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ABSTRACT 

 

Hepatitis C virus (HCV), Human Immunodeficiency virus (HIV) and Herpes 

Simplex virus (HSV) are pathogenic viruses known to cause liver disorder, acquired 

immunodeficiency and skin lesions, respectively. Although current therapies have played 

substantial roles in the fight against these pathogens, their use is limited and for the most 

part does not result in viral eradication. Moreover, most antivirals target viral encoded 

structures which overtime foster the development of resistant strains. Hence, antivirals 

aimed at preventing initial infection represent a promising strategy for viral combat. 

This dissertation focuses on the characterization of viral entry inhibitors and their 

potential use. The first compounds evaluated come from the phenothiazines family, 

widely used as antipsychotic drugs. Phenothiazines were shown to suppress HCV entry 

by intercalating into cholesterol-rich membrane domains of target cells thus reducing 

viral-host fusion.  

The second candidates studied are two members of the H1-anthistamines 

currently used for allergy treatment. Both compounds strongly reduce HCV entry, likely 

at the fusion step, and its inhibition was associated with cholesterol content in the virion 

and host cells, pointing to the use of an NPC1L1-receptor dependent mechanism. 

Lastly, we evaluated the antiviral activity of PD 404,182 (PD) as an alternate 

treatment for HCV-HIV coinfected patients as well as its potential use as an anti-HIV 

microbicide. PD is able to reduce viral entry of the three pathogens through physical 
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disruption of virions releasing the nucleic acids into the surrounding medium. Moreover, 

PD possesses several qualities pointing to its use as a potential microbicide. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Viral entry 

Viruses, originally referred to as filterable agents, are obligate parasites that lack 

replication machinery and are therefore highly dependent on their host cells. Viruses 

consist of a core of RNA or DNA generally surrounded by a protein, lipid or 

glycoprotein coat, or some combination of the three. Once inside the cell, the goal of a 

virus is to use the host intracellular replication machinery for virus replication and 

production. Depending on the virus, different strategies are utilized to mediate efficient 

infection. Many enveloped viruses take advantage of the cells’ natural endocytosis 

mechanism, while others fuse directly with the host’s plasma membrane. Many locations 

have been described as potential penetration sites for viruses, including plasma 

membrane, early/mature/late endosomes, lysosomes, macropinosome and endoplasmic 

reticulum (ER). After internalization viruses exploit the cytoplasmic transport system of 

the cells to reach the site of replication.   

The entry process can be broken down into five discrete steps: attachment, viral 

uptake, endosomal escape and penetration/fusion, intracellular transport and uncoating. 

1.1.1 Attachment 

Virus infection commences with the interaction between the virion and the host 

surface. Cell surface molecules that serve as binding partners comprise a large spectrum 

of proteins, lipids and glycans, and are distinguished between attachment factors or true 
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receptors (1, 2). Attachment factors enable viruses to bind and concentrate on the cell 

surface. Such interactions are relatively nonspecific and do not induce changes in the 

virion structure. Conversely, true receptors bind viruses, induce conformational changes 

in viruses to promote their entry and activate signaling pathways that aid in the infection 

process. Interactions between the envelope viral proteins and cellular receptors are often 

highly specific, dictating virus’ host and tissue tropism. Due to their multivalent nature, 

viruses usually bind to multiple surface cell surface receptors forming receptor-rich 

microdomains that can promote transbilayer signaling, support membrane curvature 

generation and activate endocytosis (3).  

1.1.2 Viral uptake 

Endocytosis is a process by which macromolecules are taken into cells through 

endosomes. While some viruses enter cells through direct fusion with the plasma 

membrane, most viruses use at least one of the several endocytic routes such as clathrin-

mediated endocytosis, caveolar endocytosis, macropinocytosis and some poorly 

characterize variations of these (4).  

1.1.2.1 Clathrin mediated endocytosis 

Clathrin mediated endocytosis is a common uptake mechanism for viruses of 

small and intermediate size (50-200nm). During clathrin-mediated endocytosis, 

interaction of the ligand and a specific receptor induces clustering of the receptor-ligand 

complex in coated pits on the plasma membrane. Such pits then invaginate and pinch off 

the plasma membrane, forming intracellular clathrin coated vesicles. Coat removal of the 

vesicles results in early endosomes. Multiple early endosomes can fuse with each other 
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to form late endosomes which eventually fuse with the lysosomes. Molecules 

internalized through this pathway experience a decline in pH, which is necessary to 

trigger the fusion process for some viruses (5). 

1.1.2.2 Caveolar endocytosis 

Although not as common, some viruses, especially small non-enveloped viruses, 

use caveolar endocytosis to enter the host. Internalization takes place in small fitting 

vesicles devoided of a clathrin coat (6). Following internalization, viruses are transported 

to early and late endosomes, eventually reaching the ER where the initial uncoating and 

penetration occurs (7). 

1.1.2.3 Macropinocytosis 

Macropinocytosis is an actin dependent pathway for the nonspecific uptake of 

fluids, solutes and particles in response to the activation of cell surface molecules. It is 

an alternate entry route predominantly used by larger viruses (≥250nm). The process 

results from the activation of a complex signaling pathway that modifies the actin 

cytoskeleton dynamics. Virus-containing macropinosomes move deeper into the cytosol 

where acidification, maturation and fusion with the endosome or lysosome takes place 

(8).  

1.1.2.4 Fusion at the plasma membrane 

Direct entry through the plasma membrane requires the fusion process to happen 

at neutral pH. Such route is only used by enveloped viruses and allows delivery of the 

genomic material into the cytosol (9). The internalization process involves the fusion of 
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the enveloped virus with the plasma membrane after fusion-promoting viral proteins are 

recognized by specific cell receptors. 

1.1.3 Endosomal escape and penetration 

Upon internalization via endocytic pathways, viruses must escape their 

intracellular compartments for efficient genomic delivery. Escape mechanisms depend 

on the nature of the virus: enveloped vs non-enveloped. Enveloped virions utilize 

membrane fusion to cross the membrane barrier and reach the cytoplasm, while non-

enveloped viruses use pore formation or membrane disruption (10). 

Internalized virions are directed to early endosomes or remain as cargo in newly 

formed macropinosomes. Since both pathways are targeted to hydrolase-filled 

lysosomes, cargos in both compartments experience pH drops with time. Transport 

encompasses a maturation process that involves endosomal acidification, followed by 

the formation of intraluminal vesicles and finally microtubule movement to the 

perinuclear region for some viruses (11). Depending on the virus, penetration can occur 

in the early endosomes, late endosomes or macropinosomes, with late penetration 

requiring more acidic pH and additional factors involved in the endosomal maturation 

process (12). 

1.1.3.1 Fusion dependent mechanism 

  Delivery of genomic material and accessory proteins into the cytosol is an active 

process initiated by the virus. In the case of enveloped animal viruses, penetration is 

mediated by the viral fusion proteins. Fusion proteins are classified as class I, class II 

and class III based on key structural features. Class I proteins are trimeric in both their 
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prefusion and postfusion state, and their fusogenic domain is predominantly composed 

of alpha helices at the N-terminal. Class II proteins are mostly made of beta sheets. Their 

fusion peptides are located in internal loops. Unlike class I, class II proteins undergo an 

oligomeric rearrangement from the prefusion dimer to a stable homotrimer. Class III 

proteins resemble a combination of the original two classes as they acquire a similar post 

fusion trimeric structure as class I, but are predominantly made of beta sheets (13).  

Upon exposure to the right cue - pH, lipid composition, proteolytic activity or redox 

reactions - fusion proteins undergo conformational changes so that exposed hydrophobic 

residues can insert into target membranes to form a bridge between the virus and the 

endosomal membrane. Once in close contact, viruses fuse with the limiting membrane of 

the endocytic vacuoles from the luminal side, enabling cytosolic translocation of the 

viral genome.  

1.1.3.2 Fusion independent mechanism 

Non-enveloped viruses use a fusion independent mechanism to deliver their 

genomes. To date two alternatives have been proposed: membrane disruption and pore 

formation (14). Membrane disruption requires electrostatic interactions between the 

hydrophilic peptide group on the virus and the lipid head group in the membrane. The 

process is usually described by four steps: (i) positively charged viral peptide monomers 

bind to negatively charged phospholipids, (ii) peptide monomers aligned so that their 

hydrophilic groups face the phospholipid head groups or water molecules, (iii) the 

hydrophobic group of the peptides reorients towards the hydrophobic core of the 

membrane leading to (iv) disruption of lipid bilayer curvature and membrane 
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disintegration. In pore formation, also known as the barrel-stave mechanism, 

hydrophobic surfaces of viral amphipathic α-helices interact with the lipid core of the 

membrane, and their hydrophilic surfaces point inward producing an aqueous pore (15). 

1.1.4 Intracellular transport 

Once in the cytosol, viruses and viral capsids reach their replication site via the 

cytosolic transport machinery, such as microtubule-based motors. Transport of virus 

from the ER to the nucleus can follow one of the two routes. The first route requires the 

interaction of virions with nuclear import receptors allowing them to target their capsid 

or genome to the nuclear pore complexes. This approach is not feasible for large virions 

that cannot pass though the nuclear pores. Alternatively, genomic DNA is directly 

transported from the ER into the nucleus across the inner nuclear membrane or by 

releasing their genome directly into the nuclear pore (16).  

1.1.5 Uncoating 

Release of the genomic material form a protective confined capsid structure is 

usually the last step of the entry program as genomic material cannot be easily moved 

once release from the capsid. In general, virus uncoating involves a stepwise process that 

occurs during different stages of entry. It is highly dependent on the nature of the virus 

and in some cases relies on host cell factors.  

1.2 Targeting viral entry of human pathogens 

 Human Immunodeficiency virus (HIV), Herpes simplex virus (HSV) and 

Hepatitis C virus (HCV) are pathogenic viruses known to cause acquired 

immunodeficiency, skin lesions and liver disorders, respectively. Even though life 
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extending treatment exits for all three pathogens, infection by these viruses is considered 

incurable. For HSV, viral latency plays a key role in the therapy outcome. The clearance 

of HIV is hampered by latency and rapid evolution of escape mutations that abrogate 

recognition by neutralizing antibodies and cytolytic T lymphocytes. For HCV, therapy 

mainly relies in unspecific antivirals and is riddled with serious side effects.  Thus, 

prevention strategies as well as antivirals with novel modes of action are among the 

favored contenders for future therapeutics.  This section will provide a brief introduction 

of these three human pathogens, a detailed description of their entry processes, current 

treatments and direction of future therapeutics relating to the entry step. 

1.2.1 Hepatitis C virus (HCV) 

Hepatitis C virus is a member of the Hepacivirus genus belonging to the family 

of Flaviviridae. First identified as the causative agent of non-A, non-B hepatitis in 1989, 

HCV is a human pathogen and the leading cause of cirrhosis, hepatocellular carcinoma 

and liver failure (17-19). There are seven major genotypes of HCV around the world, 

with sequence variations of about 30-35% between genotypes and 20% between 

subtypes (20-22). Different HCV genotypes are predominantly found in different 

geographic regions, with genotype 1 being the most prevalent in the United States and 

Western Europe (23). An estimated 130 million people worldwide are currently afflicted 

by HCV and there is no vaccine available. Current treatment relies on unspecific 

antiviral agents like pegylated interferon in combination with ribavirin. In 2011 the first 

direct antiviral agents were added to the standard-of-care interferon/ribavirin therapy for 

genotype 1 infected individuals, which improved the cure rates, but also increased the 
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frequency of adverse effects (24). Moreover, HCV replicates with a high mutation rate 

due to lack of proofreading activity of the viral RNA-dependent RNA polymerase. This 

combined with a high viral turnover rate, results in a population of newly synthesized 

viral genomes with different degrees of fitness and 'quasispecies' (24). The HCV 

quasispecies is able to evolve under a variety of selective pressures, facilitating the virus 

to escape the body's immune defense and develop drug resistant variants.  Due to a 

combination of non-diagnosis, treatment failure, treatment avoidance, and treatment 

discontinuation, only approximately 2% of the HCV-infected individuals in the United 

States are successfully treated (25). 

Hepatitis C virus is a hepatotropic enveloped positive-sense RNA virus. Its  9.6 

kb genome encodes a single large polyprotein that is processed by viral and cellular 

proteinases to produce the virion structural proteins (core and glycoproteins E1 and E2), 

P7, and nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) (26). Once 

inside the host, replication takes place in lipid rich ER derived compartments close to the 

nucleus known as membranous webs. Progeny virions are assembled in close proximity 

to lipid droplets and are released through to the cell’s secretory pathway. Aside from the 

cell free infection process, an alternative route of transmission has been suggested in 

which progeny viruses are directly transmitted from an infected cell to an uninfected 

neighboring cell (27).  

1.2.1.1 HCV entry mechanism 

 HCV entry into hepatocytes is a highly coordinated and multi-step process 

mediated by the viral envelope glycoproteins (E1 and E2) and host cell factors. E1 and 
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E2 are type I transmembrane proteins with a short C-terminal transmembrane domain 

and an N-terminal extracellular domain. Both proteins are synthesized at the rough ER 

as part of the polyprotein precursor, and are cotranslationally cleaved off by the cellular 

signal peptidase (28). Glycans present in the N-terminal ectodomains of E1 and E2 play 

a major role in E1E2 folding, HCV entry and are crucial for evading host immune 

responses by masking the immunogenic envelope epitopes (29, 30). C-terminal 

transmembrane domains play a major role in the biogenesis of the E1E2 complex and 

the membrane fusion process (31). Heparan sulfate glycosaminoglycans and low density 

lipoprotein receptors represent the first attachment sites for HCV prior to interaction 

with scavenger receptor  class B type 1 (SR-B1), the tetraspanin cluster of differentiation 

81 (CD81), claudin-1 (CLDN1), Occludin (OCLD) and Niemann-Pick C1-Like 1 

(NPC1L1) (32). SR-B1 is an 82 kDa glycoprotein highly expressed in the liver and 

steroidogenic tissues (33). It harbors two transmembrane domains and is involved in 

bidirectional cholesterol transport at the cell membrane.  Evidence suggests that the 

hypervariable region 1 of E2, comprising the first 27 amino acids, interacts with SR-

B1’s extracellular loop (34). CD81 is a ubiquitously expressed 25 kDa tetraspanin 

protein with four transmembrane domains, two extracellular loops and one intracellular 

loop. CD81 was the first candidate receptor shown to interact with a soluble truncated 

form of E2 and is a critical factor of HCV entry (35-37). CLDN-1 is a 23 kDa 

transmembrane protein expressed in all epithelial tissue but predominantly in the liver 

(38). It resides in the tight junction were it regulates paracellular permeability and 

polarity. Evidence suggests that CLDN-1 is likely involved at a post binding HCV entry 
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step (39, 40). CLDN-1 associates with CD81 in a variety of cells and mutations at 

residues 32 and 48 in CLDN-1’s extracellular loop ablate its association with CD81 and 

the viral receptor activity, suggesting that complex formation is essential for HCV entry 

(41, 42). OCLD is a 65 kDa protein with four transmembrane regions and two 

extracellular loops. It is expressed in tight junctions of polarized cells where it partakes 

on cell-cell adhesion and anchoring of the junctional complex to the cytoskeleton. 

Confocal microscopy analyses demonstrated that OCLD accumulates in the ER and 

colocalizes with the E2 viral glycoprotein (43). Association between E2 and OCLD was 

further confirmed by co-immuno precipitation pull down assays (44). NPC1L1 is a cell 

surface cholesterol-sensing 13 transmembrane-domain receptor. It is highly expressed on 

the apical surface of intestinal enterocytes and the bile canicular membrane of human 

hepatocytes (45), and is responsible for intestinal cholesterol absorption (46) and 

regulation of biliary cholesterol concentration (47). Despite the lack of evidence for 

direct interaction between NPC1L1 and HCV, antibody mediated receptor blockage and 

silencing of NPC1L1 impaired HCVcc infection. Moreover, treatment of cells with 

ezetimibe, an NPC1L1 specific antagonist, inhibited the uptake of all major HCV 

genotypes in vitro (48). 

Although the sequence of receptor engagement is not exactly known, it is 

speculated that the process starts with the interaction of E1E2 with SR-BI. The complex 

then encounters CD81 and is translocated to the tight junction. Clathrin-mediated 

endocytosis transports the incoming virus-receptor complexes to the early and late 

endosomes (2). The acidic environment in the late endosome triggers virus fusion with 
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the host membrane (1). Subsequently, the viral genome is released into the cytosol where 

protein translation, replication and assembly of new viruses occur.  

1.2.2 Human immunodeficiency virus (HIV) 

 HIV is an enveloped virus belonging to the Lentivirus genus, of the Retroviridae 

family. Since its discovery in 1981, HIV has infected over 60 million people worldwide 

and caused more than 25 million deaths (49). Primary targets of HIV are activated CD4+ 

T helper lymphocytes although the virus can infect several other cell types. Two types of 

HIV, HIV-1 and HIV-2, exist and they differ by about 40% in genomic sequence. Based 

on genetic variations four major groups of HIV-1 -M, N, O and P-  have been identified, 

with group M responsible for the majority of the infections. Group M has been further 

divided into 9 clades that differ by 15-20% in their DNA sequences. Clade B is the most 

common clade in the Americas, Europe and Australia, whereas clade C predominates in 

southern Africa (50). HIV can stay dormant in the proviral form within a cell, usually 

resting CD4+ T lymphocytes, and can be reactivated to resume active virus production 

(51). HIV can be transmitted by contaminated blood and blood products, from infected 

mother to baby and most frequently through vaginal or anal intercourse (52). 

 HIV is a diploid positive sense RNA virus. Its genome contains nine open 

reading frames that produce fifteen proteins. Once inside the cell, the viral RNA is 

reverse transcribed via reverse transcriptase into double stranded DNA which is 

subsequently transported to the nucleus and integrates into the host chromosome. The 

integrated provirus is then transcribed and translated by the host’s machinery to generate 
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polyproteins that are autocatalytically cleaved and processed, leading eventually to the 

formation of nascent viruses that bud from the host cell. 

 Current HIV therapy, known as HAART, comprises five major groups of drugs: 

nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse 

transcriptase inhibitors, integrase inhibitors, protease inhibitors and entry inhibitors (53). 

Although effective, HAART therapy does not eliminate virus reservoirs or cure 

infections. Furthermore long term HAART usage is associated with the emergence of 

HIV resistant variants and side effects (54-56). 

1.2.2.1 HIV entry mechanism 

Entry of HIV into target cells is a complex, multi-stage process that involves 

coordinated sequential interactions between the viral proteins and the host cell receptors. 

HIV virions are surrounded by a lipid membrane containing two embedded envelope 

glycoproteins: a surface glycoprotein gp120 and the transmembrane glycoprotein gp41. 

Both proteins originate from a single polyprotein, gp160, which is cleaved by furin or 

furin like proteases in the Golgi compartment prior to being incorporated in the viral 

membrane (57).  Initial contact between HIV and the target cell is driven by non-specific 

electrostatic interactions, between the positively charged domains on gp120 and 

negatively charge proteoglycans on the cell surface, and/or by specific interactions 

between virion incorporated host proteins and their ligands (58-60). Once in close 

proximity, gp120 can bind to the primary receptor CD4, a transmembrane glycoprotein 

that belongs to the immunoglobulin superfamily. CD4, expressed on immune cell 

populations, contains four extracellular immunoglobulin domains, a single pass 
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transmembrane domain and a short cytoplasmic tail suggested to participate in 

intracellular signaling. CD4 binding induces a conformational transition from an 

unbound state to a bound state which exposes a coreceptor binding site (61, 62). CCR5 

and CXCR4, coreceptors most often used by HIV, are seven-pass G protein coupled 

receptors with an extracellular N-terminal tail, three intracellular and extracellular loops 

and a C-terminal cytoplasmic tail (63). Binding of gp120 to a coreceptor triggers a 

second conformational change in the transmembrane subunit gp41 that results in the 

exposure of the hydrophobic fusion peptides and its insertion into the host membrane. 

This brings the viral and cellular membranes to close proximity and initiates the 

formation of a fusion pore that allows the release of the viral genetic material into the 

cytosol. 

1.2.3 Herpes simplex virus (HSV) 

Herpes Simplex virus is a double stranded DNA virus belonging to the 

Herpesviridae family, and one of the most common viruses acquired by humans (64).  

There are two serotypes of HSV: HSV-1 and HSV-2. They are distinguished by 

antigenic differences in their envelope proteins. The former is primarily associated with 

oral and facial lesions although some strains have been reported to cause genital 

infection (65). It is mainly transmitted by oral secretions and non-genital contact. It is 

estimated that 57% and 50-90% of the individuals in the USA and worldwide, 

respectively, are seropositive for HSV-1. HSV-2 predominantly causes genital herpes 

and is mainly transmitted sexually by genital secretions. It has an estimated 

seroprevalecence of 20% in North America (66). HSV has the ability to avoid the host 
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immune system through a non-replication state known as latency. As a result, lifelong 

infection is established with periods of reactivation stimulated by different cues (67). 

The success of HSV is aided by its broad cell tropism, as it has the ability to infect 

multiple cell types by exploiting various receptors. Thus the pathways of HSV entry are 

dependent on the host cell being targeted (68). 

HSV is an enveloped virus composed of an electron dense core encapsulating the 

double stranded DNA, an isocohedral capsid, a tegument and 16 envelope proteins. The 

genome of HSV consists of two covalently linked components with unique sequences—

UL (unique long) or US (unique short)—flanked by large inverted repeats. The genomes 

encodes at least 80 proteins, with approximately half of them involved in virus structure 

and replication, and the other half in interaction with the host cell and the immune 

system. Following viral entry, expression of alpha, beta and gamma proteins is initiated. 

Alpha proteins, products of the intermediate early genes, are involved in transcriptional 

regulation and the control of beta protein synthesis. Beta proteins or early proteins 

include the DNA polymerase and transcription factors, and are involved in DNA 

replication. The late proteins, gamma proteins, are initiated after DNA genome 

replication and comprise the structural proteins of the virion. Upon completion of 

transcription and DNA replication, nucleocapsids assembled in the nucleus are loaded 

with viral genome and bud through the double nuclear membrane. Viruses can either 

leave the cells via the exocytosis pathway, through plasma membrane budding or 

disseminate by spreading from cell to cell using methods such as cell-to-cell fusion, 

virion fusion across tight junctions, transfer across synapses and the recruitment of actin-
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containing structures to spread the virus directly from an infected to an uninfected cell 

(69).  

Current therapies for HSV infection rely on replication and fusion inhibitors. 

Acyclovir (ACV) introduced in 1980, is one of the oldest antiviral drug used for HSV 

treatment (70). Once phosphorylated by the viral thymidine kinase and cellular kinases, 

ACV functions as a substrate for the viral DNA polymerase inducing chain termination 

and arresting HSV replication. Due to limited ACV bioavalability, efforts were placed 

on the development of drugs that retain similar safety and efficacy while improving oral 

bioavailability. Such efforts allowed the development of several ACV prodrugs and 

derivatives currently classified as nucleoside, nucleotide and pyrophosphate analogs that 

either function as substrates for or inhibit the viral DNA polymerase (71). In addition to 

viral replication inhibition, N-docosanol is the only marketed HSV-1 drug that inhibits 

viral entry. It is a 22-carbon aliphatic alcohol that inhibits HSV-1 infection by targeting 

the cell membrane and modifying the regions necessary for fusion of enveloped viruses 

(72). While effective, it is only approved in topical form for treatment of herpes labialis 

but not recurrent genital herpes or ocular infections, the predominant diseases caused by 

HSV worldwide (73). Although replication inhibitors have been proven successful in the 

prevention of primary infection in neonates (74) and in reducing the duration of infection 

outbreaks, none are able to abolish viral latency and drug resistance usually arise after 

long term usage (75). 
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1.2.3.1 HSV entry mechanism 

HSV entry is initiated by the attachment of glycoprotein B (gB) and glycoprotein 

C (gC) to cell surface heparan sulfate proteoglycans. Although both glycoproteins are 

present on both serotypes, gC plays a critical role in HSV-1 attachment (76), while gB is 

more important for HSV-2 (77). gB and gC can also bind to DC-SIGN, facilitating 

attachment during infection of dendritic cells. After attachment, virions travel to the cell 

body via a lateral movement along the length of filopodia. Once it approaches the 

desired receptors, it can enter the host via endocytosis, phagocytosis like mechanism, or 

direct fusion. In either case, the membrane fusion requires essential participation from 

viral glycoproteins gB, gD, gH and gL.  Membrane fusion is initiated by the interaction 

between gD and one of the following receptors: herpesvirus entry mediator (HVEM), a 

member of the tumor necrosis factor receptor family; nectin-1 and nectin-2, two 

members of the immunoglobulin superfamily; and specific sites in heparan sulfate 3-O-

sulfated heparin sulfate (78). Interaction of gD with the appropriate receptor allows tight 

anchoring of the virus to the plasma membrane of the host, bringing them close to 

juxtaposition (79). gD receptor binding leads to the insertion of gB fusion loops into the 

host membrane and promotes the formation of gB-gH/GL complex (80). Formation of 

the complex helps convert gB from a prefusion to a postfusion conformation capable of 

forming a fusion pore (81). Pore formation completes the fusion process allowing the 

release of the tegument protein and viral capsid into the cytoplasm. Upon release in the 

cytoplasm, the tegument surrounded nucleocapsid is carried to the nuclear membrane 
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where the nucleocapsid docks onto a nuclear pore complex and the DNA genome enters 

the nucleus. 

1.2.4 Different methods to inhibit viral entry 

While current therapies have played substantial roles in the fight against HCV, 

HIV and HSV, their use is limited and for the most part does not result in eradication of 

the virus. One way to overcome such constraint is the use of entry inhibitors that prevent 

initial viral infection.  

1.2.4.1 HCV 

As the entry process is essential for initiation of infection, intrahepatic spread and 

maintenance of infection, HCV research efforts have focused on the development of 

antivirals targeting the virus particles or host factors indispensable for HCV uptake. 

1.2.4.1.1 Polyclonal & monoclonal neutralizing immunoglobulins 

 The first in vitro proof of concept was demonstrated by Farce et al. when 

preincubation of infectious HCV with autologous polyclonal serum or hyperimmune anti 

HVR1 (first 27 aa of E2) serum conferred protection in chimpanzees (82). Encouraged 

by this outcome, numerous human and non-human antibodies targeted against E1 and E2 

have been successfully tested pre-clinically in small animals or HCVpp and/or HCVcc 

cell culture system (83). Only Civacir®, HCV1 and HCV-AB68 were evaluated in 

clinical trials. While Civacir® proved to be safe and well tolerated no effect on HCV 

RNA levels and HCV reinfection after liver transplantation was observed (84, 85). 

HCV-AB68 usage resulted in a modest and transient decrease of HCV RNA levels in 

some patients during Phase I, but failed to have significant effects during a Phase II 
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study in HCV infected liver transplant patients (86, 87). HCV1 significantly suppressed 

viral load and delayed the time of viral rebound in Phase II trials, but resistant mutants 

emerged in all treated subjects (88). Such disappointing results were attributed by high 

variability of HCV envelope glycoproteins and the difficulty in reaching the appropriate 

dose after administration. 

1.2.4.1.2 Carbohydrate binding agents 

 Since both E1 and E2 are highly glycosylated, several molecules that can interact 

and thereby inhibit envelope protein-cellular receptor interactions have been developed. 

Among them are lectins including cyanovirin N and griffithsin, and other carbohydrate 

binding agents such as GNA, HHA and pradimicin A. All molecules showed nanomolar 

to micromolar antiviral activity when tested in vitro (89-91). Furthermore griffithsin’s 

activity was corroborated in vivo using humanized mice. Because glycosylation sites are 

highly conserved, viral escape mutants will be retarded providing an effective way of 

suppressing entry. 

1.2.4.1.3 Viral targeting inhibitors 

In addition to the above mentioned agents, small molecules and peptides known 

to target viral particles directly have been described. The polyphenol epigallocatechin-3-

gallate (EGCG) was shown to interfere with virion attachment through direct viral 

targeting (92, 93). Moreover, it prevents cell-free infection and cell-to-cell transmission 

of HCV in a genotype independent manner. Serum amyloid A and CLDN1 derived 

peptide, CL58, were also shown to inhibit HCV uptake by directly interacting with the 

viral envelope glycoproteins (94, 95). 
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1.2.4.1.4 Targeting host factors 

 Host factors represent ideal targets for antiviral therapy as they are less likely to 

mutate overtime. Studies focused on the interaction between virions and 

receptor/attachment factors have allowed the development of small molecules and 

antibodies against all identified HCV binding partners. The NPC1L1 antagonist 

ezetimibe (48), protein kinase inhibitors, erlotinib and dasatinib (96), and SR-B1 

antibody  mAb16-71 (97)  show the highest potential as they have either already 

received FDA approval or have been shown to successful suppress HCV infection when 

used as a prophylactic in vivo. Additional small molecules targeting downstream 

attachment steps have also been developed/discovered including well know fusion 

inhibitors concanamycin A, bafilomicyn and chloroquine. The most promising to date is 

REP9AC, an amphipathic oligonucleotide, propose to inhibit the fusion step and shown 

to be effective and safe in clinical trials involving chronically infected HBV patients 

(98).  

Despite the above mentioned efforts the SR-B1 antagonist ITX-5061, is the only 

HCV entry inhibitor that has entered clinical testing. 

1.2.4.2 HIV and HSV  

Although extensive research has been devoted to the development of HIV and 

HSV vaccines (99, 100), the scope of this document will focus on the use of 

microbicides as prevention strategies. Moreover, given the well documented interplay 

between HSV and HIV, microbicides with dual action are preferred.  Microbicides are 

compounds that can be applied to the vaginal or rectal mucosa aiming at preventing or 
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reducing sexually transmitted infections. In general viral microbicides can be divided 

into (i) nonspecific compounds with broad antiviral activity and (ii) specific molecules 

targeting essential viral or host cell proteins. 

 Four major types of vaginal HIV microbicides have been developed with 

varying degrees of clinical success: surfactants, buffers, entry inhibitors, and 

antiretroviral agents. Surfactants are the first microbicides to enter phase III clinical 

trials and they inactivate pathogens through the disruption of membranes or changes in 

the cell membrane structure. Studies conducted with surfactants nonoxynol-9 (N-9) and 

SAVVY® failed to provide protection against HIV acquisition, with N-9 found to 

increase the risk of HIV infection (101-103). Buffers comprise chemicals/agents used to 

supplement or enhance natural immune defenses. BufferGel®, ACIDFORM and 

recombinant/engineered Lactobacillus are among the most well-known examples. 

Unfortunately, BufferGel®, designed to maintain a healthy vaginal milieu, did not alter 

the risk of HIV infection when tested alongside 0.5% PRO 2000® in Phase III clinical 

trials (104). Entry inhibitors include co-receptor blockers, polyanionic sulfate and 

sulphonated polymers that prevent virions from attaching to and fusing with the host cell 

membrane. PRO 2000®, Carraguard®, cellulose sulfate and dextrin 2-sulfate have been 

evaluated as potential microbicides. Despite encouraging results from animal studies and 

in vitro none of them prevented HIV acquisition in large scale human trials (105-112). 

Other entry inhibitors being considered are VivaGel
TM

, sodium rutin sulfate, PPCM, 

Spm8CHAS, and cyanovirin-N (113-116). Recent development of microbicides has 

shifted to the use of antiretroviral drugs that form part of the HAART drug cocktail as 
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they have an already established efficacy. Tenofovir, an adenosine nucleotide analog, is 

one of the active ingredients in several studies including CAPRISA 004, VOICE and 

FACTS 001 (117, 118). Although reduction in HIV incidence was observed in 

CAPRISA 004 and is being corroborated in FACTS 001, the VOICE study was halted 

because interim results showed no difference between the experimental and placebo 

group (119). To date Truvada ®, comprising two nucleoside analogs, tenofovir and 

emtricitabine, is the only FDA-approved anti-HIV prophylactic therapeutic and offered  

a 44% reduction in HIV transmission during clinical trial (120). Although encouraging, 

many concerns have been raised regarding the transmission of drug resistant mutants and 

its failure to reduce HIV acquisition in the VOICE trial. 

As with HIV, surfactants, buffering agents and entry inhibitors have been 

considered as potential anti-HSV microbicide candidates. Although surfactant N-9 

demonstrated in vitro activity against HSV, given the results obtained with HIV and 

subsequent work demonstrating the cytotoxic and inflammatory responses of N-9 any 

potential benefit was outweighed (101, 121-123). The next series of candidates 

considered were sulfated and sulfonated polymers; PRO 2000®, cellulose sulfate and 

Carraguard®. Potential concerns were raised when several candidates lost anti-HSV 

activity in vitro and in murine models if HSV was introduced in seminal plasma (124). 

Lack of efficacy against HSV was observed for PRO 2000® in Phase IIIb clinical trials 

(125). Carraguard® showed no protection against HIV and other sexually transmitted 

infections, although HSV acquisition and recurrences were not reported (111). 

Moreover, a combination of Carragurad® and zinc, known as PC 710, showed higher 
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efficacy of HSV-2 protection compared to HIV-1 when tested in animal models (113). 

Lastly, cellulose sulfate efficacy trials against HIV were prematurely halted due to a 

significant increase in HIV acquisition, thus its effect against HSV was not evaluated 

(112). Other compounds with similar mechanism of action were in developmental/initial 

clinical stages as of 2009 are: VivaGel
TM

, PPCM, Spm8CHAS, amphipathic DNA 

polymers, sodium rutin sulfate and SAMMAN (113-116, 126, 127).  Two acid buffering 

agents, BufferGel® and ACIDFORM, were also advanced to clinical trials. BufferGel® 

demonstrated short duration of action and failed to provide protection against HSV in 

clinical trials (125). Additional strategies being explored include defensins and siRNA. 

Defensins were shown to inhibit HSV infection in vitro through multiple mechanisms 

(128), while small interfering RNA sequences targeting viral proteins provided mice 

protection against lethal HSV-2 challenge (129, 130). The most recent success story has 

come from the CAPRISA 004 trial which not only reduced HIV-1 transmission by 39% 

but also reduced the risk of HSV-2 acquisition by 51% (117). 

1.3 Research objectives 

The focus of this research is to characterize entry inhibitors that target molecules 

indispensable for viral entry not encoded by the viral genome, thus retarding the 

emergence of viral resistance. The following chapters contained a detailed description of 

the experimental techniques used to characterize each molecule, and the conclusions 

drawn from the obtained results. 

Chapter II focuses on the discovery and characterization of the phenothiazines 

family as strong entry inhibitors of HCV. Specifically phenothiazines were shown to 
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suppress HCV infection by intercalating into cholesterol-rich domains of target cells, 

modulating its fluidity and consequently reducing fusion between the host and viral 

membranes.  

Chapter III describes the characterization of two first generation H1-

antihistamines. Like phenothiazines, both compounds suppress HCV entry likely at the 

fusion step. Their antiviral action was proven to be highly associated with cholesterol 

content in the host and virion, suggesting the use of an NPC1L1 dependent pathway. 

The last two chapters explore the potential of PD as an alternate treatment for 

HCV and HIV coinfected patients as well as its use as a prevention strategy for the 

acquisition of sexually transmitted viruses like HIV and HSV. Chapter IV demonstrates 

the ability of PD to inactivate virions directly through the interaction with a structural 

molecule not encoded by the viral genome. For HIV this interaction is later accompanied 

by irreversible disruption of the virion rendering the particle non-infectious. Chapter V 

focuses on the use of PD as an anti-HIV microbicide. PD was proven to be highly stable 

in environments encountered by microbicides. Moreover, PD was able to efficiently 

inhibit HSV infection, a virus known to enhance viral acquisition of HIV.  
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CHAPTER II  

PHENOTHIAZINES INHIBIT HCV ENTRY LIKELY BY INCREASING THE 

FLUIDITY OF CHOLESTEROL-RICH MEMBRANES
*
 

 

2.1 Overview 

Despite recent progress in the development of direct-acting antiviral agents against 

hepatitis C virus (HCV), more effective therapies are still urgently needed. We and 

others have previously identified three phenothiazine compounds as potent HCV entry 

inhibitors. In this study, we show that phenothiazines inhibit HCV entry at the step of 

virus-host cell fusion, by intercalating into cholesterol-rich domains of the target 

membrane and increasing membrane fluidity. Perturbation of the alignment/packing of 

cholesterol in lipid membranes likely increases the energy barrier needed for virus-host 

fusion. A screening assay based on the ability of molecules to selectively increase the 

fluidity of cholesterol-rich membranes was subsequently developed. One compound that 

emerged from the library screen, topotecan, is able to very potently inhibit the fusion of 

liposomes with cell culture-derived HCV (HCVcc). These results yield new insights into 

HCV infection and provide a platform for the identification of new HCV inhibitors. 
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2.2 Introduction 

Hepatitis C virus (HCV) infects at least 130 million people worldwide and is the 

major cause of chronic liver disease. Infected patients are at risk of developing fibrosis, 

cirrhosis and liver cancer (17-19). Although identified in 1989, advances in treatment 

have been augmented by the development cell culture-grown HCV (HCVcc) in 2005 

(35, 131, 132). No vaccine is available, and the current treatment for HCV infection 

involves a weekly injection of pegylated alpha interferon and a twice-daily weight-based 

dose of ribavirin for 24- to 48-weeks. This standard of care is plagued by a long 

duration, limited efficacy and serious side effects (133). Although the recent addition of 

new direct acting antivirals (DAAs) targeting HCV NS3-4A protease – telaprevir and 

boceprevir – to the anti-HCV therapeutic arsenal have improved the cure rates, they 

must be used in combination with interferon, as HCV has a remarkable ability to 

overcome a single DAA. Telaprevir and boceprevir only work in patients infected with 

genotype 1 HCV, and are both not very effective in patients who did not respond to the 

pegylated interferon-ribavirin therapy (134). In addition, both telaprevir and boceprevir 

appear to worsen the already problematic side effects of the standard therapy such as 

rashes and anemia (24). Currently approved DAAs and most molecules in the pipeline 

are protease inhibitors, nucleoside inhibitors, non-nucleoside inhibitors and NS5A 

inhibitors (135). A major obstacle in combating HCV is the low fidelity of the viral 

replication machinery, enabling the virus to quickly develop resistance (136). To date, 

ITX-5061 is the only inhibitor of HCV entry that has entered clinical testing. ITX-5061 

blocks a post-binding step in the viral entry process by directly interacting with the entry 
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factor scavenger receptor B1 (SR-B1) (96). New DAAs targeting entry steps critical to 

viral infection with additive potency when combined with existing DAAs and exhibiting 

low cytotoxicity are highly desirable.  

HCV is an enveloped, positive-sense RNA virus belonging to the Flaviviridae 

family. The 9.6-kb viral genome encodes a single large polyprotein that is processed by 

viral and cellular proteases to produce the virion structural proteins (core and 

glycoproteins E1 and E2), P7, and nonstructural proteins (NS2, NS3, NS4A, NS4B, 

NS5A and NS5B). HCV infection involves multiple steps. Viruses first attach to target 

cells via glycosaminoglycans and low-density lipoprotein (LDL) receptors. After 

recruitment to the membrane, HCV binds sequentially to entry factors involving SR-B1, 

tetraspanin CD81, Niemann-Pick C1-like 1 (NPC1L1) cholesterol (Cho) uptake receptor 

and proteins of tight junctions, i.e., CLDN1 and OCLD (32). HCV then enters cells at 

the tight junction via clathrin-mediated endocytosis and fuses with the host membrane in 

the late endosome. Progress in defining the molecular mechanism of HCV entry raises 

the opportunity to exploit new viral and host targets for therapeutic intervention. Entry 

inhibitors have the potential to limit the expansion of the infected cell reservoir, prevent 

re-infection after liver transplantation and complement the many protease and 

polymerase inhibitors currently under development. Although the discovery of drugs 

targeting the entry stage is still in its infancy, antibodies against SR-B1 (137), CD81 

(138), and CLDN1 (40), as well as a number of small molecule inhibitors,  have recently 

been developed and are able to effectively block HCV entry (92, 93, 139-144).  
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Phenothiazines are a group of nitrogen- and sulfur-containing tricyclic compounds 

that were first synthesized by Bernthsen in 1883. Phenothiazines with dialkylaminoalkyl 

groups and small groups substituted at positions 10 and 2, respectively, were found to 

interact with the dopamine receptors  and have exhibited valuable activities such as 

neuroleptic, antiemetic, antihistaminic, antipruritic, analgesic and antihelmintic activities 

(145). To date, more than 100 phenothiazines have been used in clinic to treat psychotic 

disorders, and over 5,000 phenothiazine derivatives have been synthesized. Other 

receptors that can be modulated by phenothiazines include histamine H1, adrenergic 1 

and 2, muscarinic (cholinergic), and serotonergic  receptors (145). In addition to 

neurotransmitter receptors, phenothiazines have also been reported to bind to calmodulin 

and block its calcium signal-transduction activity, inhibit clathrin-coated pit formation, 

and activate rynodine receptors (146). Antiviral and anti-microbial activities have also 

been described for phenothiazines and related compounds (147). 

Our lab and others recently identified three phenothiazines – fluphenazine, 

trifluoperazine and prochlorperazine – as potent HCV entry inhibitors (148, 149). In this 

work, we wanted to understand the antiviral mode of action of this family of compounds, 

which presumably inhibit HCV entry through a common mechanism of action. This 

information will assist in future endeavors to identify new and more potent inhibitors of 

HCV entry. We found that phenothiazines inhibit the virus-cell fusion step of the HCV 

life cycle by intercalating into the host cholesterol-rich membrane. In the presence of 

phenothiazines, cholesterol-rich membranes become more permeable to water 

molecules, leading to increased membrane fluidity. We subsequently developed a high-
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throughput screening assay. We screened a library of 2,752 compounds and identified a 

molecule, topotecan, that dose-dependently inhibits HCVcc-liposome fusion. This study 

suggests that alteration of target cholesterol-rich membrane fluidity may be a novel 

mode for suppressing HCV entry and should facilitate the identification of new HCV 

inhibitors with unique mode of action.  

2.3 Materials and methods 

2.3.1 Cells, plasmids, compounds and reagents  

Huh-7.5 cells and plasmids encoding HIV gag-pol (39) and the envelope proteins 

of HCV H77/J6 (39) and vesicular stomatitis virus (VSV) were kindly provided by Prof. 

Charles Rice (Rockefeller University, NY). HEK 293T cells were purchased from 

Invitrogen (Carlsbad, CA). Trifluoperazine, prochlorperazine, mesoridazine, promazine, 

triflupromazine and cis-flupentixol were purchased from Sigma-Aldrich (St. Louis, 

MO). Chlorpromazine and thioridazine were from MP Biomedicals (Solon, OH). 

Fluphenazine and bafilomycin were from Alfa Aesar (Ward Hill, MA) and Axxora (San 

Diego, CA), respectively. All phenothiazine compounds were dissolved in dimethyl 

sulfoxide (DMSO) to a 10 mM stock concentration. Bafilomycin was dissolved in 

DMSO to a 250 μM stock concentration. Laurdan and Prodan fluorescent probes were 

purchased from Anaspec (Fremont, CA). Laurdan and Prodan were dissolved in 

methanol and DMSO to a final concentration of 0.5 mM and 10 mM, respectively. The 

human anti-CD81 JS-81 monoclonal antibody (MAb) was obtained from BD 

Biosciences (San Jose, CA). CellTiter-Glo Luminescent Cell Viability assay kit and 

BioLux Gaussia Luciferase assay kit were purchased from Promega (Madison, WI) and 
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New England Biolabs (Ipswich, MA), respectively. The growth medium for all cell 

culture work was Dulbecco’s modified Eagle’s medium (DMEM) containing 4,500 mg/l 

glucose, 4.0 mM L-Glutamine, and 110 mg/l sodium pyruvate (Thermo Scientific 

HyClone, Logan, UT) supplemented with 10 % fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA) and 1X non-essential amino acids (Thermo Scientific HyClone, 

Logan, UT). Dulbecco's Phosphate-Buffered Saline (DPBS) was purchased from 

Thermo Scientific HyClone ( Logan, UT). Octadecyl rhodamine B chloride (R18) was 

purchased from Invitrogen (St Aubin, France), and all other lipids (99% pure) were from 

Avanti Polar Lipids (Alabaster, AL).  

2.3.2 Production of HCVcc and pseudotyped lentiviruses  

The production and titer determination of Jc1 Gluc HCVcc (150) in Huh-7.5 cells 

was performed as previously described (148). Jc1 Gluc HCV contains the Gaussia 

luciferase (Gluc) reporter gene between HCV genes encoding the p7 and NS2 proteins. 

Pseudotyped lentivirus were produced by co-transfecting 293T cells with plasmids 

encoding HIV gag-pol (39), a provirus pTRIP-Gluc (148) and the appropriate envelope 

protein, using TransIT reagent (Mirus, Madison, WI) following the manufacturer’s 

protocol. The supernatants containing the pseudoparticles were collected, pooled and 

filtered (0.45 μm pore size) at 48 h post transfection and then stored at 4°C for up to 1 

week or at -80 °C for long-term storage. For production of lentivirus pseudotyped with 

envelope protein from HCV genotype 1a H77 (H77 HCVpp), HCV genotype 2b J6 (J6 

HCVpp) and vesicular stomatitis virus (VSV-Gpp), plasmids H77 E1E2 pcDNA3, J6 

E1E2 pcDNA3 and pVSVG, respectively, were used (39). A control pseudotyped 
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lentivirus lacking any envelope protein (Env
-
pp) was generated using the same protocol, 

except that the envelope protein-encoding plasmid was replaced with the empty vector 

(pcDNA3).  

2.3.3 HCVcc infection assays  

To determine whether phenothiazines are virucidal, Jc1 Gluc HCVcc (6.4 x 10
5
 

50% tissue culture infective doses [TCID50]/ml) was incubated with phenothiazines (50 

or 5μM), PD 404,182 (150 μM) or DMSO (0.5%) for 1 h at 37°C, and the virus-

compound mixtures were diluted 100-fold in growth medium and used to infect Huh-7.5 

cells seeded 4-6 h earlier in 96-well plates at 3.2 x 10
4
 cells/well. For controls, virus and 

drugs were diluted 100-fold separately and mixed before infecting Huh-7.5 cells. Cells 

were thoroughly washed 14-16 h post-virus inoculation to remove residual drug and 

virus.  Supernatant Gluc activity was measured 48 h post infection. The percentages of 

virus entry and spread were determined relative to those of the DMSO control. 

To determine whether phenothiazines act on the host cells, Huh-7.5 cells were 

infected with Jc1 Gluc HCVcc at various times after drug removal. Briefly, Huh-7.5 

cells were seeded in 48-well plates at 4x10
4
 cells/well. After attachment, these cells were 

treated with phenothiazines (5 µM), PD 404,182 (150 µM), bafilomycin (10 nM) or 

DMSO (0.5%) for 2 h at 37°C. For Set 1-3, these cells were washed thoroughly to 

remove residual drugs and then inoculated with Jc1 Gluc HCVcc (multiplicity of 

infection [MOI] = 1) or VSV-Gpp (100 fold-dilution) at 0, 4 or 24 h post-drug removal 

at 37°C. At 15 minutes post-virus inoculation, these cells were thoroughly washed to 

remove any remaining viruses and returned to the 37°C/5% CO2 incubator. For Set 4, 
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cells were infected with the same viruses, but in the presence of the drug, and were 

continuously incubated in drug-containing medium after the infection period. 

Supernatant Gluc activity was measured 72 h post infection, normalized to viable cell 

levels, and used as an indication of viral infection.  

To determine the anti-HCV activity of phenothiazines and topotecan , Huh-7.5 

cells (1.6 x 10
4
 cells/well) seeded 4-6 h earlier were infected with Jc1 Gluc HCVcc 

(MOI = 0.01) in the presence of increasing concentrations of the compounds. 

Supernatant Gluc activity was measured 48 to 72 h post infection and normalized to the 

DMSO (0.02-0.5%) treatment control. The cell viability was measured using CellTiter-

Glo assay (Promega, Madison, WI) to gauge the compound toxicity. The 50% inhibitor 

concentration (IC50), 50% effective concentration (EC50) and 50% cytotoxic 

concentration (CC50) were calculated using the sigmoidal fit function in Origin Lab 

(OriginLab, Northampton,MA).  

2.3.4 Synchronized HCVcc/pp infection assay  

To determine the step of entry inhibited by phenothiazines, we carried out a 

synchronized infection assay.  Huh-7.5 cells were seeded in 48-well plates at 4 x 10
4
 

cells/well. The next day, virus-cell attachment was initiated by incubating the cells with 

Jc1 Gluc HCVcc (MOI = 1) at 4°C for 1.5 h. Unbound viruses were removed by 

thorough washing with complete growth medium, and then infection of bound viruses 

was initiated by moving the cell culture plates to a 37°C/5% CO2 incubator. 

Fluphenazine (5 μM), bafilomycin (10 nM), JS-81 (2 μg/ml) or DMSO (0.05%) were 

added to the cells at different time points after the temperature shift. Cells were washed 
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thoroughly with complete growth medium 5 hours post-drug addition. Supernatant Gluc 

activity was measured 48 hours post infection using a BioLux Gaussia Luciferase assay 

kit (New England Biolabs, Ipswich, MA) and used as an indication of viral infection.   

For HCVpp, Huh-7.5 cells were seeded in poly-L-lysine treated 96-well flat 

bottom tissue culture plates at 1.4x10
4
 cells/well and incubated at 37°C and 5% CO2 for 

5-6 hours to allow cell attachment. Compounds were added to the appropriate wells at 

the indicated time-points. For pseudoparticle infection, HCVpp, and Env
-
pp were added 

to cells at 1:5 dilution. The cells were then transferred to a 4°C centrifuge and 

spinoculated for 3 hours at 300 xg to facilitate pseudoparticle attachment. Before 

resuming incubation at 37°C/5% CO2, cells were washed 4 times with 100 μl of cold 

growth media to remove unbound pseudoparticles and pre-existing Gluc, and 100 μl of 

fresh media, either containing or lacking the relevant drugs, were added to the cells. 

Supernatant Gluc activities were quantified 72 h later (using BioLux Gaussia Luciferase 

assay kit), normalized to viable cell levels (determined by CellTiter Glo Luminescent 

Cell viability assay kit) in the relevant wells and used to report the levels of lentiviral 

pseudoparticle entry. 

2.3.5 HCVpp/cc-liposome fusion assay  

To evaluate the ability compounds to inhibit HCV fusion in vitro, we carried out 

HCV-liposome fusion assay. Fusion between HCVpp and liposomes was assayed as 

described elsewhere (151). H77 HCVpp collected from the cell supernatant was purified 

and concentrated 100-fold by use of ultracentrifugation devices to a titer of ~10
7
 IU/ml. 

One microliter of liposomes (25 µM lipid final) composed of phosphatidylcholine (PC), 
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cholesterol and R18 (65:30:5 mol%) were added to a 37°C thermostated cuvette 

containing 20 µl concentrated H77 HCVpp (~2x10
5
 viral particles) in phosphate-

buffered saline (PBS) at pH 7.2. Fluphenazine, trifluoperazine or promazine dissolved in 

DMSO was added to the mixture at a final concentration of 2.5, 5, 10 or 20 µM. After 

thermic equilibration, fusion was initiated by adding 2 µl diluted HCl (final pH 5.0). 

Lipid mixing was measured as the dequenching of R18 (excitation 560 nm, emission 590 

nm), resulting in an increase of the fluorescence signal. Recordings were performed in a 

Tecan Infinite-1000 spectrofluorometer. Maximal R18 dequenching was measured after 

addition of Triton X-100 to the cuvette at 0.1% final concentration. Fusion between JFH-

1 HCVcc and liposomes was determined similarly. Freshly prepared JFH1 HCVcc, 

concentrated 100-fold through a 20% sucrose cushion was used in the fusion experiment 

(152). 

For the modified HCVpp-liposome fusion experiment, 20 µl concentrated H77 

HCVpp or liposomes (working suspension at a 1:20 dilution from stock) was 

preincubated with fluphenazine, trifluoperazine or promazine at a 5 µM final 

concentration for 3 min at 37°C. This mixture was then diluted 10-fold with PBS to 

reach 0.5 µM final drug concentration, and 1 µl untreated liposome or 20 µl HCVpp was 

added, respectively. Fusion was determined in the same way as described above.  

The study of the effect of topotecan on HCVcc membrane fusion was performed 

as described previously (152). Briefly, JFH-1 HCVcc (~1.6x10
5
 particles), suspended in 

150 mM NaCl, 10mM Tricine-NaOH, pH 7.4, was added to a cuvette containing R18-

labeled PC-cholesterol liposomes (15 µM final lipid concentration) in the absence or 
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presence of increasing concentrations of topotecan. After temperature equilibration, 

fusion was initiated by HCl addition to the cuvette, and kinetics were recorded using a 

dual-channel PicoFluor hand-held fluorometer (Turner Biosystems, Sunnyvale, CA) 

operated under the “rhodamine” channel (excitation and emission wavelengths 540 ± 20 

and > 570 nm, respectively). Maximal R18 dequenching was measured after the addition 

of 0.1% Triton X-100 (final concentration) to the cuvette. 

2.3.6 Fluorescence spectroscopy  

To determine whether phenothiazines affect membrane fluidity, we calculated 

the generalized polarization of fluorescent dye Laurdan and Prodan incorporated into the 

liposomes in the absence or presence of phenothiazines. POPC (11-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine), sphingomyelin (SM) and cholesterol (Cho) (Avanti Polar 

Lipids, Inc, Alabaster, AL) dissolved in chloroform at 10 mg/ml were mixed at molar 

ratios of 1:0:0 (100% POPC), 2.3:0:1 (70% POPC plus 30% Cho) or 3.9:1:2.3 (54% 

POPC plus 14% SM plus 32% Cho). To remove solvent, the lipids were first dried under 

a stream of nitrogen and then lyophilized. The lyophilized lipid mixtures were 

resuspended in DPBS at 400 µM final lipid concentration, sonicated at room temperature 

in a water bath sonicator for 10 min, and extruded repeatedly through a 100-nm 

polycarbonate membrane filter (Avanti Polar Lipids, Inc.) to obtain uniformly sized 

liposomes. Extruded liposomes were stored at 4°C for up to a week. For GP 

determination, liposomes (200 µM final concentration) were first incubated with 

Laurdan (5 µM final concentration) or Prodan (15 µM final concentration) for 15 

minutes at room temperature in the dark. Increasing concentrations of the compounds 
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were added to the mixture and 100 µl/well of liposome-drug mixture was transferred to a 

white 384-well plate. The plate was incubated at 23°C for 30 min in dark and the 

fluorescence spectra were collected in a Gemini EM Spectrofluorometer (Molecular 

Devices, San Francisco CA) with an excitation wavelength of 310-350 nm for both dyes 

and the emission spectra recorded at 440 and 480 nm for Prodan and 440 and 490 nm for 

Laurdan. GP was calculated according to the equation (153): 

   
     
     

 

where IB and IR are the fluorescent intensities at the blue and red edges of the emission 

spectrum, respectively. Data were corrected for background signal measured with 

liposomes deprived of a probe. After the fluorescence spectra were measured, the plate 

was returned to a 37 °C incubator for another 30 min, after which the spectra were 

measured again.  

2.3.7 Screen for inhibitors  

A high-throughput screening assay was developed based on the ability of a 

compound to selectively increase the GP of cholesterol-rich liposomes in comparison to 

the DMSO control. The library screening was conducted at The National Screening 

Laboratory for the Regional Centers of Excellence in Biodefense and Emerging 

Infectious Disease (NSRB). Liposomes composed of POPC-alone or POPC, Cho and 

SM at a 3.9:1:2.3 molar ratio (200 µM final concentration) were incubated with Prodan 

(15 µM final concentration) for 15 minutes at room temperature in the dark. Eighty 

microliters of the mixture was dispensed into each well of white 384-well plates using a 

Matrix WellMate liquid dispenser (Matrix,Hudson, NH). One hundred nanoliters of the 
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drug library (ranging from 2-5 mg/ml) was then added to each well by use of a Seiko D-

TRAN XM3106-31 PN 4-axis Cartesian robot.pin transferor (Caliper Life Science, 

Waltham, MA). The plates were incubated in the dark for 30 minutes at room 

temperature, and the fluorescence spectra were collected in a SGM 610 FlexStation III 

Spectrofluorometer (Molecular Devices, San Francisco CA) with an excitation 

wavelength of 310 nm and the emission spectra recorded at 440 and 480 nm. We 

screened the libraries Biomol 4 (Enzo Life Sciences, Plymouth Meeting, PA) and 

Chembridge 3 for molecules whose GP differ from that of the 0.25% DMSO control by 

a value of >0.05 (positive hit). Although we screened only 2,752 compounds in this 

study, this assay is amenable to high-throughput screening. 

2.3.8 Replication inhibition and quantitative RT–PCR  

To determine the effect of topotecan on viral replication, we quantified the 

amounts of HCV RNA in the appropriate cells. Huh-7.5 cells were electroporated with 

Jc1 Gluc HCV genomic RNA according to a previously described protocol (148) and 

seeded in 24-well plates (1.4 x 10
5
 cells/well). The desired compounds were added to the 

medium 6 hours post electroporation. The medium was replaced with fresh, compound-

containing medium at 48 h post electroporation, and the supernatant Gluc activity was 

determined using a BioLux Gaussia Luciferase assay kit (New England biolabs, Ipswich, 

MA) at 72 h post electroporation. After removing all the supernatant, these cells were 

washed once with Dulbecco’s phosphate-buffered saline (Thermo Scientific HyClone, 

Logan, UT) and underwent one freeze-thaw cycle at -80 °C before RNA extraction using 

an EZNA Total RNA kit (Omega Bio-Tek, Norcross, GA ). The amount of HCV RNA 
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was quantified via TaqMan quantitative reverse transcription-PCR (qRT-PCR) (qScript 

One-Step FAST Kit, Quanta Biosciences, Gaithersburg, MD), using previously  

described primers (154). 

2.3.9 Virus entry inhibition assay  

To determine the effect of topotecan on HCV entry, uptake of HCVpp in the 

presence of the compound was evaluated. Huh-7.5 cells were seeded in poly-L-lysine 

treated 96-well flat bottom tissue culture plates at 1.8 x10
4
 cells/well and incubated at 

37°C and 5% CO2 for 5-6 hours to allow cell attachment. Compounds were added to the 

appropriate wells 1 h before transduction. HCVpp and Env
-
pp were added to the cells at 

1:5 dilution. The next day, these cells were washed 4 times with 100 µl/well of complete 

growth medium to remove unbound pseudoparticles and pre-existing Gluc reporter, and 

100 µl of fresh medium were added to each well. Supernatant Gluc activity was 

quantified at 48 h post washing using BioLux Gaussia Luciferase assay kit (New 

England Biolabs, Ipswich, MA). The presented HCVpp entry data represent differences 

in supernatant Gluc activities between HCVpp- and Env
-
pp-transduced cells at the 

specified compound concentrations.  

To determine the effect of phenothiazines on HCV entry, Huh-7.5 cells were 

seeded in poly-L-lysine treated 96-well flat bottom tissue culture plates at 1.4x10
4
 

cells/well and incubated at 37°C and 5% CO2 for 5-6 hours to allow cell attachment. 

Compounds were added to the appropriate wells 1 h before transduction. HCVpp and 

Env
-
pp were added to the cells at 1:5 dilution. VSV-Gpp was added to the wells at 500-

fold dilution.
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Table 2. 1 Phenothiazines/thioxanthene used in this study and their anti-HCV properties. 

 
Compound class Compound subclass Compound R group Structure IC50 (M)

a
 CC50 (M)

 a
 CC50/IC50 

Phenothiazine Aliphatics Chlorpromazine Cl 

 

1.47±0.32 8.76±1.68 6 

Aliphatics Promazine  2.28±0.43 >12 >5.3 

Aliphatics Triflupromazine CF3 1.20±0.43 8.15±0.52 6.8 

Piperidines Mesoridazine 
 

 

1.77±1.01 >12 >6.8 

Piperidines Thioridazine  0.78±0.31 5.28±0.84 6.8 

Piperazines Prochlorperazine 
Cl 

 

 

0.92±0.11 7.60±1.49 8.3 

Piperazines Trifluoperazine 
CF3 

 
0.69±0.13 6.29±0.61 9.1 

Piperazines Fluphenazine 

 

0.37±0.01 5.65±0.09 15.3 

Thioxanthene  cis-Flupentixol 

 

0.25±0.07 5.22±0.23 20.9 

a 
IC50 and CC50 values were calculated using a Gluc reporter HCVcc infection assay and represent the average of two independent experiments (error, SD).  
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The next day, cells were washed 4 times with 100 μl growth media to remove drugs and 

unbound pseudoparticles, and 100 μl of fresh growth media were added to the cells. 

Supernatant Gluc activities were quantified 48 h post infection using BioLux Gaussia 

Luciferase assay kit (New England biolabs). Cell viability in the absence of infection 

was quantified using CellTiter Glo Luminescent Cell Viability assay kit (Promega). 

2.3.10 Statistical analysis  

Statistical significance between different samples was evaluated using Student’s 

t-test. A p-value of <0.01 was considered statistically significant. All analysis was done 

using Microsoft Excel. 

2.4 Results 

2.4.1 Identification of additional phenothiazine-like HCV inhibitors 

  Since phenothiazines and like compounds have been used extensively in humans, 

we first explored the anti-HCV activity of 6 additional FDA-approved phenothiazine and 

similar compounds using a Gluc HCVcc assay (Table 2.1). All tested compounds 

exhibited anti-HCV activity at submicromolar to micromolar concentrations and were 

able to specifically inhibit HCV entry (Figure 2.1). The most potent compound, cis-

flupentixol, exhibited an IC50 of 0.25 µM and a therapeutic index (CC50/IC50) of 20. 

Comparing the anti-HCV potencies of different phenothiazines, we noticed that 

molecules with a piperazine ring at position 10 appeared to be slightly more potent than 

those with a tertiary amine (prochlorperazine > chlorpromazine; trifluoperazine, 

fluphenazine > triflupromazine), and the presence of a propanol group on the piperazine 

ring (fluphenazine) further increased the anti-HCV potency. 
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Figure 2. 1 Dose-response of different phenothiazine compounds on the entry of H77 HCVpp (grey bars), J6 HCVpp (black bars) and VSV-Gpp (white bars) into Huh-7.5 cells. Huh-7.5 cells were infected 

with H77/J6 HCVpp (5-fold dilution) or VSV-Gpp (500-fold dilution) in the presence of drugs for overnight. The supernatant gluc activities were quantified 48 h post infection. Cell viability (black circles) in the 

absence of pseudoparticle transduction was used to gauge the compound cytotoxicity. All values are expressed as percentages of 0.6% DMSO-treated cells (mock) after subtraction of signals obtained from Env-pp 

control pseudoparticles lacking envelope proteins and represent the mean of 2 independent experiments (error, SD). Note that negative values were occasionally computed for J6 HCVpp due to weak absolute signals, 

resulting in the measured Gluc activity for J6 HCVpp being lower than the signal for the corresponding Env-pp control. These results are within the experimental error range. 
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Figure 2. 2 Phenothiazines inhibit HCV fusion. (A) Schematic of synchronized 

HCVcc infection assay. Huh7.5 cells were incubated with Jc1 Gluc HCVcc (MOI 1) for 

1.5h at 4°C, washed extensively and shifted to 37°C. Fluphenazine (5 μM), bafilomycin 

(10 nM), JS-81 (2 μg/ml) or DMSO (0.05 %) was added at different times after the 

temperature shift and removed 5 hours post compound addition. Supernatant Gluc 

activity was measured 48 hours post infection, normalized to the DMSO control and 

used as the indication of infection efficiency.  (B) Fluphenazine inhibits HCVcc entry at 

a step similar to bafilomycin and later than JS-81. Fluphenazine (5 µM), JS-81 (2 µg/ml) 

or bafilomycin (10 nM) was added to the appropriate wells at different times post 

temperature shift. Representative data from at least 5 independent experiments are 

represented. The error-bars represent the standard deviation of triplicate samples in that 

experiment. (C) In vitro liposome fusion assay confirms that fluphenazine, 

trifluoperazine and promazine dose-dependently inhibit HCV fusion. Concentrated H77 

HCVpp (~2x10
5
 particles) was mixed with R-18 dye labeled liposomes and increasing 

concentrations of the phenothiazines. Fusion between HCVpp and liposome was 

triggered by the addition of HCl to lower the solution pH. Dequenching of R-18 dye, 

corresponding to fusion between HCVpp and liposome, was monitored by fluorescence 

increase. X-axis corresponds to the duration of the fusion process. Representative curves 

from at least 4 independent experiments are presented. Data generated at University of 

Lyon by Dr. Eve-Isabelle Pécheur. 
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A trifluoromethyl group at position 2 of the phenothiazine nucleus also enhanced the 

overall anti-HCV activity (trifluoperazine > prochlorperazine; triflupromazine > 

chlorpromazine). 

2.4.2 Phenothiazines inhibit HCV fusion 

  HCV entry involves three main steps: (i) attachment of virions to the cell surface, 

(ii) movement of virus particles from the cell surface to the tight junction through 

interaction with different receptors, and (iii) entry into host cell through clathrin-

mediated endocytosis and fusion of the viral membrane with the endosome upon 

acidification (155). To elucidate the anti-HCV mechanism of action of phenothiazines, 

we first determined the entry step inhibited by phenothiazines in a synchronized 

infection experiment (Figure 2.2A). Fluphenazine retained maximum entry inhibition 

when added after the temperature shift to 37°C, indicating that this compound inhibits a 

post-attachment step of HCV entry. Similar profiles were obtained for all the other 

phenothiazine inhibitors in a similar assay using HCVpp (Figure 2.3). The inhibitory 

activity of fluphenazine was lost at a later time than that of CD81 antibody (JS-81) and 

at a step similar to that of inhibition by bafilomycin, an H+-ATPase inhibitor that blocks 

the fusion of HCV by suppressing endosome acidification, indicating that fluphenazine, 

and possibly other phenothiazines, inhibit HCV entry at a step later than CD81 binding, 

likely during fusion (Figure 2.2B). 
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Figure 2. 3 Time-dependent effects of compounds on entry of H77 HCVpp into 

Huh-7.5 cells. (A) Experimental scheme. Huh-7.5 cells were spinoculated with H77 

HCVpp (1:5 dilution) at 4 °C for 3 h. The cells were thoroughly washed to remove any 

unbound viruses and transferred to 37 °C incubator to initiate viral entry. The black 

arrows indicate the presence of the relevant inhibitors. JS-81 (2 µg/ml) and DMSO 

(0.5%) were used as the positive and negative control, respectively. These cells were 

washed 12 h post temperature shift to remove all the drugs. The supernatant Gluc 

activities were quantified 72 h later and used as indication of viral infection. (B) All 

compounds inhibit HCVpp entry at a step following virus attachment to cells.  

 

 

 

 

 

 



 

44 

To determine the effect of phenothiazines on HCV fusion directly, we carried out 

an in vitro HCVpp-liposome fusion experiment. For this experiment, we chose 

fluphenazine, trifluoperazine, both phenothiazines with piperazine substitution at 

position 10, and promazine, which has an aliphatic substitution at this position. All three 

phenothiazines dose-dependently inhibited HCVpp-liposome fusion in vitro (Figure 

2.2C), with fluphenazine exhibiting the strongest fusion inhibition, followed by 

trifluoperazine and promazine, consistent with their anti-HCV potencies determined via 

Gluc HCVcc assay (Table 2.1). This activity was not due to unspecific molecular 

quenching of R18 fluorescence (data not shown) and was therefore fully attributable to 

fusion inhibition. These results confirm the fusion-inhibitory activity of these three 

phenothiazines. The ability of phenothiazines with both piperazine and aliphatic 

substitutions at position 10 to inhibit HCV fusion suggests that the fusion inhibition is 

independent of the substitution at position 10 and is likely a feature shared by other 

phenothiazines. In addition, since proteins are absent from the liposome, these data also 

indicate that a cellular protein(s)/receptor(s) is not required for phenothiazine-mediated 

HCV fusion inhibition. 

2.4.3 Phenothiazines inhibit HCV fusion by acting on the host cell 

We sought to elucidate whether phenothiazines act on cells or the virus. To 

determine whether phenothiazines are virucidal, Jc1 Gluc HCVcc was mixed with 

fluphenazine, prochlorperazine or trifluoperazine and then diluted 100-fold (pre-

treatment) or each component was first individually diluted and then mixed (control) 

(Figure 2.4A). 
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Figure 2. 4 Phenothiazines do not act directly on HCV. (A) Schematics of 

experiments to determine the compound’s effect on virions. In the ‘pre-treatment’ group, 

Jc1 Gluc HCVcc (6.4 x 10
5
 TCID50/ml) was incubated with the appropriate compound at 

37°C for 1h, then diluted 100-fold and used to infect Huh-7.5 cells. In the ‘control’ 

group, the same amount of HCVcc and drug were incubated separately at 37°C for 1h, 

diluted 100-fold, then mixed and used to infect Huh-7.5 cells. The final titer and the 

concentration of HCVcc and the drugs, respectively, are identical between the ‘pre-

treatment’ and the ‘control’ groups. (B) Viruses pretreated with phenothiazines retain 

similar infectivity as the control. Supernatant Gluc activity was measured 48h post 

infection and normalized to the DMSO control (0.5 %). Fluph, fluphenazine; Triflu, 

trifluoperazine; Proch, prochloperazine; PD, PD 404,182; Bafilo, bafilomycin. The 

values and error bars represent the mean and standard deviation, respectively, of at least 

2 independent experiments. Statistical significance was determined by the Student’s t 

test (*, p < 0.01). 
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The infectivity of HCVcc samples pretreated with phenothiazines was similar to that 

observed with the control (non-pretreated) (Figure 2.4B). The positive control, the 

virucidal compound PD 404,182, reduced HCV infectivity by >90% during the same 

period (156). These results indicate that phenothiazines do not inhibit HCV entry by 

inactivating the virus directly.  

To evaluate whether phenothiazines interact with the host cell, Huh-7.5 cells 

were treated with phenothiazine at 37°C for 2 h and extensively washed to remove 

residual drug prior to infection with Jc1 Gluc HCVcc or VSV-Gpp for 15 min at 0, 4 or 

24 h post-drug removal (Figure 2.5A). Cells pretreated with phenothiazines became 

significantly more resistant to infection by HCVcc, but not VSV-Gpp, suggesting that 

phenothiazines inhibit the entry of HCV by acting on the host cell (Figure 2.5B). Cells 

treated with the control compound bafilomycin were similarly resistant to both HCVcc 

and VSV-Gpp infections. It is worth noting that although some phenothiazines are able 

to inhibit clathrin-coated pit formation and endosome acidification, this effect is likely 

not at play in the observed phenothiazine-mediated HCV inhibition phenomenon, 

because inhibition of VSV-Gpp, which also enters cells through clathrin-mediated 

endocytosis (157), was not observed at the same concentration of phenothiazines (Figure 

2.5B).  Collectively, these results suggest that phenothiazines inhibit HCV entry by 

acting on a non-protein host cell component, likely the lipid membrane. 
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Figure 2. 5 Phenothiazines inhibit HCV by acting on the host cells. (A) Schematic of 

experiment to determine whether phenothiazines inhibit HCVcc entry by acting on the 

host cells. Huh-7.5 cells were treated with the specified compounds at 37°C for 2 h, 

extensively washed  at t = 0h and then infected with Jc1 Gluc HCVcc (MOI ~1) or VSV-

Gpp (diluted 500-fold) for 15 min at 37 °C at 0, 4 or 24 h post compound removal (Set 

1-3). For Set 4, the cells were infected with the same viruses in the presence of the 

drugs. (B) Cells pretreated with phenothiazines became resistant to HCVcc but not VSV-

Gpp infection, indicating that phenothiazines selectively inhibit HCV entry. The 

supernatant Gluc activity was measured at 48 h post drug removal, normalized first to 

the cell viability and then to the cell-viability-normalized DMSO control (0.5%). The 

values and the error bars represent the mean and the standard deviation, respectively, of 

at least 2 independent experiments. Fluph, fluphenazine, 5 µM; Triflu, trifluoperazine, 5 

µM; Proch, prochloperazine, 5 µM; Bafi, bafilomycin, 10 nM. Statistical significance 

was determined by Student’s t test (*, p < 0.01). 
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To confirm that phenothiazines inhibit HCV by interacting with the target lipid 

membrane, we designed a modified liposome-HCV fusion experiment (Figure 2.6A) in 

which liposomes or virus are pre-treated with the appropriate compound prior to dilution 

of the mixture and addition of the other component. In set 1, cholesterol-rich liposomes 

were pre-incubated with phenothiazines (5 µM). This mixture was diluted 10-fold to 

lower the drug concentration and then mixed with HCVpp. In set 2, HCVpp was pre-

incubated with phenothiazines (5 M), and the mixture was diluted 10-fold prior to 

addition of liposomes. In both sets, the final concentration of phenothiazine in the 

mixture was 0.5 M, a concentration that is expected to have little to no effect on 

liposome-HCVpp fusion. In set 3, liposomes, phenothiazines (final concentration 5 µM) 

and HCVpp were all mixed together at the same time. Finally in set 4, liposomes and 

HCVpp were mixed in the absence of phenothiazines. We reasoned that if 

phenothiazines inhibit HCV-membrane fusion by interacting with the liposomal 

membrane, set 1 (liposomes pretreated with phenothiazine) would exhibit a similar 

extent of fusion inhibition to set 3 (all components mixed together), despite the much 

lower phenothiazine concentration at the time of fusion in set 1, while set 2 (HCVpp 

pretreated with compound) would exhibit minimal fusion inhibition.On the other hand, if 

phenothiazines interact with the virus directly, set 2 would exhibit a similar extent of 

fusion inhibition to that of set 3. Stronger fusion inhibition was observed in sets 1 and 3 

than in set 2 (Figure 2.6B), providing further evidence that phenothiazines inhibit HCV 

fusion by acting on the target liposome/cell membrane.
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Figure 2. 6 Phenothiazines inhibit HCVpp-liposome fusion by interacting with the target membrane. (A) Modified drug 

addition protocol. Set1: Phenothiazine and liposomes were premixed and diluted 10-fold prior to the addition of HCVpp; Set 2: 

HCVpp and phenothiazine were premixed and diluted 10-fold prior to the addition of liposome; Set 3: Liposomes, 

phenothiazine and HCVpp were mixed together; Set 4: Liposomes and HCVpp were mixed in the absence of phenothiazine. 

The final concentration of phenothiazine in Set 1&2 is 10% of that in Set 3. (B) Fusion between HCVpp and liposomes was 

initiated by decreasing the pH to 5.0 (time 0) and recorded as R18 fluorescence dequenching over time.  Concentrated H77 

HCVpp (~2x10
5
 particles) was used in each assay. Representative curves from at least 4 independent experiments were 

presented. Data generated at University of Lyon by Dr. Eve-Isabelle Pécheur.
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Set 1 exhibited slightly stronger fusion inhibition than set 3, despite the 10-fold lower 

concentration in set 1 at the time of fusion. This may have been due to the presence of 

additional vesicles (e.g. exosome) in the concentrated HCVpp samples used in set 3, 

which could have competed with R18-labeled liposomes for the phenothiazines during 

membrane fusion. 

2.4.4 Phenothiazines inhibit HCV fusion likely by increasing the target membrane 

fluidity 

To gain insight into how phenothiazines inhibit HCV-membrane fusion, we 

studied their effect on lipid membrane fluidity. The lipophilic nature of phenothiazines 

enables this class of molecules to intercalate into lipid membranes and alter their fluidity 

(158). However, this effect was never evaluated at these low concentrations or in 

membranes with high cholesterol concentrations. Membrane fluidity was gauged by the 

GP generated by the fluorescent dyes Laurdan or Prodan. Both Laurdan and Prodan 

probes are lipophilic dyes able to insert into lipid bilayers and become fluorescent. The 

GP value is higher in rigid/ordered lipid membranes, as fewer water molecules have 

access to the probes embedded inside the membrane (159). The Laurdan probe inserts 

deep in the hydrophobic core of the lipid membrane, while Prodan preferentially 

partitions to the lipid head groups (160).  

We determined the effect of phenothiazines on the GP of liposomes composed of 

100% POPC or POPC with 30 mol% cholesterol. Membranes composed of 100% POPC 

resemble the basal cellular membrane, while those containing the additional cholesterol 

mimic lipid raft-containing membranes (161). Phenothiazines significantly reduced the 
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GP of cholesterol-rich, but not cholesterol-free membranes, in a dose-dependent manner 

(Figure 2.7). These results suggest that phenothiazines specifically reduce the rigidity of 

cholesterol-rich membranes. Since similar GP reductions were observed for both the 

Laurdan and Prodan dyes, phenothiazines likely insert deep in the hydrophobic core of 

the lipid membrane. It is possible that phenothiazines also intercalate into POPC 

membranes, but since these membranes are naturally very fluidic, the presence of 

phenothiazines does not appear to further increase the membrane fluidity at the low 

concentrations used. The ability of phenothiazines to significantly reduce the GP of 

cholesterol-rich but not cholesterol-free membranes may account for its minimal toxicity 

at the tested concentrations. We also determined the effect of phenothiazines on 

liposomes containing both cholesterol and sphingomyelin at a composition that more 

closely resembles lipid rafts (161). Incorporation of sphingomyelin did not have much 

effect on GP reduction (Figure 2.7), suggesting that cholesterol may be the major 

effector of phenothiazines. Lipid rafts are believed to be the location of HCV-cell fusion 

(151). Collectively, our data indicate that an increase of lipid raft membrane fluidity 

could be a means through which phenothiazine-induced HCV entry inhibition occurs. 
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Figure 2.7 Continued. 
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Figure 2.7 Continued. 
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2.4.5 Screening for additional HCV fusion inhibitors 

 Based on the above results, we hypothesized that compounds capable of increasing 

the fluidity of cholesterol-rich membranes will be able to inhibit HCV entry. We 

developed a screening assay using cholesterol-containing liposomes incorporating the 

Prodan dye and then screened 2,752 compounds. One compound, topotecan, was found 

to preferentially increase the fluidity of cholesterol-rich membranes at concentrations 

comparable to those approved for therapy in humans (162) (Figure 2.8A). An in vitro 

membrane fusion assay confirmed that topotecan inhibits HCVcc-liposome fusion 

(Figure 2.8B). This result underscores the importance of membrane fluidity on HCV 

entry and validates our membrane fluidity-based screening approach for HCV entry 

inhibitor discovery. Topotecan dose-dependently inhibits HCVcc infection in cell 

culture, with an estimated EC50 of 0.2 µM (Figure 2.8C) and CC50 of 88.1 µM (Figure 

2.9). However, the inhibitory effect of topotecan was mainly due to its inhibition of 

HCVcc replication rather than entry (Figure 2.10) (see Discussion). 

2.5 Discussion 

Insight gained into HCV entry over the last few years has allowed for the 

discovery and development of inhibitors acting at different stages of viral uptake. 

Addition of new entry inhibitors to the current therapies will increase the resistance 

barrier, inhibit expansion of the infected pool and reduce the rate and extent of re-

infection after liver transplantation (163). We and others recently identified 3 

phenothiazine compounds – trifluoperazine, fluphenazine and prochlorperazine – as 

inhibitors of HCV entry (148, 149). 
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Figure 2. 8 Characterization of topotecan. (A) Topotecan preferentially increases the fluidity of cholesterol-rich membrane (POPC+Cho+SM) compared to cholesterol-free membrane (POPC). Liposomes 

composed of pure 11-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or POPC with 32 mol-% cholesterol (Cho) and 14 mol-% sphingomyelin (SM) were incubated with Laurdan (5μM) or Prodan(15µM) 

for 15 minutes at room temperature prior to the addition of topotecan (0.1, 0.5, 1 and 2 µM) or DMSO (1%). The mixture was incubated at 37°C for another 30 minutes and the fluorescence shifts were determined. 

Delta GP = GPtopotecan-GPDMSO. The values and the errors represent the mean and the standard deviation, respectively, of 2 independent experiments. (B) Topotecan dose-dependently inhibits HCVcc-liposome fusion 

in vitro. HCVcc (~1.6x10
5
 particles) was mixed with R-18 dye labeled liposomes in the presence of increasing concentrations of topotecan. Fusion between HCVcc and liposome was triggered by the addition of HCl 

to lower the solution pH. Dequenching of R-18 dye was monitored by fluorescence increase. X-axis corresponds to the duration process. Data generated at University of Lyon by Dr. Eve-Isabelle Pécheur (C) 

Topotecan dose-dependently inhibits HCVcc infection in cell culture. The chemical structure of topotecan is shown in the inset. Huh-7.5 cells were infected with Jc1 Gluc HCVcc (MOI 0.01) in the absence or the 

presence of increasing concentrations of topotecan. Infectivity was quantified by measuring the supernatant Gluc activity 72 h post infection and normalized to the DMSO (0.02%) control (black bars). Drug 

cytotoxicity in the absence of HCV infection was determined by CellTiter-Glo assay (solid circles). The values and the errors represent the mean and the standard deviation, respectively, of 2 independent experiments.   
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Figure 2. 9 Cytotoxic profile of topotecan. Huh-7.5 cells were treated with increasing 

concentrations of Topotecan for 72 h. Cell viability was determined by CellTiter-Glo 

assay to gauge compound cytotoxicity profile. Values represent the mean of 2 

independent experiments carried out in triplicates (error, SD). 
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Figure 2. 10 Topotecan primarily inhibits HCV replication. (A) Effect of topotecan 

on HCVcc replication. Huh-7.5 cells were electroporated with Jc1 Gluc HCV genomic 

RNA and treated with topotecan, DMSO (0.125%) or 2’CMA at 6 h post 

electroporation. The amount of Gluc reporter in the supernatant and the intracellular 

HCV RNA level were quantified 72 h post electroporation. 2’CMA: 2’-C-

methyladenosine. (B) Topotecan does not inhibit H77 HCVpp entry. Huh-7.5 cells were 

transduced with 5-fold diluted H77 HCVpp or Env
-
pp in the presence of topotecan, JS-

81 (2µg/ml) or DMSO (0.02%). The supernatant Gluc reporter activity was measured 48 

h post compound removal, normalized to signals from Env
-
pp, and used as an indication 

of the level of infection. Values represent the mean of 2 independent experiments (error, 

SD). 
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Phenothiazines are a large class of chemicals, many of which are currently used in clinic 

to treat psychotic disorders (145). To determine whether other phenothiazines can also 

inhibit HCV infection, we tested 6 additional FDA-approved phenothiazines and similar 

molecules and discovered that all these molecules exhibit anti-HCV activity (Table 2.1). 

The most potent inhibitor, cis-flupentixol, exhibited an IC50 of 0.25 µM and a 

therapeutic index of 20. The presence of a piperazine ring at position 10 enhances but is 

not required for HCV entry inhibition. The presence of a trifluoromethyl group at 

position 2 also appears to enhance anti-HCV activity. This information should assist 

future structure-activity relationship studies to identify more potent phenothiazine-based 

anti-HCV inhibitors. 

We showed that phenothiazines inhibit HCV-cell-fusion by specifically interacting 

with the host/target membrane. Incorporation of phenothiazines into the leaflets of the 

target membrane increases the water permeability/fluidity of cholesterol-rich membranes 

(Figure 2.7) and reduces the rate of virus-liposome lipid mixing and hemifusion (Figure 

2.6). The effect of lipid composition on viral infection, particularly the influence of 

cholesterol and spingolipids, has been studied widely. Many viruses enter host cells via 

cholesterol-rich microdomains (lipid raft), such as the West Nile, Ebola and Marburg, 

herpes simplex and vaccinia viruses, retroviruses and alphaviruses (164). In some cases, 

the cholesterol-dependence is due to clustering of viral receptors in the lipid raft, while 

in other cases it is due to specific interactions between the viral envelope glycoproteins 

and (a lipid of) the target membrane, as is the case for the fusion protein of alphaviruses 

and cholesterol (165). Concerning HCV, both phenomena are believed to occur. In vitro 
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cell culture studies have shown that HCV entry is adversely affected by cholesterol 

depletion (166, 167). The cholesterol absorption receptor NPC1L1 was  recently 

identified as an HCV entry factor (48), which forms cholesterol-enriched microdomains 

together with flotillins (168). Concerning the tetraspanin HCV receptor CD81, two 

cholesterol binding sites have been mapped in the three-dimensional model of this 

molecule (169). It therefore appears that cholesterol might play a role in HCV entry 

through the local mobilization of receptors at specific membrane regions.  

Our in vitro fusion studies showed that the presence of cholesterol significantly 

enhances the fusion of both HCV envelope protein-pseudotyped lentiviruses and cell 

culture-produced virions with liposomes, further confirming the important role of 

cholesterol in HCV-mediated fusion (151, 152, 170). In these receptor-free assays, 

cholesterol is likely to play a direct role in the fusion process.  

Cholesterol is one of the most important lipid species in eukaryotic cells and has 

several different functions. Two of the primary and essential roles of cholesterol are to 

decrease permeability and increase the stability of the membrane bilayer (171). 

Membranes rich in cholesterol have a rough surface due to clustering of cholesterol 

molecules into small patches (microdomains) (172) and the different membrane 

thickness of cholesterol-rich regions (173, 174). The local inhomogeneity and curvature 

in the target membrane can influence the early interaction of a fusion protein/peptide 

with the target membrane, and ultimately, virus fusion (175, 176). The ability of 

phenothiazines to significantly increase the fluidity of cholesterol-rich membranes 

indicates that these molecules could interfere with cholesterol clustering and decrease 



 

62 

the packing of cholesterol-rich microdomains, leading to reduced local inhomogeneity, 

which is important for HCV fusion.  

A second possibility, which is not completely independent of the first one, is that the 

incorporation of phenothiazines can affect interaction of the 3β-OH of cholesterol with 

the HCV envelope protein/fusion peptide. The 3β-OH participates in H-bond interactions 

with the head groups of various lipids, water in the solvent, and membrane proteins. In 

addition, 3β-OH can influence the folding of peptides at the water-membrane interface 

(177). The 3β-OH in cholesterol is required for the fusion of Semliki Forest virus (178, 

179) and the optimal fusion of HCV with liposomes (151). Insertion of phenothiazines in 

the cholesterol-rich membrane may adversely affect the interaction of 3β-OH with HCV 

envelope proteins, thus inhibiting HCV-cell fusion.  

Building upon our observation that HCV entry can be inhibited by increasing target 

membrane fluidity, we developed a screen using liposomes and the lipophilic dye 

Prodan. We screened a library of 2,752 compounds and identified a molecule, topotecan, 

that preferentially increases the fluidity of cholesterol-rich membranes (Figure 2.8A). 

Using a well-established HCVcc-liposome fusion assay (151, 152), we showed that 

topotecan dose-dependently inhibits HCVcc-membrane fusion in vitro, validating the 

screen as a tool to discover inhibitors of virus-cell fusion (Figure 2.8B). However, in cell 

culture assays, the anti-HCV activity of topotecan appears to derive primarily from its 

inhibition of HCV replication rather than entry, with an estimated EC50 ~0.2 µM (Figure 

2.10). Topotecan (Hycamtin®) is a topoisomerase I inhibitor that acts by stabilizing the 

ssDNA-topoisomerase I complex and causing DNA cleavage (180). It is currently used 
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in chemotherapy for various cancers. In addition to topoisomerase, topotecan is known 

to affect many other cellular pathways, including down-regulation of the 

phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway (181) and disruption of 

hypoxia inducible factor-1 (HIF-1) signaling pathway (182). Topotecan is also a 

substrate of the ABC transporters P-glycoprotein (P-gp/MDR1) and breast cancer 

resistance protein (BCRP), and is actively cleared by the cell (183). The lack of HCV 

entry inhibition by topotecan in cell culture assays may be due in part to active cellular 

extrusion and/or intracellular trafficking of the compound. Nevertheless, the ability of 

topotecan to inhibit HCV replication may warrant additional clinical studies of this 

compound. 

In conclusion, our studies shed light on the mechanism of action of phenothiazines as 

inhibitors of HCV entry and showed, for the first time, that alteration of target host cell 

membrane fluidity can inhibit HCV entry. It is possible that the same mechanism is 

responsible for the antiviral activities of phenothiazines toward other viruses, such as 

inhibiting the budding of measles and herpes simplex viruses (147). Based on these 

insights, we developed a high-throughput screen for modulators of cholesterol-rich 

membrane fluidity and screened a library of 2,752 compounds. One hit from this screen 

– topotecan – was found to both increase the fluidity of cholesterol-rich membranes and 

inhibit the fusion of these membranes with HCV. Targeting an entry step independent of 

viral proteins may also be an effective way to retard the development of drug resistance 

and inhibit HCV deletion mutants, which were found to reduce the antiviral effects of 
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interferon therapy for chronic hepatitis C patients (184). This study represents an 

exciting new paradigm to explore additional membrane-targeting antivirals.  
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CHAPTER III  

BENZHYDRYLPIPERAZINE COMPOUNDS INHIBIT CHOLESTEROL-

DEPENDENT HCV ENTRY
*
 

 

3.1 Overview 

Hepatitis C virus (HCV) infection remains a serious global health problem that 

lacks an effective cure. Although the addition of protease inhibitors in combination with 

the current standard-of-care interferon/ribavirin therapy has improved sustained 

virological response of genotype 1 infected patients, it also exacerbates already 

problematic side effects. Thus, new HCV antivirals are still urgently needed. Using a 

whole cell-based assay previously developed in our laboratory, we screened 30,426 

compounds and identified 49 new HCV inhibitors. The best two hits, hydroxyzine and 

chlorcyclizine belonging to the family of benzhydrylpiperazine, displayed IC50s in the 

low nanomolar range and therapeutic indexes >500. Both compounds suppress HCV 

entry at a late entry step prior to or concomitant with viral fusion and their inhibition 

efficiencies are highly dependent on virion and host cholesterol content. Both 

compounds are currently used in clinic for treating allergy-related symptoms and the 

reported in vivo concentration of hydroxyzine is significantly above its IC90 

concentration against HCV, pointing to a great potential of this drug for HCV treatment. 

                                                 

*
Reprinted with permission from “Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular 

entry of hepatitis C virus” by Ana M. Chamoun-Emanuelli, Eve-Isabelle Pécheur, Zhilei Chen, 2014. 

Antiviral Research, 109, 141-148, Copyright 2014 by Elsevier. 
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3.2 Introduction 

Hepatitis C virus (HCV) is a positive-sense single stranded RNA enveloped virus 

belonging to the Flaviviridae family (185). After initial infection, 75-85% of the patients 

develop chronic hepatitis and at least one-fifth of chronically infected patients develop 

cirrhosis within 20 years (186). It is estimated that 3-4 million people contract HCV each 

year with more than 300,000 deaths attributed to HCV-end stage liver disease annually 

(187, 188). Until recently the unspecific antivirals - pegylated interferon alpha in 

combination with ribavirin - have been the only standard of care treatment (SOC) for 

HCV infection (189). Although the recent addition of protease inhibitors - telaprevir and 

boceprevir- has significantly increased the sustained virological response, improvement 

is accompanied by a more severe side effect profile (190-192). Moreover, both inhibitors 

are not very effective against patients who did not respond to SOC and monotherapy 

with either one results in rapid emergence of drug-resistant variants (193). Thus, 

compounds with novel modes of action and low toxicity are still urgently needed. 

The entry of HCV into hepatocytes is a highly coordinated process involving the 

viral envelope glycloproteins and multiple host cell factors. Heparin sulfate 

glycosaminoglycans and low density receptor proteins represent the first attachment sites 

for HCV (194, 195). The exact sequential order of receptor engagement is still under 

debate, but most evidence suggests that virions first interact with scavenger receptor  

class B type 1 (SR-B1) followed by CD81 to form interaction complexes, which are 

translocated to the tight junctions gaining access to claudin-1 (CLDN1) and Occuldin 

(OCLD) (32). Virions are later internalized by clathrin mediated endocytosis, and upon 
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endosomal acidification fuse with the host membrane (196). More recently, Niemann 

Pick C1 Like 1 (NPC1L1), Transferrin receptor 1 (TfR1), Epidermal growth factor 

receptor (EGFR) and Ephrin receptor A2 (EphA2) have been added to the already 

extensive HCV receptor/co-factor list but their role on HCV entry remains to be 

elucidated (48, 96, 197).  

Previously, our lab developed a cell protection assay based on an engineered 

hepatoma cell line – n4mBid – that undergoes apoptosis upon HCV infection (148, 198). 

This assay is not only highly amenable for high throughput screening but allows the 

identification of inhibitors at all three stages of the viral life cycle. In the current study, 

we screened 30,426 compounds using this cell protection assay at The National 

Screening Laboratory for the Regional Centers of Excellence in Biodefense and 

Emerging Infectious Disease (NSRB) and identified 49 compounds with previously 

unknown anti-HCV activity. The best two inhibitors, hydroxyzine and chlorcyclizine, 

belonging to the benzhydrylpiperazine family of H1-antihistamines, displayed IC50s in 

the nanomolar range and therapeutic indexes >500. Importantly, hydroxyzine is 

approved by the FDA and is able to achieve plasma concentrations higher than its IC90 

against HCVcc. Both drugs strongly suppressed HCV entry at a step immediately prior 

to or concomitantly with virus fusion. Moreover, inhibition was highly dependent on 

virion and host cholesterol content, suggesting that benzhydrylpiperazines may exert 

their effects through an NPC1L1-dependent pathway. 
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3.3 Materials and methods 

3.3.1 Cells, compounds and reagents 

Huh-7.5 cells were a kind gift from Dr. Charles Rice (Rockefeller University, 

NY). HEK 293T cells were purchased from Invitrogen (Carlsbad, CA). Hydroxyzine 

hydrochloride and chlorcyclizine hydrochloride were acquired from Spectrum 

Chemicals (New Brunswick, NJ) and Fisher Scientific (Pittsburg, PA), respectively. 

Bafilomycin was purchased from Axxora (San Diego, CA). Human anti-CD81 JS-81 

MAb was obtained from BD Biosciences (San Jose, CA). CellTiter-Glo Luminescent 

Cell Viability assay kit and BioLux Gaussia Luciferase assay kit were purchased from 

Promega (Madison, WI) and New England Biolabs (Ipswich, MA), respectively. All 

mammalian cells were cultured in DMEM containing 4500 mg/l glucose, 4.0 mM L-

Glutamine, and 110 mg/l sodium pyruvate (Thermo Scientific HyClone, Logan, UT) 

supplemented with 10 % fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) 

and 1X non-essential amino acids (Thermo Scientific HyClone, Logan, UT).   

3.3.2 Production of HCVcc and pseudotyped lentiviruses   

Production and titer determination of Jc1 Gluc HCVcc (150), JFH-1 (199) , and 

JFH-1
G451R

 (200) were carried out in Huh-7.5 cells as previously described (148). 

Briefly, Huh-7.5 cells were electroporated with in vitro transcribe viral RNA and virus-

containing cell supernatant from day 3-7 was collected, pooled and stored at -80°C until 

use. Jc1 Gluc HCVcc contains a Gaussia luciferase gene inserted in frame between p7 

and NS2 (150). For experiments requiring infection with virus containing secreted Gluc, 

dialyzed Jc1 Gluc HCVcc was used. To dialyze virus, 5 ml of Jc1 Gluc HCVcc  
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(concentrated 10-fold using a 100 kDa ultrafiltration membrane (Millipore, Billerica, 

MA )) was dialyzed twice in 1 l of PBS at 4 °C for 4 h and overnight, respectively. 

Dialyzed virus was aliquoted and stored at -80 °C until use.  

Pseudotyped lentiviruses were produced by co-transfecting 293T cells with 

plasmids encoding HIV gag-pol (39), a provirus pTRIP-Gluc (148) and the appropriate 

envelope protein H77 E1E2 pcDNA3 or pVSVG (39) using the TransIT reagent (Mirus, 

Madison, WI). The supernatants containing the pseudoparticles were collected 48 h post 

transfection, filtered (0.45 μm pore size) and stored at -80 °C until use. Control 

pseudotyped lentivirus lacking any envelope protein (Env
-
pp) was generated using the 

same protocol but replacing the envelope encoding plasmid with an empty vector 

(pCDNA3).  

3.3.3 High-throughput screening  

The library screening was conducted at The National Screening Laboratory for 

the Regional Centers of Excellence in Biodefense and Emerging Infectious Disease 

(NSRB).  The libraries are Prestwick (Prestwick Chemical, Washington, DC), Biomol 4 

(Enzo Life Sciences, Plymouth Meeting, PA ), Tocris (Tocris Bioscience, Minneapolis 

MN), EMD Kinase inhibitors (EMD Biosciences, San Diego, CA), SYNthesis kinase 

inhibitors (SYNthesis, San Diego, CA), Asinex 1 (ASINEX Corporation 

Winston-Salem, NC), Chembridge 3 (ChemBridge Corp., San Diego, CA), Maybridge 5 

(Maybridge Ltd., England) and NCDDG7, and the total number compounds screened 

was 30,426. Each well of duplicate 384-well plates contains 20 µl of n4mBid cells (1.8 x 

10
3
 cells/well), 100 nl of the drug candidate (ranging from 2-5 mg/ml) and 20 µl of Jc1 
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HCVcc (MOI ~1). Each plate contained 16 wells each with nucleoside analog 2’CMA (1 

µM) and DMSO solvent (0.5 %) as the positive and negative controls, respectively. The 

plates were incubated for 4 days at 37 °C in 5% CO2 and the cell viability was measured 

using the CellTiter-Glo Kit (Promega, Madison, WI) in a Biotek Synergy HT plate 

reader. Values from replicate wells were averaged and drug candidates with an average 

percent of rescue ≥ 40% were scored as positive.  

3.3.4 Secondary screening assay  

Huh-7.5 cells (5.5 x 10
3
 cells/well) were seeded in poly-L-lysine treated 384-well 

plates and infected with dialyzed Jc1 Gluc HCVcc (MOI 0.01) in the presence of 

increasing concentrations of the drugs. Supernatant Gluc activity was measured 72 h 

post-infection using a BioLux Gaussia Luciferase assay kit (New England Biolabs, 

Ipswich, MA), normalized to cell viability (CellTiter-Glo assay; Promega, Madison, WI) 

and expressed as percentage of 1% DMSO-treated cells. 

3.3.5 HCV infection assay 

To determine the anti-HCV activities, Huh-7.5 cells seeded in poly-L-lysine 

treated 96-well plates (2 x 10
4
 cells/well) 4 to 6 h earlier were infected with dialyzed Jc1 

Gluc HCVcc (MOI 0.01) in the presence of increasing concentrations of the drugs. 

Supernatant Gluc activity was measured 72 h post-infection using a BioLux Gaussia 

Luciferase assay kit (New England Biolabs, Ipswich, MA). Viability of the remaining 

cells was quantified using the CellTiter-Glo assay (Promega, Madison, WI) to gauge the 

drug toxicity.  
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To examine the effects of cellular cholesterol on the anti-HCV activity of 

benzhydrylpiperazines, Huh-7.5 cells were stripped of cholesterol prior to HCV 

infection. Briefly, Huh-7.5 cells were seeded in poly-L-lysine treated 96-well plate at 2.8 

x 10
4
 cells/well. The next day, these cells were incubated with 0, 1, 5 or 10 mg/ml of 

methyl-beta-cyclodextrin (mβcd) for 1 h at 37 °C, washed thoroughly with growth media 

to remove mβcd and infected with Jc1 Gluc HCVcc (MOI ~1) in the presence of the 

drugs for 1 h at 37 °C. Cells were washed to remove residual virus, Gluc and the drugs 

and replenished with fresh media. Supernatant Gluc activity was quantified 72 h post 

infection using a BioLux Gaussia Luciferase assay kit (New England Biolabs, Ipswich, 

MA) and normalized to cell viability gauged by the CellTiter-Glo assay (Promega, 

Madison, WI). Values are expressed as percentage of that from 0.015% DMSO-treated 

cells. 

To evaluate the effect of virion cholesterol content on the anti-HCV activity of 

benzhydrylpiperazines, we compared the efficacy of the drugs against HCVcc with 

different cholesterol content. Briefly, Huh-7.5 cells were seeded in poly-L-lysine treated 

48-well plates at 2 x 10
4
 cells/well and incubated at 37 °C and 5% CO2 for 5-6 hours to 

allow cell attachment. Cells were treated with the desired drugs for one hour prior to 

infection with JFH-1 WT (HCVcc
WT

) or G451R clone of HCVcc (HCVcc
G451R

) 

(TCID50/ml 5.62 x 10
3
) for 14-16 h at 37 °C and 5% CO2. The next day, cells were 

washed thoroughly and replaced with 300 µl of inhibitor-containing media. Seventy-two 

hours post inoculation, cells were washed once with Dulbecco’s phosphate-buffered 

saline (Thermo Scientific HyClone, Logan, UT) and underwent one freeze-thaw cycle at 
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80 °C before RNA extraction using an EZNA Total RNA kit (Omega Bio-Tek, Norcross, 

GA). The amount of HCV RNA was quantified via TaqMan quantitative reverse 

transcription-PCR (qRT-PCR) (qScript One-Step Fast kit; Quanta Biosciences, 

Gaithersburg, MD), using previously described primers (154). As an internal control, 

mRNA levels of phosphoglycerate kinase 1 (PGK) (qScript One-Step SYBR Green 

qRT-PCR kit; Quanta Biosciences, Gaithersburg, MD) were determined for each RNA 

template using previously described primers (148).  

3.3.6 HCVcc/pp entry assay  

Huh-7.5 cells (1.8 x 10
4
 cells/well) were seeded in poly-L-lysine treated 96-well 

plates and incubated at 37 °C and 5% CO2 for 5-6 hours to allow cell attachment. Cells 

were treated with the desired drugs for one hour prior to infection with HCVpp (5-fold 

dilution), Env-pp (5-fold dilution) or VSV-Gpp (500-fold dilution) for 14-16 h at 37 °C 

and 5% CO2. The next day, cells were thoroughly washed and replaced with 100 µl of 

fresh drug-free media. Supernatant Gluc activity was measured 48 h post washing using 

a BioLux Gaussia Luciferase assay kit (New England Biolabs, Ipswich, MA), 

normalized to cell viability quantified by a CellTiter Glo Luminescent Cell Viability 

assay kit (Promega, Madison, WI) and used as indication of viral entry. 

Huh-7.5 cells (2 x 10
4
 cells/well) seeded in poly-L-lysine treated 96-well flat 

bottom plates the previous day were inoculated with Jc1 Gluc HCVcc (MOI 1), HCVpp 

(5-fold final dilution) or Env
-
pp (5-fold final dilution) in the presence of the compounds 

at 37 °C. Three hours post infection cells were thoroughly washed and replenished with 

100 µl of fresh growth media. Supernatant Gluc activities were quantified 72 h post 
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infection using a BioLux Gaussia Luciferase assay kit (New England Biolabs, Ipswich, 

MA). Values are expressed as percentage of 0.015 % DMSO control. 

3.3.7 Replication and virus production inhibition 

Huh-7.5 cells were electroporated with Jc1 Gluc HCVcc RNA and plated in 

poly-L-lysine treated 48-well plates (6 x 10
4
 cells/well). After cell attachment (4-6 h), 

increasing concentrations of the drugs were added to the appropriate wells. Supernatant 

Gluc activity was quantified 48 h post drug addition using a BioLux Gaussia Luciferase 

assay kit (New England Biolabs, Ipswich, MA), normalized to 0.15 % DMSO control 

and used as indication of viral replication. Concurrently, virus-containing sups from 

drug-treated cells were diluted 100-fold and used to infect naive Huh-7.5 cells in 96-well 

plates (2 x 10
4
 cells/well) for 14-16 h. The next day, cells were thoroughly washed to 

remove residual virus and replenished with fresh complete growth media. Supernatant 

Gluc activity was quantified 48 h post washing using a BioLux Gaussia Luciferase assay 

kit (New England Biolabs, Ipswich, MA), normalized to that from DMSO-treated cells 

and used as indication of production inhibition. 

3.3.8 Synchronized HCVcc infection assay 

  Huh-7.5 cells were seeded in poly-L-lysine treated 48-well plates at 4 x 10
4
 

cells/well. The next day, the cells were chilled and incubated with cold Jc1 Gluc HCVcc 

(MOI 5) at 4°C for 1.5 h to allow virus attachment but not internalization. Unbound 

virions were removed by thorough washing and internalization was initiated by 

transferring the plates to a 37 °C and 5% CO2 incubator. Hydroxyzine (1 µM), 

chlorcyclizine (1.5 µM), bafilomycin (10 nM), JS-81 (2 µg/ml), or DMSO (0.015%) was 
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added to the cells at different time points post temperature shift. Cells were washed 

thoroughly with complete growth medium 5 h or 24 h post-drug addition and replenished 

with fresh media. Supernatant Gluc activity was measured at 72 h post-infection using a 

BioLux Gaussia luciferase assay kit (New England Biolabs, Ipswich, MA), normalized 

to that from the last drug time point (180 min) and used as an indication of viral 

infection. 

3.3.9 Statistical analysis 

Statistical analysis was performed in Microsoft Excel by means of the Student’s t 

test. P-values less than 0.1 were considered statistically significant. 

3.4 Results 

3.4.1 Identification of anti-HCV compounds using a cell protection assay 

Previously, our lab engineered a human hepatoma cell line- n4m Bid – that 

sensitively reports HCV infection via a cell death phenotype (198). Using this reporter 

cell line, we screened seven libraries of known bioactive compounds, commercial 

compounds and natural extracts (total 30,426 compounds). The primary screening was 

performed in duplicate 384-well plates at a single compound dosage (ranging from 2-5 

mg/ml). Nighty-seven compounds showed at least 40% cell rescue, including known 

HCV inhibitors: cyclosporine (201, 202), flunarizine (148), and tamoxifen (203). To 

reconfirm the results of the cell protection assay, hits were subjected to a secondary 

screening using dialyzed Jc1 Gluc HCVcc. Forty-nine of the candidates were able to 

reduce HCV infection by at least 40% when compared to mock treated cells (Table 3.1).  
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Table 3. 1 Anti-HCVcc activity of screening hits. 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

65 

 

11.2 88.3 92.7 89.3 

64 

 

12.9 75.3 93.7 
87.1 

49 

 

11.7 73.5 88.3 
100 

73 

 

14.8 70.5 90 
93.1 

67 

 

16.5 66.7 87.8 
100 

51 

 

10.7 49.2 79.8 
87.5 

Values represent mean of duplicates. 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

13 

 

43.3 86.3 99.4 100 

30 

 

44.3 61.25 99.4 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

20 

 

45.2 74.5 63.2 100 

4 

 

45.2 50.2 99 100 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% 

rescue 

(n4m 

assay) 

% 

inhibition 

(Gluc 

assay) 

% 

viability 

8 

 

21.8 65.9 43.8 100 

29 

 

22.8 59.2 94.7 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

76 

 

13.6 56.4 89.5 91.5 

68 

 

14.5 52.2 93.8 68.3 

75 

 

141 49.1 80.6 98.7 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

97 

 

25 58.5 99.6 89.1 

10 

 

41.5 53.4 94.1 100 

2 

 

47.6 51.8 95.5 100 

32 

 

46.4 51.6 99.6 100 

31 

 

27.3 51.5 97.8 100 

89 

 
 

8.3 50.5 87.5 
87.9 
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Table 3.1 Continued. 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 

% 

viability 

35 

 

50.5 47.4 97.6 34.7 

6 

 

43.6 45.3 98.3 40 

95 

 

25 45.3 62.9 89.3 

28 

 

25.1 45.2 98.6 100 

80 

 

8.25 42.6 43.4 100 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

%  rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

11 

 

52.4 48.7 96.8 100 

26 

 

52.9 48.1 97.3 100 

77 

 

13.5 45 83.9 95.5 

70 

 

18.2 44.6 98 34.2 

3 

 

48.8 40.2 71.4 100 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

14 

 

45.2 59.4 93 100 

5 

 

54.1 49.9 96.5 100 

34 

 

54.5 43.4 98.4 96.4 

27 

 

25.8 42.9 98 100 

92 

 

25 43.5 40 99.8 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

16 

 

57 48.4 97.6 100 

15 

 

57.5 43.9 93.1 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

93 

 

25 47 98.6 62.8 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

12 

 

38.1 44.8 44.6 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

23 

 

33.4 55.4 93.9 59.6 
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Table 3.1 Continued. 
 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

36 

 

36.3 49.7 84 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

37 

 

34.3 47.9 89 100 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

69 

 

8.4 50 86.9 96.6 

 

Label Structure 
Concentration 

(µM) 

% rescue 

(n4m assay) 

% inhibition 

(Gluc assay) 
% viability 

96 

 

25 50.1 97.9 100 
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Table 3. 2 Antiviral activity of leading hits 

Compound IC50 (μM) CC50 (μM) CC50/IC50 

11 2.4 >50µM >20 

13 1.7 >40µM >23 

31 1.4 >30µM >21 

49
+
 0.5 >10µM >20 

64
+
 0.17 >10µM >58 

65
+
 0.02 >10µM >500 

73
+
 0.002 >15µM >6,500 

89 7.8 >30µM >3 

96 0.14 >25µM >178 

97 0.52 >25µM >48 

IC50 values were calculated using the sigmoidal fit function in Origin Lab (OriginLab, 

Northampton,MA), 
+
 Compounds belonging to the benzhydrylpiperazine family. 
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Figure 3. 2 Benzhydrylpiperazines inhibit HCVcc infection. (A) Huh7.5-cells were 

infected with Jc1 Gluc HCVcc (MOI 0.01) in the presence of increasing concentrations 

of hydroxyzine or chlorcyclizine. Supernatant Gluc activity was measured 72 h post 

infection, normalized to that of 0.15% DMSO and used as indication of viral infection. 

Values and error bars represent mean and standard deviation, respectively, of two 

independent experiments carried out in duplicate. (B) IC50/90 values of hydroxyzine and 

chlorcyclizine were calculated using the sigmoidal fit function in Origin Lab (OriginLab, 

Northampton,MA). 

Compound IC50 IC90 CC50 CC50/IC50

Hydroxyzine 19nM 64nM >10μM >526

Chlorcyclizine 2.3nM 394nM >15μM >6,521
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Figure 3. 3 Benzhydrylpiperazines do not inhibit HCV replication or virus 

production. (A) Huh-7.5 cells were electroporated with Jc1 Gluc HCVcc RNA. After 

cell attachment (4-6 h post seeding), cells were exposed to the indicated compounds. 

Supernatant Gluc activity was measured 48 h post drug addition, normalized to 0.15% 

DMSO treated cells and used as indication of viral replication. (B) Virus containing sups 

from (A) were diluted 100-fold in complete growth medium and used to infect naive 

cells. Supernatant Gluc activity was quantified 72 h post inoculation, normalized to 

DMSO-treated cells and used as indication of the amount of infectious virus in the 

supernatant. Values and error bars represent mean and standard deviation, respectively, 

of two independent experiments carried out in duplicate. 
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Dose responses of the top 10 hits were determined using the same assay (Figure 3.1 and 

Table 3.2). Among these, four compounds belong to the benzhydrylpiperazines family, 

including the best candidates, #65 and #73, commercially known as hydroxyzine and 

chlorcyclizine, respectively. The estimated IC50s and CC50s for hydroxyzine and 

chlorcyclizine are 19 and 2.3 nM and > 10 and >15 µM, resulting in drug indexes >500 

and >6,500, respectively (Figure 3.2). These two drugs were selected for further 

characterization.  

3.4.2 Benzhydrylpiperazines do not inhibit HCV replication or production 

To evaluate the effect of the hydroxyzine and chlorcyclizine on HCV replication 

and production, Huh-7.5 cells were electroporated with Jc1 Gluc HCVcc and treated 

with increasing concentrations of the drugs. HCV replication levels were quantified 48 h 

post drug addition by measuring the supernatant Gluc activity. No inhibition was 

observed for either of the compounds even at the highest tested concentration (Figure 

3.3A). To determine the effect of drugs on HCV production, supernatants from 

compound-treated cells were diluted 100-fold and used to infect naïve Huh-7.5 cells. A 

3-fold and 10-fold reduction of HCV infectivity was observed at 10 µM and 15 µM of 

hydroxyzine and chlorcyclizine, respectively (Figure 3.3B).  
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Figure 3. 4 Benzhydrylpiperazines selectively suppress HCVcc entry. Huh-7.5 cells 

were infected with Jc1 Gluc HCVcc (MOI 1), H77 HCVpp (5-fold diluted) or Env-pp 

(5-fold diluted) in the presence of compounds for 3 h at 37°C/5% C02 prior to washing 

to remove virus and replenishment with compound-free growth medium. Supernatant 

Gluc activity was measured 72 h post infection. Values are expressed as percentage of 

0.015% DMSO-treated cells. For HCVpp, raw Gluc values were subtracted from Env-pp 

prior to DMSO normalization. Values and error bars represent mean and standard 

deviation, respectively, of two independent experiments carried out in duplicate. 
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However, since the effective drug concentration of hydroxyzine and chlorcyclizine in 

those wells during the reinfection step were 0.1 and 0.15 µM, respectively, and these 

concentrations were previously found to significantly inhibit HCVcc infection (Figure 

3.2), we concluded that the inhibition seen in Figure 3.3B is not due to the drug effect on 

virus production but the inhibition of HCV infection by the residual drug. Thus, neither 

benzhydrylpiperazines significantly inhibits HCV production. 

3.4.3 Benzhydrylpiperazines selectively suppress HCVcc entry 

Since no inhibition of HCV replication or virus production was observed, we 

evaluated the effect of these drugs on HCV entry. Huh-7.5 cells were infected with 

HCVcc or HCVpp/Env
-
pp in the presence of the drugs at 37 °C for 3 hours. Supernatant 

Gluc activities were quantified 72 hours later and used as indication of viral infection. 

The short contact time between the drugs and the cells/viruses is designed to limit the 

effect of the drugs to the entry step alone. Surprisingly, both compounds were able to 

strongly inhibit the entry of HCVcc but not HCVpp (Figure 3.4). A modest reduction of 

HCVpp (< 2-fold), but not VSV-Gpp, entry was only observed at 10 and 15 µM of 

hydroxyzine and chlorcyclizine, respectively (Figure 3.5). The ability of both 

benzhydrylpiperazines to selectively inhibit HCVpp but not VSV-Gpp entry suggest that 

cellular processes such as clathrin-mediated endocytosis and endosomes acidification are 

not impaired by these drugs at the tested concentrations, and that hydroxyzine and 

chlorcyclizine likely inhibit an HCV entry step either not or weakly depicted by the 

HCVpp system. 
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Figure 3. 5 Dose dependent effects of benzhydrylpiperazines on HCV entry. Huh-7.5 cells (1.8 x 10
4
 cells/well) were 

infected with H77 HCVpp (5-fold dilution), Env-pp (5-fold dilution) or VSV-Gpp (500-fold dilution) overnight in the presence 

of compounds. The next day cells were thoroughly washed and replenished with complete fresh media lacking compounds. 

Supernatant Gluc activity was measured 48 h post washing. Gluc data from Env-pp were substracted from H77 HCVpp Gluc 

readings after normalization to viable cell levels and expressed  as a percentage of data from negative control cells treated with  

DMSO (0.1-0.15%). Values and error bars represent mean and standard deviation, respectively, of at least two independent 

experiments carried out in duplicate.
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Figure 3. 6 Benzhydrylpiperazines inhibit a late HCV entry step. (A) Schematic 

representation of experiment. (B) Huh-7.5 cells were incubated with Jc1 Gluc HCVcc 

(MOI 5) at 4°C for 1.5 h, thoroughly washed, replenished with virus-free growth 

medium, and shifted to 37°C/5% CO2.  The compounds were added to the cells at the 

indicated time points post temperature shift and removed 5 h later. Supernatant Gluc 

activity was measured 72 h post temperature shift and expressed as a percentage of 

activity from the final compound addition time point to indicate viral entry. Values and 

error bars represent mean and standard deviation, respectively, of two independent 

experiments carried out in duplicate. 
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Next, we determined the step of entry affected by these benzhydrylpiperazines. 

Huh-7.5 cells were incubated with Jc1 Gluc HCVcc (MOI 5) at 4°C for 1.5 hours, 

thoroughly washed to remove unbound virions, and transferred to a 37 °C/5% CO2 

incubator to initiate virus entry.  Drugs were added at different times post temperature 

shift as illustrated in Figure 3.6A. Both benzhydrylpiperazines retained inhibitory 

activity for up to 100 min after temperature shift to 37 °C (Hydroxyzine t½ ~53 min, 

Chlorcyclizine t½ ~63min), similar to that of endosome acidification inhibitor 

bafilomycin (t½ ~57 min) (Figure 3.6B), indicating that these drugs inhibit a post binding 

step of HCVcc likely immediately prior to or concomitantly with the fusion process.  

3.4.4 Benzhydrylpiperazine entry inhibition is cholesterol dependent 

The ability of benzhydrylpiperazines to inhibit the fusion of HCVcc but not 

HCVpp prompted us to examine the differences between these systems. One of the 

major differences is their distinct cholesterol profiles. HCVpp contains 94% less 

cholesterol than the authentic HCVcc (48) because HCVpp is typically produced from 

293T cells that do not have cholesterol-associated lipoproteins (204). On the other hand, 

cell culture-adapted HCVcc
G451R

, containing a G451R point mutation in the viral E2 

glycoprotein, was found to have ~50% more cholesterol than the wild-type HCVcc 

(HCVcc
WT

) (48). To evaluate whether the entry inhibition by benzhyldrylpiperazines is 

dependent on virion cholesterol content, Huh-7.5 cells were infected with HCVcc
WT

 or 

HCVcc
G451R

 in the presence of the drugs, and the viral RNA from infected cells was 

quantified 48 h post infection.  
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Figure 3. 7 Benzhydrylpiperazine entry inhibition is cholesterol dependent. (A) 

Huh-7.5 cells were infected with HCVcc
WT

 or the high cholesterol-content mutant virus 

HCVcc
G451R

 (MOI 0.04) in the presence of hydroxyzine (1 μM), chlorcyclizine (1.5 

μM), JS-81 antibody (2 μg/ml) or DMSO (0.015 %) for 14-16 h. Intracellular HCV RNA 

was quantified 72 h post inoculation. Values and error bars represent mean and standard 

deviation, respectively, of two independent experiments carried out in duplicate. (B) 

Huh-7.5 cells were exposed to the indicated concentrations of concentrations of mβcd 

for 1 h at 37°C/5% CO2. After treatment, cells were thoroughly washed and inoculated 

with Jc1 Gluc HCVcc ( MOI 1) for 1 h at 37°C/5% CO2 in the presence of hydroxyzine 

(1 μM), chlorcyclizine (1.5 μM), Js81 antibody (2 μg/ml) or DMSO (0.015 %). Residual 

compound and virus were removed by washing and cells were replenished with 

complete growth medium. Supernatant Gluc activity was quantified 72 h post infection 

and normalized to cell viability. Values and error bars represent the mean and standard 

deviation, respectively, of at least three independent experiments carried out in 

duplicate. Statistical significance was determined by the Student’s t test (*, p < 0.1). 
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As shown in Figure 3.7A, HCVcc
G451R

 was more sensitive to benzhydrylpiperazine 

treatment than HCVcc
WT

, while the HCV entry receptor CD81 antibody JS-81 showed 

similar potency against both viruses, indicating that the entry inhibition of 

benzhyldrylpiperazines is dependent on virion cholesterol content. 

Next, we examined the effect of host cholesterol content on 

benzhydrylpiperazines’ entry inhibition.  Huh-7.5 cells were treated with increasing 

concentrations of cholesterol depletion agent (mβcd) for 1 hour at 37 °C, washed and 

then infected with Jc1 Gluc HCVcc (MOI 1) for 1 hour in the presence of the drugs. 

HCV infection was quantified 72 h post infection via supernatant Gluc activity. 

Depletion of host cholesterol significantly reduced the ability of benzhydrylpiperazines 

to inhibit HCV entry (Figure 3.7B), suggesting that host cholesterol content also affects 

the potency of benzhydrylpiperazines. Similar results were obtained with JS-81, as cell 

surface CD81 level is affected by the host cholesterol content (166, 205). 

3.5 Discussion  

In this paper, we carried out a high-through screening of 30,426 compounds 

using an unbiased cell-based assay (198) and discovered 49 compounds with 

undocumented anti-HCV activity. Based on structural similarity, we categorized them 

into 16 groups. The best two inhibitors, hydroxyzine and chlorcyclizine, were shown to 

suppress HCV infection with an estimated IC50 of 19 and 2.3 nM and CC50 >10 µM and 

>15 µM, leading to therapeutics indexes >500 and >6,500, respectively. Hydroxyzine 

and chlorcyclizine are members of the first generation H1 antihistamines belonging to 

the family of benzhydrylpiperazine compounds (206). Other activities of hydroxyzine 
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and chlorcyclizine include blockade of muscarinic, serotonin and α-adrenergic receptors 

(207). More recently antiviral (208), antimetabolic (209), and anticarcinogenic (210) 

properties were reported for chlorcyclizine. Hydroxyzine has been approved by the FDA 

for treating allergic disease since 1956 under the trademark name Atarax (211). The 

serum half-life of oral dosages of hydroxyzine (0.7 mg/kg) range from 21 to 29 h, with a 

peak plasma level of 72-77 ng/ml (160-171 nM) (212, 213), and an expected liver 

concentration of up to 1.7 µM (214). The IC90 concentration for hydroxyzine is 64 nM 

(Figure 3.2), which is well within the range of plasma drug concentration, pointing to a 

strong clinical potential of this compound in treating HCV infection. Moreover, 

hydroxyzine is currently used to alleviate dermatological adverse effects experienced by 

patients undergoing HCV treatment with telaprevir, as 50% of them develop cutaneous 

reactions within the first 4 weeks of treatment (215, 216). Chlorcyclizine (Trade name: 

Ahist), currently under review by the Center for Drug Evaluation and Research (FDA), 

is an over the counter drug for treating allergy-related symptoms. 

Both hydroxyzine and chlorcyclizine showed little inhibition of HCV replication 

and virus production (Figure 3.3), and were found to selectively inhibit the entry of 

HCVcc but not HCVpp (Figure 3.4). Since HCVpp and HCVcc have vastly different 

virion cholesterol content (48), we further showed that the entry inhibition by these 

benzhydrylpiperazines is dependent on both virion and host cholesterol content (Figures 

3.4 and 3.7).  Previously, Sainz et al. identified Niemann-Pick C1-like 1 (NPC1L1), a 

cholesterol adsorption receptor, as a new HCV entry factor (48). NPC1L1, a homolog of 

Niemann-Pick 1 receptor, is a polypotic transmembrane protein important for cholesterol 
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adsorption (217). It is highly expressed in small intestine and human liver (46). 

Depending on the extracellular cholesterol concentration, NPC1L1 is localized either on 

the plasma membrane or in intracellular compartments (46, 218). Ezetimibe (trademark 

name Zetia) inhibits cholesterol adsorption (219) by blocking the internalization of 

NPC1L1 (220). Interestingly, ezetimibe was found to also potently inhibit the entry of 

HCVcc, but not HCVpp, at a step immediately prior to or concurrent to fusion, and its 

HCV entry inhibitory potency is also dependent on virion cholesterol content (48). 

However, to the best of our knowledge, clinical use of neither hydroxyzine nor 

chlorcyclizine was associated with reduced serum cholesterol content. Studies to explore 

the relationship between benzhydrylpiperazines and NPC1L1 are currently underway. 

In conclusion, we screened 7 libraries of 30,426 compounds and identified 49 

novel HCV inhibitors. Among those, the best two inhibitors, hydroxyzine and 

chlorcyclizine, have already been used in clinic for treatment of allergy-related 

symptoms and the achievable serum concentration of hydroxyzine is significantly higher 

than the effective drug concentration needed to inhibit 90% of HCV infection, pointing 

to the use of this drug in HCV treatment. We further showed that both compounds 

inhibit a post attachment step of HCVcc entry with a similar t1/2 as HCV fusion inhibitor 

bafilomycin. The inhibition efficiency by both compounds is dependent on virion and 

host cholesterol content, similar to that of NPC1L1 inhibitor ezetimibe, indicating that 

benzhydrylpiperazines may also act through NPC1L1 to inhibit HCV entry.  
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CHAPTER IV  

PD 404,182 IS A VIRUCIDAL SMALL MOLECULE THAT DISRUPTS HEPATITIS 

C VIRUS AND HUMAN IMMUNODEFICIENCY VIRUS
*
 

 

4.1 Overview 

We describe a virucidal small molecule, PD 404,182, that is effective against 

hepatitis C virus (HCV) and human immunodeficiency virus (HIV). The median 50% 

inhibitory concentrations (IC50s) for the antiviral effect of PD 404,182 against HCV and 

HIV in cell culture are 11 and 1 M, respectively. The antiviral activity of PD 404,182 is 

due to physical disruption of virions that is accompanied to varying degrees (depending 

on the virus and exposure temperature/time) by the release of viral nucleic acids into the 

surrounding medium. PD 404,182 does not directly lyse liposomal membranes even after 

extended exposure, and it shows no attenuation in antiviral activity when pre-incubated 

with liposomes of various lipid compositions, suggesting that the compound inactivates 

viruses through interaction with a non-lipid structural component of the virus. The 

virucidal activity of PD 404,182 appears to be virus-specific, as little to no viral 

inactivation was detected with the enveloped Dengue and Sindbis viruses. 

 

                                                 

*
 Copyright © American Society for Microbiology, Antimicrobial Agents and Chemotherapy, 56(2), 2012, 

672-681, DOI 10.1128/AAC.05722-11.                                                                                                     

Data from Table 4.1 and Figures 4.5 and 4.11 were generated at Scripps Research Institute by Michael 

Bobardt and Dr. Phillipe Gallay                                                                                                                 

Data from Figure 4.4B was generated at Drexel University College of Medicine by Jinhong Chang 
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PD 404,182 effectively inactivates a broad range of primary isolates of HIV-1 as well as 

HIV-2 and simian immunodeficiency virus (SIV), and it does not exhibit significant 

cytotoxicity with multiple human cell lines in vitro (50% cytotoxic concentration, >300 

μM). The compound is fully active in cervical fluids, although it exhibits decreased 

potency in the presence of human serum, retains its full antiviral potency for 8 h when in 

contact with cells, and is effective against both cell-free and cell-associated HIV. These 

qualities make PD 404,182 an attractive candidate anti-HIV microbicide for the 

prevention of HIV transmission through sexual intercourse. 

4.2 Introduction 

Human pathogenic viruses that acquire resistance to antiviral agents by rapid 

evolution in vivo pose a serious health problem with no simple cure. Antivirals targeting 

features of these viruses that can be altered through changes in the viral genetic code 

often exhibit limited efficacy. Hepatitis C virus (HCV) and human immunodeficiency 

virus (HIV) are two such viruses which cause disorders of the liver and immune system, 

respectively, and collectively afflict 2~3% of the world's population (221, 222). For 

HCV, the current interferon/ribavirin combination therapy exhibits limited efficacy, and 

the two recently approved small-molecule drugs, both serine protease inhibitors – 

telaprevir and boceprevir (223, 224) – foster the development of resistant viral strains 

within days when administered alone (225, 226).  For HIV, there are currently more than 

20 approved antiretroviral drugs, forming the basis of highly active antiretroviral therapy 

(HAART). Despite the availability of this large repertoire of anti-HIV drugs, drug-

resistant mutant strains of HIV still emerge over time. Approximately 4 to 5 million HIV 
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patients are coinfected with HCV (227), and these individuals tend to exhibit a higher 

rate of viral persistence, increased viral load, and higher susceptibility to death compared 

to individuals infected with only one of these viruses (228). Thus, there is an urgent need 

to develop antivirals that treat and prevent infection by HCV and HIV through new 

modes of action.  

Antiviral molecules targeting critical virus structural elements tend to be 

effective against several viruses and do not usually foster the emergence of drug-

resistant viral isolates. One group of molecules inhibit virus-cell fusion by inducing 

positive membrane curvature, thus increasing the activation energy barrier for fusion 

with cell membranes (229-231). These molecules, which include rigid amphipathic 

fusion inhibitors (RAFIs) (229) and lysophosphatidylcholine (231), tend to have large 

hydrophilic heads and hydrophobic tails. LJ001, a recently discovered broad-spectrum 

small-molecule antiviral, inhibits the fusogenic activity of enveloped viruses by 

intercalating into the lipid membrane while leaving virion particles grossly intact (232). 

Alkylated porphyrins exhibit strong antiviral activity against several enveloped viruses 

through an unknown mechanism, perhaps by interfering with specific structures on the 

virus surface (233). Amphipathic peptides derived from HCV NS5A protein were shown 

to physically disrupt virions and were active against a variety of enveloped viruses (234, 

235). Another approach to interfering with membrane elements required for virus 

infection is to target exposed anionic phospholipids widely expressed on infected host 

cells and viral envelopes, as was done with Bavituximab, a chimeric antibody which 

rescues mice from Pichinde virus and mouse cytomegalovirus infection (236).   
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Previously, we identified a small-molecule inhibitor of HCV entry, PD 404,182 

(PD), from a screen of 1280 small-molecule compounds (LOPAC
1280

) known to be 

pharmacologically active in a variety of cellular processes (148). Here, we report that 

PD, an inhibitor of bacterial 2-keto-3-deoxyctulosonic acid (KDO) 8-P synthase (237), is 

a virucidal compound that compromises the structural integrity of both HCV and HIV, 

likely by interacting with a non-lipid structural element of these viruses. In vitro studies 

revealed that PD physically disrupts variously pseudotyped lentiviruses and exposes the 

viral genomic RNA in a time- and temperature-dependent manner. Viral lysis is much 

less pronounced with cell culture-produced HCV (HCVcc), despite a clear inactivation 

of HCVcc infectivity on the pre-incubation of PD with viral supernatants. PD strongly 

inactivates multiple isolates of primary HIV-1 that utilize different coreceptors, HIV-2, 

and simian immunodeficiency virus (SIV), with a 50% inhibitory concentration (IC50) of 

~1 M and a selectivity index (50% cytotoxic concentration [CC50]/IC50) of >300. A 

high antiviral potency and low cytotoxicity, combined with a unique mode of action, 

make PD a welcome addition to our current arsenal of antivirals to combat infection by 

HCV and HIV.  

4.3 Materials and methods 

4.3.1 Reagents 

  PD 404,182 and Triton X-100 were purchased from Sigma-Aldrich (St. Louis, 

MO). C5A was synthesized at the Scripps Research Institute. PD and C5A were 

dissolved in 100% dimethylsulfoxide (DMSO) to final concentrations of 30 mM and 10 

mg/ml, respectively, and stored at −20°C. Unless otherwise specified, growth medium 
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for all cell culture work was Dulbecco's modified essential medium (DMEM) containing 

4,500 mg/liter glucose, 4.0 mM L-glutamine, and 110 mg/liter sodium pyruvate (Thermo 

Scientific HyClone), and it was supplemented with 10% fetal bovine serum (FBS) 

(Atlanta Biologicals) and 1× nonessential amino acids (Thermo Scientific HyClone). 

Conditioned complete growth medium (DMEM plus 10% FBS) was harvested on day 3 

(with cells at 100% confluence) postseeding from Huh-7.5 cells initially seeded at ∼20% 

confluence. 

4.3.2 Production of HCVcc and pseudotyped lentiviruses  

The production and titer determination of Jc1 HCVcc (132) was performed as 

previously described (148). Unless otherwise specified, all lentiviral pseudoparticles 

were generated from 293T cells by co-transfection of plasmids carrying HIV gag-pol, a 

provirus (pTRIP-Gluc, pV1-Gluc or pV1-B), and an appropriate envelope protein. For 

the production of murine leukemia virus (MLVpp), Sindbis virus (SINVpp), and HIV 

(HIVpp), plasmids encoding the viral envelope proteins pHIT456 (238), pIntron-SINV-

env (239), and HIV BaL.01 (240) were used, respectively.  

pV1 is a minimal HIV-1 provirus lacking most HIV genes except for all 

necessary cis acting sequences, such as Tat, Rev and Vpu open reading frames (ORF) 

(39, 241, 242). In pV1-B and pV1-Gluc, the Nef gene was replaced by an irrelevant 

peptide and the Gluc gene, respectively. The titers of vesicular stomatitis virus envelope 

glycoprotein (VSV-Gpp) and HIVpp harboring pV1-B or pV1-Gluc was measured on a 

TZM-bl indicator cell line using the lacZ reporter in a limiting dilution assay (243). 
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4.3.3 HCVcc infection assay  

 Jc1 Gluc HCVcc (~10
5
 50% tissue culture infectious dose [TCID50]/ml) (150) 

was concentrated 4-fold using an ultracentrifugation column with a 100-kDa cutoff 

membrane and washed twice with phenol red-free DMEM to remove any PD-

inactivating molecules present in the virus supernatant. Concentrated virus was 

incubated with PD or DMSO at 37°C for 30 min, diluted 1,000-fold with fresh complete 

growth medium, and used to infect naïve Huh-7.5 cells in 24-well (10
5
 cells/well) or 96-

well (2.8 × 10
4
 cells/well) plates 4 to 6 h after seeding. The control samples contain virus 

and PD of the same final titers/concentrations, but with the virus and PD separately 

diluted 1,000-fold prior to mixing. Viral infectivity was quantified by measuring the 

supernatant activity of the Gluc reporter or immunostaining infected cells for NS5A with 

9E10 (anti-NS5A) antibody (35) 72 h post infection.  

4.3.4 Spinoculation  

PD-treated virus samples (HCVcc or VSV-Gpp) were cooled on ice for 5 to 10 

min and added to chilled target cells seeded in 96-well plates. Spinoculation was carried 

out at 300 × g for 2 h at 4°C. After centrifugation, cells were washed 4 times with cold 

complete growth medium to remove any residual compound/unbound virus and returned 

to 37°C and 5% CO2.  

4.3.5 Viral RNA quantification  

For the direct quantification of HCVcc/VSV-Gpp RNA, the total RNA from PD-

treated HCVcc/VSV-Gpp and cells infected with these viruses was isolated using the 

EZNA viral RNA kit (Omega Bio-Tek) and total RNA kit (Omega Bio-Tek), 
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respectively. The amount of HCV RNA was quantified via TaqMan quantitative reverse 

transcription-PCR (qRT-PCR) (qScript one-step fast kit; Quanta Biosciences, 

Gaithersburg, MD) using previously described primers (154). The amount of lentiviral 

RNA was quantified using SYBR Green qRT-PCR (one-step SYBR green kit, Quanta 

Biosciences) with primers pV1-qPCR-F (5’- A C G G C C T C T A G A A T G A G C -3) and 

pV1-qPCR-R (5’ - A C A G C T G C T C G A G G  T T -3’). 

Due to the large amount of residual provirus-encoding DNA present in the 

pseudoparticle preparations obtained from transfected 293T cells, we were not able to 

directly quantify the viral RNA. Instead, repackaged pseudoparticles were used in all 

experiments involving the direct quantification of viral RNA by qRT-PCR. Briefly, 

VSV-Gpp constructed from pV1-B (39, 241, 242) were used to transduce Huh-7.5 cells. 

Three days later, these Huh-7.5 cells were transfected with plasmids carrying HIV gag-

pol and vesicular stomatitis virus (VSV)-G envelope protein to produce freshly 

repackaged pseudoparticles. Pseudoparticles serially repackaged in this manner at least 3 

times were used in experiments requiring the direct quantification of viral RNA. 

4.3.6 Gluc reporter assay  

Supernatant Gluc activities were quantified 48 or 72 h postinfection with the 

relevant virus using a BioLux Gaussia luciferase assay kit (New England BioLabs) and 

normalized to viable cell levels as determined via the CellTiter-Glo luminescent cell 

viability assay (Promega). 
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4.3.7 Liposome dye release assay 

Liposomes composed of 36 mg POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine), 39 mg DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), 4 mg 

POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine), and 21 mg cholesterol per 

100 mg, without or with 100 mM sulforhodamine B (SulfoB; Avanti Polar Lipids, Inc.), 

were prepared as described previously (235) and sized via repeated extrusion through a 

100-nm polycarbonate membrane filter (Avanti Polar Lipids, Inc.). Dye release assays 

were performed in a Gemini EM spectrofluorometer (Molecular Devices, San Francisco, 

CA). One μl PD (30 mM), 0.24 μl C5A (10 mg/ml), or 1 μl DMSO was added to 100 μl 

liposomes (100 μM; 0.06 mg/ml) in phosphate-buffered saline (PBS) in 384-well plates, 

and membrane disruption was gauged from the increase in SulfoB fluorescence at 

excitation and emission wavelength settings of 544 and 590 nm, respectively, 5 min 

posttreatment. The fluorescence intensity corresponding to 100% SulfoB release was 

obtained by liposome disruption with 0.1% Triton X-100. 

4.3.8 HIV-1, HIV-2, SIV infectivity assays  

TZM-bl cells (238) (100,000 cells/ml) were exposed to HIV or SIV (1 ng of 

p24/p27) for 4 h together with increasing concentrations of PD or DMSO control, 

washed, and infection was measured 48 h later by β-galactosidase activity. Primary HIV-

1, HIV-2, and SIV were obtained through the National Institutes of Health (NIH) AIDS 

Research and Reference Reagent Program and amplified in activated human peripheral 

blood mononuclear cells (PBMC; activated by phytohemagglutinin/interleukin-2 

treatment). To determine the anti-HIV effect of PD in genital fluids, the same TZM cells 
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were exposed to HIV strain JR-CSF(1 ng of p24) for 4 h together with increasing 

concentrations of PD diluted in cervical fluids (pool of four donors) (244). 

4.3.9 HIV-1 sedimentation assay  

Purified HIV-1 (20 ng of p24 of NL4.3) was microcentrifuged for 90 min at 4°C 

to remove free capsid, resuspended in PBS, exposed to PD or DMSO medium control, 

and loaded over a 20 to 70% sucrose gradient. After ultracentrifugation at 20,000 rpm 

for 24 h in an SW-41 T rotor, fractions (1 ml) were collected and tested for their content 

of viral proteins. HIV-1 capsid was detected by p24 enzyme-linked immunosorbent 

assay (ELISA). Reverse transcriptase (RT) activity was measured using a 

polyribonucleotide template (exo-RT assay) (245). The density of each sucrose gradient 

fraction was determined by measuring the refractive index. 

4.3.10 HIV-1 cell-to-cell transfer assay  

Blood-derived immature dendritic cells (DC) were plated at 50,000 cells per well 

in 96-well V-bottom plates (BD Biosciences). Cells were incubated with wild-type 

NL4.3-eGFP (X4), NL4.3-BaL-eGFP (R5), or the single-round NL4.3ΔEnv-eGFP 

pseudotyped virus with NL4.3 gp160 (X4) (25 ng of p24) for 2 h at 37°C. Medium 

supplemented with either PD or DMSO then was added and incubated with DC for 2 h. 

Cells were washed three times with warm medium, and CCR5 Jurkat T cells (100,000 

cells) were added. Cells were cultured in a flat-bottom 96-well plate, harvested after 3 

days, and fixed in 4% paraformaldehyde-PBS, and green fluorescent protein (GFP) 

expression was measured by a fluorescence-activated cell sorter (FACS). The percentage 

of infected Jurkat T cells was selectively quantified by gating T cells using an anti-CD3 
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antibody. Virus isolates used in this study were pNL4.3-BaL (R5), in which wild-type 

NL4.3 envelope was switched for the R5 BaL envelope; pNL4.3ΔEnv, which lacks 

gp160; pNL4.3-eGFP (X4); and pNL4.3-BaL-eGFP (R5), which encode the GFP gene 

instead of the Nef gene (246). 

4.4 Results 

4.4.1 PD 404,182 is virucidal against HCV and pseudotyped lentiviruses  

Previously, we showed that PD alleviates a HCVcc-induced cytopathic effect and 

inhibits the cellular entry of HIV lentivirus pseudotyped with envelope glycoproteins 

from the H77 isolate of HCV and vesicular stomatitis virus (VSV). In this study, we 

show that PD inhibits HCV infection by inactivating extracellular virions. As shown 

in Figure 4.1A and B, PD dose dependently inactivates cell-free HCVcc with an IC50 of 

11 μM. To explore the possibility that the antiviral activity of PD is independent of the 

viral envelope protein, we incubated PD with HIV lentiviruses pseudotyped with three 

additional envelope proteins derived from murine leukemia virus (MLV) (238), Sindbis 

virus (SINV) (239), and HIV (240). PD exhibits similar antiviral activity against all of 

these pseudotyped lentiviruses (Figure 4.2), indicating that the antiviral activity derives 

from interference with a viral structural component other than the envelope proteins. 

 

http://aac.asm.org/content/56/2/672.full#F1
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Figure 4. 1 PD is virucidal against HCVcc and pseudotyped lentivirus. (A, B) Effect on HCVcc infectivity. Jc1 Gluc HCVcc was incubated with PD or 0.5% DMSO at 37°C for 30 min, diluted 1000-fold and used 

to infect Huh-7.5 cells. The control samples contain virus and PD of the same final titers/concentrations, but with the virus and PD separately diluted 1000-fold prior to mixing. The infectivity was quantified by 

measuring the supernatant activity of the Gluc reporter 72 h post infection (A) and immunostaining for NS5A. (B) HCV-infected cells are brown after immunostaining. Inset in (A): chemical structure of PD. (C) 

Effect on extracellular VSV-Gpp and HCVcc. VSV-Gpp (harboring pV1-B, ~10
6
 TCID50/ml; undiluted) or Jc1 HCVcc (~10

4
 TCID50/ml, 10-fold diluted) was incubated with PD (150 M in 0.5% DMSO) or 0.5% 

DMSO in the presence of 7 ng/ml RNase A at 37C for 30 min. The viral RNA levels of the virus-PD and virus-DMSO mixtures were quantified by qRT-PCR, while the infectivity of the same mixtures was 

determined by spinoculation of Huh-7.5 cells and quantification of intracellular viral RNA by qRT-PCR 48 h later. All data are the mean  SD of 2 independent experiments carried out in duplicate.
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Figure 4. 2 PD inhibits infection by different pseudotyped lentiviruses. Lentiviruses 

(harboring pV1-Gluc provirus) pseudotyped with envelope proteins from Sindbis virus 

(SINVpp), murine leukemia virus (MLVpp), human immunodeficiency virus (HIVpp) 

and vesicular stomatitis virus (VSV-Gpp) were incubated with PD at 37°C for 30 min, 

and used to spinoculate BHK-J (SINVpp), Huh-7.5 (MLVpp, VSV-Gpp) and TZM-bl 

(HIVpp) cells at 4°C as described in Materials and Methods. Cells were washed 4 times 

with fresh medium to remove any unbound viruses and compound, and incubated at 

37°C/5% CO2. Viral infectivity was determined by measuring the supernatant activity of 

the Gluc reporter 48 h later. Due to differences in specific infectivity, SINVpp, MLVpp, 

HIVpp and VSV-Gpp virus stocks were diluted 5-, 50-, 10- and 100-fold, respectively, 

with fresh complete growth medium prior to compound treatment. The different virus 

dilutions ensured a similar final titer of the different viruses, as judged by the similar 

supernatant activities of the Gluc reporter after dilution. The error bars represent the 

mean  SD of 2 independent experiments performed in duplicate. 
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We next set out to evaluate whether PD treatment causes the lysis of the virus 

membrane/capsid. Supernatant containing lentivirus pseudotyped with vesicular 

stomatitis virus envelope glycoprotein (VSV-Gpp) or HCVcc was treated with PD or 

with the corresponding concentration of the solvent DMSO at 37°C for 30 min in the 

presence of RNase A prior to the quantification of viral RNA and infectivity. As shown 

in Figure 4.1C, treatment with 150 μM PD induces the RNase-mediated degradation of 

VSV-Gpp RNA by ~30-fold (3.7% remaining) and inhibits supernatant infectivity by 

~1,000-fold (0.1% remaining) relative to that of DMSO-treated virus. The significant 

fold difference between virus inactivation and virion lysis, which becomes more 

pronounced with shorter virus-PD preincubation times, suggests that virion lysis is not 

required for PD-mediated virus inactivation. A similar effect was observed with the 

virucidal peptide C5A, which showed ~100-fold more virion inactivation than  lysis 

(235). Little to no virion lysis was observed in 150 μM PD-treated HCVcc, despite the 

>10-fold inhibition of virus infectivity. A low but reproducible level of HCVcc virion 

lysis (27%) was observed (Figure 4.3) only when a higher concentration of PD (300 μM) 

was used in combination with a prolonged incubation at 37°C (90 min). Since PD 

appears to significantly inactivate but only poorly lyse HCVcc, we asked ourselves 

whether PD-treated HCVcc particles that resist lysis by PD retain their ability to attach 

to the surface of cells. The measurement of cell surface-associated virus via qRT-PCR 

revealed that PD-treated HCVcc binds to cells comparably to control DMSO-treated 

virus, suggesting that treatment with the compound inhibits a postattachment step for 

virions that remain intact (Figure 4.3). 

http://aac.asm.org/content/56/2/672.full#F1
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Figure 4. 3 Effect of PD on HCVcc virion integrity and attachment to cells. (A) PD only weakly disrupts HCVcc. HCVcc 

(10
4
 TCID50/ml) was incubated with PD (300 M), Triton X-100 (0.1%) or 1% DMSO in the presence of 7 ng/ml RNase A at 

37°C for 90 min. Isolation and quantification of viral RNA was carried out as described in Material and Methods. (B) HCVcc 

cell attachment assay. Jc1 HCVcc was partially clarified by four serial passages through a 300 kDa cutoff ultrafiltration 

membrane (Pall Life Sciences, Port Washington, NY). With each passage through the centrifugal unit, the retained virus was 

diluted in PBS prior to the next passage. HCVcc (10
4
 TCID50/ml) was pre-incubated with either freshly prepared heparin (1000 

g/ml; positive attachment inhibitor control) from porcine intestinal mucosa (Sigma, St. Louis, MO), 300 M PD, or 1% 

DMSO at 37C for 90 minutes under low-serum (<1%) conditions. In preparation for virus addition, Huh-7.5 cells seeded one 

day earlier at 3x10
5
 cells/well in 24-well plates were chilled on ice for 5 minutes. After aspirating the existing medium from 

the cells, 50 l of the pre-treated HCVcc was added per well and the virus/cell mixture was incubated at 4C for an additional 

3 h. Cells were subsequently washed 5 times with complete growth medium and incubated at 37C/5% CO2 for an additional 2 

h. Total RNA was harvested from the cells using the RNeasy Mini Kit (Qiagen, Valencia, CA). RNA levels of cell-bound 

HCVcc were determined via TaqMan qRT-PCR as described in Materials and Methods. Note: The observed slight decrease in 

attachment of PD-treated HCVcc relative to DMSO-treated virus is likely due to virion lysis (see (A)). The error bars represent 

the mean  SD of 2 independent experiments done in duplicate.
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Figure 4. 4 Effect of PD on SINV and DenV. (A) Sindbis virus was produced in cell 

culture by electroporation of BHK-J cells with in vitro-transcribed viral RNA. Briefly, 

plasmid carrying the genome of SINV (Toto1101) (247) was linearized by digestion 

with XhoI and 1 g of the linearized plasmid was used as a template for run-off 

transcription with SP6 RNA polymerase (Ampliscribe SP6 High-Yield Transcription 

Kit, Epicentre, Madison, WI). BHK-J cells were trypsinized, resuspended in cold DPBS 

to 2.8x10
7
 cells/ml and 400 l of this cell suspension was electroporated with 3 g  of in 

vitro-transcribed viral RNA using an ECM 830 electroporator (Harvard Apparatus, 

Holliston, MA) using the following settings: 750 V, 5 pulses, 99 us pulse length, 1 

second intervals. Virus-containing supernatant was collected 24 h post electroporation 

and stored at -80C. Virus titer was determined on BHK-J cells with 10-fold serial 

dilutions of sample, and then plaques were visually enumerated after crystal violet 

staining, as previously described (248). For determination of the inhibitory effect of PD 

404,182, cell culture-produced SINV was diluted 1000-fold in complete growth medium 

to 10
5
 pfu/ml and pre-incubated with 300 M PD 404,182 or 1% DMSO at 37C for 1 h. 

Pre-incubated virus was diluted a further 2000-fold and used to inoculate BHK-J cells 

for enumeration of plaques. (B) Serotype 2 New Guinea C strain Dengue virus was 

propagated in Vero cells. Dengue virus serially diluted in complete medium containing 

10% FBS was incubated with PD (10, 100 or 300 M) or DMSO at 37°C for 30 min and 

used to infect Vero cells in a standard plaque assay. Briefly, Vero cells were seeded in 

24-well plates at 10
5
 cells/well and inoculated with 100 L PD- or mock-treated Dengue 

virus at 37°C for 1 h. After removal of the inoculum, these cells were overlayed with 1 

ml of culture medium containing 0.5% methyl cellulous. Five days later, the cells were 

fixed and stained with crystal violet to visualize plaques. The error bars represent the 

mean  SD of 2 independent experiments done in duplicate. Data generated at Drexel 

University College of Medicine by Jinhong Chang. 
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The ability of PD to physically inactivate both VSV-Gpp and HCVcc, two very different 

viruses, combined with the observation that the compound does not seem to significantly 

distinguish between lentiviruses pseudotyped with different envelope proteins (Figure 

4.2), suggests that its antiviral activity is mediated through a common non-envelope 

protein structural component. 

To evaluate the antiviral specificity of PD, we tested the effect of the compound 

on two other enveloped viruses, SINV, an alphavirus (247), and Dengue virus (DenV), a 

flavivirus closely related to HCV (249). As shown in Figure 4.4, PD exhibits no 

significant inhibitory effect on the infectivity of SINV and DenV at 300 M. 

Interestingly, despite the observed absence of antiviral activity against SINV, PD was 

found to exhibit strong antiviral activity against lentivirus pseudotyped with SINV 

envelope protein (Figure 4.2), underscoring the non-specific nature of the antiviral effect 

on pseudotyped lentiviruses. The neutrality of PD towards SINV and DenV suggests that 

PD may exert its antiviral effect by specifically interfering with a structural feature 

common to HCVcc and pseudotyped lentiviruses but not present on SINV and DenV. 

4.4.2 PD inactivates a broad range of primary HIV isolates and related retroviruses 

Since PD strongly inactivates all the pseudotyped lentiviruses we tested 

regardless of the envelope protein (Figure 4.2), we asked ourselves whether PD also 

inactivates primary HIV and related retroviruses. 
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 Table 4. 1 PD 404,182 inhibits a broad spectrum of HIV and related viruses. 

Primary HIV-1 isolates PD, µM 

   DMEM
a
 Cervical Fluid

b
 

Isolate Clade 

Coreceptor 

usage IC50 (µM) IC90 (µM) IC50 (µM) IC90 (µM) 

92RW021 A R5 0.43 +/- 0.03 3.8 +/- 0.3 0.67 +/- 0.04 4.4 +/- 0.2 

92UG029 A X4 1.18 +/- 0.02 4.4 +/- 0.2 1.47 +/- 0.1 5.3 +/- 0.3 

92TH026 B R5 0.35 +/- 0.01 2.8 +/- 0.2 0.61 +/- 0.03 3.3 +/- 0.1 

92HT599 B X4 1.8 +/- 0.1 5.9 +/- 0.3 2.2 +/- 0.04 6.4 +/- 0.5 

93IN101 C R5 1.5 +/- 0.2 5.1 +/- 0.3 1.8 +/- 0.1 5.5 +/- 0.2 

98IN017 C X4 0.4 +/- 0.1 1.9 +/- 0.2 0.7 +/- 0.05 2.4 +/- 0.2 

92UG005 D R5 1.26 +/- 0.2 5.3 +/- 0.4 1.39 +/- 0.11 5.7 +/- 0.3 

92UG024 D X4 0.33 +/- 0.02 1.4 +/- 0.2 0.55 +/- 0.04 1.8 +/- 0.2 

92TH006 E R5 1.8 +/- 0.2 6.6 +/- 0.4 2.3 +/- 0.1 7.6 +/- 0.6 

93TH053 E X4 1.4 +/- 0.2 5.3 +/- 0.3 1.8 +/- 0.2 6.4 +/- 0.4 

93BR029 F R5 0.7 +/- 0.1 3.5 +/- 0.2 1.2 +/- 0.1 4.6 +/- 0.3 

93BR020 F X4 1.4 +/- 0.2 6.9 +/- 0.4 1.9 +/- 0.2 7.5 +/- 0.4 

RU132 G R5 0.6 +/- 0.2 3.1 +/- 02 0.9 +/- 0.2 3.9 +/- 0.5 

Jv1083 G R5 1.1 +/- 0.2 3.9 +/- 0.3 1.5 +/- 0.2 4.7 +/- 0.1 

       

Other retroviruses      

SIVmac251 32H  1.1 +/- 0.2 6.2 +/- 0.4   

SIVsyk1.2  1.9 +/- 0.3 5.4 +/- 0.2   

HIV-2CDC310342  1.8 +/- 0.2 4.7 +/- 0.2   

HIV-27312A  2.2 +/- 0.3 6.8 +/- 0.3   

 

Errors represent the SD of 2 independent experiments carried out in duplicate. 
aIC50 is measured with PD diluted in DMEM with 10% fetal bovine serum. 
bIC50 is measured with PD diluted in cervical fluids (pool of 4 donors). 

Data generated at Scripps Research Institute by Michael Bobardt and Dr. Phillipe 

Gallay.  
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Using CD4+ HeLa cells (TZM-bl cells (250)) that produce -galactosidase in response 

to HIV infection, we determined the antiviral activity of PD on 14 isolates of HIV-1 

which represent various subtypes and which use different coreceptors, either CCR5 (R5 

viruses) or CXCR4 (X4 viruses), to infect cells, as well as isolates of other retroviruses, 

including HIV-2 and simian immunodeficiency virus (SIV). Viruses were added to 

TZM-bl cells together with PD for 4 h, cells were washed, and infection was scored 48 h 

later. As shown in Table 4.1, PD effectively inhibits all the tested isolates of HIV and 

SIV at submicromolar to low-micromolar concentrations, on par with the potency of the 

virucidal amphipathic peptide C5A (234, 235). Similar anti-HIV potency was observed 

when PD was diluted in cervical fluids (Table 4.1). 

To probe the effect of PD on the structural integrity of HIV particles, we carried 

out a virus sedimentation assay. Purified HIV-1 (X4 NL4.3) (20 ng of p24 in PBS) was 

incubated in the presence or absence of PD (10 M) for 30 min at 37°C and loaded onto 

a 20 to 70% sucrose gradient. Each fraction was analyzed for the amount of HIV capsid 

and reverse transcriptase (RT) (Figure 4.5). Untreated virus (capsid and RT proteins) 

sediments at a density of 1.16 g/cm
3
. In contrast, viral capsid and RT relocate to the top 

of the gradient in PD-treated virus preparations, indicating that PD exerts its virucidal 

effect on HIV and retroviral particles by compromising virion integrity. This observation 

is consistent with the lysis of pseudotyped lentivirus shown in Figure 4.1C. 
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Figure 4. 5 PD destabilizes HIV-1 particles. NL4.3 virus (20 ng of p24) was incubated 

in the presence or absence of 10 M PD for 30 min at 37°C and loaded over a sucrose 

density gradient. Quantification of HIV-1 capsid and RT proteins was conducted by p24 

ELISA and exoRT assay, respectively. All data are the mean  SD of 2 independent 

experiments carried out in duplicate. Data generated at Scripps Research Institute by 

Michael Bobardt and Dr. Phillipe Gallay. 
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Figure 4. 6 PD does not lyse or directly interact with liposomal membranes. (A) The 

ability of PD (300 M), the virucidal peptide C5A (10 M), and solvent DMSO (1%) to 

permeabilize liposomes entrapping SulfoB was determined by a liposome dye release 

assay. A relative fluorescence intensity of 100 corresponds to SulfoB release resulting 

from liposome disruption with 0.1% Triton X-100. (B) VSV-Gpp (harboring pV1-Gluc, 

~1.7 x 10
7
 TCID50/ml) was diluted 500-fold in fresh complete growth medium and pre-

incubated with PD for 30 min at 37°C in the presence or absence of various 

concentrations of liposomes. The virus/PD/liposome mixtures were then used to 

spinoculate Huh-7.5 cells and infectivity was quantified by measuring the supernatant 

activity of the Gluc reporter 48 h post transduction. All data are the mean  SD of 2 

independent experiments carried out in triplicate. 
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4.4.3 PD does not lyse or interact with liposomal membranes  

Because the antiviral potency of PD is virus envelope protein independent, we 

investigated the possibility that PD exerts its anti-viral activity via the disruption of the 

viral lipid membrane. Cholesterol-phospholipid liposomes entrapping the fluorescent 

dye sulforhodamine B (SulfoB) were incubated with PD, C5A, or DMSO. The 

disruption of the liposomes is accompanied by the dequenching of the fluorescent dye, 

and it was quantified by measuring the resultant fluorescence release. PD does not 

interfere with SulfoB fluorescence (data not shown). C5A, a peptide derived from HCV 

NS5A protein that has been shown to lyse liposomes, was used as a positive control 

(235). As shown in Figure 4.6A, PD is unable to permeabilize liposomes after incubation 

for 5 min. No significant increase in fluorescence intensity was observed even after 

prolonged (up to 3 h) incubation with PD (Figure 4.7A).  

We next set out to determine whether PD associates with liposomal membranes 

without causing lysis. Since PD is not inherently fluorescent, we were unable to directly 

measure the interaction of PD with liposomes. Instead, we sought to determine whether 

the inhibitory effect of PD during infection can be reversed by the addition of liposomes. 

VSV-Gpp (3.4 × 10
4
 TCID50/ml) mixed with PD and increasing concentrations of 

liposomes was used to infect Huh-7.5 cells. The presence of liposomes was not able to 

reverse PD's antiviral effect (Figure 4.6B), suggesting that PD does not significantly 

interact with liposomes. In fact, liposomes of different lipid compositions were tested, 

but none were found to reverse the antiviral effect of PD (Figure 4.7 B and C). 
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Figure 4. 7 PD does not interact with liposomal membranes. (A) No significant 

increase in fluorescence intensity was observed even after prolonged incubation of 

liposome with PD. (B, C) The virucidal activity of PD is not attenuated by the presence 

of liposomes. Liposomes composed of (B) 70 mg POPC and 30 mg cholesterol or (C) 12 

mg POPC, 33 mg SM,  5 mg PE, 19 mg pl-PE, 30 mg cholesterol and 1 mg POPS (the 

same composition as HIV (251)) per 100 mg were incubated with PD and VSV-Gpp as 

described in Figure 4.6B. The error bars represent the mean  SD of 2 independent 

experiments done in duplicate. 

POPC: 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine; Cho: cholesterol; SM: 

sphingomyelin; PE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine; 

POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; pl-PE: 1-alkenyl,2-

acylglycerophosphoethanolamine; DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180

R
el

at
iv

e 
Fl

u
o

re
sc

en
ce

 In
te

n
si

ty

Time (min)

10uM C5A

1% DMSO

300uM PD
Add 
drug

0

20

40

60

80

100

120

0 0.5 20

V
SV

-G
p

p
 in

fe
ct

iv
it

y
 (%

 m
o

ck
)

PD (M)

HIV Composition

3mg/mL

1mg/mL

0mg/mL

0

20

40

60

80

100

120

0 0.5 20

V
SV

-G
p

p
 in

fe
ct

iv
it

y
 (%

 m
o

ck
)

PD (M)

3mg/mL

1mg/mL

0mg/mL

POPC + CholesterolB C

A

C5A 10 M

DMSO 1%

PD-300 M

http://avantilipids.com/index.php?option=com_content&view=article&id=216&Itemid=206&catnumber=850355


 

120 

4.4.4 The virucidal activity of PD is temperature-, time- and virus dilution-dependent  

To further elucidate the antiviral effect of PD, VSV-Gpp was incubated with PD 

(300 μM) or DMSO (1%) at various temperatures and for various times, and the amount 

of remaining viral RNA and the infectivity of the virus/compound mixtures were 

determined thereafter. The virion lysis activity of PD was found to be temperature 

dependent, as PD disrupts the virus following a 30-min incubation at 37°C but is less 

disruptive at 25°C and exhibits no measurable virion lysis at 4°C (Figure 4.8A), 

indicating that a minimum level of membrane fluidity is required for PD to lyse the virus 

membrane/capsid. A similar trend was observed for viral infectivity. PD rapidly 

inactivates pseudotyped lentivirus at 37°C as determined by the loss of viral RNA and 

infectivity (Figure 4.8B). More than 99.5% of the VSV-Gpp was inactivated within 5 

min when in contact with 300 μM PD. However, only ~40% of the virions were 

compromised to the point of genomic RNA release for the same 5-min virus-PD 

preincubation, indicating that virion lysis is not required for virus inactivation. 

The sensitivity of virus to PD is also virus dilution-dependent (Figure 4.9). The 

IC50s of PD for cell culture-produced VSV-Gpp virus stocks diluted 5- and 500-fold in 

fresh complete growth medium (DMEM plus 10% FBS) are 4.6 and 0.5 μM, 

respectively. Similarly, the IC50s for HIVpp (lentivirus pseudotyped with envelope 

protein from Bal.01 HIV) are 24.6 and 0.3 μM for undiluted and 100-fold-diluted virus.
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Figure 4. 9 The antiviral potency of PD against VSV-Gpp and HIVpp is virus dilution-dependent. VSV-Gpp (A) and 

HIVpp (B) (both harboring pV1-Gluc provirus) diluted in fresh complete growth medium and treated with PD at 37°C for 30 

min were used to spinoculate Huh-7.5 and TZM-bl cells, respectively, as described in Material and Methods. The titers for 5-

fold diluted VSV-Gpp and undiluted HIVpp were 3.4x10
6
 and 2.3x10

4
 TCID50/ml, respectively. The error bars represent the 

mean  SD of 2 independent experiments done in duplicate.
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Further studies demonstrated that PD is inactivated by a molecule(s) present in 

conditioned cell culture medium, as virus diluted in conditioned medium is significantly 

less sensitive to inactivation by PD than the same virus diluted in fresh complete 

medium (Figure 4.8C). To gauge the approximate size of the molecule(s) responsible for 

neutralizing the antiviral effect of PD, we fractionated conditioned medium from Huh-

7.5 cells by passage through ultrafiltration membranes with different pore sizes and 

found that the filtrate from a 3-kDa membrane is able to inactivate PD to the same extent 

as the unfiltered conditioned medium (Figure 4.8D). This result suggests that the 

molecule(s) responsible for neutralizing PD is relatively small (≤3 kDa). Analysis using 

liquid chromatography-mass spectrometry (LC-MS) demonstrated that PD is degraded 

(data not shown), possibly by reacting with a small molecule secreted by cells, rendering 

it less active against pseudotyped lentivirus. Although the presence of 10% fetal bovine 

serum appears to have no inhibitory effect on PD's antiviral activity (Figure 4.8C), 10% 

human serum yielded a significant (50-80 fold) increase in IC50 (Figure 4.10), suggesting 

the presence of PD-inhibitory factors in human serum in addition to cell culture medium 

conditioned by human cancer cells. It is worth noting that similar IC50 and IC90 values 

were obtained with PD diluted in DMEM or cervical fluids (Table 4.1), indicating that 

cervical fluids are free of molecule(s) that detectably inhibit the antiviral activity of PD. 
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Figure 4. 10 The antiviral potency of PD is inhibited by the presence of human serum. VSV-Gpp was diluted 500-fold in 

medium containing different concentrations of human serum, incubated with appropriately diluted PD at 37 °C for 30 mins, 

and used to spinoculate Huh-7.5 cells at 4 °C as described in Materials and Methods. Cells were washed 4 times with fresh 

medium and incubated at 37°C/5% CO2. Viral infectivity was determined by measuring the supernatant activity of the Gluc 

reporter 48 h later. The error bars represent the mean  SD of 2 independent experiments done in duplicate. 
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4.4.5 Antiviral effect of PD before, during, and after HIV-1 exposure and on cell-to cell 

transmission of HIV-1  

PD exhibits strong virucidal activity against pseudotyped lentivirus and primary 

HIV, raising the possibility of its use as a topical microbicide for preventing the sexual 

transmission of HIV-1. To shed light on this possibility, we investigated the antiviral 

effect of PD when the compound was added to cells at various time points relative to the 

addition of HIV-1. PD was added to TZM-bl cells at 1, 2, 4, or 16 h before the addition 

of HIV-1 (R5 JR-CSF) (1 ng of p24), together with the virus (time zero), and at 1, 2, 4, 

or 8 h after the addition of the virus, and infectivity was quantified 48 h after virus 

addition. As shown in Figure 4.11A, PD significantly inhibits HIV-1 infection when 

added together with the virus (time zero) and retains its full potency up to 8 h before the 

addition of the virus. However, PD loses its antiviral effect when added to cells after 

virus inoculation (Figure 4.11A, 1, 2, 4 and 8 h post treatment). This result suggests that 

PD is not able to disrupt intracellular virus. In addition, extended (>16 h) preincubation 

of PD with cells prior to virus inoculation also significantly reduces the compound's 

antiviral efficacy. 

Since HIV-1 can be transmitted either as a cell-free or cell-associated virus, we 

examined the effect of PD on cell-to-cell transmission. Specifically, we examined the 

capacity of PD to prevent the dendritic cell (DC)-mediated transmission of HIV-1. We 

took advantage of a replication-defective virus (NL4.3ΔEnv-eGFP) which does not 

encode Env but which has been pseudotyped with HIV-1 Env (These pseudotyped 

viruses infect cells because they contain Env). 
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Figure 4. 11 Effect of PD on HIV-1 infection. (A) Antiviral effect of PD before, 

during, and after virus exposure. PD (10 M) or just growth medium (DMSO control) 

was added to TZM-bl cells 1, 2, 4, 8 or 16 h before (negative values on the y axis), after 

(positive values on the y axis) the addition of HIV-1 (R5 JR-CSF) (1 ng of p24) or 

together (time zero) with the virus. Infection was quantified 48 h later via measurement 

of -galactosidase activity. (B) DC (10
5
 cells) were incubated for 2 h at 37°C with wild-

type NL4.3-eGFP (X4 virus) and NL4.3-BaL-eGFP (R5 virus) viruses or with the 

pseudotyped NL4.3∆Env-eGFP/gp160 X4 Env virus (25 ng of p24). PD (10 M) or 

control DMSO medium was added 2 h later. DC were washed 2 h after adding PD, 

Jurkat T cells (100,000 cells) were added for 3 days, and the percentage of infected 

Jurkat T cells (GFP+) was analyzed by flow cytometry. Error bars represent standard 

errors of duplicates from 2 independent experiments. Data generated at Scripps Research 

Institute by Michael Bobardt and Dr. Phillipe Gallay.  
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However, cells that have been infected by pseudotyped viruses cannot produce 

infectious viruses, because de novo viruses do not encode Env. Thus, the use of 

pseudotyped viruses allowed the analysis of the effect of PD on the transmission of 

infectious particles from DC to T cells independently of DC infection. DC were 

incubated with wild-type NL4.3-eGFP (X4 virus) and NL4.3-BaL-eGFP (R5 virus) or 

pseudotyped NL4.3ΔEnv-eGFP/gp160 Env viruses (25 ng of p24). Two hours later, at 

which time the attachment of the virus onto DC is completed (252), PD (10 μM) was 

added. After 2 h, DC were washed to remove both free virus and PD. To measure DC-T 

cell transmission, Jurkat T cells were added for 3 days, and the percentage of infected T 

cells (gated with an anti-CD3 antibody) was analyzed by FACS. Only pseudotyped 

viruses that have been rapidly transferred from DC to T cells through the virological 

synapse (independently of DC infection) can infect T cells. Indeed, progeny viruses from 

DC infected by pseudotyped viruses can no longer infect T cells because they do not 

encode Env. Because DC were washed before adding T cells, the T-cell infection by the 

pseudotyped virus observed in Figure 4.11B could arise only from pseudotyped particles 

that were transferred from DC to T cells. Importantly, PD added to DC prevents 

subsequent T-cell infection with the pseudotyped virus. This finding suggests that PD 

also can inactivate DC-bound virus, preventing HIV transmission from DC to T cells. 

These results suggest that, unlike neutralizing antibodies (246), PD blocks cell-to-cell 

transfer of HIV even when transmission occurs via the virological synapse. 
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4.5 Discussion 

In this study, we report a small molecule, PD 404,182 (PD), that renders 

extracellular cell culture-produced HCV, pseudotyped lentiviruses, and several primary 

isolates of HIV and SIV noninfectious. In the case of pseudotyped lentivirus and primary 

HIV, the antiviral activity of PD appears to be due to the physical disruption of the 

virion. The antiviral action of PD is very rapid, as >99.5% of the lentivirus becomes 

inactivated within 5 min of contact with 300 μM PD at 37°C. However, only ~40% of 

the lentiviruses were lysed in the same period, indicating that PD inactivates 

pseudotyped lentiviruses and HIV by physical disruption that does not necessitate the 

complete lysis of virions. PD exposure does not appear to significantly rupture HCV or 

inhibit its attachment to cells, even with 90 min of exposure at 37°C (Figure 4.3), despite 

the inactivation of extracellular virus, suggesting a subtle disruption of virions (e.g., by 

irreversibly interfering with membrane fluidity or curvature) that causes the inhibition of 

a postattachment step, such as endocytosis or fusion with the endosomal membrane. 

Encouragingly, PD exhibits very low cytotoxicity in several human cell lines (CC50 >300 

M; Figure 4.12). The selectivity index (CC50/IC50) of PD is >300 for HIV and >27 for 

HCV. PD was originally synthesized by Birck, el al. as an inhibitor of bacterial KDO 8-

P synthase (237) and was recently found to also affect angiogenesis (253) and 

mammalian circadian rhythm (254).  
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Figure 4. 12 Cytoxicity of PD 404,182 on different human cell lines. The cytotoxicity of PD was determined in the human 

cell lines HepG2 (hepatoma), HCT-8 (colon cancer), Huh-7 (hepatoma), Huh-7.5 (hepatoma), TZM (cervical cancer), PC3 

(prostate cancer), and 293T (embryonic kidney). Cells were seeded in 96-well flat bottom tissue culture plates at 1.8 x 10
4
 – 

3.2 x 10
4
 cells per well, where cell lines that divide faster were seeded at lower densities. After plating, cell culture 

supernatants were replaced with PD-containing medium, and cells were incubated at 37°C/5% CO2. At 12 h intervals post 

initial treatment with compound, cell culture supernatants were removed and replaced with freshly prepared PD diluted in 

complete growth medium. At 24 h (A) and 48 h (B) post initial treatment with PD, cell viability was determined using 

CellTiter-Glo reagent. Cell culture supernatants were removed and replaced with 50 µl CellTiter-Glo reagent diluted 1:10 in 

ddH2O. Microplates were then gently vortexed for 2 min and incubated at room temperature for an additional 8 min. Ten 

microliters of sample from each well was transferred to a white 96-well plate (Corning), and luminescence was measured in a 

Berthold Tristar LB 941 luminometer for 0.1 s. The error bars represent the mean  SD of 2 independent experiments done in 

duplicate.
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Intriguingly, despite exhibiting strong lysis of virions derived from the HIV 

capsid, PD does not directly lyse liposomes and shows no attenuation in antiviral activity 

when pre-incubated with liposomes, which is suggestive of little to no direct interaction 

with lipid membranes. The antiviral action of PD thus appears to be different from that 

reported for the amphipathic virucidal peptide C5A (234, 235), which lyses both virions 

and liposomal membranes, and the membrane-intercalating virucidal molecule LJ001 

(232), whose antiviral effect is attenuated by pre-incubation with liposomes. It is 

conceivable that PD disrupts the structural integrity of virions by selectively interacting 

with a feature of virions that involves an interplay between two or more structural 

components (e.g., lipid membrane and envelope protein/capsid). We also cannot rule out 

the possibility that PD interferes with other virion structural components not represented 

in the liposome model, for example, sites that are glycosylated or phosphorylated (255-

257).  

The virion lysis activity of PD is temperature-dependent, suggesting that a 

minimal level of viral membrane fluidity may be required to sufficiently compromise 

virion integrity to the point of viral RNA release. PD is inactivated by human serum and 

medium conditioned by human cell culture, possibly by interacting with one or more 

small molecules/peptides secreted by humans but not bovine cells. 

A striking feature of PD is its highly specific inactivation of certain viruses (only 

HCV, HIV and related retroviruses were found to be inactivated in this study) without 

strong association directly with or disruption of lipid membranes in general, as evident 

from our liposome studies. PD exhibited no significant antiviral effect on Dengue virus, 
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an enveloped flavivirus closely related to HCV, or cell culture-produced Sindbis virus, 

an enveloped alphavirus (Figure 4.4). Like HCV, Dengue virus acquires the viral 

envelope by budding into the endoplasmic reticulum lumen and is able to undergo 

intensive structural rearrangement in an infected cell (258). On the other hand, Sindbis 

virus, like HIV, buds from the plasma membrane and contains an envelope rich in 

cholesterol and sphingolipid molecules (259). We have yet to determine the antiviral 

effect of PD on other enveloped or non-enveloped viruses. The narrow target spectrum 

of PD as determined by our studies on a limited range of viruses, combined with the 

absence of non-specific lysis of or association with lipid membranes may, at least in 

part, account for the molecule’s very low cytotoxicity.  

Our studies bring to light some limitations of PD as an antiviral agent. Although 

PD effectively inactivates extracellular virus, it appears to be ineffective against 

intracellular virus, possibly due to a poor ability to enter cells and/or intracellular 

conversion to an inactive metabolite. Furthermore, human serum and the extended (>16 

h) preincubation of PD with cells prior to virus inoculation appears to significantly 

reduce its antiviral efficacy. Our observation that the antiviral effect of PD is suppressed 

by a molecule(s) secreted by cells into the surrounding growth medium may be 

responsible for the latter phenomenon. Since we found that PD retains its full antiviral 

activity in cervical fluids, the PD-neutralizing molecule(s) present in human serum and 

conditioned cell culture growth medium is likely physiologically irrelevant in the case of 

the development of PD as a topical microbicide for the treatment/prevention of HIV 

infection. 
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It is estimated that there are approximately 4 million new incidences of HIV 

infection each year, mostly transmitted through heterosexual intercourse (260). The 

development of a vaginal (or rectal) microbicide against HIV would represent a major 

stride towards slowing the global spread of HIV (261). Despite the poor antiviral 

efficacy of PD against intracellular virus and in medium conditioned by human cell 

growth, this compound possesses several desirable attributes that make it an attractive 

candidate anti-HIV microbicide. Most notably, PD (i) exhibits antiviral activity against a 

broad range of primary HIV-1 isolates, HIV-2, and SIV; (ii) retains full anti-HIV 

potency for 8 h when in contact with cells; (iii) is effective against both cell-free and 

cell-associated HIV and inhibits HIV transmission from DC to T cells; (iv) retains full 

anti-HIV potency in cervical fluids; and (v) irreversibly inactivates HIV predominantly 

through virion disruption with an activity that appears to be independent of specific virus 

envelope proteins. Drugs that target viral proteins mediating the replication of viral 

nucleic acids or virus attachment to target cells often foster the emergence of escape 

mutants (262). The antiviral action of PD on critical components of the virus other than 

specific virus envelope proteins makes the development of drug-resistant mutant viruses 

less likely.  

Several candidate anti-HIV microbicides exist (263-265), but only a handful 

exhibit an ability to strongly and irreversibly disrupt virions without being detrimental to 

cells (233, 235). PD 404,182 is an anti-HIV compound with a unique mode of action and 

represents a useful molecular scaffold for the generation of new anti-HIV-1 

microbicides. Finally, the observation that PD 404,182 is able to inactivate both HCV 
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and HIV and the unique antiviral action of this small molecule justify further studies of 

PD 404,182 and derivatives thereof to determine antiviral effects upon other enveloped 

and non-enveloped viruses.  
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CHAPTER V  

EVALUATION OF PD 404,182 AS AN ANTI-HIV AND ANTI-HSV MICROBICIDE
*
 

 

5.1 Overview 

PD 404,182 (PD) is a colorless and odorless synthetic compound that was 

previously found to compromise HIV integrity via interaction with a non-envelope 

protein viral structural component (Antimicrobial Agents and Chemotherapy, (2012), 

56:672-81). The present study evaluates the potential of PD as an anti-HIV microbicide 

and establishes PD’s virucidal activity towards another pathogen – herpes simplex virus 

(HSV). We show that the anti-HIV-1 IC50 of PD when diluted in seminal plasma is ~1 

µM, similar to the IC50 determined in cell culture growth media, and that PD retains full 

anti-HIV-1 activity after incubation in cervical fluid at 37°C for at least 24 hours. In 

addition, PD is non-toxic towards vaginal commensal Lactobacillus species (CC50 > 300 

µM), freshly activated human PBMC (CC50 ~ 200 µM) and primary CD4+ T-cells, 

macrophages and dendritic cells (CC50 > 300 µM). PD also exhibits high stability in  

PBS with little-to-no activity loss after 8 weeks at 42°C, indicating suitability to 

formulation for transportation and storage in developing countries. Finally, for the first 

                                                 

*
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687-697, DOI 10.1128/AAC.02000-13.                                                                                                      
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time, we show that PD inactivates herpes simplex virus (HSV) -1 and -2 at 

submicromolar concentrations. Due to the prevalence of HSV infection, the ability of PD 

to inactivate HSV may provide an additional incentive for use as a microbicide. The 

ability of PD to inactivate both HIV-1 and HSV, combined with its low toxicity, high 

stability and high barrier for resistance development in vitro, warrants additional studies 

for the evaluation PD’s microbicidal candidacy in animals and humans.  

5.2 Introduction 

Since its discovery in humans in 1981, HIV, the causative agent of AIDS, has 

infected over 60 million people worldwide and caused more than 25 million deaths (49). 

Although highly active antiretroviral therapy (HAART) can significantly reduce viral 

load and prolong patients’ life expectancy, these therapies are not curative (266). 

Worldwide, nearly half of all individuals living with HIV are women, most of whom 

acquire the virus after sexual intercourse with HIV-positive men. As receptive partners, 

women are twice as likely than their male counterparts to acquire HIV during sex (267). 

Despite the knowledge of effective prevention strategies, such as the “ABC” approach 

(abstinence, be faithful and use of condoms), the rate of HIV transmission remains high 

in developing countries (268).  Moreover, many women cannot reliably negotiate safe 

sex practices, leaving them vulnerable to sexually transmitted infections. Thus, the 

development of a safe, effective and acceptable topical microbicide capable of retarding 

or preventing the sexual transmission of HIV could empower women to take personal 

responsibility to prevent HIV acquisition from their infected partners (269).  
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Topical microbicides are agents able to inhibit the transmission of viral infections 

when applied to the vagina, penis and/or lower gastrointestinal (GI) tract via the rectum. 

An ideal anti-HIV microbicide should fulfill most or all of the following criteria: a) 

inhibit transmission of wild type and drug-resistant virus (270); b) stability and potency 

in seminal fluids and vaginal secretions; c) absence of toxicity to the vaginal epithelium 

and commensal bacteria flora; d) ability to interfere with multiple transmission modes 

(e.g. as cell-free vs. cell-associated virus) given unknowns in the exact mode of HIV 

transmission in vivo; e) possess a high genetic barrier to resistance development; and f) 

preferably act through a distinct mode of action from existing therapeutics (271). The 

last consideration derives from the presence of rare pre-existing drug-resistant viral 

variants, as well as drug-resistant HIV variants from patients who underwent previous 

anti-retroviral treatment, that can bypass the microbicidal barrier and transmit to target 

cells. Most current anti-HIV microbicide candidates in clinical trials are formulated 

based on existing anti-retroviral drugs and target well-studied viral proteins such as HIV 

protease (PR), reverse transcriptase (RT) and HIV envelope protein (Env) (270-274). In 

the CAPRISA 004 clinical trial involving 1% tenofovir gel, HIV-1 acquisition was 

reduced by ~38% in all woman and by 54% in woman who used the gel 80% or more of 

the time (117). Interestingly and unexpectedly, in the same trial, tenofovir gel was found 

to also inhibit HSV-2 acquisition by 51% (117). The recently FDA-approved anti-HIV 

prophylactic therapeutic, Truvada ®, comprises two nucleoside analogs, tenofovir and 

emtricitabine (120). Truvada offered a 44% reduction in HIV transmission during initial 

clinical trials (120). However, since both tenofovir and emtricitabine are currently used 
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in the clinic for HIV treatment as part of HAART drug cocktail, concerns were raised 

about the potential for the spread of drug-resistant variants when the drug is used by 

individuals with unknown or positive HIV status. This issue becomes more significant 

when the drug is used on a large scale, generating an extra incentive to identify new and 

specific anti-HIV microbicidal compounds with unique modes of action. In addition, a 

recently completed comprehensive HIV prevention trial among African women known 

as VOICE (Vaginal and Oral Interventions to Control the Epidemic) involving tenofovir 

failed to provide protection against HIV, underscoring the need for additional HIV-

prevention options that incentivize patient usage and adherence (270).  

Recently, our laboratory discovered a synthetic small molecule – PD 404,182 

(PD) – that possesses virucidal activity towards retroviruses, including HIV (156). PD is 

structurally and mechanistically distinct from existing HIV microbicides (270, 271, 275) 

and inhibits a broad range of primary isolates of HIV and SIV at submicromolar to 

micromolar concentrations with minimal cytotoxicity to human cells (CC50/IC50 > 300). 

Previously, we found that PD 1) is effective against a broad range of primary HIV-1 

isolates as well as HIV-2 (IC50 ~1 µM) in TZM-bl cells; 2) is fully active in cervical 

fluids; 3) exhibits low toxicity in  7 different human cell lines, including cervical cancer 

cells (CC50 > 300 µM); 4) is effective against both cell-free and cell-associated virus and 

inhibits the transmission of dendritic cell-associated HIV to T cells; 5) retains antiviral 

potency in cell culture for at least 8 hours prior to the addition of HIV to the cells; and 6) 

exhibits rapid antiviral action – HIV becomes >99% inactivated after a 5 min incubation 

with PD. In this study, we further evaluate the potential of PD as an anti-HIV 
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microbicide and show that PD 7) is stable and effective at both acidic and neutral pH for 

at least 48 h, 8) remains fully active in the presence of seminal plasma and after 

incubation in cervical fluids for at least 24 hours; 9) retains full potency when stored in 

PBS under acidic pH at 42°C for at least 8 weeks; 10) can be formulated in hydroxyethyl 

cellulose (HEC) gel; 11) is non-toxic to the vaginal commensal bacteria Lactobacilli 

(CC50 > 300 µM) and freshly activated PBMC (CC50 > 200 µM), 12) is active in PBMCs 

against HIV-1 clinical isolates representing different viral subtypes and tropisms 

(average IC50 = 0.55 µM); and 13) does not foster the emergence of resistant variants 

when HIV-1 positive TZM-bl cells are passaged at sub-inhibitory concentrations of PD 

in cell culture for 60 days. 

Finally, we show that PD effectively inactivates human herpes simplex virus type 

1 (HSV-1) and HSV-2 at submicromolar concentrations (200 nM). In the USA alone, 

16.2% of the population is estimated to be infected with HSV-2 (276). Infection with 

HSV-1 or -2 is an important risk factor for susceptibility to HIV-1 transmission in vitro 

(252). These new findings further underscore PD as a promising next-generation HIV 

microbicide. In addition, PD is a small molecule that can be easily synthesized (277) and 

thus can potentially be manufactured at low cost on a large scale for use in developing 

countries.  

5.3 Materials and methods 

5.3.1 Cells, media and reagents 

PD 404,182 was purchased from Sigma Aldrich (St. Louis, MO). PD was 

dissolved in DMSO to a final concentration of 30-40 mM, aliquoted and stored at -20°C. 
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Dulbecco's Phosphate-Buffered Saline (DPBS) and Penicillin-Streptomycin (pen-strep) 

were purchased from Thermo Scientific HyClone (Logan, UT) and Lonza (Walkersville. 

MD), respectively. Unless otherwise stated, the complete growth media for all cell 

culture work was DMEM containing 4500 mg/l glucose, 4.0 mM L-Glutamine, and 110 

mg/l sodium pyruvate (Thermo Scientific HyClone, Logan, UT) supplemented with 10 

% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) and 1X non-essential 

amino acids (Thermo Scientific HyClone, Logan, UT). 293T cells were from Life 

Technologies (Grand Island, NY). Vero cells were obtained from ATCC (Manassas, 

VA). The following reagents were obtained through the NIH AIDS Reagent Program, 

Division of AIDS, NIAID , NIH: TZM-bl from Dr. John C. Kappes, Dr. Xiaoyun Wu 

and Tranzyme Inc. ; HIV-1 isolates 92RW016, 92RW021, 92TH006, 92TH026, 

93TH053, 93BR020, 93BR021, 93BR029, 98IN017, 98IN022, 92UG001, 92UG005, 

92UG024, 92UG029, from The UNAIDS Network for HIV Isolation and 

Characterization (278); HIV-1 92HT599 from Dr. Neal Halsey; HIV-1 96USNG31 from 

Drs. D. Ellenberger, P. Sullivan, and R.B. Lal (279); HIV-1 RU132 from Dr. A. Bobkov 

and Dr. Jonathon Weber; HIV-1 93IN101 from Dr. Robert Bollinger; and HIV-1Jv1083 

from Dr. Alash’le Abimiku (280). All primary HIV isolates were amplified in activated 

human PBMCs. NL4.3 HIV was obtained from NIH AIDS Research and Reference 

Program. HSV-1 (Syn 17) and HSV-2 (333) were obtained from Prof. Theo Geijtenbeek 

(281) and amplified and titered in Vero cells. 
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5.3.2 Lentiviral pseudoparticle production 

Pseudotyped lentiviruses were produced by co-transfecting 293T cells with 

plasmids carrying HIV gag-pol (39), a provirus (pV1-B1 (156), pTRIP-Gluc (148) or 

NL4-3.Luc (AIDS Reagent Program)), and vesicular stomatitis virus glycoprotein (VSV-

G) (39). TransIT reagent (Mirus, Madison, WI) was used to perform the transfection 

following the manufacturer’s protocol. The supernatants containing the pseudoparticles 

were collected 48 h post transfection, filtered (0.45 μm pore size) and stored at -80°C 

until use. 

5.3.3 PD stability  

PD was diluted in buffered DPBS (pH 4, 6, 8, 10) or cervical fluids (pool of 3 

donors, 5-fold diluted in DPBS, Lee Biosolutions, St Louis, MO) to achieve a final 

concentration of 30 µM. DPBS was buffered to the desired pH using hydrochloric acid 

or sodium hydroxide. Diluted drug was incubated at the desired temperature for 0, 8, 24 

or 48 h. After the temperature incubation, the drug mixture was further diluted to 1, 0.1 

and 0.05 µM in complete growth media and used to incubate with VSV-G lentiviral 

pseudoparticles (VSV-Gpp, harboring either pTRIP-Gluc or NL4-3.Luc viral 

supernatant diluted 500-fold in complete growth medium) at 37°C for 30 minutes. Huh-

7.5 (2 x 10
4 
cells/well) or 293T cells seeded 24 h earlier were inoculated with the PD-

treated virus at 4°C for 2 h, thoroughly washed to remove unbound viruses and drug, 

replenished with complete growth media containing 1x pen-strep and returned to 37°C 

and 5% CO2. Viral infectivity was quantified 48 hours later by measuring supernatant 
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Gluc levels using the BioLux Gaussia Luciferase assay kit (New England Biolabs, 

Ipswich, MA) or Firefly Luciferase assay kit. 

 To study the long-term stability of PD, the compound was diluted to 5 µM in 

DPBS buffered at pH 4 and 7 using acetic acid (0.1%) and HEPES (2.5 mM), 

respectively, aliquoted and incubated at 4°C, room temperature or 42°C. Each week an 

aliquot was removed and tested for antiviral activity as previously described above. 

Similar experiments were conducted with PD (5 µM) or vehicle control (0.02 % DMSO) 

diluted in DPBS (adjusted to pH 4) containing 1.5% HEC. 

5.3.4 PD stability in seminal plasma  

TZM-bl cells (10
5 

cells/well) were seeded in a flat-bottom 96-well plate. The 

next day, PD dilutions were prepared at a 2X concentration in seminal plasma (pool of 

10 donors, 2-fold diluted in DMEM) and 100 µl of the 2X-concentrated mixtures were 

added to wells. Fifty microliters of a predetermined dilution of HIV stock (X4 NL4.3, 1 

ng of p24) was placed in each test well. The cultures were incubated at 37°C and 5% 

CO2 for 4 hours, washed with complete growth medium to remove unbound viruses and 

compound, replaced with fresh growth medium, and returned to the incubator. Infection 

was scored 48 h later by β-galactosidase activity. 

5.3.5 Anti-HIV efficacy evaluation in fresh human PBMC 

Testing of PD against HIV-1 in PBMCs was performed at Southern Research 

Institute as described previously (282, 283). Briefly, PHA-stimulated cells from at least 

two normal donors were mixed together, diluted in fresh medium to a final concentration 

of 1 x 10
6
 cells/ml, and plated in a 96 well round bottom microplate at 50 µl/well (5 x 
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10
4
 cells/well). Test drug dilutions were prepared at a 2X concentration in microtiter 

tubes and 100 µl of the 2X-concentrated mixtures were added to wells. Fifty microliters 

of a predetermined dilution of virus stock was placed in each test well (final MOI ~ 0.1). 

Separate plates were prepared identically without virus for drug cytotoxicity studies. The 

PBMC cultures were maintained for seven days following infection at 37°C, 5% CO2. 

After this period, cell-free supernatant samples were collected for analysis of reverse 

transcriptase activity (284), and compound cytotoxicity was measured by addition of 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS; CellTiter 96 Reagent, Promega) to the separate cytotoxicity plates for 

determination of cell viability. Wells were also examined microscopically and any 

abnormalities were noted. 

5.3.6 Lactobacillus toxicity testing  

Reference strains of L. crispatus and L. jensenii were obtained from the ATCC 

(Manassas, VA) and cultured on Columbia blood agar plates at 35°C in air enriched with 

6% CO2. Bacterial suspensions were prepared in saline or ACES buffer (285) to a 

density of 2 McFarland units (~ 2x10
8
 bacteria/ml), and exposed to PD (300 µM) or 

DMSO (10%) for 30 minutes at 37°C. After incubation, the cells were serially diluted in 

ACES buffer, pH 7.0 (Sigma-Aldrich, St. Louis, MO) and plated on blood agar plates to 

quantify colony forming unit per ml (CFU/ml) (285).  

5.3.7 Primary cells toxicity testing  

Primary cells were seeded at 6 x 10
3
 cells/well in flat bottom 96-well plates in 

triplicates in the presence of increasing concentrations of PD. We used the 
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permeabilization agent saponin (0.1%) as positive control. After 0, 7 and 14 days, the 

amounts of lactate dehydrogenase (LDH) in the cell culture media was quantified using 

the LDH Cytotoxicity assay kit (Cayman Chemical, Ann Arbor, Michigan). 

Cell death can occur either by apoptosis or by necrosis. Necrosis is accompanied 

by mitochondrial swelling and increased plasma membrane permeability, whereas 

apoptosis involves an articulated breakdown of the cell into membrane-bound apoptotic 

bodies. Lactate dehydrogenase (LDH) is a soluble cytosolic enzyme that is released into 

the culture medium following loss of membrane integrity resulting from either apoptosis 

or necrosis. LDH activity, therefore, can be used as an indicator of cell membrane 

integrity and serves as a general means to assess cytotoxicity resulting from chemical 

compounds or environmental toxic factors. Cayman’s LDH Cytotoxicity assay kit 

measures LDH activity present in the culture medium using a coupled two-step reaction. 

In the first step, LDH catalyzes the reduction of NAD+ to NADH and H+ by oxidation 

of lactate to pyruvate. In the second step of the reaction, diaphorase uses the newly-

formed NADH and H+ to catalyze the reduction of a tetrazolium salt (INT) to highly-

colored formazan which absorbs strongly at 490-520 nm. 

5.3.8 HSV infection assays  

Vero cells (2 x 10
5
 cells/well) were seeded in a 24 well plate. The next day, these 

cells were infected with increasing titers (MOI range 0.0001 – 1) of HSV-1 (Syn 17) or 

HSV-2 (333) in the presence of PD (2 µM and 200 nM) or control DMSO (0.01%) 

prepared in DMEM in the absence of serum. Two days post-inoculation, cells were 

harvested, fixed with 5% paraformaldehyde (PFA) in PBS, stained with antibodies 
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against HSV glycoprotein gD (Novus biological, Littleton, CO), and analyzed by flow 

cytometry (281). 

5.3.9 HSV sedimentation assay  

HSV was concentrated by loading 30 ml HSV-1-infected Vero cell supernatant 

on a 20% sucrose cushion and centrifuged in a SW28 rotor at 20,000 rpm for 1 h at 4 °C. 

Pelleted viruses (~20 µg/ml) were resuspended in 1 ml PBS, exposed to PD (200 nM) or 

DMSO (0.01%) for 30 min at 37 ˚C, and immediately loaded over a 20–70% sucrose 

density gradient (11 ml). After ultracentrifugation at 30,000 rpm for 24 h in a SW-41 T 

rotor at 4 °C, fractions of 1 ml were collected and analyzed for HSV gpB content by 

enzyme-linked immunosorbent assay (ELISA) using homemade rabbit polyclonal 

antibody. The density of each fraction from the sucrose gradient was determined by 

measuring the refractive index. 

5.3.10 Drug resistance study 

HIV-1 (NL4.3, 1 ng of p24, corresponding to approximately 1,000-5,000 

infectious units) was added to TZM-bl cells (1x 10
6
 cells). Fifteen minutes later, an 

aliquot of supernatant (50 µl) was collected for viral input normalization, and PD was 

added to the cells at 1, 5, or 10 µM. TZM-bl cells were split every two days for a period 

of 60 days. Fresh PD was added at each passage to maintain the same concentration 

throughout the 60 days. Before each passage an aliquot of supernatant (50 µl) was 

collected to determine amount of virus in cell culture via p24 ELISA (Perkin Elmer Life 

Sciences). 
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5.3.11 Statistical analysis  

Statistical significance between different samples was evaluated using Student’s 

t-test in Microsoft Excel. A P value of 0.05 was considered statistically significant. 

5.4 Results 

5.4.1 Efficacy of PD in seminal plasma 

Previously, we showed that PD effectively inhibits several isolates of HIV-1 and 

SIV in TZM-bl cells at submicromolar to low micromolar concentrations (IC50 ~1µM) 

when diluted in DMEM or cervical fluid (156). It has been shown that seminal plasma 

can enhance HIV infectivity (286, 287) and protect HIV against the action of 

microbicides (124, 288, 289). We therefore sought to test the antiviral activity of PD in 

seminal fluids.  Briefly, CD4+ CCR5+ HeLa cells (TZM-bl cells (250, 290-293)) that 

produce β-galactosidase in response to HIV infection were exposed to 14 different 

clinical and laboratory isolates of HIV-1, representing various subtypes that use either 

coreceptor CCR5 (R5 viruses) or CXCR4 (X4 viruses), in the presence of PD or DMSO 

prepared in 50% seminal plasma. After a 4 h incubation of the virus and compound with 

the cells, cells were washed and the infection was scored 48 h later by β-galactosidase 

activity. The IC50 and IC90 of PD against the tested subtypes of HIV-1 range from 0.42-

1.96 µM and 1.58-7.19 µM, respectively (Table 5.1). 
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Table 5. 1 PD’s anti-HIV potency in seminal plasma. 

HIV Isolate Clade Coreceptor usage IC50 (µM) IC90 (µM) 

92RW021 A R5 0.58 +/- 0.04 4.62 +/- 0.32 

92UG029 A X4 1.33 +/- 0.02 4.71 +/- 0.26 

92TH026 B R5 0.43 +/- 0.02 2.95 +/- 0.18 

92HT599 B X4 1.93 +/- 0.03 6.31 +/- 0.52 

93IN101 C R5 1.76 +/- 0.02 5.36 +/- 0.37 

98IN017 C X4 0.45 +/- 0.05 2.09 +/- 0.19 

92UG005 D R5 1.32 +/- 0.02 5.57 +/- 0.44 

92UG024 D X4 0.42 +/- 0.03 1.58 +/- 0.20 

92TH006 E R5 1.96 +/- 0.01 6.73 +/- 0.51 

93TH053 E X4 1.67 +/- 0.02 5.56 +/- 0.48 

93BR029 F R5 0.85 +/- 0.01 3.72 +/- 0.26 

93BR020 F X4 1.61 +/- 0.02 7.19 +/- 0.62 

RU132 G R5 0.74 +/- 0.01 3.28 +/- 0.22 

Jv1083 G R5 1.27 +/- 0.01 4.22 +/- 0.39 

 

TZM-bl cells (1 x 10
5
 cells/ml) were exposed to the indicated HIV isolates (1 ng of p24) 

in the presence of PD or DMSO diluted in 50% seminal plasma. Cells were washed 4 h 

post inoculation and fresh growth media was added. Infection was scored 48 h later by 

β-galactosidase activity. Errors represent the SD of 2 independent experiments carried 

out in duplicate. Data generated at Scripps Research Institute by Michael Bobardt and 

Dr. Phillipe Gallay. 
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These values are consistent with those of PD’s anti-HIV activity determined in DMEM 

(0.33-1.80 µM for IC50 and 1.4-6.6 µM for IC90) and in cervical fluid (0.61-2.30 µM for 

IC50 and 1.80-7.50 µM for IC90) (156), indicating that seminal plasma does not 

negatively impact PD’s anti-HIV activity. 

5.4.2 Efficacy and toxicity of PD evaluated using primary cells 

We previously evaluated the cytotoxicity of PD on 7 different human cell lines, 

including human cervical cells TZM-bl (HeLa) (156). In all cases PD showed minimal 

cytotoxicity (CC50 > 300 µM), giving a therapeutic index (CC50/IC50) of >300 for HIV-1. 

In the current study, freshly activated human PBMCs pooled from multiple donors were 

infected with 8 HIV-1 clinical isolates representing different viral subtypes and tropisms 

in the presence of different concentrations of PD. The supernatant reverse transcriptase 

activity was determined 7 days later and used as an indication of HIV infection. The 

toxicity of PD was determined under identical conditions in the absence of HIV infection 

and replication. As shown in Table 5.2, PD exhibited antiviral activity towards all the 

viral isolates tested, with an average IC50 of 0.55 μM (ranging from 0.14 μM with HIV-1 

96USNG31 to 1.18 μM with HIV-1 92UG029). A 48% reduction in cell viability was 

observed at the highest tested PD concentration (200 µM), resulting in a CC50 of ~200 

µM, indicating that PD is relatively non-toxic to freshly activated human PBMC. The 

therapeutic index of PD ranges between 170 (for HIV-1 92USNG31) and 1,015 (for 

HIV-1 RU132). To evaluate the toxicity of PD against other primary cells, increasing 

concentrations of PD were incubated with CD4+ T-lymphocytes, macrophages and 

dendritic cells for up to 14 days.  
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Table 5. 2 Toxicity and potency of PD in PBMCs. 

HIV Isolate Clade 

Coreceptor 

usage IC50 (µM) IC90 (µM) CC50 (µM) 

Therapeutic 

index 

92RW016 A R5 0.22 0.54 

~ 200 

916 

92UG029 A X4 1.18 4.67 170 

92HT599 B X4 0.55 1.92 364 

93BR021 B R5 0.6 4.26 334 

96USNG31 C X4/R5 0.14 1.62 1,425 

98IN022 C R5 0.4 1.48 506 

92UG001 D X4/R5 1.11 1.89 181 

RU132 G R5 0.2 0.53 1,015 

 

Freshly activated PBMCs (5 x 10
4
 cells/well) were infected with HIV isolates (MOI = 

0.1) in the presence of different concentrations of PD. Seven days after infection, 

supernatants were collected and analyzed for reverse transcriptase activity. Compound 

toxicity was determined using a MTS assay in the parallel uninfected plates. Error bars 

represent standard deviation of triplicate samples from one experiment. Data generated 

at Southern Research Institute by Marie K. Mankowski and Roger G. Ptak. 
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Figure 5. 1 PD exhibits minimum toxicity against primary human cells. Increasing concentrations were incubated with 

primary CD4+ T-lymphocytes, macrophages and dendritic cells at 37 °C and the amounts of lactate dehydrogenase (LDH) 

present in the culture media were quantified after 0, 7 and 14 days. Error bars represent the standard deviation from two 

independent experiments. Data generated at Scripps Research Institute by Michael Bobardt and Dr. Phillipe Gallay. 
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Table 5. 3 Toxicity of PD towards commensal bacteria Lactobacillus. 

Bacterial Strain 

Control 

(CFUx10
5
/ml) 

PD 

(CFU x10
5
/ml) 

Log(Control)-

Log(PD) 

Lactobacillus crispatus ATCC 33197 75.8 ± 0.19 72.6 ± 0.55 0.019 

Lactobacillus jensenii ATCC 25258 99.8 ± 5.72 75.3 ± 16.8 0.122 

Lactobacillus jensenii LBP 28Ab 105 ± 7.2 100 ± 0.124 0.021 

 

Triplicate bacterial suspensions (~2x10
8
 bacteria/ml) were separately exposed to PD 

(300 µM) or 10% DMSO for 30 minutes at 37°C. After incubation, each suspension was 

serially diluted and plated on blood agar plates to quantify colony forming unit per ml 

(CFU/ml). Errors represent standard deviations of triplicate samples. Data generated at 

University of Pittsburg by Dr. Bernard Moncla. 
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As shown in Figure 5.1, minimum toxicity was observed in all three types of primary 

cells (CC50 > 300 µM), further pointing to the extremely low cytotoxicity of PD.    

5.4.3 Toxicity of PD to normal vaginal flora Lactobacillus. 

Vaginal microflora is a key component of the innate immune environment and 

plays an important role in reducing the risk of HIV infection (294-297). The dominant 

bacterial species in healthy woman is Lactobacillus which produces lactic acid, 

hydrogen peroxide, bacteriocins and other antimicrobial substances that inhibit the 

growth of pathogenic organisms in the vagina (294-298). PD was evaluated for toxicity 

towards three strains of Lactobacillus normally found in the vagina. These strains were 

incubated with 300 µM PD or solvent DMSO (10%) at 37°C for 30 min and plated on 

blood agar plates to quantify colony forming units per ml (CFU/ml). Less than 1 log 

difference between the control and test CFU is considered non-toxic (285). As shown in 

Table 5.3, no growth inhibition was observed in all strains of bacteria after incubation 

with PD concentrated at 300 µM, indicating that PD is non-toxic to commensal 

Lactobacillus species. 

5.4.4 PD short-term stability 

We sought to determine the short-term stability of PD under conditions the 

compound is likely to encounter if used as a microbicide. The environment of the vagina 

is highly acidic (pH 3.5-4.9) due to the lactic acid produced by the commensal bacteria 

Lactobacillus (299). Exposure to seminal fluid (pH 7.2-8) (300) can raise the vaginal pH 

to 5.8-7.2  for several hours (301). Thus, we determined the stability of PD under 

different pHs at 37°C (Figure 5.2A).  
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Figure 5. 2 PD is stable and fully active at acidic pH and in cervical fluid. PD (30 

µM) or DMSO (10 %) was incubated at 37°C for 0, 8, 24 or 48 h in (A) DPBS  buffered 

at pH 4, 6, 8 or 10, or (B) 20% cervical fluid (diluent was DPBS). These PD samples 

were then diluted to the desired concentration in complete growth medium containing 

VSV-Gpp (viral supernatant diluted 500-fold), and the PD/virus mixtures were incubated 

at 37°C for 30 min and used to inoculate naïve Huh-7.5 or 293T cells at 4°C for 2 h prior 

to incubation at 37°C/5% CO2. The infectivity (virus entry into cells) was quantified by 

measuring the supernatant luciferase reporter activity 48 h post infection. Values and 

error bars represent the mean and standard deviation, respectively, of three independent 

experiments. Statistical significance was determined by Student’s t test (*, p < 0.01). 

Data generated at Scripps Research Institute by Michael Bobardt and Dr. Phillipe 

Gallay. 
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PD is highly stable in acidic buffer at pH 4 or 6 at 37°C. Since PD targets a non-envelop 

protein HIV-1 structural component (156), we used HIV-1 pseudotyped with VSV-G 

(VSV-Gpp) for these studies because this virus is easy to generate in high titers and can 

be handled in a BSL-2 environment. Basic pHs of pH 8 or 10 were observed to 

compromise PD’s activity, but only after extended exposure. For example, PD lost ~50% 

antiviral activity after incubation in pH 10 buffer for 48 h and lost ~20% activity when 

exposed to pH 8 for 48 h at 37°C. In contrast, no activity loss was observed for PD after 

24 h exposure to pH 8 buffer and minimal (~20%) activity loss was seen after 24 h 

exposure to pH 10. Taken together, these results indicate that PD will likely be stable in 

highly acidic cervical fluid and should remain active for at least several hours upon 

contact with seminal fluid.  

Since cervical fluid is a complex mixture, we next determined the stability of PD 

in cervical fluid. As shown in Figure 5.2B, no activity loss was observed after PD was 

incubated in 20% cervical fluid for 24 h at 37°C. These results indicate that once-a-day 

application of PD should be adequate to provide protection against HIV infection. The 

ability of PD to retain its antiviral potency at near-neutral pH suggests that PD may also 

be formulated as a rectal gel. 

5.4.5 PD long-term stability 

To evaluate long-term stability, PD was diluted in DPBS buffered at pH 4 or 7 

and incubated at 4°C, room temperature or 42°C. An aliquot was taken every week for 

determination of antiviral activity. As shown in Figure 5.3A, PD is extremely stable 

when stored in pH 4 buffer and retains full antiviral potency even after 8 weeks at 42°C. 
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Figure 5. 3 Long-term stability of PD. PD (5 µM) or DMSO (1.67 %) were diluted in (A) pH-adjusted DPBS  (pH 4 or 7) or (B) 1.5% HEC in DPBS (pH 4) and stored at the indicated temperature for 8 weeks. An 

aliquot was removed each week, diluted to the desired concentration in complete growth media containing VSV-Gpp (500-fold diluted), incubated at 37 °C for 30 min, and used to infect naïve Huh-7.5 cells at 4°C for 

2 h prior to incubation at 37°C/5% CO2. The viral infectivity was quantified by measuring the supernatant Gluc reporter activity 48 h post infection. Error bars represent the standard deviation of duplicate samples. 

Statistical significance was determined by Student’s t-test (*, p < 0.05).
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At pH 7, PD is stable only at room temperature and 4°C. Storage at 42°C and pH 7 

significantly compromised PD activity after 2 weeks. 

We also determined the stability of PD formulated in HEC gel at pH 4, as PD is 

not stable in the presence of HEC gel at pH 7 (data not shown). PD retains full potency 

at pH 4 in 1.5% HEC gel at 4°C and room temperature for at least 4 weeks. However, 

PD is not stable under same buffer conditions if stored at 42°C (Figure 5.3B) for more 

than 2 weeks, despite its stability in pH 4 DPBS buffer. Work is currently underway to 

determine other suitable formulation conditions for PD storage at high temperatures.  

5.4.6 PD inactivates herpes simplex virus (HSV)-1 and -2 

We investigated the ability of PD to inactivate HSV-1 and -2. Vero cells were 

infected with HSV-1 and HSV-2 in the presence of PD (2 µM and 0.2 µM) or DMSO 

(0.01%). These concentrations were selected based on their closeness to the in vitro IC50 

of PD against HIV-1. Infection was quantified by the cell surface expression of HSV gD. 

PD was found to inhibit both HSV-1 and HSV-2 infection at low to intermediate MOI 

(MOI from 0.0001 to 0.1) and exhibited partial protection at MOI 1 (Figure 5.4A). 

Similar results were obtained for both concentrations and the data from the lowest 

concentration is presented. 

Previously, we showed that PD compromises the integrity of retroviruses (156). 

We thus asked whether PD can disrupt the structure of HSV virions.  Purified HSV-1 

virions were resuspended in PBS and incubated with PD (0.2 µM) or DMSO (0.01%) for 

30 min at 37°C. 
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Figure 5. 4 PD is effective against HSV. (A) PD blocks HSV infection. Vero cells were 

seeded in a 24-well plate and infected with HSV-1 (Syn 17) or HSV-2 (333). PD (200 

nM) or control DMSO (0.01 %) was added immediately to the target cells after viral 

inoculation. Two days later, the cells were harvested, stained with antibody against HSV 

glycoprotein gD and analyzed by flow cytometry. Error bars represent standard 

deviation of triplicate samples. Results are representative of two independent 

experiments. (B) PD Destabilizes HSV particles. Concentrated HSV (~20 µg/ml) was 

incubated with DMSO (0.01 %) or PD (200 nM) for 30 min at 37˚C and the mixture was 

immediately loaded over a 20–70% sucrose density gradient. The amount of HSV 

glycoprotein gpB in each fraction was analyzed by ELISA. The sucrose gradient density 

of each fraction was determined by measuring the refractive index. Results are 

representative of 2 independent experiments. Error bars represent the standard deviation 

of triplicate samples. Data generated at Scripps Research Institute by Michael Bobardt 

and Dr. Phillipe Gallay. 
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After the incubation, the mixture was immediately loaded over a 20-70% sucrose density 

gradient and centrifuged at 30,000 rpm in a SW41 T rotor for 24 hours. Each gradient 

fraction was analyzed for HSV glycoprotein gpB by ELISA. DMSO-treated HSV-1 

sediments at a density of 1.24 g/cm
3
. However, with PD-exposed HSV, all gpB 

distributed to the top of the gradient (Figure 5.4B). This result indicates that, like with 

HIV-1, PD inactivates HSV by compromising virion structural integrity.  

5.4.7 HIV-1 does not acquire resistance to PD after 60 days 

With the high rate of HIV mutation, an ideal microbicide should have a high 

threshold for viral resistance development. To gauge the ability of HIV-1 to acquire 

resistance to PD, HIV-1-positive TZM-bl cells were passaged in the presence of 1, 5 and 

10 µM PD for 60 days. No PD-resistant variants could be detected in the course of this 

experiment (Figure 5.5). The inability of HIV-1 to escape PD inactivation further 

underscores the potential of PD as an HIV-1 microbicide. We chose TZM-bl cells for the 

resistance study because these cells can be passaged for an extended period and remain 

viable for months even in the presence of viral replication. A similar experiment was 

performed using freshly activated human PBMCs (2 donors) and no emergence of viral 

resistance was observed (data no shown). However, HIV-1 infected PBMCs were 

cultured for only 12 days because significant cell death was observed after this period. 

We also cultured HSV-1 infected Vero cells in the presence of sub-inhibitory 

concentrations of PD for 2 weeks and were not able to detect any viral capsid by ELISA 

in the supernatant (data not shown). 
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Figure 5. 5 PD does not foster the emergence of escape mutants. HIV-1 (1 ng of p24 

of NL4.3) was added to TZM-bl cells (1 x 10
6
 cells). Fifteen minutes later, an aliquot of 

supernatant was collected for viral input normalization, and PD was added to cells at the 

indicated concentrations. Cells were then split every two days for a period of 60 days. 

Fresh PD was added at each passage to maintain the same concentration throughout the 

60 days. Before each passage an aliquot of supernatant was collected to determine 

amounts of virus in cell culture via p24 ELISA. Error bars represent standard deviations 

of triplicate samples. Results are representative of three independent experiments. Data 

generated at Scripps Research Institute by Michael Bobardt and Dr. Phillipe Gallay. 
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5.5 Discussion 

Four major types of vaginal HIV microbicides have been developed with varying 

degrees of clinical success: surfactants, entry inhibitors, vaginal milieu protectors and 

reverse transcriptase inhibitors (270). Surfactants non-specifically disrupt membranes 

and were the first molecules to enter clinical trials as candidate HIV microbicides.  

However, these surfactants were found to be toxic to the cervicovaginal mucosa and 

resulted in an increased rate of HIV infection in Phase III clinical trials (302, 303). 

Entry inhibitors prevent HIV from binding to or entering cells and encompass a wide 

range of molecules, including CCR5 inhibitors (304-306) and fusion inhibitors (307, 

308). Many polyanions have also been developed to inhibit HIV entry and some have 

been extensively tested in Phase III trials, including PRO 2000 (309), cellulose sulfate 

(112) and Carraguard (310). However, most of these candidates have failed to show in 

vivo efficacy in preventing HIV transmission, partly due to the complexity of the 

mucosal environment as well as the interference of semen (124, 311). Vaginal milieu 

protectors are designed to maintain or enhance the protective acidic pH of the vaginal 

environment through the use of strong buffering agents, such as Carbopol 974 (312), or 

genetically engineered Lactobacilli (313). An agent that is being considered for HIV 

microbicidal applications in clinical trials, tenofovir, is a nucleotide analogue that 

inhibits the reverse transcriptase of HIV (120). A 1% tenofovir gel applied before and 

after sexual intercourse was 39% effective overall in preventing HIV infection in 

women, and 54% effective among highly adherent users of the gel (117). These data are 
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encouraging, but nevertheless show that the efficacy of tenofovir microbicidal therapy 

alone is limited. 

In contrast to existing anti-HIV microbicidal candidates, PD inactivates HIV via 

a unique, possibly novel mechanism. PD is the only non-surfactant small molecule 

reported to physically compromise the integrity of HIV, thus rendering the extracellular 

virus non-infectious (Tables 5.1 and 5.2). In addition, PD exhibits low toxicity toward 

several human cell lines (156), freshly activated PBMCs (Table 5.2), primary CD4
+
 T-

lymphocytes, macrophages and dendritic cells (Figure 5.1) and normal vaginal flora 

(Table 5.3). It should be noted, nevertheless, that we have yet to test the cytotoxicity of 

PD in conditions that mimic the high level of basal inflammation typically seen in 

developing countries. For example, it has been reported that increased levels of immune 

activation were observed in the genital tract of healthy young women from sub-Saharan 

Africa (314). 

The antiviral potency of PD is not affected by the presence of seminal plasma 

(Table 5.1) or exposure to cervical fluid at 37°C for 24 hours (Figure 5.2B), indicating 

the potential for a once-a-day application of PD for HIV prophylaxis. The very high 

stability of PD in acidic pH at both room temperature and 42°C, and in neutral pH at 

room temperature (Figure 5.3A), indicate that PD can be easily formulated for 

convenient transportation and storage in developing countries lacking refrigeration 

facilities. In the current study, we evaluated the stability of PD when formulated in 1.5% 

HEC gel. Surprisingly, PD is not stable when formulated in HEC gel at pH 7 (data not 

shown), although PD formulated in HEC gel at pH 4 retains full potency after 4 weeks at 
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ambient temperature (Figure 5.3B). Studies are underway to investigate the reason for 

PD’s instability in HEC gel at neutral pH. One hypothesis we are exploring is that PD 

reacts with the deprotonated hydroxyl group in HEC. 

Genital herpes has been found to increase the vulnerability to HIV-1 infection by 

compromising the integrity of the mucosal barrier (315-317). Most genital herpes is 

caused by HSV-2 infection, although in some cases it can also be caused by HSV-1 

(318-320). In one study, 50-90% of HIV-1 infected patients tested seropositive for HSV-

2 (321) and HSV-2 infection was found to increase the rate of HIV-1 acquisition by 3-

fold (319). Due to the synergy between HIV and HSV, a topical microbicide with dual 

action against both pathogens may more effectively reduce HIV transmission. 

The ability of PD to inactivate HSV in addition to HIV is a big plus. Genital 

herpes is one of the most prevalent sexually transmitted diseases worldwide and is the 

common cause of genital ulcers (322). Ulcerations can disrupt the mucosal barrier and 

abrogate the protective barrier function of the epithelium, allowing HIV-1 to reach the 

sub-epithelial dendritic cells susceptible to HIV-1 infection (323) and increasing the risk 

of HIV acquisition (324). Currently, there is no approved vaccine for HSV and 

therapeutic treatment for genital herpes involves repeated dosing of antiviral drugs. 

Development of topical microbicides that are effective against both HIV and HSV may 

provide a more effective strategy to prevent HIV-1 infection/transmission. We showed 

that 0.2 µM PD physically compromises the integrity of extracellular HSV and 

effectively blocks the infection of both HSV-1 and -2 in vitro, in a manner similar to 
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PD’s action on HIV-1 (Figure 5.4). It is tempting to speculate that the same target 

molecule(s) may be present on both viruses.  

In summary, we demonstrated that the virucidal small molecule PD possesses 

several attributes that lend support to its use as a microbicide for combating HIV spread. 

These attributes include full activity and high stability in fluids and pHs encountered 

physiologically, lack of toxicity to freshly activated human PBMC and vaginal 

commensal bacteria, and activity towards another virus – HSV – that exacerbates the 

pathogenicity of HIV. Future studies will focus on (1) formulation of PD into a topical 

form that promotes high PD activity and stability, and (2) evaluation of the toxicity and 

efficacy of PD in animals and humans.  

 

 

 

 

 

 

 

 

 

 



 

163 

CHAPTER VI  

CONCLUSIONS 

 

Hepatitis C virus (HCV), Human Immunodeficiency virus (HIV) and Herpes 

Simplex virus (HSV) remain serious health problems lacking an effective cure. Although 

current therapies have played substantial roles in the fight against these pathogens, most 

antivirals are directed to virally encoded proteins fostering the development of resistant 

mutants overtime, and reducing the likelihood of viral eradication. Progress in defining 

the molecular mechanism of HCV, HIV and HSV entry raised the opportunity to identify 

entry inhibitors that target molecules indispensable for viral entry not encoded by the 

viral genome. Such inhibitors have the potential to prevent initial infection, limit the 

expansion of the infected cell reservoir, complement current antiviral therapies and in 

the case of HCV, reduce the extent of re-infection after liver transplantation. In line with 

this concept, we characterized three potential inhibitors of viral entry.  

The first compounds evaluated belong to the phenothiazine family. Although 

phenothiazines are known for their use as antipsychotic drugs, antiviral activity has been 

reported for these compounds. Our studies shed light on the mechanism of action of 

phenothiazines as inhibitors of HCV entry and showed, for the first time, that alteration 

of target host cell membrane fluidity can inhibit HCV entry. Specifically phenothiazines 

were shown to suppress viral entry by intercalating into cholesterol rich domains of 

target cells and reducing viral-host fusion. Our results show that targeting an entry step 

independent of viral proteins may also be an effective way to retard the development of 
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drug resistance and inhibit HCV deletion mutants, found to reduce therapy effectiveness 

of chronic HCV patients.  

The second candidates studied are two members of the H1-anthistamines 

currently used in clinic for treatment of allergy-related symptoms. Both compounds were 

found to block a post attachment stage of HCV entry at a time point prior to viral fusion 

with the plasma membrane. The inhibition efficiency was dependent on virion and host 

cholesterol content similar to ezetimibe, an NPC1L1 antagonist. Most importantly, 

hydroxyzine can reach plasma levels higher than its IC90 in cell culture and is currently 

used to alleviate adverse dermatological effects experienced by HCV patients 

undergoing treatment with telaprevir, justifying further studies to evaluate this molecule 

for HCV therapy. 

Lastly, we evaluated the antiviral activity of PD 404,182 (PD) as an alternate 

treatment for HCV-HIV coinfected patients as well as its potential use as an anti-HIV 

microbicide. PD displayed a unique mode of action by inactivating virions directly 

through the interaction with a structural molecule not encoded by the viral genome. For 

HIV and HSV, this interaction is later accompanied by irreversible disruption of the 

virion rendering the particle non-infectious. Moreover, PD displayed high stability in 

environments encountered by microbicides and no adverse effects against commensal 

bacteria or freshly activated PBMCs. Taken together, these attributes make PD a 

promising next-generation HIV microbicide. 
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