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ABSTRACT 

 

Process safety is a task of preventing leaks. Leak prevention is critical because pressure vessels 

and piping assets in chemical plants are fabricated from materials which have limited corrosion 

resistance. When corrosive compounds are processed in these assets, they may suffer 

degradation over time due to thinning, cracking, or loss of their material properties. This 

problem is partially controlled by applying a safety margin known called a corrosion allowance. 

The corrosion allowance is determined by predicting the asset’s expected corrosion rate and its 

service life. However, this fixed safety margin does not consider the inherent uncertainty in an 

individual asset’s degradation rate due to variability in the material’s corrosion resistance, the 

operating parameters of the process, and the inspection techniques used to measure the 

progression of corrosion damage over time. Consequently, deterministic analysis is not capable 

of precisely estimating an asset’s safe operating life during its design stage. 

One of the most likely areas for leakage to occur in process equipment is at the flange 

connections that join assets together. Risk analyses for planning inspections of fixed equipment 

and piping usually treat flanges as components of their parent asset. This thesis focuses on 

methods to improve prediction and control of corrosion and leakage at flange connections in 

particular. Flange connection seal tightness can be monitored through vibration-based Non-

Destruction Testing (NDT). The data gathered from this monitoring can be used to update risk 

models for flange connection leakage. Hierarchical Bayesian Network methods of modeling risk 

are demonstrated in this thesis to be capable of predicting probability of seal failure based on 

the mean and variance of failure rates in a population of flange connections. This allows for 
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prediction of the probabilities based on corrosion and leak events in the plant. The results of 

inspection techniques are used as inputs to this risk model, enabling probabilistic decision-

making. 
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NOMENCLATURE 

 

API American Petroleum Institute 

ASME American Society of Mechanical Engineers 

BFC Bolted Flanged Connection 

DNV Det Norske Veritas 

HSE Health and Safety Executive 

NDE Non-Destructive Examination 

QRA Quantified Risk Analysis 

RBI Risk Based Inspection 

SHM Structural Health Monitoring 

SWUT Shear Wave Ultrasonic Testing 

PTFE Poly-tetrafluorethane 
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 INTRODUCTION 1.

Flange connections play an important role in all process systems, allowing pressure equipment 

assets to be assembled and disassembled without making weld connections. Due to the large 

numbers of flange connections in a plant, they are often a failure point at which process leaks 

occur. Perhaps the most well-known incident related to the failure of a sealing connection was 

the Challenger Space Shuttle disaster. On January 28, 1986, seven crew members were killed 

when the space shuttle Challenger exploded at just over a minute into the flight. The failure 

investigation concluded that the explosion was caused by a failure of the solid rocket booster 

O-rings to seal properly. This allowed hot combustion gases to leak from the side of the booster 

and burn through the external fuel tank. Further analysis attributes this O-ring failure to faulty 

design of the solid rocket boosters which failed to take into account the insufficient low-

temperature ductility of the O-ring material and of the joints that the O-ring sealed [1]. The key 

point is that the accident occurred despite the engineers being aware of the potential issue 

beforehand. 

This tragic accident provides an invaluable lesson that failure of a component may have 

catastrophic consequences, even if the component was perceived to be insignificant to the 

overall system. In other words, this is a classic example of the proverb, “For want of a nail, the 

Kingdom was lost”, occurring in the real world.  The original rhyme goes as follows: 

For want of a nail, the shoe was lost. 

For want of a shoe, the horse was lost. 

For want of a horse, the rider was lost. 
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For want of a rider, the battle was lost. 

For want of a battle, the kingdom was lost. 

And all for the want of a horseshoe nail. 

Unfortunately, almost 30 years after the Challenger explosion, high consequence failures at 

flange connections continue to occur in the process industries as shown in Table 1. 

 

Table 1 Several high consequence incidents related to flange connection leaks 

No. Year Facility Location Consequence Failure mode 

1 1986 BASF [2] Ludwigshafen, 
Germany 

Large fire for 40 minutes 
due to depressurization. 

Multiple gasket 
failures on NH3 
synthesis loop due 
to vibration 

2 1999 Rhone-
Poulenc [3] 

Charleston, WV Release of 133 pounds of a 
toxic chemical.  

Gasket failure in 
line leading to MIC 
unit. 

3 2004 Huntsman 
Polymer 
Plant [4, 5]  

Midland, 
Texas 

Release of more than 100 
tonnes of highly 
pressurized natural gas 
liquids 

Metal gasket 
failure in a 
wellhead flange. 

4 2004 Degussa 
Chemical 
Plant [6] 

Theodore, 
Alabama 

100 lb. release of gaseous 
ammonia 

Malfunctioning 
gasket on tank 
nozzle. 

5 2005 Fermi  
Nuclear 
Power Plant 
[7] 

Newport, 
Michigan 

Leak of non-radioactive 
cooling water, plant 
shutdown 

Damaged gasket 
on inlet to one of 
14 air cooling 
units. 
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Table 1 Continued 

No. Year Facility Location Consequence Failure mode 

6 2005 BP Amoco 
[8] 

Whiting, 
Indiana 

Free hydrocarbon product 
detected in monitoring 
wells 

Evidence of a prior 
leak on the fiber 
ring joint gasket. 
Flange faces had 
evidence of 
possible leak at 
two different 
locations. 

7 2009 Columbia 
Gas 
Transmissio
n Corp. [9] 

Clendenin, WV Uncontrolled gas discharge 
into compressor building, 
gas allowed to being 
vented from blowdown 
valves for 90 minutes. 

Compressor head 
end gasket failure. 

8 2010 Sunoco [10] Philadelphia, PA 1700 barrel release of 
Vacuum Gas Oil (VGO) 
from the FM-1 pipeline 
into an open in-ground 
valve pit. 

Failure of flange 
connection in a 
deadleg leading to 
pig trap. 

9 2012 Citgo 
Refinery 
[11] 

Corpus Christi, 
Texas 

300-500lb release of 
Hydrofluoric Acid 
(estimated) 

Metal gasket 
failure on a HF 
Alkylation unit 
piping flange 

 

 

The recent nature of several of these releases associated with flange connection failure indicate 

that the problem of maintaining flange connection integrity is still an issue. The causes of 

leakage are known, but effective risk management is not a reality for many process plants.  
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 QUANTIFIED RISK ANALYSIS 2.

Quantified Risk Analysis (QRA) is used to evaluate process plants and determine the risk 

associated with scenarios where a failure could cause a process safety incident. These models 

consider the likelihood of failure events which may only occur less than once in ten thousand to 

one million operating years. Therefore, the models must account for random failure which 

happens independently of time and also degradation of the plant over time which leads to 

increased probability of a failure. After calculating this probability and the associated 

consequences, process safety management proscribes mitigation activities to reduce the 

likelihood for the failure to occur. Of these mitigation activities, inspection may be planned, 

which has the effect of reducing the uncertainty in the condition of the asset, which in turn 

reduces the probability that a failure will occur. 

Industry standards for risk-based inspection use models to approximate the change in 

probability of failure over time due corrosion kinetics, along with a variance to account for the 

uncertainty in the effect that the corrosion will have an asset’s condition. This parameter is 

called a damage factor, and it is combined with a generic failure frequency to determine an 

asset’s probability of failure. Based on the probability and consequences of a failure, a risk is 

calculated and a mitigation event such as an inspection is scheduled before the vessel is 

predicted to exceed an acceptable risk level [12]. The industry standard codes for risk-based 

inspection are intended to calculate point value probabilities, and they are not currently 

capable of considering the likelihood distribution of outcomes from a failure. They also do not 

represent a system approach, because each vessel’s risk is assessed independently of the 
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population of vessels to which it is connected and with which it shares the causes of corrosion 

and material degradation.  

 Data Sources for QRA 2.1.

A list of the typical generic failure frequencies for various flange connections is shown below. 

These generic failure frequencies were calculated based on unpublished sources of failure rates 

in assets. In addition, the incidents were screened against the causes of their failures to 

determine an expected failure rate independently of specific degradation mechanisms. 

According to the American Petroleum Institute, the generic failure frequency is intended to be 

representative of an expected failure frequency excluding “any specific damage occurring from 

exposure to the operating environment [12].” As can be seen, there is a wide variety of generic 

failure rates. This is due to the scatter in the sample that was used to construct the dataset, and 

also the subjectivity involved in screening out specific damage factors. 

 

Table 2 Comparison of Generic Failure Frequencies Between Selected QRA Datasets 

Data Source Pressure Vessel Small Leak 
(10mm Ø) 

Flange Connection 
Leak 

HSE Failure Rate and Event Data (UK) [13] 5.6 ∗ 10−4 Gasket: 5 ∗ 10−5 

OGP RADD: Process Release Frequencies [14] 5.6 ∗ 10−4  

Handbook of failure frequencies for safety 
reports [15] 

1.2 ∗ 10−4 Unspecified 

Reference Manual Bevi Risk Assessments [16] 1 ∗ 10−4 Unspecified 

API RP 581 [12] 8 ∗ 10−6 Unspecified 

Handbook of Mechanical Reliability [17] Unspecified Static Seal: 
2.1 ∗ 10−2 
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 Bayesian Methods for QRA 2.2.

Bayesian Networks are capable of combining the probability distributions of multiple assets to 

infer the life expectancy of one flange connection based on the average life and variance in 

average life of the population [18]. Covariance models exist to predict the failure rate of flange 

connections, based on information about the flange connection that is generated during 

design, assembly, and operation [17, 19]. In the Bayesian Network approach, variable which is 

not known can be defined as probability distribution based on the range of expected values, 

and the expected mean value. The mean is known as the first moment of the distribution, and 

the variance is known as the second moment. Additionally, relationships between random 

variables may also be defined through their covariance [20]. 

This probabilistic approach allows the effect of the uncertainty of input variables to be reflected 

in the degree of uncertainty of the overall system. The end goal of a probabilistic model is to 

provide the decision maker with a distribution for the range of expected outcomes. From this, 

the decision maker can determine whether there is enough information to make a decision or 

whether the circumstances warrant collecting additional information. Therefore, the 

probabilistic model is especially useful for dealing with complex systems such as flange 

connections. 
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 RISK MODELS FOR LEAK PREDICTION 3.

 Inspection Data for Risk-Based Decision Making 3.1.

The problem of the process operator is making decisions that optimize the reliability of the 

plant. Often the decisions must be made with a limited amount of information, because the 

time and expense of acquiring exact data cannot be justified. There are two potential options 

for making decisions in this case. The decision maker can either choose the most conservative 

option available to them, or they can create prognostic models of the potential outcomes 

based on the available information and determine whether they have enough information to 

make a decision. The latter approach to decision making has the advantage of allowing 

measurement of the uncertainty, risk, and consequences of the potential outcomes. 

 Decision Analysis Methods Utilizing Sparse Datasets 3.2.

The main difficulty in making decisions that affect process safety is in quantifying the likelihood 

that an unsafe condition could exist. The tools and data for doing this are rarely robust enough 

to feed directly into deterministic models and product decisive answers. Therefore, 

probabilistic approaches are favored. As can be seen in Table 3, the precision of a model is 

related to the amount of data that can be measured and correlated in a model[21]. 
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Table 3 Effect of Sample Size On % Error In Distribution Estimates 

mean estimator �𝑟
𝑇
� 𝑚𝑒𝑎𝑛 (𝜇) 𝑠𝑡𝑑𝑒𝑣 (𝜎) 𝜇 − 𝑟

𝑇
𝜇

 
% Error 

1/5 = 0.2 0.288 0.163 0.306 31 

3/15 = 0.2 0.236 0.101 0.153 15 

5/25 = 0.2 0.222 0.080 0.099 10 

15/75 = 0.2 0.208 0.047 0.038 4.0 

30/150 = 0.2 0.203 0.034 0.015 1.5 

60/300 = 0.2 0.202 0.024 0.010 1.0 

 

The approach proposed in this research is to use vibration-based NDE as a method for 

establishing the amount of integrity remaining in a flange connection before failure due to 

unacceptable leakage occurs. Other methods could be utilized for this purpose, such as 

measuring strain in each of the bolts to estimate a contact pressure at the gasket. However, 

these methods are more time consuming and do not account for the flange flexing. A vibration-

based NDE approach would give the overall picture of how much pressure existed across the 

overall flange. 

Decision making models could be created to varying degrees of detail. A superficial model could 

be created based on observed correlations and trends in the plant. This type of model would be 

vulnerable if it does not capture causal relationships, or if it assumes linear correlations where 

nonlinear correlations exist. Such models are also observed in practice to produce many false 

alarms because they have no way of differentiating between the variability in the data caused 

by normal operations (e.g., startup and shutdown) and that caused by damage progression 

[22]. 
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An improved model is one that offers predictions based on physical correlations between 

variables that are known to affect failure rates. Because the model is based upon physical 

parameters, an observed failure can only have an effect on a subset of the parameters, so 

future performance extrapolations will be less influenced by false signals. Such a model has 

been established for flange connection leakage by the US Navy [17]. This particular 

deterministic model accounts for the factors leading to gasket failure, such that the life 

expectancy of a flange connection’s seal could be predicted if all of the variables were 

measured and/or controlled. Because variability is expected, a more robust model has been 

produced by this research. 

A Bayesian Network model is used in this research to predict the point in time when a flange 

connection’s leak rate will exceed acceptable limits. It is based on the API 581 industry standard 

risk model which predicts the change in the probability of pressure boundary failure on a vessel 

or pipe over time [12]. This industry standard model is referenced for the sake of establishing a 

flange connection leakage risk model that is relatable to the widely accepted notions of how 

often failures occur and the degree of risk associated with those failures in the chemical 

process industries. The mechanics of the flange connection model are independent of the 

pressure vessel risk model, and the base assumptions about generic failure frequencies can and 

will be changed as the model incorporates new information. One model for flange connection 

failure is published by the US Navy in the Handbook of Mechanical Reliability. This model uses 

algebraic multipliers to relate input parameters and predict a seal failure rate. The experiments 

underlying this particular model were performed for the Air Force Research Laboratory, and 
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appear to have more in common with sealing air and spacecraft, than with sealing process 

piping.  

The input parameters are defined over ranges that are more stringent than the expectations in 

the process industries. One example is the parameter for mean surface roughness of the flange 

face. In the ASME Boiler Pressure Vessel Code, the expected range of average (RMS) roughness 

is 125-250𝜇in. The US Navy model parameter is defined over a 25-150𝜇in range. See Appendix 

A – Flange Requirements in Pressure Vessel Design Codes for further details. 

Uncertainty of input data is a common limitation of deterministic corrosion models. The 

dynamic nature of field operations means that there is not always an opportunity to analyze 

the full complement of input variables needed to construct a full analytical model. In practice, 

the corrosion engineer must make educated judgments about likely values of certain 

parameters and emphasize the use of “conservative assumptions.” This is less than ideal, as 

shown by the improved approach that Bayesian Networks provide.  

Limited data is still useful if a system approach is used to extrapolate the risk from the basis of 

one model to another. This system approach uses the expected range of variables as input for 

measuring the problem’s range of variables. A probabilistic model is created from a 

deterministic model by defining a Probability Density Function (PDF) for each of the model 

parameters. This can be done based on a parameter’s mean and variance values. Skewness can 

also be factored into the distribution. Data or observations from a population of flange 

connections can be used to adjust and extend the original distribution. Since the PDF is a 

continuous function, it can be extrapolated to make predictions about low probability events. 
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More importantly, the uncertainty of an event’s probability can be measured by the variance in 

the PDF. 

The probabilistic failure frequency distributions for a large population of flanges can be 

modified based on the observations about the population. If a particular flange connection 

shares similar risk drivers with other connections, the PDF of each individual connection can be 

aggregated into a population likelihood PDF. This is useful because the failure rate model for 

each individual flange has a base failure frequency term in it, which is generic. After each 

iterations of inputting observations into the model, these generic failure frequencies (gff) can 

be updated to be specific about that particular flange at that particular moment in time. 

The model generated from this research is based on a combination of the known physical 

properties of flange connections, and it also allows for missing data to be accounted for with 

the use of parameter learning and Bayesian updating of the probability distributions. The 

correlations between the parameters are set up as prior probability distribution nodes in a 

Bayesian Network. These groups of parameters are modeled for a population of flange 

connections in a process plant. Observations in the plant, such as failures or accelerated 

corrosion events, are then used to update the values of the other flange connections in the 

population. By the same token, absence of failures can be used to update the expected 

remaining life of the flange connection seals. This can be used to determine which flanges 

should be broken during shutdowns for inspection. The model used in this work does not 

explicitly capture the probability of failure due to non-routine operation; such as during 

startup, shutdown, and upset conditions. While these operating modes may have a different 
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effect on the remaining life of the flange connection seal, the probabilistic nature of the model 

allows it to capture rare events. 

In this way, a progressively updated model is generated from generic, but accurate, physical 

data and updating with observations. At the same time, the PDF of unmeasured parameters are 

inferred based on the observed performance of the system, or population of flange 

connections.  

 Results of Deterministic Calculation for a Typical Flange Connection Scenario 3.3.

Table 4 shows the inputs to the seal failure rate model. Table 5 shows the resultant coefficients 

and calculated probability of failure. 

 

Table 4 Typical Inputs Used in Deterministic Model 

Parameter Value Justification for Value 
Qf 0.031 assuming Qf (allowable leakage) > 0.03in3/min 
Dsl 2 assuming Dsl (seal inner diameter) = 2" 
M (Meyer hardness, psi) 3870 PTFE (from AD0470462) 
C (contact pressure, psi) 5000  
f (surface finish, 𝜇n RMS) 125  
T (temperature °F) 100  
N10 0.008 assuming cylinder (from US NAVY HMR) 
GPMr 10  
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Table 5 Covariance Model Factors and Results 

Parameter Value Justification for Value 
λSEB 2.4 failures/million hours 
Cp 0.25 Assuming pressure <= 1500psi 
Cq = 0.055/Qf 1.77419354

8 
 

Cdl = 1.1*Dsl + 0.32 2.52  
Ch = ((M/C)/0.55)^4.3 4.34536804

3 
 

Cf = (f^1.65)/353 8.16820852
2 

 

Cv 3.847 assuming diesel fuel at 100°F 
Ct 0.21 assuming Trated-Top > 40°F 
Cn = (Co/C10)^3 * N10 * GPMr 0.08 assuming Co=C10 
λSE 6.2 failures/million hours 
Base Probability of Failure (λSEB * 
0.00876) 

2.10E-3 failures/year 

Scenario 1 PoF (λSE *0.00876) 5.40E-3 failures/year 
 

 

The probability of failure calculations for this scenario indicate an unacceptable probability of 

leakage. However, there are two factors that affect the outcome of this scenario. First, these 

calculations are based on data from lab samples, which was measured in a way that does not 

allow its variance to be accounted for in predictions. In other words, the tests which were used 

to make these multipliers has an unknown uncertainty. The uncertainty of the actual 

performance can be characterized, depending on how narrow the window of operating 

parameters is, and the spread of observed failure rates. Second, the data is calibrated for a 

specific application (flange connection seals on space rocket motors). The translation of these 

observations to seals in a process plant will be necessary. This may be accomplished over time 

by aggregating test data. The inputs to the model will be the same for process plant equipment, 

but the resulting seal life expectancy (equivalently, seal failure rate) may be different due to the 
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variance in the operating parameters of a plant over a relatively long time scale compared to a 

rocket engine. 

The gasket life expectancy can be modeled as an exponential curve, with a hazard rate of 1.0E-

3. Suppose the contact stress distribution did not have a significant amount of variance, and 

was approximated as a point value. Then on-stream measurement of bolt strain or joint 

stiffness could be used to measure the contact stress and estimate the remaining life of the 

flange connection seal. 

 

 

Figure 1 Calculated Correlations Between Contact Pressure and Probability of Failure 

 

The conversion from event frequency to probability of failure is based on the assumption that 

the seal will degrade in an exponential fashion. The probability of failure can be related to a risk 
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matrix, along with the consequence of failure, to identify action levels. Action levels are points 

at which the utility cost of a potential seal failure exceeds the cost of a mitigating event such as 

an inspection or repair. 

However, the above first moment calculations do not have any way of accounting for the 

variance of the distribution, so a second moment method is proposed which makes use of the 

mean and the variance of the distribution. 

 Beta-Binomial Bayesian Network for Typical Flange Connection Leakage 3.4.

Scenarios 

One possible method of estimating the failure frequency would be using a beta binomial 

conjugate distribution. The beta probability density function is represented by a beta 

expression which measures the likelihood of a particular failure frequency in a normal 

distribution (1). 

 
𝑓(𝜆) =

𝛤(𝛼 + 𝛽)𝜆𝛼−1(1 − 𝜆)𝛽−1 
𝛤(𝛼)𝛤(𝛽)  

(1)  

The conditional likelihood of n failures out of a population of k flanges would be represented by 

a binomial distribution. 

 𝑝(𝜆|𝑓) = �𝑛𝑘� 𝑝
𝑘(1 − 𝑝)𝑛−𝑘 (2)  

An example of a beta binomial Bayesian Network is shown in Figure 2. 
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Figure 2 Predicted 𝜆 Based On Four Measured Flange Connection Failure Rates in a Beta Binomial Bayesian Network 

 

The effect of this network is to treat base failure rates as a normal distribution in a population 

(API 581 assumes their generic data to be lognormally distributed, but does not give a 

justification for it). Then the known failure rates are used to construct a weighted average 

failure rate for the population. This failure rate can then be extrapolated to an estimate of a 

posterior failure rate, such as for a particular flange that has no known performance data. As 

can be seen from Table 6, Table 8, and Table 10, the average failure frequency of the 

population converges to the mean as the amount of time in service increases. Adding additional 

unknowns to the population does not affect the predicted probability, which implies that the 

technique could be applied to populations with arbitrarily large quantities of unknown 

elements. It does change the properties of the prior distribution, however, this has a limited 

effect on the precision of the predicted probability of failure. Adding elements reduces the 
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percent error in the predicted probability, consistent with the characteristics of a normal 

distribution. 

 

Table 6 Properties of Beta-Binomial Hierarchical Bayesian Network for Four Flange Connection Population With Known 
Failure Rate 

Flange Hours Failures median PoF variance 
FC1 1000 0 4.33E-04 6.18E-07 
FC2 10000 0 6.52E-05 9.90E-09 
FC3 239000 1 7.05E-06 3.68E-11 
FC4 1000000 2 2.68E-06 3.30E-12 
Sum(FC1-4) 1250000 3 2.40E-06   
predicted aff     1.45E-03 6.27E-03 
 

 

Table 7 Properties of Associated Prior Distribution 

Sample Size Prior Mean Beta 
Median 509.47 Median 0.001428 Median 508.93 
Variance 394790 Variance 0.00748 Variance 409730 
 

 

Table 8 Properties of Beta-Binomial Hierarchical Bayesian Network for Five Flange Connection Population With Known 
Failure Rate 

Flange Hours Failures median PoF variance 
FC1 1000 0 4.33E-04 6.18E-07 
FC2 10000 0 6.52E-05 9.90E-09 
FC3 239000 1 7.05E-06 3.68E-11 
FC4 1000000 2 2.68E-06 3.30E-12 
FC5 1000000 2.4 2.68E-06 3.30E-12 
Sum(FC1-5) 2250000 5.4 2.40E-06   
predicted aff     1.45E-03 5.65E-03 
 

 

Table 9 Properties of Associated Prior Distribution 

Sample Size Prior Mean Beta 
Median 509.79 Median 0.001431 Median 509.25 
Variance 398870 Variance 0.008152 Variance 399070 
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Table 10 Properties of Beta-Binomial Hierarchical Bayesian Network for Five Flange Connection Population With 
Known Failure Rate For Four Flanges 

Flange Hours Failures median PoF variance 
FC1 1000 0 4.33E-04 6.18E-07 
FC2 10000 0 6.52E-05 9.90E-09 
FC3 239000 1 7.05E-06 3.68E-11 
FC4 1000000 2 2.68E-06 3.30E-12 
FC5 1000000 unknown 1.45E-03 6.27E-03 
Sum(FC1-5) 2250000 5.4 2.40E-06   
predicted aff     1.45E-03 5.65E-03 
 

 

Table 11 Properties of Associated Prior Distribution 

Sample Size Prior Mean Beta 
median 509.79 Median 0.001428 Median 508.93 
variance 394790 Variance 0.00748 Variance 409730 
 

 

 Gamma-Exponential Bayesian Network for Typical Flange Connection Leakage 3.5.

Scenarios 

In a similar fashion, the gamma-exponential conjugate distribution could be used to estimate 

an average time to first failure, given the time to first failure of other flanges in the population. 

The gamma pdf is given by (3), where 𝛼 = 𝑚𝑒𝑎𝑛 ∗ � 𝑚𝑒𝑎𝑛
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

� and 𝛽 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑚𝑒𝑎𝑛

. 

 
𝑓(𝜆) =

𝛽𝛼𝜆𝛼−1𝑒−𝜆𝛽

𝛤(𝛼)  
(3)  

The exponential pdf is given by (4). 

 𝑓𝑥(𝑥) = 𝜆𝑒−𝜆𝑥 (4)  

An application of this type of conjugate distribution is shown in Figure 3 [18]. 

 𝑓𝑥(𝑥) = 𝜆𝑒−𝜆𝑥 (5)  
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The effects of estimating average failure frequency using the gamma exponential conjugate 

distribution are similar to using a beta binomial, even though the approach is different. 

 

 

Figure 3 Prediction of aff Using Gamma Exponential Bayesian Networks 

 

 

 Risk Modeling Using a System Approach 3.6.

Process safety performance management has a potential benefit from adopting a system 

approach to managing flange connection leak risk. The connection entity is not considered as a 

discrete risk driver by the current editions of the industry consensus risk-based inspection 

guidance documents. According to the EPA, this asset category has the second highest leak 

frequency in process plants [23]. A hierarchical Bayesian network which uses conjugate 

probability distributions for the population of flanges is useful for predicting the failure 
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frequency of the population and of a single connection, and also for making decisions 

systematically. This approach to modeling risk enhances the visibility of the potential secondary 

effects of specific decisions on the system. It also provides pathways to confirm the risk drivers 

for observed events. Most importantly, a system approach is needed to improve process safety 

because it enables the measurement of long tail risk. This is characteristic of process safety 

incidents, which are rare events with high consequences. It also reveals interdependencies 

between apparently isolated events. 
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 FLANGE CONNECTION MATERIALS, DESIGN, AND DEGRADATION 4.

Large numbers of flange connections are present in a typical plant. They enable assets to be 

quickly connected and disconnected, without cutting or welding operations. Despite their 

apparent simplicity, flange connection seals are a complex system which changes over time. 

Most flange connections are made up of three components. The flanges are either welded or 

slip on type and are attached to associated asset. Typically bolts are used as fasteners to apply 

clamping force on the flanges. And in most cases, a gasket is installed between the flanges. The 

gasket forms a seal while compensating for the surface roughness of the flanges as well as 

variations in the clamping force applied by the fasteners [24]. A flange connection joint’s design 

and performance is governed by its stiffness, which is limited by the stiffness of the gasket [25]. 

Since the transition away from asbestos, most gaskets are now made from three types of 

materials: 1) nonmetallic, such as elastomers, PTFE or compressed graphite, 2) metallic, 

including flat and spiral wound metal, or 3) composites, consisting of a nonmetal outer layer 

with a metallic core [26, 27]. The most important property of a gasket is its response to the 

fasteners’ compressive stress. This response is governed by the gasket’s stiffness. Metallic 

gaskets have an elastic stress response, and deform proportionally to the applied stress until 

they begin to plastically deform. The elastic modulus of a metal gasket determines its stiffness. 

Nonmetallic gaskets deform viscoelastically, and their stiffness is measured by their dynamic 

modulus, which is a function of temperature and the frequency of a cyclic loading applied to 

the test specimen [28]. Dynamic modulus can then be measured in a lab setting by vibrational 

response techniques [29]. Other materials-related properties of gaskets that are relevant to 

sealing performance include response to thermal and pressure cycling, relationship between 
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the thickness of the gasket and its stiffness, and the degree of plastic deformation the gasket 

can withstand under compressive loading [30-32]. Another important property for nonmetallic 

and composite gaskets is the creep relaxation which they undergo while under compression. 

This creep results in a loss of the clamping load applied by the fasteners and a loss of the seal’s 

integrity [33-38]. 

 Causes of Flange Connection Leakage 4.1.

A flange connection’s leak rate is determined by material properties, assembly parameters, and 

process operating conditions. A leak rate is a measure of the conductance of fluid through the 

gasket membrane. In very low leak rate regimes, this conduction happens by molecular 

diffusion. At higher leak rates, this occurs by laminar flow. The sealing performance of the 

flange connection, and the leak rate or life expectancy for the flange connection over a time 

interval, are related. The leak rate is increased by a lower viscosity process fluid, but decreased 

by a tighter seal. Since the properties of the process fluid are constrained by the process 

design, the leak rate is most effectively controlled by the quality of the seal. 

A seal is only formed when the pressure applied to the gasket by the flange is high enough to 

compress the gasket into any roughness that may exist on the flange face. If the flange surface 

is very rough, the gasket will be required to compress more in order to form a seal. If the gasket 

material has a high stiffness, a higher stress will be required to achieve the compression 

necessary to form the seal. This gasket property is known as high loadability [24]. The 

compressibility of the gasket affects how much pressure must be applied in order to form and 

maintain this seal. Therefore, flange connections made with highly loadable gaskets have a 

lower leak rate due to the higher contact stresses applied. 
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Surface pressure may be directly measured using pressure indicating films, but the pressure 

value cannot be known without disassembling the seal, and the film also affects the leak rate. 

The methods for indirectly measuring surface pressure include using elongation methods to 

measure the strain at the fasteners, but the strain is distributed unevenly across the flange 

surface because the flange elastically deforms. The ligaments between bolt holes in the flange 

will have a lower applied stress. Also, the flange will rotate and expand at the inside radius due 

to the moment applied by the fasteners at the outside of the flange radius. 

Leakage at flange connections can occur through two routes: due to a lack of intimate contact 

between the gasket and the flange surface or due to diffusion through the gasket membrane. 

Membrane diffusion typically only occurs at appreciable rates when the gasket is in service at 

very high temperatures and pressures. In most cases leakage is due to a loss of sealing between 

the gasket and flange [39]. Originally, pressure vessel design codes assumed that properly 

designed and installed flange connections would not leak while in service. The older editions of 

these codes specified design calculations for the flanges and fasteners based on the seating and 

maintenance stress levels (Y and m factors) of the gaskets [40]. Seating stress is the initial 

amount of compression required to conform the gasket surface to the mating flange surfaces. It 

is applied before the flange is pressurized. The maintenance stress is a measure of the 

minimum required compression to keep the gasket compressed against the flange while 

internal or external pressure is applied to the flange. This maintenance stress represents a 

balance of forces between the fastener and the flange and gasket in the elastic loading regime 

for both. Ideally, the balance shifts when the hydrostatic pressure in the flange increases the 

end thrust on the bolts, such that the gasket can expand to compensate for the relaxation of 
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the bolts while still maintaining a tight seal. Modern design guidelines recognize that leakage 

will always occur, and therefore include rules for flange connection design based on specific 

maximum leak rates [30]. A summary of flange design code details is given in Appendix A – 

Flange Requirements in Pressure Vessel Design Codes. 
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 FLANGE CONNECTION INSPECTION 5.

The integrity of flanges is determined by NDT inspection. Many techniques are available for 

flange inspection, but they do not ensure that a seal will be maintained across the connection 

formed by the two flanges, fasteners, and the gasket [41]. Some of the techniques that are 

commonly used in industry are listed below in Table 12 [22]. 

 

Table 12 Strategies for Assessing Flange Connection Integrity While In Service 

Strategy Implementation Limitations of Strategy 

Material Balance 
Monitoring 

Loss of product between flow 
sensors calculated as a leak rate. 

Insufficient sensitivity to detect low leak 
rates. Requires flow in system in order to 
make measurements. 

Pressure 
monitoring 

Pressure monitoring to detect 
leakage. 

Gaskets which have an annulus 
space and taps allow pressurized 
gas to be applied to the sealing 
surface before the entire flange is 
pressurized. 

Does not indicate whether a potential 
leak is caused by flange loosening or 
gasket damage, which affects the 
mitigation strategy. 

Acoustic leak 
detection 

Baseline acoustics of a pipe in 
service are compared to inspection 
data to determine if a leak is 
present. Can use microphones as 
well as fiber optics or MEMS to 
localize damage [42]. 

Requires microphone to be positioned 
very close to leak. Passive technique, 
precision is limited by background noise 
filtering effectiveness. Requires active 
process fluid release for detection. 

Infrared leak 
detection 

Infrared absorption is used to 
detect the presence of volatile 
emissions from flange connections 
[43]. 

Requires active process fluid release for 
detection. Calibrated to absorption 
wavelengths of specific chemicals, not 
capable of detecting generic releases. 
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Table 12 Continued 

Strategy Implementation Limitations of Strategy 

External strain 
measurement 

Time-of-flight measurement of 
ultrasonic signal along the length of 
a bolt to determine the extension 
and stress level in the bolt. This is 
then converted into a bolt stress. 

Accuracy depends on the precision 
datum faces machined each end of the 
bolt, and operator skill. Adequate bolt 
tightness may not prevent leak paths 
from forming on the flange face (if the 
flange geometry is not in-spec). 

Strain indicating 
fasteners 

Strain gages installed inside the 
bolt shaft, or washers which emit 
an indicator fluid at a specific stress 
level. 

Adequate bolt tightness does not rule 
out the presence of leak paths on the 
flange face ligaments between bolts. 

 

 

Vibration-based NDT is capable of detecting a change in the stiffness of a bolted joint, in 

particular a flange connection [35, 44]. Microphones or accelerometers are coupled with an 

impulse signal source, or each other, to measure the systems’ vibrational response. The input 

and output time signals may be converted to frequency spectra with a Fourier transform if the 

system’s vibration response is approximately linear over the measured frequency range. The 

data must also be stationary, or not changing within the time interval over which the DFT is 

sampled [45, 46]. This means that time-domain signals which change over the time that they 

are measured, or with respect to the location of the sensor, will have increased error in the 

frequency spectra. The Empirical Modal Decomposition technique using the Huang-Hilbert 

Transform has been used to measure nonlinear vibration systems, in particular during 

continuous monitoring [47-49]. 
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Vibration data may be used to detect changes in the integrity of a flange connection by modal 

parameters such as the position and amplitude of the system’s resonance frequencies. These 

parameters are affected by a change in the stiffness of the flange connection [44, 50-56]. 

Leakage may also be detected by a change in impedance parameters such as the reflection 

coefficient of longitudinal waves impacting the flange surface [57]. In the ultrasonic frequency 

range, reflection coefficients may be used to non-intrusively measure the flange surface’s 

contact pressure directly under the transducer [44, 55, 58-60]. 

Prior data is useful to plant operators for determining the remaining life of pressure assets. 

These risk models are commonly used to schedule outages [61]. The purpose of the outages is 

to detect damage that may have occurred while the asset was in service, and to repair that 

damage. While the inspection itself does not reduce existing damage to the vessel, it does 

reduce uncertainty in the condition of the vessel. 

 Vibration-Based Inspection for Measuring Seals of Flange Connections 5.1.

Because flange connections are distinct locations, an inspection can be focused within the 

vicinity of the flange connection and can exclude adjacent vessels and piping. A flange 

connection inspection could also be primarily focused on evaluating the integrity of the seal. A 

secondary goal may be to detect mechanical damage that could lead to catastrophic collapse of 

the components. 

A method of measuring the seal is to examine the vibrational properties of the connection. The 

vibration spectrum offers more signal bandwidth than even the optical spectrum, as can be 

seen by the effect of opaque materials in blocking light, whereas vibrations can be conducted 
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through almost all materials at some frequency. Therefore, vibration testing is a suitable option 

for evaluating seals of flange connections. 

Since the flange connection is generally composed of different materials, and these materials 

have different characteristic vibration impedances due to their stiffness and damping 

coefficients, a plane wave vibration which encounters the flange will be partially reflected as it 

passes through the flange to the gasket. This reflection is a function of the impedance drop, 

which is also a factor of the degree of contact area between the different flange and gasket 

materials. Therefore, the reflection coefficient parameter is relatable to the conductance 

parameter of the leak rate equation. 

 Governing Equations for Vibration Inspection 5.2.

In the experiments for this thesis, the speed of sound in the steel was calculated using the 

elastic modulus and the density. The formulas are as follows. 

 
𝑐 = �

𝐸
𝜌

= �
205 𝐺𝑃𝑎

7800 𝑘𝑔𝑚3

= 5126
𝑚
𝑠

 
(6)  

The wavenumber was then calculated as a function of frequency to determine the optimal 

spacing of the accelerometers. 

 
𝑘𝐿 =

2 ∗ 𝑝𝑖 ∗ 𝑓
𝑐𝑜

=
𝜔
𝑐𝐿

 
(7)  

The accelerometer spacing was set at 7cm. The bounds on the spacing between measurement 

sensors are due to the error introduced into the signal by phase mismatch on the higher end 

and the finite difference limit on the lower end. The graph below shows the minimum 

wavenumber for various spacing. 
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Figure 4 Minimum Wavenumber For Various Accelerometer Spacing 

 

An upper frequency limit is set by the impact hammer’s excitation frequency range. In this case, 

the amplitude of the impact hammer (B&K Type 8206-001) starts to fall off around 1300Hz. The 

coherence is still acceptable up to 1600Hz. 

 Reflection Coefficient 5.3.

The following equations explain how a reflection coefficient is calculated. It is adapted from 

Kinsler [62]. A propagating plane wave in a bar or a small diameter pipe will have two axial 

vibration modes. One will be forward going and the other reflected. Their intensity can be 

represented as the ratio of reflected to incident wave amplitude, as shown below in Figure 5.  
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Figure 5 Schematic of Reflection Coefficient Measurement 

 

 

 𝑃(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥  (8)  

At the first accelerometer reference point, pressure is given by (9). 

 𝑃1(𝑥 = 0) = 𝐴 + 𝐵 (9)  

And at the axial position of the second accelerometer, pressure is given by (10). 

 𝑃2(𝑥 = 𝑑) = 𝐴𝑒𝑖𝑘𝑑 + 𝐵𝑒−𝑖𝑘𝑑  (10)   

The expectation value of the pressures is given by their complex conjugate (11), which is also 

known as the autospectrum for location 1. 

 (𝑃1∗𝑃1) = 𝑆11 = (𝐴 + 𝐵)∗(𝐴 + 𝐵) (11)   

The crossspectrum (12) is the covariance between the pressure amplitude at two locations.  

 (𝑃1∗𝑃2) = 𝑆12 = (𝐴 + 𝐵)∗(𝐴𝑒𝑖𝑘𝑑 + 𝐵𝑒−𝑖𝑘𝑑) (12)   

The ratio of autospectrum to crossspectrum can be used to find the reflection coefficient, or 

the fraction of energy that is dissipated by the barrier that the wave impacts (13, 14). 

 𝑆11
𝑆12

=
𝐴 + 𝐵

𝐴𝑒𝑖𝑘𝑑 + 𝐵𝑒−𝑖𝑘𝑑
= (1 + 𝑅)/(𝑒𝑖𝑘𝑑 + 𝑅𝑒−𝑖𝑘𝑑) 

(13)   
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|𝑅| =

|𝐵|
|𝐴| = �

𝑆11𝑒𝑖𝑘𝑑 − 𝑆12
𝑆12 − 𝑆11𝑒−𝑖𝑘𝑑

� 
(14)  

 

In order to reduce the amount of input noise to the system, autospectra can be filtered against 

the input signal using the following relations (15-20). 

 𝑆𝑥𝑥 = 𝐸[𝑋∗𝑋] (15)   

 𝑆𝑥𝑦1 = 𝐸[𝑋∗𝑌1] (16)   

 𝑆𝑥𝑦2 = 𝐸[𝑋∗𝑌2] (17)   

 𝑆12 = 𝐸[𝑌1∗𝑌2] (18)   

 
𝑆𝑦1𝑦2 =

𝑆𝑥𝑦1
∗ 𝑆𝑥𝑦2
𝑆𝑥𝑥

 
(19)   

 
𝑆𝑦1𝑦1 =

𝑆𝑥𝑦1
∗ 𝑆𝑥𝑦1
𝑆𝑥𝑥

 
(20)   

A comparison between the reflection coefficient calculated from the same signal data with and 

without using this filtering technique is shown in Figure 6. 
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Figure 6 Comparison Between Unfiltered and Filtered Reflection Coefficient Spectra 

 

The reflection coefficient may also be thought of as the ratio of impedances between the two 

materials which are carrying the vibration wave. Neglecting the effect of phase lag, the 

reflection coefficient using the acoustic impedance of the materials reduces to (21). 

 
|𝑅| = �

𝑍2 − 𝑍1
𝑍2 + 𝑍1

�
2

 
(21)   

A transfer function (below) may be thought of as a measure of the impedance of the vibration 

carrier, which governs the input/output ratio of vibrations at each frequency. 

 𝐻12 =
𝑆12
𝑆11

 
(22)   

Since 𝐻𝑟 − 𝐻12 = �𝑆11𝑖
𝑆11

� (𝐻𝑟 − 𝐻𝑖) and 𝐻12 − 𝐻𝑖 = �𝑆11𝑟
𝑆11

� (𝐻𝑟 − 𝐻𝑖), the reflection coefficient 

becomes indeterminate when Hr=Hi, which occurs at half wavelength accelerometer spacing 
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[56]. The suggested spacing to avoid this condition is given by 𝑠 < 𝑐𝑜
2𝑓𝑢𝑝𝑝𝑒𝑟

, which for 1600Hz 

would be 2m. 

 Metrics for Estimating Remaining Life of a Flange Connection Seal 5.4.

In the signal data, the most useful measurements of the remaining life are comparisons 

between the undamaged vs. damaged states. The metric chosen to make this comparison is the 

norm of the reflection coefficient. This norm is implemented by taking the square root of the 

trace of the standard deviation of the reflection coefficient [63]. From this, a damage index 

measurement is used, which compares the reflection coefficient norm measured in a known 

good condition (such as immediately after assembly) with a measurement after some time has 

passed. If loss of contact pressure (i.e., tightness) has occurred, the norm will increase due to a 

higher vibration/acoustic impedance drop across the flange-gasket interface. Marshall [54] and 

others [44] have theorized that, on a microscopic scale, this change in the reflection coefficient 

can also represent the loss of vibrational energy across the joint due to the change in contact 

stiffness. This contact stiffness is due to roughness and asperities at joint which act as 

dampeners. The outcome is the same; reflection coefficient is inversely correlated with 

tightness. This can be considered as the major contributing factor to a loss of sealing. 

Therefore, the damage index is useful as a metric for the amount of sealing capability left in the 

flange connection. 

The graphs below show the change in reflection coefficient as well as the numerical integration 

values for the reflection coefficient. 
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 Flange Connection Resonance Experiment Setup 5.5.

The vibration NDT experimental setup consists of two pieces of 2” Sch40 carbon steel pipe 

joined together by 150# class flanges. Different gaskets are used to evaluate their effect on the 

vibrational characteristics of the flange connection. The modal analysis is performed on the 

position and amplitude of the resonance peaks to relate tightness of the connection with its 

stiffness. The resonance frequencies and amplitudes are measured using an impact hammer 

coupled to a microphone. 

The reflection coefficient testing is performed on the same flange connection, but with 

accelerometers used to measure the axial acceleration caused by the impulse signal. The 

acceleration wave is decomposed into incident and reflected components to determine how 

much energy is absorbed by the connection. A more intimate contact at the flange gasket 

interface will theoretically reduce the impedance drop and reduce the reflection coefficient. 

 

Figure 7 Flange Connection Layout with Accelerometers Positioned 
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Figure 8 Flange Connection with Accelerometers Positioned 

 

 Reflection Coefficient Experiment Results 5.6.

Different bolt torque levels were used to produce different contact stresses. The objective of 

the vibration experiment was to correlate a change in the reflection coefficient with the applied 

contact stresses.  

The graphs below show the change from snug bolts (finger tight) to properly tightened bolts 

(120 ft. lb. torque incrementally tightened to 36 ft. lb. and 84 ft. lb.) for flange connections 

made using two different types of gaskets. The ePTFE is a soft gasket which has a lower 

loadability and is less sensitive to the contact pressure required to make a seal. The PTFE gasket 

is harder and has a higher loadability. 

The norm of the reflection coefficient was measured at 105.2 (tight) vs. 110.4 (loose) for the 

hard PTFE gasket and 79.4 (tight) vs. 80.7 (loose) for the soft ePTFE gasket. Again, the values for 

numerical integration are only meaningful as relative changes from a known good condition to 



 

36 

 

 

a known level of damage, since they are based on averages of a noisy signal which includes a 

large band of spectrum with reflection coefficient exceeding unity. The change in the reflection 

coefficient is calculated by the following equation.  

 
𝑙𝑜𝑜𝑠𝑒𝑛𝑖𝑛𝑔 =  

�|𝑅𝑙𝑜𝑜𝑠𝑒|� − ||𝑅𝑡𝑖𝑔ℎ𝑡||
||𝑅𝑙𝑜𝑜𝑠𝑒||

 
(23)  

For the PTFE gasket, this amounts to a 4.7% change, and for the ePTFE gasket a 1.6% change. 

 

 

 

Figure 9 ePTFE Gasket: Change in Reflection Coefficient with Bolt Loosening 
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Figure 10 PTFE Gasket: Change in Reflection Coefficient with Bolt Loosening 

 

 

A further comparison of the reflection coefficient between the snug (0 ft. lb. torque), 36 ft. lb., 

and 120 ft. lb. cases are shown below. An ePTFE gasket was used in the tests. As can be seen 

from the graph, the position of the accelerometers affects the shape of the reflection 

coefficient, which is unexpected. It is possible that the mass of the accelerometers could be 

affecting the propagation of the wave. Also, the signal could be discontinuous with respect to 

position on the pipe, which would require comparison measurements to be taken at the same 

locations relative to a flange. 
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Figure 11 |R| Compared with Different Accelerometer Positions and Torque Levels, ePTFE Gasket 

 

 

 Variance in Flange Connection Tightness Measured by Bolt Strain 5.7.

While vibration testing was performed, other parameters related to the flange connection were 

measured. One of the highest sources of variability was in the application of contact pressure 

through bolt torque. The elongation of the bolts was measured after torque was applied. Using 

the parameters shown below, a target theoretical elongation of 0.8% was expected. The 

equations were taken from Bickford [25]. 
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Table 13 Predicted Bolt Strain 

Parameter Value Unit 

E: carbon steel modulus of elasticity 2.99E+07 Pa 
D: Diameter 0.625 in 
Th: Head Height 0.380 in 

Tn: Nut Height 0.538 in 

Ab: Area of bolt 0.307 in2 

As: Area under thread 0.278 in2 

Lb: Length of bolt 2.804 in 

Lt: Length of thread 1.800 in 

Lbe: Effective length of body and head Lbe = Lb - Th/2 2.614 in 
Lse: Effective length of body and thread Lse = Lt + Tn/2 2.069 in 

Reciprocal of spring constant of joint (1/kbe) = Lbe/(E*Ab) + Lse/(E*As) 5.33E-07 
in/lb

f 

kbe 1.87E+06 
lbf/i

n 
σ: seating stress 50000 psi 
Fb: applied load (F = σ*Ab) 15339.808 lbf 
Δb: change in bolt length due to applied load Δb = Fb/(1/kbe) 0.0082 in 
 

Table 14 Measured Elongation of Lubricated Bolts (Aramid fiber gasket) 

 
Round 0  
(snug) 

Round 1 
(36 ft-lb) 

Round 2 
(84 ft-lb +/- 5) 

Round 3  
(120 ft-lb) 

Total elongation 
% 

Bolt 1 (in) 2.804 2.8045 2.8055 2.8065 0.089158 
Bolt 2 (in) 2.795 2.7955 2.797 2.7995 0.161002 
Bolt 3 (in) 2.8 2.8005 2.8015 2.8024 0.085714 
Bolt 4 (in) 2.803 2.8045 2.8061 2.8068 0.135569 
 

 

As can be seen, at the target torque, none of the bolts achieved the specified elongation to 

provide the required contact pressure on the gasket. After lubricating the bolt threads with a 

silicon compound, the following elongation values were observed. 
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Table 15 Measured Elongation of Lubricated Bolts (ePTFE gasket) 

 
Round 0 
(snug) 

Round 1 
(36 ft-lb) 

Round 2 
(84 ft-lb +/- 5) 

Round 3 
(120 ft-lb) 

Total elongation 
% 

Bolt 1 2.80355 Not measured Not measured 2.81225 0.310321 
Bolt 2 2.7955 Not measured Not measured 2.803 0.268288 
Bolt 3 2.8005 Not measured Not measured 2.81225 0.419568 
Bolt 4 2.804 Not measured Not measured 2.8085 0.160485 

 

 

This represented a significant improvement, but was still not at the required contact pressure. 

In a probabilistic risk model, this dispersion of measurements across a single flange, let alone a 

population of flanges, would increase the variance of the distribution substantially. Ultrasonic 

measurement of the elongation would reduce the measurement variance, but the underlying 

error due to differences in friction on each fastener’s mating surfaces (bolt and nut threads, nut 

and bolt contact with the wrench, and nut and bolt head contact with the flange body). 

Therefore a more precise fastening tool would be required in order to reduce the variance in 

contact pressure. 

 Vibration Signal Variance Due to Accelerometer Spacing 5.8.

The recommended setup for measuring reflection coefficients was originally based on the 

ASTM procedure for reflection coefficient measurement in an acoustic impedance tube [64]. 

This test guideline is intended for measurement of a vibration wave propagating through air, 

but in the case of a flange connection, the reflection coefficient of interest is related to the 

vibration wave propagating through the flange itself. From the measurements taken in this 

research, it is inconclusive whether the reflection coefficient was truly affected by the spacing 

of the accelerometers. This could be an issue if the accelerometers were placed on a node line, 
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such as a half wavelength of the signal frequency of interest. As long as the measurements 

were taken at the same spots on the pipe consistently, there should not be a significant 

variation in the reflection coefficient due to the accelerometer spacing. 
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 CONCLUSION 6.

Loss of containment events in the process industry are rare. The consequences of a failure are 

high, which justifies a Quantified Risk Analysis. The various data sources which may be used for 

predicting probabilities of failure have large differences in parameters that should be 

comparable. This variation is due to differences in the way the data has been sampled, 

censored, and categorized by the authorities who gathered it. Expert judgment can be used to 

rationalize the differences in probability predictions that are based on different data sources. 

However, the judgment and decisions based on the experience of an individual or a group of 

individuals in an industry are by nature heuristic. They are not capable of accounting for 

unknowns for which the expert group has no awareness.  

In order to make predictions about rare events that are relatable to event scenarios with other 

priors and that can be extrapolated beyond the timescale of the priors, the degree of 

uncertainty in the priors should be considered. Hierarchical Bayesian methods provide a tool 

for doing so. With these probabilistic techniques the unknown or incomplete distribution of 

likelihoods for a prior can be updated as data is gathered about a specific scenario. This enables 

predictions to be made without censoring data, and without including data which may have 

priors that are not correlated to the scenario under consideration. 

In order to maintain mechanical integrity, fixed assets in the process industries are managed 

based on their estimated remaining life. The primary causes of degradation in these fixed 

equipment assets are corrosion reactions between the asset’s material of construction and the 

process chemistry. The remaining life predictions for these assets typically use a generic failure 
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frequency that is modified based on the expected corrosion rate. The sources of uncertainty in 

these models are population-wide and asset-specific.  

Population-wide variance includes the uncertainty in the accuracy of the generic failure 

frequencies used to conduct the analysis. This affects the predicted failure rate of each asset in 

the plant. On a specific level, there is uncertainty in the actual corrosion rate due to 1) variation 

within the material of construction’s specified composition, 2) control of the fabrication 

process, where welding, forging, application of corrosion resistant linings, and other heat 

treatment operations could produce microstructures which have unexpected mechanical 

properties and corrosion resistance, 3) control of the process operating conditions which 

govern the chemical activity of the corrosive components of the stream, and 4) precision of the 

inspection techniques used to quantify the structural integrity and amount of remaining life in 

the vessel, including the sample amount of the vessel that is inspected and the probability of 

detection of any Non-Destructive Evaluation techniques which are used.  

Asset-specific uncertainties have historically been addressed with empirical safety factors, 

which have no physical basis or statistical measurement of their uncertainty. A new approach 

has been proposed in this thesis for predicting the probability of failure based on the average 

failure frequency (aff) of a specific population of assets in a process plant. This aff is determined 

by a hierarchical Bayesian network which combines a covariance model with a generic failure 

frequency and then updates as failures are observed at different operating times. In this way, 

remaining life predictions of a population of assets can be tied to their actual performance, 

even where they have different corrosion resistance, operating conditions, and inspection 
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history. The use of an aff also enables a system approach which updates the predictions for the 

remaining life of other assets when an observation is made in a single asset. 

A specific application of this probabilistic method for flange connection leak risk has been 

demonstrated. Flange connections are present in large numbers in a process plant, but their 

risk as discrete elements of a process system is typically not considered. The prior factors that 

drive the failure frequency were developed from an existing static seal covariance model and 

the generic failure frequency was updated using the averaging technique described above. 

In order to update the expected failure rate prior to observing a failure, an inspection 

technique for flange connections was also investigated. Flange connection seal failures are 

generally due to a loss of clamping force at the flange face. This loss of clamping force can be 

caused by degradation of the gasket material, corrosion of the flange face, or loss of tightness 

at the fasteners. A vibration-based NDE method may be capable of detecting all of these forms 

of degradation by measuring the loss of tightness in the sample. Although there are many 

measurements that may be performed from a vibration frequency spectrum, the experiments 

in this thesis focused on the shift in the resonance frequencies of the transfer function and 

changes in the reflection coefficient. The resonance frequency shift is a function of the stiffness 

of the system. As expected, decreasing bolt torque shifted the resonance frequencies lower, 

indicating a loss in the flange connection system’s stiffness. The reflection coefficient is a 

function of the amplitudes of the forward and reverse propagating components of plane waves 

in the pipe. Also as expected, the reflection coefficient decreased with increasing bolt torque, 

due to the increase of contact stress causing the surface area between the flange face and 

gasket to increase and the overall stiffness of the system to increase.  
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APPENDIX A 

FLANGE REQUIREMENTS IN PRESSURE VESSEL DESIGN CODES 

 ASME Boiler Pressure Vessel Code Approach 6.1.

The ASME Boiler Pressure Vessel Code (BPVC) Section VIII Nonmandatory Appendix S specifies a 

seating stress y and a maintenance factor m. However, these constants are only applicable for a 

statically loaded connection. Once the pressure or temperature have cycled, the seal of the 

connection will be less effective. 

For flange gasket seating surfaces, a typical roughness recommendation is 125-250μin (ASME 

PCC-1 Appendix C). A defect depth limit is given by the following table (ASME PCC-1 Appendix 

D). 

Table 16 Allowable Defect Depth vs. Width Across Face 

Measurement Hard-faced 

gaskets 

Soft-faced gaskets 

rd <w/4 <0.030 in. <0.050 in. 

w/4 <rd <w/2 <0.010 in. <0.030 in. 

w/2 <rd 

<3w/4 

Not allowed <0.005 in. 

rd >3w/4 Not allowed Not allowed 

 

 DIN EN 13555 Approach to BFC Design 6.2.

EN 13555 uses a leak rate based approach. An acceptable volumetric leak rate is specified, 

based on the process fluid viscosity at operating temperature. The EN 13555 approach provides 
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for the case that the BFC will experience cycles of pressure and temperature while it is in 

operation. Therefore, it is a more realistic test of the seal’s ability to resist these challenges. 

A tightness parameter is given by (24), where P = internal pressure (MPa), P* = atmospheric 

pressure (MPa), Lrm = mass leak rate per unit diameter (mg/sec-mm), and L*rm = reference 

leak rate per unit diameter [150L*rm = 1 mg/sec] (mg/sec-mm). 

 
𝑇𝑃 =

𝑃/(𝐿𝑟𝑚)0.5

𝑃∗/(𝐿𝑟𝑚∗ )0.5 
(24)  

 


	Methods to Improve Process Safety Performance Through Flange Connection Leak Prediction and Control
	Abstract
	Acknowledgements
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Quantified Risk Analysis
	2.1. Data Sources for QRA
	2.2. Bayesian Methods for QRA

	3. Risk Models for Leak Prediction
	3.1. Inspection Data for Risk-Based Decision Making
	3.2. Decision Analysis Methods Utilizing Sparse Datasets
	3.3. Results of Deterministic Calculation for a Typical Flange Connection Scenario
	3.4. Beta-Binomial Bayesian Network for Typical Flange Connection Leakage Scenarios
	3.5. Gamma-Exponential Bayesian Network for Typical Flange Connection Leakage Scenarios
	3.6. Risk Modeling Using a System Approach

	4. Flange Connection Materials, Design, and Degradation
	4.1. Causes of Flange Connection Leakage

	5. Flange Connection Inspection
	5.1. Vibration-Based Inspection for Measuring Seals of Flange Connections
	5.2. Governing Equations for Vibration Inspection
	5.3. Reflection Coefficient
	5.4. Metrics for Estimating Remaining Life of a Flange Connection Seal
	5.5. Flange Connection Resonance Experiment Setup
	5.6. Reflection Coefficient Experiment Results
	5.7. Variance in Flange Connection Tightness Measured by Bolt Strain
	5.8. Vibration Signal Variance Due to Accelerometer Spacing

	6. Conclusion
	References
	Appendix A Flange Requirements in Pressure Vessel Design Codes
	6.1. ASME Boiler Pressure Vessel Code Approach
	6.2. DIN EN 13555 Approach to BFC Design




