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ABSTRACT 

 

 The purpose of this research is to develop a Fault Detection and Isolation (FDI) 

system which is capable to diagnosis multiple sensor faults in nonlinear cases. In order to 

lead this study closer to real world applications in oil industries, the system parameters of 

the applied system are assumed to be unknown. In the first step of the proposed method, 

phase space reconstruction techniques are used to reconstruct the phase space of the 

applied system. This step is aimed to infer the system property by the collected sensor 

measurements. The second step is to use the reconstructed phase space to predict future 

sensor measurements, and residual signals are generated by comparing the actually 

measured measurements to the predicted measurements. Since, in practice, residual 

signals will not perfectly equal to zero in the fault-free situation, Multiple Hypothesis 

Shiryayev Sequential Probability Test (MHSSPT) is introduced to further process those 

residual signals, and the diagnostic results are presented in probability. In addition, the 

proposed method is extended to a non-stationary case by using the 

conservation/dissipation property in phase space. 

 The proposed method is examined by both of simulated data and real process data to 

support that it is capable of detecting and isolating multiple sensor faults in nonlinear cases. 

In the section of simulation results, a three tank model is introduced for generating 

simulated data. The three tank model is modeled according to a nonlinear laboratory setup 

DTS200. On the other hand, in the section of experimental results, the real process data 

collected from a sugar factory actuator system are used to examine the proposed method.  
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 According to our results obtained from simulations and experiments, the proposed 

method is capable to indicate both of healthy and faulty situations. These results further 

confirm that the proposed method is able to deal with not only simulated data but also real 

process data. 
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1. INTRODUCTION  

 

1.1 Importance and Preliminary Background 

Fault detection and diagnosis is the central component of abnormal event 

management (AEM) [1-3]. Because of the increasing needs for higher system performance, 

product quality, human safety, and cost efficiency, fault diagnosis systems are applied in 

diverse industrial fields, such as petrochemical and petroleum industries, robotics, and 

automotive/aerospace systems [4, 5]. According to the International Federation of 

Automatic Control (IFAC), a fault is defined as an unpermitted deviation of at least one 

characteristic property or parameter of the system from the acceptable/usual/standard 

condition [6-8]. If the unpermitted deviation grows worse with time, a fault may result in 

abnormal events or accidents. According to statistics from Abnormal Situation 

Management Consortium (ASM) in 2007 and 2010, abnormal situations cost the process 

industries billions of dollars per year in the United States [9]. In addition to the monetary 

losses, there has been an increasing interest due to human safety. A well-known case is 

the explosion caused by a gas leak at the Kuwait Petrochemical’s Mina Al-Ahmedi 

refinery in June of 2000 [1]. The Indian Express Newspaper reported that at least fifty 

workers were killed or injured in this explosion in July of 2000. Another explosion with 

the same reason was reported by the Kuwait National Petroleum Corporation (KNPC) in 

Oct of 2011, and four workers were killed in this accident. In United States, a well-known 

example is the Texas City Refinery explosion in March of 2005 killing fifteen workers 

and injuring near two hundred employees [10]. This explosion was occurred at an 
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isomerization process unit at BP’s Texas City refinery. Moreover, according to the reports 

from both BP and Chemical Safety and Hazard Investigation Board (CSB), “Inoperative 

alarms and level sensors” is one of BP’s technical failings which leads to this tragedy [10]. 

Although the catastrophic events are generally rare happened, minor accidents are very 

common [1]. These minor accidents result in many workplace injuries which is a serious 

issue for the society. Based on the latest statistics from the US Bureau of Labor Statistics, 

nearly 3 million nonfatal workplace injuries were reported in 20111. Furthermore, these 

workplace injuries also cause an economic burden to our society; the National Safety 

Council reported that workplace injuries and illness cost U. S. government more than 

US$39BN in 2010 due to 1.7MM injuries in low wage occupations2. The above issues can 

be relieved if one can diagnose a fault before it becomes an accident. Therefore, fault 

detection and diagnosis plays an important role for both reasons of economics and human 

safety. 

Before proceeding with the discussion on fault detection and diagnosis, there are 

several basic concepts needed to be defined. These concepts were initially introduced by 

Willsky in 1976 and developed in both Ding’s and Gertler’s works [4, 11, 12]. Generally, 

there are three parts in a fault diagnosis system: detection, isolation, and identification [4, 

12]. Detection is to indicate the occurrence of faults, that lead to undesired or intolerable 

behavior in the process; isolation is to determine the exact location of faults; identification 

is to determine the type, magnitude and cause of faults [4, 11]. Depending on the 

                                                

1 The occupational injuries and illness report is released in October 2012 by U.S. Department of Labor. 
2 The related statistics is released in December 2012 by the University of California at Davis. 
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performance of fault diagnosis systems, there are FD (for fault detection) or FDI (for fault 

detection and isolation) or FDIA (for fault detection, isolation and analysis) systems [4].  

After defining the necessary functions in a fault detection and diagnosis system, this 

paragraph is to classify different types of FDI systems from a methodological perspective. 

These works were started from Willsky in 1976 [11], and continuously updated by 

Venkatasubramanian, Gertler, Ding, and Hwang et al.. among others [1-4, 8, 12]. The 

following classifications are mainly based on Ding’s work but combined with others. FDI 

methods can be roughly classified into four different schemes: hardware redundancy based 

fault diagnosis, signal processing based fault diagnosis, plausibility testing, and 

software/analytical redundancy based fault diagnosis3 [4].  

Hardware redundancy based fault diagnosis is implemented by constructing identical 

(redundant) hardware components. The main idea of hardware redundancy based fault 

diagnosis is shown in Fig. 1(a). A fault is detected by the difference of the output of the 

given process component and that of the identical hardware component. The advantages 

of this scheme are its high reliability and direct fault isolation. An example of hardware 

redundancy is the duplicate power supply for an online server. The duplicated power 

supply is used to generate hardware redundancy for fault detection and replace the original 

power supply when it is faulty. However, the main disadvantage is obviously due to its 

high costs. In addition, this scheme may complicate the original problem in some 

applications. To illustrate this point, here we use the unit operation of the product 

                                                

3  In Venkatasubramanian’s and Gertler’s works, they classify signal processing based schemes and 
plausibility tests to softeware/analytical redundancy based fault diagnosis. 
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condenser in Tennessee Eastman process as the example shown in Fig. 1(b). The purpose 

of the unit operation is aimed to cool down the temperature of the input product flow in 

order to transfer the status of the product from vapor to liquid [13]. In this unit operation, 

there are two inputs: product flow and cooling water flow. The input product flow is given 

from the previous unit operation, and the input cooling water flow rate is adjusted 

according to the temperature of product outflow. To implement hardware redundancy, the 

components used to adjust cooling water flow rate are duplicated shown as Fig. 1(c). 

Similar to the previous example, the duplicated components serve as the reference for fault 

detection and the replacement of the original components when it is faulty. However, in 

order to achieve these purposes, the boundary and initial conditions of the heat conduction 

problem between cooling water flow and product flow will become more complicated so 

that the original problem of adjusting cooling water flow rate will also become more 

difficult. 

  

 

Figure 1(a). The hardware redundancy based fault diagnosis scheme. (Adapted from [4]) 
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Figure 1(b). The unit operation of the product condenser in Tennessee Eastman process. 
(Adapted from [13]) 
 
 
 

 

Figure 1(c). Implementation of hardware redundancy in the unit operation of the product 
condenser in Tennessee Eastman process. (Adapted from [13]) 
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The second scheme is plausibility tests which are to check some simple physical laws 

such as the relations between mass, velocity, and acceleration in an automotive system. 

This scheme is based on the assumption that a fault will lead some components violating 

the underlying physical laws. The drawbacks of this scheme are that its efficiency is 

limited in a complex process [1-4]. The scheme of plausibility testing is shown in Fig. 2. 

 

 

Figure 2. The scheme of plausibility testing. (Adapted from [4]) 
 
 
 

Signal processing based fault diagnosis is based on the assumption that the 

information of faults will be carried by some process outputs and presented in the form of 

symptoms. This scheme is to detect faults by checking those symptoms via time domain 

functions such as magnitude, mean values, and trends, or frequency domain functions like 

spectral power densities [4]. The efficiency of the signal processing based schemes is 

considerably limited for the processes with a wide range of operations due to the possible 

variation of input signals. The signal processing based scheme is shown in Fig. 3. 
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Figure 3. The signal processing based fault diagnosis scheme. (Adapted from [4]) 
 
 
 

The last type of FDI is software/analytical redundancy based fault diagnosis. The 

structure of this scheme is to replace the hardware redundancy component in Fig. 1(a) by 

a process model which is implemented in a computer. The structure of this scheme is 

shown in Fig. 4. The process model is a quantitative or qualitative description of the 

process dynamics of the respective component [1-4]. Venkatasubramanian et al.. further 

classify those approaches which construct the process model with a priori knowledge into 

model-based methods and process history based (data-driven) methods, which are referred 

in the absence of a priori knowledge of the process [1-3]. After obtaining the process 

model, residual signals are generated online, and the knowledge of faults is obtained by 

analyzing the residual signals.  
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Figure 4. The software/analytical redundancy based fault diagnosis scheme. (Adapted 
from [4]) 
 
 
 

In the field of fault diagnosis, sensor faults, actuator faults, and system parameter 

faults are the three main direction for developing fault diagnosis systems [4]. This 

dissertation is focused in the direction of sensor faults and aimed to develop a novel FDI 

system to overcome nonlinear limitations of current methods. The rest of this dissertation 

is organized as follows. The rest of Section 1 is aimed to illustrate the problem statement 

of sensor fault detection and isolation. A comprehensive literature review is given in the 

Section 2, and the proposed approach is presented in the Section 3. In the Section 4, the 

simulation results are shown, and the experimental results are shown in the Section 5. In 

the end, conclusions are given in the Section 6. 

 

1.2 Problem Statement 

To further understand the problem of sensor fault detection and isolation, the effect 

of sensor faults and different fault types will be illustrated in this subsection. 
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1.2.1 Effect of Sensor Faults 

Consider the Continuous Stirred Tank Heater (CSTH) proposed by N. F. Thornhill 

et al.. [14]. The configuration of the CSTH is redrawn and revised with two sensors, one 

actuator, and one controller in order to illustrate the following concepts shown in Fig. 5. 

The pilot plant is a stirred tank experimental rig to mix hot and cold water, and then heat 

the mixed water using steam through a couple of heating coils and drain the mixed water 

from the tank trough a long pipe. The temperature in the tank is assumed to be the same 

as the outflow temperature, assuming a well mixed situation. There are three manipulating 

variables used to actuate the CSTH: 1. hot water flow; 2. hot water temperature (actuator); 

3. cold water temperature. In addition, four variables are involved in the CSTH: 1. outflow 

water temperature (sensor 1); 2. cold water flow (sensor 2); 3. tank level; 4. the heat 

released by heater. The controller is added in order to control the outflow water 

temperature to be a target temperature.  
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Figure 5. The continuous stirred tank heater (CSTH). (Adapted from [14]) 
 
 
 

Assume a Sensor 1 fault occurs with a positive drift, so the measurement of Sensor 1 

is higher than the “real” outflow water temperature. This fact will mislead the control 

strategies applied on the CSTH. Then, these control strategies will reduce the hot water 

temperature to lower the outflow water temperature back to the target value. 

Aforementioned situation will lead an outflow water temperature lower than the target. 

Therefore, production rate will be negatively affected by these wrong control commands 

when the CSTH applied to a chemical process. In addition, the heat released by heater is 

also affected by the reduced hot water temperature. Hence, the dynamics of CSTH will be 

affected due to the feedback of Sensor 1 fault, and this situation is considered as a closed-
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loop sensor fault. In contrast, a Sensor 2 fault will not be feedback to the CSTH, so this 

situation is considered as an open-loop sensor fault.  

In short, an open-loop sensor fault will only lead to a single abnormal event in one 

sensor. On the other hand, since a closed-loop sensor fault may mislead the applied control 

strategies to generate inappropriate control inputs, the applied system will be deviated 

from its desired operation, which will lead to multiple abnormal events occurring in a set 

of sensors. Furthermore, multiple abnormal events occurring in a set of sensors may also 

appear in the cases of multiple closed-loop sensor faults and multiple open-loop sensor 

faults. Therefore, in this dissertation, we define the cases of single closed-loop sensor fault, 

multiple closed-loop sensor faults, and multiple open-loop sensor fault to be the multiple 

sensor faults situation and the case of single open-loop sensor fault to be the single sensor 

fault situation. A sensor fault detection and isolation (SFDI) system is aimed to timely 

detect single or multiple abnormal events occurring in sensors and locate their locations 

in order to avoid catastrophic tragedies and reduce monetary losses [1]. 

 

1.2.2 Additive Faults and Multiplicative Faults 

Classified by the way faults affect the system dynamics except the effect of feedback, 

there are two types of faults: additive faults and multiplicative faults [4]. Consider the 

linear system in Eq. (1),  

 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥.               (1) 
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Here, 𝑦 is the system output; 𝑢 is the system input and (𝐴, 𝐵, 𝐶) are the system parameter 

matrices. The occurrence of an additive fault will not affect the system dynamics in the 

open-loop cases. The representation of an additive fault, 𝑓𝑠 , is shown in Eq. (2), 

 

𝑦 = 𝐶𝑥 + 𝑓𝑠 .               (2) 

 

In contrast, a multiplicative sensor fault is caused by malfunctions in the process or 

in the sensors. This kind of faults will lead to changes in the system dynamics. The 

representation of a multiplicative fault, ∆𝐴, is shown in Eq. (3), 

 

𝐴′ = 𝐴 + ∆𝐴 

�̇� = 𝐴′𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥.                 (3) 

 

In general, sensor faults and actuator faults are modeled as additive faults, and system 

parameter faults are modeled as multiplicative faults [4]. Therefore, in our simulation, all 

sensor faults are simulated to be additive. 
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2. LITERATURE REVIEW 

 

Depending on methods, most FDI systems are classified into two categories: model-

based and process history based [1-3]. Generally speaking, model-based methods are more 

systematic and efficient, but the main limitation is they require prior knowledge of the 

system. In the other words, an accurate model of the system is needed. Most model-based 

methods are based on analytical redundancy which is the difference between measured 

process variables and their estimates [4, 8, 15]. Usually, analytical redundancy is 

processed by a residual generator to enhance the effect of a sensor fault such that it can be 

recognized [15]. On the other hand, process history based methods do not require prior 

knowledge of the system. Instead, these methods require large amount of historical process 

data which include whole system behaviors.  

 

2.1 Model-based Methods 

In 1984, Chow and Willsky introduced the concept of parity relations [15]. Based on 

parity relations, Chow and Willsky further developed the scheme of residual generation 

by parity equations [15]. Parity equations have been widely applied to fault diagnosis. The 

following equations, Eq. (4-10), are quoted from the original paper wrote by Chow and 

Willskys’ [15] in order to explain the concept of parity equations. Consider the following 

deterministic model: 
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𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + ∑𝑏𝑗

𝑞

𝑗=1

𝑢𝑗(𝑘) 

 𝑦𝑗(𝑘) = 𝑐𝑗𝑥(𝑘), 𝑗 = 1,⋯ ,𝑀.           (4) 

 

Where 𝑥 is the N dimensional state vector, 𝐴 is a constant NN  matrix, 𝑏𝑗 is a constant 

column N-vector, and 𝑐𝑗 is a constant row N-vector. Then, define 

 

𝐶𝑗(𝑟) = [

𝑐𝑗
𝑐𝑗𝐴

⋮
𝑐𝑗𝐴

𝑟

] , 𝑟 = 0, 1,⋯ ; 𝑗 = 1,⋯ ,𝑀.          (5) 

 

According to the Cayley-Hamilton Theorem, there is an integer 1 ≤ 𝑛𝑗 ≤ 𝑁 such 

that  

 

𝑟𝑎𝑛𝑘 (𝐶𝑗(𝑟)) = {
𝑛𝑗 , 𝑖𝑓 𝑟 ≥ 𝑛𝑗

𝑟 + 1,   𝑖𝑓 𝑟 < 𝑛𝑗
.           (6) 

 

Also, define 

 

 𝑌𝑗(𝑘) = [

𝑦𝑗(𝑘)

⋮
𝑦𝑗(𝑘 + 𝑛𝑗)

] , 𝑗 = 1,⋯ ,𝑀.         (7) 
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Consider a nonzero row vector, w, of dimension, 𝑛 = ∑ (𝑛𝑗 + 1)𝑀
𝑗=1 , assume 𝑤 exists 

and satisfies 

 

[𝑤1, ⋯ , 𝑤𝑀] [
𝐶1(𝑛1)

⋮
𝐶𝑀(𝑛𝑀)

] 𝑥(𝑘) = 0,           (8) 

 

where 𝑤𝑗 , 𝑗 = 1,⋯ ,𝑀, is a (𝑛𝑗 − 1)-dimensional row vector. Assume the system in Eq. 

(4) is observable, there are only 𝑛 − 𝑁 linearly independent 𝑤’s satisfying Eq. (8). Let Ω 

be an (𝑛 − 𝑁) × 𝑛 matrix composed by those linearly independent 𝑤’s as its rows. Define 

 

𝑇 = [
𝐶1(𝑛1)

⋮
𝐶𝑀(𝑛𝑀)

],             (9) 

 

the rows of Ω span the orthogonal complement of the range space of 𝑇. Then, we can get 

the generalized parity vector 

 

𝑃(𝑘) = Ω {[
𝑌1(𝑘, 𝑛1)

⋮
𝑌𝑀(𝑘, 𝑛𝑀)

] − [
𝐵1(𝑛1)

⋮
𝐵𝑀(𝑛𝑀)

]𝑈(𝑘, 𝑛0)},        (10) 

 

where 
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𝐵𝑗(𝑛𝑗) =

[
 
 
 
 
 

0 0 0 ⋯ ⋯ 0
𝑐𝑗𝐵 0 ⋱ ⋮

⋮ 𝑐𝑗𝐵 ⋱ ⋮

⋮ ⋮ ⋱ ⋮
𝑐𝑗𝐴

𝑛𝑗−1𝐵 𝑐𝑗𝐴
𝑛𝑗−2𝐵 ⋯ 𝑐𝑗𝐵 ⋯ 0]

 
 
 
 
 

 

𝐵 = [𝑏1, 𝑏2, ⋯ , 𝑏𝑞] 

𝑢(𝑘) = [𝑢1(𝑘),⋯ , 𝑢𝑞(𝑘)]′ 

𝑛0 = max (𝑛1,⋯ , 𝑛𝑀) 

𝑈(𝑘, 𝑛0) = [𝑢′(𝑘),⋯ , 𝑢′(𝑘 + 𝑛0)]′. 

 

In Eq. (10), 𝑃(𝑘) is called the generalized parity vector  [15], and it is nonzero when 

a sensor fault occurs. The (𝑛 − 𝑁) dimensional space of all parity vectors is called the 

generalized parity space11 [15]. Any linear combination of the rows of the generalized 

parity vector is called a parity relation or a parity equation11 [15], and any linear 

combination of the right hand side of Eq. (10) is called a parity function11 [15]. The above 

concept of parity equations, developed by Chow and Willsky [15], contributes to nearly 

all FDI related researches.  

In Chow and Willskys’ subsequent works, they consider the robustness of designing 

residual generators. They handle the problem of robustness in two ways: 1. estimate the 

effect of uncertainties including noise disturbance and system parameter uncertainty, and 

then compensate the FDI system; 2. minimize the sensitivity of a FDI system to those 

uncertainties [15]. In the end, the problem of robustness is formulated as an optimization 

problem [15]. However, Chow and Willsky mainly focus on the detection part, and their 

method does not deal with the isolation issue. 
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Further research has been conducted by Gertler. To address the issue of isolation, he 

proposes several ways to design the structure of residuals in order to address their 

isolability. Gertler introduce three schemes for designing the structure of residuals: 1. 

diagonal; 2. directional; 3. structured [12, 16]. These schemes are briefly described 

following. Diagonal scheme is that each residual vector is corresponded to one and only 

one sensor fault shown as Eq. (11). 

 

𝑍𝐹(𝑞) = 𝐷𝑖𝑎𝑔[𝜎1(𝑞) ⋯ 𝜎𝑘(𝑞)]         (11) 

 

Where, 𝜎𝑗(𝑞), 𝑗 = 1,⋯ , 𝑘, are response dynamics in the shift operator 𝑞, and 𝑍𝐹(𝑞) 

is the diagonal residuals in the shift operator 𝑞. The diagonal scheme is ideal for isolating 

multiple sensor faults. However, this scheme is limited on the number of faults which can 

be handled in implementation [12, 16]. The second scheme is the directional scheme 

which is to restrict the response of a particular sensor fault to a straight line in the residual 

space at all times [12, 16]. The j-th directional residual is shown as Eq. (12). 

 

𝑟(𝑡|𝑝𝐹𝑗) = 𝜓𝑗𝜎𝑗(𝑞)𝑝𝐹𝑗(𝑡)           (12) 

 

Where, 𝑝𝐹𝑗(𝑡) is the j-th additive unknown input at time 𝑡, and 𝜓𝑗 is the j-th response 

direction. This scheme is capable of isolating a single fault. However, multiple faults can 

be isolated only when the residual directions are independent [12, 16]. Finally, the 

structured scheme is to design each residual element responds only to a subset of faults 
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[12, 16]. The following two examples are used to explain the structured scheme shown in 

Eq. (13). 

 

𝑓1 𝑓2 𝑓3
𝑟1 𝐼 𝐼 0
𝑟2 𝐼 0 𝐼
𝑟3 𝐼 𝐼 0

;  

𝑓1 𝑓2 𝑓3
𝑟1 𝐼 𝐼 0
𝑟2 𝐼 0 𝐼
𝑟3 0 𝐼 0

           (13) 

 

Where, 𝑟𝑗, 𝑗 = 1, 2, 3, is the j-th residual element, and 𝑓𝑗  is the j-th sensor fault. The 

right example is a “strongly isolating” structure which is no response pattern can be 

obtained from other pattern by replacing “I”s into “0”s [12, 16]. Otherwise, it is a “weakly 

isolating” shown as the left example [12, 16]. Under the assumption that system 

parameters are known, Gertler transfers the residuals generated by Eq. (10) to his proposed 

structure, and then isolates faults by different residual patterns. 

To enhance the isolability of Gertler’s method, Koscielny et al.. proposed an efficient 

search for large scale systems [17]. This search method is an extension of the “weakly 

isolating” structure proposed by Gertler. Therefore, the uncertainties of residual elements 

are not considered [17]. They assume the set of residual elements4 from different faults 

are known, and the large scale system can be separated into several subsystems. By 

reducing the residual elements of uncorrelated subsystems, their method greatly improve 

the search efficiency in the part of isolation [17]. 

                                                

4 In fact, Kocielny uses “symptom” instead of “residual element” used in Gertler’s paper and book. 
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On the other hand, Ding provides a numerical way to design the residual generator 

in Eq.(9) [4]. Ding’s method is based on the Luenberger type observer [4, 18]. Ding 

converts the requirement for the residual generator, w, in Eq. (8) to the Luenberger 

conditions, and provides a numerical solution for the Luenberger conditions and then for 

the residual generator. Ding’s method will be briefly described in subsequent content. 

Consider the system in Eq. (1), the Luenberger type observer is described by  

 

�̇� = 𝐺𝑧 + 𝐻𝑢 + 𝐿𝑦; �̂� = �̅�𝑧 + �̅�𝑦 + �̅�𝑢,         (14) 

 

where 𝑧 ∈ 𝑅𝑠 , 𝑠 is the observer order. Assume 𝐺𝑦𝑢(𝑝) = 𝐶(𝑝𝐼 − 𝐴)−1𝐵 + 𝐷, matrices 

𝐺,𝐻, 𝐿, �̅�, �̅�, �̅�, and a matrix 𝑇 ∈ 𝑅𝑠×𝑛 have to fulfill the Luenberger conditions: 1. 𝐺 is 

stable; 2. 𝑇𝐴 − 𝐺𝑇 = 𝐿𝐶 and 𝐻 = 𝑇𝐵 − 𝐿𝐷; 3. 𝐶 = �̅�𝑇 + �̅�𝐶 and �̅� = −�̅�𝐷 + 𝐷E. In 

this case, 𝐷 equals to zero. Define 𝑒 = 𝑇𝑥 − 𝑧, and then it turns out the Eq. (15), 

 

�̇� = 𝐺𝑒, 𝑦 − �̂� = �̅�𝑒.            (15) 

 

Based on Eq. (15), define a residual vector shown as Eq. (16), 

 

𝑟 = 𝑉∗(𝑦 − �̂�), 𝑉∗ ≠ 0.            (16) 
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Where, 𝑉∗ is a residual generator. Ding proposes a numerical approach to solve for the 

residual generator, 𝑉∗, based on Luenberger conditions. The complete proof and details 

are referred to the chapter 5 in Ding’s book [4]. 

The major limitation of above model based methods is that they all require the priori 

knowledge of system parameters. However, the system parameters are usually unknown 

and hard to be obtained in practice. A famous case is the Tennessee Eastman process [13]. 

The Tennessee Eastman process is a nonlinear chemical process with 41 measurements 

and 12 manipulating indices. Because of its complicated nonlinear property, model-based 

methods are not suitable to in this kind of process. On the other hand, process history 

based methods are built in a statistical way. Different from model-based methods, process 

history methods do not require prior knowledge of system parameters. Next section is a 

review for process history based methods. 

 

2.2 Process History-based (Data-driven) Methods 

Process history based methods have been developed in various tracks: system 

identification, dimension reduction and its nonlinear extensions, and expert systems [3]. 

 

2.2.1 System Identification 

This track is focused on removing the major limitation of model-based methods. Ding 

and Qin propose methods to acquire system parameters from historical data by using 

system identification techniques such as prediction error methods (PEM) and subspace 

identification methods (SID) [19-21]. However, system identification comes with the 
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problem of modeling errors which will render the residual generator sensitive, and there 

is no related analysis in literatures [21]. To deal with this problem, Dong provides a 

strategy to enhance the robustness of identified parameter under the assumption of only 

the occurrence of additive faults [21]. Dong analyzes the effect of parameters 

identification errors and establishes the error bound in neglecting the bias term due to the 

initial states. In Dong’s simulation, he applies his method on a linearized vertical take-off 

and landing (VTOL) and turns out good results [21]. However, the VTOL system is a 

linearized fourth order system, and the performance of Dong’s method is undetermined 

for a large scale system with nonlinear properties such as the Tennessee Eastman process. 

In addition, another limitation of these methods is that they are application dependent 

which means there is no unified procedure for different application [3].  

 

2.2.2 Dimension Reduction 

Another track is via dimension reduction techniques to generate a residual generator 

from the left null space of the matrix T in Eq. (9). This is so called parity space analysis. 

In this track, historical process data are assumed to be stationary in the fault free case [22]. 

To explain the basic idea of applying dimension reduction techniques for fault diagnosis, 

consider the deterministic system in Eq. (1). Assume a sensor fault occurs such that  

 

𝑦 = 𝐶𝑥 + 𝑒𝑠,              (17) 

 

where 𝑒𝑠 is a bias due to the sensor fault. Define the residual signal, 𝑟, as 
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𝑟 = 𝑤𝑒𝑠 = 𝑤(𝑦 − 𝐶𝑥),            (18) 

 

where 𝑟 is a residual generator. The Eq. (18) is a linear combination of Eq. (10), so it is a 

parity equation for the deterministic system in Eq. (1). Therefore, the problem of fault 

diagnosis becomes how to find a solution for 𝑤 satisfying Eq. (8). To solve this problem 

by dimension reduction, consider 𝑦 as a vector of sensor measurements in the original 

coordinates system, and denote those measurements in a new coordinates system by 𝑡, 

then: 

 

𝑡 = 𝑈𝑦; 𝑐𝑜𝑣(𝑡𝑖, 𝑦𝑗) = 0; ∀𝑖 ≠ 𝑗,          (19) 

 

where 𝑈 = [𝑢1 𝑢2 ⋯ 𝑢𝑛]𝑇 is the set of unit vectors of the new coordinates system. 

By using dimension reduction techniques, 𝑡  and 𝑈  can be separated into two parts 

depending on the variance of those measurements [22]. In Eq. (20), 𝑥𝑦  denotes the 

measurements with high variance, and 𝑣𝑦  denotes low variance measurements. Similarly, 

𝑃 and 𝑄 denote the corresponding set of unit vectors to 𝑥𝑦 and 𝑣𝑦   respectively. 

 

𝑡 = [
𝑥𝑦

𝑣𝑦
⁄ ]  

𝑈 = [𝑃 𝑄⁄ ]                  (20) 
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Where 𝑃 = [𝑢1 𝑢2 ⋯ 𝑢𝑘]𝑇 , 𝑄 = [𝑢𝑘+1 𝑢𝑘+2 ⋯ 𝑢𝑛]𝑇 , 𝑢𝑖 , 𝑖 = 1,⋯ , 𝑛  is 

the eigenvector of the covariance matrix of 𝑦𝑠𝑡𝑎𝑛𝑑  corresponding to the i-th largest 

eigenvalue, and 𝑦𝑠𝑡𝑎𝑛𝑑  is obtained by standardize 𝑦  with its mean value and standard 

deviation [23]. In addition, when 𝑦 is well approximated by 𝑥𝑦 in a lower dimension, 

 

𝑣𝑦 = 𝑄𝑦 = 𝑄𝐶𝑥 ≈ 0⃗ .            (21) 

 

Comparing Eq. (21) with Eq. (8), the condition in Eq. (8) is satisfied by 𝑄. Hence, 𝑄 

can be considered as an approximate solution of the residual generator, 𝑤, in Eq. (18). 

Therefore, when the applied system is faulty, the residual signal, 𝑟, in Eq. (18) will be 

nonzero. Otherwise, 𝑟 will be zero. 

There are various dimension reduction techniques. Basically, these techniques can be 

classified according to their function on linear data and nonlinear data [23]. In the category 

of linear dimension reduction, principal component analysis (PCA) is a well known 

method. PCA is the best linear dimension reduction technique in the mean-squared error 

sense [23-25]. In essence, PCA is used to find few orthogonal linear combinations or 

principal components (PCs) with largest variance which can approximate the original data. 

There are several methods that are known to be the same sense as PCA such as the singular 

value decomposition (SVD), the Karhunen-Loeve transform, the Hotelling transform, and 

the empirical orthogonal function (EOF) method [23]. 

However, PCA is not perfect. One of the major problems is that PCA is time invariant, 

but most of industrial processes is time varying [3]. Li et al.. proposed recursive PCA 
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(RPCA) in his work [26]. Li et al.. concerns the following key points in his method: 1. 

recursive update of the mean value; 2. efficient sample-wise calculations for updating; 3. 

recursive determination of the sufficient number of principal components for representing 

the original data [26]. To briefly describe Li’s method, consider the raw initial data block 

𝑋1
0 ∈ 𝑅𝑛1×𝑚 of 𝑛1 samples and 𝑚 variables. Then the mean of each variable, 𝑏1, is 

 

𝑏1 = 1
𝑛1

⁄ (𝑋1
0)𝑇1𝑛1

,            (22) 

 

where 1𝑛1
= [1, 1,⋯ , 1]𝑇 ∈ 𝑅𝑛1 . In addition, the data is normalized by Eq. (23) to zero 

mean and unit variance before processing by PCA.  

 

𝑋1 = (𝑋1
0 − 1𝑛1

𝑏1
𝑇)Σ1

−1             (23) 

 

Where, Σ1 = 𝑑𝑖𝑎𝑔(𝜎11,⋯ , 𝜎1𝑚)  composed by the standard deviation of each 

variable. The correlation matrix of the variables, 𝑅1, can be approximated by 

 

𝑅1 = 1
𝑛1 − 1⁄ 𝑋1

𝑇𝑋1.            (24) 

 

Now, assume 𝑏𝑘 , 𝑋𝑘 , and 𝑅𝑘  are calculated when the k-th block has been collected. The 

recursive calculation of the covariance matrix can be obtained by 
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𝑅𝑘+1 = 1
𝑁𝑘+1 − 1⁄ 𝑋𝑘+1

𝑇𝑋𝑘+1 −
𝑁𝑘 − 1

𝑁𝑘+1 − 1⁄ Σ𝑘+1
−1 Σ𝑘𝑅𝑘Σ𝑘Σ𝑘+1

−1 +

𝑁𝑘
𝑁𝑘+1 − 1⁄ Σ𝑘+1

−1 Δ𝑏𝑘+1Δ𝑏𝑘+1
𝑇Σ𝑘+1

−1 + 1
𝑁𝑘+1 − 1⁄ 𝑋𝑛𝑘+1

𝑇𝑋𝑛𝑘+1
.   (25) 

 

Where, 𝑁𝑘 = ∑ 𝑛𝑖
𝑘
𝑖=1  and Δ𝑏𝑘+1 = 𝑏𝑘+1 − 𝑏𝑘  [26]. In addition to updating the covariance 

matrix, next step is to determine recursively the number of principal components [26]. Li 

considers several methods such as cumulative percent variance (CPV), average eigenvalue 

(AE), and imbedded error function (IEF) in this step [26, 27]. Here, we take the CPV 

method as an example. CPV is to measure the variance captured by the first 𝑙𝑘 principal 

components associated to the 𝑙𝑘  largest eigenvalues of the covariance matrix [26, 27]. 

CPV can be presented in the following form. 

 

𝐶𝑃𝑉(𝑙𝑘) =
∑ 𝜆𝑗

𝑙𝑘
𝑗=1

∑ 𝜆𝑖
𝑚
𝑖=1

⁄ 100%           (26) 

 

Where, 𝜆𝑖  is the j-th large eigenvalues of the covariance matrix. By setting a 

predetermined limit, one can determine the needed number of principal components [26]. 

In the end, Li applies the recursive PCA to detect faults on a semiconductor process with 

slow process changes and turns out a significant improvement in reducing false alarms 

[26]. 

Although Li’s research positively improves the performance of PCA, the issue that 

most methods lack of isolability still remains. In Sharifi and Langari’s work, they 

introduce the concept of fault image vector in the residual space. They use PCA to 
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approximate the original sensor measurements and generate residual signals by Eq. (21) 

[22]. Then, they extend Gertler’s directional residual structure to define the sensor fault 

index (SFI) which can be used to indicate the occurrence of a single fault [22]. The sensor 

fault index is briefly illustrated as following content. Consider Eq. (21), assume 𝑦 ∈ 𝑅𝑛  is 

a column vector composed by 𝑛 healthy outputs, and there is a sensor fault, 𝛿𝑗, occurs in 

the j-th sensor. Therefore, the sensor measurements, 𝑦∗, becomes 

 

𝑦∗ = 𝑦 + Δ,               (27) 

 

where Δ = [0, 0,⋯ , 𝛿𝑗,⋯ , 0]
𝑇

, ∆∈ 𝑅𝑛 . Moreover, consider 𝑄 is in the form of column 

vectors, 𝑄 = [𝑞1, 𝑞2,⋯ , 𝑞𝑛], and substitute Eq. (27) into Eq. (21). Then, 

 

𝑣𝑦∗ = 𝑄𝑦∗ = 𝑄𝑦 + 𝑄∆≈ 𝑞𝑗𝛿𝑗,           (28) 

 

where 𝑞𝑗 is called the fault image vector for the j-th sensor [22]. Let 

 

 

𝑛𝑖 =
𝑞𝑖

‖𝑞𝑖‖
⁄ , 𝑖 = 1,⋯ , 𝑛,            (29) 

 

and 
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𝑛𝑣𝑦∗ =
𝑣𝑦∗

‖𝑣𝑦∗‖⁄ .              (30) 

 

The sensor fault index for the j-th sensor is defined as 

 

𝑓𝑖 = 𝑛𝑣𝑦∗ ∙ 𝑛𝑗,               (31) 

 

and the dot sign is inner product of those two vectors [22]. In absence of noise, disturbance, 

and sensor uncertainties, if there is a single fault which occurs in the j-th sensor, |𝑓𝑗| ≈ 1, 

and |𝑓𝑖| ≈ 0 for 𝑖 ≠ 𝑗. Therefore, the j-th sensor fault is isolated by the sensor fault index. 

The disadvantage of Sharif’s method is the limited number of faults. The SFI only 

can indicate a single fault, and it will lose its performance in the situation of multiple faults. 

In Sharifi and Langari’s following work, they propose a probabilistic process for detecting 

faults [28]. They propose an index to determine non-detectable sensors in a probabilistic 

way based on the concept of the sensor fault index, and then apply to a subpart of the 

Tennessee Eastman process. Their results show the capability of this method [28]. Now, 

we continue from their previous work in Eq. (27-31) to explain this method. Consider the 

effect of noise, the vector of sensor measurements, 𝑦∗, in Eq. (27) becomes 

 

𝑦∗ = 𝑦 + 𝑛 + ∆,              (32) 
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where 𝑛 is the noise. Assume the noise has a stationary Gaussian distribution, and its 

parameters are known such as 

 

𝑛 ∝ 𝑁(0, Σ).               (33) 

 

In this case, the noise is zero mean, and its standard deviation is Σ. Assume the j-th 

sensor is faulty, and there is only one sensor fault. Denote the residual 𝑟 = 𝑄𝑦∗ . 

According to Eq. (28), one can obtain 

 

𝑟 ∝ 𝑁(𝛿𝑗𝑞𝑗 , Σ𝑟),              (34) 

 

where Σ𝑟 = 𝑄Σ𝑄𝑇 . Based on Eq. (34), one can obtain the following conditional 

distributions. 

 

𝑝(𝑟|𝐻) = 𝑁(0, Σ𝑟) 

𝑝(𝑟|𝑆𝑗, 𝛿𝑗) = 𝑁(𝛿𝑗𝑞𝑗 , Σ𝑟)           (35) 

 

Where 𝑝(𝑟|𝐻) is the probability distribution of r in fault-free case, and 𝑝(𝑟|𝑆𝑗, 𝛿𝑗) is 

the probability distribution of 𝑟  when there is a sensor fault in the j-th sensor with 

magnitude 𝛿𝑗 . Assume 𝛿𝑗  is uniform distributed, and marginalize 𝑝(𝑟|𝑆𝑗 , 𝛿𝑗)  by 

integrating over 𝛿𝑗, 
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𝑝(𝑟|𝑆𝑗) = ∫ 𝑝(𝑟|𝑆𝑗 , 𝛿𝑗)𝑝(𝛿𝑗)𝑑𝛿𝑗 = 𝑁(0, Σ𝑗).        (36) 

 

Where, Σ𝑗 = 𝑄𝑗Σ𝑟𝑄𝑗
𝑇 , and 𝑄𝑗  is composed by the orthonormal vectors of 𝑞𝑗  [28]. 

According to Bayes’ theorem, 

 

𝑝(𝑆𝑗|𝑟) =
𝑟(𝑟|𝑆𝑗)𝑝(𝑆𝑗)

𝑝(𝑟)⁄ ,  

𝑝(𝐻|𝑟) =
𝑝(𝑟|𝐻)𝑝(𝐻)

𝑝(𝑟)⁄ ,            (37) 

 

where 𝑝(𝑟) = 𝑝(𝑟|𝐻)𝑝(𝐻) + ∑ 𝑝(𝑟|𝑆𝑖)𝑝(𝑆𝑖)
𝑛
𝑖=1 . In addition, 𝑝(𝐻)  and 𝑝(𝑆𝑗)  are 

estimated by 

 

𝑝(𝐻) = 𝑝(𝐻|𝑟<𝑜𝑙𝑑>) 

𝑝(𝑆𝑗) = 𝑝(𝑆𝑗|𝑟
<𝑜𝑙𝑑>),             (38) 

 

where 𝑟<𝑜𝑙𝑑> is the residual value calculated from previous measurements [28]. The level 

of fault detectability of sensors can be estimated by the probability density [28]. Therefore, 

the detection index for a sensor fault in the j-th sensor with unit magnitude is defined as  

 

θ𝑗 = 1
1 + 𝑝(𝑟 = 𝑞𝑗|𝐻)⁄ .            (39) 
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Where, 0 < 𝜃𝑗 < 1, and the smaller 𝜃𝑗  means the smaller probability to detect the j-th 

sensor fault [28]. 

Sharifi’s work is focused on the detection part of a FDI system, and this new method 

can be applied to multiple faults situation. For the isolation part, this work has the same 

limitation of the number of faults. The other limitation comes with PCA. Since PCA is to 

search linear combination of principal components, modeling errors will be large when 

we apply PCA on a complex nonlinear system. 

 

2.2.3 Nonlinear Extensions of Dimension Reduction Based Methods 

2.2.3.1 Neural Networks 

To overcome the limitation of PCA, several nonlinear dimension reduction methods 

have been developed. Kramer proposes a method to do nonlinear PCA (NLPCA) based 

on auto-associative neural network (AANN) [29]. AANN is a neural network structure 

previously proposed by Kramer [30]. The structure of AANN is shown in Fig. 6.  
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Figure 6. The architecture of autoassociative neural network. (σ indicates sigmoidal nodes, 
* indicates sigmoidal or linear nodes). (Adapted from [30]) 
 
 
 

The key feature of an AANN is the bottleneck layer with fewer nodes between the 

input and output layers. This feature will force the input data to be approximated in a lower 

dimension [29]. Therefore, AANN structure has the property of noise filtering and 

robustness depending on different training strategies [29]. Kramer used the AANN feature 

of approximating the data in lower dimensions to do NLPCA [29, 31]. He trained the 

AANN by the backpropogation approach with the cost function in Eq. (40). 

 

𝐸 = ∑ ∑ (𝑌𝑖 − 𝑌𝑖′)𝑝
2𝑚

𝑖=1
𝑛
𝑝=1 ,            (40) 
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where 𝑛 is the number of measurements, and 𝑚 is the number of input/output pairs. In 

addition, Kramer uses a basis function, shown in Eq. (41), whose capability of fitting any 

nonlinear function has been proved elsewhere [32].  

 

𝑣𝑘 = ∑ 𝑤𝑗𝑘2𝜎(∑ 𝑤𝑖𝑗1𝑢1 + 𝜃𝑗𝑖
𝑁1
𝑖=1 )𝑁2

𝑗=1   

𝜎(𝑥) = 1
1 + 𝑒−𝑥⁄               (41) 

 

Eq. (41) is the description for a single hidden layer neural network (ANN) with N1 

inputs, a hidden layer composed of N2 sigmoidal nodes, and a linear output node for each 

k [29]. In Eq. (40), 𝑤𝑖𝑗𝑘  is the weight connecting from node i in layer k to node j in layer 

𝑘 + 1, and the 𝜃 are adjustable nodal biases similar to weights [29]. 

Najafi developed an enhanced AANN (E-AANN) for diagnosing sensor faults [33]. 

E-AANN is based on the property of AANN to produce identical output signals as input 

signals. When faults occur, the outputs of AANN will not be exactly the same as its inputs. 

Further, Najafi assumes that the maximum number of faults occurrence at one time is one 

[33]. So he can identify a single fault by adjusting each input of AANN by a small stepsize 

from a predefined minimum to its maximum until the outputs of AANN are the same as 

its inputs [33]. The advantage of this method is that it is able to not only isolate a single 

fault, but also to identify the magnitude of the single fault [33]. Nevertheless, its isolability 

is limited to the number of occurrence of faults. 

Hines et al.. use AANN in a different way in their work [34, 35]. In their work, they 

take advantage of the AANN property of robustness. By a robust training procedure, 



 

33 

 

AANN is forced to rely on the inherent information in the signals corresponded to a 

specific sensor to estimate the specific sensor measurement [34]. In other words, Hines 

uses AANN as a filter which can filter noise/disturbance and sensor faults. AANN will 

produce uncorrupted and fault-free output signals if the magnitude of faults, noise and 

disturbance are in the acceptable range of the filtering ability of AANN. By subtracting 

the uncorrupted and fault-free outputs from faulty inputs to generate the residual signals, 

and then one can detect and isolate multiple faults [34, 35]. The configuration of Hines’ 

method is shown in Fig. 7 [35]. 

 

 

Figure 7. Sensor monitoring module in Hines’ method. (Adapted from [34]) 
 
 
 

Hines adopts three strategies to increase the robustness of AANN. First, he sets a 

network training stopping criterion to avoid overfitting the training set [34, 35]. Second, 

he corrupts the input data of the training set instead of using the same data as target outputs 

[34, 35]. To detail the second strategy, assume the original training set is composed by 
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[𝑋, 𝑌], where 𝑌 is the target outputs and 𝑋 = 𝑌 in this case. The original training inputs, 

𝑋, is augmented by 

 

𝑋𝑎𝑢𝑔 = 𝑋 + 𝛿𝑗𝐼𝑗 , 𝑗 = 1,⋯ ,𝑚,           (42) 

 

where 𝐼𝑗 is the j-th column of the identity matrix, m is the number of inputs, and 𝛿𝑗 is 

randomly chosen from ±10 percent of the j-th output [35]. Each sensor is corrupted 

several times by different 𝛿 [35]. Third, he uses SVD method to solve the weights between 

the de-mapping layer and the linear output layer [34, 35]. Since the output layer of the 

AANN structure is linear, training is greatly accelerated [35]. To illustrate the third 

strategy, assume 𝑊 is the weight matrix between the de-mapping layer and the output 

layer in Fig. 6, and 𝑋𝑑 is the inputs of the output layer. Therefore, the target outputs, 𝑌, 

can be obtained by 

 

𝑌 = 𝑊𝑋𝑑.               (43) 

 

Then, the weights can be solved by the general least squared solution [35]. 

 

𝑊 = (𝑋𝑑′𝑋𝑑)
−1𝑋𝑑′𝑌             (44) 

 

By using SVD to solve the linear output layer weights, only the most relevant 

information is retained to compute the weights [34, 35]. Therefore, SVD method not only 
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reduces the training time but also provides better initial weights for iterative methods 

applied to all weights later [35]. In addition to these three strategies, Hines also uses the 

sensitivity analysis as a tool for network parameter selection [35]. Hines chooses the final 

AANN parameters from a set of network parameters which were obtained by training 

AANN with different initial weights [35]. Sensitivity is defined as 

 

𝑆𝑖𝑛𝑝𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡

=
𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)

𝜕(𝑖𝑛𝑝𝑢𝑡)⁄ .           (45) 

 

According to Eq. (45), the smaller sensitivity means that the change of the output due to 

the change of the corresponding input is smaller [35]. In the other words, a smaller 

sensitivity means that the trained AANN is more robust [35]. 

The limitation of Hines’ method is originated from the filtering ability and the 

approximating ability of AANN related to the number of nodes in the bottleneck layer. In 

his results, the range of fault detection levels is between 0.3% and 3% of the maximum 

values of each sensor, which is relative narrow compared to aforementioned methods. In 

addition, the main issue of AANN-based methods is its lack of an analytic foundation. 

Currently, there are several problems still can’t be solved analytically, such as how many 

nodes are needed for hidden layers, and training methods for AANN are seeking for a 

local minimum instead of a global minimum solution. Moreover, AANN structures are 

hard to be trained in practice. 

 

 



 

36 

 

2.2.3.2 Mixture PCA 

In addition to neural networks, Choi and Sharifi et al.. employ the mixture of 

probabilistic PCA (MPPCA) for sensor fault diagnosis for nonlinear systems in their 

current work [36, 37]. The probabilistic PCA (PPCA) is introduced by Tipping and Bishop 

in 1999 [38]. By PPCA, they overcome the issue which is the conventional PCA is unable 

to process data in different regions simultaneously [38]. Furthermore, they extend the 

PPCA to a nonlinear extension, MPPCA, by separating data into several locally linear 

regions, and each region is defined by a PPCA model. Then, they surmount the linear 

limitation of the conventional PCA [39]. The subsequent content is ranged to start from 

PPCA to MPPCA, and then illustrate Sharifi’s current work. PPCA is to rewrite the 

conventional PCA as a probability density model shown in Eq. (46) [36, 38]. 

 

𝑦 = 𝑃𝑥 + 𝜇 + 𝑚               (46) 

 

Where 𝑦 ∈ 𝑅𝑛  is the sensor measurement, 𝑥 ∈ 𝑅𝑟 is the latent variable with fewer 

dimensions (𝑟 < 𝑛), 𝜇 is constant, 𝑚 is the process noise, and 𝑃 is the projection matrix 

[36, 38]. Moreover, let 𝑥~𝑁(0, 𝐼) , and assume the process noise has a Gaussian 

distribution with zero mean and isotropic variance, 𝑚~𝑁(0,Φ), where Φ = 𝜎2𝐼, and 𝜎 is 

the standard deviation of the process noise [36, 38]. Therefore,  

 

𝑦~𝑁(𝜇, 𝑃𝑃𝑇 + Φ).             (47) 
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Under these assumptions, Φ is diagonal, so 𝑦 are conditionally independent given 𝑥 

[36, 38]. Hence, one can obtain the probability model for PPCA by a combination of the 

conditional distribution [36], so 

 

𝑃(𝑦|𝑥) = 1
(2𝜋𝜎2)𝑛 2⁄⁄ exp (−

‖𝑦 − 𝑃𝑥 − 𝜇‖2

2𝜎2⁄ ),        (48) 

 

and 

 

𝑝(𝑥) = 1
(2𝜋)𝑟 2⁄⁄ exp (− 𝑥𝑇𝑥

2⁄ ).           (49) 

 

Then, integrating out the latent variable, 𝑥, in Eq. (48) to obtain the marginal distribution 

of 𝑦 shown in Eq. (50). 

 

𝑝(𝑦) = 𝑁(𝜇, Σ) = 1
(2𝜋𝜎2)𝑛 2⁄ Σ1 2⁄⁄ exp (−

1

2
(𝑦 − 𝜇)𝑇Σ−1(𝑦 − 𝜇)),   (50) 

 

where Σ = 𝑃𝑃𝑇 + 𝜎2𝐼 . The corresponding log-likelihood for fitting the k set of 

measurements is  

 

𝐿 = ∑ −𝑘
2⁄ [𝑛𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|Σ| + 𝑡𝑟(Σ−1𝑆)]𝑘

𝑖=1 ,       (51) 

 

where  
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𝑆 = 1
𝑘⁄ ∑ (𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇𝑘

𝑖=1 ,           (52) 

 

and 𝜇 is set to be the sample mean [36, 38]. In this case, there is an analytical solution of 

the 𝑃 and 𝜎2 for the maximum likelihood estimate shown in Eq. (53-54) [36, 38].  

 

𝑃 = 𝑈𝑟(Λ𝑟 − 𝜎2𝐼)
1

2⁄             (53) 

 

Where Λ𝑟  is a diagonal matrix composed by the largest 𝑟 eigenvalues of 𝑆, and 𝑈𝑟 is 

a matrix composed by the 𝑟 eigenvectors of 𝑆 corresponding to those eigenvalues in Λ𝑟  

[38]. 𝜎2 is given by 

 

𝜎2 = 1
𝑛 − 𝑟⁄ ∑ 𝜆𝑗

𝑛
𝑗=𝑟+1 ,             (54) 

 

where 𝜆𝑗 is the j-th largest eigenvalue of 𝑆. In the other words, Eq. (54) can be considered 

as the averaged variance “lost” in projection for the lost dimensions [38]. 

Now, the subsequent content is to extend the PPCA to the MPPCA proposed by 

Tipping and Bishop [39]. As aforementioned, the MPPCA is to separate the sensor 

measurement space into several locally linear regions [36, 39]. Each region is defined by 

its own probability model obtained by the PPCA algorithm, and the whole sensor 

measurement space is defined by the mixture of those probability models corresponding 
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to each region [36, 39]. Assume there are totally 𝑄  regions, the mixture of those 

probability models can be written as 

 

𝑝(𝑦) = ∑ 𝜋𝑗𝑝(𝑦|𝑥𝑗)
𝑄
𝑗=1 = ∑ 𝜋𝑗𝑁(𝑦|𝜇𝑗 , Σ𝑗)

𝑄
𝑗=1 ,        (55) 

 

where each component is a PPCA model, 𝜋𝑗, 𝑥𝑖, 𝜇𝑗, and Σ𝑗 are the mixing coefficient, the 

latent variable, the mean value, and the covariance for the j-th probability model 

respectively [36, 39]. Furthermore,  

 

𝐿 = ∑ 𝑙𝑛 ∑ 𝜋𝑗𝑝(𝑦𝑖|𝑥𝑗)
𝑄
𝑗=1

𝑘
𝑖=1 ,           (56) 

 

where 𝑦𝑖 is the i-th set of measurements [36, 39]. This problem of the maximum likelihood 

can be solved by the EM algorithm [36, 38, 39]. After obtaining the MPPCA, the 

responsibility function of j-th component in Eq. (55), with respect to the new set of 

measurements, 𝑦<𝑛𝑒𝑤>, is defined as 

 

𝑅𝑗(𝑦
<𝑛𝑒𝑤>) = 𝑝(𝑥𝑗|𝑦

<𝑛𝑒𝑤>) =
𝑝(𝑦<𝑛𝑒𝑤>|𝑥𝑗)𝜋𝑗

𝑝(𝑦<𝑛𝑒𝑤>)
⁄ .     (57) 

 

In Sharifi’s work, he chooses the component which has the largest responsibility for 

the new set of measurements, and then deal with the problem of sensor fault diagnosis in 

a local region corresponding to the chosen component discussed in his former work [36]. 
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In this work, Sharifi et al.. overcome the limitations of PCA, however, it comes out the 

issue of misclassification due to sensor faults 5 . When a sensor is faulty, the sensor 

measurement is contaminated with fault which may lead the classification techniques fail 

[36]. Therefore, a sensor fault might not be detected and isolated by this method when the 

misclassification occurs [36]. 

 

2.2.3.3 Manifold Methods 

In order to deal with the nonlinear issue, manifold methods may be a potential 

solution. Manifold methods assume that the unprocessed data can be sampled from some 

smooth underlying manifolds in a lower dimension [40-43]. From the aspect of dimension 

reduction, the goal of manifold methods is to find a pair of maps 𝑔: 𝑅𝐷 → 𝑅𝑑 with 𝑑 < 𝐷  

and 𝑓: 𝑅𝑑 → 𝑅𝐷  [40]. Currently, manifold methods are used in the field of image 

processing for the purpose of nonlinear dimension reduction such as locally linear 

embedding (LLE), Riemannian manifold learning (RML), and local PCA (LPCA) [40-43]. 

The general idea of manifold methods is to separate the data space into multiple local 

regions, and if these regions are small enough, they can be considered as linear and a 

specific linear model will be a good fit for its corresponding region [40]. Hence, the 

nonlinear issue can be simplified to a linear dimension reduction problem in a local region. 

The LLE algorithm is introduced by Roweis and Saul. This method is based on 

geometric intuitions [41]. Suppose the data consist of N real-valued vectors, 𝑋𝑖
⃗⃗  ⃗ , 𝑖 =

                                                

5 The concept of misclassification will be clearly illustrated in the next subsection by the example of LPCA. 
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1,⋯ , 𝑁, and the dimension of the data space is 𝐷. The first step of the LLE algorithm 

follows from the general idea of manifold methods. Roweis et al.. assume that each data 

point and its neighbors lie on a locally linear patch of the manifold in a lower dimension 

[41]. Then, linearly reconstruct each data point by its k nearest neighborhood, and the 

reconstruction error is measured by Eq. (58) [41].  

 

휀(𝑊) = ∑ |𝑋𝑖
⃗⃗  ⃗ − ∑ 𝑊𝑖𝑗𝑋𝑗

⃗⃗  ⃗
𝑗 |

2

𝑖 ,           (58) 

 

where 𝑊𝑖𝑗  is the weight which summarize the contribution of the j-th data point to the i-

th reconstruction [41]. There are two constraints for solving Eq. (58): 1. enforcing 𝑊𝑖𝑗 =

0, if 𝑋𝑗
⃗⃗  ⃗ is not a neighbor of 𝑋𝑖

⃗⃗  ⃗; 2. ∑ 𝑊𝑖𝑗 = 1𝑗  [41]. The reason for these two constraints is 

to keep the weights invariant to rotations, rescaling, and translations of the data point, 𝑋𝑖
⃗⃗  ⃗, 

and its neighbors [41]. The optimal solution for Eq. (58) has been solved by Roweis et al.. 

[41].  

After reconstructing each point, they employ the fact that the reconstruction weights 

reflect the intrinsic geometric properties of the data, and these geometric properties are 

invariant to rotations, rescaling, and translations [41]. Therefore, assume 𝑌𝑖
⃗⃗  is the 

representation of 𝑋𝑖
⃗⃗  ⃗ in a lower dimension 𝑑, and obtain the cost function based on the 

reconstruction error, 

 

Φ(𝑌) = ∑ |𝑌𝑖
⃗⃗ − ∑ 𝑊𝑖𝑗𝑌𝑗⃗⃗ 𝑗 |

2

𝑖 .           (59) 
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In Eq. (59), only 𝑌𝑖
⃗⃗  and its neighbors are unknown, because the weights are invariant 

in Eq. (58-59). Therefore, one can obtain the lower dimensional representation by 

minimizing the reconstruction error, Φ(𝑌) [41]. The optimal solution has been solved by 

Roweis et al.. too. However, from the aspect of sensor fault diagnosis, LLE is not quite 

suitable, because the projection matrix between 𝑅𝐷  and 𝑅𝑑 is not preserved. It means we 

have to reconstruct data and solve Eq. (58-59) every time while calculating the residuals.  

Another manifold method is the Riemannian manifold learning (RML) algorithm 

proposed by Lin et al.., which is a popular nonlinear reduction technique used in image 

processing currently [42, 43]. Similar to the LLE algorithm, the RML algorithm starts 

from reconstructing each data point by its neighbors as a simplex [42, 43]. The simplex 

can be considered as a linear relation between the data point and its neighbors in a local 

region [42, 43]. After reconstructing each data point, those simplexes are grouped, and 

then the shortest path between each point is obtained according to these simplexes [42, 

43]. Then, the specific constraints for the image processing purpose are defined based on 

those shortest paths [42, 43]. In the end, each data point is projected to a locally lower 

dimensional coordinates, namely Riemannian normal coordinates (RNC), by the 

constraints defined in the last step [42, 43]. Compared with other manifold methods, the 

RML algorithm is capable of generating a smoother manifold, because some of the 

projected data are distorted in some regions due to their constraints [42, 43]. However, 

there are still several problems have not been well addressed in RML, such as how to 

choose an adequate dimension for the locally lower dimensional coordinates and how to 

choose an suitable number of points in each neighborhood [42, 43].  
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In addition to above methods, the LPCA algorithm proposed by Kambhatla et al.. is 

a manifold method which is fast to compute [40]. In the same sense of other manifold 

methods, LPCA is to partition data into multiple locally linear regions [40]. Kambhatla et 

al.. suggest two ways to separate data: the Euclidean partition and the projection partition 

[40]. The Euclidean partition is to classify data depending on the Euclidean distance to the 

center point of each local region [40]. On the other hand, the projection partition is to 

classify data based on their contribution of the reconstruction error for each local region 

[40]. These two partitions are briefly described below. 

 

Euclidean Partition 

The Euclidean partition is an easier way to construct the partition. In fact, this method 

is so called the generalized Lloyd algorithm (Gersho & Gray, 1992) [40]. Assume there 

are K reference points 𝑝(𝑖) , 𝑖 = 1,⋯ ,𝐾  and corresponding regions 𝑃(𝑖)  in the 

measurement space 𝑦 ∈ 𝑅𝑛 . The Euclidean partition satisfies the Lloyd’s optimality 

conditions [40]. 

1. Define 𝑑𝐸(𝑎, 𝑏) is the Euclidean distance between a and b, and then 
 

𝑝(𝑖) = {𝑦|𝑑𝐸(𝑦, 𝑝(𝑖)) < 𝑑𝐸(𝑦, 𝑝(𝑗)), ∀𝑖 ≠ 𝑗}.        (60) 

 

2. 𝑝(𝑖) is the center of the i-th region, 𝑃(𝑖). For the Euclidean partition, 𝑝(𝑖) is the 
mean value of the data points classified to the i-th region. 
 



 

44 

 

After partitioning data, implementing PCA to each local region, and reduce 

dimension from 𝑛 to 𝑚. Assume the locally principal components related to the i-th region 

are 𝑒(𝑗), 𝑗 = 1,⋯ ,𝑚 and 𝑦(𝑖) is the subset of data classified to the i-th region. The lower 

dimensional representation for ∀𝑦 ∈ 𝑦(𝑖) is given by Eq. (61) [40], 

 

𝑧 = (𝑒1
(𝑖)

∙ (𝑦 − 𝑝(𝑖)),⋯ , 𝑒𝑚
(𝑖)

∙ (𝑦 − 𝑝(𝑖)) ) 

�̂� = 𝑝(𝑖) + ∑ 𝑧𝑗𝑒𝑗
(𝑖)𝑚

𝑗=1 .            (61) 

 

The mean squared reconstruction error can be calculated by 

 

휀𝑟𝑒𝑐𝑜𝑛 = 𝐸[‖𝑦 − �̂�‖2].            (62) 

 

Projection Partition 

However, the Euclidean partition is not the optimal solution, because the data does 

not be reconstructed according to the reconstruction error in Eq. (61) [40]. With this in 

mind, the projection partition is proposed to classify data based on the contribution of the 

reconstruction error for each region [40]. According to Eq. (61, 62), the reconstruction 

distance is defined as 

 

𝑑(𝑦, 𝑝(𝑖)) = ‖𝑦 − 𝑝(𝑖) − ∑ 𝑧𝑗𝑒𝑗
(𝑖)𝑚

𝑗=1 ‖
2

= (𝑦 − 𝑝(𝑖))
𝑇
𝐺(𝑖)𝑇𝐺(𝑖)(𝑦 − 𝑝(𝑖)) = (𝑦 −

𝑝(𝑖))
𝑇
Π(𝑖)(𝑦 − 𝑝(𝑖)),             (63) 



 

45 

 

where 𝐺(𝑖) is the (𝑛 − 𝑚) × 𝑛 matrix whose rows are the normalized eigenvectors of the 

covariance matrix Σ(𝑖)  corresponding to the smallest (𝑛 − 𝑚)  eigenvalues. The 

covariance matrix can be obtained by Eq. (64). 

 

Σ(𝑖) = 𝐸[(𝑦 − 𝐸𝑦)(𝑦 − 𝐸𝑦)𝑇|𝑦 ∈ 𝑅(𝑖)], 𝑖 = 1,⋯ ,𝐾      (64) 

 

The projection partition is to replace the Euclidean distance in Eq. (60) by the 

reconstruction distance shown as Eq. (65).  

 

𝑝(𝑖) = {𝑦|𝑑(𝑦, 𝑝(𝑖)) < 𝑑(𝑦, 𝑝(𝑗)), ∀𝑖 ≠ 𝑗}        (65) 

 

Therefore, the reconstruction error is minimized by the projection partition. There is 

one thing needed to be noticed, unlike the Euclidean partition, the regions separated by 

the projection partition may be disjoint [40]. Figure 8 is to illustrate the difference between 

those two partitions in a two dimensional case. The left part is the Euclidean partition, and 

the right part is the projection partition. The 𝑒1
(1)  and 𝑒1

(2)  axes are the principal 

components found by PCA in their corresponding regions, and 𝑦′ is an unclassified data. 

According to Fig. 8, the Euclidean partition is to classify 𝑦′ depending on the distance 

from 𝑦′ to the center of each region, and the projection partition is depending on the 

shortest distance from 𝑦′ to the principal component corresponding to each region [40]. 
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Figure 8. The illustration of the Euclidean partition and the projection partition. (Adapted 
from [40]) 
 
 
 

The procedure of the projection partition is summarized as follows [40]: 

1. Assume the set of data, 𝑦, is partitioned into 𝐾 regions. Initialize the 𝐾 reference 

points, 𝑝(𝑖), 𝑖 = 1,⋯ , 𝐾 by choosing randomly from the data set. 

2. Initialize the covariance matrix, Σ(𝑖), 𝑖 = 1,⋯ , 𝐾, to the identity matrix. Use Eq. 

(63, 65) to classify data into their corresponding regions, 𝑃(𝑖), 𝑖 = 1,⋯ , 𝐾. 

3. Update the center of each region by 𝑝(𝑖) = �̅�(𝑖), where �̅�(𝑖) is the mean value of 

the data classified to the i-th region. 

4. Assume the number of data in the i-th region is 𝑁𝑖. Update 

 

Σ(𝑖) = 1
𝑁𝑖

⁄ ∑ (𝑦(𝑖) − 𝑝(𝑖))(𝑦(𝑖) − 𝑝(𝑖))
𝑇

𝑦(𝑖)∈𝑃(𝑖) .      (66) 

 

5. Repeat above steps until all data are classified. 
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After classifying each data point to its corresponding region, PCA is implemented to 

construct the specific linear model for each region [40]. Therefore, a lower dimensional 

representation is obtained. The advantage of LPCA is that the projection matrix for each 

local region is preserved, which is useful for sensor fault diagnosis. Another advantage is 

that data are partitioned by the projection partition based on reconstruction error [40]. 

Reconstruction error is the core concept of history process data based methods. Consider 

Eq. (21), 𝑄  matrix is composed by the eigenvectors corresponding to 𝑁 − 𝑘  smallest 

eigenvalues of the covariance matrix of data. Therefore, in Eq. (21), 𝑣𝑦 ≈ 0 is based on 

assuming the reconstruction error is small enough to be neglected. The difference between 

LPCA and other manifold methods is that LPCA will not generate a smooth manifold [41]. 

This is a disadvantage from the aspect of image processing. However, generating an 

unsmooth manifold is not a drawback for the sensor fault diagnosis, because we only care 

about the reconstruction error instead of the smoothness of an image signal. Therefore, the 

LPCA algorithm is suitable to be applied on the nonlinear sensor fault diagnosis. 

However, similar to applying MPPCA on the problem of sensor fault diagnosis, 

applying LPCA also comes out the issue of misclassification. This issue appears in both 

partition methods. This issue is illustrated by the projection partition in Fig. 9. Consider a 

two outputs nonlinear system, assume 𝑦′  is a healthy data point, 𝑦1  and 𝑦2  are the 

measurements from the sensor 1 and sensor 2 represented in the two dimensional 

measurement space, 𝑝(1) and 𝑝(2) are the center of training data in the local region 1 and 

2 respectively. From Fig. 9, we can understand that 𝑦′ is classified to the region 2 when 

the system is healthy. However, when a sensor 1 drift fault, ∆𝑦1, occurs, the data point, 𝑦′, 
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will be placed at 𝑦∗  and classified to the local region 1 by the projection partition 

algorithm. The reconstruction error is small due to the misclassification of 𝑦∗. Therefore, 

the sensor fault may not be detected and isolated in this situation, unless there is a better 

way to classify the faulty data.  

 

 

Figure 9. The illustration of misclassification. 
 
 
 
2.2.4 Expert Systems 

From previous discussion, dimension reduction based methods are limited in their 

isolability in both linear and nonlinear cases. Escobet et al.. and Zhang et al.. proposed  

expert system based approaches by using fuzzy logic for sensor fault detection and 



 

49 

 

isolation [44, 45]. The basic idea of their works is to construct a library which classifies 

every pattern contained in the training data. The biggest advantage of this kind of methods 

is its capability of transparent reasoning [3]. However, in order to isolate faults, all patterns 

of possible healthy/faulty scenarios have to be included in the training data. This is a 

general limitation of this kind of methods, since faulty data may not be available in some 

applications for safety issues. The other well-known limitation is that the constructed 

library developed from expert rules is very system-specific and difficult to update [3]. 

 

2.2.5 Phase Space Reconstruction 

In addition to the direction of dimension reduction, Chelidze et al.. propose their 

methods to deal with the problem of fault diagnosis from a different perspective. In their 

works, they deal with the system parameter fault diagnosis problem in the phase space 

[46-52]. Those works are motivated by the needs to track slowly evolving hidden damage 

in the process [46]. Chelidze reconstructs the phase space by the system measurements, 

and predicts the future measurement by linearly and locally approximating the state 

trajectory in the reconstructed phase space [46]. Then, he successfully links the estimated 

error6 to the slowly evolving hidden damage and examines his results both experimentally 

and numerically [46, 47, 49]. Moreover, Chelidze suggests compensate the fluctuation, 

which are not related to the changes of hidden parameter or damage, in the estimated error 

                                                

6 Here, the estimated error is the difference between the actual measurement and the predicted measurement. 
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by selecting a proper weighting function according to the reference data7 probability 

density near the current measured data point [46]. However, this method can only track 

and identify single hidden damage. In order to address the multiple slowly evolving hidden 

damages problem, Chelidze induces the concept of multidimensional damage feature 

vector in his following work [48]. Multidimensional damage vector is formed by 

evaluating the estimated error in several disjoint regions of the reconstructed phase space 

[48]. Here, the number of elements of the multidimensional damage vector is the same as 

the number of those disjoint regions. After constructing the feature vector, Chelidze 

identifies the multiple slowly evolving hidden damages in the sense of dimension 

reduction [48]. He applies proper orthogonal decomposition (POD) and smooth 

orthogonal decomposition (SOD) to find the optimal coordinates (POCs) for 

approximating the estimated error in a lower dimension [48]. In essence, the optimal 

coordinates is composed with those coordinates with larger variance. Here, POD is also 

known as SVD in the discrete case, and SOD can be viewed as a different version of POD 

with an additional constraint requiring POCs to be smooth [48]. Then, Chelidze relates the 

optimal coordinates to each hidden damage based on his previous work, and he applies 

this method to a numerical model. According to his results, SOD has a significantly better 

signal-to-noise ratio than POD [48]. Therefore, SOD-based identification is recommended 

for the multiple damages situation [48]. Moreover, Chelidze further improves his method 

by partitioning the reconstructed phase space with a condition that every disjoint region 

                                                

7 Here, the reference data are the chosen nearest neighbors for the current measured data in the reconstructed 
phase space. 
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has the same data points [50]. The performance of this approach is examined by a two-

dimensional damage accumulation process experimentally, and its results show that 

damages are identified correctly [50]. Chelidze’s works provide a great start to further 

invest efforts to address the remain issues in the field of fault diagnosis, since the 

capability of tracking system states in the reconstructed phase space. However, although 

Chelidze et al... have done some good works in the field of fault diagnosis, their works are 

focused on the incipient system parameter faults. Therefore, a unified solution for isolating 

multiple sensor faults in both of linear and nonlinear cases is still unaddressed. 

With this in mind, the proposed approach deals with the sensor fault diagnosis 

problem in the phase space, which offers several advantages. First of all, we have to 

emphasize especially on the isolability of multiple sensor faults or the occurrence of 

multiple abnormal events. Currently, there is no general solution for this problem. The 

existing methods are limited in the single sensor fault situation, requiring additional 

information of specific systems, or their performance cannot be guaranteed in nonlinear 

processes [17, 22, 28, 36, 37, 44]. By reconstructing the phase space from each sensor, the 

proposed approach can predict their future measurements, and then isolate multiple sensor 

faults in both of linear and nonlinear cases. Second is that the proposed approach has the 

capability of predicting future healthy sensor measurements. With the prediction 

capability, the proposed approach diagnoses sensor faults intuitively by comparing the 

predicted outputs with the actually measured outputs. Moreover, when the applied system 

is faulty, the predicted sensor measurement can replace the faulty measurement to avoid 

the potential damages of the applied system in the closed-loop sensor fault situation. Third 
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is associated with an assumption of PCA-related methods. Since PCA-related approaches 

consider approximation errors as residual signals, these approaches have to assume that 

the original data can be approximated well in a lower dimensional space. In the other 

words, the number of measurement channels has to be larger than the dimension of the 

applied system. The proposed approach deals with the fault diagnosis problem by 

reconstructing data in the phase space, so this assumption can be discarded. Fourth is that 

the proposed approach does not require specific information of the applied system. 

Therefore, the procedure of the proposed approach is unified for all applications. 
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3. THE PROPOSED METHOD 

 

The structure of the proposed method is shown in Fig. 10. In this figure, blue blocks 

represent different functions/mechanisms for specific purposes. First, the training data are 

collected from the applied system. In the next step, we use the collected training data to 

reconstruct the phase space by the block of Phase Space Reconstruction. After 

reconstructing the phase space, one can obtain the reconstructed trajectory which can be 

viewed as the alternative of system state flow. In this stage, the reconstructed trajectory 

may contain a lot of fluctuations, which will lower the performance of the prediction 

mechanism. There are mainly two causes of the fluctuations. First is the effect of noise, 

and the second is the reconstructing fluctuations8 [46]. In order to fix this issue, a smooth 

mechanism is adopted to reduce the fluctuations. Then, we use the smoothed trajectory to 

predict the future sensor measurements and compare to the actual measured measurements 

to detect and isolate sensor faults. In addition, we also apply the conservation/dissipation 

property in phase space to further extend the proposed method to deal with a slightly 

nonstationary situation due to setpoint changes.  

 

                                                

8  Here, the reconstructing fluctuations means that the fluctuations produced due to the phase space 
reconstruction techniques. In Chelidze’s works, since he did not consider the effect of noise, the 
reconstructing fluctuations is the only cause of the fluctuations contained in the reconstructed trajectory. 
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Figure 10. The structure of the proposed method. 
 
 
 
3.1 Phase Space Reconstruction 

The goal of phase space reconstruction is to reconstruct the state space of a dynamic 

system by observing its outputs [54]. Consider the discrete dynamical system, 

 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘))  

𝑦(𝑘) = 𝐻(𝑥(𝑘)),             (67) 

 

where 𝑥 ∈ 𝑅𝑛  are the system states and 𝑦 ∈ 𝑅𝑝  are the system outputs, which can be 

observed in the measurement space. In the other words, the measurement function 𝑦 =

𝐻(𝑠𝑡𝑎𝑡𝑒) can be considered as a mapping from 𝑅𝑛 to 𝑅𝑝 [54]. According to Whitney’s 

Embedding Theorem, assuming a d-dimensional state manifold M which approximates 

the trajectory of the system states in the state space, 𝑑 < 𝑛, is sufficient to be reconstructed 

in the measurement space, 𝑅𝑝, by 2𝑑 + 1 simultaneous and independent measurements 
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[54, 55]. Although Whitney’s theorem is in principle powerful, a large number of 

independent and simultaneous measurements may not be available in practice [54, 56]. 

Moreover, in the case of fault diagnosis, measurements of a single sensor are sampled as 

a time series. Therefore, a time series version of Whitney’s theorem is used in this paper, 

namely Takens’ time delay embedding theorem [56]. 

 

3.1.1 Takens’ Time Delay Embedding Theorem 

 In mathematics, a flow is defined as a time dependent variable [54, 56]. Suppose Φ 

is a state flow on a d-dimensional manifold M, and Φ(𝑋) is the flow map of the system 

states, 𝑥, in the phase space.  In addition, assume T is a positive number (called the time 

delay), and ℎ:𝑀 → 𝑅 is a smooth function. Define the 𝑝′-dimensional delay-coordinate 

map 𝐹(ℎ, Φ, 𝑇):𝑀 → 𝑅𝑝′ as: 

 

𝐹(ℎ,Φ, 𝑇)(𝑥) = (ℎ(Φ(𝑥)), ℎ(Φ𝑇(𝑥)), ℎ(Φ2𝑇(𝑥)),⋯ , ℎ (Φ(𝑝′−1)𝑇(𝑥))),  (68) 

 

where Φ𝑇(𝑥) is to delayΦ(𝑥) with a delay time 𝑇. According to Takens’ theorem, if 𝑝′ >

2𝑑, the delay-coordinate map in Eq. (68) will be an embedding of M [54, 56]. Here, 

𝐹(𝐻,Φ, 𝑇)(𝑥)  is an embedding of M iff both 𝐹(ℎ, Φ, 𝑇)(𝑥)  and its derivative map 

𝐷𝐹(ℎ, Φ, 𝑇)(𝑥) are one-to-one at every point 𝑥 of 𝑀 [54]. Assuming 𝑝′ > 2𝑑, Eq. (68) 

suggests that 2𝑑 + 1 simultaneous measurements in Whitney’s theorem can be replaced 

by a 𝑝′-element delay-coordinate map. In other words, if 𝑝′ > 2𝑑, Eq. (68) is sufficient to 
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reconstruct the manifold 𝑀 in the phase space [54, 56]. To extend Taken’s theorem to the 

multiple output system described in Eq. (67), suppose 𝑦𝑘
(𝑖), 𝑖 = 1,⋯ , 𝑝, is the i-th sensor 

measurement at time 𝑘, and choose 𝑇 = 1. Then, we can obtain the general form of an 

embedding of the 𝑑-dimensional state manifold 𝑀,  

 

𝑋(𝑘) = {𝑦𝑘
(1)

, 𝑦𝑘+1
(1)

,⋯ , 𝑦𝑘+𝑛1−1
(1)

, 𝑦𝑘
(2)

,⋯ , 𝑦𝑘+𝑛2−1
(2)

, 𝑦𝑘
(𝑝)

,⋯ , 𝑦𝑘+𝑛𝑝−1
(𝑝)

}.    (69) 

 

Here, the sufficient condition in Taken’s theorem, 𝑝′ > 2𝑑, becomes ∑ 𝑛𝑖 > 2𝑑
𝑝
𝑖=1   [54]. 

Eq. (69) suggests that an embedding can be reconstructed by a series of lagged 

observations not only from multiple sensors, but also from a single sensor. For the 

convenience of illustrating the subsequent content, we constrain embeddings 

reconstructed from a single sensor. Let 𝑛𝑖 = 2𝑑 + 1, and 𝑛𝑗 = 0, ∀𝑗 ≠ 𝑖. Then, Eq. (69) 

becomes 

 

𝑋(𝑘) = {𝑦𝑘
(𝑖)

, 𝑦𝑘+1
(𝑖)

,⋯ , 𝑦𝑘+2𝑑
(𝑖)

}.          (70) 

 

In Eq. (70), the only parameter that needs to be determined is the dimension of the 

embedding. However, Takens’ theorem, although correct in principle, is not precisely true 

in the real world because of the effect of noise [54]. Consider the 2𝑑 + 1 dimensional 

reconstruction described in Eq. (70) with a small 𝑑, each element will be indistinguishable 

in the presence of noise. Therefore, the reconstructed trajectory in the phase space will lie 
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on the line 𝑦𝑘
(𝑖)

= 𝑦𝑘+1
(𝑖)

= ⋯𝑦𝑘+2𝑑
(𝑖)   [57]. In this case, the reconstructed trajectory will no 

longer be an embedding of 𝑀 because it is no longer one-to-one at every point in 𝑀. In 

order to unfold the trajectory, an additional delay is added to make the elements 

distinguishable. Therefore, the chosen time delay should make the elements statistically 

independent, and Eq. (70) becomes   

 

𝑋𝜏,𝑑(𝑘) = {𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

, 𝑦𝑘+2𝜏
(𝑖)

, ⋯ , 𝑦𝑘+2𝑑𝜏
(𝑖)

}.        (71) 

 

According to Eq. (71), the time delay, 𝜏, and the dimension of the embedding need 

to be determined for reconstructing the phase space. Moreover, 𝜏 has to be chosen such 

that the elements in the embedding are statistically independent, and the dimension of the 

embedding must be larger or equal to 2𝑑 + 1. How to choose the proper time delay and 

optimal dimension of the embedding is a well-discussed issue in the field of phase space 

reconstruction [54]. This is discussed below. 

 

3.1.2 Determination of Time Delay and Dimension of an Embedding in Phase Space 

Reconstruction 

Various methods have been used to determine the time delay and the dimension of 

an embedding separately such as autocorrelation and mutual information for estimating 

the time delay [57] and False Nearest Neighbor (FNN) algorithm for estimating the 

dimension of embeddings [58]. 
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3.1.2.1 Time Delay 

To determine the time delay, 𝜏, an easier way is to choose the smallest 𝜏 which makes 

the autocorrelation function close or equal to zero [57]. However, the autocorrelation 

function can only measure linear dependence of the elements. To improve this, the mutual 

information is proposed to measure the general dependence of the elements [57]. To 

illustrate the notion of mutual information, let us consider a two-dimensional 

reconstruction, 𝑋𝜏,𝑑(𝑘) = {𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

} . Fraser suggests that the time delay should be 

chosen to make 𝑦𝑘
(𝑖) and 𝑦𝑘+𝜏

(𝑖)  independent from the standpoint of mutual information [57]. 

The notion of mutual information is to measure the information shared by these two 

variables, as defined by: 

 

𝐼(𝑌𝑘
(𝑖)

, 𝑌𝑘+𝜏
(𝑖)

 ) =

∑ ∑ 𝑝(𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

)𝑙𝑜𝑔
𝑝(𝑦𝑘

(𝑖)
, 𝑦𝑘+𝜏

(𝑖)
)

𝑝(𝑦𝑘

(𝑖)
)𝑝(𝑦𝑘+𝜏

(𝑖)
)

⁄
𝑦
𝑘+𝜏
(𝑖)

∈𝑌
𝑘+𝜏
(𝑖)

𝑦
𝑘
(𝑖)

∈𝑌
𝑘
(𝑖) ,    (72) 

 

where 𝑌𝑘
(𝑖) and 𝑌𝑘+𝜏

(𝑖)  are two time series of 𝑦𝑘
(𝑖) and 𝑦𝑘+𝜏

(𝑖)  respectively [57]. In practice, the 

difficulty in calculating mutual information from experimental data is in estimating the 

joint probability for 𝑦𝑘
(𝑖) and 𝑦𝑘+𝜏

(𝑖) . Fraser estimates 𝑝(𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

) by selecting a box in the 

(𝑌𝑘
(𝑖)

, 𝑌𝑘+𝜏
(𝑖)

 ) plane of size ∆ around the point (𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

). Assume there are 𝑁𝑗 points in 

the box, and then 𝑝(𝑦𝑘
(𝑖)

, 𝑦𝑘+𝜏
(𝑖)

) is estimated to be 
𝑁𝑗

𝑁𝑡𝑜𝑡𝑎𝑙
⁄ ∆, where 𝑁𝑡𝑜𝑡𝑎𝑙 is the number 
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of total points in the (𝑌𝑘
(𝑖)

, 𝑌𝑘+𝜏
(𝑖)

 ) plane [57]. In addition, for choosing the time delay, 

Fraser calculates 𝐼(𝑌𝑘
(𝑖)

, 𝑌𝑘+𝜏
(𝑖)

 ) for 𝜏 = 1,⋯ , 𝑁, and chooses the 𝜏 at which the first local 

minimum of 𝐼(𝑌𝑘
(𝑖)

, 𝑌𝑘+𝜏
(𝑖)

 ) occurs [57].  

 

3.1.2.2 Dimension of Embedding 

After choosing the time delay, the dimension of the embedding is chosen by the False 

Nearest Neighbor (FNN) algorithm [58]. The physics behind the FNN algorithm is that 

the data in the true phase space will be projected to a lower dimensional space if the chosen 

dimension of the embedding, 𝐷, is lower than the optimal dimension of the embedding, 

𝐷𝑜𝑝𝑡
9 [58]. In that situation, any two points which are not close to each other in the optimal 

dimension may become neighbors in the lower dimension, 𝐷.   This phenomenon is called 

false nearest neighbor. Therefore, the FNN value is calculated according to the ratio of the 

distances of the two data points in the 𝐷 and 𝐷 + 1 dimensional spaces shown in Eq. (73) 

[58]. 

 

𝐹𝑁𝑁 𝑣𝑎𝑙𝑢𝑒 = 1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝐷

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝐷 + 1
⁄ . (73) 

 

                                                

9  According to Takens’ theorem, 𝐷𝑜𝑝𝑡  equals to 2𝑑 + 1  without considering the effect of noise and 
disturbance. 
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Observing Eq. (73), when 𝐷 < 𝐷𝑜𝑝𝑡, the FNN value will be larger than a threshold. In 

contrast, the value will be close to zero when 𝐷 > 𝐷𝑜𝑝𝑡. The dimension of the embedding 

can be determined accordingly. 

 

3.1.2.3 Applications of Phase Space Reconstruction 

Phase space reconstruction techniques can be applied to several applications. One of 

them is to find the underlying deterministic pattern from a time series [53]. A famous 

example is the Lorenz equations shown in Eq. (74) [59].  

 

𝑥′ = 𝜎(𝑦 − 𝑥)  

𝑦′ = 𝑥(𝑟 − 𝑧) − 𝑦  

𝑧′ = 𝑥𝑦 − 𝑏𝑧               (74) 

 

The Lorenz equations are first proposed by Lorenz for atmospheric convection. In 

this example, we use the standard settings for their parameters, σ=10, r=28, b=8/3. In 

addition, the initial conditions are set to be (𝑥0, 𝑦0, 𝑧0) = (5, 5, 5).  For the first two 

thousands samples, the time series of 𝑥, 𝑦, and 𝑧 are shown in Fig. 11. 
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Figure 11. Time series of x, y, and z in Lorenz equations. 
 
 
 

According the above figure, it is difficult to find the deterministic pattern by only 

observing those time series. However, by applying phase space reconstruction, one can 

find their deterministic pattern. Figure 12 is the result of applying mutual information 

method to the time series of 𝑥. According to this result, one can see that the first local 

minimum of mutual information occurs at sample time 19. Therefore, we choose the time 

delay to be 19 for reconstructing its phase space. 
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Figure 12. The result of applying mutual information method to the time series of x. 
 
 
 

For choosing the dimension of embedding, Fig. 13 is the result of applying FNN 

method to the time series of x. According to this result, the FNN value is close to zero 

when the dimension is larger or equal to 3. Therefore, the dimension of embedding is 

chosen to be 3. 
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Figure 13. The result of applying FNN method to the time series of x. 
 
 
 

Figure 14 is the reconstructed phase space of the time series of x. By applying the 

phase space reconstruction techniques, the deterministic pattern of the time series is 

explicitly seen. 

 

 

Figure 14. The reconstructed phase space of the time series of x. 
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In addition, the reconstructed phase space can be also considered as a nonlinear 

relation between current measurement and former measurements of a dynamic system or 

mathematical model [53]. For instance, the reconstructed trajectory in Fig. 14 can be 

viewed as a nonlinear relation between 𝑥(𝑘), 𝑥(𝑘 − 19), and 𝑥(𝑘 − 38). Therefore, by 

phase space reconstruction techniques, it is possible to predict the future measurements by 

the former measurements of a dynamic system. 

 

3.2 Smooth Mechanism 

The purpose of the smooth mechanism in Fig. 10 is aimed to reduce the fluctuations 

contained in the reconstructed trajectory and improve the performance of the prediction 

mechanism. As mentioned before, there are two reasons for the occurrence of fluctuations. 

First is due to the effect of noise, and second reason is the reconstructing fluctuations. The 

cause of the reconstructing fluctuations is that the chosen time delay may not be able to 

make the elements in the current embedding perfectly independent to each other [46]. In 

the other words, practically, it may not be able to find a time delay which makes the mutual 

information exactly equals to zero. Since the prediction mechanism is to estimate the 

future measurements based on the reconstructed trajectory, fluctuations will lead the 

prediction inaccurate and then lower the performance of fault detection. Therefore, two 

strategies are introduced here in order to fix this problem. 
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3.2.1 Minimum Variance Unbiased Estimator (MVU) 

The first strategy is to consider this problem as an estimation problem, since our 

purpose is to estimate the true value10 from the reconstructed trajectory contaminated by 

fluctuations. Therefore, in this direction, the smooth mechanism functions as an estimator. 

The estimation problem can be described as: 

 

𝑌 = 𝐴(𝑘) + 𝑤.             (75) 

 

Where 𝑌 is the reconstructed trajectory obtained from sensor measurements, 𝐴(𝑘) is 

the true value of 𝑌 at the kth instant, and w is the fluctuations. Assume 𝑤 is Gaussian 

distributed, and MVU estimator exists. A 𝐿-sample averaging frame can be considered to 

be the minimum variance unbiased (MVU) estimator if 𝐿 is small so that 𝐴(𝑡) can be 

considered as a constant in the averaging frame [60]. The mathematical description of the 

MVU estimator is shown as Eq. (76). In Eq. (76), 𝐴�̂�(𝑘) represents the estimated true 

value at the kth instant. 

 

 𝐴�̂�(𝑘) =
∑ 𝑦𝑒(𝑖)

𝑘
𝑖=𝑘−𝐿+1

𝐿
⁄             (76) 

 

In the other words, averaging samples is the best way to estimate the true value of 𝑌 

under above assumptions. More precisely, assume 𝑤  is Guassian with variance 𝜎2 . 

                                                

10 Here, true value means that the data without noise and reconstructing fluctuations. 
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Because of the fluctuations, 𝑌 no longer equals to its true value, and 𝑌~𝑁(𝐴(𝑡), 𝜎2). After 

averaging 𝑌  with its former data, the averaged value, �̅�~𝑁(𝐴(𝑡), 𝜎
2

𝐿⁄ ) , has lower 

variance and is closer to its true value, 𝐴(𝑡). Therefore, the effect of fluctuations can be 

reduced. 

 

3.2.2 Smooth Orthogonal Decomposition (SOD) 

The second strategy is to consider the problem of fluctuations as a noise reduction 

problem. On this track, we consider the fluctuations as noise contaminating the 

reconstructed trajectory. With this in mind, we applied dimension reduction techniques to 

this problem. Among all dimension reduction techniques, PCA-related methods have been 

considered the most efficient tool for reducing the effect of noise in field of signal 

processing [23]. Consider the measurement space of a dynamic system, PCA-related 

methods are aimed to find few orthogonal components with largest variance [23]. After 

finding those components with largest variance, the rest components will be considered as 

noise and can be neglected. However, PCA-related methods do not consider the tendency 

of the reconstructed trajectory. In order to keep the smoothness of the reconstructed 

trajectory, we introduce the smooth orthogonal decomposition (SOD) as a smooth 

mechanism. SOD can be viewed as a constrained version of singular value decomposition 

(SVD). This approach is first proposed by Chelidze et al.. for extracting linear normal 

modes and natural frequencies of multi-degree-of-freedom and distributed-parameter 

vibration systems [61].  
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To illustrate the SOD algorithm, let 𝑦𝑒 ∈ 𝑅𝑛𝑒×𝑚𝑒 be the 𝑚𝑒 dimension reconstructed 

trajectory with 𝑛𝑒 points. In order to describe the smoothness of 𝑦𝑒, defining a (𝑛𝑒 − 1) ×

𝑛𝑒 differential operator: 

 

 𝐷𝑒 = 1
∆𝑡⁄ [

−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮
0

⋱
⋯

⋱ ⋱ ⋮
0 −1 1

].          (77) 

 

Where ∆𝑡 is the sample time between each sample. After defining the differential operator, 

the approximated velocity matrix can be obtained by multiplying 𝑦𝑒. 

 

 𝑉𝑒 = 𝐷𝑒𝑦𝑒               (78) 

 

Let 𝛷 be a set of linear orthogonal combinations. The goals of the noise reduction 

problem can be described as the following constrained maximum variance problem: 

 

 max
𝛷

‖𝑦𝑒𝛷‖2  subject to min
𝛷

‖𝑉𝑒𝛷‖2.          (79) 

 

By derivations, Eq. (79) will become a generalized eigenvalue problem shown as Eq. (80). 

 

 𝛴𝑦𝑒
𝛷𝑖 = 𝜆𝑖𝛴𝑉𝑒

𝛷𝑖,  𝑖 = 1,  … ,  𝑚𝑒           (80) 
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Where, 𝛴𝑦𝑒
 and 𝛴𝑉𝑒

 are the covariance matrix of 𝑦𝑒 and 𝑉𝑒  respectively, 𝜆𝑖 is the ith 

largest generalized eigenvalue, and 𝛷𝑖 is the generalized eigenvector corresponding to 𝜆𝑖. 

Composing 𝛷 by a set of generalized eigenvectors corresponding to larger generalized 

eigenvalues, the fluctuation-reduced trajectory, 𝑦𝑠, can be obtained in a lower dimension 

shown as 

 

 𝑦𝑠 = 𝑦𝑒𝛷.               (81) 

 

Compared with MVU estimator, SOD can achieve a smoothed trajectory with lower 

dimension. Therefore, SOD is more memory efficient in practice. 

 

3.3 Prediction Mechanism 

After obtaining smoothed trajectory, a prediction mechanism is induced for 

predicting the future measurement of each sensor in the applied system. In principle, 

embedding is not unique [54-56]. Therefore, assume there are totally 𝑝 sensors in the 

applied system, one can obtain multiple embeddings corresponding to each sensor such as 

 

𝑋1(𝑘) = {𝑦𝑖1,2𝑑+1(𝑘 − 𝜏1,2𝑑+1),⋯ , 𝑦𝑖1,2(𝑘 − 𝜏1,2), 𝑦1(𝑘)}  

𝑋2(𝑘) = {𝑦𝑖2,2𝑑+1(𝑘 − 𝜏2,2𝑑+1),⋯ , 𝑦𝑖2,2(𝑘 − 𝜏2,2), 𝑦2(𝑘)}  

⋮ 

𝑋𝑝(𝑘) = {𝑦𝑖𝑝 ,2𝑑+1(𝑘 − 𝜏𝑝,2𝑑+1),⋯ , 𝑦𝑖𝑝,2(𝑘 − 𝜏𝑝,2), 𝑦𝑝(𝑘)},     (82) 
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where 𝑦𝑖𝑎,𝑏
, 𝑖𝑎,𝑏 ∈ {1,⋯ , 𝑝}, is the ia,b-th sensor measurement, 𝑘  is sample time, and 

𝑋𝑗 , 𝑗 = 1,… , 𝑝, is the embedding corresponding to the jth sensor. Notice that elements in 

each embedding are not necessary obtained from the corresponded sensor. Pecora has 

proven that an embedding can be composed by the measurements from different 

measurement channel [62]. The purpose of the prediction mechanism is to estimate the 

future measurement of each sensor, 𝑦(𝑘 + 1). 

 

𝑦(𝑘 + 1) = (𝑦1(𝑘 + 1), 𝑦2(𝑘 + 1),⋯ , 𝑦𝑝(𝑘 + 1) )      (83) 

 

According to our search of the relevant literature, very little application has been 

done with prediction by using phase space reconstruction. Farmer and Sidorowich 

proposed an approach to predict chaotic signals [53]. In their work, they assume that they 

have all trajectories of embeddings obtained from the training data, and then the prediction 

is done according to these trajectories [53]. Liu et al.. applied Farmer’s approach to predict 

the daily streamflow in the United States [63]. In addition, Chelidze et al.. also applied 

Farmer’s approach for detecting system parameter faults [46-52]. 

In order to illustrate the prediction mechanism, suppose we have all trajectories of 

𝑋𝑖(𝑘) for 𝑖 = 1,⋯ , 𝑝 for a long time run, and these trajectories are smooth enough, at least 

𝐶2, to be approximated their geometric characteristics. Usually, local approximation, i.e. 

fits a given number of data points in their local region, produces better fits than global 

approximation [53]. Therefore, a proper local approximation is the key to predict the 

future measurement accurately. After obtaining a proper local approximation, the future 
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measurement can be predicted according to these trajectories [53]. The basic idea is shown 

in Fig. 15. In the figure, 𝑋𝑖(𝑘) is the current state for the i-th embedding, 𝑋𝑖(𝑘 + 1) is the 

unknown future state, and the solid curve is the trajectory obtained from the training data. 

The black dots inside the dashed circles are the neighbors of 𝑋𝑖(𝑘)  and 𝑋𝑖(𝑘 + 1) 

respectively. Ideally, without considering the effect of fluctuation, the dashed curve will 

perfectly overlap with the solid curve. 

 

 

Figure 15. The illustration of the prediction approach; arrow represents the direction of 
state flow. (Adapted from [53]) 
 
 
 

Consider Fig. 15, 𝑋𝑖(𝑘)  is given by the current sensor measurement while its 

neighbors, 𝑛𝑗(𝑘),  𝑗 = 1,⋯ ,𝑁𝑗, are chosen from the embedding trajectory, where 𝑁𝑗 is the 

number of neighbors. The neighbors of 𝑋𝑖(𝑘 + 1) are determined by 𝑛𝑗(𝑘 + 1). Therefore, 

by finding a local chart that maps 𝑛𝑗(𝑘) into 𝑛𝑗(𝑘 + 1), the future state, 𝑋𝑖(𝑘 + 1), can 
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be predicted11 [53]. After obtaining the future state, the predicted sensor measurement for 

the i-th sensor, 𝑦�̂�(𝑘 + 1), is the first element of 𝑋𝑖(𝑘 + 1) according to Eq. (82). Once 

𝑦�̂�(𝑘 + 1) is obtained, it will be used to compare with the real measured i-th sensor output, 

𝑦𝑖(𝑘 + 1), and the difference between 𝑦�̂�(𝑘 + 1) and 𝑦𝑖(𝑘 + 1) can be further processed 

to generate the residual signal for the use of fault detection and isolation. 

 

3.4 Conservation/Dissipation Property in Phase Space 

The conservation/dissipation property in the phase space is introduced in order to 

improve the proposed method in a sub-problem. In order to illustrate the problem, consider 

Eq. (67), the applied system is assumed to be autonomous in the proposed method. 

However, in practice, the setpoint of the applied system may be changed during operating. 

This fact will lead the applied system becomes time varying and then violate the 

assumption.  

In order to fix this problem, our strategy is to consider every change of setpoint as 

different autonomous systems. Figure 16 is the illustration of the setpoint changes problem. 

Assume the applied system has two setpoints. At sample time 500, its setpoint changes 

from 45 to 55. Our strategy is to consider the applied system as two autonomous systems. 

Before sample time 500, the applied system is represented by system 1. On the other hand, 

the applied system is represented by system 2 after sample time 500. In addition, the initial 

condition of system 2 is the same as the setpoint of system 1.  

                                                

11 In our simulation, we use the linear regression as the local approximation. 
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Figure 16. The illustration of the setpoint changes problem. 
 
 
 

However, this strategy will lead another problem. According to the uniqueness and 

existence theorem proposed by Peano, in a dynamic system, every pair of setpoint and 

initial conditions is corresponded to a unique states flow in the phase space [64]. Now, 

assume our training data is comprehensive, i.e. including all possible pairs of setpoint and 

initial conditions. If the applied system has Ns different setpoints, there will be Ns
2 different 

pairs. In the case, for each sensor, Ns
2 trajectories have to be saved for fault detection and 

isolation. Since saving all Ns
2 trajectories is impractical, the conservation/dissipation 

property is adopted to relate these trajectories by the inherent properties of the phase space 

and lower the number of trajectories needed to be saved. 

To illustrate the conservation/dissipation property, consider a dynamic system with 

three states: 
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ℎ1̇ = 𝑓1(ℎ1, ℎ2, ℎ3)  

ℎ2̇ = 𝑓2(ℎ1, ℎ2, ℎ3)  

ℎ3̇ = 𝑓3(ℎ1, ℎ2, ℎ3)  or 𝑑ℎ⃗ 
𝑑𝑡

⁄ = 𝑓 (ℎ⃗ ).         (84) 

 

Eq. (84) describes the system states flow in the phase space. Now, assume a set of initial 

conditions enclosed in a volume 𝑉 flows to another position in the phase space, where it 

occupies a volume 𝑉′ shown as Fig. 17. 

 

 

Figure 17. The phase space of a three states dynamic system. (Adapted from [64]) 
 
 
 

Define 𝑆 to be the surface of the volume 𝑉, 𝜌 to be the density of initial conditions 

in 𝑉, 𝜌𝑓  to be the rate of flow of points, i.e. trajectories emanating from initial conditions 

through unit area perpendicular to the direction of flow [64]. In Fig. 17, 𝑑𝑆 represents a 

small region of 𝑆 , and �⃗�  is the outward unit normal to 𝑑𝑆 . In order to illustrate the 

conservation/dissipation property and its proof, first step is to calculate the net flux of 

points out of 𝑆. 
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∫
𝜕𝜌

𝜕𝑡
⁄

𝑉
𝑑𝑉 = −∫ (𝜌𝑓 ∙ �⃗� )𝑑𝑠

𝑆
          (85) 

 

Then, applying the divergence theorem to the right-hand part of Eq. (85), one can 

obtain 

 

∫
𝜕𝜌

𝜕𝑡
⁄

𝑉
𝑑𝑉 = −∫ [∇⃗⃗ ∙ (𝜌𝑓 )]𝑑𝑉

𝑉
.         (86) 

 

According to Eq. (86),  

 

𝜕𝜌
𝜕𝑡

⁄ = −∇⃗⃗ ∙ (𝜌𝑓 ).            (87) 

 

The second step is to calculate 𝑑𝜌
𝑑𝑡

⁄ , i.e. the rate of change of 𝜌 as the volume 

moves, according to Eq. (87). The calculation is shown as 

 

𝑑𝜌
𝑑𝑡

⁄ =
𝜕𝜌

𝜕𝑡
⁄ +

𝜕𝜌
𝜕ℎ1

⁄ 𝑑ℎ1
𝑑𝑡

⁄ +
𝜕𝜌

𝜕ℎ2
⁄ 𝑑ℎ2

𝑑𝑡
⁄ +

𝜕𝜌
𝜕ℎ3

⁄ 𝑑ℎ3
𝑑𝑡

⁄ = −∇⃗⃗ ∙

(𝜌𝑓 ) + (∇⃗⃗ 𝜌) ∙ 𝑓 = −(∇⃗⃗ 𝜌) ∙ 𝑓 − 𝜌∇⃗⃗ ∙ 𝑓 + (∇⃗⃗ 𝜌) ∙ 𝑓 = −𝜌∇⃗⃗ ∙ 𝑓 .    (88) 

 

In addition, although the boundaries of 𝑉 and 𝑉′ deform, they always contains the 

same points. Now, assume the number of points in 𝑉 is 𝑁, 𝑁 = 𝜌𝑉. Since the number of 

points is constant, we must have 
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𝑑𝑁
𝑑𝑡⁄ = 𝑉

𝑑𝜌
𝑑𝑡

⁄ + 𝜌 𝑑𝑉
𝑑𝑡⁄ = 0.          (89) 

 

Then, substitute Eq. (88) into Eq. (89), we obtain the Lie derivative shown in Eq. (90). 

 

1
𝑉⁄

𝑑𝑉
𝑑𝑡⁄ = ∇⃗⃗ ∙ 𝑓               (90) 

 

The Lie derivative describes the behavior of volume 𝑉 when the system states move. 

Consider the Lie derivative, there are two situations of the volume 𝑉 when the system 

states move: conservative and dissipative. The case of conservative occurs when the right-

hand part of Eq. (90) equals to zero. In this case, assume there are two state trajectories 

starting from different initial conditions, the volume 𝑉 between them will keep the same 

when the system states move [64]. A famous example for this case is the frictionless 

pendulum. On the other hand, the case of dissipative occurs when the right-hand part of 

Eq. (90) is negative. In the case, the volume 𝑉 between two system trajectories starting 

from different initial condition will contract when the system states move to their setpoint 

[64]. An example for this case is the pendulum with friction or damping.  

Since the applied system will be controlled to achieve its setpoit, our application 

belongs to the case of dissipative. Therefore, according the dissipative property, assume 

we have two reference system states trajectories with same setpoint and different initial 

conditions, we can set the upper and lower boundaries for all other trajectories starting 

from other initial conditions shown as Eq. (91). 
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(Volume between E1 and Et when t = k+1 ) < (Volume between E1 and Et when t = 

k) + δ1  

(Volume between E2 and Et when t = k+1 ) < (Volume between E2 and Et when t = 

k) + δ2                  (91) 

 

Where E1 and E2 are the two reference trajectories, 𝐸𝑡  is the unknown trajectory 

starting from other initial conditions, 𝑘 is the time instant, and 𝛿1 and 𝛿2 are two small 

constants in order to tolerate the effect of fluctuations. In essence, Eq. (91) is aimed to 

timely examine whether the volume contracts or not. Furthermore, by shrinking the 

volume, we can calculate distance between two trajectories instead of volume, and then 

Eq. (91) will become 

 

(Distance between E1 and Et when t = k+1 ) < (Distance between E1 and Et when t 

= k) + δ1  

(Distance between E2 and Et when t = k+1 ) < (Distance between E2 and Et when t 

= k) + δ2 .                (92) 

 

Therefore, according the dissipative property, if 𝐸𝑡 obeys Eq. (92), the applied system is 

considered as healthy. Otherwise, the applied system is faulty.  

In addition, an estimation mechanism is needed when the applied system is faulty. 

This is because when the applied system is faulty, an estimated value of 𝐸𝑡 is needed for 

the following diagnosis. There are three situations considered in this part: 1. No 
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trajectories has arrived the setpoint; 2. The unknown trajectory, 𝐸𝑡, has arrived the setpoint; 

3. Only one of reference trajectories has arrived the setpoint. In the first case, all 

trajectories will keep moving in the phase space. Since we don’t have any information 

about the unknown trajectory except its initial condition and setpoint. Therefore, the 

estimated value of 𝐸𝑡  is produced according to the relative position of their initial 

conditions. Figure 18 is an example for illustrating how the estimation mechanism works 

in the first case. Assume there is a 3-D reconstructed phase space, the initial condition of 

the unknown trajectory is (10, 10, 10) , and the initial conditions of two reference 

trajectories are (20, 20, 20) and (0, 0, 0) respectively. In this example, according to 

the relative position of the initial conditions of these three trajectories, the estimated value 

of the unknown trajectory is produced by averaging the value of two reference trajectories. 

 

 

Figure 18. An example for illustrating how the estimation mechanism works in the first 
case. 
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In the second case, since the unknown trajectory, 𝐸𝑡, has arrived the setpoint, 𝐸𝑡 will 

stay at a fixed point in the phase space. Therefore, in this case, the estimated value of 𝐸𝑡 

is set to be the same as the setpoint. In the third case, one of two reference trajectories will 

stay at a fixed point in the phase space. Similar to the first case, the estimated value of 𝐸𝑡 

is generated by the relative position of the previous estimated value of 𝐸𝑡, the setpoint, 

and the current value of the other reference trajectory which has not arrived the setpoint. 



 

79 

 

4. SIMULATION RESULTS 

 

As mentioned in the section 3.3, since embedding is not unique, the proposed method 

can be applied on every sensor in parallel and viewed as a residual generator for the 

corresponding sensor. In the other words, each residual generator is supposed to indicate 

the sensor fault occurred in its corresponding sensor, and then isolation will be done 

simultaneously. Therefore, this simulation is aimed to test the performance of the proposed 

method served as a residual generator for a single sensor.  

 

4.1 Generating Training and Testing Data 

4.1.1 Three Tank System 

The proposed method is applied to a three tank system. This model is a nonlinear 

process, and modeled according to the typical characteristics of tanks, pipelines and pumps 

used in chemical industry [4]. The three tank model introduced in this paper is a laboratory 

setup DTS200 shown as Fig. 19 [4]. 
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Figure 19. DTS200 setup. (Adapted from [4]) 
 
 
 

In the figure, 𝑄1 and 𝑄2 are incoming mass flow, 𝑄20 is the outgoing mass flow, and 

𝑄𝑖𝑗  is the mass flow from the i-the tank to the j-th tank. The height of each tank, ℎ1, ℎ2, 

and ℎ3 are considered as system outputs and measured by sensors. The relative parameters 

are listed in Table 1, and the dynamics of DTS200 is modeled as Eq. (93)  [4]. 

 

𝐴ℎ1̇ = 𝑄1 − 𝑄13  

𝐴ℎ2̇ = 𝑄2 + 𝑄32 − 𝑄20  

𝐴ℎ3̇ = 𝑄13 − 𝑄32  

𝑄13 = 𝑎1𝑠13𝑠𝑔𝑛(ℎ1 − ℎ3)√2𝑔|ℎ1 − ℎ3|  

𝑄32 = 𝑎3𝑠32𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔|ℎ3 − ℎ2|  

𝑄20 = 𝑎2𝑠0√2𝑔ℎ2              (93) 
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Table 1. Parameters of DTS200 (Adapted from [4]) 

 

 

In addition, a nonlinear controller is induced in DTS200 in order to control the height 

of tank 1 and 2 to their setpoint. The block diagram of whole system is shown as Fig. 20. 

 

 

Figure 20. The block diagram of the three tank system. 
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The dynamic equations of the nonlinear controller are described as Eq. (94), 

 

𝑢1 = 𝑄1 = 𝑄13 + 𝐴(𝑎11ℎ1 + 𝑣1(𝑤1 − ℎ1))  

𝑢2 = 𝑄2 = 𝑄20 − 𝑄32 + 𝐴(𝑎22ℎ2 + 𝑣2(𝑤2 − ℎ2)).         (94) 

 

Where 𝑤1 and 𝑤2 are the desired height of tank 1 and tank 2 respectively, and we set 

𝑎11 = 𝑎22 = 0 and 𝑣1 = 𝑣2 = 1 in our simulation. In our simulation, we set the setpoint 

to be 𝑤1 = 45 cm and 𝑤2 = 15 cm. 

 

4.1.2 Measurement Noise 

In order to more accord with real world applications, measurement noise is 

considered in our simulation. The measurement noise is assumed to be zero-mean and 

Gaussian distributed with three different level of variance: 5 cm2 (10%), 1 cm2 (5%), and 

0.1 cm2 (1.5%). Figure 21 is to illustrate where the measurement noise is added. 

 

 

Figure 21. The illustration of modeling measurement noise. 



 

83 

 

4.1.3 Training Data 

In our simulation, we use the first 300 samples of sensor 1 output in the fault-free 

situation to be our training data. Figure 22, 23, and 24 are the training data generated for 

fault detection and isolation.  

 

 

Figure 22. Training data - sensor 1 output with 10% measurement noise. 
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Figure 23. Training data - sensor 1 output with 5% measurement noise. 
 
 
 

 

Figure 24. Training data - sensor 1 output with 1.5% measurement noise. 
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4.1.4 Testing Data 

There are two situations considered for generating testing data: healthy situation and 

faulty situation. Here, healthy situation means that there is no fault occurring during the 

system operation. On the other hand, faulty situation means that at least one sensor fault 

occurs when we run the system model. 

 

4.1.4.1 Healthy (Fault-free) Situation 

In the absence of noise, the testing data should be the same as the training data in the 

healthy situation. Therefore, the healthy testing data is generated in the same way as the 

training data except their noise terms are started from different starting seed in Simulink. 

Accordingly, by subtracting one from another, the result is expected to be a noise signal 

shown in Fig. 25. 
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Figure 25. The result of subtracting healthy testing data from training data in the case of 
5% noise. 
 
 
 
4.1.4.2 Faulty Situation 

Generally, a sensor fault will lead the faulty sensor loses its accuracy. For modeling 

sensor faults, they are used to be modeled as additive [4]. In the three tank system, each 

tank is equipped with a piezo-resistive pressure transducer for measuring the level of 

liquid [65]. By using the piezo-resistive material, small potential difference will be 

generated when the material is deforming by pressure. Then, after amplifying by a sensor 

amplifier, a potentiometer is used for scaling the voltage coming from the sensor amplifier 

to generate the measurement output [65]. A sensor fault may occur due to the fatigue of 

the piezo-resistive material or the failure of any part in the output generating mechanism 

[65].  
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In our simulation, there are two scenarios, abrupt and incipient, simulated according 

to the benchmark for testing FDI systems proposed by Koscielny et al.. [66]. An abrupt 

sensor fault means that the effect of the sensor fault develops rapidly. Here, we simulate 

an abrupt sensor fault as a bias, and the magnitude of the bias is set to be 20% of the 

maximum output of the sensor in the fault-free situation. On the other hand, an incipient 

sensor fault means that the effect of the sensor fault develops slowly. In our simulation, 

an incipient fault is assumed to develop uniformly and simulated by a bias with 100 

samples developing time. The magnitude of the bias is also set to be 20% of the maximum 

output of the sensor in the fault-free situation. In addition, the occurring time of a sensor 

fault is set to be sample time 51 for both abrupt and incipient cases. Figure 26 is the sensor 

1 measurements in the cases of abrupt fault, incipient fault, and fault-free with 5% noise 

level. 
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Figure 26. The comparison of abrupt fault, incipient fault, and fault-free cases with 5% 
noise level. 
 
 
 

In Fig. 26, the red dashed line represents the case of abrupt fault, the black solid line 

represents the case of incipient fault, and the blue dotted line is the fault-free case. 

Observing the red dashed line, the height of tank 1 suddenly increases when the sensor 

fault occurs in the case of abrupt fault. On the other hand, in the case of incipient fault, the 

height of tank 1 does not has similar feature as in the case of abrupt fault. Instead, the 

magnitude of the incipient fault develops gradually. 

 

4.2 Results of the Blocks of Phase Space Reconstruction and Smooth Mechanism 

In this section, the results phase space reconstruction and smooth mechanism will be 

presented. After collecting data, the first step is to reconstruct the phase space from the 

collected training data. Here, we follow the steps mentioned in the section 3.1. Figure 27 



 

89 

 

is the results of applying the mutual information method to the collected training data with 

5% noise. According to the mutual information method, the time delay for reconstructing 

should be chosen to be the value which the first local minimum occurs. Therefore, the time 

delay is set to be 3.  

 

 

Figure 27. Reconstruct phase space by training data – Sensor 1 output with 5% noise - 
Mutual information. 
 
 
 

For determining the dimension of embedding, the FNN method is applied to the 

collected training data with 5% noise, and its result is shown in Fig. 28. From this result, 

one can find that the FNN values is close or equal to zero when the dimension is larger or 

equal to 2. Therefore, we choose the dimension to be 2. Once the time delay and the 

dimension of embedding are determined, one can obtain the reconstructed phase space 

shown in Fig. 29. 
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Figure 28. Reconstruct phase space by training data – Sensor 1 output with 5% noise - 
FNN. 
 
 
 

 

Figure 29. The reconstructed phase space of the sensor 1 in the three tank system. 
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Observing Fig. 29, the reconstructed trajectory is not smooth and contaminated with 

fluctuations. In order to obtain better performance in the later blocks, the next step is to 

smooth the trajectory by the smooth mechanism. Figure 30 is the result of applying MVU 

estimator to smooth the reconstructed trajectory.  

 

 

Figure 30. The smoothed trajectory by using MVU estimator. 
 
 
 

The other way to smooth the reconstructed trajectory is by using SOD. Figure 31 is 

the magnitude of the generalized eigenvalues for the smooth orthogonal decomposition. 

In Fig. 31, the horizontal axis represents the ith generalized eigenvalue, 𝑖 = 1, 2, and the 

vertical axis represents the magnitude. According to the result, one can find that the 

magnitude of the second generalized eigenvalue is much larger than the first eigenvalue. 

Therefore, we compose the 𝛷 in Eq. (79) by the generalized eigenvector corresponding to 

the second generalized eigenvalue. The smoothed trajectory is shown in Fig. 30. Notice 
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that, unlike MVU estimator, the smoothed trajectory by using SOD is 1-D shown as Fig. 

32. This is because smoothing by SOD deals with the problem of fluctuations in the 

manner of dimension reduction, and one of the original two dimensions is considered as 

trivial. 

 

 

Figure 31. The magnitude of the generalized eigenvalues for the smooth orthogonal 
decomposition. 
 
 
 

 

Figure 32. The smoothed trajectory by using SOD. 
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4.3 Results of the Block of Prediction Mechanism 

This block is aimed to generate the predicted future measurements by using the 

smoothed trajectories obtained from the block of smooth mechanism. The output of this 

block is called raw residual signals which is produced by taking the absolute value of the 

difference between the predicted measurements and actual measured measurements. 

Figure 33, 34, and 35 are the raw residual signals in the fault-free, abrupt fault, and 

incipient fault situations with 5% noise produced by using the MVU estimator smoothed 

trajectory for prediction. From these results, one can find that the magnitude of the raw 

residual signal in the fault-free situation keeps low. In the abrupt fault situation, the 

magnitude of the raw residual signal rapidly increases at the sample time 51. This 

phenomenon means that the proposed method indicates there is a sensor fault occurring at 

that moment. In the incipient fault situation, the raw residual signal increases slowly from 

the sample time 51. In this case, it is hard to claim the applied system is faulty or healthy. 

Therefore, further process is needed to make these raw residual signals distinguished to 

each other.  
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Figure 33. Raw residual signal in the fault-free situation with 5% noise produced by using 
the MVU estimator smoothed trajectory for prediction. 
 
 
 

 

Figure 34. Raw residual signal in the abrupt fault situation with 5% noise produced by 
using the MVU estimator smoothed trajectory for prediction. 
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Figure 35. Raw residual signal in the incipient fault situation with 5% noise produced by 
using the MVU estimator smoothed trajectory for prediction. 
 
 
 

On the other hand, Fig. 36, 37, and 38 are the results of using SOD smoothed 

trajectory for prediction. Observing these results, they have similar trend as former results. 

In order to compare the performance of MVU estimator and SOD, we calculate the 

variance of the raw residual signals produced by using MVU estimator and SOD in fault-

free situation. We expect that the one with better performance in smoothing produces the 

raw residual signal with lower variance. The reason is that, ideally, if the effect of 

fluctuations can be totally reduced by the smooth mechanism, the predicted measurements 

will be the same as the measured measurements in the fault-free situation, and the raw 

residual signal will be all zero. Moreover, the smooth mechanism is aimed to improve the 

performance of the prediction mechanism, and the raw residual with lower variance means 
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it is closer to the ideal result. Therefore, the smooth mechanism which produces the raw 

residual signal with lower variance will be considered to be better. Table 2 is the 

calculated variance of the raw residual signals in fault-free situation with three different 

noise levels. From this table, in the case of 1.5% noise level, the performance of the 

prediction mechanism is acceptable even though the reconstructed trajectory is not 

smoothed. This means 1.5% noise is small enough to be neglected while using the 

proposed method. When the noise level is high, i.e. 5% and 10% noise, smoothing the 

reconstructed trajectory obviously improves the performance of the prediction mechanism. 

In addition, according to the results, SOD is more robust for all noise level, and MVU 

estimator has better performance when the noise level is low. Although we can improve 

the performance of MVU estimator by enlarging the size of the averaging frame in Eq. 

(76), this action will violate the assumption about 𝐴(𝑘) in Eq. (75)12. Therefore, SOD is 

more recommended when the noise level is unknown. In addition, as mentioned in section 

4.2, using SOD for smoothing is more storage memory efficient. Table 3 is the dimension 

of smoothed trajectories with three different noise levels. From the table, the smoothed 

trajectory is all 1-D for all noise levels by using SOD. This is the other reason to more 

recommend SOD than MVU estimator. Therefore, in following sections, the results are 

generated by using SOD as the smooth mechanism. 

 

                                                

12 Let the length of the averaging frame is L. We assume L is small enough and the true value, 𝐴(𝑘), can 
be considered as constant in the L-samples averaging frame. 
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Table 2. Calculated variance of the raw residual signals in fault-free situation. 

 

Table 3. The dimension of smoothed trajectories with three different noise levels. 

 

 

 

Figure 36. Raw residual signal in the fault-free situation with 5% noise produced by 
using the SOD smoothed trajectory for prediction. 
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Figure 37. Raw residual signal in the abrupt fault situation with 5% noise produced by 
using the SOD smoothed trajectory for prediction. 
 
 
 

 

Figure 38. Raw residual signal in the incipient fault situation with 5% noise produced by 
using the SOD smoothed trajectory for prediction. 
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4.4 Residual Signal Processing 

In this section, the raw residual signals are further processed in order to distinguish 

the fault-free and faulty situations. Normally, a threshold is chosen for the purpose. When 

the magnitude of the raw residual signal is larger than the threshold, the applied system 

will be considered to be faulty, and the residual signal is set to be one. Otherwise, the 

applied system will be considered to be healthy, and the residual signal is set to be zero. 

Here, the threshold is set to be twice of the standard deviation of the raw residual signals 

in fault-free situation. Table 4 is the thresholds for three different noise levels. Figure 39, 

40, and 41 are the residual signals generated by setting a threshold in the fault-free, abrupt 

fault, and incipient fault situations with 1.5% noise. According to these results, the 

proposed method works well. The residual signal is all zero in the fault-free situation. In 

the abrupt fault situation, the residual signal correctly indicate the abrupt fault occurs at 

sample time 51. In the incipient fault situation, the magnitude of the incipient fault is 

considered to be large enough to claim the applied system is faulty around sample time 

65. In addition, there is no false alarm or miss detection in all situations with 1.5% noise. 
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Figure 39. Residual signal generated by setting a threshold in the fault-free situation with 
1.5% noise. 
 
 
 

 

Figure 40. Residual signal generated by setting a threshold in the abrupt fault situation 
with 1.5% noise. 
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Figure 41. Residual signal generated by setting a threshold in the incipient fault situation 
with 1.5% noise. 
 
 
 

Table 4. The thresholds for three different noise levels. 

 

Until now, setting a threshold works well. However, the problem of false alarm and 

miss detection occurs when the noise level increases. Figure 42, 43, and 44 are the residual 

signals generated by setting a threshold in the fault-free, abrupt fault, and incipient fault 

situations with 5% noise. According to these results, in the fault-free and abrupt fault 

situation, there is no false alarm and miss detection, and the abrupt sensor fault is detected 

correctly. However, in the incipient fault situation, there are several peaks appears before 

the magnitude of the residual signal stays in one, and it is difficult to determine that those 
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peaks appear due to the sensor fault or false alarms. This problem is worse when the noise 

level increases from 5% to 10%. Figure 45, 46, and 47 are the results for 10% noise level. 

According to these results, false alarm and miss detection occur in all situations. These 

results are reasonable. Since the threshold is chosen in a statistical way, its reliability 

decreases when the variance of noise increases. Therefore, it may be more objective to 

show residual signals by probability instead of a binary decision, i.e. faulty/healthy, and 

the Multiple Hypothesis Shiryayev Sequential Probability Test (MHSSPT) is introduced 

for this purpose. 

 

 

Figure 42. Residual signal generated by setting a threshold in the fault-free situation with 
5% noise. 
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Figure 43. Residual signal generated by setting a threshold in the abrupt fault situation 
with 5% noise. 
 
 
 

 

Figure 44. Residual signal generated by setting a threshold in the incipient fault situation 
with 5% noise. 
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Figure 45. Residual signal generated by setting a threshold in the fault-free situation with 
10% noise. 
 
 
 

 

Figure 46. Residual signal generated by setting a threshold in the abrupt fault situation 
with 10% noise. 
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Figure 47. Residual signal generated by setting a threshold in the incipient fault situation 
with 10% noise. 
 
 
 
4.4.1 Multiple Hypothesis Shiryayev Sequential Probability Test (MHSSPT) 

Assume there are two hypotheses: ℋ0 means the situation is healthy, and ℋ1 means 

the applied system is faulty. In essence, MHSSPT is to calculate the posterior probability 

of ℋ1 conditioned on the measurement sequence [67, 68]. Eq. (95.a-c) are the propagation 

equations for the posterior probability of ℋ1 [67]. 

 

𝑃(𝜃1 ≤ 𝑡𝑘+1|𝑋𝑘+1) =
𝑃(𝜃1 ≤ 𝑡𝑘+1|𝑋𝑘)𝑓1(𝑥𝑘+1)

∑ 𝑃(𝜃𝑗 ≤ 𝑡𝑘+1|𝑋𝑘)
1
𝑗=0 𝑓1(𝑥𝑘+1)

⁄

                     (95.a) 

 

 𝑃(𝜃1 ≤ 𝑡𝑘+1|𝑋𝑘) = 𝑃(𝜃1 ≤ 𝑡𝑘|𝑋𝑘) + 𝑝1̃[1 − 𝑃(𝜃1 ≤ 𝑡𝑘|𝑋𝑘)]         (95.b) 
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 𝑃(𝜃0 ≤ 𝑡𝑘+1|𝑋𝑘) = 1 − 𝑃(𝜃1 ≤ 𝑡𝑘+1|𝑋𝑘)             (95.c) 

 

Where 𝜃𝑖 ,  𝑖 = 0,1, is the time of transition to the hypothesis ℋ𝑖, 𝑥𝑘 is the residual 

obtained at time 𝑡𝑘 , 𝑋𝑘  is the sequence of residual obtained up to time 𝑡𝑘 , 𝑓𝑖(𝑥𝑘),  𝑖 = 0,1, 

is the probability density function of 𝑥𝑘 given the hypothesis ℋ𝑖, and 𝑝1̃ is the a priori 

probability of transition hypothesis ℋ1  from 𝑡𝑘  to 𝑡𝑘+1 . The propagation equation is 

worked under three assumptions [68]. First, the measurement sequence 𝑋𝑘  is assumed to 

be conditionally independent, i.e. 𝑃(𝜃𝑖 ≤ 𝑡𝑘|𝑋𝑘) =

𝑃(𝜃𝑖 ≤ 𝑡𝑘|𝑥𝑘)𝑃(𝜃𝑖 ≤ 𝑡𝑘|𝑥𝑘−1)⋯𝑃(𝜃𝑖 ≤ 𝑡𝑘|𝑥1) . Second, the measurements under 

different hypothesis are assumed to be Gaussian distributed, 𝑥~𝑁(𝑚𝑖 ,  𝛬𝑖),  𝑖 = 0,1, and 

its mean value is assumed to be uniform distributed, 𝑚𝑖~𝑈𝑛𝑖𝑓[𝑏𝑖,  𝑏𝑖 + 2𝑚𝑖
∗]. Under the 

second assumption, Malladi et al.. proves that the probability density function, 𝑓𝑖(𝑥), can 

be calculated by [68] 

 

𝑓𝑖(𝑥) = (1 4𝑚𝑖
∗⁄ ) [𝑒𝑟𝑓 {1

√2
⁄ 𝛬𝑖

−1
2⁄ (𝑥 − 𝑏𝑖)} − 𝑒𝑟𝑓 {1

√2
⁄ 𝛬𝑖

−1
2⁄ (𝑥 − 𝑏𝑖 −

2𝑚𝑖
∗)}] .               (96) 

 

Where the Gauss error function is defined as 

 

 𝑒𝑟𝑓(∗) = 2
√𝜋

⁄ ∫ 𝑒−𝑡2
𝑑𝑡

∗

0
.           (97) 
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Third, the a priori probability of transition, 𝑝1̃, is assumed known and constant for all time. 

In our simulation, 𝑝1̃ is set to be 10−8 for 5% noise level and 10−9 for 10% noise level. 

In order to set the initial conditions for the propagation equation, we further assume 

that the applied system is healthy at the beginning, so the initial conditions are set to be 

𝑃(𝜃0 ≤ 𝑡0|𝑋0) = 1 and 𝑃(𝜃1 ≤ 𝑡0|𝑋0) = 0. Moreover, for the healthy hypothesis, 𝑚0
∗ , 

𝑏0, and 𝛬0 are obtained from the raw residual signal produced by generating another set 

of training data and using it as a healthy testing data shown as Fig. 48. In addition, for the 

faulty hypothesis, 𝑏1  is set to be 𝑏0 + 2𝑚0
∗ , 𝑚1

∗  is obtained by guessing the maximum 

magnitude of fault, and 𝛬1 is set to be equal to 𝛬0 for the same noise level.  

 

 

Figure 48. The illustration of using the second set of training data to choose parameters 
for the MHSSPT. 
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Figure 49, 50, and 51 are the probability of the occurrence of fault in the fault-free, 

abrupt fault, and incipient fault situations with 5% noise calculated by MHSSPT. Figure 

52, 53, and 54 are the results for 10% noise level. Observing these results, the problem of 

false alarm and miss detection is well handled by showing the residual signals in a 

probabilistic way. In the abrupt fault situation, the residual signal increases rapidly almost 

right after the sensor fault occurring at sample time 51. In addition, for the incipient fault, 

the residual signal indicates the fault when its magnitude increases to certain level. 

Moreover, for the fault-free situation, the residual signal keeps low and closes to zero for 

all time. Therefore, our results suggests that the proposed method is capable to detect both 

of abrupt and incipient sensor fault correctly and well handle the problem of false alarm 

and miss detection. 

The cost is that the MHSSPT algorithm will take few sample time to confirm the 

applied system is really faulty. In the other words, the MHSSPT algorithm needs few 

sample time to transfer the hypothesis from ℋ0 to ℋ1. This fact can be explicitly seen in 

the abrupt fault situation. The probability of the occurrence of fault does not indicate 

immediately when the sensor fault occurs at sample time 51. 
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Figure 49. The probability of the occurrence of fault in the fault-free situation with 5% 
noise. 
 
 
 

 

Figure 50. The probability of the occurrence of fault in the abrupt fault situation with 5% 
noise. 
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Figure 51. The probability of the occurrence of fault in the incipient fault situation with 
5% noise. 
 
 
 

 

Figure 52. The probability of the occurrence of fault in the fault-free situation with 10% 
noise. 
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Figure 53. The probability of the occurrence of fault in the abrupt fault situation with 10% 
noise. 
 
 
 

 

Figure 54. The probability of the occurrence of fault in the incipient fault situation with 
10% noise. 
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4.5 Results of the Block of Conservation in Phase Space 

In this section, the results of the extension of the proposed method by the 

conservation/dissipation property in phase space will be presented. In our simulation, the 

initial conditions of two reference trajectories are set to be (0, 0, 0) and (20, 20, 20), and 

the initial condition of the unknown trajectory is set to be (10, 10, 10). Their setpoint is 

all set to be the same as in previous simulations, 𝑤1 = 45cm and 𝑤2 = 15cm. Figure 55, 

56, and 57 are the results of applying the conservation/dissipation property for fault 

detection and isolation in 5% noise level. According to these results, in the fault-free 

situation, the generated residual signal indicates the probability of the occurrence of fault 

is very low and close to zero for all time. In the abrupt fault situation, the probability of 

the occurrence of fault increases rapidly right after the sensor fault occurs at sample time 

51. Moreover, for the incipient sensor fault, the proposed method is also capable to detect 

the fault when its magnitude grows to a certain level. For 10% noise level, the results for 

the fault-free, abrupt fault, and incipient fault situations are shown in Fig. 58, 59, and 60 

respectively. According to these results, the residual signals response correctly to their 

corresponding situation. However, the response time is longer in the abrupt fault situation 

than the same situation with 5% noise. The reason is that when the variance of noise is 

larger, the MHSSPT algorithm needs more time to confirm the applied system is faulty in 

order to avoid false alarm. According to our results, the proposed method is capable to 

detect both abrupt and incipient sensor fault without saving the trajectory corresponded to 

the initial condition, (10,10, 10). 
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Figure 55. The probability of the occurrence of fault in the fault-free situation with 5% 
noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 56. The probability of the occurrence of fault in the abrupt fault situation with 5% 
noise - FDI by conservation/dissipation property. 
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Figure 57. The probability of the occurrence of fault in the incipient fault situation with 
5% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 58. The probability of the occurrence of fault in the fault-free situation with 10% 
noise - FDI by conservation/dissipation property. 
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Figure 59. The probability of the occurrence of fault in the abrupt fault situation with 10% 
noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 60. The probability of the occurrence of fault in the incipient fault situation with 
10% noise - FDI by conservation/dissipation property. 
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5. EXPERIMENTAL RESULTS 

 

In this section, we use a sugar factory actuator system and a computer controlled heat 

pump/air condition/refrigeration (THIBAR22C) unit to examine the proposed method.  

 

5.1 DAMADICS (Development and Application of Methods for Actuator Diagnosis 

in Industrial Control Systems) 

DAMADICS is a benchmark which concerns on an actuator proposed by Koscielny 

et al.... There are mainly three parts included in the actuator: control valve, pneumatic 

servo-motor, and positioner [66]. The scheme of the actuator is shown as Fig. 61. 

 

 

Figure 61. The scheme of the actuator. (Adapted from [66]) 
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In Fig. 61, A is pneumatic servo-motor; V is control valve; X is measured rod 

displacement; F is measured medium flow rate; 𝑉1, 𝑉2 , and 𝑉3  are hand-driven valves. 

Here, the control valve is used to prevent and/or limit the flow of fluids; the pneumatic 

servo-motor is an air/fluid powered device used to provide linear motion of its stem; the 

positioner is used to eliminate the control-valve-stem miss-position due to friction or 

pressure unbalance [66]. A comprehensive block diagram of the actuator is shown in Fig. 

62.  

 

 

Figure 62. The block diagram of the actuator and its application. (Adapted from [66]) 
 
 
 

In Fig. 62, E/P represents electro-pneumatic transducer; blocks 𝐾1  and 𝐾2  are 

adaptors for transferring control input to corresponding input of the electro-pneumatic 

transducer and the unit of rod displacement to percentage respectively [66]. As shown in 
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Fig. 62, there are five sensors for monitoring the status of the actuator. The description of 

theses sensors is listed in Table 5. 

 

Table 5. Description of sensor outputs in the actuator system. (Adapted from [66]) 

 

 

5.1.1 Training Data and Testing Data 

There are two types of data sources provided by DAMADICS: 1. Actuator Simulink 

model (DABLib); 2. Real process data with artificial faults. In addition, the analytic model 

of actuator is not available for both of these two data sources. Therefore, all necessary 

information of the actuator system has to be acquired from the generated/collected data 

[66]. 

 

5.1.1.1 Actuator Simulink Model (DABLib) 

On this track, all sensor measurements of the actuator system are generated by a 

Simulink model named DABLib. DABLib contains nine different blocks, and every block 

serves for different purpose. The description of these blocks is listed in Table 6. 
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Table 6. Description of DABLib blocks. (Adapted from [69]) 

 

 

Among these blocks, ACT block is the Simulink model of the actuator system and 

also the main block for generating simulated data. The illustration of inputs and outputs 

of the ACT block is shown as Fig. 63, and the description of these inputs and outputs is 

listed in Table 7(a) and 7(b). Every output of the actuator system are assumed to be 

disturbed by a Gaussian distributed noise, and this noise is considered as measurement 

noise [69]. The illustration of noise entries in the ACT block is shown as Figure 64. 

Observing Fig. 64, one can notice that not only sensor outputs of the actuator system are 

disturbed but also control input (CV) is disturbed before it enters the actuator system [69]. 

In addition, for generating simulated process data, the inputs of the ACT block are fixed 

as: 1. Initial value of CV: 0; 2. Final value of CV: 0.8; 3. Step time of CV from its initial 

value to final value: sample time 2000; 4. 𝑃1 = 3.5 MPa; 5. 𝑃2 = 2.6 MPa; 6. 𝑇1 = 20 ℃. 

The control input (CV) signal used to generate simulated data is shown as Fig. 65. 
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Figure 63. Illustration of inputs and outputs of the ACT block. (Adapted from [69]) 
 
 
 
Table 7(a). Description of inputs of the ACT block. (Adapted from [69]) 

 

 

Table 7(b). Description of outputs of the ACT block. (Adapted from [69]) 
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Figure 64. Illustration of noise entries in the ACT block. (Adapted from [69]) 
 
 
 

 

Figure 65. Control input of the ACT block for generating simulated process data. 
 
 
 

To generate training data and healthy testing data, we select “no fault” in the fault 

selector block. The only difference between training data and healthy testing data is that 
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the sensor measurement noise is simulated from different starting seed. Therefore, we will 

obtain a noise signal by subtracting healthy from testing data training data shown as Fig. 

66. 

 

 

Figure 66. Subtracting healthy testing data from training data in 5% noise case. 
 
 
 

On the other hand, we select “fault No.19 – flow rate sensor fault” to generate the 

faulty testing data. The description of the flow rate sensor fault is shown in Table 8. In our 

experiments, two types of fault are simulated: abrupt and incipient, and both of them are 

set to occur at sample time 5200. For incipient fault, its develop time is set to be 4000 

samples. In the other words, assume an incipient fault occurs at sample time 5200, this 

fault will be fully developed at sample time 9200. Figure 67 is the flow rate sensor 

measurements in the cases of abrupt fault, incipient fault, and fault-free contaminated with 
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5% noise. According to Fig. 67, one can observe that the flow rate sensor will be 

immediately disabled when an abrupt fault occurs. On the other hand, in the incipient fault 

situation, the flow rate sensor will not be totally disabled at the beginning. Instead, the 

flow rate sensor will gradually lose its function and be totally disabled after the incipient 

fault is fully developed. 

 

Table 8. Description of the flow rate sensor fault. (Adapted from [69]) 
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Figure 67. The flow rate sensor measurements in the cases of abrupt fault, incipient fault, 
and fault-free contaminated with 5% noise. 
 
 
 
5.1.1.2 Real Process Data with Artificially Generated Faults 

Koscielny et al... also provide real process data in their proposed benchmark for 

testing FDI methods. These real process data are collected from three actuators used in a 

sugar factory during 2001.10.29 to 2001.11.20, and various types of artificial faults are 

added in 2001.10.30, 2001.11.9, 2001.11.17, and 2001.11.20 [70]. Table 9 is the 

description of actuator faults added in the real process data. In our experiments, we choose 

the data file collected from the 3rd actuator on 2001.11.17 since several artificial faults 

were added in order to cause abnormal events in the flow rate sensor measurements on 

that day. Table 10 is the description of artificially added actuator faults for the chosen data 

file. According to the occurring time listed in Table 10, we choose 50001 ~ 60000th sample 

as the faulty testing data, 10001 ~ 20000th sample as the training data, and 30001 ~ 40000th 

sample as the healthy testing data. 
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Table 9. Description of actuator faults. (Adapted from [70]) 
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Table 10. Description of artificially added actuator faults in the 3rd actuator. (Adapted from 
[70]) 

 

 

5.2 Results of Applying the Proposed Method to DAMADICS 

5.2.1 Results of Data Generated by Actuator Simulink Model (DABLib) 

In this section, the proposed method is examined by the actuator Simulink model 

generated data. There are three different level of noise in this experiment: 1.5%, 5%, and 

10%, and three different situations are considered under each noise level: healthy, abrupt 

fault, and incipient fault. Figure 68, 69, and 70 are the results of 1.5% noise in healthy, 

abrupt fault, and incipient fault situation. The raw residual signal for this case is shown in 

Fig. 68(a). Observing Fig. 68(a), one can find that the magnitude of the raw residual signal 

does not equal zero and has fluctuations. As mentioned in Section 4, these fluctuations 

may cause false alarms in the healthy situation. In order to address this issue, the 

probability of the occurrence of fault is obtained by using MHSSPT to further process the 

raw residual signal shown in Fig. 68(b). According to Fig. 68(b), the probability keeps 

low and close to zero for all time. This result shows that the proposed method correctly 

indicate the actuator system is healthy. The result of abrupt fault situation is shown in 

Fig.69. Similar to Fig. 68, the raw residual signal in the abrupt fault situation is shown in 

Fig. 69(a). Comparing Fig. 69(a) with Fig. 68(a), since these two raw residual signals are 

already distinguished, ideally one can set an appropriate threshold to indicate healthy and 
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faulty situations instead of further processing by MHSSPT. However, without prior 

knowledge of faulty data, one can only set the threshold according to the raw residual 

signal produced by the second set of healthy testing data, and this way is not reliable 

enough to avoid all false alarms and miss detection due to the effect of noise. The 

probability of the occurrence of fault is shown in Fig. 69(b). In Fig. 69(b), the probability 

increases immediately right after the abrupt sensor fault occurs at sample time 5200. This 

result indicates that the proposed method correctly detects the abrupt fault when it occurs. 

The result of incipient fault situation is shown in Fig. 70. Observing Fig. 70, the probability 

of the occurrence of fault does not increase immediately right after sample time 5200. 

Instead, it increases around sample time 5500. This is reasonable because the magnitude 

of the incipient fault is not larger enough to be considered as an abnormal event at the 

beginning.  

 

 

Figure 68(a). The raw residual signal produced in the healthy situation with 1.5% noise. 
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Figure 68(b). The probability of the occurrence of fault in the healthy situation with 1.5% 
noise. 
 
 
 

 

Figure 69(a). The raw residual signal produced in the abrupt fault situation with 1.5% 
noise. 
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Figure 69(b). The probability of the occurrence of fault in the abrupt fault situation with 
1.5% noise. 
 
 
 

 

Figure 69(c). The enlargement of Fig. 69(b). 
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Figure 70(a). The raw residual signal produced in the incipient fault situation with 1.5% 
noise. 
 
 
 

 

Figure 70(b). The probability of the occurrence of fault in the incipient fault situation with 
1.5% noise. 
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Figure 70(c). The enlargement of Fig. 70(b). 
 
 
 

The results of 5% noise in healthy, abrupt fault, and incipient fault situation are 

shown in Fig. 71, 72, and 73. Observing these results, one can notice that the behavior of 

the residual signals in healthy, abrupt fault, and incipient fault situation is similar to the 

case of 1.5% noise. Therefore, the capability of the proposed method to detect faults in the 

case of 5% noise can be proved. 
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Figure 71(a). The raw residual signal produced in the healthy situation with 5% noise.  
 
 
 

 

Figure 71(b). The probability of the occurrence of fault in the healthy situation with 5% 
noise. 
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Figure 72(a). The raw residual signal produced in the abrupt fault situation with 5% noise.  
 
 
 

 

Figure 72(b). The probability of the occurrence of fault in the abrupt fault situation with 
5% noise. 
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Figure 72(c). The enlargement of Fig. 72(b). 
 
 
 

 

Figure 73(a). The raw residual signal produced in the incipient fault situation with 5% 
noise.  
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Figure 73(b). The probability of the occurrence of fault in the incipient fault situation with 
5% noise. 
 
 
 

 

Figure 73(c). The enlargement of Fig. 73(b). 
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The results of 10% noise in healthy, abrupt fault, and incipient fault situation are 

shown in Fig. 74, 75, and 76. According to these results, the proposed method correctly 

indicate the actuator is healthy in the healthy situation shown in Fig. 74, and it also 

correctly and immediately detects the abrupt fault in the abrupt fault situation shown in 

Fig. 75. However, for the incipient fault situation, the proposed method takes longer time 

to confirm the incipient fault compared to 1.5% and 5% noise level. This result is 

reasonable since the required magnitude of an incipient fault to be detected is larger in the 

case of 10% noise level than in the case of 1.5% and 5% noise level. 

 

 

Figure 74(a). The raw residual signal produced in the healthy situation with 10% noise.  
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Figure 74(b). The probability of the occurrence of fault in the healthy situation with 10% 
noise. 
 
 
 

 

Figure 75(a). The raw residual signal produced in the abrupt fault situation with 10% noise. 
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Figure 75(b). The probability of the occurrence of fault in the abrupt fault situation with 
10% noise. 
 
 
 

 

Figure 75(c). The enlargement of Fig. 75(b). 
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Figure 76(a). The raw residual signal produced in the incipient fault situation with 10% 
noise. 
 
 
 

 

Figure 76(b). The probability of the occurrence of fault in the incipient fault situation with 
10% noise. 
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Figure 76(c). The enlargement of Fig. 76(b). 
 
 
 

On the other hand, the results of the extension of the proposed method by the 

conservation/dissipation property in phase space will be presented below. In this 

experiment, the initial value of the control input (CV) for two reference trajectories are set 

to be 0.5 and 0.6, and the initial condition of the unknown trajectory is set to be 0.55. The 

final value of the control input are all set to be 0.8. All faults are set to occur at sample 

time 2800. Figure 77-85 are the results of applying the conservation/dissipation property 

for fault detection and isolation in 1.5%, 5%, and 10% noise level. According to these 

results, the probability of the occurrence of fault keeps low and closes to zero in the healthy 

situation for all noise levels. This phenomenon suggests that the proposed method 

correctly indicate the actuator system is healthy without any false alarm. In the abrupt fault 

situation, the probability of the occurrence of fault increases around sample time 2810 for 

all noise levels, and this indicates that the proposed method is able to detect the abrupt 
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fault occurs at sample time 2800 with an acceptable reacting time. Finally, in the incipient 

fault situation, the probability of the occurrence of fault increases around sample time 

3050 for all noise levels. These results suggest that the proposed method is able to detect 

an incipient fault which has been developed to a certain level. 

Therefore, according to those results shown in this section, the performance of the 

proposed method and its extension by using conservation/dissipation property can be 

proved in the cases of 1.5%, 5%, and 10% noise level. 

 

 

Figure 77. The probability of the occurrence of fault in the fault-free situation with 1.5% 
noise - FDI by conservation/dissipation property. 
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Figure 78(a). The probability of the occurrence of fault in the abrupt fault situation with 
1.5% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 78(b). The enlargement of Fig. 78(a). 
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Figure 79. The probability of the occurrence of fault in the incipient fault situation with 
1.5% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 80. The probability of the occurrence of fault in the fault-free situation with 5% 
noise - FDI by conservation/dissipation property. 
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Figure 81(a). The probability of the occurrence of fault in the abrupt fault situation with 
5% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 81(b). The enlargement of Fig. 81(a). 
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Figure 82. The probability of the occurrence of fault in the incipient fault situation with 
5% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 83. The probability of the occurrence of fault in the fault-free situation with 10% 
noise - FDI by conservation/dissipation property. 
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Figure 84(a). The probability of the occurrence of fault in the abrupt fault situation with 
10% noise - FDI by conservation/dissipation property. 
 
 
 

 

Figure 84(b). The enlargement of Fig. 84(a). 
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Figure 85. The probability of the occurrence of fault in the incipient fault situation with 
10% noise - FDI by conservation/dissipation property. 
 
 
 
5.2.2 Results of Real Process Data Collected from Actuators Used in a Sugar Factory 

In this section, we examine the proposed method by the real process data collected 

from a sugar factory. Figure 86 shows the training data used for reconstructing phase space 

of the actuator system. As mentioned before, the training data is the 10001 ~ 20000th 

sample of the data file collected on 2001.11.17. The results of mutual information method 

and False Nearest Neighbors (FNNs) method are shown in Fig. 87 and 88. According to 

these results, the delay time and the dimension for reconstructing phase space are set to be 

4 for both.  

The result of the proposed method applied to real process data in the healthy situation 

is shown in Fig. 89. According to this figure, the probability of the occurrence of fault 

keeps low and closes to zero for all time. This suggests that the proposed method correctly 

indicates the situation is healthy. To further support this point, Fig. 90 shows the result of 
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the prediction mechanism block. Here, the red dotted line represents the predicted sensor 

measurements, and the blue solid line represents the actual measured sensor measurements. 

According to Fig. 90, one can notice that the predicted sensor measurements and the 

actually measured sensor measurements are overlapped to each other for all time. This 

suggests that the performance of the proposed method is reliable since the residual signal 

shown in Fig. 89 is generated based on the difference between the predicted measurements 

and the actually measured measurements.  

On the other hand, the result of the proposed method in the faulty situation is shown 

in Fig. 91. Observing Fig. 91, the proposed method takes around 60 samples to react the 

sensor fault occurs at sample time 7475, and the probability of the occurrence of fault 

increases around sample time 7535. In addition, the probability does not go back to zero 

for those short-term healthy situations between each fault. This is because the proposed 

method needs few sample time to confirm the system is really healthy or faulty. Therefore, 

the proposed method will not response to a fault immediately, and it also will not response 

to those short-term healthy situations.  
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Figure 86. The training data used for reconstructing phase space of the actuator system. 
 
 
 

 

Figure 87. The result of mutual information method applied to the training data. 
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Figure 88. The result of FNNs applied to the training data. 
 
 
 

 

Figure 89. The result of the proposed method applied to real process data collected from 
the actuator system in the healthy situation. 
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Figure 90. The result of the prediction mechanism block in the healthy situation (Red 
dotted line: the predicted sensor measurements; Blue solid line: the actually measured 
sensor measurements). 
 
 
 

 

Figure 91(a). The result of the proposed method applied to real process data collected from 
the actuator system in the faulty situation. 
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Figure 91(b). The enlargement of Fig. 91(a). 
 
 
 

 

Figure 92. The result of the prediction mechanism block in the faulty situation (Red dotted 
line: the predicted sensor measurements; Blue solid line: the actually measured sensor 
measurements). 
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5.3 Results of Applying the Proposed Method to THIBAR22C Unit 

In this section, we examine the proposed method by applying it to a computer 

controlled heat pump/air condition/refrigeration (THIBAR22C) unit located in Qatar 

University. This unit is a nonlinear unit and built by EDIBON Technical Teaching 

Equipment Company for laboratory uses [71]. There are a total of fifteen sensors mounted 

in the unit for monitoring purpose. The unit is equipped with a Data Acquisition Board 

(DAB) for recording sensor measurements with adjustable sampling rate. Moreover, the 

detailed analytical model and dynamic equations of the THIBAR22C unit are not available.  

In our experiments, we use the data collected from a temperature sensor to examine the 

proposed method. Similar to previous steps, the abrupt fault situation is modeled by adding 

a bias, and its magnitude is set to be -40. On the other hand, the incipient fault situation is 

modeled by adding a uniformly developed bias with developing time 2000 samples, and 

the maximum magnitude of the incipient fault is set to be -40. The occurring time is set to 

be sample time 6001 for both abrupt and incipient fault situation.  

Figure 93 shows the training data used in this experiment, and the results of applying 

mutual information method and FNNs method are shown in Fig. 94 and 95. According to 

these results, the time delay and the dimension of embedding are set to be 9 and 2 

respectively. The raw residual signals produced by applying the proposed method to the 

healthy testing data and the second set of healthy testing data are shown in Fig. 96. In 

general, without prior knowledge of faulty data, a threshold is set according to the 

confidence level of the raw residual signal generated from the second set of healthy testing 

data. However, according to Fig. 96, even though the threshold is set to be 99% confidence 
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level, false alarms still occur since the maximum value in Fig. 96(a) is still higher than the 

threshold. Therefore, MHSSPT is also adopted in this case. The results of the healthy 

situation, the abrupt fault situation, and the incipient fault situation are shown in Fig. 96, 

97, and 98. Observing these results, the probability of occurrence of faults stays low in the 

healthy situation in Fig. 96, which suggests that the proposed method indicates the healthy 

situation correctly. On the other hand, the probability suddenly increases around the 

occurring time of faults in both of abrupt and incipient fault situation shown in Fig. 97 and 

98. This phenomenon proves the capability of the proposed method in detecting both of 

abrupt and incipient sensor faults. 

 

 

Figure 93. The training data used for reconstructing phase space of the THIBAR22C unit. 
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Figure 94. The result of applying mutual information method for reconstructing the phase 
space of THIBAR22C unit. 
 
 
 

 

Figure 95. The result of applying FNNs method for reconstructing the phase space of 
THIBAR22C unit. 
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Figure 96(a). The raw residual signal produced by applying the proposed method to real 
process data collected from the THIBAR22C unit in the healthy situation. 
 
 
 

 

Figure 96(b). The raw residual signal produced by applying the proposed method to the 
second healthy testing data collected from the THIBAR22C unit. 
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Figure 97. The result of the proposed method applied to real process data collected from 
the THIBAR22C unit in the healthy situation. 
 
 
 

 

Figure 98. The result of the proposed method applied to real process data collected from 
the THIBAR22C unit in the abrupt fault situation. 
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Figure 99. The result of the proposed method applied to real process data collected from 
the THIBAR22C unit in the incipient fault situation. 
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6. CONCLUSIONS 

 
This dissertation provides a unified approach for detecting and isolating multiple 

sensor faults. The proposed method deals with the FDI problem by reconstructing the 

phase space by the measurements collected from each sensor. Then, the reconstructed 

phase space is used to construct the residual generator for detecting the sensor fault 

occurring in its corresponding sensor, and the isolation part is done simultaneously. The 

main contribution of the proposed method is its detectability and isolability of multiple 

sensor faults in nonlinear cases. In addition, unlike other dimension reduction based 

methods, the proposed method does not require that the dimension of the applied system 

must be smaller than the number of measurement channels. This advantage eliminates the 

limitation of the minimum number of sensors and greatly lowers the economic cost of 

setting sensors. Furthermore, the conservation/dissipation property in phase space is 

adopted to deals with the problem of setpoint changes and extend the proposed method 

from stationary to nonstationary applications. 

In our simulation, a three tanks system is modeled for testing the proposed method. 

The three tank system is a nonlinear system with 2 inputs and 3 outputs used in chemical 

industry. There are two scenarios for the faulty situation: abrupt fault and incipient fault, 

and our results show that the proposed method is capable to indicate both of them when 

the sensor fault occurs. Moreover, unlike traditional way to present the residual signal by 

setting a threshold, we introduce the MHSSPT algorithm to further process and present 

the residual signals by probability in order to avoid the problem of false alarm and miss 

detection. In the other words, instead of faulty or healthy, our residual signals show the 
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probability of the occurrence of sensor fault. The proposed approach can be applied to 

process industries in order to enhance the product quality and the process safety such as 

the process of oil refining in the petroleum industry.  

In our experiments, a sugar factory actuator system is used to examine the proposed 

method. This system is a nonlinear system with 4 inputs and 6 outputs proposed by 

Koscielny et al.. for testing FDI systems [66]. Koscielny et al.. releases two types of data 

sources for this system: Simulink-Matlab model and real process data with artificial 

generated faults. Moreover, the proposed method is also applied to the THIBAR22C unit 

located in Qatar University. The THIBAR22C unit is a computer controlled heat pump/air 

conditioning/refrigeration unit built by EDIBON Technical Teaching Equipment 

Company for laboratory use. According to our results, the proposed method is capable to 

indicate both of healthy and faulty situations. These results further confirm that the 

proposed method is able to deal with not only simulated data but also real process data. 
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