝑤1(𝜇𝑐𝑡)init,1

𝜏1 − 𝜏well
(

1

𝐵𝜇
)
1

𝑛+1

 (B.23) 

B.3 Derivatives in Dual-Porosity Model 

In the dual-porosity model, there are two types of finite difference equations. One is the 

discretized flow equation of the fracture grids. Another one is the discretized flow 

equation of the matrix grids. These are simply expressed as follows. 

 𝑓𝑓,𝑖
𝑛+1 = 𝐹𝑓,𝑖

𝑛+1 − 𝐴𝑓,𝑖
𝑛+1 + 𝐴𝑓,𝑖

𝑛 + 𝑊𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖𝐹𝐹𝑀,𝑖

𝑛+1 = 0 (B.24) 

 𝑓𝑚,𝑖
𝑛+1 = −𝐴𝑚,𝑖

𝑛+1 + 𝐴𝑚,𝑖
𝑛 + 𝐹𝐹𝑀,𝑖

𝑛+1 = 0 (B.25) 

where 𝑣𝑖∆𝜏𝑖 represents the ‘bulk’ volume of the grid block 𝑖. The fracture-matrix 

transfer term 𝐹𝐹𝑀,𝑖
𝑛+1 is defined by 

 𝐹𝐹𝑀,𝑖
𝑛+1 = 𝜎𝑘𝑚 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) (B.26) 

Notice that the shape factor 𝜎 and the matrix permeability 𝑘𝑚 are the uniform parameter 

throughout all the grid blocks.  Eq. (B.24) corresponds to Eq. (2.60) as well as Eq. 



 

145 

 

(B.25) corresponds to Eq. (2.62). The primary variable is the fracture pressure and the 

matrix pressure (2𝑀 × 1 vector). 

 𝐲𝑛+1 = [𝑃𝑓,1
𝑛+1, 𝑃𝑓,2

𝑛+1, … , 𝑃𝑓,𝑀
𝑛+1, 𝑃𝑚,1

𝑛+1, 𝑃𝑚,2
𝑛+1, … , 𝑃𝑚,𝑀

𝑛+1]
𝑇
 (B.27) 

The residual term is comprised of the finite difference equations of the fracture grids 

(Eq. (B.24)) and of the matrix grids (Eq. (B.25)) (2𝑀 × 1 vector). 

 𝐑𝑛+1 = [𝑓𝑓,1
𝑛+1, 𝑓𝑓,2

𝑛+1, … , 𝑓𝑓,𝑀
𝑛+1, 𝑓𝑚,1

𝑛+1, 𝑓𝑚,2
𝑛+1, … , 𝑓𝑚,𝑀

𝑛+1]
𝑇
 (B.28) 

Hence, the Jacobian is obtained by differentiating Eq. (B.28) by Eq. (B.27) (2𝑀 × 2𝑀 

matrix).  The matrix form is shown in Fig. B.3. 

 

 

 

 

Fig. B.3 – Jacobian of the single-phase dual-porosity model 
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The resulting Jacobian elements are classified to four types of the derivatives. 

(1) The derivative of fracture eq. (𝑓𝑓) with respect to fracture pressure (𝑃𝑓) 

(2) The derivative of fracture eq. (𝑓𝑓) with respect to matrix pressure (𝑃𝑚) 

(3) The derivative of matrix eq. (𝑓𝑚) with respect to fracture pressure (𝑃𝑓) 

(4) The derivative of matrix eq. (𝑓𝑚) with respect to matrix pressure (𝑃𝑚) 

Based on Eqs. (B.27) and (B.28), these derivatives can be written as follows. 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 −

𝜕𝐴𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 +

𝜕𝑊𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (B.29) 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1  (B.30) 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.31) 

 
𝜕𝑓𝑚,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (B.32) 

 
𝜕𝑓𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.33) 

The upper left part (𝑀 × 𝑀 matrix) in Fig B.3 is comprised of Eq. (B.29) (diagonal 

term) and Eq. (B.30) (off-diagonal term). The upper right and the lower left parts (𝑀 ×

𝑀 matrices) in Fig B.3 are the diagonal matrix given by Eq. (B.31) and (B.32), 

respectively. The lower right part (𝑀 × 𝑀 matrix) is also the diagonal matrix obtained 

by Eq. (B.33). 

In Eq. (B.29), the first partial derivative in the right hand side is calculated using Eq. 

(B.3). The second derivative is obtained by Eq. (B.7). The third derivative is given by 
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Eq. (B.9). The forth derivative is calculated by differentiating the fracture-matrix 

transfer term (Eq. (2.61)) by the fracture pressure. 

 
𝜕𝐹𝐹𝑀,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 = 𝜎𝑘𝑚 [(

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

+
𝜕

𝜕𝑃𝑓,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1)] (B.34) 

The upstream direction is determined by comparing the fracture pressure and matrix 

pressure of the grid 𝑖. If the fracture pressure is larger than the matrix pressure (𝑃𝑓,𝑖
𝑛+1 >

𝑃𝑚,𝑖
𝑛+1), the derivative of the flow mobility in Eq. (B.34) is 

 
𝜕

𝜕𝑃𝑓,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

= −
1

𝐵𝑖
𝑛+1𝜇𝑖

𝑛+12

𝜕𝜇𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 −

1

𝐵𝑖
𝑛+12

𝜇𝑖
𝑛+1

𝜕𝐵𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (B.35) 

In contrast, if the fracture pressure is larger than the matrix pressure (𝑃𝑓,𝑖
𝑛+1 > 𝑃𝑚,𝑖

𝑛+1), the 

derivative of the mobility is zero. 

The partial derivative of Eq. (B.30) is given by Eqs. (B.12) and (B.13). The partial 

derivative in the right hand side of Eq. (B.31) is calculated by 

 
𝜕𝐹𝐹𝑀,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = 𝜎𝑘𝑚 [− (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

+
𝜕

𝜕𝑃𝑚,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1)] (B.36) 

The derivative of the flow mobility in Eq. (B.36) follows the up-winding scheme. 

The first partial derivative of the right hand side of Eq. (B.33) is given by 

 
𝜕𝐴𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
(

1

𝐵𝑖
𝑛+1

𝜕𝜙𝑚
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 −

𝜙𝑚
𝑛+1

𝐵𝑖
𝑛+12

𝜕𝐵𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1) (B.37) 

where the derivative of the matrix porosity with respect to the matrix pressure is  

 
𝜕𝜙𝑚

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

𝜕

𝜕𝑃𝑚,𝑖
𝑛+1 (𝜙𝑚

0 exp[𝑐𝑟(𝑃𝑚,𝑖
𝑛+1 − 𝑃𝑟𝑒𝑓)]) = 𝑐𝑟𝜙𝑚

0  (B.38) 
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where 𝜙𝑚
0  is the matrix porosity at the reference pressure. If the production rate is 

specified, we impose the well residual term in the residual vector to implicitly solve the 

bottom-hole pressure. In the dual-porosity case, the well residual equation is added in the 

Jacobian as shown in Fig. B.4. Because the well is placed on the fracture coordinate 

only, the well residual term is calculated using the same equation with the single-

porosity model (Eq. (B.19)). The derivatives in the Jacobian is given by Eqs. (B.21) – 

(B.23). 

 

 

 

 

Fig. B.4 – Jacobian of the single-phase dual-porosity model with well residual terms 



 

149 

 

B.4 Derivatives in Triple-Continuum Model 

In the triple-continuum model, we solve three primary variables – fracture pressure 𝑃𝑓, 

matrix pressure 𝑃𝑚, and gas concentration in the organic matter 𝐶𝑘. The coordinate is 

tripled as shown in Fig. 2.6 and the resulting governing equations are divided into the 

three types of the finite difference equations.  

 𝑓𝑓,𝑖
𝑛+1 = 𝐹𝑓,𝑖

𝑛+1 − 𝐴𝑓,𝑖
𝑛+1 + 𝐴𝑓,𝑖

𝑛 + 𝑊𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖𝐹𝐹𝑀,𝑖

𝑛+1 = 0 (B.39) 

 𝑓𝑚,𝑖
𝑛+1 = −𝐴𝑚,𝑖

𝑛+1 + 𝐴𝑚,𝑖
𝑛 + 𝐹𝐹𝑀,𝑖

𝑛+1 − 𝐹𝑀𝐾,𝑖
𝑛+1 = 0 (B.40) 

 𝑓𝑘,𝑖
𝑛+1 = −𝐴𝑘,𝑖

𝑛+1 + 𝐴𝑚,𝑖
𝑛 + 𝐹𝑀𝐾,𝑖

𝑛+1 = 0 (B.41) 

Where 𝑣𝑖∆𝜏𝑖 represents the ‘bulk’ volume of the grid block 𝑖. The matrix-Kerogen 

diffusive transfer term 𝐹𝑀𝐾,𝑖
𝑛+1 is defined by 

 𝐹𝑀𝐾,𝑖
𝑛+1 = 𝜎𝑀𝐾𝐷𝑐(𝐶𝑚,𝑖

𝑛+1 − 𝐶𝑘,𝑖
𝑛+1) (B.42) 

Notice that the shape factor 𝜎𝑀𝐾 and the diffusion coefficient 𝐷𝑐 are the uniform 

parameter throughout all the grid blocks. The gas concentration of the matrix grid 𝐶𝑚,𝑖 is 

given by the Langmuir adsorption isotherm (Eq. (2.80)). Eq. (B.39) corresponds to the 

fracture finite difference equation (Eq. (2.86)). Eq. (B.40) represents the discretized 

matrix equation (Eq. (2.87)). Eq. (B.41) expresses the Kerogen finite difference 

equation (Eq. (2.88)). The primary solution vector consists of a 3𝑀 × 1 vector. 

 𝐲𝑛+1 = [𝑃𝑓,1
𝑛+1, 𝑃𝑓,2

𝑛+1, … , 𝑃𝑓,𝑀
𝑛+1, 𝑃𝑚,1

𝑛+1, 𝑃𝑚,2
𝑛+1, … , 𝑃𝑚,𝑀

𝑛+1, 𝐶𝑘,1
𝑛+1, 𝐶𝑘,2

𝑛+1, … , 𝐶𝑘,𝑀
𝑛+1]

𝑇
 (B.43) 

The residual term is comprised of the following equations (3𝑀 × 1 vector). 

 𝐑𝑛+1 = [𝑓𝑓,1
𝑛+1, 𝑓𝑓,2

𝑛+1, … , 𝑓𝑓,𝑀
𝑛+1, 𝑓𝑚,1

𝑛+1, 𝑓𝑚,2
𝑛+1, … , 𝑓𝑚,𝑀

𝑛+1, 𝑓𝑘,1
𝑛+1, 𝑓𝑘,2

𝑛+1, … , 𝑓𝑘,𝑀
𝑛+1]

𝑇
 (B.44) 
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Hence, the Jacobian is obtained by differentiating Eq. (B.43) by Eq. (B.42) (3𝑀 × 3𝑀 

matrix).  The matrix form is shown in Fig. B.5. 

The resulting Jacobian elements are classified to four types of the derivatives. 

(1) The derivative of fracture eq. (𝑓𝑓) with respect to fracture pressure (𝑃𝑓) 

(2) The derivative of fracture eq. (𝑓𝑓) with respect to matrix pressure (𝑃𝑚) 

(3) The derivative of fracture eq. (𝑓𝑓) with respect to Kerogen gas density  (𝐶𝑘) 

(4) The derivative of matrix eq. (𝑓𝑚) with respect to fracture pressure (𝑃𝑓) 

(5) The derivative of matrix eq. (𝑓𝑚) with respect to matrix pressure (𝑃𝑚) 

(6) The derivative of matrix eq. (𝑓𝑚) with respect to Kerogen gas density  (𝐶𝑘) 

(7) The derivative of Kerogen eq. (𝑓𝑘) with respect to fracture pressure (𝑃𝑓) 

(8) The derivative of Kerogen eq. (𝑓𝑘) with respect to matrix pressure (𝑃𝑚) 

(9) The derivative of Kerogen eq. (𝑓𝑘) with respect to Kerogen gas density  (𝐶𝑘) 

 

. 

Fig. B.5 – Jacobian of the single-phase triple-continuum model 
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Each matrix element of the Jacobian is calculated as follows. 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 −

𝜕𝐴𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 +

𝜕𝑊𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (B.45) 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1  (B.46) 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.47) 

 
𝜕𝑓𝑓,𝑖

𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 = 0 (B.48) 

 
𝜕𝑓𝑚,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (B.49) 

 
𝜕𝑓𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 −

𝜕𝐹𝑀𝐾,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.50) 

 
𝜕𝑓𝑚,𝑖

𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 = −

𝜕𝐹𝑀𝐾,𝑖
𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 (B.51) 

 
𝜕𝑓𝑘,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 = 0 (B.52) 

 
𝜕𝑓𝑘,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

𝜕𝐹𝑀𝐾,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.53) 

 
𝜕𝑓𝑘,𝑖

𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 = −

𝜕𝐴𝑘,𝑖
𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 +

𝜕𝐹𝑀𝐾,𝑖
𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 (B.54) 

Notice that all the derivatives in Eqs. (B.45) – (B.54) are given in the previous dual-

porosity model except for the following four derivatives. 

In Eq. (B.50), the derivative of the matrix accumulation term with respect to the matrix 

pressure is  
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𝜕𝐴𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
(

1

𝐵𝑖
𝑛+1

𝜕𝜙𝑚
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 −

𝜙𝑚
𝑛+1

𝐵𝑖
𝑛+12

𝜕𝐵𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 +

𝜕𝐶𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1) (B.55) 

where the derivative of the matrix gas concentration with respect to the matrix pressure 

is  

 
𝜕𝐶𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −

𝑉𝐿𝑃𝐿

(𝑃𝐿 + 𝑃𝑚,𝑖
𝑛+1)

2 (B.56) 

In Eqs. (B.50) and (B.53), the derivative of the matrix-Kerogen transfer term with 

respect to the matrix pressure is  

 
𝜕𝐹𝑀𝐾,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = 𝜎𝑀𝐾𝐷𝑐

𝜕𝐶𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (B.57) 

In Eqs. (B.51) and (B.54), the derivative of the matrix-Kerogen transfer term with 

respect to the Kerogen gas concentration is  

 
𝜕𝐹𝑀𝐾,𝑖

𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 = −𝜎𝑀𝐾𝐷𝑐 (B.58) 

In Eqs. (B.54), the derivative of the Kerogen accumulation term with respect to the 

Kerogen gas concentration is  

 
𝜕𝐴𝑘,𝑖

𝑛+1

𝜕𝐶𝑘,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
 (B.59) 
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APPENDIX C 

CONSTRUCTION OF JACOBIAN FOR BLACKOIL FLOWS 

 

C.1 Derivatives of Finite Difference Equation 

In a three-phase blackoil simulation, there are three finite difference equations and the 

corresponding three primary variables in each grid. The primary variables are 

simultaneously solved using the fully implicit method (FIM) in this study. The finite 

difference equations are written as follows. 

 𝑓𝑤,𝑖
𝑛+1 = 𝐹𝑤,𝑖

𝑛+1 − 𝐴𝑤,𝑖
𝑛+1 + 𝐴𝑤,𝑖

𝑛 + 𝑊𝑤,𝑖
𝑛+1 = 0 (C.1) 

 𝑓𝑜,𝑖
𝑛+1 = 𝐹𝑜,𝑖

𝑛+1 − 𝐴𝑜,𝑖
𝑛+1 + 𝐴𝑜,𝑖

𝑛 + 𝑊𝑜,𝑖
𝑛+1 = 0 (C.2) 

 𝑓𝑔,𝑖
𝑛+1 = 𝐹𝑔,𝑖

𝑛+1 − 𝐴𝑔,𝑖
𝑛+1 + 𝐴𝑔,𝑖

𝑛 + 𝑊𝑔,𝑖
𝑛+1 = 0 (C.3) 

Eqs. (C.1) – (C.3) corresponds to Eqs. (3.56) – (3.58), respectively. The Jacobian forms 

a block-tridiagonal matrix as shown in Fig. C.1.  

 

 

 

 

Fig. C.1 – Jacobian of the multiphase single-porosity model 
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In the Jacobian, the elements in the block-tridiagonal band consist of a 3 × 3 matrix as 

shown in Fig. C.2. 

 

 

 

 

Fig. C.2 – Block diagonal elements in the Jacobian  

 

 

 

The elements described in Fig. C.2 are obtained by differentiating Eqs. (C.1) – (C.3) by 

the pressure (𝑃𝑖
𝑛+1), water saturation (𝑆𝑤,𝑖

𝑛+1), and gas saturation (𝑆𝑔,𝑖
𝑛+1) of grid 𝑖.  

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1  (C.4) 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1  (C.5) 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1  (C.6) 

where 𝛼 is phase (𝛼 = 𝑜,𝑤, 𝑔). When the grid pressure is lower than the bubble-point 

pressure (𝑃𝑖
𝑛+1 < 𝑃𝑏), the free gas phase does not exist in the grid (𝑆𝑔,𝑖

𝑛+1 = 0), whereas 

the oil phase contains the solution gas (𝑅𝑠,𝑖
𝑛+1 > 0). In such situations, we change the 

(a) Diagonal element (b) Upper non-diagonal element (c) Lower non-diagonal element
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primary variable from gas saturation (𝑆𝑔,𝑖
𝑛+1) to solution gas ratio (𝑅𝑠,𝑖

𝑛+1). Thus Eq. (C.6) 

is replaced by the following partial differential equation. 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1  (C.7) 

The derivatives of the flux term in Eqs. (C.4) – (C.7) are  

 

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝑇𝛼,𝑖−1/2
𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝛼,𝑖+1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) 

−(𝑇𝛼,𝑖−1/2
𝑛+1 + 𝑇𝛼,𝑖+1/2

𝑛+1 ) 

(C.8) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝑇𝛼,𝑖−1/2
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝛼,𝑖+1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (C.9) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝜕𝑇𝛼,𝑖−1/2
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝛼,𝑖+1/2

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (C.10) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 =

𝜕𝑇𝛼,𝑖−1/2
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝛼,𝑖+1/2

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (C.11) 

where the derivatives of the phase transmissibility in Eqs. (C.8) – (C.11) are  

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑃𝑖
𝑛+1 (C.12) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1  (C.13) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1  (C.14) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 (C.15) 
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If the upstream grid is the neighbor grid, the derivatives of the phase mobility in Eqs. 

(C.12) - (C.15) are zero.  

 
𝜕𝜆𝛼,𝑖±1

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖±1
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖±1
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖±1
𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 = 0 (C.16) 

If the upstream grid is 𝑖, the derivatives of the phase transmissibility in Eqs. (C.12) - 

(C.15) are  

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 = −

𝑘𝑟𝑤,𝑖
𝑛+1

𝐵𝑤,𝑖
𝑛+12

𝜇𝑤,𝑖
𝑛+1

𝜕𝐵𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝑘𝑟𝑤,𝑖
𝑛+1

𝐵𝑤,𝑖
𝑛+1𝜇𝑤,𝑖

𝑛+12

𝜕𝜇𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 (C.17) 

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

1

𝐵𝑤,𝑖
𝑛+1𝜇𝑤,𝑖

𝑛+1

𝜕𝑘𝑟𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (C.18) 

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0 (C.19) 

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 = 0 (C.20) 

 

𝜕𝜆𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 = −

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜇𝑜,𝑖
𝑛+1

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+12

𝜕𝜇𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑅𝑣,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑘𝑟𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+1

− 𝑅𝑣,𝑖
𝑛+1 (

𝑘𝑟𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜇𝑔,𝑖
𝑛+1

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝑘𝑟𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+12

𝜕𝜇𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1) 

(C.21) 

 
𝜕𝜆𝑜,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 + 𝑅𝑣,𝑖

𝑛+1 1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (C.22) 

 
𝜕𝜆𝑜,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 + 𝑅𝑣,𝑖

𝑛+1 1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 (C.23) 

 
𝜕𝜆𝑜,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 = 0 (C.24) 
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𝜕𝜆𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 = −

𝑘𝑟𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜇𝑔,𝑖
𝑛+1

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝑘𝑟𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+12

𝜕𝜇𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑅𝑠,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1

− 𝑅𝑠,𝑖
𝑛+1 (

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜇𝑜,𝑖
𝑛+1

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+12

𝜕𝜇𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1) 

(C.25) 

 
𝜕𝜆𝑔,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 + 𝑅𝑠,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (C.26) 

 
𝜕𝜆𝑔,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

1

𝐵𝑔,𝑖
𝑛+1𝜇𝑔,𝑖

𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 + 𝑅𝑠,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 (C.27) 

 
𝜕𝜆𝑔,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 =

𝑘𝑟𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1𝜇𝑜,𝑖

𝑛+1 (C.28) 

For each phase, the derivatives of the accumulation in Eqs. (C.4) – (C.7) are  

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(
𝜕𝑀𝜙,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑆𝑤,𝑖
𝑛+1

𝐵𝑤,𝑖
𝑛+1 − 𝑀𝜙,𝑖

𝑛+1
𝑆𝑤,𝑖

𝑛+1

𝐵𝑤,𝑖
𝑛+12

𝜕𝐵𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1) (C.29) 

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(𝑀𝜙,𝑖

𝑛+1 1

𝐵𝑤,𝑖
𝑛+1) (C.30) 

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0 (C.31) 

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 = 0 (C.32) 
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𝜕𝐴𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[
𝜕𝑀𝜙,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 (

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1 + 𝑅𝑣,𝑖

𝑛+1
𝑆𝑔,𝑖

𝑛+1

𝐵𝑔,𝑖
𝑛+1)

− 𝑀𝜙,𝑖
𝑛+1 (

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝑅𝑣,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1

+ 𝑅𝑣,𝑖
𝑛+1

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1)] 

(C.33) 

 
𝜕𝐴𝑜,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = −

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(𝑀𝜙,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1) (C.34) 

 
𝜕𝐴𝑜,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = −

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(𝑀𝜙,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1) (C.35) 

 
𝜕𝐴𝑜,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 = 0 (C.36) 

 

𝜕𝐴𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[
𝜕𝑀𝜙,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 (

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1 + 𝑅𝑠,𝑖

𝑛+1
𝑆𝑜,𝑖

𝑛+1

𝐵𝑜,𝑖
𝑛+1)

− 𝑀𝜙,𝑖
𝑛+1 (

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝑅𝑠,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1

+ 𝑅𝑠,𝑖
𝑛+1

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1)] 

(C.37) 

 
𝜕𝐴𝑔,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = −

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (𝑅𝑠,𝑖
𝑛+1 1

𝐵𝑜,𝑖
𝑛+1)] (C.38) 

 
𝜕𝐴𝑔,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
1

𝐵𝑔,𝑖
𝑛+1 − 𝑅𝑠,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1)] (C.39) 

 
𝜕𝐴𝑔,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[𝑀𝜙,𝑖

𝑛+1 (
𝑆𝑜,𝑖

𝑛+1

𝐵𝑜,𝑖
𝑛+1)] (C.40) 
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The derivative of the well term in Eqs. (C.4) – (C.7) is imposed on the first grid. 

 
𝜕𝑊𝛼,1

𝑛+1

𝜕𝑃1
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

[𝜆𝛼,1
𝑛+1 (

1

𝜏1 − 𝜏well
) +

𝜕𝜆𝛼,1
𝑛+1

𝜕𝑃1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
)] (C.41) 

 
𝜕𝑊𝛼,1

𝑛+1

𝜕𝑆𝑤,1
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝛼,1
𝑛+1

𝜕𝑆𝑤,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (C.42) 

 
𝜕𝑊𝛼,1

𝑛+1

𝜕𝑆𝑔,1
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝛼,1
𝑛+1

𝜕𝑆𝑔,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (C.43) 

 
𝜕𝑊𝛼,1

𝑛+1

𝜕𝑅𝑠,1
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝛼,1
𝑛+1

𝜕𝑅𝑠,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (C.44) 

In Eqs. (C.41) – (C.44), the derivatives of the phase mobility are obtained using Eqs. 

(C.17) – (C.28). 

Similarly, the off-diagonal blocks in the Jacobian also consist of a 3 × 3 matrix as 

shown in Fig. C.2. The off-diagonal terms are obtained by differentiating the finite 

difference equations (Eqs. (C.1) – (C.3)) by the primary variables of the neighbor grids. 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1  (C.45) 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (C.46) 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1  (C.47) 

 
𝜕𝑓𝛼,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 =

𝜕𝐹𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 −

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 +

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1  (C.48) 

Notice that the derivatives of the non-flux term in Eqs. (C.45) – (C.48) equal zero. 
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𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0,   

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0,   

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 = 0,   

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 = 0, 

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 = 0,   

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 = 0,   

𝜕𝐴𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 = 0,   

𝜕𝑊𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 = 0 

(C.49) 

The derivatives of the flux term in Eqs. (C.45) – (C.48) are  

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 𝑇𝛼,𝑖±1/2

𝑛+1 +
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (C.50) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝑇𝛼,𝑖±1/2
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (C.51) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝜕𝑇𝛼,𝑖±1/2
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (C.52) 

 
𝜕𝐹𝛼,𝑖

𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 =

𝜕𝑇𝛼,𝑖±1/2
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (C.53) 

The derivatives of the phase transmissibility in Eqs. (C.50) – (C.53) are  

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (C.54) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (C.55) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1  (C.56) 

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1  (C.57) 

If the upstream grid is the grid of 𝑖, the derivatives of the phase mobility in Eqs. (C.54) - 

(C.57) are zero.  
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𝜕𝜆𝛼,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 = 0,      

𝜕𝜆𝛼,𝑖
𝑛+1

𝜕𝑅𝑠,𝑖±1
𝑛+1 = 0 (C.58) 

If the upstream grid is the neighbor grid, the derivatives of the phase mobility in Eqs. 

(C.54) - (C.57) are calculated using Eqs. (C.17) – (C.28).  

Therefore, the diagonal blocks of the Jacobian are constructed by using Eqs. (C.8) - 

(B.44) as well as the off-diagonal blocks are constructed with Eqs. (C.50) - (C.57). 

C.2 Implicit BHP Calculation 

If the bottom-hole pressure is specified, we can explicitly calculate the production rate 

using the well equation (Eq. (2.65)). If the production rate is specified, we implicitly 

solve the bottom-hole pressure during the Newton iteration. In such case, the primary 

variable consists of a (3𝑀 + 1) × 1 vactor. 

 𝐲𝑛+1 = [𝑃1, 𝑆𝑤,1, 𝑆𝑔,1, … , 𝑃𝑀 , 𝑆𝑀,1, 𝑆𝑀,1, 𝑃𝑤𝑓]
𝑇
 (C.59) 

In addition to the finite difference equations, the well governing equation, that is the well 

residual equation (𝑅𝑤) is imposed on the residual. 

 𝐑𝑛+1 = [𝑓𝑤,1, 𝑓𝑜,1, 𝑓𝑔,1, … , 𝑓𝑤,𝑀, 𝑓𝑜,𝑀, 𝑓𝑔,𝑀, 𝑅𝑤]
𝑇
 (C.60) 

The residual consists of a (3𝑀 + 1) × 1 vactor. The well residual term 𝑅𝑤 is defined by 

summating Eq. (3.65) for all the existing phases. 

 𝑅𝑤
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

∑ 𝜆𝛼,1
𝑛+1

𝛼=𝑤,𝑜,𝑔

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) − ∑ 𝑞𝑠𝛼

𝑛+1

𝛼=𝑤,𝑜,𝑔

 (C.61) 

The Jacobian consists of a (3𝑀 + 1) × (3𝑀 + 1) matrix as shown in Fig. C.3. 
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Fig. C.3 – Jacobian of the multiphase single-porosity model with well residual terms 

 

 

 

The additional elements 𝐋𝐋1, 𝐋𝐋2, and 𝐋𝐔2in Fig. C.3 is comprised of a vector and 

scalar value. The row vector 𝐋𝐋1 (1 × 3 vector) is given by 

 𝐋𝐋1
𝑛+1 = [

𝜕𝑅𝑤
𝑛+1

𝜕𝑃1
𝑛+1

𝜕𝑅𝑤
𝑛+1

𝜕𝑆𝑤,1
𝑛+1

𝜕𝑅𝑤
𝑛+1

𝜕𝑆𝑔,1
𝑛+1] (C.62) 

If the primary variable is 𝑅𝑠,1
𝑛+1 instead of 𝑆𝑔,1

𝑛+1, the row vector 𝐋𝐋1
𝑛+1 is 

 𝐋𝐋1
𝑛+1 = [

𝜕𝑅𝑤
𝑛+1

𝜕𝑃1
𝑛+1

𝜕𝑅𝑤
𝑛+1

𝜕𝑆𝑤,1
𝑛+1

𝜕𝑅𝑤
𝑛+1

𝜕𝑅𝑠,1
𝑛+1] (C.63) 

The scalar vale 𝐋𝐋2 is given by 

 𝐋𝐋2
𝑛+1 =

𝜕𝑅𝑤
𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 (C.64) 

The column vector 𝐋𝐔2 (3 × 1 vector) is given by 

 𝐋𝐔2
𝑛+1 = [

𝜕𝑓𝑤
𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1

𝜕𝑓𝑜
𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1

𝜕𝑓𝑔
𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1]

𝑇

 (C.65) 
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Notice that the production rate is specified, thus this is a fixed value. The 𝐋𝐋1
𝑛+1 

elements in Eqs. (C.62) and (C.63) are calculated as follows. 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑃1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

[∑
𝜕𝜆𝛼,1

𝑛+1

𝜕𝑃1
𝑛+1

𝛼

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) + ∑𝜆𝛼,1

𝑛+1

𝛼

(
1

𝜏1 − 𝜏well
)] (C.66) 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑆𝑤,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

∑
𝜕𝜆𝛼,1

𝑛+1

𝜕𝑆𝑤,1
𝑛+1

𝛼

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (C.67) 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑆𝑔,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

∑
𝜕𝜆𝛼,1

𝑛+1

𝜕𝑆𝑔,1
𝑛+1

𝛼

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (C.68) 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑅𝑠,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

∑
𝜕𝜆𝛼,1

𝑛+1

𝜕𝑅𝑠,1
𝑛+1

𝛼

(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (C.69) 

In Eqs. (C.66) - (C.69), the derivatives of the phase mobility are calculated using Eqs. 

(C.17) – (C.28). 

The 𝐋𝐋2 element in Eq. (C.64) is obtained by  

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = −𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

∑𝜆𝛼,1
𝑛+1

𝛼

(
1

𝜏1 − 𝜏well
) (C.70) 

The 𝐿𝑈2
𝑛+1 elements in Eq. (C.65) are calculated by 

 
𝜕𝑓𝑤

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝑤,1
𝑛+1 (

1

𝜏1 − 𝜏well
) (C.71) 

 
𝜕𝑓𝑜

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝑜,1
𝑛+1 (

1

𝜏1 − 𝜏well
) (C.72) 

 
𝜕𝑓𝑔

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝑔,1
𝑛+1 (

1

𝜏1 − 𝜏well
) (C.73) 
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C.3 Derivatives in Dual-Porosity Model 

In the blackoil dual-porosity model, we solve the three phase finite difference equations 

for the fracture grid as well as for the matrix grid.  

The finite difference equations in the fracture grid 𝑖 is expressed by 

 𝑓𝑤𝑓,𝑖
𝑛+1 = 𝐹𝑤𝑓,𝑖

𝑛+1 − 𝐴𝑤𝑓,𝑖
𝑛+1 + 𝐴𝑤𝑓,𝑖

𝑛 + 𝑊𝑤𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖𝐹𝐹𝑀,𝑤,𝑖

𝑛+1 = 0 (C.74) 

 𝑓𝑜𝑓,𝑖
𝑛+1 = 𝐹𝑜𝑓,𝑖

𝑛+1 − 𝐴𝑜𝑓,𝑖
𝑛+1 + 𝐴𝑜𝑓,𝑖

𝑛 + 𝑊𝑜𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖𝐹𝐹𝑀,𝑜,𝑖

𝑛+1 = 0 (C.75) 

 𝑓𝑔𝑓,𝑖
𝑛+1 = 𝐹𝑔𝑓,𝑖

𝑛+1 − 𝐴𝑔𝑓,𝑖
𝑛+1 + 𝐴𝑔𝑓,𝑖

𝑛 + 𝑊𝑔𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖𝐹𝐹𝑀,𝑔,𝑖

𝑛+1 = 0 (C.76) 

where 𝑣𝑖∆𝜏𝑖 represents the ‘bulk’ volume of the grid block 𝑖. 

In the dual-porosity model, the matrix grid has no flux to the neighbor grid. The finite 

difference equations in the matrix grid 𝑖 are defined by the accumulation and fracture-

matrix transfer term. 

 𝑓𝑤𝑚,𝑖
𝑛+1 = −𝐴𝑤𝑚,𝑖

𝑛+1 + 𝐴𝑤𝑚,𝑖
𝑛 + 𝐹𝐹𝑀,𝑤,𝑖

𝑛+1 = 0 (C.77) 

 𝑓𝑜𝑚,𝑖
𝑛+1 = −𝐴𝑜𝑚,𝑖

𝑛+1 + 𝐴𝑜𝑚,𝑖
𝑛 + 𝐹𝐹𝑀,𝑜,𝑖

𝑛+1 = 0 (C.78) 

 𝑓𝑔𝑚,𝑖
𝑛+1 = −𝐴𝑔𝑚,𝑖

𝑛+1 + 𝐴𝑔𝑚,𝑖
𝑛 + 𝐹𝐹𝑀,𝑔,𝑖

𝑛+1 = 0 (C.79) 

where 𝐹𝐹𝑀,𝛼,𝑖
𝑛+1  is the fracture-matrix transfer term of phase 𝛼 (𝑜, 𝑤, 𝑔). 

 𝐹𝐹𝑀,𝛼,𝑖
𝑛+1 = 𝜎𝑘𝑚𝜆𝛼,𝑢𝑝

𝑛+1 (𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) (C.80) 

Notice that the shape factor 𝜎 and the matrix permeability 𝑘𝑚 are the uniform parameter 

throughout all the grid blocks.  

The primary variable is the fracture pressure and the matrix pressure (6𝑀 × 1 vector). 

 𝐲𝑛+1 = [𝐲𝑓,1
𝑛+1, … , 𝐲𝑓,𝑀

𝑛+1, 𝐲𝑚,1
𝑛+1, … , 𝐲𝑚,𝑀

𝑛+1]
𝑇
 (C.81) 
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where 𝐲𝑓
𝑛+1 and 𝐲𝑚

𝑛+1 are the vector comprised of the pressure, water saturation, and gas 

saturation or solution gas oil ratio for each grid. 

 𝐲𝑓,𝑖
𝑛+1 = [𝑃𝑓,𝑖

𝑛+1, 𝑆𝑤𝑓
𝑛+1, 𝑆𝑔𝑓

𝑛+1] (C.82) 

 𝐲𝑚,𝑖
𝑛+1 = [𝑃𝑚,𝑖

𝑛+1, 𝑆𝑤𝑚
𝑛+1, 𝑆𝑔𝑚

𝑛+1] (C.83) 

The residual term is comprised of the finite difference equations of the fracture grids 

(Eqs. (C.74) – (C.76)) and of the matrix grids (Eqs. (C.77) – (C.79)) (6𝑀 × 1 vector). 

 𝐑𝑛+1 = [𝐑𝑓,1
𝑛+1, … , 𝐑𝑓,𝑀

𝑛+1, 𝐑𝑚,1
𝑛+1, … , 𝐑𝑚,𝑀

𝑛+1 ]
𝑇
 (C.84) 

where 𝐑𝑓
𝑛+1 and 𝑹𝑚

𝑛+1 are the vector comprised of the three finite difference equations 

for each grid.  

 𝐑𝑓,𝑖
𝑛+1 = [𝑓𝑤𝑓,𝑖

𝑛+1, 𝑓𝑜𝑓,𝑖
𝑛+1, 𝑓𝑔𝑓,𝑖

𝑛+1] (C.85) 

 𝐑𝑚,𝑖
𝑛+1 = [𝑓𝑤𝑚,𝑖

𝑛+1 , 𝑓𝑜𝑚,𝑖
𝑛+1, 𝑓𝑔𝑚,𝑖

𝑛+1] (C.86) 

The Jacobian (6𝑀 × 6𝑀 matrix) is obtained by differentiating Eq. (C.84) by Eq. (C.81).  

The matrix form is shown in Fig. C.4. The elements 𝐴 − 𝐶 in Fig.C.4 is the block-

tridiagonal entries. The elements 𝐷 and 𝐸 represents the fracture-matrix connectivity, 

which is locally diagonal in the Jacobian. The element 𝐹 is the diagonal term in the 

Jacobian.  
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Fig. C.4 – Jacobian of the multiphase dual-porosity model 

 

 

 

The Jacobian elements 𝐴 − 𝐹 in Fig. C.4 are classified to four types of the derivatives. 

(1) The derivative of fracture eq. (𝑅𝑓) with respect to fracture variable (𝑦𝑓) 

 𝐀,𝐁, 𝐂 =
𝛛𝐑𝐟

𝛛𝐲𝐟
=

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑓

𝜕𝑃𝑓

𝜕𝑓𝑤𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑤𝑓

𝜕𝑆𝑔𝑓

𝜕𝑓𝑜𝑓

𝜕𝑃𝑓

𝜕𝑓𝑜𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑜𝑓

𝜕𝑆𝑔𝑓

𝜕𝑓𝑔𝑓

𝜕𝑃𝑓

𝜕𝑓𝑔𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑔𝑓

𝜕𝑆𝑔𝑓]
 
 
 
 
 
 

 or 

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑓

𝜕𝑃𝑓

𝜕𝑓𝑤𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑤𝑓

𝜕𝑅𝑠𝑓

𝜕𝑓𝑜𝑓

𝜕𝑃𝑓

𝜕𝑓𝑜𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑜𝑓

𝜕𝑅𝑠𝑓

𝜕𝑓𝑔𝑓

𝜕𝑃𝑓

𝜕𝑓𝑔𝑓

𝜕𝑆𝑤𝑓

𝜕𝑓𝑔𝑓

𝜕𝑅𝑠𝑓]
 
 
 
 
 
 

 (C.87) 

(2) The derivative of fracture phase eq. (𝑅𝑓) with respect to matrix pressure (𝑦𝑚) 
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 𝐃 =
𝛛𝐑𝐟

𝛛𝐲𝐦
=

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑓

𝜕𝑃𝑚

𝜕𝑓𝑤𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑤𝑓

𝜕𝑆𝑔𝑚

𝜕𝑓𝑜𝑓

𝜕𝑃𝑚

𝜕𝑓𝑜𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑜𝑓

𝜕𝑆𝑔𝑚

𝜕𝑓𝑔𝑓

𝜕𝑃𝑚

𝜕𝑓𝑔𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑔𝑓

𝜕𝑆𝑔𝑚]
 
 
 
 
 
 

 or 

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑓

𝜕𝑃𝑚

𝜕𝑓𝑤𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑤𝑓

𝜕𝑅𝑠𝑚

𝜕𝑓𝑜𝑓

𝜕𝑃𝑚

𝜕𝑓𝑜𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑜𝑓

𝜕𝑅𝑠𝑚

𝜕𝑓𝑔𝑓

𝜕𝑃𝑚

𝜕𝑓𝑔𝑓

𝜕𝑆𝑤𝑚

𝜕𝑓𝑔𝑓

𝜕𝑅𝑠𝑚]
 
 
 
 
 
 

 (C.88) 

(3) The derivative of matrix phase eq. (𝑅𝑚) with respect to fracture pressure (𝑦𝑓) 

 𝐄 =
𝛛𝐑𝐦

𝛛𝐲𝐟
=

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑚

𝜕𝑃𝑓

𝜕𝑓𝑤𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑤𝑚

𝜕𝑆𝑔𝑓

𝜕𝑓𝑜𝑚

𝜕𝑃𝑓

𝜕𝑓𝑜𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑜𝑚

𝜕𝑆𝑔𝑓

𝜕𝑓𝑔𝑚

𝜕𝑃𝑓

𝜕𝑓𝑔𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑔𝑚

𝜕𝑆𝑔𝑓 ]
 
 
 
 
 
 

 or 

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑚

𝜕𝑃𝑓

𝜕𝑓𝑤𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑤𝑚

𝜕𝑅𝑠𝑓

𝜕𝑓𝑜𝑚

𝜕𝑃𝑓

𝜕𝑓𝑜𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑜𝑚

𝜕𝑅𝑠𝑓

𝜕𝑓𝑔𝑚

𝜕𝑃𝑓

𝜕𝑓𝑔𝑚

𝜕𝑆𝑤𝑓

𝜕𝑓𝑔𝑚

𝜕𝑅𝑠𝑓 ]
 
 
 
 
 
 

 (C.89) 

(4) The derivative of matrix phase eq. (𝑅𝑚) with respect to matrix pressure (𝑦𝑚) 

 𝐅 =
𝛛𝐑𝐦

𝛛𝐲𝐦
=

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑚

𝜕𝑃𝑚

𝜕𝑓𝑤𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑤𝑚

𝜕𝑆𝑔𝑚

𝜕𝑓𝑜𝑚

𝜕𝑃𝑚

𝜕𝑓𝑜𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑜𝑚

𝜕𝑆𝑔𝑚

𝜕𝑓𝑔𝑚

𝜕𝑃𝑚

𝜕𝑓𝑔𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑔𝑚

𝜕𝑆𝑔𝑚]
 
 
 
 
 
 

 or 

[
 
 
 
 
 
 
𝜕𝑓𝑤𝑚

𝜕𝑃𝑚

𝜕𝑓𝑤𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑤𝑚

𝜕𝑅𝑠𝑚

𝜕𝑓𝑜𝑚

𝜕𝑃𝑚

𝜕𝑓𝑜𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑜𝑚

𝜕𝑅𝑠𝑚

𝜕𝑓𝑔𝑚

𝜕𝑃𝑚

𝜕𝑓𝑔𝑚

𝜕𝑆𝑤𝑚

𝜕𝑓𝑔𝑚

𝜕𝑅𝑠𝑚]
 
 
 
 
 
 

 (C.90) 

The diagonal element 𝐴 (Eq. (C.87)) is  

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 −

𝜕𝐴𝛼𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 +

𝜕𝑊𝛼𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1  (C.91) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 −

𝜕𝐴𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 +

𝜕𝑊𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1  (C.92) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 −

𝜕𝐴𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 +

𝜕𝑊𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1  (C.93) 

 𝜕𝑓𝛼𝑓,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 −

𝜕𝐴𝛼𝑓,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 +

𝜕𝑊𝛼𝑓,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 − 𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1  

(C.94) 
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The first derivatives of the right hand side in Eqs. (C.91) – (C.94) are obtained by Eqs. 

(C.8) – (C.11). The second derivatives are calculated by Eqs. (C.29) – (C.40). The third 

terms are given by Eqs. (C.41) – (C.44). The fourth derivatives are  

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 = 𝜎𝑘𝑚 [𝜆𝛼,𝑢𝑝

𝑛+1 +
𝜕𝜆𝛼,𝑢𝑝

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1)] (C.95) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) (C.96) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) (C.97) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 (𝑃𝑓,𝑖

𝑛+1 − 𝑃𝑚,𝑖
𝑛+1) (C.98) 

In Eqs. (C.95) – (C.96), the derivatives of the phase mobility are determined by the up-

winding scheme (Eqs. (C.16) – (C.28)). 

The off-diagonal elements 𝐵 and 𝐶 (Eq. (C.87)) are  

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖±1
𝑛+1  (C.99) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑤𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖±1
𝑛+1  (C.100) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑔𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖±1
𝑛+1  (C.101) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑅𝑠𝑓,𝑖±1
𝑛+1 =

𝜕𝐹𝛼𝑓,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖±1
𝑛+1  (C.102) 

where these derivatives are given by Eqs. (C.50) – (C.53).  

The local diagonal element 𝐷 (Eq. (C.88)) is  



 

169 

 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1  (C.103) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1  (C.104) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1  (C.105) 

 
𝜕𝑓𝛼𝑓,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 = −𝑣𝑖∆𝜏𝑖

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1  (C.106) 

In Eqs. (C.103) – (C.106), the derivative of the transfer function with respect to the 

matrix variables is  

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = 𝜎𝑘𝑚 [−𝜆𝛼,𝑢𝑝

𝑛+1 +
𝜕𝜆𝛼,𝑢𝑝

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1)] (C.107) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) (C.108) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) (C.109) 

 
𝜕𝐹𝐹𝑀,𝛼,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 = 𝜎𝑘𝑚

𝜕𝜆𝛼,𝑢𝑝
𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 (

1

𝐵𝜇
)
𝑢𝑝

𝑛+1

(𝑃𝑓,𝑖
𝑛+1 − 𝑃𝑚,𝑖

𝑛+1) (C.110) 

The local diagonal element 𝐸 (Eq. (C.89)) is  

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑃𝑓,𝑖
𝑛+1  (C.111) 

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑤𝑓,𝑖
𝑛+1  (C.112) 

 𝜕𝑓𝛼𝑚,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑔𝑓,𝑖
𝑛+1  

(C.113) 
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𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1 =

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑅𝑠𝑓,𝑖
𝑛+1  (C.114) 

where these derivatives are given by Eqs. (C.95) – (C.96). 

The diagonal element 𝐹 (Eq. (C.90)) is  

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝛼𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1  (C.115) 

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝛼𝑚,𝑖
𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1  (C.116) 

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝛼𝑚,𝑖
𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1  (C.117) 

 
𝜕𝑓𝛼𝑚,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 = −

𝜕𝐴𝛼𝑚,𝑖
𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 +

𝜕𝐹𝐹𝑀,𝛼,𝑖
𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1  (C.118) 

In Eqs. (C.115) – (C.118), the first derivatives in the right hand side are  

 
𝜕𝐴𝑤𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
(
𝜕𝜙𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1

𝑆𝑤,𝑖
𝑛+1

𝐵𝑤,𝑖
𝑛+1 − 𝜙𝑚,𝑖

𝑛+1
𝑆𝑤,𝑖

𝑛+1

𝐵𝑤,𝑖
𝑛+12

𝜕𝐵𝑤,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1) (C.119) 

 
𝜕𝐴𝑤𝑚,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
(𝜙𝑚,𝑖

𝑛+1 1

𝐵𝑤,𝑖
𝑛+1) (C.120) 

 
𝜕𝐴𝑤𝑚,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 = 0 (C.121) 

 
𝜕𝐴𝑤𝑚,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 = 0 (C.122) 
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𝜕𝐴𝑜𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
[
𝜕𝜙𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1 + 𝑅𝑣,𝑖

𝑛+1
𝑆𝑔,𝑖

𝑛+1

𝐵𝑔,𝑖
𝑛+1)

− 𝜙𝑚,𝑖
𝑛+1 (

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 −

𝜕𝑅𝑣,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1

+ 𝑅𝑣,𝑖
𝑛+1

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1)] 

(C.123) 

 
𝜕𝐴𝑜𝑚,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 = −

1

∆𝑡𝑛+1
(𝜙𝑚,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1) (C.124) 

 
𝜕𝐴𝑜𝑚,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 = −

1

∆𝑡𝑛+1
(𝜙𝑚,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1) (C.125) 

 
𝜕𝐴𝑜𝑚,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 = 0 (C.126) 

 

𝜕𝐴𝑔𝑚,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
[
𝜕𝜙𝑚,𝑖

𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 (

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+1 + 𝑅𝑠,𝑖

𝑛+1
𝑆𝑜,𝑖

𝑛+1

𝐵𝑜,𝑖
𝑛+1)

− 𝜙𝑚,𝑖
𝑛+1 (

𝑆𝑔,𝑖
𝑛+1

𝐵𝑔,𝑖
𝑛+12

𝜕𝐵𝑔,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1 −

𝜕𝑅𝑠,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+1

+ 𝑅𝑠,𝑖
𝑛+1

𝑆𝑜,𝑖
𝑛+1

𝐵𝑜,𝑖
𝑛+12

𝜕𝐵𝑜,𝑖
𝑛+1

𝜕𝑃𝑚,𝑖
𝑛+1)] 

(C.127) 

 
𝜕𝐴𝑔𝑚,𝑖

𝑛+1

𝜕𝑆𝑤𝑚,𝑖
𝑛+1 = −

1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (𝑅𝑠,𝑖
𝑛+1 1

𝐵𝑜,𝑖
𝑛+1)] (C.128) 

 
𝜕𝐴𝑔𝑚,𝑖

𝑛+1

𝜕𝑆𝑔𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (
1

𝐵𝑔,𝑖
𝑛+1 − 𝑅𝑠,𝑖

𝑛+1 1

𝐵𝑜,𝑖
𝑛+1)] (C.129) 

 
𝜕𝐴𝑔𝑚,𝑖

𝑛+1

𝜕𝑅𝑠𝑚,𝑖
𝑛+1 =

1

∆𝑡𝑛+1
[𝜙𝑚,𝑖

𝑛+1 (
𝑆𝑜,𝑖

𝑛+1

𝐵𝑜,𝑖
𝑛+1)] (C.130) 
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where the derivative of the matrix porosity 𝜙𝑚,𝑖
𝑛+1 with respect to the matrix pressure 

𝑃𝑚,𝑖
𝑛+1 is given by Eq. (B.38). In Eqs. (C.115) – (C.118), the second derivatives in the 

right hand side are obtained by Eqs. (C.107) – (C.110).  

If the production rate is specified, we impose the well residual term in the residual vector 

to implicitly solve the bottom-hole pressure. The matrix form of the Jacobian is shown in 

Fig. C.5. The well residual term is calculated using Eqs. (C.61) – (C.73). 

 

 

 

 

Fig. C.5 – Jacobian of the multiphase dual-porosity model with well residual terms 
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APPENDIX D 

VLE EQUILIBRIUM CALCUALTION 

 

D.1 Standard Flash Procedure 

In this study, three-parameter Peng-Robinson EOS is used for a vapor-liquid flash 

calculation. The procedure is discussed next. 

(1) Make an initial guess of the K-values using the Wilson empirical equation. 

 𝐾𝑖 =
𝑦𝑖

𝑥𝑖
=

1

𝑃𝑟𝑖
exp [5.37(1 + 𝜔𝑖) (1 −

1

𝑇𝑟𝑖
)] (D.1) 

where 𝜔𝑖 is the acentric factor of component 𝑖, and 𝑇𝑟𝑖 and 𝑃𝑟𝑖 are the reduced 

pressure and temperature of component 𝑖, respectively. 

(2) Compute the liquid and vapor mole fraction, 𝐿 and 𝑉, based on the Rachford-Rice 

procedure. The nonlinear equation is solved by Newton-Raphson iteration. The 

objective function (residual) is given by 

 𝐹(𝑉) = ∑
(1 − 𝐾𝑖)𝑧𝑖

1 − 𝑉(1 − 𝐾𝑖)

𝑁𝑐

𝑖=1

 (D.2) 

The gradient is given by 

 𝐹′(𝑉) =
𝑑𝐹

𝑑𝑉
= ∑

(1 − 𝐾𝑖)
2𝑧𝑖

[1 − 𝑉(1 − 𝐾𝑖)]
2

𝑁𝑐

𝑖=1

 (D.3) 

The vapor mole fraction is updated by 

 𝑉𝑙+1 = 𝑉𝑙 −
𝐹(𝑉)

𝐹′(𝑉)
 (D.4) 

where 𝑙 denotes the Newton iteration level.  
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The convergence criterion is given by 

 |
𝑉𝑙+1

𝑉𝑙
− 1| < 1 × 10−5 (D.5) 

For the first iteration, an initial guess of the liquid guess is given by 0.1. 

(3) Compute the component mole fraction for vapor and liquid phase, 𝑥𝑖 and 𝑦𝑖. 

 If 𝐿 = 1, then 𝑥𝑖 = 𝑧𝑖 (single-phase liquid). 

 If 𝑉 = 1, then 𝑦𝑖 = 𝑧𝑖 (single-phase vapor). 

 If 0 < 𝐿 < 1, then 𝑥𝑖 =
𝑧𝑖

1−𝑉(1−𝐾𝑖)
 and 𝑦𝑖 = 𝐾𝑖𝑥𝑖 (two-phase). 

(4) Compute the EOS parameters using the mixing rule.  

 (𝑎𝛼)𝑚 = ∑∑𝑋𝑖𝑋𝑗(1 − 𝜃𝑖𝑗)√(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑁𝑐

𝑗=1

𝑁𝑐

𝑖=1

 (D.6) 

 𝑏𝑚 = ∑𝑋𝑖𝑏𝑖

𝑁𝑐

𝑖=1

 (D.7) 

where 𝑋𝑖 is the phase mole fraction (𝑋𝑖 = 𝑦𝑖 for vapor phase, and 𝑋𝑖 = 𝑥𝑖 for liquid 

phase), 𝜃𝑖𝑗 is the binary interaction coefficient (BIC), and 𝑎 and 𝑏 are the component 

EOS parameters. 

 𝑎𝑖 = 𝛺𝐴

𝑅2𝑇𝑐𝑖
2

𝑃𝑐𝑖
 (D.8) 

 𝑏𝑖 = 𝛺𝐵

𝑅𝑇𝑐𝑖

𝑃𝑐𝑖
 (D.9) 

where 𝛺𝐴 and 𝛺𝐵 are constants. If 𝜔𝑖 ≤ 0.49, 𝛼𝑖 is calculated by the quadratic 

equation in terms of 𝜔𝑖. 
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 𝛼𝑖 = (1 + (0.3746 + 1.5423𝜔𝑖 − 0.2699𝜔𝑖
2)(1 − 𝑇𝑟𝑖

0.5))
2

 (D.10) 

If 𝜔𝑖 > 0.49, 𝛼𝑖 is given by the cubic equation in terms of 𝜔𝑖. 

 𝛼𝑖 = [1 + (0.3796 + 1.485𝜔𝑖 − 0.1644𝜔𝑖
2 + 0.01667𝜔𝑖

3)(1 − 𝑇𝑟𝑖
0.5)]

2
 (D.11) 

(5) Solve the Peng-Robinson EOS (cubic equation) for the phase 𝑧-factor, 𝑧𝐿 and 𝑧𝑉, 

with the Cardano method. 

 𝑧3 + (𝐵 − 1)𝑧2 + (𝐴 − 3𝐵2 − 2𝐵)𝑧 + (𝐵3 + 𝐵2 − 𝐴𝐵) = 0 (D.12) 

where 𝐴 and 𝐵 are obtained from the mixing rule. 

 𝐴 = (𝑎𝛼)𝑚

𝑃

𝑅2𝑇2
 (D.13) 

 𝐵 = 𝑏𝑚

𝑃

𝑅𝑇
 (D.14) 

(6) Compute the component fugacity of each component in each phase, 𝑓𝑖
𝐿 and 𝑓𝑖

𝑉. 

 𝑓𝑖
𝐿 = 𝑥𝑖𝑃𝜙𝑖

𝐿 (D.15) 

 𝑓𝑖
𝑉 = 𝑦𝑖𝑃𝜙𝑖

𝑉 (D.16) 

where 𝑐𝑖 is the volume shift parameter (a ‘third’ EOS parameter) of component 𝑖, 

and 𝜙𝑖
𝐿 and 𝜙𝑖

𝑉 are the fugacity coefficient of liquid and vapor phase, respectively. 

Using the Peng-Robinson EOS, the fugacity coefficient of phase 𝛼 is written as 

 

𝜙𝑖
𝛼 = exp [

𝑏𝑖

𝑏𝑚

(𝑧𝛼 − 1) − ln(𝑧𝛼 − 𝐵)

−
𝐴

2√2𝐵
(

𝑎𝑚𝑖

(𝑎𝛼)𝑚
−

𝑏𝑖

𝑏𝑚
) ln

𝑧𝛼 + (1 + √2)𝐵

𝑧𝛼 + (1 − √2)𝐵
] 

(D.17) 

where 𝛼 is the phase (𝛼 = 𝐿, 𝑉) and 𝑎𝑚𝑖 is defined by 
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 𝑎𝑚𝑖 =
𝜕(𝑎𝛼)𝑚

𝜕𝑋𝑖
= 2∑𝑋𝑗(1 − 𝜃𝑖𝑗)√(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑁𝑐

𝑗=1

 (D.18) 

(7) Check to see if the equilibrium condition (fugacity equality) has been achieved. 

 [∑(
𝑓𝑖

𝑉

𝑓𝑖
𝐿 − 1)

𝑁𝑐

𝑖=1

]

2

< 1 × 10−12 (D.19) 

 If the criterion is achieved, the iterative flash is terminated. Go to step (9). 

 If the criterion is not achieved, the iterative flash is continued. Go to step (8). 

(8) Update the K-values. The K-values are updated based on the Successive Substitution 

Method (SSM).  

 𝐾𝑖
𝑛𝑒𝑤 =

𝜙𝑖
𝐿

𝜙𝑖
𝑉 =

𝑓𝑖
𝐿

𝑓𝑖
𝑉

𝑦𝑖

𝑥𝑖
=

𝑓𝑖
𝐿

𝑓𝑖
𝑉 𝐾𝑖

𝑜𝑙𝑑 (D.20) 

Once the K-values are updated, step (2) through step (7) is repeated until the 

convergence criterion in step (7) is satisfied. 

(9) Calculate phase properties 

 The phase molar volume with the volume shift (ft3/mole) 

 𝑉𝑜 =
𝑧𝐿𝑅𝑇

𝑃
− ∑𝑥𝑖𝑐𝑖

𝑁𝑐

𝑖=1

 (D.21) 

 𝑉𝑔 =
𝑧𝑉𝑅𝑇

𝑃
− ∑ 𝑦𝑖𝑐𝑖

𝑁𝑐

𝑖=1

 (D.22) 

 The phase molar density (moles/ ft3) 

 𝜉𝑜 =
1

𝑉𝑜
, 𝜉𝑔 =

1

𝑉𝑔
 (D.23) 
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 The phase mass density (lb/ ft3) 

 𝜌𝑜 =
𝑀𝑤,𝑖

𝑉𝑜
, 𝜌𝑔 =

𝑀𝑤,𝑖

𝑉𝑔
 (D.24) 

 The phase volume fractions (hydrocarbon phase saturation without water) 

 𝑓𝑜 =

𝐿
𝜉𝑜

𝐿
𝜉𝑜

+
𝑉
𝜉𝑔

, 𝑓𝑔 =

𝑉
𝜉𝑔

𝐿
𝜉𝑜

+
𝑉
𝜉𝑔

 (D.25) 

 The phase mass fractions 

 𝑀𝐹𝑜 =
𝑓𝑜𝜌𝑜

𝑓𝑜𝜌𝑜 + 𝑓𝑔𝜌𝑔
, 𝑀𝐹𝑔 =

𝑓𝑔𝜌𝑔

𝑓𝑜𝜌𝑜 + 𝑓𝑔𝜌𝑔
 (D.26) 

D.2 Negative Flash Procedure for Saturation Point Calculation 

At the dew-point, we obtain the following objective function. 

 𝐹(𝑃) = ∑
𝑧𝑖

𝐾𝑖

𝑁𝑐

𝑖=1

− 1 = 0 (D.27) 

The gradient is given by 

 𝐹′(𝑃) =
𝜕𝑓

𝜕𝑃
= − ∑

𝑧𝑖

𝐾𝑖
2

𝜕𝐾𝑖

𝜕𝑃

𝑁𝑐

𝑖=1

 (D.28) 

At the bubble-point, we obtain the following objective function. 

 𝐹(𝑃) = ∑𝑧𝑖𝐾𝑖

𝑁𝑐

𝑖=1

− 1 = 0 (D.29) 

The gradient is given by 

 𝐹′(𝑃) =
𝜕𝑓

𝜕𝑃
= ∑ 𝑧𝑖

𝜕𝐾𝑖

𝜕𝑃

𝑁𝑐

𝑖=1

 (D.30) 
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For each condition, the saturation pressure is iteratively calculated by using Newton-

Raphson iteration. 

 𝑃𝑙+1 = 𝑃𝑙 −
𝐹(𝑃𝑙)

𝐹′(𝑃𝑙)
 (D.31) 

where 𝑙 denotes the Newton iteration level. 
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APPENDIX E 

CONSTRUCTION OF JACOBIAN FOR COMPOSITIONAL FLOWS 

 

E.1 Derivatives of Primary Equations 

In the compositional model, there are 2𝑁𝑐 + 1 primary equations – a water equation, 

2𝑁𝑐 hydrocarbon component equations, and 2𝑁𝑐 fugacity equality in each grid. 

 𝑅𝑤,𝑖
𝑛+1 = 𝐹𝑤,𝑖

𝑛+1 − 𝐴𝑤,𝑖
𝑛+1 + 𝐴𝑤,𝑖

𝑛 + 𝑊𝑤,𝑖
𝑛+1 = 0 (E.1) 

 𝑅𝑗,𝑖
𝑛+1 = 𝐹𝑗,𝑖

𝑛+1 − 𝐴𝑗,𝑖
𝑛+1 + 𝐴𝑗,𝑖

𝑛 + 𝑊𝑗,𝑖
𝑛+1 = 0 (E.2) 

 𝐹𝑗,𝑖
𝑛+1 = 𝑓𝑗,𝑖

𝑉𝑛+1
− 𝑓𝑗,𝑖

𝐿 𝑛+1
= 0 (E.3) 

where the superscript 𝑛 + 1 denotes the time-step level, 𝑗 is the hydrocarbon component 

(𝑗 = 1,… ,𝑁𝑐), 𝑖 denotes the grid number, and 𝑓𝑉 and 𝑓𝐿 represent the fugacity of vapor 

and liquid phase, respectively. The number of primary equations and the corresponding 

variables are determined by identifying the number of phase in the grid as summarized 

in Table 3.1. The grid-wise phase identification will be conducted by checking the phase 

saturation in each grid for each Newton iteration step. For example, if every grid is 

saturated with oil, gas, and water, the number of primary variables is (2𝑁𝑐 + 1)𝑀 × 1.  

The residual vector 𝐑𝑛+1 and primary variables are expressed as follows.  

 𝐑𝑛+1 = [𝐑1
𝑛+1, 𝐑2

𝑛+1, … , 𝐑3
𝑛+1]𝑇 (E.4) 

 𝐮𝑛+1 = [𝐮1
𝑛+1, 𝐮2

𝑛+1, … , 𝐮3
𝑛+1]𝑇 (E.5) 

The Jacobian forms a block-tridiagonal band as shown in Fig. E.1. The size of the 

entries varies depending on the number of phase saturated in the corresponding grid. 
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(a) Three-phase Oil, Gas, and Water (b) Two-phase Oil and Gas 

  
(c) Two-phase Oil and Water (d) Two-phase Gas and Water 

  
(e) Single-phase Oil (f) Single-phase Gas 

Fig. E.1 – Block diagonal elements in the Jacobian 
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The block-diagonal elements are calculated by differentiating the primary equations 

(Eqs. (E.1) – (E.3)) of the grid 𝑖 by the primary variables (Eq. (E.5)) of the grid 𝑖. The 

details are as follows. 

The derivatives of the water equation with respect to the primary variables is obtained by 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝐹𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝐴𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑊𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1  (E.6) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝐹𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 −

𝜕𝐴𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 +

𝜕𝑊𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1  (E.7) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0 (E.8) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = 0 (E.9) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = 0 (E.10) 

In Eqs. (E.6) and (E.7), the derivative of the water flux term is calculated by 

 

𝜕𝐹𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝑇𝑤,𝑖−1/2
𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑤,𝑖+1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) 

−(𝑇𝛼,𝑖−1/2
𝑛+1 + 𝑇𝛼,𝑖+1/2

𝑛+1 ) 

(E.11) 

 
𝜕𝐹𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝑇𝑤,𝑖−1/2
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑤,𝑖+1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (E.12) 

The derivative of the transmissibility is  

 
𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝑤,𝑢𝑝
𝑛+1

𝜕𝑃𝑖
𝑛+1  (E.13) 
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𝜕𝑇𝛼,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝑤,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1  (E.14) 

The phase mobility is determined based on the up-winding scheme. If the upstream grid 

is the neighbor grid, the derivative of the water mobility equals zero. 

 
𝜕𝜆𝑤,𝑖±1

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 0,      

𝜕𝜆𝑤,𝑖±1
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 0 (E.15) 

If the upstream is the grid 𝑖, the derivative of the water mobility is 

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑘𝑟𝑤,𝑖
𝑛+1

𝜇𝑤,𝑖
𝑛+1

𝜕𝜌𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 − 𝜌𝑤,𝑖

𝑛+1
𝑘𝑟𝑤,𝑖

𝑛+1

𝜇𝑤,𝑖
𝑛+12

𝜕𝜇𝑤,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 (E.16) 

 
𝜕𝜆𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜌𝑤,𝑖
𝑛+1

𝜇𝑤,𝑖
𝑛+1

𝜕𝑘𝑟𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (E.17) 

Notice that, in the compositional simulation, the water mobility is defined by the mass 

basis, while the blackoil simulation is formulated by volumetric flow using the formation 

volume factor. Thus, the water mobility term in Eqs. (E.16) and (E.17) contains the 

mass density 𝜌𝑤,𝑖
𝑛+1 instead of the formation volume factor 𝐵𝑤,𝑖

𝑛+1.  

In Eqs. (E.6) and (E.7), the derivative of the water accumulation term is  

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(
𝜕𝑀𝜙,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 𝜌𝑤,𝑖

𝑛+1𝑆𝑤,𝑖
𝑛+1 − 𝑀𝜙,𝑖

𝑛+1
𝜕𝜌𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 𝑆𝑤,𝑖

𝑛+1) (E.18) 

 
𝜕𝐴𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
(𝑀𝜙,𝑖

𝑛+1𝜌𝑤,𝑖
𝑛+1) (E.19) 

In Eqs. (E.6) and (E.7), the derivative of the well term is  

 
𝜕𝑊𝑤,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 𝑤1(𝜇𝑐𝑡)init,1 [𝜆𝑤,1

𝑛+1 (
1

𝜏1 − 𝜏well
) +

𝜕𝜆𝑤,1
𝑛+1

𝜕𝑃1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
)] (E.20) 
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𝜕𝑊𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 𝑤1(𝜇𝑐𝑡)init,1

𝜕𝜆𝑤,1
𝑛+1

𝜕𝑆𝑤,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (E.21) 

where the derivative of the water mobility is defined by Eqs. (E.16) and (E.17). 

The derivative of the 𝑗th component equations (𝑗 = 1, … , 𝑁𝑐) (Eq. (E.2)) with respect to 

the primary variables is obtained by 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 +

𝜕𝑊𝑗,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1  (E.22) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 −

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 +

𝜕𝑊𝑗,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1  (E.23) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 −

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 +

𝜕𝑊𝑗,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1  (E.24) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 −

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 +

𝜕𝑊𝑗,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1  (E.25) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 −

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 +

𝜕𝑊𝑗,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1  (E.26) 

Note that the subscript 𝑘 is the component number (𝑘 = 2, … , 𝑁𝑐). The phase mole 

fractions, 𝑥1 and 𝑦1 are the dependent (secondary) variable, and the other phase mole 

fractions are the independent (primary) variables.  

 𝑥1 = 1 − ∑ 𝑥𝑘

𝑁𝑐

𝑘=2

 (E.27) 

 𝑦1 = 1 − ∑ 𝑦𝑘

𝑁𝑐

𝑘=2

 (E.28) 

In Eqs. (E.22) – (E.26), the derivative of the 𝑗th component flux term is  
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𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝑇𝑗,𝑖−1/2
𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑗,𝑖+1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) 

−(𝑇𝛼,𝑖−1/2
𝑛+1 + 𝑇𝛼,𝑖+1/2

𝑛+1 ) 

(E.29) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝜕𝑇𝑗,𝑖−1/2
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑗,𝑖+1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (E.30) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝜕𝑇𝑗,𝑖−1/2
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑗,𝑖+1/2

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (E.31) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝜕𝑇𝑗,𝑖−1/2
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑗,𝑖+1/2

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (E.32) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝜕𝑇𝑗,𝑖−1/2
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1

(𝑃𝑖−1
𝑛+1 − 𝑃𝑖

𝑛+1) +
𝜕𝑇𝑗,𝑖+1/2

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1

(𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1) (E.33) 

In Eqs. (E.29) – (E.33), the derivative of the 𝑗th component transmissibility is 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑃𝑖
𝑛+1 (E.34) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (E.35) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 (E.36) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 (E.37) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 (E.38) 

In Eqs. (E.34) – (E.38), the derivative of the component mobility is determined by the 

up-winding scheme. If the upstream grid is the neighbor grid, the derivatives are zero. 



 

185 

 

 
𝜕𝜆𝑗,𝑖±1

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 0,   

𝜕𝜆𝑗,𝑖±1
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 0,   

𝜕𝜆𝑗,𝑖±1
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0,   

𝜕𝜆𝑗,𝑖±1
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = 0,   

𝜕𝜆𝑗,𝑖±1
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = 0 (E.39) 

If the upstream grid is the grid 𝑖, the derivatives are 

 
𝜕𝜆𝑗,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 𝑥𝑗,𝑖

𝑛+1𝜉𝑜,𝑖
𝑛+1

𝑘𝑟𝑜,𝑖
𝑛+1

𝜇𝑜,𝑖
𝑛+1 + 𝑦𝑗,𝑖

𝑛+1𝜉𝑔,𝑖
𝑛+1

𝑘𝑟𝑔,𝑖
𝑛+1

𝜇𝑔,𝑖
𝑛+1 (E.40) 

 
𝜕𝜆𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 𝑥𝑗,𝑖

𝑛+1𝜉𝑜,𝑖
𝑛+1 1

𝜇𝑜,𝑖
𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 + 𝑦𝑗,𝑖

𝑛+1𝜉𝑔,𝑖
𝑛+1 1

𝜇𝑔,𝑖
𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 (E.41) 

 
𝜕𝜆𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 𝑥𝑗,𝑖

𝑛+1𝜉𝑜,𝑖
𝑛+1 1

𝜇𝑜,𝑖
𝑛+1

𝜕𝑘𝑟𝑜,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 + 𝑦𝑗,𝑖

𝑛+1𝜉𝑔,𝑖
𝑛+1 1

𝜇𝑔,𝑖
𝑛+1

𝜕𝑘𝑟𝑔,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 (E.42) 

 
𝜕𝜆𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝜕𝑥𝑗,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 𝜉𝑜,𝑖

𝑛+1
𝑘𝑟𝑜,𝑖

𝑛+1

𝜇𝑜,𝑖
𝑛+1 + 𝑥𝑗,𝑖

𝑛+1
𝜕𝜉𝑜,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1

𝑘𝑟𝑜,𝑖
𝑛+1

𝜇𝑜,𝑖
𝑛+1 − 𝑥𝑗,𝑖

𝑛+1𝜉𝑜,𝑖
𝑛+1

𝑘𝑟𝑜,𝑖
𝑛+1

𝜇𝑜,𝑖
𝑛+12

𝜕𝜇𝑜,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 (E.43) 

 
𝜕𝜆𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝜕𝑦𝑗,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 𝜉𝑔,𝑖

𝑛+1
𝑘𝑟𝑔,𝑖

𝑛+1

𝜇𝑔,𝑖
𝑛+1 + 𝑦𝑗,𝑖

𝑛+1
𝜕𝜉𝑔,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1

𝑘𝑟𝑔,𝑖
𝑛+1

𝜇𝑔,𝑖
𝑛+1 − 𝑦𝑗,𝑖

𝑛+1𝜉𝑔,𝑖
𝑛+1

𝑘𝑟𝑔,𝑖
𝑛+1

𝜇𝑔,𝑖
𝑛+12

𝜕𝜇𝑔,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 (E.44) 

Notice that the component fraction 𝑥1 and 𝑦1 are the dependent variables of the other 

mole fractions and are computed based on Eqs. (E.27) and (E.28).  

If 𝑗 = 1, the derivatives of the 𝑗th phase mole fraction in Eqs. (E.43) and (E.44) are   

 
𝜕𝑥𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝜕

𝜕𝑥𝑘,𝑖
𝑛+1 ∑(1 − 𝑥𝑝,𝑖

𝑛+1)

𝑁𝑐

𝑝=2

= −
𝜕𝑥𝑘,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = −1 (E.45) 

 
𝜕𝑦𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝜕

𝜕𝑦𝑘,𝑖
𝑛+1 ∑(1 − 𝑦𝑝,𝑖

𝑛+1)

𝑁𝑐

𝑝=2

= −
𝜕𝑦𝑘,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = −1 (E.46) 

If 𝑗 ≠ 1 𝑎𝑛𝑑 𝑗 = 𝑘, then 

 
𝜕𝑥𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = 1 (E.47) 
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𝜕𝑦𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = 1 (E.48) 

If 𝑗 ≠ 1 and 𝑗 ≠ 𝑘, then 

 
𝜕𝑥𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = 0 (E.49) 

 
𝜕𝑦𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = 0 (E.50) 

In Eqs. (E.22) – (E.26), the derivative of the 𝑗th component accumulation term is 

 

𝜕𝐴𝑗,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
[
𝜕𝑀𝜙,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 (𝑥𝑗,𝑖

𝑛+1𝜉𝑜,𝑖
𝑛+1𝑆𝑜,𝑖

𝑛+1 + 𝑦𝑗,𝑖
𝑛+1𝜉𝑔,𝑖

𝑛+1𝑆𝑔,𝑖
𝑛+1)

− 𝑀𝜙,𝑖
𝑛+1 (𝑥𝑗,𝑖

𝑛+1
𝜕𝜉𝑜,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 𝑆𝑜,𝑖

𝑛+1 + 𝑦𝑗,𝑖
𝑛+1

𝜕𝜉𝑔,𝑖
𝑛+1

𝜕𝑃𝑖
𝑛+1 𝑆𝑔,𝑖

𝑛+1)] 

(E.51) 

 
𝜕𝐴𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
𝑀𝜙,𝑖

𝑛+1(−𝑥𝑗,𝑖
𝑛+1𝜉𝑜,𝑖

𝑛+1) (E.52) 

 
𝜕𝐴𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
𝑀𝜙,𝑖

𝑛+1(−𝑥𝑗,𝑖
𝑛+1𝜉𝑜,𝑖

𝑛+1 + 𝑦𝑗,𝑖
𝑛+1𝜉𝑔,𝑖

𝑛+1) (E.53) 

 
𝜕𝐴𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
𝑀𝜙,𝑖

𝑛+1 (
𝜕𝑥𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 𝜉𝑜,𝑖

𝑛+1𝑆𝑜,𝑖
𝑛+1 − 𝑥𝑗,𝑖

𝑛+1
𝜕𝜉𝑜,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 𝑆𝑜,𝑖

𝑛+1) (E.54) 

 
𝜕𝐴𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑛+1
𝑀𝜙,𝑖

𝑛+1 (
𝜕𝑦𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 𝜉𝑔,𝑖

𝑛+1𝑆𝑔,𝑖
𝑛+1 − 𝑦𝑗,𝑖

𝑛+1
𝜕𝜉𝑔,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 𝑆𝑔,𝑖

𝑛+1) (E.55) 

In Eqs. (E.22) – (E.26), the derivative of the 𝑗th component well term is 

 
𝜕𝑊𝑗,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 = 𝑤1(𝜇𝑐𝑡)init,1 [𝜆𝑗,1

𝑛+1 (
1

𝜏1 − 𝜏well
) +

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑃1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
)] (E.56) 

 
𝜕𝑊𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑆𝑤,1
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (E.57) 
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𝜕𝑊𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (E.58) 

 
𝜕𝑊𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (E.59) 

 
𝜕𝑊𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 = 𝑤1 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 (

𝑃1
𝑛+1 − 𝑃𝑤𝑓

𝑛+1

𝜏1 − 𝜏well
) (E.60) 

In Eqs. (E.56) – (E.60), the derivatives of the 𝑗th component mobility are obtained using 

Eqs. (E.40) – (E.44). 

The derivative of the fugacity equality (Eq. (E.3)) with respect to the primary variables 

is obtained by 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑃𝑖
𝑛+1 =

𝜕𝑓𝑗,𝑖
𝑉𝑛+1

𝜕𝑃𝑖
𝑛+1 −

𝜕𝑓𝑗,𝑖
𝐿 𝑛+1

𝜕𝑃𝑖
𝑛+1  (E.61) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖
𝑛+1 = 0 (E.62) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖
𝑛+1 = 0 (E.63) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1 = −

𝜕𝑓𝑗,𝑖
𝐿 𝑛+1

𝜕𝑥𝑘,𝑖
𝑛+1  (E.64) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1 =

𝜕𝑓𝑗,𝑖
𝑉𝑛+1

𝜕𝑦𝑘,𝑖
𝑛+1  (E.65) 

In this study, the phase fugacity is calculated using the three-parameter Peng-Robinson 

Equation of State (3-PR-EOS). The fugacity is the function of the pressure, temperature, 

and phase composition, thus non-zero values are entered in Eqs. (E.61), (E.64), and 

(E.65). The calculation procedure are described in APPENDIX E.3. 
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On the other hand, the off-diagonal elements are calculated by differentiating the 

primary equations (Eqs. (E.1) – (E.3)) of the grid 𝑖 by the primary variables (Eq. (E.5)) 

of the neighbor grids. The details are as follows. 

The derivatives of the water flow equation with respect to the primary variables of the 

neighbor grids is obtained by 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝜕𝐹𝑤,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (E.66) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝐹𝑤,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (E.67) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 = 0 (E.68) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 = 0 (E.69) 

 
𝜕𝑅𝑤,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 = 0 (E.70) 

In Eqs. (E.66) and (E.67), the derivative of the water flux term is 

 
𝜕𝐹𝑤,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 𝑇𝑤,𝑖±1/2

𝑛+1 +
𝜕𝑇𝑤,𝑖±1/2

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.71) 

 
𝜕𝐹𝑤,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝑇𝑤,𝑖±1/2
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.72) 

In Eqs. (E.71) – (E.72), the derivative of the water transmissibility is 

 
𝜕𝑇𝑤,𝑖±1/2

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝑤,𝑢𝑝
𝑛+1

𝜕𝑃𝑖±1
𝑛+1  (E.73) 
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𝜕𝑇𝑤,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)
init,𝑖±1/2

𝜕𝜆𝑤,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (E.74) 

If the upstream grid is the grid 𝑖, the derivative of the water mobility equals zero. If the 

upstream grid is the neighbor grid, the water mobility is calculated using Eqs. (E.16) and 

(E.17). 

The derivative of the 𝑗th component flow equations (𝑗 = 1,… ,𝑁𝑐) (Eq. (E.2)) with 

respect to the primary variables is 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (E.75) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (E.76) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1  (E.77) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1  (E.78) 

 
𝜕𝑅𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 =

𝜕𝐹𝑗,𝑖
𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1  (E.79) 

In Eqs. (E.75) and (E.79), the derivatives of the 𝑗th component flux term are 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝜕𝑇𝑗,𝑖±1/2
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.80) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝜕𝑇𝑗,𝑖±1/2
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.81) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝜕𝑇𝑗,𝑖±1/2
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.82) 
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𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 =

𝜕𝑇𝑗,𝑖±1/2
𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.83) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 =

𝜕𝑇𝑗,𝑖±1/2
𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 (𝑃𝑖±1

𝑛+1 − 𝑃𝑖
𝑛+1) (E.84) 

In Eqs. (E.80) and (E.84), the derivative of the 𝑗th component transmissibility term is 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑃𝑖±1
𝑛+1 (E.85) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1  (E.86) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1  (E.87) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1  (E.88) 

 
𝜕𝑇𝑗,𝑖±1/2

𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 =

𝑤𝑖±1/2

∆𝜏𝑖±1/2
(
𝑐𝑡

𝜆𝑡
)

init,𝑖±1/2

𝜕𝜆𝑗,𝑢𝑝
𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1  (E.89) 

In Eqs. (E.85) – (E.89), the derivative of the component mobility is determined by the 

up-winding scheme. If the upstream grid is the grid 𝑖, the derivatives are zero. If the 

upstream grid is the grid 𝑖, the derivatives are calculated using Eqs. (E.40) – (E.44). 

The derivative of the fugacity equality (Eq. (E.3)) is 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑃𝑖±1
𝑛+1 = 0 (E.90) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑤,𝑖±1
𝑛+1 = 0 (E.91) 
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𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑆𝑔,𝑖±1
𝑛+1 = 0 (E.92) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑥𝑘,𝑖±1
𝑛+1 = 0 (E.93) 

 
𝜕𝐹𝑗,𝑖

𝑛+1

𝜕𝑦𝑘,𝑖±1
𝑛+1 = 0 (E.94) 

The thermodynamic condition of the grid 𝑖 has no relation to the pressure, temperature, 

and fluid compositions of the neighbor grids. Thus, all the derivatives in Eqs. (E.90) - 

(E.94)) are zero. 

E.2 Derivative of Three-Parameter PR-EOS 

In this study, we use the three-parameter Peng-Robinson  cubic EOS. The derivative of 

the 𝑧-factor is obtained by differentiating the Peng-Robinson EOS by pressure and phase 

component, respectively. 

 𝜕𝑧

𝜕𝑃
= −

𝜕𝐵
𝜕𝑃

𝑧2 + [
𝜕𝐴
𝜕𝑃

− 2(1 + 3𝐵)
𝜕𝐵
𝜕𝑃

] 𝑧 − [
𝜕𝐴
𝜕𝑃

𝐵 + (𝐴 − 2𝐵 − 3𝐵2)
𝜕𝐵
𝜕𝑃

]

3𝑧2 + 2(𝐵 − 1)𝑧 + (𝐴 − 3𝐵2 − 2𝐵)
 

(E.95) 

 𝜕𝑧

𝜕𝐱
= −

𝜕𝐵
𝜕𝐱

𝑧2 + [
𝜕𝐴
𝜕𝐱

− 2(1 + 3𝐵)
𝜕𝐵
𝜕𝐱

] 𝑧 − [
𝜕𝐴
𝜕𝐱

𝐵 + (𝐴 − 2𝐵 − 3𝐵2)
𝜕𝐵
𝜕𝐱

]

3𝑧2 + 2(𝐵 − 1)𝑧 + (𝐴 − 3𝐵2 − 2𝐵)
 

(E.96) 

where 𝐱 denotes the phase mole fractions (𝐱 = {𝑦𝑖} in the vapor phase, and 𝐱 = {𝑥𝑖} in 

the liquid phase). Notice that 𝑖 = 2,… ,𝑁𝑐. 

The derivatives of the EOS parameters are calculated as follows. 

 
𝜕𝐴

𝜕𝑃
=

(𝑎𝛼)𝑚

𝑅2𝑇2
 (E.97) 

 𝜕𝐵

𝜕𝑃
=

𝑏𝑚

𝑅𝑇
 (E.98) 
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𝜕𝐴

𝜕𝑋𝑘
=

𝜕(𝑎𝛼)𝑚

𝜕𝑋𝑘

𝑃

𝑅2𝑇2
 (E.99) 

 
𝜕𝐵

𝜕𝑋𝑘
=

𝜕𝑏𝑚

𝜕𝑋𝑘

𝑃

𝑅𝑇
 (E.100) 

where 𝑋𝑘 is the 𝑘th mole fraction of vapor or liquid. The derivative of (𝑎𝛼)𝑚 and 𝑏𝑚 

with respect to the 𝑘th phase mole fraction (𝑘 = 2, … , 𝑁𝑐) is 

 
𝜕(𝑎𝛼)𝑚

𝜕𝑋𝑘
= 2∑𝑋𝑗 [(1 − 𝜃𝑘𝑗)√(𝑎𝛼)𝑘(𝑎𝛼)𝑗 − (1 − 𝜃1𝑗)√(𝑎𝛼)1(𝑎𝛼)𝑗]

𝑁𝑐

𝑗=1

 (E.101) 

 
𝜕𝑏𝑚

𝜕𝑋𝑘
= 𝑏𝑘 − 𝑏1 (E.102) 

Hence, the derivatives of the phase properties (𝛼 = 𝐿, 𝑉) are obtained as follows. 

 
𝜕𝑉𝛼

𝜕𝑃
= −

𝑧𝛼𝑅𝑇

𝑃2
+

𝜕𝑧𝛼

𝜕𝑃

𝑅𝑇

𝑃
 (E.103) 

 
𝜕𝑉𝛼

𝜕𝑋𝑘
=

𝜕𝑧𝛼

𝜕𝑋𝑘

𝑅𝑇

𝑃
− (𝑐𝑘 − 𝑐1) (E.104) 

 
𝜕𝜉𝛼

𝜕𝑃
= −

1

𝑉𝛼
2

𝜕𝑉𝛼

𝜕𝑃
 (E.105) 

 
𝜕𝜉𝛼

𝜕𝑋𝑘
= −

1

𝑉𝛼
2

𝜕𝑉𝛼

𝜕𝑋𝑘
 (E.106) 

The capillary pressure calculation is based on the Young-Laplace equation (Eq. (3.57)). 

The derivative of the capillary pressure is 

 
𝜕𝑃𝑐𝑔𝑜

𝜕𝑃
=

2

𝑟

𝜕𝜎

𝜕𝑃
 (E.107) 

 
𝜕𝑃𝑐𝑔𝑜

𝜕𝑥𝑘
=

2

𝑟

𝜕𝜎

𝜕𝑥𝑘
 (E.108) 
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𝜕𝑃𝑐𝑔𝑜

𝜕𝑦𝑘
=

2

𝑟

𝜕𝜎

𝜕𝑦𝑘
 (E.109) 

where the derivatives of the surface tension are 

 
𝜕𝜎

𝜕𝑃
= 4 [∑𝜑𝑗(𝜉𝑜𝑥𝑗 − 𝜉𝑔𝑦𝑗)

𝑁𝑐

𝑗=1

]

3

× ∑𝜑𝑗 (
𝜕𝜉𝑜

𝜕𝑃
𝑥𝑗 −

𝜕𝜉𝑔

𝜕𝑃
𝑦𝑗)

𝑁𝑐

𝑗=1

 (E.110) 

 
𝜕𝜎

𝜕𝑥𝑘
= 4 [∑𝜑𝑗(𝜉𝑜𝑥𝑗 − 𝜉𝑔𝑦𝑗)

𝑁𝑐

𝑗=1

]

3

× ∑𝜑𝑗 (
𝜕𝜉𝑜

𝜕𝑥𝑘
𝑥𝑗 + 𝜉𝑜

𝜕𝑥𝑗

𝜕𝑥𝑘
)

𝑁𝑐

𝑗=1

 (E.111) 

 
𝜕𝜎

𝜕𝑦𝑘
= 4 [∑𝜑𝑗(𝜉𝑜𝑥𝑗 − 𝜉𝑔𝑦𝑗)

𝑁𝑐

𝑗=1

]

3

× ∑𝜑𝑗 (−
𝜕𝜉𝑔

𝜕𝑦𝑘
𝑦𝑗 − 𝜉𝑔

𝜕𝑦𝑗

𝜕𝑦𝑘
)

𝑁𝑐

𝑗=1

 (E.112) 

In Eqs. (E.110) – (E.112), the derivative of the 𝑗th mole fraction with respect to the 𝑘th 

mole fraction is calculated by Eqs. (E.45) – (E.50). 

E.3 Derivative of Fugacity 

The derivative of the 𝑗th component fugacity is written by using fugacity coefficient 𝜙𝑗. 

 
𝜕𝑓𝑗

𝜕𝑃
= 𝑋𝑗𝜙𝑗 + 𝑋𝑗𝑃

𝜕𝜙𝑗

𝜕𝑃
 (E.113) 

 
𝜕𝑓𝑗

𝜕𝑋𝑘
= 𝑃𝜙𝑗𝛿𝑗𝑘 + 𝑋𝑗𝑃

𝜕𝜙𝑗

𝜕𝑋𝑘
 (E.114) 

where 𝑋𝑘 is the 𝑘th mole fraction of the vapor or liquid, and 𝛿𝑗𝑘 is the Kronecker delta 

function (𝛿𝑗𝑘 = 1 if 𝑗 = 𝑘, and 𝛿𝑗𝑘 = 0 otherwise).  The derivative of the fugacity is 
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𝜕𝜙𝑗

𝜕𝑃
= 𝜙𝑗 [

𝑏𝑗

𝑏𝑚

𝜕𝑧

𝜕𝑃
−

𝜕𝑧
𝜕𝑃

−
𝜕𝐵
𝜕𝑃

𝑧 − 𝐵

−
1

2√2
(

𝑎𝑚𝑗

(𝑎𝛼)𝑚

−
𝑏𝑗

𝑏𝑚
){(

1

𝐵

𝜕𝐴

𝜕𝑃
−

𝐴

𝐵2

𝜕𝐵

𝜕𝑃
) ln

𝑧𝐿 + (1 + √2)𝐵

𝑧𝐿 + (1 − √2)𝐵

+
𝐴

𝐵
(

𝜕𝑧
𝜕𝑃

+ (1 + √2)
𝜕𝐵
𝜕𝑃

𝑧 + (1 + √2)𝐵
−

𝜕𝑧
𝜕𝑃

+ (1 − √2)
𝜕𝐵
𝜕𝑃

𝑧 + (1 − √2)𝐵
)}] 

(E.115) 

 

𝜕𝜙𝑗

𝜕𝑋𝑘
= 𝜙𝑗 [(

𝑏𝑗

𝑏𝑚

𝜕𝑧

𝜕𝑋𝑘
−

𝑏𝑗

𝑏𝑚
2

(𝑧 − 1)
𝜕𝑏𝑚

𝜕𝑋𝑘
) −

𝜕𝑧
𝜕𝑋𝑘

−
𝜕𝐵
𝜕𝑋𝑘

𝑧 − 𝐵

−
1

2√2
(

𝑎𝑚𝑗

(𝑎𝛼)𝑚

−
𝑏𝑗

𝑏𝑚
){(

1

𝐵

𝜕𝐴

𝜕𝑋𝑘
−

𝐴

𝐵2

𝜕𝐵

𝜕𝑋𝑘
) ln

𝑧𝐿 + (1 + √2)𝐵

𝑧𝐿 + (1 − √2)𝐵

+
𝐴

𝐵
(

𝜕𝑧
𝜕𝑋𝑘

+ (1 + √2)
𝜕𝐵
𝜕𝑋𝑘

𝑧 + (1 + √2)𝐵
−

𝜕𝑧
𝜕𝑋𝑘

+ (1 − √2)
𝜕𝐵
𝜕𝑋𝑘

𝑧 + (1 − √2)𝐵
)}

−
𝐴

2√2𝐵
ln

𝑧𝐿 + (1 + √2)𝐵

𝑧𝐿 + (1 − √2)𝐵
(

1

(𝑎𝛼)𝑚

𝜕𝑎𝑚𝑗

𝜕𝑋𝑘
−

𝑎𝑚𝑗

(𝑎𝛼)𝑚
2

𝜕(𝑎𝛼)𝑚

𝜕𝑋𝑘

+
𝑏𝑗

𝑏𝑚
2

𝜕𝑏𝑚

𝜕𝑋𝑘
)] 

(E.116) 

where the derivative of 𝑎𝑚𝑖 with respect to 𝑥𝑘 is calculated by 
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𝜕𝑎𝑚𝑗

𝜕𝑋𝑘
=

𝜕2(𝑎𝛼)𝑚

𝜕𝑋𝑗𝜕𝑋𝑘
= 2 [(1 − 𝜃𝑗𝑘)√(𝑎𝛼)𝑗(𝑎𝛼)𝑘 − (1 − 𝜃𝑗1)√(𝑎𝛼)𝑗(𝑎𝛼)1] (E.117) 

E.4 Implicit BHP Calculation 

If the bottom-hole pressure is specified, we can explicitly calculate the production rate 

using the well equation. If the production rate is specified, we implicitly solve the 

bottom-hole pressure during the Newton iteration. The implicit BHP calculation is 

performed by adding the additional equation (𝑅𝑠𝑠
𝑛+1) and unknown (𝑃𝑤𝑓

𝑛+1) on the residual 

vector (𝐑𝑛+1) and primary variable vector (𝐮𝑛+1), respectively. 

 𝐑𝑛+1 = [𝐑1
𝑛+1, 𝐑2

𝑛+1, … , 𝐑3
𝑛+1, 𝑅𝑠𝑠

𝑛+1]𝑇 (E.118) 

 𝐮𝑛+1 = [𝐮1
𝑛+1, 𝐮2

𝑛+1, … , 𝐮3
𝑛+1, 𝑃𝑤𝑓

𝑛+1]
𝑇

 (E.119) 

The well residual term 𝑅𝑠𝑠 is obtained by summating the well equations of water (Eq. 

(3.65)) and hydrocarbon components (Eq. (3.88)). 

 𝑅𝑠𝑠
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(𝜆𝑤,1
𝑛+1 + ∑𝜆𝑗,1

𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) − ∑ �̃�𝑤𝛼

𝑛+1

𝛼=𝑤,𝑜,𝑔

 (E.120) 

The derivatives of the well residual term are placed on the last row and column as shown 

in Fig. C.3. 

The elements 𝐋𝐋1, 𝐋𝐋2, and 𝐋𝐔2in Fig. C.3 is comprised of a vector and scalar value. 

The row vector 𝐋𝐋1 is given by 

 𝐋𝐋1 = [
𝜕𝑅𝑠𝑠

𝜕𝑃1

𝜕𝑅𝑠𝑠

𝜕𝑆𝑤,1

𝜕𝑅𝑠𝑠

𝜕𝑆𝑔,1

𝜕𝑅𝑠𝑠

𝜕𝑥2,1
⋯

𝜕𝑅𝑠𝑠

𝜕𝑥𝑁𝑐,1

𝜕𝑅𝑠𝑠

𝜕𝑦2,1
⋯

𝜕𝑅𝑠𝑠

𝜕𝑦𝑁𝑐,1
] (E.121) 

The dimension of the vector depends on the number of phases saturated in the grid 1. 

The scalar vale 𝐋𝐋2 is given by 
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 𝐋𝐋2
𝑛+1 =

𝜕𝑅𝑠𝑠

𝜕𝑃𝑤𝑓
 (E.122) 

The column vector 𝐋𝐔2 is given by 

 𝐋𝐔2
𝑛+1 = [

𝜕𝑅𝑤

𝜕𝑃𝑤𝑓

𝜕𝑅1

𝜕𝑃𝑤𝑓
⋯

𝜕𝑅𝑁𝑐

𝜕𝑃𝑤𝑓

𝜕𝐹1

𝜕𝑃𝑤𝑓
⋯

𝜕𝐹𝑁𝑐

𝜕𝑃𝑤𝑓
]

𝑇

 (E.123) 

The dimension of the vector depends on the number of phases saturated in the grid 1. 

Notice that the production rate is specified, thus this is a fixed value. The 𝐋𝐋1
𝑛+1 

elements in Eqs. (E.121) are calculated as follows. 

 

𝜕𝑅𝑠𝑠
𝑛+1

𝜕𝑃1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

[(
𝜕𝜆𝑤,1

𝑛+1

𝜕𝑃1
𝑛+1 + ∑

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑃1
𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
)

+ (𝜆𝑤,1
𝑛+1 + ∑𝜆𝑗,1

𝑛+1

𝑁𝑐

𝑗=1

)(
1

𝜏1 − 𝜏well
)] 

(E.124) 

 
𝜕𝑅𝑠𝑠

𝑛+1

𝜕𝑆𝑤,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(
𝜕𝜆𝑤,1

𝑛+1

𝜕𝑆𝑤,1
𝑛+1 + ∑

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑆𝑤,1
𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (E.125) 

 
𝜕𝑅𝑠𝑠

𝑛+1

𝜕𝑆𝑔,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(
𝜕𝜆𝑤,1

𝑛+1

𝜕𝑆𝑔,1
𝑛+1 + ∑

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑆𝑔,1
𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (E.126) 

 
𝜕𝑅𝑠𝑠

𝑛+1

𝜕𝑥𝑘,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(
𝜕𝜆𝑤,1

𝑛+1

𝜕𝑥𝑘,1
𝑛+1 + ∑

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑥𝑘,1
𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (E.127) 

 
𝜕𝑅𝑠𝑠

𝑛+1

𝜕𝑦𝑘,1
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(
𝜕𝜆𝑤,1

𝑛+1

𝜕𝑦𝑘,1
𝑛+1 + ∑

𝜕𝜆𝑗,1
𝑛+1

𝜕𝑦𝑘,1
𝑛+1

𝑁𝑐

𝑗=1

)(
𝑃1

𝑛+1 − 𝑃𝑤𝑓
𝑛+1

𝜏1 − 𝜏well
) (E.128) 

In Eqs. (E.124) - (E.128), the derivatives of the phase mobility are calculated using Eqs. 

(E.39) – (E.44). 
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The 𝐋𝐋2 element in Eq. (E.122) is obtained by  

 
𝜕𝑅𝑠𝑠

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = −𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

(𝜆𝑤,1
𝑛+1 + ∑𝜆𝑗,1

𝑛+1

𝑁𝑐

𝑗=1

)(
1

𝜏1 − 𝜏well
) (E.129) 

The 𝐋𝐔2
𝑛+1 elements in Eq. (E.121) are calculated by 

 
𝜕𝑅𝑤

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝑤,1
𝑛+1 (

1

𝜏1 − 𝜏well
) (E.130) 

 
𝜕𝑅𝑗

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 𝑤𝑖 (

𝑐𝑡

𝜆𝑡
)
init,1

𝜆𝑗,1
𝑛+1 (

1

𝜏1 − 𝜏well
) (E.131) 

 
𝜕𝐹𝑗

𝑛+1

𝜕𝑃𝑤𝑓
𝑛+1 = 0 (E.132) 
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APPENDIX F  

GRADIENT CALCULATION BASED ON ADJOINT METHOD 

 

F.1 Methodology 

In history matching or optimization problems, we are interested in knowing the 

sensitivity of the model responses (i.e. bottom-hole pressure, production rate) to the 

model parameters (i.e. permeability, porosity). The sensitivity is obtained by applying a 

chain rule as follows. 

 
𝛿𝑝𝑤𝑓(𝐝)

𝛿𝑘(𝐱)
=

𝜕𝑝𝑤𝑓(𝐝)

𝜕𝑉𝑝(𝐢)

𝜕𝑉𝑝(𝐢)

𝜕𝜏(𝐢)

𝛿𝜏(𝐢)

𝛿𝜏(𝐱)

𝛿𝜏(𝐱)

𝛿𝑘(𝐱)
 (F.1) 

 
𝛿𝑝𝑤𝑓(𝐝)

𝛿𝜙(𝐱)
=

𝜕𝑝𝑤𝑓(𝐝)

𝜕𝑉𝑝(𝐢)

𝜕𝑉𝑝(𝐢)

𝜕𝜏(𝐢)

𝛿𝜏(𝐢)

𝛿𝜏(𝐱)

𝛿𝜏(𝐱)

𝛿𝜙(𝐱)
 (F.2) 

where 𝐝 represents the data point with 𝐷 observations (𝐷 × 1 vector), 𝐱 denotes the grid 

in the Cartesian space with a vector of the size 𝑁 (𝑁 × 1 vector), and 𝐢 denotes the grid 

in 𝜏-space with a vector of the size 𝑀 (𝑀 × 1 vector). Similarly, the sensitivity of the 

production rate with respect to the model parameters is given by 

 
𝛿𝑄(𝐝)

𝛿𝑘(𝐱)
=

𝜕𝑄(𝐝)

𝜕𝑉𝑝(𝐢)

𝜕𝑉𝑝(𝐢)

𝜕𝜏(𝐢)

𝛿𝜏(𝐢)

𝛿𝜏(𝐱)

𝛿𝜏(𝐱)

𝛿𝑘(𝐱)
 (F.3) 

 
𝛿𝑄(𝐝)

𝛿𝜙(𝐱)
=

𝜕𝑄(𝐝)

𝜕𝑉𝑝(𝐢)

𝜕𝑉𝑝(𝐢)

𝜕𝜏(𝐢)

𝛿𝜏(𝐢)

𝛿𝜏(𝐱)

𝛿𝜏(𝐱)

𝛿𝜙(𝐱)
 (F.4) 

Applying the chain rule, we divide the sensitivity into the four sub-sensitivities. In Eq. 

(F.1) – (F.4), the first sub-sensitivities, 𝜕𝑝𝑤𝑓(𝐝)/𝜕𝑉𝑝(𝐢) and 𝜕𝑄(𝐝)/𝜕𝑉𝑝(𝐢) are the 𝐷 ×

𝑀 sensitivity matrix distributed in the data points and in the 𝜏-space, and are obtained by 
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using ‘Adjoint method’. The second term 𝜕𝑉𝑝(𝐢)/𝜕𝜏(𝐢) is the 𝑀 × 𝑀 diagonal matrix 

whose diagonal elements correspond to the 𝑤-function that is the derivative of the 

drainage volume with respect to the diffusive time of flight. The third term 𝛿𝜏(𝐢)/𝛿𝜏(𝐱) 

is the map-back matrix that returns 1 if 𝑥 ∈ 𝑖 and returns 0 if 𝑥 ∉ 𝑖 (i.e. if the Cartesian 

grid 𝑥 exists in the 𝜏-contour 𝑖, the corresponding matrix element returns 1). The last 

sub-sensitivities, 𝛿𝜏(𝐱)/𝛿𝑘(𝐱) and 𝛿𝜏(𝐱)/𝛿𝜙(𝐱) are the 𝑁 × 𝑁 diagonal sensitivity 

matrix whose diagonal term is obtained by the calculation of ‘Travel Time Sensitivity’. 

Vasco and Datta-Gupta (1999) proposed an analytical calculation of the tracer travel 

time sensitivity for the convective time of flight on the basis of the streamline tracing. 

The analogy can be applied for the diffusive time of flight based on the Fast Marching 

Method.  

F.2 Calculation of Travel Time Sensitivity based on the Fast Marching Method 

The diffusive time of flight at the Cartesian grid 𝑛 is defined by the integral form in 

terms of a slowness 𝑓, which starts from the sink or source point and travels along the 

pressure front propagation. 

 𝜏(𝑛) = ∫ 𝑓(𝐬)𝑑𝑟
𝑛

1

≈ ∑ 𝑓(𝑥)∆𝑟(𝑥)

𝑛

𝑥=1

 (F.5) 

where the function 𝑓 is the inverse of the square root of the diffusivity, 𝐬 is the pressure 

propagation trajectory, and ∆𝑟 is the grid length in the direction of the propagation. For 

the convective time of flight, the integral is calculated along the streamline trajectory. 

For the diffusive time of flight, the integral is strictly given by the ‘ray’ equation in 

seismology, while we approximate this trajectory using the Fast Marching Method. In 
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the calculation of the Fast Marching Method, 𝑓 is calculated at the cell center of each 

Cartesian grid. Hence, 𝜏(𝐱) is approximated by summing up the product of 𝑓 (slowness) 

and ∆𝑟 (distance) of the finite number of discretized grids where the pressure 

propagation passes through. The function 𝑓 is defined as follows. 

 𝑓(𝐱) =
1

√𝛼(𝐱)
= √

𝜙(𝐱)𝜇𝑐𝑡

𝑘(𝐱)
 (F.6) 

Because 𝑓(𝐱) is a composite quantity involving reservoir properties at the Cartesian grid 

𝑥, its first-order variation will be given by 

 𝛿𝑓(𝐱) =
𝜕𝑓(𝐱)

𝜕𝑘(𝐱)
𝛿𝑘(𝐱) +

𝜕𝑓(𝐱)

𝜕𝜙(𝐱)
𝛿𝜙(𝐱) (F.7) 

The partial derivative of 𝑓(𝐱) with respect to the model parameters is calculated by 

 
𝜕𝑓(𝐱)

𝜕𝑘(𝐱)
=

𝜕

𝜕𝑘(𝐱)
(√

𝜙(𝐱)𝜇𝑐𝑡

𝑘(𝐱)
) = −

1

2
√

𝜙(𝐱)𝜇𝑐𝑡

𝑘(𝐱)3
= −

1

2

𝑓(𝐱)

𝑘(𝐱)
 (F.8) 

 
𝜕𝑓(𝐱)

𝜕𝜙(𝐱)
=

𝜕

𝜕𝜙(𝐱)
(√

𝜙(𝐱)𝜇𝑐𝑡

𝑘(𝐱)
) =

1

2
√

𝜇𝑐𝑡

𝜙(𝐱)𝑘(𝐱)
=

1

2

𝑓(𝐱)

𝜙(𝐱)
 (F.9) 

Hence, the small variation in 𝜏(𝑛) is obtained by summing up the small variation in 𝛿𝑓 

along the pressure propagation trajectory. 

 𝛿𝜏(𝑛) = ∑ 𝛿𝑓(𝑥)∆𝑟(𝑥)

𝑛

𝑥=1

= ∑
1

2
[−

𝑓(𝑥)

𝑘(𝑥)
𝛿𝑘(𝑥) +

𝑓(𝑥)

𝜙(𝑥)
𝛿𝜙(𝑥)] ∆𝑟(𝑥)

𝑛

𝑥=1

 (F.10) 

On the basis of Eq. (F.10), the partial derivative of 𝜏(𝐱) with respect to the model 

parameters can be calculated by 
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𝛿𝜏(𝐱)

𝛿𝑘(𝐱)
= −

1

2

𝑓(𝐱)

𝑘(𝐱)
∆𝑟(𝐱) (F.11) 

 
𝛿𝜏(𝐱)

𝛿𝜙(𝐱)
=

1

2

𝑓(𝐱)

𝜙(𝐱)
∆𝑟(𝐱) (F.12) 

Notice that ∆𝑟 is approximated by the length of grid 𝐱 on the direction of the pressure 

propagation (i.e. if the propagation direction is x-direction, then ∆𝑟 is approximated by 

∆𝑥). The product of 𝑓(𝐱) and ∆𝑟(𝐱) is corresponding to ∆𝜏(𝐱). 

 𝑓(𝐱)∆𝑟(𝐱) =
∆𝑟(𝐱)

√𝛼(𝐱)
= ∆𝜏(𝐱) (F.13) 

Using Eqs. (F.11) - (F.13), we finally obtain the travel time sensitivity for the diffusive 

time of flight as follows. 

 
𝛿𝜏(𝐱)

𝛿𝑘(𝐱)
= −

1

2

∆𝜏(𝐱)

𝑘(𝐱)
 (F.14) 

 
𝛿𝜏(𝐱)

𝛿𝜙(𝐱)
=

1

2

∆𝜏(𝐱)

𝜙(𝐱)
 (F.15) 

The sensitivity form is similar to the streamline travel time sensitivity, while the constant 

factor 1/2 is added in the equations. 

F.3 Calculation of 1-D Sensitivity Based on Adjoint Method 

In Eqs. (F.1) - (F.4), the first sub-sensitivities, 𝜕𝑝𝑤𝑓(𝐝)/𝜕𝑉𝑝(𝐢) and 𝜕𝑄(𝐝)/𝜕𝑉𝑝(𝐢) are 

obtained by using the Adjoint method. The Adjoint method is traditionally applied in the 

numerical reservoir simulation and is regarded as one of the most efficient approach to 

compute sensitivity (Chen et al. 1971, Wu et al. 1999, Li et al. 2003). The method is 

commonly called the Method of Lagrange Multiplier in mathematics. Suppose the model 

response vector 𝛽 consist of 𝐷 × 1 vectors (i.e. observed bottom-hole pressures).  



 

202 

 

 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝐿 , … , 𝛽𝐷 ]𝑇 (F.16) 

where the component 𝛽𝐿 represents the scalar value of the model response at time 𝐿. In 

the reservoir simulation along 𝜏-coordinate, we integrate all the heterogeneities (i.e. 

porosity, permeability) into the drainage volumes. Hence, the heterogeneous model 

parameter is identical to the drainage volume at each 1-D grids. 

For each data points, the Lagragian is formulated by imposing a Lagrange multiplier 𝜆. 

 𝐽𝐿 = 𝛽𝐿 + ∑[(𝑓𝑙+1)𝑇𝜆𝑙+1]

𝐿

𝑙=0

 (F.17) 

where 𝐽𝐿 represents the Lagragian at time 𝐿 (scalar), 𝛽 denotes the model responses at 

time 𝐿 (scalar), 𝑓𝑙+1 represents the residual form of the finite difference equation along 

𝜏-coordinate at the simulation step 𝑙 + 1 (𝑀 × 1 vector in single-phase case), and 𝜆𝑙+1 is 

the Lagrange multiplier at the simulation step 𝑙 + 1 (𝑀 × 1 vector in single-phase case). 

We may think of 𝐿 as the number of time steps to compute the model response 𝛽𝐿 from 

the reservoir simulation.  

In single-phase model, the finite difference equation (𝑀 × 1 vector) is formulated by Eq. 

(2.47). The residual form is simply expressed as 

 𝑓𝑙+1 = 𝐹𝑙+1 − 𝐴𝑙+1 + 𝐴𝑙 + 𝑊𝑙+1 = 0 (F.18) 

where 𝐹𝑙+1 is the flux term, 𝐴𝑙+1 is the accumulation term, 𝐴𝑙 is the accumulation term 

at previous time-step, and 𝑊𝑙+1 is the sink/source term that is imposed on the inner 

boundary. At the last iteration of each simulation time step, 𝑓 (the residuals) must be 

sufficiently close to zero (𝑓 ≈ 0). Hence, we can take any arbitrary number for 𝜆𝑙+1. 
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The dimension of the Lagrange multiplier corresponds to the dimension of the finite 

difference equations (𝑀 × 1 vector in single-phase case, 2𝑀 × 1 vector in two-phase 

case, and 3𝑀 × 1 vector in three-phase case). Each component is assigned to each 1-D 𝜏 

grids for each time-step. 

 𝜆𝑙+1 = [𝜆1
𝑙+1, 𝜆2

𝑙+1, … , 𝜆𝑀
𝑙+1 ]

𝑇
 (F.19) 

Differentiating Eq. (F.17) with respect to the primary variables and drainage volumes, 𝑦 

and 𝑉𝑝, and rearranging the equation, a total differential of the Lagrangian is obtained by 

 

𝑑𝐽𝐿 = 𝑑𝛽𝐿 + 𝐵𝑇 + ∑{(𝜆𝑙)𝑇[∇𝑦𝑙(𝑓𝑙)𝑇]
𝑇

+ (𝜆𝑙+1)𝑇[∇𝑦𝑙(𝑓𝑙+1)𝑇]
𝑇
} 𝑑𝑦𝑙

𝐿

𝑙=1

+ ∑{(𝜆𝑙)𝑇 [∇𝑉𝑝
(𝑓𝑙)𝑇]

𝑇

𝑑𝑉𝑝}

𝐿

𝑙=1

 

(F.20) 

where 𝐵𝑇 is the boundary terms. 

 

𝐵𝑇 = (𝜆𝐿+1)𝑇 {[∇𝑦𝐿+1(𝑓𝐿+1)𝑇]
𝑇
𝑑𝑦𝐿+1 + [∇𝑉𝑝

(𝑓𝐿+1)𝑇]
𝑇

𝑑𝑉𝑝} 

+(𝜆1)𝑇[∇𝑦0(𝑓1)𝑇]
𝑇
𝑑𝑦0 

(F.21) 

The initial reservoir condition is fixed, thus 𝑑𝑦0 = 0 (i.e. 𝑑𝑃0 = 0). Let 𝜆𝐿+1 be zero 

(𝜆𝐿+1 = 0). These facts follows that 𝐵𝑇 = 0. Hence, Eq. (F.20) is rewritten as 

 

𝑑𝐽𝐿 = ∑{(𝜆𝑙)𝑇[∇𝑦𝑙(𝑓𝑙)𝑇]
𝑇

+ (𝜆𝑙+1)𝑇[∇𝑦𝑙(𝑓𝑙+1)𝑇]
𝑇

+ [∇𝑦𝑙𝛽𝐿]
𝑇
}

𝐿

𝑙=1

𝑑𝑦𝑙 

+{[∇𝑉𝑝
𝛽𝐿]

𝑇

+ (𝜆𝑙)𝑇[∇𝑦𝑙(𝑓𝑙)𝑇]
𝑇
} 𝑑𝑉𝑝 

(F.22) 

where 𝑦𝑙 is the vector of the primary variables in the DTOF-based reservoir simulation. 

In single-phase model, 𝑦𝑙 corresponds to the grid pressures (𝑀 × 1 vectors). 
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 𝑦𝑙 = [𝑃1
𝑙, 𝑃2

𝑙 , … , 𝑃𝑀
𝑙 ]

𝑇
 (F.23) 

To obtain the adjoint system, we take a Lagrange multiplier so that the terms multiplying 

𝑑𝑦𝑙 in Eq. (E.22) equals to zero. 

 [𝛻𝑦𝑙(𝑓𝑙)𝑇]𝜆𝑙 = −[𝛻𝑦𝑙(𝑓𝑙+1)𝑇]𝜆𝑙+1 − 𝛻𝑦𝑙𝛽𝐿 (F.24) 

In this equation, the Lagrange multiplier 𝜆 can be solved backward in time. In Eq. 

(F.24), the matrix [𝛻𝑦𝑙(𝑓𝑙)𝑇] is identical to the transpose of the Jacobian that is 

constructed in the reservoir simulation. The matrix [𝛻𝑦𝑙(𝑓𝑙+1)𝑇] is a diagonal matrix, 

which is only related to the derivative of the accumulation terms. Hence, the calculation 

can be simplified using the expression of Eq. (F.18) as follows. 

  [𝛻𝑦𝑙(𝑓𝑙+1)𝑇] = [𝛻𝑦𝑙(𝐴𝑙)𝑇] (F.25) 

Considering Eqs. (F.20) and (F.22), the remaining term is  

 𝑑𝐽𝐿 = {[∇𝑉𝑝
𝛽𝐿]

𝑇

+ (𝜆𝑙)𝑇[∇𝑦𝑙(𝑓𝑙)𝑇]
𝑇
} 𝑑𝑉𝑝 (F.26) 

The sensitivity of the Lagrangian with respect to the drainage volume is obtained by 

 𝛻𝑉𝑝
𝐽𝐿 = 𝛻𝑉𝑝

𝛽𝐿 + ∑[𝛻𝑉𝑝
(𝑓𝑙)𝑇] (𝜆𝑙)

𝐿

𝑙=1

 (F.27) 

where the gradient 𝛻𝑉𝑝
(𝑓𝑙)𝑇 corresponds to the derivative of the finite difference 

equation with respect to the primary variables, which needs to be constructed inside the 

reservoir simulator for each time-step. The gradient 𝛻𝑉𝑝
𝛽 is the explicit sensitivity vector 

of the model response (i.e. bottom-hole pressure, production rate) with respect to the 

drainage volume, which can be calculated by differentiating the well term. The drainage 
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volumes of the grids of 𝑖 ≠ 1 are not explicitly appeared in the expression of 𝛽, thus we 

set 𝛻𝑉𝑝
𝛽 = 0. Using Eqs. (F.24) and (F.27), we obtain the sensitivity coefficient for 

each time-step. 

F.4 Gradient Calculation inside Reservoir Simulator 

In the Adjoint-based sensitivity calculation, we first solve Eq. (F.24) to obtain 𝜆 and, 

then compute the final sensitivity matrix using Eq. (F.27). In order to solve these 

equations, several matrices and vectors have to be constructed at the last Newton 

iteration of each time-step. At the last Newton iteration, it must be satisfied that the 

residuals of the finite difference equations are sufficiently small (𝑓 ≈ 0). 

In the rest of the development, we present the calculation of the gradients for a single-

phase reservoir simulation. The matrix [𝛻𝑦𝑙(𝑓𝑙+1)𝑇] in Eq. (F.24) is simply the 

derivative of the accumulation term with respect to the primary variables as described in 

Eq. (F.25). The notations of the equation follows Eq. (2.47). 

 
𝜕𝐴𝑖

𝑙

𝜕𝑃𝑖
𝑙 =

𝑤𝑖∆𝜏𝑖

∆𝑡𝑙
[−

𝜕𝑀𝜙,𝑖
𝑙

𝜕𝑃𝑖
𝑙

1

𝐵𝑖
𝑙 +

𝑀𝜙,𝑖
𝑙

𝐵𝑖
𝑙2

𝜕𝐵𝑖
𝑙

𝜕𝑃𝑖
𝑙] (F.28) 

The vector 𝛻𝑦𝑙𝛽𝐿 in Eq. (F.22) is the derivative of the well term with respect to the 

primary variables. A non-zero value is entered in the first elements in the vector). When 

the well rate is specified, the model response 𝛽 corresponds to the bottom-hole pressure. 

When the bottom-hole pressure is specified, 𝛽 corresponds to the well production rate. 

Using a definition of the well term (Eq. (2.50)), the non-zero element in 𝛻𝑦𝑙𝛽𝐿 is 

calculated by 
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𝜕𝑃𝑤𝑓

𝑙

𝜕𝑃1
𝑙 = 1 −

𝑄𝑙(𝜏1 − 𝜏well)

𝑤1(𝜇𝑐𝑡)init,1

𝜕(𝐵𝜇)1
𝑙

𝜕𝑃1
𝑙  (F.29) 

 
𝜕𝑞𝑠

𝑙

𝜕𝑃1
𝑙 = 𝑤1(𝜇𝑐𝑡)init,1 [(

1

𝐵𝜇
)
1

𝑙

(
1

𝜏1 − 𝜏well
) +

𝜕

𝜕𝑃1
𝑙 (

1

𝐵𝜇
)
1

𝑙

(
𝑃1

𝑙 − 𝑃𝑤𝑓
𝑙

𝜏1 − 𝜏well
)] (F.30) 

where 𝑃1 is the pressure at the first grid 𝑖 = 1. Notice that all the elements in the vector 

𝛻𝑦𝑛𝛽 equals zero for 𝑖 ≠ 1. The derivatives of the mobility in Eqs. (F.29) and (F.30) are 

calculated by 

 
𝜕(𝐵𝜇)1

𝑙

𝜕𝑃1
𝑙 = 𝐵1

𝑙
𝜕𝜇1

𝑙

𝜕𝑃1
𝑙 + 𝜇1

𝑙
𝜕𝐵1

𝑙

𝜕𝑃1
𝑙  (F.31) 

 
𝜕

𝜕𝑃1
𝑙 (

1

𝐵𝜇
)
1

𝑙

= −
1

𝐵1
𝑙𝜇1

𝑙 2

𝜕𝜇1
𝑙

𝜕𝑃1
𝑙 −

1

𝐵1
𝑙2𝜇1

𝑙

𝜕𝐵1
𝑙

𝜕𝑃1
𝑙  (F.32) 

The vector 𝛻𝑉𝑝
𝛽 in Eq. (F.27) is the derivative of the well term with respect to the 

drainage volumes. 

 
𝜕𝑝𝑤𝑓

𝑙

𝜕𝑉𝑝,1
=

𝑞𝑠
𝑙(𝜏1 − 𝜏well)(𝐵𝜇)1

𝑙

(𝜇𝑐𝑡)init,1

𝜕

𝜕𝑉𝑝,1
(

1

𝑤1
) (F.33) 

 
𝜕𝑞𝑠

𝑙

𝜕𝑉𝑝,1
=

𝜕𝑤1

𝜕𝑉𝑝,1

(𝜇𝑐𝑡)init,1 (
1

𝐵𝜇
)
1

𝑙

(
𝑃1

𝑙 − 𝑃𝑤𝑓
𝑙

𝜏1 − 𝜏well
) (F.34) 

Notice that all the elements in the vector 𝛻𝑉𝑝
𝛽  equals zero for 𝑖 ≠ 1. In Eqs. (F.33) and 

(F.34), the derivatives of the 𝑤-function at grid 𝑖 = 1 are calculated by 

 
𝜕𝑤1

𝜕𝑉𝑝,1
=

𝜕

𝜕𝑉𝑝,1
(
𝜕𝑉𝑝,1

𝜕𝜏1
) =

1

∆𝜏1
 (F.35) 

 
𝜕

𝜕𝑉𝑝,1
(

1

𝑤1
) = −

1

𝑤1
2

𝜕𝑤1

𝜕𝑉𝑝,1
= −

1

𝑤1
2∆𝜏1

 (F.36) 
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The matrix 𝛻𝑉𝑝
(𝑓𝑙)𝑇 in Eq. (F.25) is the derivative of the finite difference equation with 

respect to the drainage volumes. The diagonal element is obtained by taking the 

derivative of Eq. (2.47). 

 

𝜕𝑓𝑖
𝑙

𝜕𝑉𝑝,𝑖
=

𝜕𝑇𝑖−1/2
𝑙

𝜕𝑉𝑝,𝑖
𝑃𝑖−1

𝑙 − (
𝜕𝑇𝑖−1/2

𝑙

𝜕𝑉𝑝,𝑖
+

𝜕𝑇𝑖+1/2
𝑙

𝜕𝑉𝑝,𝑖
)𝑃𝑖

𝑙 +
𝜕𝑇𝑖+1/2

𝑙

𝜕𝑉𝑝,𝑖
𝑃𝑖+1

𝑙  

−
𝜕𝑤𝑖

𝜕𝑉𝑝,𝑖

∆𝜏𝑖

∆𝑡𝑙
[(

𝑀𝜙

𝐵
)
𝑖

𝑙

− (
𝑀𝜙

𝐵
)

𝑖

𝑙−1

] +
𝜕𝑞𝑠

𝑙

𝜕𝑉𝑝,𝑖
 

(F.37) 

where the derivatives of the transmissibility is calculated by 

 
𝜕𝑇𝑖−1/2

𝑙

𝜕𝑉𝑝,𝑖
=

1

∆𝜏𝑖−1/2

𝜕𝑤𝑖−1/2

𝜕𝑉𝑝,𝑖

(𝜇𝑐𝑡)init,𝑖−1/2 (
1

𝐵𝜇
)
𝑢𝑝

𝑙

 (F.38) 

 
𝜕𝑇𝑖+1/2

𝑙

𝜕𝑉𝑝,𝑖
=

1

∆𝜏𝑖+1/2

𝜕𝑤𝑖+1/2

𝜕𝑉𝑝,𝑖

(𝜇𝑐𝑡)init,𝑖+1/2 (
1

𝐵𝜇
)
𝑢𝑝

𝑙

 (F.39) 

On the basis of the finite difference calculations (Eqs. (2.40) – (2.42)), the derivatives of 

the 𝑤-function in Eqs. (E.38) – (E.39) are obtained by 

 
𝜕𝑤𝑖−1/2

𝜕𝑉𝑝,𝑖
=

𝜕

𝜕𝑉𝑝,𝑖
(
𝑉𝑝,𝑖 − 𝑉𝑝,𝑖−1

𝜏𝑖 − 𝜏𝑖−1
) =

1

𝜏𝑖 − 𝜏𝑖−1
 (F.40) 

 
𝜕𝑤𝑖+1/2

𝜕𝑉𝑝,𝑖
=

𝜕

𝜕𝑉𝑝,𝑖
(
𝑉𝑝,𝑖+1 − 𝑉𝑝,𝑖

𝜏𝑖+1 − 𝜏𝑖
) = −

1

𝜏𝑖+1 − 𝜏𝑖
 (F.41) 

The off-diagonal elements of the matrix 𝛻𝑉𝑝
(𝑓𝑙)𝑇 are obtained as follows. 

 
𝜕𝑓𝑖

𝑙

𝜕𝑉𝑝,𝑖−1
=

𝜕𝑇𝑖−1/2
𝑙

𝜕𝑉𝑝,𝑖−1
(𝑃𝑖−1

𝑙 − 𝑃𝑖
𝑙) (F.42) 

 
𝜕𝑓𝑖

𝑙

𝜕𝑉𝑝,𝑖+1
=

𝜕𝑇𝑖+1/2
𝑙

𝜕𝑉𝑝,𝑖+1
(𝑃𝑖+1

𝑙 − 𝑃𝑖
𝑙) (F.43) 

where the derivatives of the transmissibility are calculated by 
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𝜕𝑇𝑖−1/2

𝑙

𝜕𝑉𝑝,𝑖−1
=

1

∆𝜏𝑖−1/2

𝜕𝑤𝑖−1/2

𝜕𝑉𝑝,𝑖−1

(𝜇𝑐𝑡)init,𝑖−1/2 (
1

𝐵𝜇
)
𝑢𝑝

𝑙

 (F.44) 

 
𝜕𝑇𝑖+1/2

𝑙

𝜕𝑉𝑝,𝑖+1
=

1

∆𝜏𝑖+1/2

𝜕𝑤𝑖+1/2

𝜕𝑉𝑝,𝑖+1

(𝜇𝑐𝑡)init,𝑖+1/2 (
1

𝐵𝜇
)
𝑢𝑝

𝑙

 (F.45) 

The derivatives of the 𝑤-function in Eqs. (F.44) – (F.45) are obtained by 

 
𝜕𝑤𝑖−1/2

𝜕𝑉𝑝,𝑖−1
=

𝜕

𝜕𝑉𝑝,𝑖−1
(
𝑉𝑝,𝑖 − 𝑉𝑝,𝑖−1

𝜏𝑖 − 𝜏𝑖−1
) = −

1

𝜏𝑖 − 𝜏𝑖−1
 (F.46) 

 
𝜕𝑤𝑖+1/2

𝜕𝑉𝑝,𝑖+1
=

𝜕

𝜕𝑉𝑝,𝑖+1
(
𝑉𝑝,𝑖+1 − 𝑉𝑝,𝑖

𝜏𝑖+1 − 𝜏𝑖
) =

1

𝜏𝑖+1 − 𝜏𝑖
 (F.47) 

 

 

 




