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ABSTRACT

In current petroleum industry, there is a lack of effective reservoir simulators for
modeling shale and tight sand reservoirs. An unconventional resource modeling requires
an accurate flow characterization of complex transport mechanisms caused by the
interactions among fractures, inorganic matrices, and organic rocks. Pore size in shale
and tight sand reservoirs typically ranges in nanometers, which results in ultralow
permeability (nanodarcies) and a high capillary pressure in the confined space. In such
extremely low permeability reservoirs, adsorption/desorption and diffusive flow
processes play important roles for a fluid flow behavior in addition to heterogeneity-
driven convective flow.

In this study, the concept of “Diffusive Time of Flight” (DTOF) is generalized
for multiphase and multicomponent flow problems on the basis of the asymptotic theory.
The proposed approach consists of two decoupled steps — (1) calculation of well
drainage volumes along a propagating ‘peak’ pressure front, and (2) numerical
simulation based on the transformed 1-D coordinates. Geological heterogeneities
distributed in 3-D space are integrated by tracking the propagation of ‘peak’ pressure
front using a “Fast Marching Method” (FMM), and subsequently, the drainage volumes
are evaluated along the outwardly propagation contours. A DTOF-based numerical
simulation is performed by treating a series of the DTOF as a spatial coordinate. This
approach is analogous to streamline simulation, whereby a multidimensional simulation

is transformed into 1-D coordinates resulting in substantial savings in computational



time, thus allowing for high resolution simulation. However, instead of using a
convective time of flight (CTOF), a diffusive time of flight is introduced in the modeling
of a pressure front propagation.

The overall workflow, which consist of the FMM and numerical simulation, is
described in detail for single-phase, two-phase, blackoil, and compositional cases. The
model validation is firstly performed on single-porosity systems with and without
geological heterogeneity, then extended to multi-continuum domains including dual-
porosity fractured reservoir and triple-continuum system. The large-scale unconventional
models are finally demonstrated in consideration of the permeability correction for shale
gas system and capillarity incorporation for confined phase behavior in multiphase shale

oil system.
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CHAPTER |

INTRODUCTION AND STUDY OBJECTIVES

1.1 Asymptotic Approach

Predicting oil and gas production from subsurface permeable media is a very
important task in the reservoir engineering field. In general, subsurface dynamic model
involves many mathematical and physical assumptions in order to simplify the
description of Earth’s internal structure and to reduce the demand of computation time.
Analytical solutions (i.e. material balance method, pressure transient analysis, rate
transient analysis) are the most restricted or simplified models that require the reservoir
to be isotropic and homogeneous in most cases. Numerical simulation removes such
approximations and limitations by decomposing a continuous domain into a finite set of
discrete counterparts. In the petroleum industry, reservoir simulation model is
traditionally used for constructing a subsurface system associated with spatial
heterogeneities (i.e. porosity, permeability, water saturation). The simulation outcomes
are utilized for the purpose of improving estimation of hydrocarbon reserves, identifying
fluid flow and geological characteristics, and more importantly, optimizing the strategies
regarding the field developments.

For a long time, streamline-based flow simulation has been widely recognized as
an efficient approach for modeling fluid dynamics in porous media. The principle
underlying the streamline simulation is to decompose the multidimensional transport

equations into a series of 1-D equations along streamlines (Datta-Gupta and King 2007).



The evolution of flood fronts and the interactions between production and injection wells
can be easily identified using the concept of convective time of flight (CTOF).

Another important concept related to the theory of pressure propagation in
porous media has been proposed by Lee (1982) who defined a ‘radius of investigation’
as the propagation distance of a ‘peak’ pressure disturbance for an impulse source or
sink. The radius of investigation can be analytically calculated under limitations of
homogeneous and isotropic reservoirs; however, such analytical solution is not
applicable for complex geometries and heterogeneous media. Datta-Gupta et al. (2011)
generalized the concept of radius of investigation to heterogeneous field by introducing a
diffusive time of flight (DTOF) which corresponds to the arrival time of a ‘peak’
pressure front. High frequency asymptotic solution of the diffusivity equation leads to
the Eikonal equation for a pressure ‘front’ propagation in the presence of spatial
heterogeneities (Vasco and Datta-Gupta 1999, Vasco et al. 2000, Datta-Gupta and King
2007). This asymptotic solution can be solved very efficiently by using the Fast
Marching Method (FMM) (Sethian 1996, Sethian 1999) as shown by Datta-Gupta et al.
(2001) for reservoir engineering purpose. The FMM is a class of front tracking algorithm
for solving the Eikonal equation and similar to the Dijkstra algorithm (Dijkstra 1959)
that finds shortest path on graphs. The DTOF can be obtained along its trajectory using
the FMM calculation. Well drainage volume is successively calculated by contouring a
specific DTOF and by summing up the pore volumes inside the contour. Zhang et al
(2014) proposed a DTOF-based numerical simulation associated with the transformation

of a fluid transport coordinate from the physical 3-D space to the 1-D DTOF space. As
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in the CTOF applied to the streamline simulation, the DTOF embodies geological
heterogeneities and reduces 3-D heterogeneity to a 1-D homogeneous problem along its
coordinate. This dimension reduction results in substantial savings in computational time
and allows for high resolution reservoir simulation.
1.2 Characteristics of Unconventional Reservoirs

The U.S. Energy Information Administration (EIA) defines the term
‘unconventional’ as a complex interactive function of resources characteristics, the
available exploration and production technologies, the current economic environment,
and the scale, frequency, and duration of production from the resources. Shale oil and
gas reservoirs are the typical unconventional resources which contain a huge amount of
hydrocarbons in the fine-grained sedimentary rock composed of mud from flakes of clay
minerals and tiny fragments of other minerals. The EIA (2013) estimates that technically
recoverable shale oil and gas resources in the U.S. comprise 58 billion barrels of crude
oil and 665 trillion cubic feet of natural gas as of 2013, which are approximately 26% of
the total domestic oil reserves and 27% of the total domestic natural gas reserves. They
also suggest that, because shale oil and gas have proven to be quickly producible in large
volume at a relatively low cost, shale oil and gas resources have revolutionized the U.S.
oil and natural gas production, providing 29% of the total U.S. crude oil production and
40% of the total natural gas production in 2012. Based on the success of the U.S. shale
plays, several countries have begun to evaluate and test the production and potential of

shale formations located in their countries.



The first shale play in the U.S. was started in the Barnett shale formation located
in North-Central Texas. More than 16,000 vertical, directional, and horizontal wells have
been drilled in the formation since the early 1990s, and by the end of 2012,
approximately 13 trillion cubic feet of natural gas has been produced (Browning et al.
2013). The development of the Barnett shale has changed the U.S. natural gas play map
significantly. Browning et al. (2013) summarized the number of wells spud in the
Barnett and the change of the well types. In the early 2000s, the drilling in the Barnett
switched from vertical wells to horizontal wells. In the first 7 month of 2011, more than
98% of wells (1,007 wells) drilled in the Barnett were horizontal, whereas the other 2%
(18 wells) were vertical and directional wells. Successes of shale plays in the U.S. owe
to the dramatic improvement in drilling efficiency and well completion technologies
over the past several years. In the recent U.S. shale plays, the formations are drilled
horizontally and then completed with multistage hydraulic fractures, such as the Bakken,
Barnett, Montney, Haynesville, Marcellus, and the most recently the Eagle Ford,
Niobrara, and Utica shales.

Over the past decade, the transport mechanisms in unconventional reservoirs
have been widely studied in order to better understand their characteristics (Kuila et al
2011, Javadpour et al. 2007, Javadpour 2009, Sakhaee-Pour et al. 2012). It has been
found that the techniques and mathematical flow models used in conventional reservoirs
may not be adequate for unconventional reservoirs (Aguilera 2010, Michel et al. 2011,
Swami et al. 2012, Arogundade et al. 2012). The fluid flow mechanisms in

hydraulically-fractured shale and tight sand reservoirs are farther complicated by many
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co-existing physical factors, such as (1) severe geological heterogeneities of the
permeable media due to the variation among fractures, inorganic rock matrix, and
organic matters, (2) Knudsen diffusion and slippage effects in nano-scale pores, (3)
high-velocity turbulent flow in the perforations or hydraulic fractures, (4)
adsorption/desorption on the surface of organic rocks, (5) geomechanics effects in
fractured space, and (6) high capillarity in the confined system. Currently, there is no
consensus or standardized approach on the theory and frameworks for modeling the
transport behaviors in such complex reservoirs, although there is a growing demand in
the area of unconventional resource evaluation and predictions.

In shale gas reservoirs, the contained hydrocarbon usually exists in several states
in fracture, matrix, and organic matter. Aguilera et al. (2010) suggest that gas molecules
trapped and stored in shale can be divided into five different types: (1) gas adsorbed into
the Kerogen material, (2) free gas trapped in inorganic matrix porosity, (3) free gas
trapped in natural fractures, (4) free gas stored in hydraulic fractures created during the
stimulation of the shale reservoir, and (5) free gas trapped in a pore network developed
within the organic matter or Kerogen material. Biswas (2011) pointed out that the flow
of gas through the fracture network in shale is the consequence of gas desorption and
diffusion which transport it within the matrix-fracture interface.

Nelson (2009) investigated the pore-throat distributions in sandstones, tight
sandstones, and shales using a scanning electron microscopy (SEM) and mercury
injection as illustrated in Fig. 1.1. The pore-throat size (diameter) of conventional

sandstones ranges from 2 to 20 um, whereas the pore-throat size of tight sandstones
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ranges from 20 nm to 1 um. The pore-throat size of shales ranges from 5 to 100 nm,

which is approximately 100 times smaller than that of conventional sandstones.
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Fig. 1.1 — Pore throat sizes in sandstone, tight sandstone, and shales (Nelson 2009).

A similar petrophysical investigation was conducted by Curtis et al. (2012) who
identified the pore spaces in actual shale gas formations using SEM as shown in Fig. 1.2.
In the figure, the dark gray material represents the organic matter, which is indicated by
black arrows, and the white material represents the inorganic material. Pores within the
organic matter (‘Kerogen porosity’) can be seen in the core sample of the Woodford and

Horn River shale samples. In contrast, slit-like pores in the inorganic matrix (matrix



porosity) are dominant in the core sample of the Haynesville shale. The authors
concluded that the Kerogen pore structure was found in nanometer size and occupied 40

— 50 % of the Kerogen body.

Fig. 1.2 — Pores in shale formation. The shale samples were taken from the (a) Woodford shale, (b)
Haynesville shale. (C) Horn River shale, and (D) Kimmeridge shale. The pore examples are indicated
by white arrow. (Curtis et al. 2012).

In such confined situations, nano-scale pores (“nanopores”) play two important
roles for gas flow behavior (Javadpour et al. 2007). First, for same pore volume, the
exposed surface area in nanopores is much larger than that in micro-scale pores
(“micropores™). The increase of the exposed surface area results in an increase of the
volume of adsorbed gases. Suppose that there is a spherical pore covered by organic
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material. Within this pore, gas molecules are contained in two states which are free gas
and adsorbed gas. The volume of free gas compressed in a spherical pore is simply
defined by the pore volume, which is 4mr3/3, where r is the radius of a sphere. In
contrast, adsorbed gases are stocked to the surface area of the pore, which is 4mr2.
Consequently, the relative importance of the adsorbed gases to free gas is defined by the
ratio of the exposed surface area to the volume of free gas, that is 3/r. This implies that
the relative importance of adsorbed gas is inversely proportional to the size of the pore.
Secondly, nano-scale pore structures can cause the violation of the basic assumption
behind the usage of the standard Darcy’s law due to Knudsen diffusion and slippage
effects on the pore surface. As described above, the relative importance of pore surface
area to pore volume is inversely proportional to the pore size. This means that the
frequency of slippage and collision on the pore surface will increase as the pore size
becomes smaller. The gas molecules tend to collide on the pore walls and slip at the wall
surface instead of having the zero-velocity Hagen-Poiseuille flow.
Traditionally, the Darcy’s law has been widely used in the petroleum engineering

field to approximate a fluid velocity profile based on the following assumptions.

(1) Flow direction aligns with the direction of pressure gradient.

(2) There is no slippage and diffusion (collision) on pore wall.

(3) Fluid flows under laminar flow conditions.
Fig. 1.3 illustrates the relationship between the actual fluid velocity and the Darcy’s
approximation flow. The black line shows the actual gas velocity profile as a function of

differential pressure. The red-dot line represents the Darcy’s law based on the linear
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approximation. In a high pressure region, the deviations of the actual flow from the
linear flow (black-dot line) are caused by non-laminar flow (turbulent flow, Forchheimer
flow), which often occurs in the perforations or fractures close to the wellbore of gas
wells. In contrast, the deviations in a low pressure region are due to the slippage and

Knudsen diffusion, which occur at very low pressure condition (1,000 psia~) or often in

nanodarcy-scale permeable media.

Darcy’s Law
(linear flow)

Low velocity High velocity

Fluid Velocity

Differential Pressure

Fig. 1.3 — Fluid velocity profile as a function of differential pressure.

Klinkenberg (1941) recognized gas slippage in subsurface porous media and
observed that at very low pressure, the actual flow rate significantly deviates from the
one predicted by the conventional linear flow approximation (Darcy’s law), a
phenomena that is called Klinkenberg effect. He proposed the following correction to

gas permeability accounting for its pressure dependency due to slippage on pore surface.



b
kapp = ken (1 + F) (1.1)

where k., denotes the permeability measured with non-slip boundary condition (Darcy’s
permeability) and b represents the correction factor for slippage (slippage factor). Over
the decades, many authors have measured the apparent permeability and defined the
Klinkenberg slippage factor based on the observations and theoretical works (Jones et al.
1980, Sampath et al. 1982, Ertekin et al. 1986, Florence et al. 2007, Javadpour et al.
2007, Civian 2010, Michel et al. 2011, Swami et al. 2012). Contrary to the conventional
understanding that the Klinkenberg effect has an impact on the fluid flow at low pressure
only, several authors observed that it affects the flow behavior for a smaller pore throat
and for a low flowing bottom-hole pressure as well.

1.3 Research Objectives and Thesis Outline

The objective of this research is to extend the DTOF theory for multipurpose
reservoir simulation including multi-continuum reservoir modeling and multiphase flow
simulation. In addition to theoretical developments, an emphasis is placed on the
application to unconventional reservoir modeling with the incorporation of nano-scale
pore surface effects on gas permeability and the modification of the fluid phase behavior
calculation in such confined reservoirs.

This research is comprised of two main components. First, in Chapter 11, the
DTOF-based flow simulation is applied in single-phase flow problems based on the Fast
Marching Method (FMM). This simulation procedure consists of two decoupled steps —
(1) calculation of well drainage volumes along a pressure propagation front using the

FMM, and (2) successive numerical simulation based on the transformed 1-D
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coordinate. The continuous DTOF contour is discretized into finite sets of the 1-D grids
using a finite difference approach. On the basis of the 1-D transport equation, the DTOF
formulation is extended to the dual-porosity reservoir modeling with the Warren and
Root pseudo-steady state type method (Warren and Root 1963). The DTOF-based flow
simulation is further applied to a triple-continuum modeling to satisfy the needs of the
additional physical mechanisms in unconventional reservoirs. In this research, the
discussion includes the Knudsen diffusion and slippage effects, adsorption/diffusion,
rock compaction in fractures, and gas diffusion from the organic matter. The
unconventional reservoir characteristics are comprehensively investigated by accounting
for the Kerogen-matrix interaction as well as the matrix-fracture interaction with the
correction of the gas permeability. The proposed DTOF-based formulation is validated
through a numerical simulation for synthetic single-porosity, dual-porosity, and triple-
continuum models, respectively.

Second, in Chapter 111, the DTOF theory is generalized to the multiphase and
multicomponent flow problems. The theoretical developments of the DTOF-based
formulation begin from the derivation of the multiphase DTOF by introducing the
asymptotic approach to the mass balance equation. The multiphase DTOF has a similar
form to the single-phase DTOF and amenable to the coordinate transformation by the
use of the same way as the single-phase flow equation. This transformation requires the
assumption that the changes of the spatially-dependent variables (pressure and
saturation) are aligned with the DTOF gradient. In the proposed method, the reservoir

unknowns (i.e. pressure, saturation, mole fractions) are simultaneously solved using the
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fully implicit method. The multiphase DTOF is applied in the multiphase (blackoil) and
multicomponent (compositional) simulations as with the single-phase simulation. The
three-phase blackoil simulation is then extended to the dual-porosity model. An extra
effort is put on the modeling of the confined phase behavior in nano-scale porous
reservoirs by incorporating the capillary pressure effects on the thermodynamic
equilibrium calculation. At the end of this chapter, several simulation results are
presented for the validations of the blackoil and compositional reservoir models.

In Chapter 1V, the research is concluded with a summary of the key results of
the theoretical developments and model validations. Recommendations and proposals

for further research are also presented.

12



CHAPTER II

MULTI-CONTINUUM MODELING BASED ON FAST MARCHING METHOD

This chapter presents the DTOF-based numerical simulation for a single-phase
fluid flow based on the Fast Marching Method (FMM). We first introduce the
asymptotic theory for the propagation of pressure front in heterogeneous permeable
media. The base concepts were proposed by Lee (1982) who defined the radius of
investigation in the homogeneous field, and his theory was later generalized by Datta-
Gupta et al. (2001) for the heterogeneous permeable media. The speed of the pressure
propagation has a form of Eikonal equation and is efficiently solved using the FMM.
Zhang et al. (2014) proposed a new simulation method associated with the
transformation of the fluid flow coordinate from the physical 3-D space to 1-D DTOF
space. In this numerical simulation, the spatial variables (i.e. pressure) are solved along
the transformed 1-D coordinate using the finite difference scheme. In this chapter, we
present the mathematical fundamentals and numerical details based on the convective
fluid transport along the 1-D coordinate system.

In addition, we focus on the application of the FMM as a tool of the modeling for
unconventional reservoirs. Shale and tight gas reservoirs are comprised of nanodarcy
permeable media which give rise to non-Darcy effects on the fluid flow such as Knudsen
diffusion and slippage effect. Furthermore, there are occasions when the conventional
single-continuum approach is not suitable for modeling shale and tight gas reservoirs

due to its geological and geophysical characteristics. The DTOF-based numerical
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simulation is extended to the dual-porosity modeling and further triple-continuum
approach including a modification on the traditional Darcy’s law.
2.1 Introduction to Fluid Flow in Porous Media

Isothermal fluid flow through porous, permeable rock is governed by three
fundamental equations — conservation of mass, momentum equation, and equation of
state. The general fluid transport equation can be derived by making the assumptions
that the mass fluxes due to the diffusion and dispersion (i.e. molecular diffusion) are
small relative to the convective flux and that there is no chemical reaction (i.e.
adsorption) between fluids and solids. The first equation, conservation of mass, states
that the mass in a closed system must remain constant over time if it is not removed
(produced) or added (injected). For single phase fluid flow, the conservation of mass is

given by the following form.

d(¢p)
Franie —V e (pu) (2.1)

where ¢ is porosity, p is fluid density, and u is the Darcy velocity. In this equation, two
boundary conditions (inner and outer boundaries) and one initial condition are imposed
to complete the formulation. The inner boundary is usually a sink or source (wellbore)
from which the fluids are produced or injected, and the outer boundary is generally a no-
flow condition (closed finite domain). The initial condition is defined as the reservoir to
be at a uniform pressure at the initial time. In the Cartesian coordinate system, the
divergence of the fluid velocity is equal to the scalar-valued function along x-, y-, and z-

directions.
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ou, Ou, OJu,
eu= 2.2
veu 0x + dy + 0z (22)

The second equation, momentum equation is given by a linear flow approximation

(Darcy’s law). We neglect a gravity term for convenience.

Kk
u=--VpP (2.3)
U

In this equation, the fluid flows as a linear function of the differential pressure.
Substituting Eq. (2.3) into Eqg. (2.1) yields

a(ip ) _v. (pgvp) 2.4)

The third equation, the equation of state describes the relation between the system
condition (i.e. pressure, temperature) and the static fluid state (i.e. volume, density). For
slightly-compressible fluids (liquid), the isothermal fluid density is given by linear

approximation in terms of pressure, using a Taylor series expansion.

p = pOerP=P%) » po (1 +cp(P - PO)) (2.5)
where ¢, denotes a fluid compressibility and p° and P° are the reference fluid density
and pressure, respectively. The porosity is also expressed as the same form.

¢ = per PP = ¢°(1 + ¢, (P — P?)) (2.6)
where ¢, denotes a rock compressibility. Substituting Eqgs. (2.5) and (2.6) into Eq. (2.4)
and carrying out the time differentiation in the left hand side of Eq. (2.4), we obtain the

well-known diffusivity equation for slightly-compressible fluids.

0P(x,t)
ot

d(X)uc, = Ve (k(x)VP(x,1)) (2.7)
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For compressible fluids (gas), the fluid compressibility is usually not assumed to be
constant. In such case, the equation of state is given by the real gas law.

__PM,,

= (2.8)

p

where M,, denotes molecular weight, z represents the compressibility factor, and R is
universal gas constant. Using Eq. (2.8) instead of Eq. (2.5), the diffusivity equation for
compressible fluids is written as

am(x,t)
ot

d(X)uc, =V e (k(X)Vm(x,t)) (2.9)

where m(x, t) represents the pseudo-pressure function.
Pp

m(x,t) = ZLOZ—dP (2.10)
For both slightly-compressible and compressible fluids, we have the same partial
differential equation form which describes the fluid mass dynamics in subsurface porous
media.
2.2 Methods: Asymptotic Approach
2.2.1 Asymptotic Pressure Solution

When a single phase, slightly compressible fluid flows in a heterogeneous

permeable media, the fluid pressure behavior is governed by the diffusivity equation.

Rearranging Eq. (2.7), we obtain

0P(x,t)

= Vk(x) » VP(x,t) + k(X) o V2P (X, t) (2.11)

Pp(X)puc,

where P(x,t) is pressure on the location x at the time t. We consider the equation in the

frequency domain by applying a Fourier transform.

16



B(x,w) = f " P(x, O)e-tde (2.12)

In the frequency domain, the diffusivity equation is written as
PpX)uc,(—iw)P(x,w) = Vk(x) e VP(x,w) + k(x) » V2P (x, w) (2.13)
The asymptotic approach attempts to find a solution of the diffusivity equation that
mimics the one found in wave propagation and is based on the asymptotic ray theory.
The asymptotic ray theory forms the mathematical basis for geometrical ray theory and
has been extensively used in both electromagnetic (Virieux et al. 1994) and seismic
wave propagation (Cerveny et al. 1978). The method has also proved suitable in the
analysis of a front propagation in general (Sethian 1996) and petroleum engineering in
terms of streamlines and flood fronts (Datta-Gupta and King 2007).
Following the previous works in the diffusive electromagnetic imaging and
hydrology (Virieux et al. 1994, Vasco et al. 2000, Datta-Gupta et al. 2001), the

asymptotic pressure solution can be written as an infinite sum.

~ . = A,(%)
P(x,w) = e"V-iwtt0 ) T 214
% 0) = e D (2.14)

where (x) represents the phase of a propagating wave and thus, describes the geometry
of a propagation front. A, (x) are real functions that relate to the amplitude of the wave.
A solution of Eq. (2.14) can be interpreted on physical grounds based on the scaling
behavior of diffusive flow. The motivation for using a solution in inverse power of w is
that the initial terms of the series are the most important when w is large (high-frequency

limit) and represent the rapidly varying components of the solution or the propagation of
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a sharp front (Vasco et al. 2000). The functions 7(x) and A, (x) are unknowns. The
asymptotic solution Eq. (2.14) is the sum of infinite number of functions A, (x), but the
important physical quantities are represented only in the first few terms. Therefore, a
leading-order solution of Eq. (2.14) is obtained by
P(x, w) = e~V w0t 4 () (2.15)
Notice that the first and second derivatives of Eq. (2.15) with respect to the location x is
written as
VB(x,w) = —V—iwVi(x)e V0T A (x) + e V@TYV4 (x) (2.16)
V2B(x, ) = (—iw)(Vr(x)) e V"0 4 (x)
—V=iwV2r(x)e V@t 4 (x) (2.17)
— 2V=iwVt(x)e VTOTOVA (x) + e VTOTV24 (%)
Inserting Eqgs. (2.15) - (2.17) into Eq. (2.13) and arranging the equation in terms of
powers of v—iw, we obtain the following quadratic equation.
[pGOuc, — kEVTE01Ap () (V=)
+HER)V2T(X) A (X) + 2k (X)VT(X) VA, (X) + VKX V()4 ) [V—iw  (218)
—[VE(x)VA,(X) + k(X)V?4,(x)] = 0
The first term in the left hand side of Eq. (2.18) is imaginary part, the second term is
related to the square root of (—iw), and the third term is real part. Since all these three
terms equal to zero, the first term (highest power) leads the equation for the phase 7(x)

of the propagation equation.
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Vi(x)  k(x) » V(X)) = p(X)uc; (2.19)
Eq. (2.19) corresponds to the equation for propagation of pressure front. This equation is

rewritten as

[VT(x) |/ aqirr(x) = 1 (2.20)
where agi(x) represents the propagation speed of the pressure front and is called
‘diffusivity’, given by

k(x)
Pp(X)puc,

aqirr(X) = (2.21)

It is important to notice that Eq. (2.20) is a form of the well-known Eikonal equation
which explains a variety of propagation behaviors. Integrating Eq. (2.20) over the

propagation trajectory X, we obtain

(2.22)

1
= ——ad
") -fZ V @aiee(X) '

By analogy of the convective time of flight (CTOF) applied in the streamline simulation,

we can see the pressure wave front travels with a velocity of m. We define a
‘diffusive’ time of flight (DTOF) for a propagation of a pressure front (Datta-Gupta at al.
2001). Notice that the unit of DTOF is the square root of time which is consistent with
scaling behavior of diffusive flow. Vasco and Finsterle (2004) pointed out that at
transient flow conditions, these trajectories are not necessarily the streamlines and are

strictly given by the ray equations in seismology.
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2.2.2 Fast Marching Method
Eq. (2.20) implies that the gradient of arrival time of pressure propagation front
is inversely proportional to the propagation speed (square root of the diffusivity). This is
a form of the Eikonal equation, and this equation can be solved very efficiently using a
class of front tracking methods called “Fast Marching Method” (Sethian 1996). The
basic framework comprises the following steps (Sethian 1999).
(1) Label all grid nodes as unknown.
(2) Assign t (usually zero) to the nodes corresponding to the initial position of the
propagating front and label them as accepted.
(3) For each node that is accepted, locate its immediate neighboring nodes that are
unknown and label them as considered.
(4) For each node labeled considered, update its T based on its accepted neighbors
using the minimum of local solutions of Eq. (2.20).
(5) Once all nodes labeled considered have been locally updated, we pick the node
which has the minimum t among them and label it as accepted.
(6) Go to step (3) until all nodes are accepted.
In a 2-D 5-stencil Cartesian coordinate model, these steps are illustrated in Fig. 2.1 and
explained by Xie et al. (2012). In this example, we put an arbitrary single point as the
initial position of the propagating front and label it as accepted (solid) as shown in (a).
Then its immediate neighbors A, B, C, and D are marked as considered (circle) as shown
in (b). After the = for A, B, C, and D have been updated, we pick the smallest one
(suppose it is A) and mark it as accepted as shown in (c). Then its neighbors E, G, and F
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are added into the considered as shown in (d). These steps will repeat for the next
accepted point (suppose it is D) as shown in (e) and (f). The local solution of t is

updated with a standard finite difference notation (Sethian 1996).

_ 1
maX(Di}xr, —D;;-xr, 0)2 + maX(Dijyr, —D;;yr, 0)2 = % (2.23)

where D is a gradient approximated with first-order forward finite difference scheme. In

x-direction, D"t = (7;; — 7;_1;)/0x and D}t = (t144; — 75;)/Ax. Same equations

hold in y-dil’ection, Di;y'[ = (Ti,j - Ti,j—l)/Ay and Di-;-y'l' = (Ti,j+1 - TlJ)/Ay

(a) (b) (¢)

it
i

LB

(d) () ®

Fig. 2.1 — lllustration of Fast Marching MNo table of figures entries found.ethod (Xie et al. 2012). The
circles represent ‘considered’ state and black solids denote ‘accepted’ state.

Notice that the FMM is single-pass algorithm and the t solutions are constructed

sequentially from the small values to large value. After the FMM calculation, the
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drainage ‘pore’ volumes are successively calculated by summing up all the pore volumes
inside the specific T contour.
2.2.3 Coordinate Transformation

The DTOF-based 1-D transport equation was first proposed by Zhang et al.
(2014). The multidimensional fluid flow equations are decomposed into the series of 1-D
T-contours using the proposed coordinate transformation, and then the spatially
dependent variables (pressure) are solved on each discretized 7-contour. The coordinate
transformation from the physical space to 1-D t-coordinate is achieved by assuming that
pressure gradient aligns with t gradient direction.

aP
VP =—Vr (2.24)
ot

This fundamental assumption implies that the contour surfaces of 7 are identical to the
contour surfaces of pressure. According to the propagation equation (Eg. (2.19)), the
absolute permeability is written with relation to .

1
k = W (Pucy)init (2.25)

Substituting Eqgs. (2.24) and (2.25) into the Darcy’s law (EQ. (2.3)), we obtain the -

based velocity equation.

_ (Puc)inic 1 (')_P
U |VT| ot

(2.26)

The basic concept behind the coordinate transformation is that we partition the
Cartesian domain into a series of non-overlapping surface (z-contour). The surface

contour begins from the point of sink or source (inner boundary) and it evolves to the
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entire domain, 2. Consider a very thin layer of volume enclosed by two contours
surfaces, d2(r) and d(t + At). The volume element of this thin layer, dV is
corresponding to the product of the surface area dA and the layer thickness At/|Vz|.

Therefore, we have

dV = — dA (2.27)

Zhang et al. (2014) showed the coordinate transformation of the diffusivity
equation for both slightly-compressible (Eq. (2.7)) and compressible fluids (Eq. (2.9)),
respectively. Here, we transform the general mass balance equation on the t-coordinate
instead of using the diffusivity equation for the purpose of general numerical simulation.
We take a volumetric integral of the conventional mass balance equation, Eq. (2.1) over

the domain, 0.

fﬂ a(ip)

dV = —f Ve (pu)dV (2.28)
0

The flux term (RHS) in Eq. (2.28) is transformed to the surface integral by applying a

divergence theorem.

(pu) » T dA = f (pu) » —= dA (2.29)

Ve (pu)dV =
-fn do(r) |Vz|

an
As discussed above, the volume element is identical to the integral of two adjacent
surfaces. On the other hand, the accumulation term (LHS) in Eq. (2.28) is also

transformed to surface integral by substituting Eq. (2.27).

a(¢p) d(pp) 1
_ = 2
fﬂ v = Vr fd el (2.30)
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Inserting Eqgs. (2.29) and (2.30) into Eq. (2.28), we obtain the surface integral form of

the mass balance equation.

9 1 v
v f (¢p) 1 .0 _ _ f (pu) » —— dA (2.31)

Substituting the DTOF-based velocity equation (Eq. (2.26)) into Eq. (2.31), we have

d 1 1 mitdP 1
f (¢P) —— dA = _<f p (¢:uct)lrllt_ R dA) (232)
aa Ot |Vrl VT \Jiaw U ot |Vrt|
Let At — 0. Eq. (2.32) is rewritten as
J d(Mgp) Pinic dA = i(j ) (Uer)init OP  Pinit dA) (2.33)
anm 0t VTl 0t \Jyny —# 0T |V1|

where ¢;y;; denotes the porosity at initial condition, and M represents the exponential
rock compressibility function.
My = e¢r(P—Pinit) (2.34)

Taking a surface integral of Eq. (2.27) over the T-contour, we can define the w-function.

¢init de
=_r = 2.35
]d =g = (2.35)

Notice that the w-function is the derivative of the drainage ‘pore’ volume V, with respect
to the diffusive time of flight z. Substituting the w-function (Eq. (2.35)) into the both
sides of Eq. (2.33), we obtain the following fluid transport equation along 1-D z-

coordinate.

(M
MdA = —(W(T) p —dA
an@ Ot ot () pooor

(2.36)

w(r) (Uce)inic OP )
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In Eq. (2.36), the pressure P is the location- and time-dependent variables. Now, we
assume that P is a function of 7 and t (i.e. the pressure gradient align with the t
gradient). Therefore, we can take the terms outside the integral. Therefore, The DTOF-

based mass balance equation can be written as follows.

0(Mgp) _ 9 (Kt init G_P) (2.37)

w(r) = a(w(r)p s

Comparing the transformed mass balance equation (Eq. (2.37)) with the general mass

balance form (Eq. (2.1)), the transformation of the flux term is defined as follows.

Pinit 0 (uct)init OP ) (2.38)

V-(pu)E—W(T)a<W(T)p ot

Notice that Eq. (2.37) is a complete 1-D transport equation that fully embeds the
geological heterogeneities (i.e. porosity, permeability) on the t-coordinates and is
numerically solved using a finite difference scheme. This simulation approach is quite
similar to that of streamline approach and we solve the pressure equation along 1-D
DTOF coordinate instead of solving the saturation equation along 1-D CTOF. The
generalization to the anisotropic medium is written in APPENDIX A.
2.2.4 One-Dimensional Discrete Model

For the application of the DTOF formulation to the numerical simulation, we
discretize the governing partial differential equation (Eq. (2.37)) in terms of space and
time based on a finite difference method. Fig. 2.2 shows the illustration of the 1-D
simple coordinate system discretized into finite sets of grid blocks. In this illustration,

the two boundary conditions are imposed on its left and right edges. The inner boundary
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(left edge) is the wellbore constrained by the bottom-hole pressure or production rate,

and the outer boundary (right edge) is the no-flow boundary.

Ti-1/2 Ti+1/2
ATi
<>
T T2 Ti-1 T Ti+1 ™
[ ] [ J [ ] ® [ ]
Well at T, No-flow
(Inner boundary) Ati1z | ATivagz outer boundary

Fig. 2.2 — 1-D finite difference discretization.

Based on Eq. (2.38), the single-phase mass balance equation is transformed into t-

coordinate system as follows.

0(¢p) _ Pinic 0
at  w(r)adr

(2.39)

t)init OP
<W(T)p (ee) —) +pq

u 0t
where g is the volumetric production rate per unit volume per unit time at wellbore. The
source/sink (well) term is imposed on the inner boundary; hence it only appears in the
equation at the first grid. Dividing Eq. (2.39) by the surface density pg. and initial

porosity ¢init, EQ. (2.39) can be written as the mass balance equation on the standard

volume basis.
a M 1 9 i OP 1
_(_¢) _ 2 (weo ) el I a (2.40)
Jot\ B w(t) 01 Bu 0t Pinit B

where B (= ps./p) is the formation volume factor (FVF).
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Suppose we discretize the flux term in Eq. (2.40) around the grid block i. The
partial derivatives are approximated by the standard finite difference approximation

involving the backward, forward, and central differences as follows.

d (C aP) _ 1 c JoP
dt\ 0t H1/2 51 1-1/2

i - Tiv1/2 — Ti-1/2
170 P — P Pi— P4
=—|c (—) —Cp (—)] 2.41
| i+1/2 Tivg — T i-1/2 T, — Tj_q ( )

apP

1=
i+1/2 i3 01

1 [ Ci+1/2 Ci—1/2
At; _ATi+1/2( s~ R Ati_qp2

(P, — Pi—l)l

where C represents the grid-dependent parameter (i.e. grid volume, mobility), Az;is the
grid length of the cell i, and At;4,, is the length from the center of the grid i to the

center of the grid i + 1.Using Eq. (2.41), the flux term is discretized into the 1-D

coordinate.

(2.42)

0 (uct)init OP Ti—1/2Pi—1/2 - (Ti—1/2 - i+1/2)Pi + Ti+1/2Pi+1
—|(w(® =
0t Bu 0t At;

where T;.4,, represents the transmissibility on the grid interface between i and i + 1.

Wit1/2 1
Tis12 = m (Ueiniti+1/2 <B_'u>up (2.43)

where the subscript up denotes the upstream grid. The flow mobility is determined by
the up-winding scheme. The discretized w-functions, w;, w;_q,,, and w;,,,, are

obtained by central, backward, and forward differences, respectively.

av, |7 -V, i_
w; = (dTp) _ Vpit1/2 ~ Vpi-1,2 240

i Tiv1/2 — Ti-1/2
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de Vp,i - Vp,i—l

Wim1/2 = (E)i—l/z T — T (2.45)
de Vp,i+1 - Vp,i

Wity1/2 = <E>i+1/2 = m (2.46)

Using Eqg. (2.42) and carrying out the time differentiation, the finite difference equation
of Eq. (2.40) is written as follows.

n+1 +1 n+1 n+1 n+1 n+1 n+1
i—1/2Pi-1 — (Ti—1/2 + Tivi2)Pi " + TP

_ WAt KM"?) _ (Mglﬂ w;AT; q™t1 (2:47)

T OAnHL n+1 n || n+1
At B B] Giniti B;

where n + 1 denotes the time-step level and My represents the exponential rock
compressibility function (Eq. (2.34)). Notice that the well term is imposed only on the
first grid (i = 1) neighboring the inner boundary.

On the 1-D grid system, At; is the length of the grid i and w;At; corresponds to
the ‘pore’ volume of the grid block i. Hence, w;At;/¢inic 1S equivalent to the ‘bulk’

volume of the grid i. As described in Eqg. (2.47), the standard volume production rate is

given by
WIATl qn+1
qn+1 -t (2.48)
* Ginic B

where the subscript 1 denotes the first grid block and gZ?*?! represents the surface volume
flow rate at the time n + 1. Eq. (2.48) is rewritten by using the DTOF-based velocity

equation (Eqg. (2.26)).

1 WlATl 1 i n+1 P1n+1 _ x}-l
qs ~ = e (¢.uct)init,1 e — (2.49)
dinit |AT1 Bu/, T1 — Twell

28



Rearranging Eq. (2.49), the surface production rate is calculated as follows.

n+1 n+1 n+1
e 1 <M)

qgs ~ =W, (.uct)init,l (_)

o (2.50)

1 T1 = Twell
For each grid, we assign Eq. (2.47) as a governing equation and solve the corresponding
spatial unknown variable P***. The inner boundary condition is imposed by Eq. (2.50).
The numerical simulation procedure and derivative calculations for constructing the
Jacobian are described in APPENDIX B.
2.3 Approach: Multi-Continuum Modeling
2.3.1 Dual-Porosity Model

Fractured reservoirs are characterized by a presence of two distinct porous
systems — fractured porous networks and fine grained matrix blocks. In naturally
fractured reservoirs or hydraulically fractured wells, the mass exchange between matrix
and fracture is an important component due to their geological characteristics. The
fracture network is highly conductive, but can store very little fluid due to its very low
porosity, while the matrix system has low conductivity and large storage capacity
relative to the fracture. The concept of dual-porosity single-permeability (DPSP) model
is that the two over-lapping continua, fracture system and matrix system, coexist and
interact each other (Barenblatt et al. 1960, Warren and Root 1963, Kazemi 1979). The
fluid transport equation in the fracture system is given by an ordinary porous medium
with an additional connection to the matrix block, whereas the matrix blocks act only as

a source to the fracture system. The advantage of the dual-porosity modeling is that this

approach is computationally inexpensive compared with the Discrete Fracture Network
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(DEN) method which incorporates all fractures in various locations with complex
fracture geometries. Fig. 2.3 shows the illustrations of the fracture geometries in actual
reservoir and the simplified grid block geometries in the dual-porosity model. The dual-
porosity modeling has been traditionally utilized to model the fluid flows on the various
scale medium using two simple coordinate systems (Blair et al. 1964, Yamamoto et al.

1971, Kazemi et al. 1979, Dean et al. 1988).

\}-

S0
\\\\\\\\.,/4

VUGS MATRIX FRACTURE MATRIX FRACTURES

ACTUAL RESERVOIR MODEL RESERVOIR

Fig. 2.3 — Discretization of the fractured porous medium (Warren and Root 1963).

In this research, the Warren and Root pseudo-steady state equation is used to
complete the dual-porosity formulation (Warren and Root 1963). The mass balance
equation in the fractured system is written by general mass balance equation (Eq. (2.4))

with the addition of a matrix-fracture mass exchange term.

0 k
% =Ve (pzf VPf> — pl' + pqy (2.51)
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where ¢, represents the fracture porosity, kr denotes the fracture permeability, and T
represents the matrix-fracture volume transfer function. The sink or source term gy is

imposed on the inner boundary condition of the fracture flow equation. In Eq. (2.51), the

transfer function is given by the Darcy equation-like form (Kazemi et al. 1976).
Km
FZG_(Pf_Pm) (2.52)
.uup

where o denotes the shape factor (fracture density) that defines the connectivity between
the matrix block and the surrounding fracture network. It is reasonable assumption that
the mastic-fracture volume transfer is always governed by the matrix permeability (k,,)
due to its low conductivity. The fluid viscosity is determined by the upstream weighting
(i.e. if Pr < Py, then u = u(B,)). We ignore the gravitational forces in the transfer term
and assume a pseudo-steady state behavior in the matrix block. Based on Egs. (2.51) and

(2.52), we obtain the following fracture equation.

d(pgyr) ky k
T=‘7' p?VPf —O',D7m(Pf—Pm)+pq]c (253)

In contrast, the matrix flow equation is written as follows.

(pdpm) _
at

op %’” (P — By) (2.54)

where ¢,,, and k,,, represent the matrix porosity and permeability, respectively. On the
matrix coordinate system, the both inner and outer boundary conditions are imposed as
no-flow boundary, thus the well term is absent in Eq. (2.54). The matrix system only
plays as an additional source to the fracture system driven by the differential pressure

between fracture and matrix blocks.
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For the application of the dual-porosity modeling in the DTOF-based flow
simulation, we make the following assumptions.

e The FMM calculation only involves the fracture coordinate system. This means
that the FMM calculates the front of the pressure propagation based on the
fracture heterogeneities (kr and ¢). The drainage volume is obtained along the
t-coordinate without consideration for the matrix system.

e For simplifying assumption, the matrix properties (i.e. matrix porosity,
permeability, shape factor) are assumed to be homogeneous and isotropic,
because the geological heterogeneities of the matrix system are not accounted for
the DTOF and successive drainage volume calculation.

These treatments will be valid when the fracture network is the system in which the
pressure front primarily propagates through and when the matrix serves only as fluid
source to the fracture system. The schematic of the DTOF-based dual-porosity model is

illustrated in Fig 2.4.

Well
1-D Fracture System (Primary Coordinate)

N 7 )

°
°
°
°
°
°
MO|}-ON

No-flow

1-D Matrix System (Secondary Coordinate)

Fig. 2.4 — Dual-porosity model on the 1-D DTOF coordinate.
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Applying the coordinate transformation on the fracture flow equation (EQg.

(2.38)), we obtain the DTOF-based fracture transport equation.

d’f d’f.init Y (nuct)lnlt an ko qr
at( )_ w(7) 6r< (@ ar>_GB_M(Pf_Pm)+E (2.55)

where ¢y ini¢ is the initial fracture porosity. Rearranging Eq. (2.55) yields the following

fracture equation.

0 <M¢> < @ )(,uct)lmt 6Pf> B w(1) k

w5 5t )~ b m’ Bu

—Z(P; = Py) + qsr (2.56)

where w(t)/drinie represents the fracture drainage ‘bulk’ volume that is directly
obtained from the FMM calculation. The surface volume production rate gsf is
corresponding to Eqg. (2.48) and calculated using the same equation as the single-
porosity case (EQ. (2.50)). As discussed, the matrix permeability k,,, and shape factor o
is treated as a constant parameter over the domain. Thus, the spatial heterogeneities that
explicitly appears in Eq. (2.56) are the fracture drainage ‘pore’ volumes and fracture

drainage ‘bulk’ volumes. We define the fracture drainage ‘bulk’ volume as

w(T)

v(o) = ®7 init

(2.57)

The DTOF-based matrix equation is obtained by multiplying the fracture drainage ‘bulk’
volume on the both sides of Eq. (2.54), while the equation form still remains same.

%(d)—m) = ak—’; (P; — Py) (2.58)

Notice that the overall dual-porosity equation is obtained by substituting the matrix

equation (Eqg. (2.58)) into the fracture flow equation (Eq. (2.55)) as follows.
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at (qbf) Ta (qu) = (ﬁf(lgt :r< @ (M)lmt %?) o (2:59)
The above equation implies that the inter-cell fluid transport takes place only through the
fracture networks and the fluids, which are accumulated in the 1-D matrix blocks, are
linked only through the fracture system.

As with the single-porosity model, the DTOF-based dual-porosity governing

equations are discretized using a finite difference approximation. The finite difference

equation of the fracture system is written as

n+1 n+1 n+1 n+1 )Pn+1+ n+1 Pn+1
l 1/2 fl 1 l 1/2 l+1/2 i+1/2% fi+1

_ w;AT; KM"P) _ <M$L>l + v AT T;LIJ1 fngrl n+1) qn+1
i ,
Apntl Bin+1 Bin l l

where v; is the drainage ‘bulk’ volume of the grid block i (Eq. (2.57)) and T}l,\}% is the

(2.60)

matrix-fracture transfer function with an upstream weighting. The well term q’“r1

appeares only in the equation of the grid neighboring the wellbore.

1
T = ok (—) 2.61
FM,i m Bﬂ w ( )

The finite difference equation of the matrix system is written as

1 i Pm,i
: : +1(pn+1 +1) _
A+l l(BlTHl) - < Bl >l TFan ]Z?i - Prrrll,i =0 (2.62)

We assign Eqgs. (2.60) and (2.62) to each discretized fracture and matrix grids,

respectively, and solve the corresponding unknown variables, Pf’fl-“ and P,’,‘;'il. The

numerical simulation procedure and derivative calculations for constructing the Jacobian

are described in APPENDIX B.
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2.3.2 Gas Permeability in Nanoporous Media

Knudsen number is a widely-recognized system identification parameter that
determines a flow regime at given flow condition and fluid properties. This
dimensionless parameter is defined by the ratio of a gas mean-free-path A to a physical

length (usually the pore radius r) (Civian et al. 2011).

K, = (2.63)

A
r
The mean-free-path A is the average distance travelled by a moving molecule between
successive collisions on pore wall or with another molecule. Knudsen number, which is
given as the collision distance scaled by the pore radius, indicates the frequency of

molecular-molecular and molecular-wall collisions when a molecule travels in the unit

length. For ideal gas, A is defined as follows (Civian et al. 2011).
7}
== |— 2.64
A= (2.64)

where T is temperature, R is a universal gas constant, and M,, is molecular weight. For
real gas situations, the mean-free-path A is corrected by multiplying the compressibility

factor z (Swami et al. 2012).

z |mRT
1= #F /W (2.65)

Schaaf and Chambre (1961) identified five flow regimes on the basis of Knudsen

number as shown in Table 2.1.
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Table 2.1 — Flow regime identification based on Knudsen number
Knudsen Number, Kn Flow Regime
Kn < 0.001 Viscous flow
0.001 < Kn<0.1 Slip flow
0.1 <Kn<10 Transition flow
Kn =10 Knudsen flow

The Darcy’s law (viscous flow) is valid only in a fairly low Knudsen number
range (K, < 0.001), whereas the non-slip boundary condition is broken as Knudsen
number becomes higher (K, > 0.001). In the slip flow regime (0.001 < K,, < 0.1), the
collisions between gas molecule and pore surface become more pronounced and
consequently the linear flow approximation is broken down. In the transition flow (0.1 <
K, < 10), the additional pore surface effect plays an important role on the fluid flow,
that is Knudsen diffusion. Knudsen diffusion represents the diffusive flow driven by the
collisions between the molecule and pore surface, which is different from the molecular
diffusion driven by the molecule-molecule collision (Fig.2.5), and it occurs on the
porous media where the physical length r of the fluid flow path approaches comparable
or smaller than the mean-free-path A. The transition flow is identified as the combination
flow contributed by the convection, slippage, and Knudsen diffusion. Some authors
(Javadpour et al. 2007, Swami et al. 2012) pointed out that most of shales and many tight
gas reservoirs fall in the transition flow regime. At a very high Knudsen number (K,, >
10), the fluid flow is mainly driven by Knudsen diffusion flow, not by the convective

drive. This regime is not frequently encountered in shales and tight gas plays. Knudsen
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flow is usually modeled by using the molecular simulation instead of the continuum flow

approach.
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Fig. 2.5 — Diffusion types in porous media.

On the basis of the above flow regime identification, we focus on the fluid flow
modeling for the slip and transition flow regimes. The target Knudsen number is
0.001< K,, <10 (Table 2.1). During the slip and transition flow regimes, the total mass
flux J; in nanoporous media is governed by the Convection-Knudsen diffusion equation

in addition to the slip surface boundary condition.
Jr=Jc tk, (2.66)
where J- is convective mass flux, given by the Darcy’s equation with the correction of

slippage effect.

ko
Jo = pg—=FVP (2.67)
Hg

where F is the slippage factor. Brown et al. (1946) proposed a theoretical dimensionless

slippage factor for slip velocity in capillary tube.
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8RT\*° uy (2
_ Bo(2_ 2.68
F=1+ (nMW) Pr (a 1) (2.68)

where « is the tangential momentum accommodation coefficient or, simply, the part of
gas molecules reflected diffusely from the pore wall relative to specular reflection. The
value of a varies theoretically in the range from 0 to 1, depending upon the pore surface
smoothness, gas type, temperature, and pressure (Javadpour et al. 2007). In Eq. (2.66),
the Knudsen diffusion mass flux J, is given by the Fick’s first law with the gas
concentration difference.

Jk, = DmVpy (2.69)
where D,, is the ‘effective” Knudsen diffusion coefficient. For convenience, we use the
gas density difference Vp, in Eq. (2.69) instead of using the gas concentration
difference VC. Grathwohl (1998) suggested that the Knudsen diffusion coefficient is
scaled based on the matrix porosity and surface tortuosity due to the complexity of the
geometry of the porous media network. The approach is to consider the porous network
as consisting of a certain percentage of open pores (matrix porosity) and having a
degree of interconnection resulting in the actual path of the porous media longer than
the straight path (tortuosity).

D,, = QiiTka (2.70)

where ¢,,, represents the matrix porosity and § denotes the tortuosity, and D,, represents
the Knudsen diffusion coefficient in a long smooth straight tube that is given by the

function of mean molecular speed (Igwe 1987).
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D, = — 2.71
£ = (2.71)

2r(8RT>“5
M,

Notice that the Knudsen diffusion coefficient is proportional to the pore radius and
temperature. From Eqs. (2.66), (2.67), and (2.69), the Convection-Knudsen diffusion

equation for nanoporous media is written as

ko 1
Jrotal = Pg EFVP + DinVpg = pg E (kooF + CgﬂgDm)VP (2.72)

where ¢, is gas compressibility. In Eq. (2.72), we define the apparent permeability as

follows (Javadpour et al. 2007, Swami et al. 2012).
kapp = keoF + CgtigDpy (2.73)

Finally, the total mass flux (Eq. (2.66)) is written by the same equation form as the

Darcy’s law on the basis of apparent permeability.
1
Jr = pg—kappVP (2.74)
Hg

The Hagen-Poiseuille equation, which assumes a laminar flow in cylindrical pipe with

non-slip side boundary, gives a theoretical value for the Darcy permeability k..
ko, =— (2.75)

If the representative shape of pore is not straight cylinder, the Darcy permeability is
also corrected based on the porosity and pore geometry (tortuosity) as shown in EQ.

(2.70) (Grathwohl 1998).

2
szz%?gy (2.76)
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Substituting Egs. (2.68), (2.70), (2.71) and (2.76) into Eqg. (2.73), the apparent

permeability is defined as follows.

_(PmT? (8RT)°'5,ug(2 ) q§m2r<8RT>0'5
"aw—(?E Y Ga,) pr\a ™ Y|t oke |5 3 o,

_¢u[r? N (8RT)°'5M<E_ 1) | 2reghy (8RT)°'5
5§18 \nM,/ 8P \a 3 \nM,

.77)

The apparent permeability is proportional to the pore radius and given by the pressure,
temperature, gas properties, and pore radius. The ratio of the apparent permeability to

the Darcy permeability (‘Permeability Ratio’) is obtained by dividing Eq. (2.77) by Eq.

(2.76).
Kapp 8RT\*® uy (2 16¢4uy (8RT\*®
_ Ho (2 _ 9 (222 2.78
ke 1+(TL’M) Pr(a 1>+ 3r (nM) ( )

In above expression, we see that the apparent permeability is comprised of three
dimensionless components. First term in right hand side of Eq. (2.78) represents the
relative importance of the viscous flow (convective permeability), that is scaled to 1.
Second and third terms indicate the importance of the slippage and Knudsen diffusion
relative to the viscous flow, respectively. If the permeability ratio closes to 1, the pore
surface effects have no impact on the mass flux (purely viscous flow). If the
permeability ratio is fairly larger than 1, the fluid flow behavior is highly affected by the
slippage and Knudsen diffusion. Notice that the permeability ratio is proportional to the

pressure and inversely proportional to the pore size.
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2.3.3 Triple-Continuum Model
Based on the pore size variation in naturally- or hydraulically-fractured shale
reservoirs, the gas transport domain are divided into three distinct systems: (1) natural
and hydraulic fracture networks (macro-scale porous media), (2) nanopores in matrix or
organic matters (nano-scale porous media), and (3) organic bulk or Kerogen (not
containing pore space). Fig 2.6 illustrates a typical gas flow process and physical
mechanisms encountered in fractured shale reservoirs. The reservoir gas is produced
primarily through the fracture networks, and the other two systems, nanopores and
Kerogen content act as additional gas source to the fracture system. In this research,
there are three distinct sources of gas compressed in the pore spaces of the three
domains, which are the free gas in fracture and nanopores, adsorbed gas on nanopore
surface, and dissolved gas in organic matter bulk. For each coordinate system, the shale
gas physics are incorporated as follows.
e Primary coordinate: Fracture network
a. Fracture is the primary coordinate for fluid flow and production.
b. Flow is governed by convective transport.
c. Fractures are affected by rock compacted due to geomechanics effect.
e Secondary coordinate: Nanopores in organic- and inorganic-rocks
a. Two types of gases are compressed in nanopores — free gas and adsorbed
gas.
b. Flow is governed by the convection-Knudsen diffusion.
e Tertiary coordinate: Organic bulk (Kerogen)
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a. Kerogen is the hydrocarbon source and contains the dissolved gas.

b. Dissolved gas diffuses to nanopores by concentration drive.
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Fig. 2.6 — Gas flow process in the fractured shale reservoir.

The triple-continuum approach provides the generalized framework that is able
to account for all physical effects and processes that exist in shale gas reservoirs. The
numerical implementation involves the slippage and Knudsen diffusion effects, rock
compaction in fractures, adsorption/diffusion, and gas diffusion from Kerogen content.
Fig. 2.7 illustrates the gas transport processes on the triple-continuum model and the
connectivity among the fracture, nanopores, and Kerogen systems. The approach is
similar to the DPSP model, while the one more coordinate (Kerogen) is added outside
the matrix system. The inter-coordinate mass transfer between the fracture and nanopore

is governed by the convection-Knudsen diffusion flow (apparent permeability).
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Fig. 2.7 — lllustration of the triple-continuum approach.

The mass transfer between the nanopores and Kerogen is governed by diffusive
transport driven by the gas concentration difference between the nanopores (adsorbed

gas) and Kerogen bulk (dissolved gas), which is given by the Fick’s law of diffusion.
Jkm = _Upg,sch(Cm —Cy) (2.79)

where o is the shape factor, p, . is the surface gas density, D, is gas diffusion

coefficient, C, is gas concentration dissolved in Kerogen, and C,, is gas concentration

adsorbed on the surface of nanopores. The adsorbed gas concentration on the nanopore

surface C,, is given by the Langmuir isotherm model (Langmuir 1916).

p

where V; is Langmuir volume and P; is Langmuir pressure. Notice that the Langmuir
volume V, has the units of scf/rcf. This is obtained from the bulk rock density p,

(gm/cc) and the adsorbed gas content V,,, (scf/ton).
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V, = 0.031214p,V,, (2.81)

Mengal et al. (2011) suggested that the approximate values of p,, V,,, and P, in the
Barnett shale are 2.38 (gm/cc), 96 (scf/ton), and 650 (psia), respectively. Hence, the
Langmuir volume V; is expected to be about 7.13 (scf/rcf).

Fig. 2.8 shows the gas flow process from organic matter bulk to nanopores. At
static condition, the Kerogen gas concentration is in equilibrium with the adsorbed gas
concentration. After the well production and resulting pressure depletion in the nanopore
system, the equilibrium condition is disrupted due to desorption of the adsorbed gas
molecules. The concentration imbalance causes the dissolved gas in the Kerogen to
diffuse to the Kerogen-nanopore interface, and then the gas molecules start to be

adsorbed on the pore surface.

Organic Matter
(nonpore)

Gas Diffusion

Desorption

Shale Matrix
(nanopore)

-
L] » -

Fig. 2.8 — Gas diffusion from organic matter to nanopore.

The mass balance in the fracture system is obtained by Eq. (2.53) including rock
compaction effects, My and M, and using the apparent permeability k,,,, in the matrix-

fracture transfer term instead of the ordinary matrix permeability k,,,.
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k
Z”” (Pr — Pn) + pyay (2.82)
g

d My ks
§(¢fM¢pg) =Velpyg VPs | — 0pmpy
Hg

where My, and M, represent the multipliers for porosity and permeability, respectively,
and ap), denotes the shape factor of fracture-nanopore connectivity (fracture density). In
this formulation, the porosity multiplier M is given by the rock compaction table as a
function of pressure instead of the conventional exponential rock compressibility
function (Eq. (2.34)). Applying the coordinate transformation into 1-D t-coordinate (EQ.

(2.38)), we obtain the fracture equation along z-coordinate as follows.

a(¢fpg)
ot
c) (2.83)
_ Prinic 0 HgCt)ini OPF Kapp
- W(T) T W(T)Mkpg iy ot OrmMPg iy (Pf Pm) +pgqf

Notice that the surface production rate g is calculated by Eq. (2.50). For the nanopores

system, the mass balance equation is written as
d 3 kapp
a(d)mpg + pg,sch) = OrMPyg 7 (Pf - m) - O-MKpg,sch(Cm - Ck) (2-84)
g

where p, ¢ represents the gas density at standard condition (14.7 psia and 60 °F), and
oux denotes the shape factor of nanopore-Kerogen connectivity (density of nanopores in
organic matter). The accumulation term in Eq. (2.84) contains the mass of two states of
gas which are free gas compressed within pore and adsorbed gas compressed on pore
surface. The first term in the right hand side of Eq. (2.84) represents the mass transfer
between fracture and nanopore given by the convection-Knudsen diffusion flow, and the

second term represents the mass transfer term between nanopore and Kerogen given by
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the diffusion flow (Eq. (2.79)). For the Kerogen system, the mass balance equation is
written as

aC
a_tk = omg D (Crn — Ci) (2.85)

The finite difference equation in the fracture system is

Tn 1/2anl+11 (Tn 1/2 + Tri}Z)PTH_l TT}I-E}ZP}‘LL-:}l

n+1 n +1 (2.86)
= WiATi l(M L > — <M¢'i>l + AT:v:0 k‘rllppi n+1 Pn+1) qn+1
A+l Bin+1 Bin L (B n+1

where v; is the derivative of the drainage ‘bulk’ volume of the grid block i as defined in

Eq. (2.57). The apparent permeability k;l;z}l is calculated by Eqg. (2.77) for each matrix

block for each time-step. The finite difference equation in the matrix system is

1 i 1 Pomi kg;pll 1 1
Atn+1 [(anrl + Cfrrll:l; ) - ( BTL' + CT?I,I)] (B,Ll n+1 (Pn+ PTTrll:l;
i i

(2.87)
+oux D (CREt — €)= 0
The finite difference equation in the Kerogen system is
(CTL+1 Ck )
S DG =GB = 0 (2.89)

The governing equations of the DTOF-based triple-continuum approach are given by
Eqgs. (2.86) - (2.88), and the corresponding primary variables are the fracture pressure
(P¢), matrix pressure (B,), and Kerogen dissolved gas concentration (Cj) for each grid.
The numerical simulation procedure and derivative calculations for constructing the

Jacobian are described in APPENDIX B.
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2.4 Results and Discussions

In this subchapter, three examples are presented for the validation of the single-
phase DTOF-based flow simulation using 2-D and 3-D heterogeneous gas reservoir
models. The model validations include the single-porosity, dual-porosity, and triple-
continuum models as described in this chapter. The results of the DTOF-based
simulation are compared with the predictions from a commercial blackoil simulator
(Schlumberger®© ECLIPSE100).
2.4.1 Single-Porosity Model

For the validation of the single-phase single-porosity model, we first present a 2-
D channel-type reservoir model. The model size is 1,200 ft, 2,400 ft, and 10 ft along X,
y, and z directions, respectively, and the model is comprised of 60x120 (7,200) grids.
The initial reservoir pressure is 5,000 psi at equilibrium. Fig. 2.9 shows the geological
heterogeneities of the 2-D model. The permeability has the directionality among x-, y-,
and z-axes ((a) — (c)), and the porosity is heterogeneously distributed ((d)). The
formation permeability ranges from 2.3x103 to 2 md in horizontal and the porosity

ranges from 0 to 5 %.
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Fig. 2.9 — Distributions of the porosity and logarithmic permeability.

Before conducting a numerical simulation, we first transform the multidimensional
geometric heterogeneities (geometry, porosity and permeability) into 1-D heterogeneity
along the DTOF coordinate by the FMM calculation. The DTOF map is illustrated in

Fig. 2.10. Notice that the well is vertically placed in the center of the model.

Fig. 2.10 - DTOF map in heterogeneous single-porosity model.
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Fig. 2.11 shows the drainage volume curves. After the DTOF calculation, the FMM
successively computes the well drainage volumes by summing up the pore volumes
within the contours of DTOF along the pressure propagation trajectory ((a)). The
drainage volume is also calculated as a function of time ((b)) using the following

equation.

T2
ACED WAL (— ﬁ) (2.89)
j
The drainage pore volume monotonically evolves from the well completions and finally
reaches a plateau (pseudo-steady state / boundary-dominant flow) which means that the

propagation front completely touches on the model outer boundaries and there is no

available (propagable) pore volume anymore.
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Fig. 2.11 — Drainage pore volumes as a function of (a) DTOF and (b) Time.
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Once we obtain the drainage pore volume, we successively perform a numerical
simulation based on the 1-D DTOF coordinate system. Fig. 2.12 shows the results of the
DTOF-based simulation. The simulation results are compared with the commercial
simulator for reference. Fig. 2.12 (a) is the predicted well gas production rate under a
constant bottom-hole pressure constraint (3,500 psi). Fig. 2.12 (b) is the predicted well
bottom-hole pressure under a constant gas production rate constraint (1,000 Mscf/day).

The both results have a good agreement with the results of the commercial simulator.
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Fig. 2.12 — Simulation results of the (a) gas production rate and (b) bottom-hole pressure. The plot
denotes the result of the commercial simulator (ECLIPSE) and the lines represents the result of the
DTOF-based simulation.

During the DTOF-based flow simulation, the spatial variable (pressure) is numerically
solved along the 1-D coordinate system each time-step. Because we know the DTOF

values on the cell center of each Cartesian grid, the 1-D pressure solution can be linearly
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mapped back on the original Cartesian model each time-step. Fig. 2.13 (a) and (c) are
the pressure contours at 100 days and 300 days, respectively, calculated by the
commercial simulator. Fig. 2.13 (b) and (d) are the pressure map at the corresponding
time-steps calculated by the DTOF-simulation. We can see the DTOF-based simulation
captures the pressure in a highly heterogeneous geological characteristics based on its 1-

D coordinate.
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Fig. 2.13 — Pressure maps of the (a) ECLIPSE at 100 days, (b) DTOF simulation at 100 days, (c)
ECLIPSE at 300 days, and (d) DTOF simulation at 300 days.

2.4.2 Dual-Porosity Model

A dual-porosity modeling is an efficient way to simplify a geological description
of the complex fractured reservoirs. In this example, we demonstrate the naturally
fractured gas reservoir model with a vertically completed well. The reservoir size is
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1,990 ft, 1,990 ft, and 500 ft along X, y, and z directions, respectively, and the model is
comprised of the total 199x199x10 grids. The first 5 layers represent the matrix system
and the other 5 layers are the fracture system. These two distinct systems are connected
by the convective transfer function without the diffusion and slippage effects. The initial
reservoir pressure is 5,470 psi. Fig. 2.14 shows the permeability and porosity
distributions in the fracture coordinate. The fracture permeability is ranging from 0.32 to
4.93 md in x direction, 0.32 to 4.98 md in y direction, and 0.034 to 0.634 md in z

direction. The fracture porosity ranges from 0.97 to 12 %.
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Fig. 2.14 — Distributions of the fracture permeability and porosity.
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In the matrix system, the permeability and porosity are both constant (1x10 md and 10
%). The matrix rocks have a low permeability but large storage capacity relative to the
fracture system. The well is vertically placed on the center of the model and completed
through the five fracture layers.

In this model, the geomechanical rock compaction is considered to account for
the effects of the rock deformation and compaction in the fracture space. In the
conventional stratified sandstone reservoirs, geomechanical effects on its porosity and
permeability are generally small and usually neglected. However, in fractured reservoirs,
such geomechanical effects can be relatively large and may have a significant impact
particularly in near-wellbore region due to the large pressure drawdown. The resulting
rock compaction can significantly affect to the flow conductivity and the fluid storage
capacity in fractures space. In this model, the rock compaction is incorporated on the
pressure and porosity as shown in Fig. 2.15. The fracture permeability (multiplier)
changes nonlinearly as a function of pressure. The porosity (multiplier) changes linearly
in the pressure table instead of using the conventional exponential rock compressibility

function (Eq. (2.34)).
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Fig. 2.15 — Rock compaction table for the fracture system.

Fig. 2.16 shows the numerical simulation results of the constant well bottom-hole
pressure and constant well rate cases. Fig. 2.16 (a) is the predicted gas production rate
under the constant bottom-hole pressure constraint (4,000 psi). In this figure, the ‘casel’
represents the result without the rock compaction effect, and ‘case2’ represents the result
with the rock compaction effect. Fig. 2.16 (b) is the predicted bottom-hole pressure
under the constant gas rate constraint (1,000 Mscf/day). It is obvious that the rock
compaction effect in fractures has a significant impact on the production and bottom-
hole pressure behaviors. Under the influence of the rock compaction, the rate and
bottom-hole pressure rapidly declined because the fracture conductivity and storage

capacity are dramatically decreased as the fracture pressure decreases.
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Fig. 2.16 — Simulation results of the (a) gas production rate and (b) bottom-hole pressure. The plots
are the commercial simulator and the lines are the DTOF-based simulation. The ‘case1’ represents
the no rock compaction model, and ‘case2’ denotes the rock compaction model.

2.4.3 Triple-Continuum Model

The main purpose of the triple-continuum modeling is to simulate
unconventional shale gas reservoirs with taking account for all the known physical
mechanisms and its characteristics. The dual-porosity model is still a reasonable
approach to model such reservoirs because most shale reservoirs are essentially naturally
fractured, but it is not sufficient to explain the existence of organic matters. In the triple-
continuum approach, we decompose the reservoir domain into three distinct subdomains
— (1) natural and hydraulic fracture networks (micropores), (2) inorganic matrix
(nanopores), and (3) organic matter bulk (Kerogen). It enables us to incorporate various
types of physical phenomena into each subdomain, i.e. geomechanical rock compaction
in fractures, slippage and Knudsen diffusion effect in nanopores, and gas diffusion from
organic matters. In this example, we present a synthetic shale gas well model stimulated
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by a multistage hydraulic fracturing. The model size is 2,000 ft, 4,000 ft, and 150 ft
along x, y, and z directions, respectively, and the model consists of the 200x400x90
(7,200,000) grids. The first 30 layers is the fracture domain, the second 30 layers is the
nanoporous domain, and the last 30 layers is the Kerogen bulk domain. The initial
reservoir pressure is 1,500 psi at equilibrium for all the domains. Fig. 2.17 shows the
fracture permeability distribution that ranges from 1x10* to 0.15 md in horizontal
direction and from 1x10° to 1.5x10° md in vertical direction. The fracture porosity is

assumed to be constant (1 %).

Fig. 2.17 — Horizontal permeability distribution in the fracture system.

The well is horizontally placed along y direction and completed with planar 12-stage
hydraulic fractures as shown in Fig. 2.18. The horizontal length of the well is
approximately 3,300 ft. The average fracture half-length, width, and height are 200 ft, 10

ft, and 100 ft respectively. Because of the hydraulic fracturing, the permeability is
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increased by a factor of 10,000 in the stimulated grids for all the directions. The
hydraulic fracture permeability ranges from 1.3 to 1,532 md in horizontal direction and

from 0.013 to 15.3 md in vertical direction.

Fig. 2.18 — Horizontal well stimulated by the 12-stage hydraulic fracturing.

The reservoir properties are summarized in Table 2.2. In the triple-continuum
model, the apparent matrix permeability is calculated using pressure, temperature, gas
properties, and nanopore size as described in Eq. (2.76), thus the matrix permeability is
not explicitly input in the model. In Table 2.2, there are two shape factors that is
fracture-matrix shape factor and Kerogen-nanopore shape factor. The latter one
represents the density of formation porosity in inorganic- and organic-rocks. The
adsorption/desorption processes are modeled by the Langmuir isotherm. This isotherm
model has several assumptions.

e The adsorption equilibrium is instantaneous (only relates to pressure, not to

time).
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e The adsorption layer forms only monolayer at maximum.

e There are no phase transitions and surface diffusion in the adsorbed layer.
This isotherm is characterized by two parameters — Langmuir pressure and Langmuir
volume. Langmuir pressure represents the pressure at which one half of the Langmuir
volume can be adsorbed. Langmuir volume is defined as the maximum amount of gas
that can be adsorbed to the surface of nanopores at infinite pressure. In this model, the

Barnett shale gas data are used (Mengal et al. 2011) as shown in Fig.2.19.

Table 2.2 — Reservoir properties (3D triple-continuum model)
Reservoir properties
Initial pressure (psia) 1,500
Temperature (degF) 250
Matrix properties
Porosity (fraction) 0.1
Rock compressibility (1/psi) 1x10%
Fracture-matrix shale factor (L/t?) 0.15
Langmuir pressure (psi) 650
Langmuir volume (scfircf) 7.13
Kerogen properties
Diffusion coefficient (ft/day) 0.02
Kerogen-matrix shape factor (L/ft2) 0.15

58



70
6.0
5.0
4.0
3.0

20 F

Gas Content (scf/rcf)

1.0

0.0

0 1,000 2,000 3,000 4,000 5,000

Pressure (psia)

Fig. 2.19 — Langmuir isotherm model (the Barnett shale gas).

Fig. 2.20 illustrates the Knudsen number as a function of pressure and pore
radius at given temperature and fluid compositions. The Knudsen number is calculated
by Eq. (2.62) as a function of mean-free-path and pore size. When pore size is smaller
than 100nm, the flow regime falls in slip or in transition flows at low pressure condition.

Contrary, the viscous flow regime is appeared in micrometer pores (1,000 nm-~).
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Fig. 2.20 — Knudsen number as a function of pressure and pore size at fixed gas composition and
reservoir temperature (T = 250 °F).
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Fig. 2.21 shows the changes of apparent gas permeability ((a)) and permeability ratio
((b)) as a function of pressure and pore size at given reservoir temperature and fluid

compositions. These parameters are calculated by Egs. (2.76) and (2.77), respectively.
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Fig. 2.21 — Permeability change due to the slippage and Knudsen diffusion effects. (a) Apparent
permeability and (b) Permeability ratio.

Before conducting the simulation of the triple-continuum model, we first validate
this multistage hydraulic fractured model using single- and dual-porosity approaches
without the shale gas effects (adsorption/desorption, slippage and Knudsen diffusion,
and Kerogen diffusion terms). Fig. 2.22 (a) shows the simulation result of the single-
porosity model that only involves the fracture system. Fig. 2.22 (b) is the simulation

result of the dual-porosity model that involves the fracture and matrix systems. Both
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models have a good agreement with the commercial simulator on the gas rate

predictions.
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Fig. 2.22 — Validation results of the (a) single-porosity model and (b) dual-porosity models. The
results are compared with the ECLIPSE.

Next, we conduct the simulation of the triple-continuum model with fracture,
nanopore, and Kerogen domains. We first predict the 10 years gas production rate under
the constant bottom-hole pressure condition (500 psia) as shown in Fig. 2.23. The
simulation is conducted based on several pore size conditions (100, 50, 20, 10, and 5 nm
cases). The early-time production behavior significantly differs with the pore size
variations which controls the matrix-fracture conductivity. The production decline rate is

considerably higher in smaller pore condition, because the fracture obtains little
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assistance from low-conductive smaller nanopores. After 10 days from the first

production, the pore size does not make a difference on the production behavior.
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Fig. 2.23 — Gas production rates with different pore size conditions (10 years).

Fig 2.24 shows the volume transfer rate between fracture and matrix ((a)) and between
matrix and organic matter ((b)). The matrix-fracture transfer responds very quickly to
the pressure depletion due to its convective nature. The diffusive flow between nanopore

and Kerogen proceeds slowly due to its diffusive nature.
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Fig. 2.24 — Inter-coordinate fluid transfer between (a) matrix and fracture, and (b) Kerogen and
matrix.

Finally, we predict the well bottom-hole pressure under the constant gas rate
constraints (500 Mscf/day). Warren and Root (1963) suggested that, in dual-porosity
reservoirs, they exhibit two distinct parallel pressure responses (or pseudo-pressure
response). The model shows the similar behaviors to the dual-porosity model as shown
in Fig 2.25 (a). The first straight line represents the fracture-dominant behavior, and the
second straight line represents the behavior of the dual system (fractures + nanopores).
In the 100 nm case (blue line), the first straight line does not explicitly appear because
the matrix instantaneously responds to the pressure drawdown due to the high
conductivity between the fracture and nanopores. In contrast, the 5 nm (purple line)
shows the long first straight line because of its low conductivity and the slow response of

the matrix system. The pressure derivative plots are shown in Fig. 2.25 (b).
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Fig. 2.25 — Simulation results of the (a) bottom-hole pressures and (b) its derivatives

The responses of the matrix and Kerogen systems are also observed by plotting the
volume transfer rate between the fracture and matrix and between the matrix and
Kerogen (Fig. 2.26). The instantaneous response can be seen in the 100 nm case (blue
line), and then the smaller pores gradually activated as the pressure drawdown proceeds
in the matrix system ((a)). Notice that the steady-state matrix-fracture transfer rate (the
rate after 10 days) does not show difference among all the pore size cases. In contrast,
the Kerogen system is pronounced in the late time period and essentially has no

difference in the transfer rate for the pore size variations ((b)).
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Fig. 2.26 — Inter-coordinate fluid transfer between (a) matrix and fracture, and (b) Kerogen and
matrix.

2.5 Conclusions
This chapter presented the DTOF formulation and its extension to the multi-
continuum modeling for single-phase fluid flow problems. The proposed approach is
applicable in both compressible and slightly-compressible fluids and allows us to include
complex well models (i.e. horizontal well with multistage hydraulic fractures) as well.
The numerical experiments show good agreement between the proposed approach and
conventional simulation method (commercial simulator). The power and versatility have
been demonstrated through the model validations. The major features of this chapter are
summarized as follows.
e A finite difference method is used to approximate the pressure solutions of the 1-
D DTOF-based differential equations as with the conventional reservoir
simulation approach. The w-function is constructed as a directional property

from the drainage volume using forward, backward, and central differences.
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The DTOF-based flow simulation is less computationally demanding compared
with the conventional reservoir simulation method due to the several inherent
advantages of this approach. First, the Fast Marching Method is single-pass
algorithm because each cell is touched essentially only once. Thus, the solution
can be constructed sequentially from the small t (source point) to large = (usually
outer boundary) along the pressure propagation path. It allows the FMM to be
applied for large scale problems. Second, the multidimensional transport
equations are decomposed into the series of 1-D transport equations based on the
coordinate transformation. During the numerical computation, the sizes of the
matrix and vector constructed for each iteration step are dramatically reduced, for
example, from several millions to several hundreds. Third, in the transformed 1-
D coordinate, the geological heterogeneities are integrated to only one
heterogeneous parameter that is drainage volume. The complex reservoir
geometries (i.e. corner point grid) are also transformed to a simple 1-D grid
coordinate. Furthermore, the drainage volume is a property monotonically
increasing from small 7 to large 7. As a result, the grid complexities and spatial
heterogeneities are considerably simplified in the DTOF formulation.

The DTOF formulation is extended to dual-porosity modeling. The additional
coordinate (matrix system) is added to the 1-D fracture system under several
assumptions: (1) the FMM is performed on the fracture coordinate without
consideration for the matrix system and its heterogeneities, and (2) matrix
properties (permeability, porosity, an shape factor) are constant over the domain.
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Also, the primary variables in the matrix system are solved along the same 1-D
coordinate as the 1-D fracture system.

We have proposed a generalized framework for the flow modeling of shale gas
reservoir using the triple-continuum approach. The unconventional reservoir
characteristics were comprehensively investigated by accounting for all the
known physical mechanisms and its characteristics including the Knudsen
diffusion and slippage effects, adsorption/diffusion in nanopore surfaces, rock
compaction in fractures due to the geomechanical effect, and gas diffusion from
Kerogen content. The numerical simulation results show that the apparent
permeability, which governs the mass transmissibility between the fracture and
nanopores, can change significantly in low bottom-hole flowing pressure
conditions. The apparent permeability also shows high dependency on the matrix
pore radius. The numerical results show that the matrix-fracture interaction has
an impact on the early time transient behavior, while the Kerogen system is

activated slowly due to its diffusive nature.
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CHAPTER 11

MULTIPHASE DTOF AND ITS USE IN FLOW SIMULATION

In the petroleum industry, multiphase and multicomponent flow simulations are
essential for modeling fluid flow in porous media due to the fact that reservoir fluids are
comprised of various types of hydrocarbon and non-hydrocarbon components.
Subsurface reservoir is often saturated with multiphase fluids (oil, gas, and grand water)
because of the presence of aquifer and phase transitions of the hydrocarbon components
depending upon the dynamic reservoir conditions. A numerical simulation for solving
this highly nonlinear differential equation problem involves linearizing and discretizing
the phase or component flow equations in terms of space and time using the solution
techniques (i.e. FDM, FEM, and FVM).

This chapter is organized as follows. In Subchapter 3.1, general mass balance
equations are introduced for multiphase and multicomponent flow modeling. In this
research, the fully implicit method (FIM) is used for the multiphase simulations, which
means all unknown variables are simultaneously computed by solving a linear system of
equations. In Subchapter 3.2, the concept of the diffusive time of flight is generalized
for multiphase and multicomponent flow problems using the asymptotic theory
(‘multiphase DTOF’). On the basis of the multiphase DTOF, the flow domain is
transformed from the physical coordinate to the series of 1-D coordinate associated with
the coordinate transformation of the multiphase transport equation. In Subchapter 3.3,

capillary pressure effects are taken into account for the thermodynamic condition of two-
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phase vapor-liquid equilibrium (VLE) by modifying a conventional flash calculation
procedure. The conventional thermodynamic system is assumed to be macro-scale PVT
cell without the consideration for the IFT and capillarity effects. These effects are
especially important for simulating a vapor-liquid phase transition in confined nano-
scale porous space such as shale, CBM, and tight reservoirs. The proposed formulations
are validated through the numerical simulations in Subchapter 3.4. Finally, we make
conclusions and discussions in Subchapter 3.5.
3.1 Introduction to Multiphase Flows
3.1.1 Three-phase Blackoil Equations

We first see the differential equations of general blackoil situation in a porous
medium. The reservoir fluid is saturated with three-phase state — oil, gas, and water
phases. The oil and gas phases exchange mass between them (i.e. solution gas in oil,
vaporized oil in gas), while the water phase does not exchange mass with the other
hydrocarbon phases. The flow equation of phase a (w, o, g) is written by the following

mass balance form.

o)
a((ppasa) =—Ve (paua) + Paqa 3.1)

where u,, is the velocity of phase a and g, is the production or injection rate of phase a
per unit volume per unit time at wellbore condition. The phase velocity is approximated
by the Darcy’s law with a relative permeability. For simplicity, we neglect the gravity
and capillary pressure. Thus, the velocity has a linear relationship to the pressure

differential.
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k
u, = -k—=pp (3.2)
Ha

In a closed domain, the outer boundary is imposed as no-flow impermeable boundary.

The mass conservation equation is written as follows.

0 k
a(d)pasa) =Ve (pafkvp) t+ Paqa (3.3)

a

For water phase, the continuity of mass involves the mass of free water and the mass of

irreducible water.

rw

d k
a(d)pwsw) =Ve (pw 7

KVP) + pu (3.4)

w

Notice that the mass density of water is defined by

_ Pw,sc

By,

Pw (3'5)

where p,, 5. denotes the surface water density and B,, represents the formation volume
factor of the water phase.

For oil phase, the continuity of mass involves the mass of oil in the oil phase and
mass of oil vaporized in gas phase (condensate).

d
a [¢(pooso + Rvpogsg)]
(3.6)

Kro krg
= Ve (K| poo—+ Rupog—|VP| + poodo + RuPogdy
Ho Hg

where R,, represents the vaporized oil gas ratio, p,, denotes the mass density of oil in the
oil phase, and p,, denotes the mass density of oil in gas phase.

__ Po,sc _ Po,sc

B, ' P9~ 7B,

Poo (3'7)
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where p, s is surface oil density, and B, and B, are formation volume factor of oil and
gas phase, respectively. For gas phase, the continuity of mass involves the mass of gas in

the gas phase and mass of gas dissolved in oil phase (solution gas).

0
ET [‘l’(pggsg + RsopgoSO)]
(3.8)

ro

k k
=Ve [k <pgg ﬁ + RsoPgo ll_> VP] + Pggdg + RsoPgoqo
)

(0]
where R, represents the solution gas oil ratio, p,, denotes the volumetric mass density
of gas in free gas phase, and p,4, denotes the volumetric mass density of gas dissolved in

oil phase.

__ Pg,sc _ Pg,sc

pgg - Bg 4 pgo - BO

3.9)

where p, <. is the surface gas density.
Dividing Egs. (3.4), (3.6), and (3.8) by Egs. (3.5), (3.7), and (3.9), respectively,
we obtain the mass balance equation on the standard volume basis for the three-phase

black oil model. The mass balance equation of water is

a SW kT'W qW
— (o) =ve = 3.10
Jt <¢ BW) v (k By, ty, VP) * B, (3.10)

The mass balance equation of oil is

d So Sg)l l < ko krg ) l 90 dg
— —+R,—=]||=Velk + R VP|+—+R,— (3.11)
ot l(]b (BO v B, B,u, v Byug B, v B,

The mass balance equation of gas is

a Sg SO krg kro qg qO
— —+R,,—||=Velk +R VPl +—+ R;p — 3.12
ot [d) (Bg * o BO)l I (Bg“g > Botg By *°B, (312

71



The additional equation is given by the saturation constraint.

Sw+Se+S;=1 (3.13)
Egs. (3.10) — (3.13) provide the four independent equations to solve the four primary
unknowns. In the three-phase transport process, the primary unknowns correspond to the
pressure (P) and phase saturations (S,, Sy, Sy). We solve the linear system of equations
of this partial differential equations by linearizing and discretizing into the finite space
and time.

3.1.2 Multicomponent Flow Equations

The compositional flow equations consist of N, + 1 equations associated with
the transport of the N, hydrocarbon components and water. The molar mass balance
equation of hydrocarbon component i is written as follows.

9]

3 [ (%8050 + ¥i€4Sg)]

(3.14)

kro krg
= Ve |k|x:$—+y:&g— | VP| + x:$,q0 + ¥i€ g4y
Ho Hg

where x; is the mole fraction of component i in oil phase, y; is the mole fraction of
component i in gas phase, &, and & are the oil and gas molar density, respectively, and
q, and q, are the oil and gas volumetric rate at wellbore condition, respectively.

In this research, we assume that the water phase does not exchange mass with the
hydrocarbon phases. Thus, the water flow equation is given by the independent mass

balance form, which has the same form with the blackoil equation (Eq. (3.4)). The
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thermodynamic equilibrium of the hydrocarbon phases is given by the fugacity equality

of liquid and vapor phases for each component.

£EP, T, %1, ) = £V (P T 1, s ) (3.15)
In addition to the differential equations and fugacity equilibrium, there are two mole

fraction constraints.

N¢ Ng
zxi —1, Zyi —1 (3.16)
i=1 i=1

In the transport process, there is one saturation constraints.

So+Sg+Sw=1 (3.17)
In multicomponent flow simulation, the fluid phase properties &,, &,, f;*, and f;” are
calculated by the three-parameter Peng-Robinson Equation of State (PR-EQS). The
phase viscosities, u, and ug, are successively calculated using the Lohrenz-Bray-Clark

viscosity correlation based on the given phase composition and phase molar density. The
procedure of the phase split (flash) calculation is described in APPENDIX D. If the
reservoir is saturated with three-phase (oil, water, and gas), we solve the following

primary unknowns.

P, S0, 85 Sws X1y s XN Y1s o0 YN, (3.18)
Egs. (3.4), and (3.14) — (3.17) provide 2N, + 4 independent equations for the 2N, + 4
unknowns (Eg. (3.18)). Notice that the component-based flow equation can be

transformed into the phase-based flow equation from by summing up the component

equations (Eq. (3.14)) for oil and gas phases, separately.
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i — v (kg, b 3.19
a(‘pfoso)—V'( EOM_VP)-l'xi’foqo (3.19)

9 k,
a(gbfgsg) =Ve (kfg =9 \7P> +vi€,4, (3.20)
Hg

If we neglect the hydrocarbon phase interactions (i.e. solution gas, vaporized oil), the
compositional flow equations (Eqgs. (3.19) and (3.20)) are equivalent to the blackoil
equations (Eqgs. (3.6) and (3.8)). Thus, the compositional flow formulation holds the
phase mass balance.
3.2 Development: DTOF-based Simulation for Multiphase Flows
3.2.1 Multiphase Diffusive Time of Flight

We generalize the DTOF from multiphase and multicomponent flow equation
based on the asymptotic pressure solution as we showed the single-phase case in the
previous chapter. On the basis of Eq. (3.3), the general mass balance equation of phase

a can be written as
a 2
a(¢pa5a) — V(pokAy) « VP — (poKAy) e V2P =0 (3.21)

where A, is fluid mobility of phase a. The sink or source term is imposed on the inner
boundary condition. Not only the blackoil equations, but the compositional equations
also holds this phase transport equation by summing up all the component mass balance
equation (i = 1, ..., N,) for phase a as shown in Egs. (3.19) and (3.20). After carrying

out the time differentiation, the accumulation term in Eq. (3.21) is rearranged as follows.
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d _ (09 0P, apP asa
a(d)pasa)—(a_l)pa-l'(p aP> aat d) Pa at
(3.22)
opP S,
= qbpasa(cr + ¢q) E + dpa 7
Substituting Eq. (3.22) into Eq. (3.21), the transport equation for phase « is
1
$Sal(cr + Ca) ¢_ - ,0_ V(kpgda) o VP — (KAg) @ «V?P =0 (3.23)

The global mass balance equation in the domain is obtained by summing up all the phase

equations (Eq. (3.23)).

¢>ct + ¢ Z z [pi V(kpala)] «VP —Ki, s V2P = 0 (3.24)

where c; is the total compressibility factor.

Ct = Cp + z SaCa (3.25)
Notice that the saturation constraint leads
aS,
e _ 3.26
o (3.26)

From Egs. (3.24) - EqQ. (3.26), the pressure equation for multiphase flow is obtained as

follows.
dP 1
dey— — z [— V(kpa/la)] «VP — ki, » V2P = 0 (3.27)
at Pa
We consider the equation in the frequency domain by applying a Fourier transform.
- 1 ~ ~
by (—iw)P(x, w) — Z [p— V(kpala)] «VP(x, ) — KA, s V2P(x,0) =0 (3.28)
(24

The leading-order solution of the pressure propagation equation is obtained using the

same way as single phase flow case. As we see in the previous chapter, the asymptotic

75



pressure solution is expressed by Eq. (2.14). However, we will generally be interested in
only the leading-order solution of the infinite series of the asymptotic solution. Inserting

Egs. (2.15) — (2.17) into EqQ. (3.28) and arranging the equation in terms of powers of

v—iw, we obtain the following quadratic equation.
(e — kA VD) A (V=iw)”

1
+ {k/’ltVZTAO + 2kA, VTV A, + Z [p— V(kpafla)] VTAO}V—iw (3.29)
a

- {Z [i V(kpaxla)] VA, + kAtVZAO} ~0

The equation from is very similar to that of single phase flow case as written in Eq.
(2.18). Consequently, the first term in Eq. (3.29) leads the equation for the front of

pressure propagation in multiphase porous medium.
UtVZT - ¢Ct = O (330)

Alternatively, we can rewrite Eq. (3.30) in the Eikonal equation form.

77| \/% =1 (3.31)
t

As a result, we can define the multiphase diffusivity.

kA
e = ¢_Ci (3.32)

In a single-phase state, A, simply represents the inverse of the fluid viscosity,
thus Eq. (3.32) is equivalent to the single-phase diffusivity (Eg. (2.21)). In a multiphase
state, the total mobility A, and total compressibility c, are obtained by summing up all

the saturated phase properties (i.e. oil, water, gas). In a compositional simulation, the
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phase properties (i.e. density, viscosity, compressibility) are calculated using the phase
split calculation (VLE flash). Therefore, the total mobility is obtained by

k
o=y —<= (3.33)
Uy

In Eq. (3.25), the isothermal compressibility of phase « is calculated by

Cq = i% (3.34)
The hydrocarbon phase density in Eq. (3.34) is computed by the flash calculation as
well. However, in the blackoil simulation, the condensing and vaporizing effects in the
oil and gas phases (i.e. solution gas in oil, vaporized oil in gas) must be explicitly taken

into account for the calculation of density and total mobility. In such case, the oil and

gas densities are calculated by accounting such phase interaction effects as follows.

_ pO,SC + pg,scRso

p (3.35)

o] Bo

+ R

pg = Pg,sc Bpo,sc v (3.36)

g

In addition, the total mobility is defined by
k k k

p =Zﬂ+R o 4 R, -1 3.37
t ’ua SO ‘Llo v ‘ug ( )

On the basis of Eqg. (3.32), we can also define the phase (partial) diffusivity by

decomposing the total mobility into the sum of phase mobility.

kA kY Z
QAgiff = Y g¢Ct = a; (3.38)

j=ow, j=o,w,g

where q; is the diffusivity of phase ;.
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@ = % (3.39)
where A; is the mobility of phase j. In Eq. (3.38), the total diffusivity is identical to the
propagation speed of the pressure front in multiphase domain. Hence, the phase
diffusivity is regarded as a partial speed that the pressure front propagates through the
phase with.

For example, in a two-phase oil and water case, the total diffusivity is obtained

by the sum of the oil and water diffusivities.

kA kA
Agiff = (l)C(: + ¢_;: = ol T Awater (3-40)

Fig. 3.1 shows the diffusivities in two-phase oil and water domain. The initial water
saturation ((a)) is heterogeneously distributed, while the other geological parameters (i.e.
porosity, permeability) are constant over the domain. The total diffusivity ((b)) is given

by summing the oil diffusivity ((c)) with the water diffusivity ((d)).
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(a) Water Saturation

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

(b) Two-phase Diffusivity (c) Oil Diffusivity (d) Water Diffusivity

Fig. 3.1 — Diffusivity calculation in two-phase system. (a) Water saturation, (b) Total diffusivity, (c)
Oil diffusivity, and (d) Water diffusivity.

Substituting Eqg. (3.40) into Eq. (3.31) yields the following Eikonal equation.

721y @it + Auater = 1 (3.41)
Notice that the phase diffusivity cannot be used for the DTOF calculation in the FMM,
because the Eikonal equation form in Eq. (3.41) is held only when the total diffusivity is
used for the DTOF calculation. However, the phase diffusivity is a good measure to
know the influence of the saturation effect to the pressure propagation in multiphase
domain. Fig. 3.2 shows the DTOF map calculated using the same condition as Fig. 3.1.
The two-phase DTOF ((a)) is obtained by the FMM calculation with the two-phase

diffusivity. The oil-phase DTOF ((b)) is obtained by temporary neglecting the water-

79



phase diffusivity and by simply using the oil-phase diffusivity in the FMM. The water-
phase DTOF ((c)) is also obtained in the same way. As Eq. (3.41) suggests, the DTOF is
identical to the time when the pressure ‘front’ propagates through the multiphase domain
with a propagation speed of total diffusivity. Therefore, (b) and (c) are obviously not

true solutions.

DO
W, W )

00 01 02 0% 04 0B 06 07 00 01 0.2 03 04 05 06 OF 05 08 00 0.2 04 06 08 10 1.2 14 18

Neglect Neglect
|VT|\/ Qojl + Ayarer = 1 VTl aon + ayudlr = 1 |VT|\/ a; + Awater = 1
(a) Two-phase DTOF (b) Oil-phase DTOF (c) Water-phase DTOF

Fig. 3.2 — DTOFs in two-phase system calculated based on the (a) Two-phase diffusivity, (b) Oil-
phase diffusivity, and (c) Water-phase diffusivity.

3.2.2 Coordinate Transformation

In a single-phase flow, the diffusivity equation can be transformed into the t-
coordinate using Eq. (2.38). For a multiphase flow, the same coordinate transformation
is applied on the multiphase flow equation using multiphase DTOF. Rearranging the
Eikonal equation (Eq. (3.30)), absolute permeability is expressed with the relation to the

DTOF.
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k= ||7i|2 (d)/’t_it) (3.42)

init
Substituting Eqgs. (2.24) and (3.42) into the Darcy’s equation (Eq. (3.2)), the phase
velocity is defined along the t-coordinate under the assumption that the pressure
gradient direction aligns with the t gradient direction.

c kyq 1 0P
u=— (¢ t) ra il (3.43)
At init Ha |‘7T| Jt

We take a volumetric integral of the mass balance equation of phase a (Eq. (3.3)) over

the domain 1.

0(dpaSa) |
fﬂ Tdv_— L Ve (p uy)dv (3.44)

On the basis of Eq. (2.27), the flux term (RHS) in Eq. (3.44) is transformed to the
surface integral by applying a divergence theorem.

(v +Tdd = [ (poue)» o da (3.45)

f Ve (pgug)dV = v
o) dn(t) I I

an
The accumulation term (LHS) in Eq. (3.40) is also transformed to surface integral by

substituting Eq. (2.27).

3(PpySy) 1
v = Vr f ($heSa) L, (3.46)

f 9(PpaSa)
A ot

Inserting Eqgs. (3.45) and (3.46) into Eq. (3.44), we obtain the surface integral form of

the mass balance equation of phase «a.

f 9(PpaSa) 1
Vt
dn(t)

Vt
A= —f u,)e——dA 3.47
at IVTI dﬂ(f)(pa 0_’) ( )

V|

Substituting the DTOF-based velocity equation (Eq. (3.43)) into Eq. (3.47) yields
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f 0(ppaSa) 1 l f ¢Ct kmaP 1 Ly Al (3.48)
40(0) ot |VT| Vr 400 1n1t “ g En |VT|

Let At — 0. Rearranging Eq. (3.48) yields

f a(M¢paSa) ¢in1t lf kra oP ¢mlt dA] (3 49)
dn(t) dn(t) 1n1t

ot |V‘[| “ . 01 VTl
where Mg is the exponential rock compressibility function. Based on the definition of

the w-function (Eq. (2.35)), we rearrange Eq. (3.49) as

6(M¢pa a)

(3.50)
an () at

0 k., 0P
w(7) =3 w(7) &) l

an() (Af initp He OT
In Eg. (3.50), the pressure P and phase saturation S, are the location- and time-
dependent variables. Now, we assume that P and S, are the function of t and t (i.e. the
pressure gradient and saturation change align with the 7 gradient). Therefore, we can
take the terms outside the integral. The DTOF-based transport equation can be written as

follows.

w(T) (3.51)

0(MypaSy) 0 c; km apP
— 2 T = |wk) (=

ot init 'ua aT
Comparing Eg. (3.51) with Eq. (3.1), we can define the coordinate transformation for

the multiphase flow equation as follows.

_ ODinit 0 Ct oP
7 (pau) = — 052 [w(r) (Z)mit Paa E] (352)

The transformed flux term is very similar to the single-phase formulation (Eq. (2.38)).
Suppose A, = 1/u (single-phase) and A, = 1/u, then Eq. (3.52) is equivalent to Eq.

(2.38). However, there is an additional constraint associated with the coordinate
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transformation of the multiphase equation that the direction of the phase saturation

change aligns with the 7 gradient direction as well as the pressure gradient direction

(P =P(r,t)and S, = S, (1, 1)).

3.2.3 DTOF-based Blackoil Model

The blackoil simulation contains up to three mass balance equations for each

grid. The general equation form is described in Eqgs. (3.10) — (3.12). Thus, we apply the

coordinate transformation (Eq. (3.52)) of the phase transport equations for the DTOF-

based simulation. For water phase, the DTOF-based flow equation is written as

S ini a kTW aP w
<¢ ¢ t [ @) l"'q

W(T) ot at E

at /1t init Bwtw 0T

For oil phase, the DTOF-based flow equation is given by

i)
BRTOr Gl I ol
For gas phase, the DTOF-based flow equation is written as
o+
il e e ] e

(3.53)

(3.54)

(3.55)

In the DTOF-based simulation, the mass balances equations of Egs. (3.53) — (3.55) are

discretized on 1-D coordinate using the finite difference scheme as illustrated in Fig. 2.2.

From Egs. (3.53) — (3.55), the finite difference equation is written as follows.

The 1-D finite difference of the water flow equation is
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n+1 +1 n+1 n+1 n+1 n+1 n+1
Tw,i—l/ZPi—l - (Tw,i—l/z + Tw,i+1/2)Pi + Tw,i+1/2Pi+1

+1 (3.56)
_ w;AT; Vi (S_W)n _ M. (S_W)n — gt
Atnt1 | @it B, i i B, i ws
The 1-D finite difference of the oil flow equation is
Tgfitluzpi—? - (Téf?-ﬁ/z + TgfiJr+11/2)Pin+1 + Téffﬁ/zpﬁﬁl
n+1 n (3.57)
_ Wil M"+1<§+R S—g> —M”-<S—°+R S—g> — ot
v v oS
Agn+1 [T B, By), *I\B, By),
The 1-D finite difference of the gas flow equation is
Tgrfl:tll/ZPi—_zl - (T;,itluz + T£?+11/2)Pin+1 + T;#l/zpi’ﬁl
n+1 n (3.58)
:WiA‘[i e S_g+R So oy S—g+R So\ | _ a1
Apntl | i B, so B,). @i B, so B,/ Ags
l l

where i denotes the grid block number on 1-D coordinate, T;’_{Z_rll/z represents the
transmissibility of phase a of the grid i at the time n + 1, M, is the exponential rock

compressibility function (Eq. (2.34)), and gZ+* denotes the surface volume production
rate of phase « at the time n + 1 which is imposed only on the first grid (i = 1). In Eqgs.

(3.56) — (3.58), the transmissibility is defined using the phase mobility.

Wit1/2 (Ct
Tn-_+-1 _ ¢ (_) An+l 3.59
T2 ATy gy \Ay nigiz1/z (3:59)

where ,13;; is the mobility of phase a. For each phase, the mobility is written as

k w n+1
n+1 _ r
Aw,up - (Bwﬂw)up (360)
n+1
e < ko o Krg ) (3.61)
oup Bouo ng:ug up
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k k n+1
it =( rg g Ko ) 3.62
g.up Bg Hy so Bo o up ( )

Notice that the phase mobility is determined by the up-winding scheme. In Eq. (3.56) —

.58), i ' qas 1S Qi
(3.58), the surface production rate of phase a, g%+ is given by

w; ATy qgﬂ
qril = —— (3.63)
s Ginit Byt

where g**1 is the production rate of phase a per unit volume per unit time and the
constant, w; Aty /@inic 1s the ‘bulk’ volume of the grid block i = 1. We rearrange EQ.

(3.63) using the velocity equation (Eq. (3.43)).

gl = w14ty i (%) Antl <P1n+1 B J/l;l)l (3.64)
* Ginic [AT1 \ A¢ init 1 @l T1 — Twell .

Rearranging Eq. (3.64), the surface production rate of phase « is obtained as follows.

= (&) et (Plnﬂ - Wl) (3.65)
* ! /1t init,1 @l T1 — Twell .

In the DTOF-based blackoil simulation, Eqs. (3.56) — (3.58) are used for solving the
three unknown variables ({P, S,,, Sg} or {P,S,,, R}) for each grid. The simulation flow

chart is illustrated in Fig. 3.3. The Jacobian construction and numerical calculation

procedure are described in APPENDIX C.
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’ Input parameters ‘ ﬂ Phase Property Calculation %

Compute 4, and c; Compute Residual and Jacobian
(Flash calculation) l
l ‘ Solve | 6x = —R ‘
| FMM | l

v ‘ Update Primary Variables ‘

Compute Drainage Volume and
Water Saturation along t Y

NO % Convergence Check ‘
l YES
|:| EMM ‘ Update Time }7 VES
l NO
|:| Simulation ’ END ‘

Fig. 3.3 — Flowchart of the multiphase DTOF-based simulation.

3.2.4 Dual-Porosity Blackoil Modeling based on DTOF

The blackoil dual-porosity equations are formulated by a direct extension of the
single-phase dual-porosity modeling. In this approach, the fracture and matrix are treated
as separate continua throughout the reservoir. As we discussed in the previous chapter,
we holds some assumptions and constraints for the dual-porosity modeling on its DTOF
formulation (i.e. constant matrix properties). The general mass balance equation is

written as follows. The water mass balance in the fracture system is

G
) =7 o (KA, VP;) — T, + 5 (3.66)

£1<¢szf
at\ B,

where S,, ¢ is the water saturation in the fracture system. The oil mass balance in the

fracture system is

G, Sof Sor\| _ o dg (3.67)
P [qbf (Bo +R, 5 )|~ Ve (keA,VPr) —T, + B, +R, B,
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where S, and S, are the oil and gas saturations in the fracture system, respectively.

The gas mass balance in the fracture system is

% [¢f (Sg;; + Rso SB—f)] = Ve (keAgVPr) =Ty + <Z—Z + Ry, Z—) (3.68)
In Egs. (3.66) — (3.68), the matrix-fracture transfer function of phase « is written as

Ty = ckmAqup(Pr — Pn) (3.69)
where o denotes the shape factor, k., represents the matrix permeability, and A ,,,, is the

phase mobility defined by Egs. (3.60) — (3.62). The mobility is determined by the up-

winding scheme. The water mass balance in the matrix system is

5

The oil mass balance in the matrix system is

9 Som - Sgm\] _
3 ld)m <B_o +R, B_g>l =T, (3.71)

The gas mass balance in the matrix system is

) Sgm Som\]
E[d)m < 5, R0 )| =Ty (3.72)

In the dual-porosity model, there is no mass transfer between the matrix blocks.
It means that the matrix blocks are linked only through the corresponding fracture blocks
and the fracture blocks provides the main flow path to the well production. As we see in
the single-phase dual-porosity model, the matrix equations remain the same form even in
the 1-D t-coordinate system while the matrix properties (¢,,, k,,, and o) are assumed to

be a constant parameter. The coordinate transformation is applied for the fracture system
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equations (Egs. (3.66) — (3.68)) using Eq. (3.52). The transformed 1-D equations are

written as follows. The DTOF-based water mass balance in the fracture system is

d d)fSWf ¢f1n1t 0 an dw
%( BW " w) ot () t/lw_‘r FW+E (3.73)

The DTOF-based oil mass balance in the fracture system is

0. (Sor  So
atld)f( B, Hhy Bg)l

(3.74)
d)f init 0 Ct a do qg
= — —|-T, R,
W(T) at w(® ()Lt)imt/1 ot T B, + B
The DTOF-based gas mass balance in the fracture system is
0 Sof Sof
s l¢f (B_g + Rso B,
(3.75)
®f init 0 o dPs 49 do
=L — -T, Rsp —
w(r) ot w(® t/ it 9 ot T35 B, T Rso B,

In Egs. (3.73) — (3.75), w(T)/Py init represents the drainage ‘bulk’ volume v; in the
fracture system, that is directly computed in the FMM. The finite difference equations of
the fracture system are written as follows.

The 1-D finite difference of the water equation in the fracture system is

1 1 1 1 1 1
T\:/l/tl 1/2 jpl+1 \:/I;L 1/2 fl+1/2) n+ +Tn;1+1/2P}11-|:+1

1 n
_ Wl'ATi +1 SWf n+ Swf
T At IM‘g'i (BW). B M¢‘(BW>. (3.76)
l

1

+U AT O'k An up(Pn+1 _ Pn+1) CIn+1

The 1-D finite difference of the oil equation in the fracture system is
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1 1 1 11 1 1 1
Toft s o PRy = (Tofina o + Tof ) PR + Toftea o PRES

n+1 n
WiATl S of ng Sof ng
= M"+1< + R, - M} | —+R,—=~ (3.77)
Atn+1 B, By ), ¢\ B, By ).
+U AT ok A‘g-ll-ljzl)(P‘n+1 Pn+1) qn+1
The 1-D finite difference of the gas equation in the fracture system is
Tnf+11 1/2 )le+11 (Tnf+11 1/2 nf-l-ll-l-l/Z)Pn-'-1 + Tnf+11-|-1/2anl-'-l-11
n+1 n
WLATL ng Sof ng Sof
M3 ==+ Rso = — M} ==+ Ry — 3.78
Atn+1 <Bg SO BO l ¢,l Bg SO BO l ( )

+UiATlO'k ){EL%)(PTI+1 Pn+1) qn+1
In Egs. (3.76) — (3.78), the phase production rate gf? is calculated by Eq. (3.65). The

finite difference equations of the matrix system are written as follows. The 1-D finite

difference of the water equation in the matrix system is
n+1 n

1 S, S,
o () o ()
w i w i

L l

l—ak At (PR — Pt (3.79)

The 1-D finite difference of the oil equation in the fracture system is

n+1 n
1 n+1 Som+R Sg_m _d) S R ng
Agnt1 (Yl \ B "B, ] ™, Bo B, |
9 /i 97/ (3.80)
= kA5 (P = PR
The 1-D finite difference of the gas equation in the fracture system is
n+1 n
1 n+1 ng +R Som _ ¢n . ng +R Som
Atntl m, B so B m,i B so B
g 07 9 ° /i (3.81)

— n+1 n+1_ n+1
= ok Agup( f.i P
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In the DTOF-based blackoil dual-porosity simulation, the above six finite difference
equations (Egs. (3.76) — (3.81)) are used for solving the corresponding six unknown
variables ({Pr, Sy, Sgr} Of {Pr, Swy, Rss} in the fracture system, and {Py, Swm, Sgm} OF
{P,, Swm» Rsm} In the matrix system) for each t grid. In addition, the following
conditions must be satisfied during the simulation.
(1) The DTOF is characterized by the fracture heterogeneity using the FMM.
(2) At the initial state, the saturation distribution in the matrix system is uniform.
(3) During the 1-D numerical simulation, the matrix pressure and saturations are
solved along the t-coordinate.
(4) The matrix geometric parameters (k,,, ¢, and a) are constant.
The numerical procedure and derivative calculations for constructing the Jacobian is
described in APPENDIX C.
3.2.5 DTOF-based Compositional Model
The compositional simulation is comprised of the sets of the N.+ 1 mass
balance equations and N, fugacity equilibrium relations (total 2N.+ 1 primary
equations) and the corresponding 2N, + 1 primary variables (i.e. pressure, saturations,
and oil and gas compositions) for each grid. The general mass balance equations are
described in Eqgs. (3.4) and (3.14). We apply the coordinate transformation (Eq. (3.52))
on the component transport equations. For hydrocarbon component j, the DTOF-based

mass balance equation is written as
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(3.82)
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where q}”l is the molar production rate of component j per unit volume per unit time.

init

Notice that the mass balance of water is given by the same equation as blackoil

formulation (Eq. (3.53)). The finite difference equation of Eq. (3.82) is obtained by

n+1 +1 +1 n+1 n+1 n+1 n+1
hic12Picr — (Tj,i—l/z + Tj,i+1/2)Pi + T 512Pi1

(3.83)

Wl'ATi
- Atn+1

M3 (51600 + ¥189S); = Mip (380S0 + 16S); | = Tt

where Tj’};ll /2 denotes the transmissibility of component j, M; denotes the molar mass of

component j, and g,,; is the molar production rate of component j on the well which is

imposed only on the first grid (i = 1). The molar mass of component j, M; is defined by
M; = x;$,S, + yi€4Sy (3.84)

Therefore, the overall component of the component j is obtained by the molar based

calculation.

Mj _ xjfoSo + y]EgSg

zZ; = = 3.85
J 2 Mj ’SOSO + fgsg ( )
The transmissibility of component j is defined by
n+1
ne1_ Wit1/2 (Ct) < kro krg)
n =——"'"(= xi&y— + yi&,— 3.86
T/ ATiy1/2 \A init,i+1/2 %0 Ho V%o Mg /)y 85

In Eqg. (3.83), the molar production rate of component j is given by
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where G} *1 is given by the velocity equation (Eg. (3.39)).

(¢Ct) <x-§ kro e @)nH(—PnH Pn+1> (3.88)
ATl /1t init,1 />0 Ho 79 Hg 1 T1 — Twell l

Rearranging Eq. (3.88), the molar production rate of component j is

c k k n+1 P17’l+1 Pn+1
G = w (i) <x-f fro 4y g ﬂ) (—) (3.89)
qW] ! /1t init,1 />0 Ho yj g .ug 1 T1 Twell

In addition, the molar production rate of phase a is obtained by summing up all the

~n+1 W1AT1

e ¢init

component production rate (Eq. (3.89)) for each phase, separately.

(Ea km)n+1 <M> (3.90)

C
~n+1 t
qw =W ( )
J /1t 2% T Twell

init,1
Notice that Egs. (3.89) and (3.90) are the molar production rate at the wellbore. On the
wellbore condition, the oil phase will contain the free oil and solution gas as well as the
gas phase contained in the free gas and vaporized oil. The surface oil and gas volumetric
rates are obtained by flashing the wellbore phase compositions ({x;} and {y;}) into the

surface condition (14.6 psia and 60 °F) as illustrated in Fig. 3.4.
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Wellbore condition (P, ¢, T)

Oil composition {x;} ‘ ’ Gas composition {y;}

Flash to surface
(14.6psi, 60°F)

Free oil ‘ ’ Liberated gas ‘ ’ Free gas ‘ ‘ Condensed oll
Liquid fraction of Vapor fraction of Liquid fraction of Vapor fraction of
wellbore oll, L, wellbore ail, V, wellbore gas, L, wellbore gas,

(Lo +V, =1) (Lg+Vy=1)

Fig. 3.4 — Calculation of the surface condition using the flash.

Suppose G, and g, are the molar production rate of oil and gas phase at the
wellbore, respectively. Flashing the wellbore oil to surface condition, we obtain the
liquid and vapor molar fractions of the wellbore oil, L, and V,, and the liquid and vapor
molar densities at the surface condition, &, and &4, .. At the surface conditions, the

wellbore oil becomes free oil and liberated gas with the molar fraction of L, and V,,

respectively. The standard volume oil (free oil) production rate from the wellbore oil is

L,
— o (3.91)

oo,sc =
foo,sc

The standard volume gas (liberated gas) production rate from the wellbore oil is

Vo

Ago,sc = do (3.92)

Szgo,sc
In contrast, flashing the wellbore gas to surface condition, we obtain the liquid and vapor

phase fractions of the wellbore gas, L, and V;, and the liquid and vapor molar densities

at the surface condition, &,, .. and &,4 .. At the surface condition, the wellbore gas
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becomes the free gas and condensate with the molar fraction of 1, and L, respectively.

The standard volume gas (free gas) production rate from the wellbore gas is

Vo .
dgg,sc = 4g (3.93)
Egg,sc

The standard volume oil (condensate) production rate from the wellbore gas is

L

dog,sc = —gqg (3.94)
$og.sc

Therefore, the standard volume production rate for oil and gas phases at surface

condition, g,s and g4 are calculated by
Qos = Goo,sc T Gog,sc (3.95)

dgs = dgo,sc T dgg,sc (3.96)

In addition, the mass production rate of the component j, q; a5 IS given by

qjmass = W,j(quo + yqu) (3.97)
where x; and y; are the phase compositions at the wellbore condition, and M,, ; is the
molecular weight of the component j. The surface volume rate of the component j is

Xjo Yi .
Qjsc = . 4o + ! dg (3.98)
$o,sc $g.sc

where &, . and &, . are obtained by flashing the overall component {z;} (Eqg. (3.85))
from the wellbore condition to the surface condition.

In the three-phase condition, the primary equations solved are Egs. (3.15), (3.56)
and (3.83) for each grid, that is total 2N, + 1 equations. If the oil or gas saturation is

zero or water does not exist at the grid block, the number of primary equations changes
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(i.e. if the grid is saturated with oil and water, we only calculate Egs. (3.56) and (3.83) to
solve for pressure, water saturation, and oil compositions). The number of phases in each
grid block must be identified prior to constructing a residual vector and Jacobian matrix
as summarized in Table 3.1. The numerical simulation procedure and derivative

calculations for constructing the Jacobian are described in APPENDIX E.

Table 3.1 — Primary equations and variables in compositional model
No. Phases Number Primary Equations Primary Variables
1 oll N, Eqg. (3.83) P,xy, ..., Xy,
2 Gas N, Eqg. (3.83) P,y ., YN,
3 Oil / Water N.+1 Egs. (3.56) & (3.83) P, Sy, %o, e, X,
4 Gas / Water N, +1 Egs. (3.56) & (3.83) P,Sw, Y2, ) YN,
. P,Sg, %3, ., Xy
5 Oil / Gas N, Egs. (3.56) & (3.83) €
Y2, YN,
P,Sy, Sy, X2, ..,
6 | Oil/Gas/Water 2N, + 1 Egs. (3.15), (3.56), & wrgr X2r s XN
(3.83) Y2, s YN,

3.3 Approach: Phase Behavior in Confined Environments
3.3.1 Capillarity Effects on Thermodynamic Equilibrium

The conventional vapor-liquid equilibrium calculation is usually carried out with
the assumption that the vapor-liquid interface is flat with the contact angle of 90° and
the capillary pressure has no influence on the static phase equilibrium. This assumption
is valid for the phase behavior on the macro-scale porous space (i.e. PVT cell). But, in

micro to nano-scale porous media (i.e. shale), the vapor-liquid interface has a non-flat
95



curvature, which causes the vapor and liquid phases to have a different pressure due to
the capillarity effect. Fig. 3.5 illustrates the schematics of the vapor-liquid equilibrium in

the closed system.

PVT Cell Confined Environment
The interface is flat. The interface is curved
due to capillary force.
Vapor t Liquid
@
P, Ty 3
Q8 b Vapor
b 3 r
2| [Liquid =
= o Pv, T, y
P, T,x S
s
PL! T,X
fy(P, T,y) = f.(P, T, x) ty(Py, T, y) = fL(P, T, x)
(a) VLE in Macrospace (b) VLE in Nanospace

Fig. 3.5 — lllustrations of the phase equilibrium in (a) PVT cell and (b) confined system.

Shapiro et al. (2001) investigated the capillary pressure effect on the phase
behavior. They showed a theoretical thermodynamic relation of the vapor-liquid two
phase state in small-scale pore space and the flash calculation procedure with accounting
for the capillary pressure effect. Qi et al. (2007) investigated an interfacial tension (IFT)
effect on the condensate dropout in the low-permeability gas condensate reservoir. They
concluded that, under the capillary pressure effects, the retrograde process is enhanced

and the condensate dropout increases during the pressure depletion. Nojabaei et al.

96



(2013) observed the produced gas oil ratio on the Bakken shale oil wells, which is
inconsistent with the prediction result of the Bakken oil sample. They reported that the
operational flowing bottom-hole pressures in the Bakken shale wells were far below the
predicted bubble-point pressure for a long time period, and they have not observed any
increase of the produced GOR. They also showed the shift of the oil properties (density,
viscosity, saturation pressures) of the Bakken shale oil sample by incorporating the
capillary pressure on the VLE flash calculation, and concluded that, if the bubble-point
pressure is suppressed due to the capillary pressure, the reservoir pressure can exceed the
bubble-point pressure.

In a small-scale confined system (i.e. nanometers), the multiphase
thermodynamic equilibrium is achieved by letting each phase having a different

pressure. For the vapor-liquid equilibrium, the fugacity relation is expressed by

fH(PY T %y, ey n,) = £V (PY, T, y1, o VN,) (3.99)
where PL and PV are the liquid and vapor phase pressure, respectively. The differential
pressure between the liquid and vapor phases is defined by the capillary pressure. In this

study, the capillary pressure is given on the basis of the Young-Laplace equation.

20
pV —pL = Pego = - (3.100)

where F,4, is the capillary pressure between oil and gas phases and r is the pore radius.

In Eq. (3.100), we assume that the shape of the vapor-liquid interface is a sphere (6 =
0°), thus, we have that cos 6 = 1.

At the dew-point condition, we have
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Vi = Z; for i= 1, ...,NC (3101)
whereas at the bubble-point condition, we have
X; = Z; for i= 1, ...,NC (3102)

The surface tension o between the oil and gas phases is calculated by the Macleod-

Sugden correlation (Whitson 1989).

4

N¢
o= 2 0i(Eoxi = 1) (3.103)

where ¢; is the parachor of component i. Considering Eq. (3.99), the fugacity of

component i is calculated as follows.
it = x;PLof (3.104)
f =P ¢! (3.105)

Once fi*, £V, Pt, and PV are obtained at current iteration step, the K-values are updated

by the successive substitution method (SSM).

K new —qb_iL—fiLyiP_V EP_VKOM

; o7 _Fx_iPL =fiV L Ki (3.106)
where K" is the new K-values for next iteration step and K is the old K-values at
previous iteration step. The procedure of the modified VLE flash is illustrated in Fig.
3.6. In this procedure, the calculation is repeated until the fugacity and capillary pressure

satisfy the convergence criteria. The tolerance is 107¢ (psia) for the maximum updates

in the capillary pressure. Notice that the initial guess of P, is given by P. = 0.
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Input T, P and {z;} —>  Solve cubic EOS for z*,z¥

i

Ik |4
Guess K; with Wilson Eq. Compute f and f;
Guess P, Compute o
Compute P%, PV Compute P,

l l

Compute x;, y; ——
- Check convergence

@ fit = 1"
(2) Pcn+1 = PCTL

T Update K;, PX, PV —
l YES
Output properties

Fig. 3.6 — Modified VLE flash procedure with oil-gas capillary pressure.

3.3.2 Shift of Saturation Pressure in Shale Reservoirs

We present two examples for the modified VLE flash calculation using actual
shale reservoir samples — the Bakken shale oil sample and the shale gas reservoir sample
in west Texas. Fig. 3.7 shows the change of the capillary pressure under the influences
of the pore radius and reservoir pressure. After the iterative flash calculation, the surface
tension and capillary pressure are successively calculated using the Young-Laplace
equation (Eq. (3.100)) and Macleod-Sugden correlation (Eq. (3.103)), respectively. In
smaller pore radius, the capillary pressure becomes several thousand psi. In the Bakken
sample, 1 nm pore has about 2,500 psia of the capillary pressure at the reservoir pressure
of 1,000 psia. In the gas sample, 1 nm pore has approximately 1,500 psia of the capillary

pressure at the reservoir pressure of 1,000 psia.
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(a) Bakken Oil Sample at 150°F (b) Shale Gas Sample at 200°F
Fig. 3.7 — Capillary pressures of the (a) Bakken oil shale sample and (b) Shale gas sample.

The saturation pressures are computed by the negative flash procedure. At the
bubble-point pressure, the liquid phase holds Eqg. (3.102), while the vapor phase holds
EqQ. (3.101) at the dew-point pressure. The saturation pressures are iteratively computed
using the standard Newton-Raphson method. The procedure is described in APPENDIX
D. Fig. 3.8 shows the shift of the bubble-point pressure and gas saturation profile of the
Bakken shale oil sample as a function of the pore size and reservoir temperature. In Fig.
3.8 (a), we see that the bubble-point pressure is decreased as the pore size becomes
smaller in all the simulated temperature conditions (150 — 300 °F). In the pore size range
from 1,000 nm (1 wm) to 50 nm (0.05 um), the bubble-point pressures are nearly
constant because the capillary pressure effects are negligible in such large pores. Below
the pore size of 50 nm, the bubble-point pressures are gradually decreased as the
capillary pressure rapidly increases. The bubble-point pressure at the pore radius of 1 nm

is approximately 1,000 — 1,500 psi lower than that in the micrometer pore. The declining
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trend of this bubble-point pressure is consistent with the capillary pressure change as
shown in Fig. 3.7 (a). Because the capillary pressure becomes fairly large below the pore
size of 10 nm, the bubble-point pressure is considerably suppressed in such pore size
conditions. Fig. 3.8 (b) shows the simulation results of the liberation profile of the
solution gas during the constant composition pressure depletion (CCE) at the
temperature of 250 °F. For each specified pore size condition, the gas begins to liberate
at each bubble-point pressure. The solution gas liberates first in the largest pore (100

nm), and then the PVT cell is saturated with 100% gas first in the smallest pore (2 nm).

3,500
1.0
- 3,000 1 =08
@ o
o
£ 2,500 E o6
s g
= 2,000 —+150 degF S 04
£ g
% —0—200 degF >
= ©
2 1,500 & ——250 degF QA 02
=}
@ —0—300 degF
0.0 (=)
1.000 1 10 100 1000 0 500 1,000 1,500 2,000 2,500 3,000
Pore Radius (nm) Pressure (psia)
(a) Shift of Bubble-point Pressures (b) Gas Saturation at 250°F

Fig. 3.8 — Simulation results of the Bakken oil sample at constant composition. (a) Shift of bubble-
point pressure and (b) Gas liberation processes in confined system.

Fig. 3.9 shows the shift of the dew-point pressure and liquid saturation of the shale gas
sample as a function of the pore size and reservoir temperature. In contrast to the bubble-
point system, we see that the dew-point pressure is increased as the pore size becomes

smaller. In the pore size range from 1,000 nm to 100 nm, the dew-point pressures are
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nearly constant because the capillary pressure is negligible. Below the pore size of 100
nm, the dew-point pressures gradually increase as the capillary pressure rapidly
increases. The dew-point pressure in the pore radius of 1 nm is approximately 100 — 500
psi higher than that in the micrometer pore. Thus, the capillary pressure makes the
saturation pressure increase in the dew-point system (gas reservoirs). Fig. 3.9 (b) shows
the simulation results of the condensate dropout during the constant composition
pressure depletion (CCE) at the reservoir temperature of 260 °F. For each pore size
condition, the condensate begins to drop from the gas phase at each dew-point pressure.
The condensate drops first in the smallest pore (2 nm), and then the PVT cell is saturated

with 100 % gas first in the smallest pore again.
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(a) Shift of Dew-point Pressures (b) Liquid Saturation at 260°F

Fig. 3.9 — Simulation results of the shale gas sample at constant composition. (a) Shift of dew-point
pressure and (b) Liquid dropout in confined system.
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The shift of the confined vapor-liquid phase behavior is completely different between
the bubble-point system (shale oil reservoirs) and dew-point system (shale gas
reservoirs) on the modified flash calculation. In general perspective, the saturation
pressure is reached first in the larger pores in the bubble-point system, whereas this
achieved first in the smaller pores in the dew-point system.

3.4 Results and Discussions

The blackoil and compositional simulation results are presented using 1-D, 2-D,
and 3-D models. The validations include a three-phase dual-porosity blackoil model and
confined shale oil compositional model with the modified phase behavior calculation as
well. The simulation results are compared with the results from a commercial simulator.
3.4.1 Two-phase Oil-Water Model (1-D Heterogeneous)

For the multiphase DTOF-based simulation, we start the model validation from
the 1-D two-phase oil and water example. The model consists of the 100 x 1 x 1 grids
with a production well placed at the left edge of the model. The porosity and
permeability are constant (ImD and 0.1 %). The initial water saturation is

heterogeneously distributed on the Cartesian model as illustrated in Fig. 3.10.

Well

o0 01 02 03 04 OB 06 O0F 08 08 10

Fig. 3.10 — 1-D water saturation distribution at initial state.
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The concept of the coordinate transformation is illustrated in Fig. 3.11. The Cartesian
100 grids are transformed into the 1-D 100 grids along the t-coordinate. The minimum
tau (7,) corresponds to the first T-contour neighboring the wellbore, and the maximum
tau (t100) IS identical to the last T-contour touching the outer boundary. The T grids are

uniformly discretized in this problem.

1-D Cartesian 100 grids

X1 | X2 | Xs Xgg | X100

! ! Coordinate transform

1-D 7-coordinate100 grids

T 2] T3 Tgg | T100

Fig. 3.11 — Transformation of the 1-D uniform grid from the (a) Cartesian to (b) DTOF.

First, we perform the FMM to calculate the drainage ‘pore’ volumes and the
corresponding ‘water’ volumes along the 7-coordinate. In multiphase flow problems, the
diffusivity (propagation speed) is given by Eq. (3.32) for each node. As shown in
Fig.3.12, the evolution of the drainage ‘pore’ volume (red line) has a nearly linear trend
due to the uniform porosity distribution, while the growth of the drainage ‘water’
volume (blue line) deviates from the linear line due to the heterogeneous water
saturation distribution. Notice that the both drainage ‘pore’ and ‘water’ volumes are

monotonically increasing property propagated from the wellbore along the z-coordinate.
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Fig. 3.12 — Drainage ‘pore’ and ‘water’ volumes along t-cordinate.

Once the drainage ‘pore’ and ‘water’ volumes are obtained, the water saturations can be
estimated along the t-coordinate using a first-order backward difference.

Vwi - Vwi—l
S = 3.107
M Vi = Vpica ( )

where i denotes the number of the z-contour, and V,,; and V,,; represent the ‘water’ and
‘pore’ volumes of the contour i, respectively. The drainage ‘pore’ volume V,; is

calculated by summating the ‘pore’ volume inside the contour i.

Vpi = Z(Vb,,-¢j) (3.108)

]

where the grid j has smaller DTOF than the grid i. The corresponding ‘water’ volume

Vi is calculated by

Vi, = Z(Vb,jd)ij.j) (3.109)

]
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On the basis of Eq. (3.106), the initial water saturation is can be calculated along the -
coordinate as shown in Fig. 3.13. This transformed 1-D water saturation is used as initial
water saturation in the DTOF-based simulation.

Finally, the simulation results are shown in Fig. 3.14. The production rates are

calculated under the constant bottom-hole pressure constraints (3,500 psia).

Water Saturation each 7

0.00 0.50 1.00 1.50 2.00 2.50
DTOF

Fig. 3.13 — 1-D water saturation distribution along the z-coordinate.
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Fig. 3.14 — Simulation results. The results are compared with the ECLIPSE.

106



The pressure and water saturation distributions are also compared with the commercial
simulator at the initial and final time-step (200 days) as shown in Fig. 3.15. Because this
is the primary depletion problem with single production well, the saturation change is

much smaller than the change of the reservoir pressure.
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Fig. 3.15 — Pressure and saturation comparisons on the 1-D grids.

3.4.2 Three-phase Blackoil Model (2-D Heterogeneous)

Next, we show the heterogeneous 2-D model saturated with three-phase water,
oil, and gas. The permeability is heterogeneously distributed as shown in Fig. 3.16 (a).
The production well is vertically placed on the center of the model. The calculated

DTOF map is shown in Fig. 3.16 (b).
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Fig. 3.16 — Permeability and DTOF maps in the heterogeneous 2-D model.

The other reservoir parameters are summarized in Table 3.2. In addition to the free oil
and gas, there is solution gas in oil phase as well. The oil, water, and gas saturations are

uniformly distributed at initial condition.

Table 3.2 — Reservoir parameters (2-D heterogeneous model)
Grid Number [-] 100 x 100 x 1
Grid Size [ft] 100 x 100 x 50
Porosity [fraction] 0.2
Initial Water Saturation [fraction] 0.3
Initial Gas Saturation [fraction] 0.2
Initial Solution GOR [Mscf/stb] 1.713
Initial Pressure [psia] 5,000
Bottom-hole Pressure [psia] 3,000

The drainage volumes are calculated after the FMM as shown in Fig. 3.17 (a).
Because the reservoir is saturated with oil, gas, and water, the phase drainage volumes
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are calculated in order to obtain the water and gas saturations along the 1-D t-coodinate
based on the same way as the previous example. As illustrated in Fig. 3.17 (b), the
resulting transformed water and gas saturation distributions are uniform along the t-
coordinate due to the constant initial saturation input. The production rates are predicted

under the constant bottom-hole pressure (3,000 psi) as shown in Fig. 3.18.
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Fig. 3.17 — Drainage volume and saturation distribution along the t-coordinate.
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Fig. 3.18 — Simulation results of the 2-D three-phase model.
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3.4.3 Three-phase Blackoil Model (3-D Dual-Porosity)

In this example, the naturally fractured reservoir model is used as described in
Fig. 2.13. The saturation distribution is same as the previous example. First, we show the
simulation results under the constant bottom-hole pressure constraint (4,000 psia) as

shown in Fig.3.19.
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Fig. 3.19 — Simulation results at the constant bottom-hole pressure. (a) Oil rate and GOR, and (b)
Water cut.

Next, we show the simulation results under the constant oil rate (1 stb/day) as
shown in Fig. 3.20. The both cases have a good agreement with the commercial

simulator.
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Fig. 3.20 — Simulation result at the constant oil rate. (a) BHP and (b) GOR and Water cut.

3.4.4 Compositional Model (2-D Homogeneous)
The reservoir parameters are shown in Table 3.3. The geological heterogeneities
and water saturation are uniformly distributed at the initial condition. Notice that the

initial oil and gas saturations are given by the flash calculation in the compositional

simulation.

Table 3.3 — Reservoir parameters (2-D homogeneous model)
Grid Number [-] 596 x 596 x 1
Grid Size [ft] 10x10x 10
Permeability [mD] 1
Porosity [fraction] 0.1
Water Saturation [fraction] 0.1
Initial Pressure [psia] 2,000
Bottom-hole Pressure [psia] 800
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The fluid model used in the compositional model validations is the Bakken oil sample

composition (Nobabaei et al. 2013) as summarized in Table 3.4.

Table 3.4 — Bakken oil composition (Nojabaei et al. 2013)

Component Molar Fraction (Ib /:\l/l)\-/riol) (Egir;t) (Jecég)
C1 0.36736 16.535 655.02 335.336

C2 0.14885 30.433 721.99 549.969

C3 0.09334 44.097 615.76 665.970

c4 0.05751 58.124 546.46 759.208
C5-C6 0.06406 78.295 461.29 875.479
C7-C12 0.15854 120.562 363.34 1053.250
Cl13-C21 0.07330 220.716 249.61 1332.095
C22-C80 0.03704 443.518 190.12 1844.491

Because of the homogeneity of the model, the contour of the multiphase DTOF forms a

circle centered on the well. The DTOF calculated by the FMM are shown in Fig. 3.21.

. .
T )
0.00 05F 110 166 220 276 3.30 356 440 435 EBD

Fig. 3.21 — Three-phase DTOF in the homogeneous 2-D model
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The production behavior is shown in Fig. 3.22. The well is placed at the center of the

model and controlled by the constant bottom-hole pressure (800 psi).
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Fig. 3.22 — Simulation results of the (a) oil rate and GOR, and (b) water cut.

The pressure and gas saturation profiles are compared with the commercial simulator as

illustrated in Figs. 3.23 and 3.24, respectively. Although the DTOF-based simulation has

a good agreement with the commercial simulator, the difference can be seen in the gas

saturation profile at 600 days. The commercial simulator shows the numerical dispersion

effect along the axis directions. Notice that the numerical dispersion in the DTOF-based

simulation is aligned with 1-D coordinate.
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(a) ECL 120 days (b) FMM 120 days

(c) ECL 600 days (d) FMM 600 days
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Fig. 3.23 — Comparison of the pressure profile between the commercial simulator (ECLIPSE) and
DTOF-based simulation (FMM)

(a) ECL 120 days (b) FMM 120 days

(c) ECL 600 days (d) FMM 600 days

0.269 0.274 0.279 0.284 0.289 0.294 0.300 0.305 0.310 0.315 0.320

Fig. 3.24 — Comparison of the gas saturation profile between the commercial simulator (ECLIPSE)
and DTOF-based simulation (FMM)
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3.4.5 Compositional Model (2-D Heterogeneous)

In this model, the permeability is heterogeneously distributed as shown in Fig.
3.25. All the other reservoir parameters are the same as the previous homogeneous case
as shown in Table. 3.3. The DTOF contour is aligned with the permeability contour. The
production rates are shown in Fig. 3.26. The pressure and saturation profiles are

compared with the commercial simulator as illustrated in Figs. 3.27 and 3.28,

respectively.
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Fig. 3.25 — Distributions of (a) permeability and (b) DTOF in the 2-D heterogeneous model
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Fig. 3.26 — Simulation results of the (a) oil rate and GOR, and (b) water cut.
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(a) ECL 120 days (b) FMM 120 days
(c) ECL 600 days (d) FMM 600 days
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Fig. 3.27 — Comparison of the pressure profile between the commercial simulator (ECLIPSE) and
DTOF-based simulation (FMM)
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Fig. 3.28 — Comparison of the gas saturation profile between the commercial simulator (ECLIPSE)
and DTOF-based simulation (FMM)
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3.4.6 Compositional Model (3-D Confined Shale Oil)

In this 3-D model, the modified phase behavior calculation is used in the
compositional simulation. We use a single representative pore size as input in the
reservoir model for the fugacity and phase property calculations. The reservoir
parameters are summarized in Table 3.5. The reservoir permeability and porosity are
heterogeneously distributed as shown in Fig. 3.29. The natural fractures are

stochastically distributed in the model.

Table 3.5 — Reservoir parameters (3-D confined model)
Grid Number [-] 596 x 596 x 1
Grid Size [ft] 10x10x 10
Permeability [mD] 1
Porosity [fraction] 0.1
Water Saturation [fraction] 0.1
Initial Pressure [psia] 2,000
Bottom-hole Pressure [psia] 800

00000 00003 00006 00009 00012 00015

(a) Permeability distribution (b) Porosity distribution

Fig. 3.29 — Distributions of the (a) Permeability and (b) Porosity in the 3-D naturally fractured
reservoir model
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The well is horizontally drilled and completed at the equally-spaced four grid blocks as

illustrated in Fig. 3.30.

Fig. 3.30 — Vertical section of the fractured model

First, we perform a numerical simulation with conventional VLE flash
calculation (no capillarity on phase equilibrium). The production rates are shown in Fig.

3.31. The results have a good agreement with the commercial simulator.
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Fig. 3.31 — Simulation results of the (a) oil rate and GOR, and (b) water cut. The production
behaviors are predicted without the capillarity on the phase equilibrium
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Next, we incorporate the capillary pressure in the compositional simulation.
Notice that pore size is used only for capillary pressure calculation, not for permeability
correction. Also, the capillary pressure is used only for the fugacity and phase property
calculations, as shown in Fig. 3.6, not for the transmissibility calculation. There are three
pore size conditions — (1) unconfined (no capillarity), (2) confined in 10 nm pore, and
(3) confined in 8 nm. The GOR behaviors are shown in Fig. 2.32. The GOR shift is
clearly observed in the confined environments. In small pore size condition, the

produced GOR is decreased due to the bubble-point suppression effect.
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Fig. 3.32 — Predicted GOR behavior in the confined system. The blue line represents the GOR in
unconfined (macro-scale) pore, the green dot line denotes the GOR in 10 nm pore, and the red dot
line represents the GOR in 8 nm pore.

The oil and gas production rates are shown in Fig. 3.33. The shift of the produced GOR

is associated by the large decrease of gas production rate relative to oil production rate.
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Fig. 3.33 — Simulation results of the (a) oil rate and (b) gas rate in the confined reservoirs.

Fig. 3.34 shows the distributions of oil saturation and pressure along the t-coordinate.
The oil saturation is increased in the small pore space, while the reservoir pressure is not

much affected by the pore size condition.
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Fig. 3.34 — Simulated distributions of the (a) oil saturation and (b) reservoir pressure along the -
coordinate at the final simulation step (600 days).
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Fig. 2.35 shows the distributions of oil and gas molar densities along the t-coordinate.
The oil molar density becomes heavier as the pore size becomes smaller, while the gas

molar density becomes lighter in such condition.
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Fig. 3.35 — Simulated distributions of the (a) oil molar density and (b) gas molar density along the z-
coordinate at the final simulation step (600 days).

The confined environment causes the mobility change of the oil and gas phases due to its
high capillarity effect. In the bubble-point system (oil reservoir), the relative oil volume
is increased as shown in Fig. 3.34 but the oil phase becomes heavier at the reservoir
condition as illustrated in Fig. 3.35, while the relative gas volume is decreased but it
becomes easy to move due to the gas density reduction.
3.5 Conclusions

In this chapter, we have developed the DTOF theory for multiphase and
multicomponent flow simulations and established the numerical algorithms. The fully
implicit method is used as a solution technique for both blackoil and compositional
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simulations, and then the primary variables are solved simultaneously on the 1-D

coordinate. The DTOF-based blackoil simulation is also extended to dual-porosity

model. The numerical experiments show good agreement between the proposed

approach and commercial simulator. The major features of this chapter are summarized

as follows.

A multiphase DTOF is derived by introducing the asymptotic theory to phase
mass balance equation. The equation form is similar to the single-phase DTOF.
In multiphase models, the diffusivity is calculated using total mobility and total
compressibility for each grid.

The coordinate transformation is applied to the mass balance equation in each
phase using similar approach to the single-phase equation. In this research, the
transformed phase flow equation is not linearized in terms of pressure, which
forces the saturation contours to align with the pressure contours. Thus, we can
employ a fully implicit method to solve pressure and saturation simultaneously
on the same t-coordinate under the assumption. In reality, pressure and
saturation have a different behavior each other because the saturation is a
hyperbolic property whereas the pressure has a parabolic nature. But the
difference of the two properties can be mitigated when there is only single well
and the properties cylindrically change from the well. If the profile deviates
significant between pressure and saturation, the constraint can be removed by
using the linearized pressure equation in the coordinate transformation. The
resulting 1-D pressure equation will be aligned with the t-coordinate, but the
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saturation equation is not. In this case, the pressure and saturation are solved
separately on different coordinates based on IMPES approach (i.e. solve pressure
equation on 1-D DTOF coordinate, and then solve saturation equation along 1-D
streamlines). Additional research is needed for this problem.

In the nanoporous confined system, the vapor-liquid phase behavior significantly
differs from that in conventional micro-scale system (PVT cell). The bubble-
point pressure is suppressed in nanoporous space due to the capillary pressure
effect, whereas the dew-point pressure is increased. This modified phase
equilibrium calculation has been incorporated on the compositional simulation
model for the simulation of nanoporous confined reservoirs. In the numerical
model experiments, we observed that the produced GOR is suppressed as the
pore size becomes smaller, which is consistent with the observations in the

Bakken shale oil field.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

This research is focused on the developments of the DTOF theory for
multipurpose reservoir simulation.

In Chapter 11, the 1-D transport equation is applied to single-phase flow
simulation and extended to the dual-porosity and triple-continuum modeling without any
change in the conventional FMM calculation. We also proposed a generalized
framework for modeling hydraulically fractured shale gas reservoirs incorporating all the
known physical mechanisms into the three distinct coordinates based on the triple-
continuum approach. Particularly, an in-depth study has been done for modeling the gas
permeability changes in naoporous media due to the slippage and Knudsen diffusion
effects, which governs the mass transmissibility between the fracture and matrix
systems.

In Chapter Ill, the DTOF theory is generalized to multiphase and
multicomponent flow problems. The approach is analogous to the single-phase DTOF,
but the saturation effects are pronounced on the FMM calculation and numerical
simulations. The numerical solution technique follows the conventional fully implicit
simulation, but the substantial time-saving is possible by reducing the matrix dimension
and number of flash calculations. The versatility and applicability of the DTOF theory

have been demonstrated though the blackoil and compositional simulations. The
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compositional simulation has been applied including the phase behavior in confined
environment by introducing the capillary pressure in the vapor-liquid equilibrium
calculation. The numerical model result shows a good agreement with the actual GOR
behavior in real shale oil field.
4.2 Recommendations

There are several recommendations that can be made as follows.
4.2.1 Gravity and Capillarity Effects

In this research, the gravity and capillarity forces are neglected in the FMM
calculation and successive DTOF-based numerical simulation. These two forces have the
following effects on the numerical modeling.

e The equilibrium state at initial reservoir condition (i.e. gas-oil/oil-water contact,
compositional grading) is determined by the pressure gradient, capillarity effect,
and geothermal gradient. In the current FMM, the capillary and gravity forces are
not taken into account for the initial diffusivity calculation. This results in the
following assumptions required in the FMM calculation.

a. In a single-phase model, we assume a uniform initial reservoir pressure over
the domain (no gravity effect). Thus, the reservoir is in equilibrium with a
uniform viscosity and compressibility at the initial condition.

b. In a multiphase model, we assume a uniform initial reservoir pressure over
the domain (no gravity/no capillary effects). But the heterogeneity of the

initial saturation distribution is accounted on the FMM calculation.
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c. Inacompositional model, we assume a uniform initial reservoir pressure (no
gravity/no capillary effects) and uniform initial compositional distribution
(no compositional grading) over the domain. The heterogeneity of the initial
water saturation is accounted for the FMM calculation.
e Due to the assumption that pressure and saturation contours are aligned with the
T contour, we cannot directly account for a different phase pressure, which can
cause the different pressure contour for each phase, in the DTOF formulation and
simulations. Thus, an additional treatment is required to account for the capillary
and gravity effects as the streamline simulation incorporate these forces using the
operator splitting. Notice that the operator splitting cannot be used in the DTOF
formulation, because we need to incorporate the gravity and capillarity in the
convective flux term.
4.2.2 IMPES Approach
The current DTOF-based multiphase simulation adopts the fully implicit method
to solve pressure, saturation, and mole fractions simultaneously on the 1-D DTOF
coordinate. This approach forces saturation to have the same contour with pressure,
because, during the coordinate transformation, we make an assumption that the
variables, P and S, are the function of = and ¢t. The constraint can be removed by using
the linearized pressure equation in the coordinate transformation and by making an
assumption that the pressure is the function of 7 and t in the 1-D transformed pressure

equation. Thus, the saturation contour is not necessarily aligned with the z-coordinate in
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this case. Furthermore, a full 1-D solution can be obtained by combining the pressure
solution on the DTOF with the saturation solution on the CTOF.
4.2.3 Dual-Porosity Compositional Model

The DTOF-based formulation can be extended to the dual-porosity compositional
simulation. The approach is similar to the single-phase and blackoil models as we
presented. The dual-porosity equation follows the Warren and Root pseudo-steady state
type. A compositional dual-porosity equation is written as follows. The water equation

in the fracture system is

0(brpwSwr)
where T, is the matrix-fracture transfer function for water. The component equation in

the fracture system is

@ = Vo (KeAifVPr) — pili + Gis (4.2)
where m; denotes the component molar mass, 4;¢ represents the component mobility,
and I; denotes the matrix-fracture mass transfer of component i (i = 1, ..., N.). Notice
that the component flow equation is molar-basis formulation and g;r represents the
component molar production rate. The transfer function is defined by the Darcy like
expression with the up-winding mobility.

T; = 0kmAiup(Pr — Br) (4.3)

The water equation in the matrix system is

O (PmPuSwm) _

4.4
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Notice that we assume the constant matrix porosity. The component equation in the

matrix system is

0(bmmy) _ I, (4.5)
at

The coordinate transformation from the physical space to the 1D t-coordinate (EQ.
(3.48)) leads the following fracture equations. The water equation in the fracture system
is

3(drouSws) by @ c oP
( fat f) = W(]‘;) a [W(T) (/1_:5) /1wf a__:l - pwrw + Pwlwr (4'6)

init

The component equation in the fracture system is

a(prmi)  ¢r 0 Ct dP; 3
at wor [W(T) (,Tt)init Aif El =T+ qir 4.7

In the DTOF-based compositional simulation, Eqs. (4.6) and (4.7) are the governing
equation in the fracture system as well as Eqs. (4.4) and (4.5) are the governing equation
in the matrix system.
4.2.4 Data Integration and Optimization

In the reservoir engineering field, the production data integration and field
optimization are essentially important to better characterize the reservoir heterogeneity
and to improve the oil recovery with minimum cost. The streamline simulation offers a
unique advantage for such problems by calculating the sensitivity coefficients along the
1D coordinate efficiently. The DTOF-based flow simulation is also applicable to such
problems using an analogy of the streamline simulation. One possible method is based

on the combinational use of the Adjoint method and travel time sensitivity calculation.
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The Adjoint method is traditionally applied in the numerical reservoir simulation and is
regarded as one of the most efficient approach to compute sensitivity coefficients. The
application of the Adjoint method in the DTOF formulation leads the sensitivity along
the 1-D coordinate (i.e. the sensitivity of bottom-hole pressure with respect to the

drainage volume). For future use, the all derivations are attached in APPENDIX F.
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APPENDIX A

GENERALIZATION OF DTOF FORMULATION TO ANISOTROPIC MEDIUM

A.1 Coordinate Transformation into the DTOF Space

The general diffusivity equation is given by
opP
¢cta+Vu‘1=O (A1)

where u is the Darcy velocity with an anisotropic permeability k.

1=
ﬁ=—;k-VP (AZ)

Suppose the flow domain is given by the closed finite permeable media with a source or
sink point (inner boundary). When the fluid flow takes place only by the convective

transport, the fluid particle moves along the pressure gradient direction.

Total flux across the contour: q(s)

Contour )
at level s Pressure gradient

direction

&L _—

Surface area: A(s)

[ ]
Sink

Sink

Closed finite domain

Fig. A.1 — Pressure contour map and fluid path along the pressure difference.
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Furthermore, in the primary depletion stage, the evolution of the fluid flow proceeds
outwardly from the sink/source point and is given by the gradient of the series of the
non-overlapping contour surfaces (pressure contours). The direction of the convective
fluid transport is identical to the gradient direction of the contour surface, Vs, as shown
in Fig. A.1. Therefore, the flux coordinate is transformed from the physical space to the
series of surface contours.

1 0q

\Y 'l_i —mg (A3)

where A(s) is the surface area of the contour and q is the total flux across the surface

contour. Substituting Eq. (A.3) into Eqg. (A.1), we obtain the diffusivity equation as

follows.
daP 1 0q
e A4
e ot A(s) 0s (A4)
On the contour surface, the total flux is given by
q(s,t) = —A(s)S e u (A.5)

where $ denotes a normal vector. Consider the drainage pore volume inside the contour

surface.

N

() = [ #(sNAGNds (A6)

0

Differentiating Eq. (A.6), we obtain the surface area of the contour.

or, we have

136



A(s)ds = (A.8)

¢()

Inserting Egs. (A.2) and (A.8) into Eq. (A.5), we obtain

1

?V‘ll

q(s,t) = VP (A.9)

1
5 Pr
Now we approximate the trajectory s by the trajectory of the pressure front propagation,
7. On the transient flow conditions, the pressure propagation trajectory is strictly given
by the seismic ray equation and not necessarily aligned with the streamline. The gradient
direction of the surface contour, Vs is replaced by the gradient direction of the diffusive

time of flight, Vz.

o)=L (v ke v)ap (A.10)
q(t, T Te )5 .

From the Eikonal equation, we have the following relationship.

VT ek o VT = (pCe)init (A11)
Notice that the Fast Marching Method is performed to solve for the DTOF t on the
initial reservoir state (i.e. the porosity, total compressibility, and fluid viscosity at the

initial condition). Substituting Eq. (A.11) into Eq. (A.10), we obtain the flux equation

along .
(Uee)init an oP
— MR/t 7 p 7 A.12
q(z,t) PR TR (A12)
Now, we define the w-function as follows.
av,
w(t) = —” (A.13)
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Substituting Egs. (A.7) and (A.12) into Eq. (A.3), we define the coordinate

transformation as follows.

Vel = ¢ 0 <(,uct)init w(1) a_P) (A.14)
ot

B w(T) at U
A.2 Inner Boundary Condition

At inner boundary (z = t,,), the well production rate is given by Eq. (A.12).

_ (uce)inic OV, OP
quw(t) = Fr (A.15)
T=Ty
Eq. (A.15) is approximated by the first-order finite difference method.
qw(t) _ (.uct)init (Vp,l - I/p,W) (Pl - Pw) (A16)
uP) \ -1y J\11 =1y

where q,, represents the production rate at the wellbore condition. The surface rate is
obtained by dividing Eq. (A.15) by the formation volume factor. Notice that the drainage

volume at wellbore (;, ,,) is zero. The fluid viscosity is given by the upstream weighting.
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APPENDIX B

CONSTRUCTION OF JACOBIAN FOR SINGLE-PHASE FLOWS

B.1 Derivatives of Finite Difference Equation

The sets of finite difference equations are iteratively solved by using the Newton-
Raphson method. In this approach, the Jacobian matrix is constructed by differentiating
the finite difference equations by the primary variables. Based on the 1-D discretization,
the Jacobian forms a sparse tridiagonal matrix as shown in Fig. B.1. Notice that, in the
rate-specified case, some non-zero values are entered in non-tridiagonal elements due to

the well conditioning. The details are discussed later.

af1n+1 af1n+1

0P1n+1 6P2n+1

af2n+1 af2n+1 af2n+1
aP1n+1 aP2n+1 aPB:n+l

A e )
Pty oRyt!  apytt
af]\?}l+l afAr’l+1
Py opytt

Fig. B.1 — Jacobian of the single-phase single-porosity model
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On the basis of Eq. (2.47), the finite difference equation of the grid i at the time-
step n + 1 is written as follows.

fin+1 — Fin+1 —A?H +A? + Win+1 =0 (B.l)
where F/**1 is the flux term, A7** and A} are the accumulation terms, and W/*** is the
well term. Because the well is imposed on the inner boundary, this term is appeared only
on the first grid (i = 1).
In a single-phase model, the primary variables correspond to the grid pressures P; (M X
1 vector). The diagonal terms of the Jacobian are obtained by differentiating Eq. (B.1)
by the pressure of grid i.

af_n+1 aFin+1 aA1i‘L+1 aWiTL+1

4

= — +
aPiTH-l apin+1 apin+1 apin+1

(B.2)

The derivatives in Eq. (B.2) are analytically calculated in this study. The notations of the

equation follow Eq. (2.47). The derivative of the flux term in Eq. (B.2) is

1 +1 +1

oF* _ %17, (Pl — pntly 4 T 12
i— i

OPL-”“ apin+1 apin+1

(PA =PI
(B.3)

_(Tiri}z + Ti‘Ti}Z
In the transmissibility, flow mobility (i.e. viscosity, FVF) is determined by up-winding.
If the upstream grid is i, that means the flow mobility is the function of the pressure of

the grid i, the derivatives of the transmissibility in Eq. (B.3) are

n+1

6T[§}2 _ Wl'i1/2(,uct)init,ii1/2 4 ( 1 ) (B4)

aPin+1 ATl'il/Z Lil/z(ﬂ t)lnlt,lil/Z aPin+1 B,u i

The derivative of the flow mobility in Eq. (B.4) is
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a (i>n+1 _ 1 au‘l{l+1 1 aBZ‘L+1 (B 5)
aPi‘rH-l BM .

B:n_l_lﬂn_l_lz aPiTL'I'l Bn+12 n+1 aPin‘l‘l
l l l l

i

U

If the upstream grid is the neighbor grid, that means the flow mobility is not related to

the pressure of the grid i, the derivatives of the transmissibility in Eq. (B.3) are zero.

a n+1 a n+1

i-1/2 _ i+1/2 _ (B.6)
aPi‘rH-l aPiTL+1
The derivative of the accumulation term in Eq. (B.2) is
QAT wilt (1 OMyTt Myt 9B 57
gpn+i - Atn+1l |\ gn+l gpn+i Bn+12 gpn+i ( ' )
l L l i l

where Mg, is the exponential rock compressibility function (M., = er(P=P)) |ts
derivative is

aMTl-I-_l
o = Cre P r) (B.8)
i

The derivative of the well term in Eq. (B.2) is appeared at i = 1. This is calculated by

differentiating Eq. (2.50).

oW _ wy (UCe)inita [ 1 m d 1\"*
aP1n+1

_ . I PTL+1 _ PTl+1 B.9
apP} Ty — Twen | \BH/, B,u)1 (P ) (B9)

The off-diagonal terms of the Jacobian are obtained by differentiating the finite
difference equation (Eg. (B.1)) by the pressure of the neighbor grids.

afin+1 aFin+1 aATil+1 aWin+1

= - (B.10)
OPFAT ORGP 0PI
Notice that the derivatives of the non-flux term in Eq. (B.10) equal zero.
n+1 n+1
0A;"" oW _ 0 (B.11)

n+1 -~ n+1
P aP
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The derivatives of the flux term in Eq. (B.10) is

oFH! AT 7,

apln+1 =T, + 61;’”/1 (P4t — Pt (B.12)
i-1 i-1

o o1,

aPln+1 =T + Pt (Pt =P (B.13)
i+1 i+1

If the upstream grid corresponds to i, the derivatives of the transmissibility in Egs.

(B.12) and (B.13) are zero.

O T 619
oPMt 7 aPRit '
-1 i+1

If the upstream grid is neighbor grid (i + 1), the derivatives of the transmissibility in Eq.

(B.3) are
aT'ri+1 W;_ Ct )imit i 0 1 n+1
lni/lz _ 1/2 (.u t)ll’llt,l 1/2 Wii1)2 (#Ct)init,i_l/z — (_) (B.15)
aPi_l ATi—l/Z aPi—l Bl,[ i1
6T~n+1 W; Ct )init s a 1 n+1
11+11-/12 e ( t)lmt'lﬂ/z Wit1/2 (,uct)init,i+1/2 Spn+l <_> (B.16)
oP Aty OPII\Bu/ ., .

Hence, the diagonal term of the Jacobian is constructed by using Egs. (B.3), (B.7), and
(B.9) as well as the off-diagonal term is constructed with Egs. (B.12) and (B.13).

B.2 Implicit BHP Calculation

If the bottom-hole pressure is specified, we can explicitly calculate the production rate
using the well equation (Eq. (2.50)). If the production rate is specified, we implicitly
solve the bottom-hole pressure during the Newton iteration. In such case, the primary

variable consists of a (M + 1) x 1 vactor.
yn+1 — [P1n+1,P2n+1, ""PI\1/}+1;PVTVL}-1]T (Bl?)
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In addition to the finite difference equations, the well governing equation, that is the well

residual equation (R,,) is imposed on the residual.
R*1 = U1n+1 f2n+1 1\7/11+1 Rn+1]T (B 18)
) L ) w .
The residual consists of a (M + 1) x 1 vactor. The well residual term RZ*? is obtained

by rearranging Eq. (2.50).

et 1 n+1 P1n+1_ x}-l _ B.19
Ry _Wl(‘uct)init,ii%(B_'u>1 BT (B.19)

The Jacobian consists of a (M + 1) x (M + 1) matrix as shown in Fig. B.2.

I il Ry
aprtT  gpptt 6P$;1

af2n+1 6fzn+1 afz‘n+1
6P1n+1 0P2n+1 aP3n+1

ofyii  ofvii  Ofwit
oprtl  opHl  opprtt
aflsl+1 afl\sl+1

apyrl  apytt

af1n+1 aRz‘l/+1

aprtt apptt

Fig. B.2 — Jacobian of the single-phase single-porosity model with well residual terms

Notice that the production rate is specified, thus this is a fixed value. The elements

constructed in the Jacobian are the following three derivatives.
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af1n+1 aR‘T/lV+1 aR&l/+1
9P 9P 9P

(B.20)

The derivative of the finite difference equation of the first grid with respect to P,, ¢ is

1 n+1

) (B.21)

1

afftt _ wy (K€t init (

apvrvl}i-l B T1 — Twell BH

The derivative of the well residual term with respect to P; is given by

ORJ*" _ w1 (Uce)inie [ 1 mH d 1\" n+1 n+1 B.22
n+1 _ o, + n+i\p,, (Pl _ow ) ( . )
0P| Ty — Twell | \BW/, 0P Bu/,

The derivative of the well residual term with respect to P; is given by

n+1

ORW 3 W1(ﬂCt)init,1( 1 ) (B.23)

anTvl}-l - Ty — Twen \BU 1
B.3 Derivatives in Dual-Porosity Model
In the dual-porosity model, there are two types of finite difference equations. One is the

discretized flow equation of the fracture grids. Another one is the discretized flow

equation of the matrix grids. These are simply expressed as follows.

fiit = Ep = AR+ AR+ W — v AT = 0 (B.24)
= — A AL+ FRyi =0 (B.25)

where v;At; represents the ‘bulk’ volume of the grid block i. The fracture-matrix

transfer term Fff ; is defined by

n+1

1
Fini = 0k (ﬁ) (PHt —Ppt (B.26)
p

u
Notice that the shape factor o and the matrix permeability k,,, are the uniform parameter

throughout all the grid blocks. Eq. (B.24) corresponds to Eq. (2.60) as well as Eq.
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(B.25) corresponds to Eq. (2.62). The primary variable is the fracture pressure and the

matrix pressure (2M X 1 vector).

T
n+1l _ n+1 n+1 n+1 pn+1 pn+l n+1
y™tt = [P PR, L PR PR PR L P (B.27)

The residual term is comprised of the finite difference equations of the fracture grids
(EqQ. (B.24)) and of the matrix grids (Eq. (B.25)) (2M x 1 vector).

T
n+1l _ n+1l rn+1 n+l rn+l1 gn+1 n+1
R = [ff,1 s JF2 e ,ff,M yImai  Tm2 e Jmm (828)

Hence, the Jacobian is obtained by differentiating Eq. (B.28) by Eq. (B.27) 2M x 2M

matrix). The matrix form is shown in Fig. B.3.

affat offt ff!
appt appit apnit
offst offst offet affs!
aPrt oPPFt oPPYt oppit
Offn=1 Offnz1 ffnta Offina
aP;},’glz opPfyL, apryt oPM
Nt offN’ off’
oPfyL, aPRyt opyit
ofpit afmit
OFfy! 9P
afnst Ofms"
aP;‘f 1+ i aprgzl
Of i1 Of i1
aPryL, apmtL
ofmt Ofmit
oPEN’ opmAT

Fig. B.3 = Jacobian of the single-phase dual-porosity model
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The resulting Jacobian elements are classified to four types of the derivatives.
(1) The derivative of fracture eq. (f;) with respect to fracture pressure (Py)
(2) The derivative of fracture eq. (f;) with respect to matrix pressure (B;,)
(3) The derivative of matrix eq. (f;,,) with respect to fracture pressure (Pf)

(4) The derivative of matrix eq. (f;,,) with respect to matrix pressure (B,,)

Based on Eqs. (B.27) and (B.28), these derivatives can be written as follows.

Offit OFFTt  aARTT owpt A OFfi B.29
0PI~ 9Pl Pl T gpren ~ ViATigpain (8.29)
offit O —
aPTH-l - aPTH-l ( ' )
flit1 fiit1

a7t OFfir}
Ly AL (B.31)
) ke toptt
Ofmt® _ Ffi: 63
G) ) '
9 n+1 aAn+_1 aFn+1_

fm,L _ m,i + FM,i (B33)

opPrtl — gpntl " gpntl

The upper left part (M x M matrix) in Fig B.3 is comprised of Eq. (B.29) (diagonal
term) and Eq. (B.30) (off-diagonal term). The upper right and the lower left parts (M x
M matrices) in Fig B.3 are the diagonal matrix given by Eqg. (B.31) and (B.32),
respectively. The lower right part (M X M matrix) is also the diagonal matrix obtained
by Eq. (B.33).

In Eq. (B.29), the first partial derivative in the right hand side is calculated using Eq.
(B.3). The second derivative is obtained by Eq. (B.7). The third derivative is given by
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Eq. (B.9). The forth derivative is calculated by differentiating the fracture-matrix

transfer term (Eq. (2.61)) by the fracture pressure.

aFg‘lI\}-% l 1 n+1 a 1 n+1
——= = ok, (—) +—(—) (ppft — ppt (B.34)
opPIt Bu/,, — oPF\Bu/,, m
The upstream direction is determined by comparing the fracture pressure and matrix
pressure of the grid i. If the fracture pressure is larger than the matrix pressure (P"+1

P1%1), the derivative of the flow mobility in Eq. (B.34) is

a ( 1 )n+1 B 1 a’un+1 1 aB{l-l-l
6Pf7?i+1 Bu up Bin+1‘uln+12 anrfi"'l Bin+12‘uln+1 aP]Z'll.‘"l

(B.35)

In contrast, if the fracture pressure is larger than the matrix pressure (P"+1 > P”“) the
derivative of the mobility is zero.
The partial derivative of Eq. (B.30) is given by Eqgs. (B.12) and (B.13). The partial

derivative in the right hand side of Eq. (B.31) is calculated by

aFIZ"lI\jI-,% . l ( 1 )n+1 \ 9 ( 1 )n+1
=0 — | — _ | —
oPmEt T \Bu/ T 0PI \Bu/,,,

The derivative of the flow mobility in Eq. (B.36) follows the up-winding scheme.

n+1 Pn+1)l (B36)

The first partial derivative of the right hand side of Eq. (B.33) is given by

aAn+.1 1 1 9 n+1 n+1 (’)B?”l
?-;-ll = A n+1 n+1 ¢:1n+1 - m12 ;1+1 (B'37)
oPI* t BI*topntt  pn+iZ opnY
where the derivative of the matrix porosity with respect to the matrix pressure is
a¢n+1 a
5Pl = Gpn+l (‘PgleXp[Cr(Prrrl:il - Tef)]) = crdm (B.38)
m,i m,l
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where ¢2, is the matrix porosity at the reference pressure. If the production rate is
specified, we impose the well residual term in the residual vector to implicitly solve the
bottom-hole pressure. In the dual-porosity case, the well residual equation is added in the
Jacobian as shown in Fig. B.4. Because the well is placed on the fracture coordinate
only, the well residual term is calculated using the same equation with the single-

porosity model (Eq. (B.19)). The derivatives in the Jacobian is given by Eqgs. (B.21) —

(B.23).
fft affst affst offd
aPrt aPpyt aprit aPEtt
offFt offst off! offs’
) i) ) appit
Offnty Offnti Offvts Offnts
OPFSL, OPFNL, OPRNT oPTAL
offn’ offa’ ffn’
OPFNL, oPRY! Ly
afmit Ofmit
opryt AT
afust fma"
)i optt
Of =1 Ofmhi1
aPrYL, Pl
Ofmh Ofmi
PRt B
ORIHL ARIH
apTt oPsyT

Fig. B.4 — Jacobian of the single-phase dual-porosity model with well residual terms
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B.4 Derivatives in Triple-Continuum Model

In the triple-continuum model, we solve three primary variables — fracture pressure Py,
matrix pressure B,, and gas concentration in the organic matter C,. The coordinate is
tripled as shown in Fig. 2.6 and the resulting governing equations are divided into the

three types of the finite difference equations.

= Ep - A}ﬁjl + A7 + W — v At FRy = 0 (B.39)
i = —Ant AL+ Fit — Figi = 0 (B.40)
i = AR AR+ P =0 (B.41)

Where v;At; represents the ‘bulk’ volume of the grid block i. The matrix-Kerogen
diffusive transfer term Fy;%} is defined by

Fiki = omxDe(Cri* = Ci™) (B.42)
Notice that the shape factor g, and the diffusion coefficient D, are the uniform
parameter throughout all the grid blocks. The gas concentration of the matrix grid C,, ; is
given by the Langmuir adsorption isotherm (Eq. (2.80)). Eq. (B.39) corresponds to the
fracture finite difference equation (Eq. (2.86)). Eq. (B.40) represents the discretized
matrix equation (Eqg. (2.87)). Eqg. (B.41) expresses the Kerogen finite difference
equation (Eq. (2.88)). The primary solution vector consists of a 3M X 1 vector.

T
n+1 _ n+1 n+1 n+1 pn+1l pn+l n+1 ~n+1 ~n+1 n+1
= [ f}l ) f:z ) ---;Pf,M )Pm,l 'Pm,z yfmMo Ck,1 ,Ck’z ye UM ] (B.43)

y
The residual term is comprised of the following equations (3M X 1 vector).

T
n+1 _ n+1l rn+1 n+l rn+l1 fn+1 n+1l fn+l1 gn+1 n+1
R - [f,l 1 Jf,2 '"-fff,M ffm,l rJm,2 r m,M'fk,l »Jk2 20 JkM ] (B'44)
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Hence, the Jacobian is obtained by differentiating Eq. (B.43) by Eq. (B.42) (3M x 3M
matrix). The matrix form is shown in Fig. B.5.
The resulting Jacobian elements are classified to four types of the derivatives.
(1) The derivative of fracture eq. (f;) with respect to fracture pressure (Py)
(2) The derivative of fracture eq. (f7) with respect to matrix pressure (P;)
(3) The derivative of fracture eq. (fr) with respect to Kerogen gas density (Cy)
(4) The derivative of matrix eq. (f;,) with respect to fracture pressure (Py)
(5) The derivative of matrix eq. (f,,) with respect to matrix pressure (P,,)
(6) The derivative of matrix eq. (f;,,) with respect to Kerogen gas density (Cy)
(7) The derivative of Kerogen eq. (f) with respect to fracture pressure (Py)
(8) The derivative of Kerogen eq. (f;) with respect to matrix pressure (P,,)

(9) The derivative of Kerogen eq. (f;) with respect to Kerogen gas density (Cy)

Fracture Matrix Kerogen Gas
Pressure Pressure Concentration

Fracture

Equation

Matrix

Equation

Kerogen

Equation

Fig. B.5 — Jacobian of the single-phase triple-continuum model
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Each matrix element of the Jacobian is calculated as follows.

Offt OFFTY aAFTT owpt OFfm 8.4
oPrFl ~ appri bl gpart  ifTigpaat (B4)
offt _ oFp (8.6
OPFEYy  oPREY
affitt OF i
L A ML (B.47)

oPt! topntt
offitt
anl =0 (B.48)
Ofmi’ _ OF i (B.49)
opfft  app '
Ofmi’ _ OAw: | OFfii OFyiki (B50)
apptt apptt  oPREt apptt '
Ofmi’ _ _ OFiici (B51)
Gl acptt '
Ofpi "
9 n+1 aFn+1_

fk,l MK,i (B,53)

N+l Apn+tl
(')Pm,i aPm,i

ofgi _ OART | OFjiki (B54)
acptt acpt acptt '

Notice that all the derivatives in Egs. (B.45) — (B.54) are given in the previous dual-
porosity model except for the following four derivatives.
In Eq. (B.50), the derivative of the matrix accumulation term with respect to the matrix

pressure is
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AL 1 (1 dpntl  pnil gpn+l ac,’;l;1> (.55

PRt AtnH1\ BT gpRtT  pna1Z gpntl T gpTtl
where the derivative of the matrix gas concentration with respect to the matrix pressure
IS

0Chmi" V.P,

P (P, + PIY

2 (B.56)

In Egs. (B.50) and (B.53), the derivative of the matrix-Kerogen transfer term with
respect to the matrix pressure is

n+1 n+1
aFMK,i aCm,i

% gD —
n+1 MK~c n+1
aPm,l- aPm,l-

(B.57)

In Eqgs. (B.51) and (B.54), the derivative of the matrix-Kerogen transfer term with
respect to the Kerogen gas concentration is

OF i
gt~ el o0
In Egs. (B.54), the derivative of the Kerogen accumulation term with respect to the
Kerogen gas concentration is

QAT 1
acl??_l = Atn+1

(B.59)
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APPENDIX C

CONSTRUCTION OF JACOBIAN FOR BLACKOIL FLOWS

C.1 Derivatives of Finite Difference Equation

In a three-phase blackoil simulation, there are three finite difference equations and the
corresponding three primary variables in each grid. The primary variables are
simultaneously solved using the fully implicit method (FIM) in this study. The finite

difference equations are written as follows.

= Fptt A AL+ Wit =0 (C.1)
L= F AT AL AW =0 (C.2)
g’;“ = F;i“ - Agjl + Ay + Wg’ffl =0 (C.3)

Egs. (C.1) — (C.3) corresponds to Eqs. (3.56) — (3.58), respectively. The Jacobian forms

a block-tridiagonal matrix as shown in Fig. C.1.

n+1 n+1
Al Bl

n+1 n+1 n+1
CZ AZ BZ

n+1 n+1 n+1
CN—1 AN—I BN—I

n+1 n+1
CN AN

Fig. C.1 - Jacobian of the multiphase single-porosity model
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In the Jacobian, the elements in the block-tridiagonal band consist of a 3 X 3 matrix as

shown in Fig. C.2.

Ofwi  Ofwi  Ofw; Ofwi  Ofwi  Ofw; i  Ofy;  Ofy

ob OSw,i 0Sgj 0P11  OSwir1 OSgis1 0Py O0Syi-1 0Sgi_1
Ai — afo'i afo,i afo,i Bi — afo‘i afo,i 6f0‘i C. = afo,i afo,i afo,i

L

OB OSwi  OSg; OPir1  OSwi+1 0Sgit1 OP_; 0Swi: 0Sgi1

ofg;  Ofgi  Of; ofg;  Ofy;  Ofg; oy Ofy  Ofy

OP  OSwi  OSg; OPir1  OSwi+1 0Sgit1 OP_; 0Swi1 0Sgi1

(a) Diagonal element (b) Upper non-diagonal element  (c) Lower non-diagonal element

Fig. C.2 - Block diagonal elements in the Jacobian

The elements described in Fig. C.2 are obtained by differentiating Egs. (C.1) — (C.3) by
the pressure (P/***), water saturation (S}, ;"), and gas saturation (S;/*) of grid i.

Ofai _ OFgi’ 0Ay  oWg! (C.4)
aPin+1 apin+1 apin+1 apin+1

Ofgit OF Tt aAptt  owgit

a,l

= - (C.5)
osgrt  ospIT osuyT osup
of _oFI aant awgp <

asg;l 65;;“1 as;;l asg;l
where « is phase (¢ = o,w, g). When the grid pressure is lower than the bubble-point
pressure (P**! < Py), the free gas phase does not exist in the grid (S;/;* = 0), whereas

the oil phase contains the solution gas (Ry; 1> 0). In such situations, we change the
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primary variable from gas saturation (S;flfl) to solution gas ratio (R;f{fl). Thus Eq. (C.6)

is replaced by the following partial differential equation.

of _ornyt oA owzr on

n+1 n+i n+1 n+1
aRS’i aRS‘i aRs,i aRs’i

The derivatives of the flux term in Egs. (C.4) — (C.7) are

n+1

+1 n+1
aFc?,i _ aTOf,i—l/Z (Pn+1 _ Pn+1) + aTa;i+1/2 pntl _ Pn+1)
aP-"“ - aP-"+1 i—-1 i aP-"“ i+1 i
i i i (C.8)
_(Torcl,?jl/z + T;l,;h/z
1 +1 +1
aFOrll,le _ aT(Qi—l/Z (P_n+11 — Pty 4 aT;H‘l/Z P-nJil — pt (C.9)
asntl - gsntl Mo ! gsntl M ‘ '
OFpt  OTe ), 0T i1 )2
= — e (P - PP+ — 5= (PR - P (C.10)
aSnﬂ-l aSn-_i—l i—-1 i 05"‘-“1 i+1 i
9. 9. 9.
AFMY  OTIHY aTM L,
ST = i (P = PP+ — T (P — PP (C.12)
S,l S,l S,
where the derivatives of the phase transmissibility in Egs. (C.8) — (C.11) are
aT;El/Z _ Wit12 (&) Oz up (C.12)
opPf*t ATit1/2 \Ae init,i+1/2 apf+t .
T w; oAl
ait1/z _ Wit1/2 (&) a,up (C.13)
aSptt ATy \A init,i+1/2 oSyt .
0Tgit1/z _ i1 (&) 02z up (C.14)
AT} ; oAtl
aix1/2 _ Wix1/2 (&) a,up (C.15)
ORGTT  DTixayo \ A/ a1 /2 ORGT .
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If the upstream grid is the neighbor grid, the derivatives of the phase mobility in EQs.
(C.12) - (C.15) are zero.

0Mgids _ o Oiss _ o Qi _ o it _ (C.16)
ORI asyT T st oy |

If the upstream grid is i, the derivatives of the phase transmissibility in Egs. (C.12) -

(C.15) are

o Km0 KD owny cm

n+1l 2 n+1 2 n+1 :
0P, B‘Z;l ;l/-,l-il 0P, ijgl#%l oP;

ony 1 aknt .19
OS5it T By 0S

AL

@= (C.19)
A+

— = (C.20)
OR}HT

otk oBRY kgrl ouptt oRp kiph

aPin+1 33?12 g’_{l apin+1 Bgl’_il_llug'_l!_lz apin+1 apin+1 B‘;l,-il-lll‘rgl,-:_-l

(C.21)
R( oo kil a@:l)
v,i 2 n+1 2 n+1
By ugit OFT BRugit O

w1 okl ., 1 ok e
65;1/41-1 B;l'-lj-lﬂ(rjl,-l!-lasxl-li-l v,l B‘;-il-lug:;lasle )
omp 1 ot L., 1 okl )
ST T BRf oS v BRHl i s '
. (©.24)
ORI

156



n+1 n+1 n+1 n+1 n+1 n+1 n+1
dAgi~ krgi 0Bg; Krgi OHgi | ORg; Kro,i
n+1 2 n+1i 2 Apn+1 n+1 pn+i, n+l
aPp; Byt upt! 0P, Byt tugtt aP; P " By "l
n+1 n+1 n+1 n+1
_ Rn+1< kro,i aBo,i kro,i anuo,i
st 2 n+1 2 n+1
n+14, n+1 g P! n+1,,n+14 g p!
Bo,i 0,i l Bo,i Ho,i l
n+1 n+1 n+1
a/lg,i _ 1 ak?‘g,i n+1 1 akro,i
n+1 = pn+l,,n+1 n+1 S,i n+1, n+1 n+1
aSw,i Bg,i nug,i aSw,i Bo,i :uo,i aSw,i
n+1 n+1 n+1
oagtt 1 okigh 1 Ok
oSy T B wgr oSy BT oS
n+1 n+1
alg,i kro,i

n+1  pn+l, ntl
aRs,i Bo,i nuo,i

For each phase, the derivatives of the accumulation in Egs. (C.4) — (C.7) are

n+1
GAW,l- _ WiATi

aPin+1 - Atn+1

n+1l
(')AW'i _ WiATi

asx-iljl - Atntl
+1
AT
+1 —
65;1-
+1
AT
+1
OR;fl-

(

(m

n+l cn+1 n+1 n+1
aMd),i Sw,i _ yn+1 Sw,i aBw,i

n+1 pn+1 ¢,i 2 n+1
oPM*t Bt 1% 9P

n+1

1 )
¢,l Bv‘r;:'l‘l
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(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)



aAroli_l _ Wl'ATi
Pt Agntl
l

n+1 n+1 n+1
aM¢.i So,i 4 gntt Sg,i
aP-"H B‘I‘L-_I-l v, Bnﬂ-l

2 o,l g,

e (S OBRTomSp o
,l Bgl‘-il-lz aPin+1 aPin+1 B;l:l .
n+1 n+1
+ R‘I‘L-'l-l Sgri aBg'i
v,i B‘;ljlz aPL_n+1
+1
e =t (vt (C.34)
asntl T T Agnri\ Tt prid :
+1
aAz,i __ WiATi MTL-I.-l 1 (C 35)
65;?1 Agnt1 i Bg?—l .
045" _ )
OR;fjl
0AGTH  wht; [OMg (55_;1 L et 53;1>
apin+1 Atn+1 apin+1 Bg,-il-l S,i Bgl,_ipl
e (SaT0BRE ORI szt o3
,L B';l'_il_lz aPiTl+1 apin+1 B:)’l’-l!-l .
+ R EGB_‘T’T
S,i B;ljlz aPin+1
n+1
LY Mg | RS : (C.38)
asmil T T agnet|Tod \Tet g |
n+1 -
Mol WAL s (1 s 1 (C.39)
aSg,zrl Atn+1 _ b, ng-l st B;l"l-"l .

6/13371 _ Wl'ATl' [ S;’:?l C 40
aR;ljl T Ant1 _ i\ pnit (C.40)
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The derivative of the well term in Egs. (C.4) — (C.7) is imposed on the first grid.

”rn+1

J a1 Ct n+1

— T =wi | A

gpn+i 1 2 al
1 t7 init,1

n+1 n+1
oWei™ " (Ct) 0Ag1

n+1 M1\ n+1
aSWJ AtimtlaSWJ

n+1
0Ag1

owRTt (Ct)
—_— W J—
asmit T\,

init,1

n+1
0Sg1

oWt . (ct) At
(L

n+1
aRS’l

n+1 =
aRs,l Af init,1

() () e
Ty — Twen/  OPM\ Ty — Tyen

(Pijl__rw”? 1) (C.42)
(Pijl__rvﬁ 1) (C.43)
() 49

In Egs. (C.41) — (C.44), the derivatives of the phase mobility are obtained using Egs.

(C.17) - (C.28).

Similarly, the off-diagonal blocks in the Jacobian also consist of a 3 x 3 matrix as

shown in Fig. C.2. The off-diagonal terms are obtained by differentiating the finite

difference equations (Eqs. (C.1) — (C.3)) by the primary variables of the neighbor grids.

n+1 n+1 n+1 n+1
afa,i _ aFa,i aAa,i aWa,i

n+1 = n+i n+1 n+1
apiil aPiil aPiil aPiil

n+1 n+1 n+1 n+1
afa,i aFa,i aAa,i aWa,i

n+1 n+1 n+1 n+1
aSw,iil aSw,iil aSw,iil aSw,iil

n+1 n+1 n+1 n+1
afa,i _ aFa,i aAa,i aWa,i
n+1 = n+1 n+1 n+1
asﬁji1 asbiil asﬁiil asﬁiil
n+1 n+1 n+1 n+1
afoz,i _ aFa,i aAa,i aWa,i
n+1 n+1 n+1 n+1
aRs,iil aRs,iil aRs,iil aRs,iil

(C.45)

(C.46)

(C.47)

(C.48)

Notice that the derivatives of the non-flux term in Egs. (C.45) — (C.48) equal zero.
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n+1 n+1
Ay B oWy B

n+1 -~ n+1 -~
aPiil aPiil

n+1 n+1
QATEY awrt

n+1 ~ n+1
aSg,iil aSg,iil

The derivatives of the flux term in Egs. (C.45) — (C.48) are

)

n+1
AL

n+1
aSw,iil

n+1
oA

n+1
aRs,iil

1
aF;qu —Tn+l aTortl,_i{—il/z (Pn+1
aPlni+11 a,itl/2 aPlni-lil i+1
n+1 n+1
i+ i

n+1 n+1
aSw,iil aSw,iil

n+1 n+1
0F,;"  0Tgis1

_ Jeieue (s
n+1 n+1 it
0Sgiv1  0Sgies
n+1 n+1
0Fz;"  0Tyitiy (P42
aRn+1 - aRn+1 it1
s,i+1 s,it1

The derivatives of the phase transmissibility in Eqgs. (C.50) — (C.53) are

_ Pn+1)
L

—_ p."+1)
l

=0,

n+1
oW,

n+1
aSw,iil

n+1
oW,

’ n+1
aRs,iil

_ Pn+1)
l

nt1 n+1
0Tgit1/2 _ Wit1y2 (Ct) 0 up
n+1 . EN n+1
P ATis1/2 \ e/ i a1 2 OPiv1
n+1 n+1
d aix1/2 _ Wix1/2 (Ct> aAaz,up
n+1 ] a7 n+1
aSw,iil ATit1/2 At initi+1/2 aSw,iJ_r1
nt1 n+1
0Tgit1/2 _ Wit1y2 (Ct) 0 up
n+1 ] o n+1
aSg.iJ_rl Arlil/Z At init,i+1/2 aSg,iil
n+1 n+1
aToz,iil/z _ Wit1/2 (Ct> aﬂ-a,up
n+1 . eV n+1
aRs,iJ_rl ATit1/2 Ae initi+1/2 aRs.iw_ﬂ

=0,

=0

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)

(C.55)

(C.56)

(C.57)

If the upstream grid is the grid of i, the derivatives of the phase mobility in Egs. (C.54) -

(C.57) are zero.
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n+1 n+1 n+1 n+1
ot oAt oAt oAt

n+1 -~ n+1 - n+1 ~ 7 n+i
aPH_—l aSw,iil aSg,ii—l aRs,iil

(C.58)

If the upstream grid is the neighbor grid, the derivatives of the phase mobility in EQs.
(C.54) - (C.57) are calculated using Egs. (C.17) — (C.28).

Therefore, the diagonal blocks of the Jacobian are constructed by using Egs. (C.8) -
(B.44) as well as the off-diagonal blocks are constructed with Egs. (C.50) - (C.57).

C.2 Implicit BHP Calculation

If the bottom-hole pressure is specified, we can explicitly calculate the production rate
using the well equation (Eqg. (2.65)). If the production rate is specified, we implicitly
solve the bottom-hole pressure during the Newton iteration. In such case, the primary

variable consists of a (3M + 1) x 1 vactor.
T
ytt = [P1,5w,1,5g,1, ---’PMJSM,1:SM,1'PWf] (C.59)
In addition to the finite difference equations, the well governing equation, that is the well

residual equation (R,,) is imposed on the residual.

T
R™! = [fw,l' fo,l' fg,lf ---'fw,M'fo,M'fg,M'Rw] (C.60)
The residual consists of a (3M + 1) x 1 vactor. The well residual term R,, is defined by

summating Eq. (3.65) for all the existing phases.

n+1 n+1
Ry =wi(— loi\(—————| - Qe (C.61)
/1t init,1 a=wo.g T1 — Twell a=wo.g

The Jacobian consists of a (3M + 1) x (3M + 1) matrix as shown in Fig. C.3.
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A111+1 B711+1 LU121+1

n+1 n+1 n+1
CZ A2 BZ

n+1 n+1 n+1
CN—1 AN—1 BN—1
n+1 n+1

Cv'" Ay

LL LI+

Fig. C.3 — Jacobian of the multiphase single-porosity model with well residual terms

The additional elements LL;,LL,, and LU,in Fig. C.3 is comprised of a vector and

scalar value. The row vector LL; (1 X 3 vector) is given by

aRn+1 aRn+1 aRn+1
LL}* = ‘rA:+1 :+1 :+1 (C62)
oP] aSyi 9541
If the primary variable is R{7" instead of S;7*, the row vector LL}** is
6Rn+1 6Rn+1 6R"+1
LT+ = W+1 W+1 W+1 (C.63)
or" aSy " ORYY
The scalar vale LL, is given by
aRz‘l/+1
L2+ = an}fl (C.64)
The column vector LU, (3 X 1 vector) is given by
gFNtl  gEntl gEntl T
LU = fu Jo o (C.65)

|opprt oPpEt opRtt
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Notice that the production rate is specified, thus this is a fixed value. The LLj*!

elements in Egs. (C.62) and (C.63) are calculated as follows.

oAt (PIH! — PRf?
oPMI\ 1, —1 2
= 1 1 well

) (Ct)

—_— =W |—
n+1 2
aPl At init,1
n+1 n+1 n+l _ pn+1
ORw_ _ (&) 0 <P1 i )
n+1 — Vi\y n+1
05y At init,1 < A T1 — Twell
+1 n+1 n+1 n+1
ORT W (ct) ALY <P1 - P3t )
n+1 i\ n+1
659,1 /1t init,1 55 059’1 T1 — Twell
+1 n+1 n+1 n+1
ORT W (ct) ALY <P1 — P}t )
n+1 — Vi\y n+1
aRs’l /1t init,1 - ORS'I T1 — Twell

(=)
T1 — Twell

(C.66)

(C.67)

(C.68)

(C.69)

In Egs. (C.66) - (C.69), the derivatives of the phase mobility are calculated using EQs.

(C.17) - (C.28).

The LL, element in Eq. (C.64) is obtained by
oRV” _ &) Sam (4)
oPyf e i — 0 \T = Ty

The LU elements in Eq. (C.65) are calculated by

afn+1 c 1
=) A )

1
op \/\1}}ch init,1 1~ Twell
n+1
o _ ., (&) At (;>
13 )
aPJVl;l /1t init,1 ? T1 — Twell
n+1
% = w: (&) antt (#)
i f
aner}-l ﬂ't init,1 g T1 — Twell
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C.3 Derivatives in Dual-Porosity Model
In the blackoil dual-porosity model, we solve the three phase finite difference equations
for the fracture grid as well as for the matrix grid.

The finite difference equations in the fracture grid i is expressed by

foii = Fufi —Auki + ALpi + Wtt — v AT Figy, ; = 0 (C.74)
fofit = Foft — AQfi + Appi + Wori — v AT FRg L = 0 (C.75)
fort = Fofit — AGfL + Agp i + Wit — v At Fiy L = 0 (C.76)

where v;At; represents the ‘bulk’ volume of the grid block i.
In the dual-porosity model, the matrix grid has no flux to the neighbor grid. The finite
difference equations in the matrix grid i are defined by the accumulation and fracture-

matrix transfer term.

wmi = — A + Almi + i = 0 (C.77)
or;rj:.L1 = _Ag:r-l,li + Agm,i + FIZ"QI\-/II-}),L' =0 (C78)
gr;;} = _Agjn,li + Agm,i + FI?I\-/Il-lgl =0 (C79)

where Ffif % ; is the fracture-matrix transfer term of phase a (o, w, g).

Fiinai = okmAighip (PR = PRt (C.80)
Notice that the shape factor o and the matrix permeability k,,, are the uniform parameter
throughout all the grid blocks.

The primary variable is the fracture pressure and the matrix pressure (6M X 1 vector).

T
YU = YR e YR Yt s Vit (C.81)
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where y}”l and y22*1 are the vector comprised of the pressure, water saturation, and gas

saturation or solution gas oil ratio for each grid.

vt = [PRSut Ser (C.82)
Vit = [Pt St Saoit (C.83)

The residual term is comprised of the finite difference equations of the fracture grids
(Egs. (C.74) — (C.76)) and of the matrix grids (Eqs. (C.77) — (C.79)) (6M x 1 vector).

R™! = [RFY, . R R, L RG] (C.84)
where R}}“ and R4 are the vector comprised of the three finite difference equations
for each grid.

RFT = [fofd fori forid (C.85)

R = [fumis fomis fomi (C.86)
The Jacobian (6M x 6M matrix) is obtained by differentiating Eq. (C.84) by Eq. (C.81).
The matrix form is shown in Fig. C.4. The elements A — C in Fig.C.4 is the block-
tridiagonal entries. The elements D and E represents the fracture-matrix connectivity,

which is locally diagonal in the Jacobian. The element F is the diagonal term in the

Jacobian.
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n+l pn+l n+1
A1 Bg D;
n+l aAn+l pn+l n+1
G AT B D;
n+l  An+l n+1 n+1
CyIi Ay: By:: Dy~1
n+l  An+l n+1
G Ay Dy
n+1 n+1
E7 Ff
n+1 n+l
E; F;
n+1 n+1
EN—l l-"N—l
n+1 n+1
Ey Fy

Fig. C.4 — Jacobian of the multiphase dual-porosity model

The Jacobian elements A — F in Fig. C.4 are classified to four types of the derivatives.

(1) The derivative of fracture eq. (Ry) with respect to fracture variable (yy)

-afwf afwf afwf_ -afwf afwf afwf_

OP;  0S,; 0Sys dP;  3S,; ORgs
A,B,CZGRfZ afof afof afof or afof afof afof (C87)

dy; | 0P S,y 0Sys 0P  8S,; ORyy

Ofgs  Ofgr Ofgr Ofgs  Ofgr  fgr

| dP;  3S,; 0S,,l L aP; S, ORy

(2) The derivative of fracture phase eq. (Ry) with respect to matrix pressure (y,,)

166



_afwf

afwf

afwf_

0P,
afof

0Sywm
afof

dSgm
afof

0P,
afgf

0Sywm
afgf

Gng
afgf

| 0P,

0Swm

3Sym.

_afwf

afwf

afwf_

P,

d
or fof

0Swm
afof

O0Rsm
afof

dB,
af, gf

0Swm
afgf

0Rg,
0 fgf

9P,

0Swm

OR]

(C.88)

(3) The derivative of matrix phase eq. (R,,) with respect to fracture pressure (yy)

[0 fwm

0fwm

0 fwm]

oP¢
0fom

39Sy
0 fom

0S5
0fom

0fgm

39S,y
0fgm

0Syf
0fgm

P,

39S,y

0Syr |

[0 fwm

0 fwm

0 fwm]

oP¢
0 fom

F
0fom

9R,;
0fom

or
dP;

0fgm

39Sy
0fgm

Ry
0fgm

| "ap;

39S,y

Ry |

(C.89)

(4) The derivative of matrix phase eg. (R,,,) with respect to matrix pressure (y,,)

O0fwm  Ofwm  Ofwm]  [0fum Ofvm  Ofwm]
0Bn  0Swm OSgm P, 0S,m ORsn
Fo oR,, _ Ofom  Ofom  Ofom or Ofom  Ofom  Ofom
~ Oym | 9Pn  OSwm 0Sym 0P, 0S,m ORsm
fgm  Ofgm  Ofgm fgm  Ofgm  Ofgm
| 0Py, 0Sym 0Syml  LOPn  0Sum ORem.
The diagonal element A (Eqg. (C.87)) is
Ofapi _ OFzfl 0Azri OWg! A OFfiat g
)] ) ) )
Ofapi _ OFfi 0Aafi OWail . OFfiig,
ASptt  OSpri  9ASnET o asSptr U asit)
Ofaji _OFafh 0Auh OWgfl o OFBl,
asprl asprl asprl o oasprt o Ut aspi
Ofapi _ OFqpi 0Azri WG/l A OFfi i
ORI ORJFM  ORFN ORJFY U ORY
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The first derivatives of the right hand side in Egs. (C.91) — (C.94) are obtained by EQs.
(C.8) — (C.11). The second derivatives are calculated by Egs. (C.29) — (C.40). The third
terms are given by Egs. (C.41) — (C.44). The fourth derivatives are

aFgJ’t,i _ k /1”4_1 Z-I{Llp Pn+1 PTI.+1 C 9
ap—niﬂ—am aup T Pn+1( J (C.95)
+1 1
OFfp a,i a’mtlp (Pn+1 pntl (C.96)
“gsnEt ~ Ofmggnit ™t '
f,i wf,i
Ot _ o Mk
Senis = ok gonet (P ©9
aj.t
aFFnI\jI-}Xl 6/1241—1%) 1 1
ORI 7km moRINT P s “
i l

In Egs. (C.95) — (C.96), the derivatives of the phase mobility are determined by the up-
winding scheme (Eqgs. (C.16) — (C.28)).
The off-diagonal elements B and C (Eq. (C.87)) are

afn+1 aFn+1
G) el E)P]Zfit_rll

(C.99)
af()?,}ftl _ aFn+1 (C 100)
aSn+1 aSn+1 )
wf,it1 wf,itl
afn+1 aFn+1
= (C.101)
35351 a5
afn+1 aFn+1
_ (C.102)
aRsT‘lfTilil aR;lf-i,_ilil

where these derivatives are given by Egs. (C.50) — (C.53).

The local diagonal element D (Eq. (C.88)) is
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n+1 n+1
afotf,i aFFM,(Jz,i

e = -, st (C.103)
Z§ éf; - Afi%ﬁﬁ: (C.104)
Z’;T; _ —vimi%%f (C.105)

In Egs. (C.103) — (C.106), the derivative of the transfer function with respect to the

matrix variables is

OFfhii T aﬂ-gj}p( 1 )n+1 (Pt — prtt C.107
Gp ok | = Ao up Pt \By) i m,i (C.107)
+1 1 n+1
OFfiiai _ ) 0 G up (L) (PPt — prtt (C.108)
)i m,i '
aSv?/:-n%i aSva:nl,i B K up
OFfuai _ Oy (L) (Prt — prtt (C.100)
m 3 m,i ’
aspa " sy B,
+1 1 +1
OFfinai _ . 0%k (i)" (Pr#t — prtt (C.110)
aR?:l,li m aR;lm-F} B,LL p fii m,i .

The local diagonal element E (Eq. (C.89)) is

oPFHt T apMH '
fii fii

n+1 n+1
afa _ aFFM,a,i

m,i
L (C.112)
GSV’;}} 65‘2}}
O fami _ OFfua (C.113)
asyrt  aspr!
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Ofami _

n+1
aFFM,Ol,i

ORIH! ~ OR i

where these derivatives are given by Egs. (C.95) — (C.96).

The diagonal element F (Eq. (C.90)) is

n+1 n+1 n+1
afozm,i _ aA(Jtm,i aFFM,(Jz,i
n+i n+1 n+1
0P 0P 0Py
n+1 n+1 n+1
afam,i _ aAozm,i aFFM,a,i
n+l  Acn+l n+1
aSwm,i aSwm,i aSwm,i
n+1 n+1 n+1
afozm,i _ aAa:m,i aFFM.a,i
n+1 n+1 n+1
ang'i asgmji ang,i
n+1 n+1 n+1
afocm,i _ aAozm,i aFFM,ot,i
n+l n+1 n+1
aRsm,i aRsm,i aRsm,i

In Egs. (C.115) — (C.118), the first derivatives in the right hand side are

aAn+1

wm,i

n+1
0Py

aAn+1

wm,i

= Atn+1

aSn+1'

wm,i

aATL+1

wm,i

aSn+1

gm,i

aATL+1

wm,i

aRn+1 -

sm,i

1
= Atn+1 ¢

=0

1 (a%ff Spit

n+1 1 >
m,l n+1
Bw,i

n+1

Sn+1

w,i
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n+l pn+l  rmi 2 n+1
(')Pm’i Bw'i B.:l;f;l aPm_l-

(C.114)

(C.115)

(C.116)

(C.117)

(C.118)
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oM _ 1 [09hi (5:::1 i S;F)
n+l = Apn+l n+1 n+1 v,i n+1
8Pm’l. At apm,i Bo,i Bg,i
n+1 n+1 n+1 ¢cn+1
_ an+l So,i aBo,i aRv,i Sg,i
m,i 2 apn+l  Apn+l pn+l
Bri? oPRYt OPM B
n+1 n+1
v,i 2 n+1l
B‘;ljl aPm,i
n+1
aAom,i__ 1 <n+1 1)
n+1 — n+1 mi pn+l
aSwm,i At Bo,i
n+1
aAom,i__ 1 <n+1 1)
n+l — n+1 mi pn+l
ang,i At By
n+1
aAom,i_o
n+1 —
aRsm,i
n+1 n+1 n+1 n+1
aAgm,i: 1 a(I)m,i (Sg.i +Rn-+1 So,i )
n+1 n+1 n+1 n+1 S,l n+1
aPm,l- At aPm,i Bg,i Bo,i
n+1 n+1 n+1 cn+1
_ pn+l Sg'i aBg,i _aRs,i So,i
m,l 2 n+1 n+1 pn+1
BIS 0Py 0P By
n+1 n+1
+Rn+1 So,i aBo,i
si 12 Apn+l
Bgljl aPm,i
n+1
aAgm,i:_ 1 [¢n+'1<anl-1 1 >l
n+1 n+1 m,l Sl n+1
aSwm,i At Bo,i
n+1 r
aAgm,i: 1 n+'1< 1 — RNt 1 >l
n+1 n+1 m,l n+1 Sl n+1
ang'l At | Bg,l BO,l
n+1 i n+1
aAgm,l'_ 1 n+1 (SOJ' )l
n+l = Asn+l|Tmi n+1
aRsm,i At i Bo,i
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where the derivative of the matrix porosity ¢! with respect to the matrix pressure

m,i
P,’}ljl is given by EqQ. (B.38). In Eqgs. (C.115) — (C.118), the second derivatives in the
right hand side are obtained by Egs. (C.107) — (C.110).

If the production rate is specified, we impose the well residual term in the residual vector
to implicitly solve the bottom-hole pressure. The matrix form of the Jacobian is shown in

Fig. C.5. The well residual term is calculated using Egs. (C.61) — (C.73).

n+1 n+1 n+1
AT Bf DY LU,
c£z+1 Ar21+1 Bg“ D;l-i-l
n+l An+l pn+l n+1
CyI1 AyxT: Bylg Dy
n+l AN+l n+1
Cy' Ay Dy
E;l+1 F{‘L+1
n+1 n+1
E; F;
n+1 n+1
ExZa FyZ1
n+1 n+1
Ey Fy
LL, LL,

Fig. C.5 - Jacobian of the multiphase dual-porosity model with well residual terms
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APPENDIX D

VLE EQUILIBRIUM CALCUALTION

D.1 Standard Flash Procedure
In this study, three-parameter Peng-Robinson EOS is used for a vapor-liquid flash
calculation. The procedure is discussed next.

(1) Make an initial guess of the K-values using the Wilson empirical equation.

K =2 = Piexp [5.37(1 + w;) (1 - %)] (D.1)

i ri ri
where w; is the acentric factor of component i, and T,; and P,; are the reduced
pressure and temperature of component i, respectively.

(2) Compute the liquid and vapor mole fraction, L and V, based on the Rachford-Rice
procedure. The nonlinear equation is solved by Newton-Raphson iteration. The

objective function (residual) is given by

(1 - Kz
FO) = 21 V(1 —K)) (0-2)

The gradient is given by

N¢
dF (1 — Ki)ZZi

! = —_-——= D3
PO == La—va-xor ®3)
1=
The vapor mole fraction is updated by
F(V)
41—yl _ D.4
|4 |4 ) (D.4)

where [ denotes the Newton iteration level.
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The convergence criterion is given by

+1

Vl

-1 <1x10°°

For the first iteration, an initial guess of the liquid guess is given by 0.1.
(3) Compute the component mole fraction for vapor and liquid phase, x; and y;.
e |If L =1,thenx; = z; (single-phase liquid).

e |IfV =1,theny; = z; (single-phase vapor).

Zj

° IfO<L<1,thenxi=m
- i

and y; = K;x; (two-phase).

(4) Compute the EOS parameters using the mixing rule.

Nc¢

(aa)m = Z ZXLX](l - HU) (aa)i(aa)j

i=1j=1

N¢
bm = Z Xibi
i=1

(D.5)

(D.6)

(D.7)

where X; is the phase mole fraction (X; = y; for vapor phase, and X; = x; for liquid

phase), 6;; is the binary interaction coefficient (BIC), and a and b are the component

EQOS parameters.

R?T,;*
a; = 12y P,,
RT,;
b; =1
L B P

(D.8)

(D.9)

where 2, and 5 are constants. If w; < 0.49, «; is calculated by the quadratic

equation in terms of w;.
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2
@ = (1 + (0.3746 + 1.5423w; — 0.2699w?)(1 — Tn-"-s)) (D.10)
If w; > 0.49, «; is given by the cubic equation in terms of w;.
a; = [1+ (0.3796 + 1.485w; — 0.1644w? + 0.01667w3) (1 — TS5)]*  (D.11)

(5) Solve the Peng-Robinson EOS (cubic equation) for the phase z-factor, z; and zy,

with the Cardano method.
22+ (B—-1)z2+(A-3B?>*—-2B)z+ (B3+B?—-AB) =0 (D.12)

where A and B are obtained from the mixing rule.

P
A= (aa)mﬁ (D13)
P
= — D.14
B = by (D.14)

(6) Compute the component fugacity of each component in each phase, fi* and f;" .
= x;Ppr (D.15)
= yiPa! (D.16)
where c; is the volume shift parameter (a ‘third” EOS parameter) of component i,

and ¢F and ¢! are the fugacity coefficient of liquid and vapor phase, respectively.

Using the Peng-Robinson EOS, the fugacity coefficient of phase « is written as

¢lq = exp l:_l (Za - 1) - ll’l(Za - B)
(D.17)

3 A (ami —ﬁ)l za+(1+\/§)B
2V2B \(@m b/ 74+ (1—2)B

where « is the phase (@ = L, V) and a,,; is defined by
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Nc¢
L ]=1

(7) Check to see if the equilibrium condition (fugacity equality) has been achieved.

N, 2

Z <% — 1) <1x10712 (D.19)

i=1
e If the criterion is achieved, the iterative flash is terminated. Go to step (9).
e If the criterion is not achieved, the iterative flash is continued. Go to step (8).
(8) Update the K-values. The K-values are updated based on the Successive Substitution

Method (SSM).

Knew — ¢_1L — f_iLyi = EKOld (D.20)

BN
Once the K-values are updated, step (2) through step (7) is repeated until the
convergence criterion in step (7) is satisfied.
(9) Calculate phase properties

e The phase molar volume with the volume shift (ft/mole)

Nc¢
z; RT
Vo === i (D.21)
p .
=1
RT <&
Zy
Vo=—"F"~ ZYiCi (D.22)
i=1

e The phase molar density (moles/ ft%)

1

1
$o = Vo, Eg = Vg (D.23)
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e The phase mass density (Ib/ ft3)

e The phase volume fractions (hydrocarbon phase saturation without water)

L v

_ % _ T
eT,v FTT,T
Eo Eg 50 Eg

e The phase mass fractions

foPo faPg

MF,=—""—, MF,=—="9
? fopo + fgpg g fopo + fgpg

D.2 Negative Flash Procedure for Saturation Point Calculation

At the dew-point, we obtain the following objective function.

N¢
F(P)—Zzi 1=0
=y A-1-
=1

The gradient is given by

Nc
af Zj aKl
F(P)=—=—- ) ——
P)=3p ZK& oP
=

At the bubble-point, we obtain the following objective function.

N¢

F(P) =Zzi1(l-—1=0

i=1

The gradient is given by

Nc¢
, _of 0K;
R =55=) %5

i=1
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For each condition, the saturation pressure is iteratively calculated by using Newton-

Raphson iteration.

F(PYH

Pl+1 — Pl _
F (P

where [ denotes the Newton iteration level.
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APPENDIX E

CONSTRUCTION OF JACOBIAN FOR COMPOSITIONAL FLOWS

E.1 Derivatives of Primary Equations
In the compositional model, there are 2N, + 1 primary equations — a water equation,

2N, hydrocarbon component equations, and 2N, fugacity equality in each grid.

Ry =Fott — AL+ AL+ Wtt =0 (E.1)

R =F - A + AL+ Wit =0 (E2)
n+1 n+1

Fﬁ‘fl = ]Vl — f]Ll =0 (E.3)

where the superscript n + 1 denotes the time-step level, j is the hydrocarbon component
(j =1,...,N,), i denotes the grid number, and ¥ and f* represent the fugacity of vapor
and liquid phase, respectively. The number of primary equations and the corresponding
variables are determined by identifying the number of phase in the grid as summarized
in Table 3.1. The grid-wise phase identification will be conducted by checking the phase
saturation in each grid for each Newton iteration step. For example, if every grid is
saturated with oil, gas, and water, the number of primary variables is (2N, + 1)M X 1.

The residual vector R™** and primary variables are expressed as follows.
R"*1 = [RTH1, RZ*M, . REHT (E.4)
u™tl = [t ultt, L et (E.5)
The Jacobian forms a block-tridiagonal band as shown in Fig. E.1. The size of the
entries varies depending on the number of phase saturated in the corresponding grid.
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Ry
op;

ORy;
op;

IRy,

OFy;
ap;

OFN,i
L dpi

Ry,
op;

ORy;
op;

IRy,

ORy;
op;

ORN,i
op;

ORy
Sy i

ORy;
OSwi

IRy,
Sy i
0Fy;
OSw i

OFN,i
Sy i

(c) Two-phase Oil and Water

Ry,
gi

dFy;
aS

gi

OFN,i
as

gi

Ry
0Xz;

ORy;
6x2'i

ORy, i
0%,
OFy;
0%,

OFN,i

5Xz,i

ORyi
0%,

ORy;
00Xy

ORy,i

6x2'i

ORy;
00Xy

ORy,i

6x2'i

ORy;
0XN,i

ORy;

achyi

ORy,i
OF i
OXN, i

OFy,i

achyi

(a) Three-phase Qil, Gas,

ORy i
OXN i

ORy;
OXNi

ORy,i

Ochyi

0Ry;
OXN i

ORy,i

Ochyi

(e) Single-phase QOil

Ry ORy;
0y2, OYNi
ORy; ORy;
ayz,i aYNC,i
IRy, ORN,i
0y2; OYN,i
0Fy; dF,,;
0y2,i OYN,i
OFN,i JFn,i
0y2i aYNc,i _
and Water
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op;

Ry

OFy;
op;

OFN,i

ORyy 4
op;

ORy;
ap;

ORy,i

ORy;
ap;

Ry,

Fig. E.1 — Block diagonal elements

(b) Two-phase Qil and Gas

ORy

O0Sw i

ORy;
OSyi

ORy,i

0Sw i

(d) Two-phase Gas and Water

ORy;

gi

ORN,i

gi
0Fy;
as

gl

OFy,i
as

=2

ORy;
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ORN i
0xy;
0Fy;
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0%,

ORy;
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0y

ORN,i
By
JFy;
02

OFN,i
0y

ORy
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ORy,i
0ya

(f) Single-phase Gas

in the Jacobian
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The block-diagonal elements are calculated by differentiating the primary equations

(Egs. (E.1) — (E.3)) of the grid i by the primary variables (Eq. (E.5)) of the grid i. The

details are as follows.

The derivatives of the water equation with respect to the primary variables is obtained by

n+1
ORIY

n+1 n+1
alei aAW'i

aPﬁ+1
l

n+1
ORy;

aP?+1 é}P?+1

n+1 n+1
oF,; 0Ay;

n+1
Sy

n+1
ORy;

n+1 =
OSg,i

n+1
dR,

P
axk'i

n+1
ORy;

n+1 =

Y

In Egs. (E.6) and (E.7), the derivative of the water flux term is calculated by

= n+1 n+1
Sy a8,

OFtt 0Tyt
aPin+1 - apin+1
OFtt 0Tyt
aspit aspit

The derivative of the transmissibility is

aToC‘,i*ill/z _ Wit (Ct)
apt Atit1/2

A

aT.
(Piril - Pin+1) +
—(T3 2 + Tath 2)

aT.
(Piril - Pin+1) +

init,i+1/2

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)



(E.14)

aTorzl,z?:_rll/z _ Wity (&) al@ﬁfp

Syt ATit172 e/ iniciv1/2 asuit
The phase mobility is determined based on the up-winding scheme. If the upstream grid
is the neighbor grid, the derivative of the water mobility equals zero.

o T 15
gPr*t 7 gsptt |

If the upstream is the grid i, the derivative of the water mobility is

n+1 n+1 n+1 n+1 n+1
a/1w,i _ krw,i apw,i _n+1 krw,i anuw,i

n+l ~  n+l gpn+l w,i 12 Apn+i

(E.16)

oAy pkt Ok €17)

n+1 - , n+1 n+1
aSw,i nuw,i aSw,i

Notice that, in the compositional simulation, the water mobility is defined by the mass
basis, while the blackoil simulation is formulated by volumetric flow using the formation
volume factor. Thus, the water mobility term in Eqgs. (E.16) and (E.17) contains the
mass density p/-t* instead of the formation volume factor By "

In Egs. (E.6) and (E.7), the derivative of the water accumulation term is

+1 n+1 +1
Ay _ Wbty (M iy s _ pynes OPWE onin (E.18)
apin+1 Atn+1 apin+1 w,l “w,l l apin+1 w,i
OAﬁ,’Lll Wl'ATi
) _ +1 +1
aspe = aert (Mbi P (E.19)

In Egs. (E.6) and (E.7), the derivative of the well term is

Wi’ _ e A( : )+ CLai e ki (E.20)
aPi"“ 1\UCt init,1 w,1 aP1n+1 Ty — Tyell '

T1 — Twell
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oWt oA (Pf“ - $F1> (E.21)

— e = Wi(He)ini
n+1 1 t/init,1 n+1
BSW,I- aSw,l T1 — Twell

where the derivative of the water mobility is defined by Egs. (E.16) and (E.17).
The derivative of the jth component equations (j = 1, ..., N.) (Eq. (E.2)) with respect to
the primary variables is obtained by

n+1 n+1 n+1 n+1
OR;™ OF%  0AF  OW

aPin+1 - aPin+1 - aPin+1 aPin+1 (E22)
ORI O omr owj £
asntt T asntl  gsmit T gsnti
ORI _oEramt owp €20
O T aSIHT asT T gsi :
ORI O omf owp 2
axpit oxgtt  axptt o oxpt '
aRTl_-i-l aF]”L_+1 aA‘{ljl-l aW.n.+1

L ]l i Ji

n+1 n+1 (E.26)

dyeit oyt ovpit o
Note that the subscript k is the component number (k = 2, ..., N.). The phase mole
fractions, x; and y, are the dependent (secondary) variable, and the other phase mole

fractions are the independent (primary) variables.

Nc¢

x;=1-— Z Xk (E.27)
k=2
N

Vi = 1— Z Vi (E28)
k=2

In Egs. (E.22) — (E.26), the derivative of the jth component flux term is
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n+1 n+1
oF " 0Tilay, (Pt
oPP*1 gpptt Vi
L L
n+1 n+1
oF " 0Tilay, (Pt
n+l — n+1 i-1
S, Sy
n+1 n+1
R 0Ty, (Pt
n+l — n+1 i—-1
0Sg; 05y
n+1 n+1
oF; _0Tiilay (prt1
n+1 — n+1 i—-1
0xy; 0xy

n+1 n+1
o0F™ 0Ty "1,
n+1 —

Yy

n+1
n+1 (Pi—l

Vi

n+1

_ Pfl+1) + jit+1/2 (P7-1|_4i1
2 aPin+1 12
T.n.+11/2
Ji+
__P?+1)+_ aSnfl (Pﬁjl
w,i
aT_Tl_+1
J,i+1/2
— P+ Ssnl (e
g,i
aTnt:
_P?’l+1) + it / (P?'l+1
1 +1
l axl‘?'-ll- l
T4
— pntly 4 L2 cpnt
i ) ay£?1 i+1

_ P_TL+1)
L

_ Pin+1)

- P

_ Pin+1)

_ Pin+1)

n+1
T&j+1/2)

In Egs. (E.29) — (E.33), the derivative of the jth component transmissibility is

n+1 n+1
0T i1/ Wiziyz (Ct) 04 up
n+1 . o n+1
0P; ATis1/2 \Ae/ g i1 2 OP;
n+1 n+1
aTj,iJ_r1/2 _ Wiz (Ct) (Mj,up
n+1 ] el n+1
aSw,i Atitiy2 At initi+1/2 aSw,i
n+l n+1
0T %172 Wiziyz (Ct) 0Ajup
n+1 . o n+1
aSg.i ATit1/2 At initi+1/2 aSg,i
n+1 n+1
aTj,iJ_r1/2 _ Wiz (Ct) (Mj,up
n+1 ] el n+1
0 ATiv12 \ A/ i ia1 2 0%k
n+1
a/11'.u19

OTjit12  Wixi2 (Gt
n+1 Z_
t

ayk,i B ATitq)

init,i+1/2 0y

n+1

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)

(E.34)

(E.35)

(E.36)

(E.37)

(E.38)

In Eqgs. (E.34) — (E.38), the derivative of the component mobility is determined by the

up-winding scheme. If the upstream grid is the neighbor grid, the derivatives are zero.
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n+1 n+1 n+1 n+1 n+1
61 = aAj i+1 aﬂ' Atl al i al} i+1

= = = = = E.39)
n+1 ' oon+l ’ n+1 ’ n+1 ’ n+1 (
0P] 0S8y 0Sg; X 0V
If the upstream grid is the grid i, the derivatives are
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OB g L Kl e L Ok €41
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n+1 n+1 >0, n+1 i n+1 n+1 i o, 2 n+1 :
aXk,i axk,l Ho,i axk i Mo, ,llg':-_l axk,i
n+1 n+1 n+1 n+l n+l n+1 n+1
04, ay n+1 krgl 419891 krgi _ ntlgzntl kTgl OHg,i (E.44)
+1 +1%g.0 T n+1 ] l +1 +1 It gi " 12 +1 '
oyeit Oy g Vi Hgi prtLt oy

Notice that the component fraction x; and y; are the dependent variables of the other
mole fractions and are computed based on Egs. (E.27) and (E.28).

If j = 1, the derivatives of the jth phase mole fraction in Eqgs. (E.43) and (E.44) are

dx n+1 axn+1
s Z(l BRI A (E4)
N¢
ayn+1 0 n+1
Gyt gyntl Z(l Tl) =~ n+1 =-1 (E.46)
Yi,i 0y = Yi,i
If j # 1 and j = k, then

0xji _ 1 (E.47)
dxgit '

185



n+1
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If j # 1and j # k, then

n+1
0x;; o

n+1 ~
axk‘i

n+1
dy;i —0
n+1

aYk,i

In Egs. (E.22) — (E.26), the derivative of the jth component accumulation term is

aA]’-fi“ B w;AT; 0M$'J{1
aPﬁ+1
l

aPin+1 - Atn+1
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045" _ wilAr n+1<
n+l = Apntl Pl
oxy; At

n+1l
aAj,i _ Wl'ATi

= n+l
3}’7{1}1 Atn+1 ¢.i

In Egs. (E.22) — (E.26), the derivative of the jth component well term is
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)
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Sontt - WillCiinit1 |41 +1
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n+1 n+1
oW <ct> 0Aj1
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init,1

n+1
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P:‘Ln+1 _ Px}-l
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954,

(E.58)

(E.59)

(E.60)

In Egs. (E.56) — (E.60), the derivatives of the jth component mobility are obtained using

Egs. (E.40) — (E.44).

The derivative of the fugacity equality (Eq. (E.3)) with respect to the primary variables

is obtained by

n+1 VTl+1 LTL+1
oF  0fj Afji
aPin+1 aPin+1 aPin+1
n+1
0F 0
n+1 —
OSW,l-
n+1
oF 0
n+1 —
OSQJ
n+1 Lntl
oF  9fj
n+i n+1
(’)xk’i E)xk'i
n+1 yn+l
OB _ 9fj
n+1 n+1
Oyhi ayhi

(E.61)

(E.62)

(E.63)

(E.64)

(E.65)

In this study, the phase fugacity is calculated using the three-parameter Peng-Robinson

Equation of State (3-PR-EQOS). The fugacity is the function of the pressure, temperature,

and phase composition, thus non-zero values are entered in Eqs. (E.61), (E.64), and

(E.65). The calculation procedure are described in APPENDIX E.3.



On the other hand, the off-diagonal elements are calculated by differentiating the

primary equations (Egs. (E.1) — (E.3)) of the grid i by the primary variables (Eg. (E.5))

of the neighbor grids. The details are as follows.

The derivatives of the water flow equation with respect to the primary variables of the

neighbor grids is obtained by

n+1 n+1
ORMY  OF)Y

n+1 n+1
0Py 0P

n+1 n+1
ORyY  OF

n+1 n+1
aSw,iil aSw,ii—l

n+1
dR,

n+1
aSg,iil

n+1
oR,

n+1
0Xpit1

n+1
oR};

n+1

=0
ayk,iil

In Egs. (E.66) and (E.67), the derivative of the water flux term is

n+1 n+1
aFwi _ n+1 aT@iil/z

n+1 w,it1/2 n+1
dPY; 0Py

n+1 n+1
(Pt — P

n+1 n+1
0F,;" 0Ty iv1

n+1 n+1
aSw,iil aSw,iil

(P = PI)

In Egs. (E.71) — (E.72), the derivative of the water transmissibility is

n+il n+1
0Tyit1/2 _ Wit1/2 (Ct> 0Awup
n+1 ] a2 n+1
dPY ATis172 i/ inieiv1/2 OPivt
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0Ty ti1/2 _ Wiz1y2 (&) YA E74)
0Spit1  ATizip \A init,i+1/2 OSwii1

If the upstream grid is the grid i, the derivative of the water mobility equals zero. If the
upstream grid is the neighbor grid, the water mobility is calculated using Egs. (E.16) and
(E.17).

The derivative of the jth component flow equations (j =1, ...,N.) (Eqg. (E.2)) with
respect to the primary variables is

n+1 n+1
oRj;7  OF

= (E.75)
OPLY'  OPLY
aRMt  9Fntt
T = T (E.76)
aSw,iil aSw,ii-l
ORM  9Fnt!
T = o (E.77)
0Sgiv1  0Sgit
ORMt  9Fnt!
=i €79
0Xiivr  0Xpisy
ORM1  gFnt!
T = AT (E.79)
0Viit1  OViita
In Egs. (E.75) and (E.79), the derivatives of the jth component flux term are
+1 n+1l
dFj; _ 0Tji31/2 (P-’_ﬁl _ P-n+1) (E.80)
PRt opntt M '
+1 n+1
615}"1 _ an,iil/Z (Pf_ll_iil _ P_n+1) (E.81)
aSpri,  0SpiL v T '
aF_n'+1 a n+1
i Jit1/2 rhnt1 n+1
= pr+l _ pi E.82
asgzgl asgzgl (lil i ) ( )
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9xnTL T gxntl ViRl TN |
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(Plni-lil - Pin+1) (E84)

In Egs. (E.80) and (E.84), the derivative of the jth component transmissibility term is

87}2111/2 Witz (ﬁ) a)ljr',l;; (E.85)
P Atipin \Ae init,i+1/2 oPY! '
0T}tz _ Wit1/2 (&) 0Ap (E.86)
OSpitr  ATizie e init,i+1/2 OSyii1

aTJ‘TLiT_Fll/z _ Wiz (&) a/ljr',l;; (E.87)
asg.;rill ATiy12 \e init,i+1/2 055,211
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Oxiisr  ATizaz initi+1/2 Oxpeiis

67}7’11,111/2 _ Wiz (ﬁ) ('M]’-f,‘:; (E.89)
0Viter  ATixije A init,i+1/2 0Vicii1

In Eqgs. (E.85) — (E.89), the derivative of the component mobility is determined by the
up-winding scheme. If the upstream grid is the grid i, the derivatives are zero. If the
upstream grid is the grid i, the derivatives are calculated using Eqs. (E.40) — (E.44).

The derivative of the fugacity equality (Eq. (E.3)) is

OB o (E.90)
P
O _ (E.91)
aSntl,
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aFTl+1

L _y (E.92)
6551111
B (E.93)
0x} 141
aFTH-l

=0 (E.94)
a)’lrclj-h

The thermodynamic condition of the grid i has no relation to the pressure, temperature,
and fluid compositions of the neighbor grids. Thus, all the derivatives in Eqgs. (E.90) -
(E.94)) are zero.

E.2 Derivative of Three-Parameter PR-EOS

In this study, we use the three-parameter Peng-Robinson cubic EOS. The derivative of
the z-factor is obtained by differentiating the Peng-Robinson EOS by pressure and phase

component, respectively.

oB 94 oB 94 oB
0z gpZ t|ap—2(0+3B)5p|z—|zpB+(A—2B-3B*) 55 (E.95)
aP 322+ 2(B— 1)z + (A — 3B2 — 2B)

aB 2 4 |04 oB 94 X
oz [ —201+38) 2|2~ [958 + (4~ 2B -3B )ax] (€96
ox 322+ 2(B—1)z + (A — 3B% — 2B)

where x denotes the phase mole fractions (x = {y;} in the vapor phase, and x = {x;} in
the liquid phase). Notice thati = 2, ..., N,.
The derivatives of the EOS parameters are calculated as follows.

0A  (aa)n

5 = o3 (E.97)
Z_B _ bm (E.98)
P RT
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E.99
0X,  0Xp R2TZ (E.99)
0B b, P
95 _9m L E.1
0X,  0X, RT (E.100)

where X, is the kth mole fraction of vapor or liquid. The derivative of (aa),, and b,,

with respect to the kth phase mole fraction (k = 2, ..., N;) is

00y .
(;l;:k zzjzzle |(1 - 6,)) (@), = (1 - 6)) [(aar(a))|  E20)

Oby
0X,

by — b, (E.102)

Hence, the derivatives of the phase properties (a = L, V) are obtained as follows.

avy, ZoaRT 0z, RT

P~ P2 TP P (E.103)
g_)‘?; _ Z)Z((Z g ~ (ep—c) (E.104)
% _ _%% (E.105)
Z;Z _ _%32_)?{ (E.106)

The capillary pressure calculation is based on the Young-Laplace equation (Eq. (3.57)).

The derivative of the capillary pressure is

OFgo _200 (E.107)
oP  radP
OFego _ 2 00 (E.108)

ox, 1 Ox
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0P.40 200

Ay Ty (E.109)
where the derivatives of the surface tension are
Nc¢ 3,
g—;= 4 Z(Pj(foxj _S(g}’j) XZ({)}- (%xj —%y]) (E.110)
Jj=1 j=1
do [ Ne 1P N a¢, 0x; E110)
e 4 ;%(E()xj — &) Xj=1 o <6_xkxf + ¢, 6_xk> .
N, .
:—;( =4 ;%(foxj —&yi)| % 2. <p,-< gig v — &, Z;] ) (E.112)

In Egs. (E.110) — (E.112), the derivative of the jth mole fraction with respect to the kth
mole fraction is calculated by Egs. (E.45) — (E.50).
E.3 Derivative of Fugacity

The derivative of the jth component fugacity is written by using fugacity coefficient ¢;.

af; ol

_ E.113
=5 =X;p; + X;P—= > ( )
of; Gl
L = X;p—L E.114
X, Pd; 0 + X, ( )

where X is the kth mole fraction of the vapor or liquid, and §; is the Kronecker delta

function (6;, = 1if j = k, and §;, = 0 otherwise). The derivative of the fugacity is
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where the derivative of a,,; with respect to x; is calculated by
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aam' 62( )m
s _ axjaaxk = 2[(1- 6) [ (@) (aa)yc — (1 - 6y,) (aa) | E17)

E.4 Implicit BHP Calculation

If the bottom-hole pressure is specified, we can explicitly calculate the production rate
using the well equation. If the production rate is specified, we implicitly solve the
bottom-hole pressure during the Newton iteration. The implicit BHP calculation is

performed by adding the additional equation (RZ%) and unknown (Pv’;}rl) on the residual

vector (R™*1) and primary variable vector (u™*1), respectively.

Rt = [erl+1, er1+1’ ___’Rg+1’R?S+1]T (E.118)
T
u™tt = [uthugt, L et Pt (E.119)

The well residual term R is obtained by summating the well equations of water (Eq.

(3.65)) and hydrocarbon components (Eqg. (3.88)).

N,
n+1 _ Ct n+1 - n+1 p171+1 _ 3;_1 gntl
R = w, /1_ Aw,l + /11-'1 — - Qwa (E.120)
t7 init,1 j=1 T1 ™ Twen a=w,0,g

The derivatives of the well residual term are placed on the last row and column as shown
in Fig. C.3.

The elements LL,,LL,, and LU,in Fig. C.3 is comprised of a vector and scalar value.
The row vector LL, is given by

0R;, OR,c ORg, ORg ORg;s ORg ORg
B 0Py  0Sy1 a5g,1 0x;1 axNC,l 0Y21 a}’NC,1

LL, (E.121)

The dimension of the vector depends on the number of phases saturated in the grid 1.

The scalar vale LL, is given by
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The column vector LU, is given by

oR, OR, dRy, OF

LUn+1
aP,; 0P, OP,; 0Py

oFy, 1"

P,y

(E.122)

(E.123)

The dimension of the vector depends on the number of phases saturated in the grid 1.

Notice that the production rate is specified, thus this is a fixed value. The LL;+!

elements in Egs. (E.121) are calculated as follows.

aRn+1 (Ct
- (2)

Gon+1l n+1 n+1
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(E.124)

(E.125)

(E.126)

(E.127)

(E.128)

In Egs. (E.124) - (E.128), the derivatives of the phase mobility are calculated using EQs.

(E.39) — (E.44).
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The LL, element in Eq. (E.122) is obtained by

aRn+1 c 1
=W, (;TZ) sy gt | (——) (E.129)
wf

init,1

The LUZ*! elements in Eq. (E.121) are calculated by

) (Ct) 1
——=w; = Al (—) E.130
oP J&}l "\ init,1 AT = Twen ( )
ORI c 1
=w A (E.131)

PGt T M ey 7\t = T
aFﬁ+1

J _
7pT = O (E.132)

w
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APPENDIX F

GRADIENT CALCULATION BASED ON ADJOINT METHOD

F.1 Methodology

In history matching or optimization problems, we are interested in knowing the
sensitivity of the model responses (i.e. bottom-hole pressure, production rate) to the
model parameters (i.e. permeability, porosity). The sensitivity is obtained by applying a

chain rule as follows.

Spwr(d)  Opyr(d) 0V, (1) 67(i) 57(x)
Sk(x)  9V,(1) at(i) §t(x) Sk(x)

(F.1)

Spwr(d)  Opyr(d) 0V, (i) 67(i) 67(x)
Sp(x) V() 9t(i) 6T(x) Sp(x)

(F.2)

where d represents the data point with D observations (D x 1 vector), x denotes the grid
in the Cartesian space with a vector of the size N (N x 1 vector), and i denotes the grid
in T-space with a vector of the size M (M x 1 vector). Similarly, the sensitivity of the
production rate with respect to the model parameters is given by

6Q(d) _ 0Q(d) 91, (i) 6 (i) 67(x)
Sk(x) V(i) 9(i) 67(x) k(X)

(F.3)

§Q(d) _ 3Q(d) aV, (i) &7(i) Sr(x)
§p(x) V(1) at(i) 67(x) 5¢p(x)

(F.4)

Applying the chain rule, we divide the sensitivity into the four sub-sensitivities. In Eq.
(F.1) — (F.4), the first sub-sensitivities, dp,,r(d)/dV, (i) and dQ(d)/aV, (i) are the D X

M sensitivity matrix distributed in the data points and in the 7-space, and are obtained by
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using ‘Adjoint method’. The second term 9V, (i)/dt(i) is the M x M diagonal matrix
whose diagonal elements correspond to the w-function that is the derivative of the
drainage volume with respect to the diffusive time of flight. The third term §t(i)/67(x)
is the map-back matrix that returns 1 if x € i and returns O if x & i (i.e. if the Cartesian
grid x exists in the T-contour i, the corresponding matrix element returns 1). The last
sub-sensitivities, §7(x)/6k(x) and 67(x)/8¢p(x) are the N x N diagonal sensitivity
matrix whose diagonal term is obtained by the calculation of ‘Travel Time Sensitivity’.
Vasco and Datta-Gupta (1999) proposed an analytical calculation of the tracer travel
time sensitivity for the convective time of flight on the basis of the streamline tracing.
The analogy can be applied for the diffusive time of flight based on the Fast Marching
Method.

F.2 Calculation of Travel Time Sensitivity based on the Fast Marching Method

The diffusive time of flight at the Cartesian grid n is defined by the integral form in
terms of a slowness f, which starts from the sink or source point and travels along the

pressure front propagation.

) = | f©dr = f@re) (F5)
1 x=1

where the function f is the inverse of the square root of the diffusivity, s is the pressure
propagation trajectory, and Ar is the grid length in the direction of the propagation. For
the convective time of flight, the integral is calculated along the streamline trajectory.
For the diffusive time of flight, the integral is strictly given by the ‘ray’ equation in
seismology, while we approximate this trajectory using the Fast Marching Method. In
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the calculation of the Fast Marching Method, f is calculated at the cell center of each
Cartesian grid. Hence, t(x) is approximated by summing up the product of f (slowness)
and Ar (distance) of the finite number of discretized grids where the pressure

propagation passes through. The function f is defined as follows.

1 ¢ (X),LlCt (FG)

Va(x) - k(x)

Because f(x) is a composite quantity involving reservoir properties at the Cartesian grid

f&x) =

x, its first-order variation will be given by

_9f(x) af (x)
5f(x) = mfgk(x) + mfw(x) (F.7)

The partial derivative of f(x) with respect to the model parameters is calculated by

ifx) 0 ¢puce | _ 1 (e 1fx) (F8)
ok(x)  0k(x) k(x) | 24 kx)?3 2k '
ofx) _ @ ¢Guey | 1 pee 1/ (F9)
Ip(x) 9Pp(x) k(x) 2 ok 2¢() '

Hence, the small variation in t(n) is obtained by summing up the small variation in §f

along the pressure propagation trajectory.

Z TG s + 29 54 (x)l Ar(x) (F.10)

5t(n) = Z 6f (x)Ar(x) = AN ¢ (x)

x=1
On the basis of Eq. (F.10), the partial derivative of 7(x) with respect to the model

parameters can be calculated by
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) _ 1f()
Sk(X) = —EEAT(X) (Fll)

510 1£()
Sp(x)  2¢(x)

Ar(x) (F.12)

Notice that Ar is approximated by the length of grid x on the direction of the pressure
propagation (i.e. if the propagation direction is x-direction, then Ar is approximated by
Ax). The product of f(x) and Ar(x) is corresponding to At(x).

Ar(x)
Jax)

Using Egs. (F.11) - (F.13), we finally obtain the travel time sensitivity for the diffusive

fx)Ar(x) = = A1(X) (F.13)

time of flight as follows.

61(X) B lAT(X)

Sk(x) 2 k(x) (F.14)

6t(x)  1A7(x)

560 2 600 (F15)

The sensitivity form is similar to the streamline travel time sensitivity, while the constant
factor 1/2 is added in the equations.

F.3 Calculation of 1-D Sensitivity Based on Adjoint Method

In Egs. (F.1) - (F.4), the first sub-sensitivities, dp,,r(d)/dV, (i) and 0Q(d)/dV,(i) are
obtained by using the Adjoint method. The Adjoint method is traditionally applied in the
numerical reservoir simulation and is regarded as one of the most efficient approach to
compute sensitivity (Chen et al. 1971, Wu et al. 1999, Li et al. 2003). The method is
commonly called the Method of Lagrange Multiplier in mathematics. Suppose the model

response vector S consist of D x 1 vectors (i.e. observed bottom-hole pressures).
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B = [B1, B2 -, Br, -+, Bp ]T (F.16)
where the component S, represents the scalar value of the model response at time L. In
the reservoir simulation along t-coordinate, we integrate all the heterogeneities (i.e.
porosity, permeability) into the drainage volumes. Hence, the heterogeneous model
parameter is identical to the drainage volume at each 1-D grids.

For each data points, the Lagragian is formulated by imposing a Lagrange multiplier A.

L= Bu+ Y I(FHHTA (F.17)
=0

where J; represents the Lagragian at time L (scalar),  denotes the model responses at
time L (scalar), f*** represents the residual form of the finite difference equation along
7-coordinate at the simulation step I + 1 (M x 1 vector in single-phase case), and A**1 is
the Lagrange multiplier at the simulation step [ + 1 (M X 1 vector in single-phase case).
We may think of L as the number of time steps to compute the model response 5, from
the reservoir simulation.
In single-phase model, the finite difference equation (M x 1 vector) is formulated by Eq.
(2.47). The residual form is simply expressed as

FUHl = FHL At oAl 4 piHt = (F.18)
where F'*1 is the flux term, A'*1 is the accumulation term, A' is the accumulation term
at previous time-step, and W'*1 is the sink/source term that is imposed on the inner
boundary. At the last iteration of each simulation time step, f (the residuals) must be

sufficiently close to zero (f = 0). Hence, we can take any arbitrary number for A1+,
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The dimension of the Lagrange multiplier corresponds to the dimension of the finite
difference equations (M x 1 vector in single-phase case, 2M x 1 vector in two-phase
case, and 3M X 1 vector in three-phase case). Each component is assigned to each 1-D t

grids for each time-step.
A1 — [/111+1 ALFL Ak T (F.19)
Differentiating Eq. (F.17) with respect to the primary variables and drainage volumes, y

and V,, and rearranging the equation, a total differential of the Lagrangian is obtained by

dJ, =dp, + Br + z {(AZ)T[Vyl(fl)T]T + (AIH)T[Vyl(le)T]T} dyl
=1

(F.20)
L
[, O] av,)
=1
where By is the boundary terms.
By = (M*1)T {[VyL+1 (fL+1)T]TdyL+1 + [VVP(fL+1)T]T de}
(F.21)

T
+A)T [V, (FDT] dy®
The initial reservoir condition is fixed, thus dy® = 0 (i.e. dP° = 0). Let A**! be zero

(AL*1 = 0). These facts follows that By = 0. Hence, Eq. (F.20) is rewritten as

L
dj, = Z {(AI)T[Vyl(fZ)T]T n (AHI)T[Vyl(fH'l)T]T + [VylﬁL]T} dy'
= (F.22)

T T
+{[vvp/3L] + [V, (Y] }de
where y! is the vector of the primary variables in the DTOF-based reservoir simulation.

In single-phase model, y* corresponds to the grid pressures (M x 1 vectors).
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yt=[PLPL, ... PL]" (F.23)
To obtain the adjoint system, we take a Lagrange multiplier so that the terms multiplying

dy' in Eq. (E.22) equals to zero.

[V, (1A = = [T, (P T]A = 78, (F.24)
In this equation, the Lagrange multiplier A can be solved backward in time. In Eq.
(F.24), the matrix [V,:(fD)"] is identical to the transpose of the Jacobian that is
constructed in the reservoir simulation. The matrix [Vyz(fl“)T] is a diagonal matrix,

which is only related to the derivative of the accumulation terms. Hence, the calculation

can be simplified using the expression of Eq. (F.18) as follows.
[7,:(FDT] = [7,:(aD7] (F.25)
Considering Egs. (F.20) and (F.22), the remaining term is
T INT Nl
ap = {[7,6] + @7, v, (F.26)

The sensitivity of the Lagrangian with respect to the drainage volume is obtained by

L
W, = VB + ) [7, )] O (F.27)
=1

where the gradient VVp(fl)T corresponds to the derivative of the finite difference

equation with respect to the primary variables, which needs to be constructed inside the

reservoir simulator for each time-step. The gradient VVp,B is the explicit sensitivity vector

of the model response (i.e. bottom-hole pressure, production rate) with respect to the

drainage volume, which can be calculated by differentiating the well term. The drainage
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volumes of the grids of i # 1 are not explicitly appeared in the expression of 3, thus we

set VB = 0. Using Egs. (F.24) and (F.27), we obtain the sensitivity coefficient for

each time-step.

F.4 Gradient Calculation inside Reservoir Simulator

In the Adjoint-based sensitivity calculation, we first solve Eq. (F.24) to obtain A and,
then compute the final sensitivity matrix using Eq. (F.27). In order to solve these
equations, several matrices and vectors have to be constructed at the last Newton
iteration of each time-step. At the last Newton iteration, it must be satisfied that the
residuals of the finite difference equations are sufficiently small (f = 0).

In the rest of the development, we present the calculation of the gradients for a single-
phase reservoir simulation. The matrix [V,.(f"*")] in Eq. (F.24) is simply the
derivative of the accumulation term with respect to the primary variables as described in

Eq. (F.25). The notations of the equation follows Eq. (2.47).

OAf _ WiATi aM(lp,i 1 n M(lp,l' aBll
opP}  At! op} B/ pi* oP

(F.28)

The vector V.8, in Eq. (F.22) is the derivative of the well term with respect to the

primary variables. A non-zero value is entered in the first elements in the vector). When
the well rate is specified, the model response S corresponds to the bottom-hole pressure.
When the bottom-hole pressure is specified, g corresponds to the well production rate.

Using a definition of the well term (Eg. (2.50)), the non-zero element in VyiBL IS

calculated by
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ap\/lvf —1— Ql(rl B Twell) a(BU)ll

_ (F.29)
oP; w1 (UCinity  OP!

94! 1\, 1 o (1\'(PI-P,

—Sl = w1 (UCe)inita I(_) ( ) Ly, (_) — (F.30)
oP, Bu/ \ty — twen/ 0P \Bp/ \T1 — Twen

where P, is the pressure at the first grid i = 1. Notice that all the elements in the vector
v, equals zero for i # 1. The derivatives of the mobility in Egs. (F.29) and (F.30) are
calculated by

oBwi _ _oul 0B

arf  tapl” Miap! (F-31)
] (1)l 1 ot 1 0B} (F.32)
dP  \Bu/, Blut? 0Pl pi*yl P '

The vector 7y B in Eq. (F.27) is the derivative of the well term with respect to the

drainage volumes.

Opur _ a8t = Twa) BW)i 9 () .
Vpa (Uce)inita Vyp1 \wy
aql ow. 1\' /P! - P!

== o (#Ct)init,l <—) <% (F.34)
a Vp,l an,l B‘Ll 1 Tl Twell

Notice that all the elements in the vector Vv, B equals zero for i # 1. In Eqgs. (F.33) and

(F.34), the derivatives of the w-function at grid i = 1 are calculated by

ow, d [0V, 1
= =~ =— (F.35)

oVp1  0Vpi\ 074 Aty
9 (1 ) 1w, 1 a0
Vp1 \wy w2 V4 T wy2At (F.36)
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The matrix , (FHT in Eq. (F.25) is the derivative of the finite difference equation with

respect to the drainage volumes. The diagonal element is obtained by taking the

derivative of Eq. (2.47).

afil _ aTil—l/z pl . _ <aTil—1/2 aTil+1/2> p! aTil+1/2 pl
oV, oV, T WV, WV, )1 AV,
(F.37)
dw; At; <M¢>l (M¢>l"1 N aqt
oV, Att |\ B /; \ B/, oV,
where the derivatives of the transmissibility is calculated by
aTil—1/2 1 aWi—1/2 14y
= (ke)init,i- (—) (F.38)
an,i ATi—l/z an,i t/init,i—-1/2 Bﬂ -
0Th 1/ 1 0wy 1y
= (uee)inie,i (—) (F.39)
an,i Ari+1/2 an,i t/init,i+1/2 B[i -

On the basis of the finite difference calculations (Egs. (2.40) — (2.42)), the derivatives of

the w-function in Egs. (E.38) — (E.39) are obtained by

aw;_1/2 _ d (Vp,i — Vp,i—l) — 1 (F.40)
an,i an,i T —Ti—1 Ti —Ti—q
6Wi+1/2 _ d (Vp,i+1 - Vp,i) — _ 1 (F41)
WVpi  OVpi\ Ty — Ty Tit1 =T
The off-diagonal elements of the matrix ¥, (f)" are obtained as follows.
off  OTLip, !
_ (Pi—l . Pi) (F.42)
an,i—l an,i—l
aft  oT}
fi _ 9y (PL, — P!) (F.43)

an,i+1 B an,i+1

where the derivatives of the transmissibility are calculated by
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aTil—1/2_ 1 0wy
WVpi—1 Aty WVpi1

11!
(MCt)init,i—l/z (B_'u)up

aTil+1/2 _ 1 aWi+1/2 :

OVpi+1 B ATi1/2 OVpiva

1
(#Ct)init,i+1/2 (B_M)up

The derivatives of the w-function in Egs. (F.44) — (F.45) are obtained by

oW1, 0 (Vp,i - Vp,i—l) _ 1
OVypic1 OVyiq\ T, — T Ty — Ti—1
OWiy12 0 (Vp,i+1 - Vp,i) 1
OVpivr  OVpiy1 \ Tiy1 — T Tit1 — T

208

(F.44)

(F.45)

(F.46)

(F.47)





