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ABSTRACT

Nuclear Magnetic Resonance (NMR) spectroscopy provides remarkable site resolu-

tion, but often requires signal averaging because of low sensitivity. Dissolution dynamic

nuclear polarization (DNP), which offers large signal enhancements, has been used to fol-

low reactions involving small molecules that typically have long spin-lattice relaxation

times. This thesis presents work in the development of dissolution DNP to directly hyper-

polarize and observe polypeptides, which can subsequently be used for the study of a time

dependent process, such as folding.

Dissolution DNP involves hyperpolarizing samples in the solid state, dissolving the

samples with a stream of hot solvent and rapid transfer of the sample into an NMR tube

for measurement in the solution state. Since protein samples are prone to foam under

conditions for rapid sample injection, solvent systems were optimized. Solvents such as

water/acetonitrile and water/methanol mixtures were utilized. An unlabeled peptide, baci-

tracin, was hyperpolarized on 1H nuclei and enhancements of 30, 45 and 180 were obtained

for amide, aliphatic and aromatic protons respectively. Although these enhancements are

already significant, loss of hyperpolarization during sample injection was further allevi-

ated by the use of isotopically enriched polypeptides. In [13C, 50% 2H] labeled samples

of denatured L23, a 96 amino acid long ribosomal protein, signal enhancements of more

than 500 times were obtained on the 13C nuclei. This signal enhancement was then ex-

ploited to follow the protein folding process, using L23 as a model. Time resolved spectra

of hyperpolarized L23 were measured after a pH jump and protein folding was monitored

by observing changes in the carbonyl region of the spectra, which are indicative of the

formation of secondary structures. Despite signal overlap in the protein spectra, using the

statistical distribution of 13C chemical shifts, the fractions of secondary structure elements
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were estimated for each scan of the DNP-NMR experiment. Additionally, individual reso-

nances for methyl groups upfield of other protein resonances became resolved in the later

transients. An option for the improvement of such site resolution by NMR experiments

using coherence selection is discussed.

While DNP-NMR offers the capability to observe transient species, identification of

such species is difficult in cases where not all chemical shifts are known. Here, a new

strategy for the analysis of DNP-NMR data is proposed based on non-negative matrix

factorization (NNMF). NNMF enables identification of various sources that contribute

to an observed signal. This capability is demonstrated using a series of spectra measured

from an enzymatic conversion reaction of oxaloacetic acid to malic acid. Simulations were

carried out to evaluate the performance of NNMF under different experimental constraints,

and the strengths and limitations of the method are discussed based on the simulations.
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NOMENCLATURE

BSS Blind Source Separation

CD Circular Dichroism

CIDNP Chemically Induced Dynamic Nuclear Polarization

DHFR Dihydrofolate reductase

DNP Dynamic Nuclear Polarization

GdnCl Guanidium Hydrochloride

DMSO Dimethyl Sulphoxide

DSS Sodium 2,2-dimethyl-2-silapentane-5-sulphonate

ECOSY Exclusive Correlation Spectroscopy

HMQC Heteronuclear Multiple Quantum Coherence

HPLC High Pressure Liquid Chromatography

HSQC Heteronuclear Single Quantum Coherence

PHIP ParaHydrogen Induced Polarization

MES 4-Morpholinoehthanesulphonic acid

NMR Nuclear Magnetic Resonance

NNMF Non-Negative Matrix Factorization

OX-63 Tris[8-carboxyl-2,2,6,6-tetra[2-(1-hydroxymethyl)]-benzo-(1,2-

d:4,5-d’)-bis(1,3)dithiole-4-yl]methyl sodium salt

SABRE Signal Amplification By Reversible Exchange

TEMPOL 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl

TOCSY TOtal Correlation SpectroscopY

T1 Spin–Lattice Relaxation Time

T2 Spin–Spin Relaxation Time
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1. INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the go-to techniques in

chemistry and biochemistry. NMR spectroscopy offers unparalleled site resolution for a

wide variety of chemical species and enables study of analytes usually without the need

for chemical modifications. However, this technique suffers from inherently low sensi-

tivity, because of which high sample concentrations and/or extensive signal averaging is

needed. However, hardware improvements including the development of cryogenically

cooled probes have aided in obtaining higher signal to noise (S/N) ratio in the spectra to

some extent.

Another approach to address the S/N ratio is to use various hyperpolarization tech-

niques, one of which is dissolution dynamic nuclear polarization (DNP). Here, electron

polarization is transferred to the nucleus of choice (1H, 13C, 19F, etc.) by irradiating the

sample with microwave radiation at appropriate frequency at liquid helium temperatures.

The sample is subsequently dissolved using a stream of hot solvent, and NMR spectra

are measured in the solution state at ambient temperatures. Dissolution DNP has so far

been used in a range of applications extending from study of organic reactions to enzy-

matic reactions and protein ligand binding. Further, dissolution DNP has also been used

extensively to investigate metabolic pathways both in vitro and in vivo.

This thesis describes experiments that extend the application of dissolution DNP to

observe full length proteins. Chapter 3 describes the solvent systems used to enable trans-

fer of protein samples into the NMR tube and subsequent measurement of NMR spectra.

Obtained enhancements are discussed in the context of relaxation times of different sites.

Experiments demonstrating the study of protein folding in Chapter 4 provide evidence

for the capability of performing time resolved experiments with full length proteins. Pro-
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tein folding is monitored by following the NMR signal from backbone carbonyl reso-

nances of a model protein, L23. Information about secondary structure content is obtained

using chemical shift information from external databases. A discussion about solvent sys-

tems used in these experiments and potential alternative strategies are presented. A mul-

tiple quantum coherence based NMR experiment is described to spectroscopically gain

site resolution in dissolution DNP experiments. The experiment is demonstrated using

13C–labeled acetate in hyperpolarized experiments and with L23 in non-hyperpolarized

experiments. An experiment where the transfer of protein samples using only aqueous

solvents is demonstrated. An intrinsically disordered protein, p27, is hyperpolarized on

13C nuclei, dissolved using aqueous buffer and mixed with cyclin dependent kinase/cylin-

A complex. Secondary structure formation was observed by measuring a time-series of

13C spectra.

Lastly, chapter 5 describes analysis of dissolution DNP data using a blind source sep-

aration algorithm. Although dissolution DNP offers the ability to record spectra with high

S/N ratio, NMR signal from low concentration reaction intermediates may appear with

low signal intensity. Since signal averaging is not possible with dissolution DNP experi-

ments, alternative strategies to improve the S/N in DNP spectra would have to be explored.

One such approach is to use blind source separation algorithms like Non-Negative Matrix

Factorization (NNMF). NNMF is used to parse multiple sources that contribute to the ob-

served DNP enhanced NMR signal. The method is demonstrated by using it to analyze

the enzyme catalyzed conversion of oxaloacetic acid to malic acid. Simulations for evalu-

ating the performance of NNMF algorithm under different conditions such as poor signal

to noise ratio in the spectra and variations in the relaxation times of different resonances

are discussed.
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2. NMR SPECTROSCOPY AND DYNAMIC NUCLEAR POLARIZATION

2.1 Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a technique that has found use in

diverse areas ranging from organic chemistry [1] to determining protein structure [2, 3, 4]

and understanding dynamics [5, 6, 7]. The wide array of experimental conditions that can

be accessed using solution NMR spectroscopy and the available site resolution makes it

an extremely valuable tool in research.

NMR spectroscopy relies on the fact that NMR active nuclei (1H, 13C, 15N, etc.) occupy

non-degenerate energy levels when placed in an external magnetic field as explained by

the so called Zeeman effect. The difference in energy between the two levels for a spin-1
2

nucleus is given by the equation

∆E = hγB0 = hν (2.1)

where ∆E indicates the energy difference between the two Zeeman levels, h the Planck’s

constant, γ the gyromagnetic ratio of a specific nucleus, B0 the external magnetic field and

ν the Larmor frequency of the nucleus.

The Larmor frequency denotes the precession of the nuclear spin in the presence of

an external magnetic field and the frequency of precession is directly proportional to the

strength of the external magnetic field and the gyromagnetic ratio of the specific nucleus.

A list of nuclei commonly used in biomolecular NMR spectroscopy and their precession

frequencies at 9.4 T are shown in Table 2.1.
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Table 2.1: Table showing some NMR active nuclei with their gyromagnetic ratios and
their Larmor frequencies at 9.4 T. Sign of the gyromagnetic ratio indicates the direction of
precession with negative sign referring to anti-clockwise precession [8]

Nucleus Gyromagnetic ratio (MHz/T) Larmor Frequency (MHz)

1H 42.58 400.2

2H 6.536 61.44

13C 10.71 100.7

15N (-)4.316 40.57

19F 40.05 376.5

31P 17.24 162.1

The fraction of spins occupying each Zeeman energy level is dictated by the Boltzmann

distribution, which can be expressed as

Nα

Nβ

= e
−∆E
kBT (2.2)

where Nα and Nβ denote the population of “spin up” and “spin down” states respec-

tively, kB the Boltzman constant and T the temperature. Since NMR signal arises only

from the excess spins in one state over the other, a more meaningful measure to evaluate

is the polarization, P, which is the ratio of difference of populations between the two spin

states to the total population. Mathematically, polarization is expressed as

P =
Nα − Nβ

Nα + Nβ

(2.3)

Combining equations 2.2 and 2.3, it can be shown that
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P = tanh
(
hγB0

2kT

)
(2.4)

At a temperature of 298 K and magnetic field of 9.4 T, the value of polarization is of the

order of 10−5. The lack of sensitivity of NMR stems from the fact that the observed signal

arises from a weakly polarized system. This lack of sensitivity has led to the development

of various approaches towards signal enhancement by hyperpolarizing the spins prior to

measurement of NMR signal. These approaches are discussed later in this chapter.

2.1.1 Protein NMR Spectroscopy

Solution NMR spectroscopy can provide information about both structure and dynam-

ics of proteins. This makes it a very useful technique to study proteins in isolation, and

also to monitor protein interactions with its binding partners (ligands or other proteins).

The advent of recombinant protein expression and rapid development of NMR techniques

has greatly expanded the avenues of applications over the last three to four decades. NMR

spectroscopy, along with X-ray crystallography have become the de facto standard for

structure determination of macromolecules, often providing complementary information.

2.1.1.1 Protein Structure Determination

From the early days when Wüthrich and coworkers first determined the structure of

bull seminal proteinase inhibitor [9], NMR spectroscopy has been applied to thousands of

proteins.

The first step towards determining structures of proteins is to obtain chemical shift as-

signments. The assignment of chemical shifts refers to the process of uniquely identifying

all the resonances present in NMR spectra. In the case of smaller proteins, homonu-

clear (1H) experiments may suffice. Two dimensional (2-D) experiments such as Correla-

tion Spectroscopy (COSY) and Total Correlation Spectroscopy (TOCSY) provide through
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bond correlations, while a Nuclear Overhauser Effect Spectroscopy (NOESY) experiment

provides through space correlation. The data obtained from these experiments together can

provide complete chemical shift assignments. However, since the signal overlap becomes

insurmountable in larger systems, heteronuclear (1H, 13C, 15N) experiments are preferred.

Samples with uniform 13C and 15N labeling can be used to measure 2-D experiments in-

cluding [1H-15N] heteronuclear single quantum coherence (HSQC) and [1H-13C] HSQC

experiments for observing 1H-15N and 1H-13C correlations. The former is useful as an

index to assess the sample quality and state of the protein (folded vs unfolded). Chemical

shift assignments for the protein backbone (and Cβ) can be obtained from triple resonance

experiments such as HNCO, HNCA, HNCACO and HNCACB [10]. Further, complete

side chain assignments can be extracted using other triple resonance experiments includ-

ing HCCCONH and HCCH-TOCSY. Once the chemical shifts of different resonances are

known, further information on secondary structures can be obtained by calculating the

dispersion of the chemical shift from the random coil values. Typically, the variation of

chemical shifts of Hα, Cα, Cβ, amide protons (NH) and N resonances of a specific protein

from the random coil chemical shifts are calculated. Using the proposed cut-off values for

these differences [11, 12] secondary structures in different regions of the proteins can be

predicted.

Although chemical shift assignments can yield information on secondary structures

in different regions, to determine the actual tertiary structure of a protein, structural con-

straints must be obtained. The primary constraints in NMR based structure determination

are 1H-1H NOEs. Experiments such as homonuclear NOESY for short peptides or us-

ing 13C (or 15N) resolved NOESY (NOESY-HSQC) experiments can provide the distance

constraints [13]. Distances can be estimated from the intensity of NOE cross-peaks since

NOE intensity is inversely proportional to the sixth power of the distance between the

two protons. Further, based on the identities of NOEs, it would be possible to determine
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the secondary structure. For example, NOE cross peaks between residues i and i+4 are

diagnostic of α–helices, while long range NOEs are diagnostic of β–sheets.

In addition to distance constraints, torsion angles can be obtained from scalar coupling

(J–coupling) values determined experimentally using the Karplus equation [14]. Scalar

coupling constants can be measured by utilizing experiments of the Exclusive Correlation

Spectroscopy (ECOSY) type [15, 16] or from heteronuclear experiments mentioned ear-

lier. Residual Dipolar Couplings (RDC) can provide orientation information of different

parts of protein structure [17].

To determine the structure of a protein, an initial model is constructed using the exper-

imentally obtained distance constraints, torsion angles and RDC values (if available). This

model is computationally refined to arrive at an energy minimized ensemble of structures

which conform to all or most of the constraints provided initially [18, 19]. Regions of

the protein which are mobile (e.g. loops) may have large RMSD values since NOE cross

peaks from those “flexible” regions are typically poorly defined. However, the “flexibil-

ity” of these regions can be quantified using NMR experiments that are tailored to extract

information on protein dynamics and time scale of motion can be experimentally deter-

mined.

One of the biggest limitations of the NMR spectroscopy is the size of the proteins that

can be studied. As the proteins become larger, the correlation time becomes longer which

results in rapid decay of NMR signal. This situation is further complicated by heavy over-

lap of signals in the NMR spectra. Several strategies have been explored to overcome these

problems including development of novel pulse sequences, development of data sampling

approaches to improve spectral resolution and selective labeling approaches.

An elegant spectroscopic approach was the development of Transverse relaxation op-

timized spectroscopy (TROSY) experiment [20]. Interplay between different relaxation

mechanisms like dipole-dipole relaxation and chemical shift anisotropy contribute to over-
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all relaxation of the signal in an NMR experiment. In the TROSY experiment, destruc-

tive interference between different mechanism is used to select a single well defined peak

for each site on the protein. When the TROSY scheme is implemented in a [1H,15N]-

HSQC experiment, it yields a spectrum with sharp peaks specifically for large proteins

[20, 21, 22].

A novel spectroscopic approach towards obtaining better spectral resolution and en-

abling faster acquisition is non-uniform sampling of data from 3-D or 4-D NMR exper-

iments. Non-uniform sampling (NUS) is a deviation from the current paradigm of col-

lecting time domain data in linear increments [23]. One of the first proposals was to

collect time domain data with exponentially decreasing separation of data points. This

approach has been applied in conjunction with various triple resonance experiments. In

a work reported by Wagner and coworkers, acquisition time was reduced from 6 days

for complete set of triple resonance experiments (HNCACB, HNCA, HNCO, HN(CO)CA

and HN(CO)CACB) to 32 hours for a 11 kDa protein [24]. The spectra obtained from

non-uniformly sampled experiments must be reconstructed using one of the many differ-

ent approaches, the most popular one being maximum entropy reconstruction [25]. NUS

based experiments have also been used to resolve peak overlaps in a 53 kDa monomeric

protein [23].

A biochemical approach to addressing the issue of signal overlap is development of

strategies to carry out site specific labeling of proteins. In the strategy pioneered by

Kay and coworkers, isotopically labeled amino acid precursors are used in the cell cul-

ture medium to selectively label the methyl groups of Ile, Leu and Val.[26] The samples

prepared in this strategy can be used to measure methyl-TROSY based experiments which

almost completely eliminates the signal overlap problem. This approach is very useful

for two primary reasons - (i) they are often found in hydrophobic core of the proteins and

(ii) methyl groups are very favorable for use with TROSY experiments and hence large
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systems [27]. Another approach has been to carry out amino acid type labeling instead of

methyl groups. This approach, pioneered by Prestegard and coworkers, has been demon-

strated in mammalian expression systems and used in the study of a 36 kDa (without

glycans) glycoprotein, ST6Gal1 [28].

2.1.1.2 Protein Dynamics

Despite the large number of structures available in the PDB, understanding the func-

tions of the proteins at a mechanistic level necessitates understanding of protein dynam-

ics. In enzyme catalysis, for example, binding of ligands often require conformational

changes, which can be rate-limiting, as was shown in the case of dihydrofolate reductase

(DHFR) [29]. Dynamics in proteins span different time scales depending on the type of

motions. While vibrations happen in sub-picosecond time scale, backbone and side chain

fluctuations are picosecond(ps)-nanosecond(ns) events. Comparatively, slower events like

conformational rearrangements and global (un)folding events happen in millisecond and

second time scale respectively [30]. NMR spectroscopy has been used extensively to probe

the ps-ns relaxation events and conformational exchange.

Backbone and side chain fluctuations are typically probed by measuring spin lattice

relaxation rate (R1), spin spin relaxation rate (R2) and heteronuclear NOE [31]. Since

reorientation of the molecules causes fluctuations of local magnetic fields, NMR observ-

able coherences dephase. The spectral density function which is directly related to R1, R2

and NOE can be analyzed using the Model-Free formalism proposed by Lipari and Szabo

[32, 33].

J(ω) =
S 2τm

1 + ω2τm
2 +

(1 − S 2)τ
1 + ω2τ2 (2.5)

Here, τm is the correlation time of the protein and S is the order parameter, which is

a measure of fluctuations of the measured bond vector. A value of 1.0 for S 2 indicates a
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rigid structure and a value of 0 indicates unrestricted internal motion. Further,

1
τ

=
1
τm

+
1
τe

(2.6)

where τe is the timescale for the motion of the internal bond vector. Backbone dy-

namics are obtained by measuring the [1H-15N] correlation experiment to obtain the 15N

relaxation rates while the side chain dynamics are measured using experiments that show

[1H-13C] correlation to extract 13C relaxation rates.

Conformational exchange, which occurs at the µs-ms time scale cannot be completely

described by R2 alone, since the protein samples different conformational states and hence

significantly different local environments. Rex, relaxation due to conformational exchange,

must also be included in the analysis. Experimentally, R2 relaxation dispersion and R1ρ

experiments [34] can be used to obtain information on dynamics in this time scale. When

more than two conformations are sampled, multiple quantum coherence experiments have

been proposed to probe these conformations [35]. Lineshape analysis is another approach

to obtain information about events that happen in the millisecond time scale [36]. Here, a

series of spectra are measured with variations in a single experimental parameter such as

temperature, pH, etc. The effect of these variations on the NMR observables are then fitted

to appropriate models and information about the dynamics of the can be extracted [37].

2.2 Hyperpolarization

Hyperpolarization is the process of generating non-equilibrium population of different

spin states. It can be seen from equation 2.4 that a decrease in operational temperature can

lead to increased polarization of the nuclear spins. However, the required low tempera-

tures are not readily achieved and so a number of alternate approaches have been taken to

generate highly polarized spin systems including optical pumping, parahydrogen induced

polarization (PHIP), chemically induced polarization and dynamic nuclear polarization.
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2.2.1 Optical Pumping

Spin exchange optical pumping has been used to hyperpolarize nuclei of noble gases.

In this technique, circularly polarized light is used to excite electronic transitions of vapors

of alkali-metal atoms in a chamber also containing an excess of noble gas atoms. When

collisions occur between the alkali metal and noble gas atoms, high electron spin polar-

ization created by the optical pumping is transferred from alkali metal atoms to the nuclei

of noble gas atoms. Nitrogen gas is also used in the chamber to quench the excited atoms

[38]. Systems capable of producing polarization levels (3He and 129Xe) as high as 64%

have been developed [39].

Hyperpolarized 3He and 129Xe have been proposed in magnetic resonance imaging of

the lung [40, 39]. Another interesting application in this area has been the use of hy-

perpolarized xenon as a sensor to detect protein-protein interactions [41, 42]. Biosensors

that bind to hyperpolarized xenon have been developed and used to detect protein-ligand

interactions using human carbonic anyhydrase as a model [43].

2.2.2 Parahydrogen Induced Polarization

Hydrogen exists as two different spin isomeric forms - ortho and para - where the two

proton spins are aligned parallel and anti-parallel to each other respectively. These spin

isomers differ in their nuclear spin configurations, electrical conductivities and heat capac-

ities. Under standard conditions, the ratio between is orthohydrogen and parahydrogen is

3:1. However, 1:1 ratio of the two isomers and 100% parahydrogen can be generated at liq-

uid nitrogen and liquid helium temperatures respectively, in the presence of paramagnetic

catalysts.

The generated parahydrogen is not suited for direct NMR measurement since it has

a nuclear spin of zero. However, a hydrogenation reaction using parahydrogen has been

shown to provide signal enhancement of several orders of magnitude [44, 45, 46]. Another
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approach in using parahydrogen is transferring the polarization from hydrogen after the

reaction to another nucleus (e.g. 13C, 19F) [47, 48] using coherence transfer NMR pulse

sequences such as INEPT [47] and measure a 13C spectrum. This has the added advantage

that the polarization is preserved for a longer duration since 13C spin lattice relaxation

times are, in general, longer than those of 1H.

In a seminal work, Signal Amplification By Reversible Exchange (SABRE) was demon-

strated as a technique to provide signal enhancement using para-hydrogen species even in

cases where a hydrogenation reaction is not possible [49, 50]. It was shown in this work

that, transient association of para-hydrogen to a substrate of interest via a transition metal

complex can transfer the polarization to the substrate at low magnetic fields. Enhance-

ments of greater than 500-fold were reported for 1H, 13C and 15N [49].

Parahydrogen induced polarization (PHIP) has been used, for example, to identity in-

termediates of various hydrogenation reactions in organic synthesis [51, 52], to carry out

13C imaging of succinate in brain cancer [53] and using SABRE to detect trace amount of

drugs used to treat diseases like Parkinson’s disease [54].

2.2.3 Chemically Induced Dynamic Nuclear Polarization

Chemically Induced Dynamic Nuclear Polarization, abbreviated as CIDNP, refers to

the hyperpolarization technique where non-Boltzmann nuclear spin populations are gen-

erated using a chemical reaction. Most modern experimental setup involves a pulsed laser

to trigger the photochemical reaction that generates the radical pair and after a short delay

radiofrquency pulse is applied to measure NMR signal.

The phenomenon of CIDNP can be explained by the radical pair mechanism. CIDNP

effect is commonly generated using a cyclic reaction of photo-excited dye with an analyte

under study. Here, the dye is photoexcited to a single state which then undergoes intersys-

tem crossing to a triplet state. Molecules in triplet state accept an electron from a donor
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and a radical pair is generated. This radical pair then undergoes intersystem crossing to a

singlet state induced by the hyperfine interactions with the nuclear spins. Since the rate of

intersystem crossing depends on the nuclear spin state, this step, in effect, acts as a spin

sorting mechanism. As a result, the recombination products show enhancement of a partic-

ular nuclear spin state while escape products show enhancement of the other nuclear spin

state [55]. This setup offers the capability to carry out time resolved NMR measurements.

CIDNP was employed to following protein folding of lysozyme using a setup that

involved flavin mononucleotide (FMN) as the photosensitizer. Protein folding was moni-

tored by observing the evolution of tyrosine and trytophan resonances in the spectra [56].

CIDNP has also been used to differentiate surface exposed and buried residues [57] and in

structure determination in combination with nuclear Overhauser effect (NOE) experiments

[58].

2.2.4 Dynamic Nuclear Polarization

Arguably, the most generic of hyperpolarization techniques is dynamic nuclear po-

larization (DNP), which does not rely on a specific reaction or molecular characteristics

and can polarize many different nuclei [59]. This hyperpolarization phenomenon was

first described theoretically by Albert Overhauser [60] and was experimentally confirmed

by Charles Slichter and coworkers [61, 62]. DNP has found renewed interest as a sig-

nal enhancement technique for NMR over the last two decades predominantly due to the

improvements in hardware [63].

2.2.4.1 Overhauser Effect

The only mechanism for DNP in solution is the Overhauser effect [60]. The Over-

hauser effect involves microwave irradiation of samples containing the analyte of interest

and a source of unpaired electrons. This irradiation saturates the electron spin and trans-

fers the polarization to nuclear spins because of time-dependent dipolar coupling between
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nuclear spins and unpaired electrons [64]. The first experimental validation of this effect

was accomplished by using samples of metallic Li, metallic Na and solution of Na in an-

hydrous liquid ammonia at room temperature [61, 62]. It was subsequently shown that the

Overhauser effect was not limited to metals but will also exist in free radicals [65]. Current

experiments take advantage of this property and use stable radicals added to the samples

which provide the unpaired electrons for the DNP process and NMR measurements are

carried out at ambient temperatures [66].

Overhauser DNP has been used to monitor protein aggregation by hyperpolarizing wa-

ter and using water protein interactions to probe specific sites (sites that have nitroxide

labels) on the protein [67]. This helps to distinguish random aggregation from ordered

packing. However, the drawback in using Overhauser DNP is heating up of the sample

since solvents such as water absorb microwave radiation. Since saturating electron reso-

nances at high magnetic fields require high power microwave radiation, Overhauser DNP

experiments are often limited to low magnetic fields. Utilizing the Overhauser effect at

higher magnetic fields is an active area of research and a detailed study is available in the

literature [66].

2.2.4.2 Solid Effect

The Solid effect is a DNP mechanism where the electron-nuclear interactions are time-

independent. As with Overhauser effect, this mechanism also involves irradiating the sam-

ples with microwave at frequencies (ωµw) corresponding to sum or difference of electron

(ωe−) and nuclear (ωnuc) Larmor frequencies

ωµw = ωe− ± ωnuc (2.7)

This irradiation induces transitions, where the both the nuclear and electron spins flip

due to hyperfine interactions between them. Although the probability of these forbidden
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transitions (zero- or double quantum transitions) is small in comparison with those of

allowed transition, the presence of these transitions results in the solid effect. This process

while slower than the spin lattice relaxation of electron is much faster than spin lattice

relaxation of the nuclear spins, resulting in higher than equilibrium nuclear polarization. It

has also been shown that enhancement due to the solid effect scales as B−2
0 and so at higher

fields becomes less efficient [68].

2.2.4.3 Cross Effect

Another effect observed in solid state DNP is the cross effect, which occurs only in

the presence of two unpaired electrons [69]. The interactions between the nuclear spins

and electron spins that exhibit dipolar coupling between them causes the cross effect. For

most efficient polarization transfer from electrons to nuclear spins, the condition shown in

equation 2.8 must be met.

|ω0e1 − ω0e2| = ω0ni (2.8)

Here, ω0e1 and ω0e2 are the Larmor frequencies of the coupled electrons and ω0ni Lar-

mor frequency of the nucleus. For the electron-electron dipolar coupling to be efficient,

optimal distance between the electrons should be maintained. Although DNP via cross

effect using common radicals such as TEMPO has been reported [70], only a fraction

of the radicals in the sample would be expected to satisfy the condition in equation 2.8

since the distance between the radicals and their relative orientation would be random. To

achieve higher enhancement using cross effect, biradicals such as bis-TEMPO-n-ethylene

glycol [71] and TOTAPOL have been developed [72]. Enhancements of 100–300 have

been reported using these biradicals [73, 74].
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2.2.4.4 Thermal Mixing

Thermal mixing differs from solid and cross effect in that the interaction between a

system of unpaired electrons and nuclear spins gives rise to the polarization of nuclear

spins. Strong electron-electron interactions generate a spin ensemble which first under-

goes flip-flop transitions. These transitions can be further enhanced by irradiating near the

electron Larmor frequency. This then gives rise higher nuclear spin polarization because

of the interactions between the “system of electrons” and nuclear spins. Since, in ther-

mal mixing, only allowed transitions happen, the transitions have a greater probability of

happening and hence likely to be very efficient [75, 76].

2.2.4.5 Case Studies Involving DNP Enhanced Solid State NMR

Many groups have used DNP enhanced solid state NMR to study proteins and other

biological preparations. Griffin and coworkers demonstrated that signal enhancements of

50 were obtained in experiments where 15N-Alanine labeled T4 lysozyme samples were

hyperpolarized and 15N solid state NMR spectra were measured at 40 K [77]. In another

application, spectra of nanocrystals of myloidogenic peptide, GNNQQNY, were measured

using DNP enhanced Cross Polarization/Magic Angle Spinning (CP/MAS) experiments

[78]. Here, the samples of nanocrystals were hyperpolarized on 1H nuclei and the polar-

ization was transferred to 13C and 15N for solid state NMR measurement using cross polar-

ization. Enhancements of more than 100 times compared to non-DNP experiments were

reported in these experiments. It is of particular interest that with the help of the enhance-

ment obtained from the DNP process even two dimensional Dipolar Assisted Rotational

Resonance/RF assisted diffusion (DARR/RAD) experiments were measured, which would

otherwise not have been possible.

Signal enhancements provided by DNP, experiments have enabled studies using pel-

leted ribosome complexes (from Thermus thermophilus) by Bodenhausen and coworkers
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[79]. 13C–13C and 13C–15N correlation experiments following a CP step to transfer 1H to

13C and 15N have been demonstrated to yield sufficient signal to carry out characterization

of the sample and study protein-protein interactions even in a 800 kDa ribosome complex.

Furthermore, Reif and coworkers have demonstrated the use of DNP enhanced solid

state NMR spectroscopy to characterize over-expressed membrane proteins by isolating

membrane fractions containing the proteins from the cell lysates [80]. In a similar strat-

egy, Baldus and coworkers have demonstrated measurements of solid state NMR spectra

of whole cells (E. coli) where the proteins of interest are membrane targeted and DNP en-

hanced two dimensional heteronuclear correlation experiments were carried out to obtain

chemical shift assignments of selected resonances. [81].

2.2.4.6 Dissolution Dynamic Nuclear Polarization

It can be seen from a representative compilation above that DNP improves the range

of applications that are accessible to NMR spectroscopy. Solution NMR spectroscopy

offers greater spectral resolution than solid state NMR since the anisotropic interactions

that contribute to line broadening are averaged out in solution due to molecular tumbling.

Therefore, combining a generic signal enhancement technique such as DNP with solution

NMR is likely to be beneficial. Pioneered by Ardenkjær-Larsen and coworkers [82], dis-

solution DNP combines signal enhancement obtained from the DNP process in the solid

state with NMR measurement from samples in the solution state. A schematic representing

a typical dissolution DNP setup is in Figure 2.1. In the dissolution DNP setup, hypepro-

laroization of the samples take place at ∼1 K. A plot showing comparison of electron, 1H

and 13C polarization in the temperature range of 0.1 mK to 100 K is shown in Figure 2.2.
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Figure 2.1: Schematic representation of a dissolution DNP setup. Dissolution buffer is
a superheated solvent and is used to dissolve the frozen sample in the polarizer which is
loaded on the injector loop. The sample is transferred to the NMR tube using a gas drive
followed by NMR measurement (triggered automatically).
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Figure 2.2: Plot showing polarization levels of electron, 1H and 13C at a temperature range
of 0.1 mK to 100 K. External magnetic field used in the calculation is 3.35 T. Plotted after
[82].
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The main drawback in polarizing samples ex situ is that there is a significant loss of

spin polarization during the sample transfer step. Strategies that have been pursued to

minimize losses during the sample transfer include the development of rapid injection

devices in our group at Texas A&M [83] and development of dual isocenter magnets by

Köckenberger and coworkers [84]. In the latter approach, spin hyperpolarization is carried

out at a lower magnetic field (3.35 T) in an upper compartment, while NMR measurement

is carried out at 9.4 T, the lower compartment. This setup greatly reduces the time taken

for sample transfer, thereby presenting greater polarization of spins at the start of NMR

measurement.

Perhaps the greatest advantage in using dissolution DNP is that a wide range of tran-

sient processes, including chemical reactions, can be studied. While a large majority of

NMR experiments have been carried out under steady state conditions, adding a time di-

mension becomes practical by combining dissolution DNP with NMR spectroscopy, which

is discussed in the next section.

2.3 Time-resolved NMR Spectroscopy

Although NMR spectroscopy has been generally used for steady state measurements,

studies have been performed that have provided kinetic information. Approaches to record

time resolved NMR spectra including interfacing stopped-flow apparatus to inject samples

into a sample tube placed in an NMR spectrometer, design of pulse sequences for rapid

data acquisition and use of hyperpolarization techniques like DNP are discussed below.

2.3.1 Stopped Flow NMR

A number of studies have utilized stopped flow instrumentation, akin to that used in

optical spectroscopy techniques, in conjunction with NMR. One of the first stopped flow

NMR experiments was the investigation of kinetic deuterium isotope effect in the hydroly-

sis of methyl formate by Ernst and coworkers [85]. In the work by Hoeltzli and Frieden, 6-
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19F-Tryptophan labeled dihydrofolate reductase (DHFR) was recombinantly expressed and

unfolding of the protein (0.9 mM final concentration) was monitored as a function of time

after mixing using 19F NMR [86]. Similar experimental setups have been used to study re-

actions such as chymotrypsin catalyzed hydrolysis of tertiary butly-L-phenylalanine [87]

and polymerization of 1-hexene [88].

Another approach to gain temporal resolution has been to use NMR-laser coupled

setup. In a work by Schwalbe and coworkers, RNA folding was monitored by NMR

by triggering a photoreaction, which removes the photolabile protecting group around

the RNA. Removal of this group facilitated ligand binding to RNA and initiated folding,

which was then monitored using NMR [89]. In an alternative approach to stopped flow

setup, Sweedler and coworkers reported a flow based system based on a microfluidic chip

to measure time resolved NMR spectra of ubiquitin corresponding to different conforma-

tional states [90].

2.3.2 Rapid Acquisition of Multidimensional NMR Spectra

Multidimensional NMR experiments show correlation between different spin types

and provide sufficient resolution to identify individual sites in a macromolecule. These

experiments typically employ increments of evolution delay for gaining resolution in the

indirect (second) dimension. This approach results in long experiment times, which makes

it useful for studies at equilibrium but not transient processes. Rapid measurements of

equivalent data would aid in observing non-equilibrium processes.

Several approaches towards acquiring multidimensional NMR spectra within a few

seconds have been demonstrated. Single scan acquisition of 2D NMR spectra was demon-

strated with ultrafast TOCSY [91] and HSQC [92] experiments by Frydman and cowork-

ers. An alternative strategy to acquire multidimensional spectra was presented in the form

of band-Selective Optimized Flip-Angle Short-Transient heternuclear multiple quantum
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coherence (SOFAST-HMQC) [93] experiment, which has been used to measure protein

[1H-15N] correlation spectra in a matter of seconds. Hydrogen/Deuterium exchange ex-

periments with temporal resolution were possible with this scheme [94]. Additionally,

Hadamard frequency encoding coupled with SOFAST-HMQC further improves the time

resolution [95].

2.3.3 Dissolution DNP Enhanced NMR

Most of the stopped flow NMR experiments measure 1H nuclei which, while sensitive,

yield crowded spectra. Alternatively, labeling schemes involving introduction of NMR

active nuclei, such as 19F might have to be undertaken. In the case of rapid acquisition

schemes, very high sample concentrations are needed. These restrictions, unfortunately,

may not be readily overcome in all cases. Dissolution DNP, on the other hand, can be used

to polarize different nuclei and measure NMR spectra. The dissolution DNP enhanced

NMR spectrum of [U - 2H] leucine is shown in Figure 2.3 and the enhancements obtained

in comparison with non-hyperpolarized experiments are presented in Table 2.2.
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Figure 2.3: Spectrum of 2H–Leucine hyperpolarized on 13C nuclei by irradiating with with
60 mW microwaves (93.974 GHz) at 1.4 K for 3 hours. The hyperpolarized sample was
dissolved using a hot stream of 50 mM potassium phosphate, pH 6.8 and NMR spectrum
was measured with 2H decoupling. Enhancements for individual sites on the amino acid
are shown in Table 2.2. The peak indicated by * corresponds to ethylene glycol, which is
suppressed.
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Table 2.2: Signal enhancement of different sites on Leucine obtained from a dissolution
DNP experiment as compared to a non-hyperpolarized measurement

Group Enhancement

CO 1645

Cα 920

CD2 1750

CD 2000

CD3 2500

CD3 2400

Dissolution DNP enhanced NMR has been used to visualize metabolism in live yeast

[96], develop assays for drug metabolism [97], observe metabolic patterns in cancer cells

[98] and perfused liver [99] and in in vivo assays of transaminase activity [100]. In our

group, dissolution DNP has been used to monitor Diels-Alder reaction and estimate the

reaction rate, [101], to identify biosynthetic pathways, [102], to investigate ligand binding,

[103, 104] and detect intermediates in polymerization reactions [105].

Although DNP enhanced NMR of proteins has been performed in the solid state at low

temperatures, [106, 78, 77] such experiments requiring the NMR measurement of signals

from proteins in the solution state have been challenging. The work in this thesis reports on

the application of dissolution DNP for direct observation of full length proteins in solution

state.
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3. SOLUTION NMR OF POLYPEPTIDES HYPERPOLARIZED BY DYNAMIC

NUCLEAR POLARIZATION*

3.1 Introduction

Since proteins have limited solubility, measurement of NMR spectra often requires

extended signal averaging resulting in long experiment times. Although this requirement

does not impede measurements under equilibrium conditions, such as of multidimensional

spectra for protein structure determination, processes of transient nature are more difficult

to observe. Application of dissolution dynamic nuclear polarization to larger molecules

has so far proven more challenging, largely because the intensity of the observable signal

depends on the spin–lattice relaxation during transfer of the hyperpolarized sample. Cur-

rent investigations involving full length proteins using this method have involved indirect

observation of proteins using hyperpolarized small molecules that act as ligands or sub-

strates to proteins [107, 97, 99, 103, 104]. Here, a report on high-resolution dissolution

DNP-NMR, where hyperpolarized polypeptides are directly observed, is presented. The

experimental conditions and signal enhancements obtained, as well as the applicability of

this method for the study of various biochemical processes are discussed.

3.2 Materials and Methods

3.2.1 Protein Expression and Purification

The samples of L23 protein were prepared by expression in Escherichia coli BL21(DE3)

cells harboring a pET11c vector, which contains the gene for L23 from Thermus ther-

mophilus. The complete composition of minimal medium (adapted from [108, 109]) is

*Reprinted (adapted) with permission from “Solution NMR of Polypeptides Hyperpolarized by Dy-
namic Nuclear Polarization, Mukundan Ragavan, Hsueh-Ying Chen, Giridhar Sekar and Christian Hilty,
Analytical Chemistry, 83, 6054–6059, 2011”. Copyright (2011) Americal Chemical Society.
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given in Tables 3.1 & 3.2. Fresh transformation of bacteria with the plasmid was always

used since no protein expression was observed in cultures started from glycerol stocks

stored at -80◦C. A 30–100 mL cell culture was started from a LB agar plate in LB growth

medium (37◦C; carbenicillin at a final concentration of 100 µg/mL) and allowed to grow

to mid-log phase (OD600 = 0.6). This culture was centrifuged at 4000×g and 4◦C for

10 minutes. The supernatant was discarded and the cell pellet was resuspended in mini-

mal medium (with isotope labeling as needed; carbenicillin to a final concentration of 100

µg/mL) and grown at 37◦C. When the OD600 of cell culture reaches 0.6, protein expression

was triggered by adding isopropyl β-D-1-thiogalactopyranoside (IPTG), to a final concen-

tration of 1 mM. Cells were grown for 20 hours after induction in minimal medium, or for

<12 hours in LB medium. Cells were harvested by centrifugation at 4000×g and 4◦C for

20 minutes and stored at -80◦C until protein purification.

The purification protocol was adapted from the procedures reported [110]. Harvested

cell pellets were resuspended in 50 mM Tris, pH 8.0 (buffer A) and cell lysis was accom-

plished by sonication. Sonication pulses were applied at 60% duty cycle for 2 minutes

followed by 10 minutes of cooling period. This cycle was repeated for a total of 5 times

(10 minutes of sonication). The cell lysate was spun down in a centrifuge in 50 mL conical

tubes at 10,000×g for 45 minutes at 4◦C. Supernatant from the tube was decanted and was

incubated at 50◦C for 1 hour. This incubation step precipitates most of the proteins in the

cell lysate, while L23 stays in solution. The supernatant should turn cloudy during the

course of incubation. The tubes containing the incubated cell lysate were then centrifuged

as described earlier and the supernatant was loaded on a cation exchange column, HiTrap

SP XL (GE Healthcare Life Sciences, Pittsburgh, PA). A gradient of 0 – 100% buffer B

was used to elute the protein where buffer B is 50 mM Tris, pH 8.0 containing 1 M NaCl.

L23 elutes out between 65–80% buffer B over a total volume of ∼15 mL. The purity of the

sample was assessed using SDS–PAGE and subsequently dialyzed against water at 4◦C
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for 12–16 hours using a 1000 MWCO semi-permeable membrane. This sample was then

lyophilized to get L23 in powder form. Typical protein yield from 1 liter cell culture was

10 –15 mg (for both LB and minimal medium).

Table 3.1: Composition of Minimal medium used in this study [108, 109]

Component Amount/Volume

Na2HPO4 · 7H2O 12.8 g

KH2PO4 3.0 g

NaCl 0.5 g

13C-D-Glucose 3.0 g

NH4Cl 1.0 g

Solution Q 1 mL

1 M MgSO4 2 mL

Vitamin Mix 10 mL

H2O/D2O Volume to 1000 mL
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Table 3.2: Composition of Solution Q and Vitamin Mix used in the preparation of minimal
medium

Solution Q Vitamin Mix

Component Amount/Volume Component Amount/Volume

HCl 8 mL Thiamine 50 mg

FeCl2·2H2O 5.0 g D–Biotin 10 mg

CaCl2·2H2O 184 mg Choline chloride 10 mg

H3BO3 64 mg Folic acid 10 mg

CoCl2·6H2O 18 mg Niacinamide 10 mg

CuCl2·2H2O 4 mg D–Pantothenic acid 10 mg

ZnCl2 340 mg Pyridoxal 10 mg

Na2MoO4·2H2O 605 mg Riboflavin 1 mg

MnCl2·4H2O 40 mg

H2O Volume to 1000 mL H2O 100 mL

3.2.2 Sample Preparation

Samples for DNP hyperpolarization were prepared by dissolving the protein to a con-

centration of 2.1 mM in a mixture of 60% (v/v) ethylene glycol/D2O containing 7 M

urea. Urea was omitted from the mixture when the protein was polarized in native condi-

tions. The protein sample was then mixed with 15 mM tris[8-carboxyl-2,2,6,6-tetra[2-(1-

hydroxymethyl)]-benzo(1,2-d:4,5-d’)bis(1,3)dithiole-4-yl]methyl sodium salt(OX63; Ox-

ford Instruments, U.K; Figure 3.1 (a)). Samples for conventional NMR spectroscopy were

prepared by dissolving L23 in 50 mM potassium phosphate buffer at pH 6.8 to a concen-

tration of 0.4 mM. Ten percent (v/v) D2O was added as the lock solvent.

Bacitracin A (Sigma-Aldrich, St. Louis, MO) was purified using a desalting column
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(GE Life Sciences, Piscataway, NJ) and treated with Chelex-100 resin (Sigma-Aldrich, St.

Louis, MO) to remove metal ions. The sample for polarization was prepared by dissolv-

ing 7.5 mM purified peptide in 60% (v/v) ethylene glycol/D2O. The peptide sample was

then mixed with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) free radical

(Sigma-Aldrich, St. Louis, MO; Figure 3.1 (b)) to a final concentration of 15 mM.

3.2.3 Dynamic Nuclear Polarization and NMR Spectroscopy

L23 samples were hyperpolarized in a Hypersense DNP polarizer (Oxford Instruments,

Tubney Woods, U.K.) by irradiation with 60 mW of microwaves at a frequency of 93.974

GHz for 4 h at 1.4 K for 13C hyperpolarization. The samples were polarized for 7 h in

the experiment performed to measure the spin–lattice relaxation. Subsequently, samples

were dissolved by a stream of hot solvent consisting of 60% (v/v) acetonitrile/50 mM

potassium phosphate (pH 3.1) (or 40% (v/v) methanol/50 mM potassium phosphate (pH

3.1)). The resulting liquid was automatically injected into a 400 MHz NMR spectrometer

(Bruker, Billerica, MA) using the rapid sample injection device described [83]. Total time

elapsed between dissolution and start of the NMR experiment was 1620 ms. NMR spectra

were acquired using a pulse sequence [Ps–Gx–Ps–Gz]3–P90–Acq. Here, Ps stands for a

selective 90 pulse (EBURP shape, 15 ms duration) applied at the solvent chemical shift

of 63.7 ppm for ethylene glycol or 163.1 ppm for urea (where necessary). Gx, Gy, and

Gz are pulsed field gradients of 50 G/cm and 1 ms duration. P90 is a hard pulse, and Acq

designates signal acquisition at 298 K (128K complex points, spectral width of 251 ppm).

During acquisition, 1H and 2H decoupling was applied using WALTZ-16 at field strengths

of 2.2 and 0.3 kHz, respectively.

Bacitracin samples were hyperpolarized in the same system by irradiating with 100

mW of microwaves at a frequency of 94.005 GHz for 30 min at 1.4 K for 1H polarization.

The sample was then dissolved using methanol and injected as described above. NMR
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spectra were acquired using the pulse sequence [Ps–Gx–Ps–Gy–Ps–Gz]3–P90–Acq at 298

K (32K complex points, spectral width of 20 ppm; Ps: EBURP shape, 25 ms). Methanol,

ethylene glycol, and water were suppressed at 3.4, 3.15, and 4.76 ppm. Chemical shifts

in the samples of L23 were referenced indirectly against standard samples containing 4,4-

dimethyl-4-silapentane-1-sulfonic acid (DSS) in the same solvent, via the chemical shifts

of solvent resonances. Chemical shifts in the bacitracin A samples were referenced indi-

rectly against tetramethylsilane (TMS) in the same solvent.
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Figure 3.1: Chemical structures of radicals (a) OX–63 and (b) 4-hydroxy-TEMPO (TEM-
POL) used to hyperpolarize 13C and 1H nuclei, respectively.

3.2.4 Calculation of Signal Enhancement

The 13C signal enhancement reported is the ratio of the integral of the specified peak

or spectral region in the polarized spectrum to the integral of the corresponding peak or

region in a conventional NMR spectrum acquired with a repetition delay larger than 5×T1.

Integrals were normalized to concentration and to number of scans.
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3.2.5 Measurement of 13C Spin-Lattice Relaxation Time of the Hyperpolarized Protein

In order to measure the spin relaxation times of the hyperpolarized samples, 13C spec-

tra of the protein sample were measured using variable flip angle according to the scheme

described with 32K complex points and spectral width of 251 ppm [111]. The experiment

was carried out using 1H decoupling to enable suppression of solvent signals. Conven-

tional 13C NMR spectra were acquired using a 500 MHz NMR spectrometer (Bruker,

Billerica, MA).

3.2.6 Data Analysis

A 13C spectrum of L23 was computed from the reported random coil chemical shifts,

[112] by superimposing Lorentzian functions with 20 Hz line width corresponding to the

amino acid content of L23 using MATLAB (MathWorks, Natick, MA). Spin relaxation

parameters were determined by fit to single exponential.

3.3 Results and Discussion

3.3.1 13C Hyperpolarization of Polypeptides

An important consideration for measuring a dissolution dynamic nuclear polarization

spectrum is the sample conditions to be used. In general, two solvent systems are needed:

one for DNP in the solid state, and a second for dissolution of the sample and transfer to

the NMR instrument. A mixture of 60% (v/v) ethylene glycol/D2O was the glass-forming

mixture used in all experiments (see the Materials and Methods). Despite the high concen-

tration of urea (where used), this mixture forms a glass upon freezing, which is required

for sufficiently close contact of the radical with the sample species, allowing for DNP

[113]. The typical solubility of polypeptides in this mixture was found to be on the order

of few millimoles per liter. The solvent used for dissolution determines whether it is pos-

sible to transfer the hyperpolarized sample while preserving the spin polarization. Since
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the present sample transfer system involves the use of pressurized gases, protein samples

have a propensity to foam. In order to overcome these problems, various dissolution sol-

vents were explored. Specifically mixtures of organic solvents with water were considered

since they have a lower surface tension than water [114, 115]. Protein samples can be

suitably dissolved without foaming in a mixture of acetonitrile, or methanol, and water

with a transfer time of 1.6 s.

[U-13C, 50%-2H]-labeled protein samples were polarized in native and in denaturing

conditions (7 M urea). In both cases, samples were dissolved in denaturing conditions,

such that the NMR spectrum is of the denatured polypeptide. The spectrum of the sample

originally polarized in native conditions is shown in Figure 3.2 (a), and the spectrum of the

sample polarized in denaturing conditions is shown in Figure 3.2 (b). The expected 13C

spectrum of the protein was computed (see the Materials and Methods) in order to identify

resonances in the hyperpolarized spectrum. The computed and experimental spectra agree

quite well, and resonances can be identified clearly. When 13C spectra obtained using

hyperpolarized L23 samples are compared to thermally polarized samples of higher con-

centration (Figure 3.2 (a)–(c)), it is apparent that the hyperpolarized polypeptide is indeed

denatured in the dissolution solvents used. The denatured state of the protein was also

confirmed by using [1H, 15N] heteronuclear single-quantum correlation (HSQC) spectra

under the same conditions, albeit with samples at higher concentration (Figure 3.3).
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Figure 3.2: (a) Spectrum of L23 hyperpolarized on 13C nuclei. (b) Spectrum of L23 hyper-
polarized on 13C nuclei in the presence of 7 M urea. (c) Conventional 13C NMR spectrum
of 0.4 mM samples of L23 unfolded in 8 M urea measured with 1200 scans. The protein
samples were dissolved in 60% (v/v) acetonitrile/50 mM potassium phosphate pH 3.1, and
final protein concentrations were determined to be 15 and 14 µM for the spectra in pan-
els a and b, respectively. (d) Theoretically computed 13C spectrum of L23. Functional
groups that contribute to the individually resolved peak groups are indicated. Resonances
stemming from solvent, ethylene glycol (‡), and urea (†) are indicated.
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Figure 3.3: [15N, 1H]–HSQC spectrum of the sample [u-15N, 1H]–L23 under conditions
similar to DNP experiments (0.4 mM L23 in 60% acetonitrile/50 mM potassium phos-
phate, pH 3.1, 50 mM urea). The spectrum was measured with 15N decoupling on a 500
MHz NMR spectrometer equipped with a TCI cryoprobe at 298 K.

The most important spectral characteristics in the liquid-state NMR experiment are the

attainable resolution and the signal enhancement. Typical line widths obtained in similar

experiments with small molecules have been reported to be as low as 2 Hz, enabling the

resolution of peaks with only minor chemical shift differences [83]. In the case of protein

samples, the line widths are expected to be somewhat broader. In the DNP experiments,

line widths the order of 15–20 Hz were obtained, compared to typical line widths obtained

in the conventional experiment of 10 Hz. On the basis of these parameters, the spectra are

of sufficient quality to resolve the peaks from the various functional groups in the spectrum

of the denatured polypeptide.

In order to reduce loss of polarization during the transfer, the protein samples were

fractionally deuterated [116]. The signal enhancement in the spectra of Figure 3.2 can be

estimated for the different functional groups present in the polypeptide. In the present ex-
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periments, a typical enhancement of about 700 is observed for the carbonyl groups when

compared to thermal polarization in the 400 MHz NMR spectrometer (see Materials and

Methods for the calculation procedure). Substantial enhancements were also observed for

aliphatic carbon atoms, with typical values on the order of 400. It is of significance that the

final concentrations of L23 in the hyperpolarized measurements were only 15 µM (Figure

3.2 (a), enhancement of 750 and 500 for carbonyl and aliphatic groups, respectively) and

14 µM (Figure 3.2 (b), enhancement of 600 and 300 carbonyl and aliphatic groups, re-

spectively), and the spectra were obtained in a single scan. In comparison, the spectrum

obtained using conventional NMR was acquired using a 0.4 mM sample with 1200 scans.

Obtaining an enhancement in signal-to-noise ratio of the same magnitude as the carbonyl

groups in the hyperpolarized spectrum, but by conventional NMR, would require us to

average 5×105 transients. The resonances from aromatic amino acid side chains show

stronger attenuation, which is consistent with their shorter relaxation time due to lower

levels of deuteration [117]. It is also to be noted that the enhancements obtained from

proteins hyperpolarized in native and denaturing conditions were similar over the entire

spectrum. This shows that even residues present in the hydrophobic core of the proteins

appear to be accessible for DNP at 1.4 K, as was reported to be the case at 90 K [106].
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Figure 3.4: (a and b) Series of 13C spectra from a single sample of hyperpolarized L23
dissolved in a mixture of 40% methanol/50 mM potassium phosphate (pH 3.1) acquired
using variable flip angles (ref. [111]) with a time between scans of 733 ms. The two panels
show different regions from the same spectra. (i–x) Signal decay of individually resolved
resonances indicated in the spectra in panels a and b. The lines represent the functions
obtained from fit of the equation for spin relaxation to the experimental data.

In the dissolution DNP experiment, the signal enhancements obtained depend both on

the initial solid-state polarization and on the amount of polarization lost during the transfer

of the liquid sample. Initial polarization may depend on parameters such as the type of

functional group, as well as the radical and solvent system used for DNP. With the use

of present instrumentation, these effects cannot be individually determined due to lack of

chemical shift resolution in the solid state. The signal loss during the transfer of the sample

after dissolution, on the other hand, is due to well- characterized spin-lattice relaxation
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processes in the liquid state. Even though the magnetic field encountered by the sample

during the transfer is low, and spin–relaxation parameters are expected to differ from the

high-field case [118], a comparison between the obtained enhancements and high-field

spin relaxation parameters may still be of interest and is discussed below.

Spin relaxation parameters of the hyperpolarized samples were obtained from a second

set of experiments. Here, a series of NMR spectra was acquired using variable flip-angle

excitation from a hyperpolarized sample of L23 (Figure 3.4, parts (a) and (b)). The peaks

indicated in parts (a) and (b) of Figure 3.4 were integrated. Despite a certain amount

of signal overlap in the integrated regions, it was possible to fit the integrals to a single-

exponential decay, yielding an apparent relaxation time τ. Values of τ, along with the

observed enhancements for the different groups in the protein, are shown in Table 3.3. To

calculate the enhancement of various groups, the integrals from the hyperpolarized and

conventional spectra were normalized for number of transients, protein concentration in

both samples, and the differences in the flip angle between the conventional spectrum and

the first scan of the multiple scan experiment. From Table 3.3, it can be seen that enhance-

ments and apparent relaxation times for most aliphatic positions are uniform, except for

some methyl groups, which show longer apparent relaxation time concomitant with higher

enhancement. For example, the resonance indicated as x in Figure 3.4, which arises from

Cδ1 of isoleucine, belongs to this group. The longer relaxation time is consistent with

the fact that this position includes a high fraction of perdeuterated isotopomer in partially

deuterated, recombinantly expressed proteins [119]. A further illustration of the effect of

deuteration can be seen when resonance ix in Figure 3.4 (b) is considered. This peak,

which contains contributions from Cγ1 of valine and Cγ2 of valine and threonine, has a

shorter apparent relaxation time. In this case, the fraction of completely deuterated iso-

topomer for valine is almost zero, whereas for threonine, it would be expected to be similar

to Cδ1 of Ile.
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A priori, it might be expected that the values for τ would be equal to values of spin-

lattice relaxation time constants determined from conventional NMR experiments. This

has been found to be true in most cases, except for those chemical shifts that include im-

portant contributions from multiple chemical species, such as Cδ1 of isoleucine, which

contains significant fractions of CH2D, CHD2, and CD3 isotopomers. The spin–lattice re-

laxation time computed from conventional NMR measurement for this position is shorter

(1.5 s), because the protonated components carry more intensity in the conventional mea-

surement.

3.3.2 Unlabeled Polypeptides

At present, typical protein structure determinations are made using triple-resonance

experiments with recombinantly expressed, isotopically enriched samples. However, for

smaller peptides, which often can most easily be prepared by solid-phase synthesis, or

are extracted at low yield from natural source, homonuclear 1H NMR is still a method of

choice. Therefore, it may also be of interest to determine the potential of dissolution DNP

for 1H NMR of polypeptides. A spectrum of hyperpolarized bacitracin A peptide is shown

in Figure 3.5 (a). When compared to the conventional NMR spectrum (Figure 3.5 (b)), it is

apparent that most of the resonances are still present in the hyperpolarized spectrum. The

enhancement of different protons was calculated by comparing to the conventional spec-

trum of the same sample. The enhancements in the regions of amide and aliphatic protons

were 30 and 45, respectively. The aromatic region of the spectrum showed significantly

higher enhancement of up to 180. This difference may be due to shorter relaxation times

for aliphatic protons, as well as exchange of amide protons with the solvent. In part due

to the shorter relaxation time of 1H in bacitracin A, the enhancement is lower than that for

13C-polarized L23.
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Figure 3.5: (a) Spectrum of bacitracin hyperpolarized on 1H nuclei and dissolved in
methanol. The final sample concentration was 37 µM. Suppressed solvent peaks from
water and DMSO are observed at 4.7 ppm and 3.4 ppm respectively. (b) Conventional 1H
NMR spectrum of a 9 mM solution of bacitracin with 64 scans.

3.4 Conclusions

In summary, we have demonstrated that dissolution DNP is amenable toward obtain-

ing NMR spectra of unfolded polypeptides, despite the short spinlattice relaxation times in

proteins. Here, biosynthetic incorporation of 13C and 2H was used to increase signal and

decrease spin relaxation rates. In 13C spectra of the unfolded polypeptides, the various dif-

ferent chemical shifts of the functional groups in the molecule could readily be identified.

On the basis of these results, DNP–NMR opens up new possibilities for studying transient

processes, such as interactions involving antibiotic or other biologically active peptides

and the process of protein folding with high time resolution and without the need for sig-

nal averaging. Some of these applications will already be amenable to the selection of

solvent systems presented in this work, whereas others may require further developments

enabling the use of pure water as dissolution solvent.
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4. INVESTIGATION OF PROTEIN FOLDING BY DISSOLUTION DYNAMIC

NUCLEAR POLARIZATION*

4.1 Introduction

If a protein were to sample all the possible conformations when transitioning from an

unfolded to folded state, this process could easily take longer than the age of the universe.

Yet, all proteins fold in a finite time ranging from few seconds to few days [120]. This

suggests that protein folding is unlikely to be a “random walk” event. This complex pro-

cess has been studied by researchers for many years both for understanding the mechanism

of protein folding and to gain insight into processes involved protein misfolding diseases.

Protein folding is governed by a large number of factors including the sequence of the pro-

tein themselves, nature of the solvent, pH and concentration of salts [121]. Protein folding

in the cell occurs at many different time points. Some proteins fold when they are nascent

polypeptides [122], while others fold in the cytoplasm or after translocation through mem-

branes with the aid of molecular chaperones [123, 124]. The presence of chaperones is

believed to prevent misfolding of the nascent polypeptide chains due to interactions with

the crowded molecular environment in addition to improving the overall efficiency of the

folding process.

To understand the mechanism of protein folding, two models that have been proposed

are the diffusion-collision model and the nucleation-propagation model [125]. In the

diffusion-collision model, a protein is viewed as composed of several micro-domains, each

of which can sample a range of conformations that are sterically allowed. These micro-

domains, which interact with each other based on collisions start forming higher order

*Reprinted (adapted) with permission from “Protein Folding Studied by Dissolution Dynamic Nuclear
Polarization, Hsueh-Ying Chen, Mukundan Ragavan and Christian Hilty, Angewandte Chemie International
Edition, 52, 9192–9195, 2013”. Copyright (2013) Americal Chemical Society.
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structures eventually leading to the formation of stable tertiary structures [126]. Folding

of several proteins have been successfully described using the diffusion-collision model

[127, 128]. In the random-search nucleation-propagation model, a segment of protein is

considered small enough to be able to complete a random-search for attaining a stable con-

formation and then serve as a nucleation site for subsequent folding of the protein. This

model was described in the study of helix–coil transitions of poly-glutamic acid [129] and

poly-L-asparatic acid [130].

Experimentally, there has been a great interest in understanding how proteins fold, with

most of the studies being carried out in vitro. These studies typically involve transferring

the proteins from denaturing conditions to conditions that trigger folding. Approaches to

accomplish a rapid change in solution conditions include pH jump, temperature jump and

dilution of denaturants (urea, guanidium hydrochloride (GdnCl), etc.) following which

signal measurement has been achieved using a wide range of techniques to follow the

folding process of proteins [131].

Intrinsic tryptophan fluorescence has been used monitor the folding of proteins [132,

133]. It relies on the change in observed fluorescence when the tryptophan side-chains ex-

perience a change in the chemical environment. This change has also been exploited in ex-

periments using hydrophilic fluorescence quenchers [134]. Stopped flow fluorescence ex-

periments have been carried out to identify molten globule intermediate states in carbonic

anhydrase, β–lactamase and α–lactalbumin [135]. Circular dichroism (CD) spectroscopy

is another popular technique to study protein folding. Far UV CD (170–260 nm) has been

to monitor changes in the secondary structures of proteins [136, 137]. One advantage of

CD spectroscopy is the ability to monitor the backbone conformational changes instead of

monitoring side-chains as in the case of tryptophan fluorescence measurements. CD spec-

troscopy can also be used to estimate the fractions of α-helix, β sheets and random coil

elements. This technique has been applied to study several proteins including cytochrome
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oxidase [138], staphylococcal nuclease [139] and β–lactoglobulin [140]. Folding time

constants for proteins have been obtained by monitoring time resolved changes at 222 nm

which report on the helical content of the proteins [141].

With the advent of greater computational capabilities, in silico approaches such as the

energy landscape theory and molecular dynamics (MD) simulations have offered insight

into understanding protein folding. The energy landscape theory takes a statistical ap-

proach where the fundamental assumption is that protein sequences are biased towards

the native state, which is at a energy minimum [142]. Using this theory, folding mecha-

nisms for proteins such as adenylate kinase have been determined computationally [143].

Molecular dynamics provides remarkable detail in the case of folding short peptides. Due

to computational requirements, explicit solvent models are largely impractical in MD sim-

ulations, using results from MD simulations, design of proteins that fold faster than their

wild type sequences have been carried out successfully [144]. Strategies such as dis-

tributed computing are being pursued to gain more computational power to carry out de-

tailed simulations of behavior of proteins [145, 146].

Employing more than one technique to study protein folding is likely to provide a bet-

ter understanding of protein folding since each technique could address a different facet

of the problem. For example, optical techniques offer excellent time resolution can be

used to monitor events at sub-millisecond time scale. NMR spectroscopy, on the other

hand, offers increased site resolution, and hence is capable of providing a detailed picture

of complex biological processes such as protein folding albeit with much lower time res-

olution. Hyperpolarization using dissolution dynamic nuclear polarization enables time

resolved measurements of one-dimensional protein NMR spectra in a single scan without

the need for conventional signal averaging.

In this chapter, results from the development of methods to study protein folding using

dissolution DNP are described. Ribosomal protein L23, has been experimentally deter-
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mined to follow two-state model of protein folding [147] and is used as the model sys-

tem in this work. To improve site resolution when using uniformly labeled samples, a

multiple quantum coherence based experiment using selective excitation to improve site

resolution is demonstrated in a hyperpolarized experiment with 13C–acetate and in non-

hyperpolarized experiments using L23. Finally, an intrinsically disordered protein, p27

is used to demonstrate that dissolution DNP experiments are possible even with aqueous

solvents. Changes observed in the 13C spectra upon mixing with cyclin dependent kinase

(CDK) – cyclin-A complex are discussed. Sequences of all the proteins used in this chapter

are shown in Figure 4.1.

L23

MKTAYDVILA PVLSEKAYAG FAEGKYTFWV HPKATKTEIK NAVETAFKVK VVKVNTLHVR 
GKKKRLGRYL GKRPDRKKAI VQVAPGQKIE ALEGLI

p27

GSHMEHPKPS ACRNLFGPVD HEELTRDLEK HCRDMEEASQ RKWNFDFQNH KPLEGKYEWQ 
EVEKGSLPEF YYRPPRPPKG ACKVPAQE

Figure 4.1: Sequence of two different proteins used in this work. L23 is a 96 amino acid
ribosomal protein from Thermus thermophilus which is one of the constituent proteins
making up the 50S subunit of the ribosome. p27 is a 88 amino acid intrinsically disordered
protein that has been reported to bind to cyclin dependent kinase/cyclin A complex.

4.2 Materials and Methods

4.2.1 Expression and Purification of L23

Protein expression and purification was carried out as described in Section 3.2.1.
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4.2.2 Dynamic Nuclear Polarization and NMR Spectroscopy

L23 samples for DNP experiments were prepared at a nominal concentration of 4

mM by dissolving lyophilized powder in 60%(v/v) ethylene glycol/water mixture con-

taining 6 M urea. Hyperpolarized samples additionally contained 15 mM (final concen-

tration) sodium salt of tris-8-carboxyl-2,2,6,6- tetra[2-(1-hydroxethyl)]-benzo(1,2-d:4,5-

dS)bis(1,3)dithiole-4-ylmethyl free radical (OX63; Oxford Instruments, Tubney Woods,

U.K.), and 1 mM diethylenetriamine pentaacetic acid gadolinium complex (Gd-DTPA;

Sigma-Aldrich, St. Louis, MO). Protein samples were hyperpolarized on the 13C nuclei in

a HyperSense Polarizer (Oxford Instruments) by irradiating with microwaves correspond-

ing to a frequency of 93.974 GHz at 1.4 K for 4 – 6 hours. This sample was then dissolved

using a solvent consisting of 10%(v/v) methanol/5 mM potassium phosphate in water, pH

3.1 heated to a vapor pressure of 10 bar. The dissolved protein sample, which is denatured

at pH 3.1, was injected into an NMR tube placed in the 400 MHz NMR spectrometer

using a rapid sample injection system [83]. The injected solution was mixed at a ratio

of 17:1 with 25 µL of 810 mM of 4-morpholineethanesulphonic acid (MES) buffer, pH

5.6–6.2, which was already present in the NMR tube, for triggering the pH jump. Sam-

ples, after mixing, contained 40 µM L23 (concentration as determined by HPLC after the

NMR experiment), 100 mM ethylene glycol, 45 mM urea, 5 mM potassium phosphate,

10% methanol and 45 mM MES at pH 5.6–6.2. Experiments to observe the changes in

side chain resonances of isoleucine residues were carried out by mixing hyperpolarized

protein samples with 25 µL of 1 M potassium phosphate, pH 5.7 containing 6 M urea. The

final sample composition in this experiment was 40 µM L23 (concentration as determined

by HPLC after the NMR experiment), 100 mM ethylene glycol, 400 mM urea, 60 mM

potassium phosphate, pH 5.7 and 10% methanol.

Acquisition of NMR spectra was triggered automatically after sample injection. The
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temperature at the time of NMR measurement was 301 K. A segment of 3×[Sh-G] with

“Sh” referring to π/2 selective radio frequency pulse (Eburp, 15 ms) and “G” referring

to pulsed field gradients (x,y,z axes, 50 G/cm, 1 ms) was utilized for solvent suppression

applied at the ethylene glycol resonance in the DNP experiments. Multiple spectra were

acquired by applying radio frequency pulses of variable flip angles [111] followed by data

acquisition (12800 complex points with tmax = 253.5 ms) in order to monitor the folding

process. During the data acquisition, 1H and 2H decoupling were applied at field strengths

of γB1 = 10.2 kHz and 0.7 kHz respectively. In the pH jump experiments, the exact pH of

the solution was measured after the experiment. All 13C spectra were calibrated indirectly

to a standard of 4,4-dimethyl-4-silapentane-1-sulphonic acid (DSS) at 0 ppm.

4.2.3 Chemical Shift Assignments

Chemical shift assignments were obtained from published values [110] and adapted

for L23 in solution conditions used in DNP–NMR experiments. Backbone assignments

were obtained using triple resonance experiments including 3D HNCA (2048, 64 and 64

points on 1H, 15N and 13C dimensions respectively), HNCO (2048, 64 and 64 points) and

HNCACB (2048, 64 and 96 points). Side chain assignments were obtained using 3D

HCCH-TOCSY (2048, 96 and 96 points on 1H, 13C and 13C dimensions respectively) and

(H)C(C-CO)NH (2048, 64 and 96 points on 1H, 15N and 13C dimensions respectively)

experiments specifically for mapping the 13C resonances of side chain methyl groups to

the corresponding isoleucine residues in the protein. Spectra were acquired on a 500 MHz

spectrometer equipped with a TCI cryoprobe (Bruker Biospin, Billerica, MA).

4.3 Results and Discussion

Two different solvent systems are used in dissolution DNP experiments - one for hy-

perpolarization (glassing mixture) and one for sample transfer. In these experiments, bi-

nary mixture of water and methanol was used for sample transfer. Protein folding in
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these experiments are triggered by a pH jump experiment where the hyperpolarized sam-

ple was mixed with a second buffer. Since solvent systems used in the dissolution DNP

experiments are binary mixtures, the conditions used in the experiment were validated by

comparing the state of the protein in these conditions against protein samples in an aque-

ous buffer at near-neutral pH (referred to as “standard conditions”). The protein samples

were characterized using steady state multi-dimensional NMR experiments in denaturing

conditions and in conditions that promote protein folding.

4.3.1 Protein Characterization

Protein sample quality was monitored for each preparation using 1H and 13C NMR

spectroscopy. Spectra for sample characterization were measured in standard conditions

- 50 mM potassium phosphate, pH 6.8 for folded protein standard and 50 mM potassium

phosphate, pH 6.8 containing 8 M urea for unfolded protein standard. Control spectra

of samples measured under conditions close to those in the DNP–NMR experiment were

used to compare the state of the samples to the protein under standard conditions. Figure

4.2 shows spectra with protein in folded conformation. Figure 4.2 (a)–(c) show spectra

measured at standard conditions and (d)–(f) show spectra measured at conditions used

in the DNP experiment (50 mM MES, pH 5.7, 10% methanol, 50 mM urea). It can be

seen that in Figure 4.2(f), the [1H,15N]–HSQC spectrum shows dispersed peaks with 1H

chemical shifts larger than 9 ppm and smaller than 8 ppm which are readily matched with

those in Figure 4.2 suggesting a similar protein structure under both conditions. Further,

a representative strip from one of the triple resonance experiments (3D-HNCA) used for

chemical shift assignments is shown in Figure 4.3.

Similarly, Figure 4.4 shows protein spectra measured under standard denaturing con-

ditions ((a)–(c)) and conditions that exist in the DNP experiment during sample transfer

(50 mM potassium phosphate, pH 3.1, 10% methanol; panels (d)–(f)). It can be seen that
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protein spectra under these conditions are similar to each other and that the low pH sol-

vent used at the start of the folding experiment is representative of the unfolded state of

the protein. Spectra obtained from protein sample that was pH denatured were compared

with spectra from urea denatured spectra (panels (g)–(i)). It can be seen that in all three

cases, the fingerprint region of the HSQC spectra are similar suggesting similar a protein

structure.

To evaluate the effect of rapid thermal cycling on the protein sample during the dis-

solution process, protein samples after use in the DNP experiment were characterized

using reverse phase high performance liquid chromatography (HPLC, Shimadzu Scien-

tific Instruments, Columbia, MD) and sodium dodecyl sulphate polyacrylamide gel elec-

trophoresis (SDS–PAGE). Figure 4.5 (a) & (b) show chromatograms obtained from pure

OX-63 and [13C, 2H]–L23. The retention times of OX-63 and L23 were 7.7 and 13.8 min-

utes, respectively. Impurities in the OX-63 sample appear in Figure 4.5a at retention times

8.6 and 14.3 minutes. Figure 4.5c shows the chromatogram from a sample that underwent

the DNP process. It can be seen the peaks match closely with those from pure samples,

suggesting that the freeze thaw cycle did not measurably degrade the sample or alter its

characteristics.
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Figure 4.2: (a) 13C NMR spectrum of [u-13C, 50% 2H]–L23 under native conditions (0.4
mM L23 in 50 mM potassium phosphate, pH 6.8). Spectrum was acquired with 1H and
2H decoupling. (b) 1H NMR spectrum of [u-15N]–L23 acquired with 15N decoupling.
Sample conditions are as in (a). (c) [ 15N, 1H]–HSQC spectrum of the sample from (b).
(d) 13C NMR spectrum of [u-13C, 50%2H]–L23 under folding conditions similar to DNP
experiments (0.4 mM L23 in 10% methanol/50 mM MES, pH 5.7, 50 mM urea). Spectrum
was acquired with 1H and 2H decoupling. (e) 1H NMR spectrum of [u-15N]–L23 acquired
with 15N decoupling. Sample conditions are as in (d). (f) [15N, 1H]–HSQC spectrum of the
sample from (e). All spectra were measured on a 500 MHz NMR spectrometer equipped
with a TCI cryoprobe at 301 K.
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Figure 4.3: Strips from a 3D HNCA experiment showing sequential connectivity from
residues 19 to 22. The spectrum was measured using a 1 mM [u-13C, 15N] L23 sample
in 10%methanol/50 mM potassium phosphate, pH 5.7. The spectrum was acquired with
2048, 64 and 64 complex points in 1H, 15N and 13C, respectively.
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Figure 4.4: (a)13C NMR spectrum of [u-13C, 50%2H]–L23 under standard conditions (0.4
mM L23 in 50 mM potassium phosphate,pH 6.8 containing 8 M urea). Spectrum was
acquired with 1H and 2H decoupling. (b) 1H NMR spectrum of [u-15N]–L23 acquired
with 15N decoupling. Sample conditions are as in (a). (c) [15N,1H]–HSQC spectrum of
the sample from (b). (d) 13C NMR spectrum of [u-13C, 50% 2H]–L23 under denaturing
conditions similar to DNP experiments (0.4 mM L23 in 10% methanol/50 mM potassium
phosphate, pH 3.1, 50 mM urea). Spectrum was acquired with 1H and 2H decoupling.
(e)1H NMR spectrum of [u-15N]–L23 acquired with 15N decoupling. Sample conditions
are as in (d). (f) [15N, 1H]–HSQC spectrum of the sample from (e). (g) 13C NMR spectrum
of [u-13C, 15N]–L23 under conditions similar to those existing in the DNP experiments (0.4
mM L23 in 10%(v/v) methanol/50 mM MES pH 5.8, 100 mM ethylene glycol containing
8 M urea). Spectrum was acquired with 1H and 15N decoupling. (h)1H NMR spectrum of
[u- 15N,13C]–L23 acquired with 15N and 13C decoupling. Sample conditions are as in (g).
(i) [15N, 1H]–HSQC spectrum of the sample from (h). All [15N, 1H]–HSQC spectra were
measured with 1024 and 256 complex points in 1H and 15N dimensions, respectively, on a
500 MHz NMR spectrometer equipped with a TCI cryoprobe at 301 K.
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Additionally, a sample of L23 that experienced the freeze-thaw cycle was compared

with a newly purified L23 sample on a SDS-PAGE gel. The coomassie blue stained gel is

shown in Figure 4.5d. No degradation bands can be observed in the gel and the signatures

between the two samples are indistinguishable. Based on the HPLC and gel electrophore-

sis data, it is likely that freeze-thaw process does not have an adverse affect on the protein

samples.

4.3.2 Observation of Protein Folding

The refolding of L23 was monitored using a pH jump experiment. The hyperpolarized

sample was dissolved under denaturing conditions (pH 3.1) and injected into the NMR

spectrometer, where it is mixed with a buffer at higher pH (pH 5.7). This pH jump triggers

the folding of L23 which is then monitored over a period of few seconds by measuring a

series of 1D 13C NMR spectra using small flip-angle excitation pulses. It should be noted

here that the samples contain 45 mM urea and 100 mM ethylene glycol (from the glassing

mixture) in addition to L23 and buffer components (potassium phosphate and MES).

The spectra from this experiment are shown in Figure 4.6(a). Signal changes over

different transients that occur due to the folding of the protein, as well as due to non-

uniform nuclear spin relaxation, can be seen in Figure 4.6(b). Here, the differences of each

scan to the first (cyan–blue) and last (yellow–red) scan in the time series are shown, after

normalization of each spectrum to equal intensity integrated over carbonyl and aliphatic

regions. The composite plot shown in (b) was computed using the equations 4.1 (cyan–

blue) and 4.2 (yellow–red).

∆(D′k,n,D
′
5,n) = max(0,D′k,n − D′5,n) (4.1)

∆(D′k,n,D
′
1,n) = max(0,D′k,n − D′1,n) (4.2)
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Figure 4.5: (a) HPLC chromatogram of OX–63 radical obtained using a C–18 column
with a gradient of 10%–100% acetonitrile in water and 0.08% trifluoro acetic acid. The
retention time is 7.7 minutes. (b) HPLC chromatogram of purified [13C,2H] L23 (retention
time = 13.8 min). (c) HPLC chromatogram of [13C,2H] L23 after hyperpolarization and
dissolution (retention time = 13.6 min). OX–63 in the DNP sample was eluted out of
the column with a retention time of 7.7 min. (d) SDS–PAGE comparing a fresh L23
sample with a sample that had undergone a DNP–NMR experiment as obtained on a 15%
polyacrylamide gel with coomassie blue staining.
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where, D′k,n is obtained by rescaling each spectrum (Dk,n) to the same integration value

between the backbone carbonyl (185.7 –170 ppm) and aliphatic (63–7 ppm) regions of the

spectrum. k is the index of different spectra in the time series of spectra measured in the

dissolution DNP experiment and n is the number of data points in each spectrum.

Since the signal intensity in these spectra decreases gradually because of both spin

relaxation and the folding process, in order to observe the evolution of carbonyl reso-

nances, all the spectra in the time series were re-scaled to unit maximum intensity at ∼176

ppm. After re-scaling, increase in relative intensities can be observed in the backbone

carbonyl chemical shift range (170–185 ppm) as shown in Figure 4.6 (c). Two “shoul-

ders” (indicated by arrows in the figure) are clearly visible in the normalized traces of the

corresponding region and are characteristic of the folded protein as can be seen from the

standard spectra shown in Figure 4.6 (d). Spectra from a control experiment where no pH

jump was employed is shown in Figure 4.6(e).

In these spectra, backbone carbonyl resonances are between 182–170 ppm whereas

the resonance at ∼183 ppm (and higher) correspond to Cδ of glutamic acid. L23, which

has 6 Glu residues, show a strong peak at this chemical shift. However, the appearance of

this peak depends on the pH of the sample during measurement. It can be seen in Figure

4.6(d) that the Cδ resonance appears when the sample has pH 5.7 and not in samples of

pH 3.1. These sample conditions correspond to deprotonated and protonated states of the

side-chain carbonyl of Glu residues.

4.3.3 Estimation of Secondary Structure Formation

NMR chemical shifts are strongly dependent on the nature of secondary structures in

the protein. For example, in the case of 1H chemical shifts, residues existing in α–helices

experiences a downfield shift while residues in β–sheets exhibit an upfield shift when com-

pared with random coil chemical shift values [11]. Using this feature in NMR spectra, a
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chemical shift index approach has been developed to identify secondary structure elements

in different regions of the spectrum using 1H chemical shifts [148] and 13C chemical shifts

[12].

Such variations in the chemical shifts between unfolded and folded conformations of a

protein sample can be seen in spectra obtained from DNP experiments as well. In Figure

4.6 (c) & (d), the two shoulders around ∼178 ppm and ∼174 ppm arise from the folded pro-

tein, while the resonances are collapsed in the case of denatured protein. These shoulders

represent intensities from α–helix and β–sheet secondary structures, respectively. Using

these data obtained from dissolution DNP experiments, it would be possible to estimate

secondary structure content in the protein at each measured time point in the course of

the reaction by expressing the DNP–NMR spectra as a linear combinations of statistical

distributions corresponding to different secondary structure elements.

Chemical shifts corresponding to >2000 proteins were obtained from a database [149],

and distributions of 13C and 15N shifts corresponding to α–helix, β–sheet and random coil

structures were computed. These distributions are shown for 13C of backbone carbonyl

and 15N of backbone amide groups in Figure 4.7 (a) & (b), respectively. It is of interest

that in the case of backbone carbonyl 13CO, chemical shifts pertaining to β–sheets and

random coil show significant overlap, whereas in the case of backbone amides 15N, it is

the α–helix and random coil chemical shifts that overlap most.

Linear decomposition using the 13C chemical shift distributions was applied (Figure

4.8(a)–(e), corresponding to scans #(1)–(5)). Percentages of the different types of struc-

tures were extracted and summarized in (f). As expected, the fraction of α-helix and β-

sheet structure increases, while the proportion of random coil decreases during the folding

process. Comparing to the percentage of residues present in secondary structure elements

in the PDB structure, the amount of secondary structure appears underestimated (∼45%

estimated random coil from spectrum vs ∼40% random coil as estimated from the pub-
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Figure 4.7: (a) Distribution of 13C chemical shifts in the carbonyl region. (b) Distribu-
tion of 15N chemical shifts. The histograms were computed using the data re-referenced
chemical shifts found in the literature [149].

lished structure (PDB I.D. 1n88)). This may be due to the fact that the statistical chemical

shift distributions do not match L23 exactly. Overlap of the chemical shift distributions

for the three secondary structure types may affect the fit, particularly for differentiating β-

sheet from random coil contribution, for which the maxima of chemical shift distributions

lie closest together.

Although in the present case, only 13C chemical shift distributions were used, this type

of analysis would be applicable to data from 15N polarized experiments as well. Although

15N is a nucleus of low sensitivity in view of measuring NMR spectra, amide group 1H

and 15N chemical shifts are typically used as the fingerprint of proteins, making analyses

of 15N chemical shifts valuable.

4.3.4 Resolving Individual Sites

In addition to fractions of secondary structures, information pertaining to specific sites

can also be obtained from the DNP–NMR spectra. In the case of L23, Ile Cδ1 groups
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Figure 4.8: (a)–(e) Decomposition of DNP-NMR spectra (from the same dataset as in
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Figure 4.9: Representation of Ile residues that are present in hydrophobic core of L23.
Ile residues 8, 39 and 89 are shown in red spheres space-filling representation with rest
of the protein shown in a cartoon representation. The methyl groups in the hydrophobic
core would be expected to undergo a significant change in the local chemical environment
upon folding of the protein. This change in chemical environment would be reflected in
NMR spectra as shown in Figure 4.10. Image was prepared by using the NMR structure
deposited in PDB with I.D. 1n88.

are sufficiently separated for this purpose (Figure 4.10). The methyl groups are often

located in the hydrophobic core of a protein (in L23, Ile 8, 39, and 89 are part of the

hydrophobic core, Figure 4.9). These methyl groups experience a significant change in

chemical environment upon folding and hence are useful indicators of protein folding.

Spectra taken at three time points reveal a large initial contribution from random-coil

chemical shifts, followed at later time by resolution of individual peaks for the different

methyl groups in the folded protein. The identities of chemical shifts of the individual

residues were obtained from triple resonance experiments (Figures 4.11 and 4.12) and

compared as shown in Figure 4.10. The comparison of DNP spectra and non-hyperpolarized

spectra must take into account the isotope effect on chemical shifts. The signal for indi-

vidual methyl groups in the DNP experiment will be dominated by the isotopomer with

the longest T1 (CD3 > CD2H > CDH2 > CH3) while the non-hyperpolarized spectra will

have greater contribution from the isotopomers with shorter relaxation times. The relative
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Figure 4.10: (a) DNP-NMR spectra showing the time evolution of Ile Cδ1 chemical shifts
after pH jump (40 µM L23, 60 mM KH2PO4, pH 5.7, 10% (v/v) MeOH, 400 mM urea,
100 mM ethylene glycol, T=301 K). (b) Non-hyperpolarized reference spectra of L23
unfolded (bottom; 0.4 mM L23, 10% (v/v) MeOH/50 mM KH2PO4, pH 3.1) and folded
(top; sample as in (a), 50,000 scans on cryoprobe at 11.7 T). In (a) and (b), chemical shifts
of folded L23 are indicated with ranges covering isotopomers CD3, CD2H, CDH2 and
CH3 [116]. Dark shading indicates the position of highest relative detection sensitivity;
relaxation losses in the DNP experiment are lowest for CD3, and equilibrium polarization
in the non-hyperpolarized experiment is largest for CH3.

contributions of isotopomers to intensity in the spectra are indicated using shaded bars in

Figure 4.10. The chemical shift changes due to deuteration has been discussed elsewhere

in the literature [116]. These data illustrate the complimentary nature of dissolution DNP

and high resolution NMR experiments. While the dissolution DNP experiments enable

following transient processes in real time, high resolution experiments offer unparalleled

resolution to uniquely identify different sites.

4.3.5 Selective Multiple Quantum Experiment for Improving Site Resolution

In the 13C spectra of L23 measured in dissolution DNP experiments, only the methyl

groups of Ile are clearly resolved. Since this is a drawback in measuring one-dimensional
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Figure 4.11: Strips from a 3D HCCH-TOCSY experiment showing side chain resonances
of isoleucine residues. Strips are taken at chemical shifts of Cδ1/Hδ1. The spectrum was
measured using a 1 mM [u-13C, 15N] L23 sample in 10%methanol/50 mM potassium phos-
phate, pH 5.7. The spectrum was acquired with 2048, 96 and 96 complex points in 1H, 13C
and 13C respectively.
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Figure 4.12: [13C, 1H]-HSQC spectrum showing the region with peaks from Cδ1 groups
of isoleucine residues. This spectrum was measured using 0.4 mM L23 (no isotope en-
richment) in 10% methanol/50 mM potassium phosphate, pH 5.7. 1024 and 700 complex
points were acquired for 1H and 13C dimensions, respectively, on a 500 MHz NMR spec-
trometer equipped with a TCI cryoprobe at 301 K.
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experiments, multidimensional experiments have been routinely used in conventional NMR

to gain spectral resolution. However, due to non-recoverable nature of polarization in DNP

experiments, using multidimensional experiments is not always straightforward. To im-

prove the spectral resolution in the DNP experiments, sequentially acquired two-dimensional

and ultrafast two-dimensional NMR experiments have been proposed [111, 92].

In conjunction with using two- and three-dimensional NMR experiments, use of site

selective labeling or amino acid selective labeling have enabled improving resolution in the

NMR spectra. This biochemical approach which is undoubtedly, an effective strategy may

not always be feasible. When using uniformly labeled samples, amino acid type-selective

experiments to resolve ambiguities in 2D and 3D experiments have been implemented

[150, 151, 152]. For example, TAVI-HSQC experiment specifically selects [1H-15N] cor-

relations in threonine, alanine, valine and isoleucine residues in the spectrum. This type of

selection greatly simplifies the recorded spectrum and enables near complete assignment

of chemical shifts.

In situations where multidimensional NMR experiments are challenging, one approach

to improve resolution in one-dimensional experiments would be to spectroscopically select

specific coherences for observation. Such an experiment would be helpful in identification

of different features in the spectra without the need for multidimensional experiments. In

one strategy, multiple quantum coherence can be generated between two scalar coupled

spins of the same type (i.e., 13C–13C coupling). After selection of the required coherences

using pulsed field gradients, the multiple quantum coherence can be converted to observ-

able single quantum coherence.

The pulse sequence for an experiment utilizing chemical shift based selection is shown

in Figure 4.13. Product operator description of this experiment is similar to the conven-

tional heternuclear multiple quantum coherence (HMQC) experiment which has been de-

scribed in the literature [153]. The product operator treatment is briefly revisited for the
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current experiment below. For simplicity, chemical shift evolution of the coherences are

not shown and both spins, I & S represent 13C spins in the sample that are bonded. The

product operator treatment for the first part of the pulse sequence upto and including the

first selective pulse is shown below.

Iz

π
2 x
−−→ −Iy

2πJIS
−−−−→ 2IxS z + 2IyS z

sel. π2 x
−−−−→ 2IxS y − 2IyS y (4.3)

After the application of selective π
2 pulse, a double quantum coherence is generated.

The π pulse refocusses the evolution of coherences due to chemical shift. The product op-

erator treatment for the last part of pulse sequence including and after the second selective

π
2 pulse is shown here.

−2IxS y + 2IyS y
sel. π2 x
−−−−→ 2IxS z + 2IyS z

2πJIS
−−−−→ −Iy (4.4)

Gradient selection of double quantum coherence can be achieved by using the two

pulsed field gradients of opposite signs at 1:-2 ratio.

This experiment was tested using a 13C labeled samples of acetate in a hyperpolarized

experiment and using denatured [13C, 50%2H] L23 in a non-hyperpolarized experiment.

Spectra obtained using the selective experiment as applied to 13C–acetate is shown in Fig-

ure 4.14. Figure 4.14 (b) & (c) show results from a hyperpolarized experiment using 300

mM 13C –acetate. In (b), the selective excitation is on the methyl resonance of acetate.

This selects the resonance bonded to it, in this case, the carbonyl resonance while the

methyl resonance itself is suppressed yielding a single peak in the spectrum. The spec-

trum from the excitation of the carbonyl peak leading to observation of the methyl peak is

shown in (c).

Figure 4.15 shows the performance of the selective experiment on a sample of dena-

tured [13C, 50%-2H]–L23 sample. Selective excitation on the Cα region enabled observa-
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Figure 4.13: Pulse sequence used for the selective multiple quantum coherence experi-
ment. 1H and 2H decoupling were applied for the entire duration of the experiment. The
selective pulses (indicated by #) were of Sinc shape with 2500 µs duration. τ, delay for
scalar coupling evolution, is set to 1

2J . All pulses were of phase x and coherence selection
is accomplished by applying pulsed field gradients at strengths of 25 G/cm and -50 G/cm.

tion of the carbonyl region and vice versa as shown in Figure 4.15 (b) & (c). In order to

test the experiment in a crowded region of the spectrum, selective excitation was applied

at ∼33 ppm. This yielded a spectrum with resonances that likely correspond to bonded

Cα, Cβ, Cγ & Cε . In comparison with the simulated spectrum of L23 in Figure 3.2 (d),

the selective radiofrequency pulse would excite resonances Cβ of Val, Lys, Met & Pro and

Cδ of Lys. This excitation would be expected to lead to the observation of Cα (V, K, M,

P), Cε(K) and Cγ1 & Cγ2 of Val resonances. Indeed, the observed spectrum shown in Fig-

ure 4.15 (d) contains these resonances at ∼60, ∼40 ppm and ∼20 ppm, respectively. L23

contains 11 valine and 16 lysine residues and only one methionine and one proline. This

distribution of residues is likely to result in a larger contribution of Lys and Val residues

to observed signal than the other two residues.

Such site selection greatly simplifies the spectrum, potentially enabling a detailed anal-
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CO CH3

Figure 4.14: (a) Non-hypeprolarized spectrum of 700 mM 13C –acetate. Identities of the
peaks are indicated above the peak. Dissolution DNP enhanced NMR experiment showing
selection of (b) carbonyl resonance and (c) methyl resonance for observation. Selective
excitation was on resonances corresponding to (b) 23.6 and (c) 181.7 ppm. Spectra were
measured with 1H and 2H decoupling. The delay, τ for evolution under the influence of
scalar coupling was set to 9.1 ms corresponding to coupling constant of 55 Hz.
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Figure 4.15: (a) Non-hypeprolarized spectrum of 1.5 mM [13C, 50%-2H]–L23. Non-
hyperpolarized spectra from selective experiment with excitation at on resonances cor-
responding to (b) 62.4, (c) 176.5 and (d) 33.2 ppm. Spectra were measured with 1H and
2H decoupling. The delay τ for evolution under the influence of scalar coupling was set to
(b) & (c) 9.1 and (d) 14.2 ms (coupling constants of 55 and 35 Hz, respectively). Selec-
tive excitation was applied using a single lobed Sinc pulse with 1000 µs pulse length and
spectra were acquired using (a) 256 scans and (b), (c) & (d) 1024 scans.

ysis even without the need for special isotopic labels. Signal averaging was employed in

these non-hyperpolarized experiments. Since the selective experiments involve a coher-

ence transfer step, a higher number of scans are needed to record spectra of sufficient

S/N (Figure 4.15 caption). Nevertheless, this experiment may, with further development,

be useful to monitor site specific changes in time resolved experiments using dissolution

DNP.

4.4 Dissolution DNP of p27 Using Aqueous Solvents

An important aspect of the protein folding experiment described above is the nature

of the solvent used to study folding. In these experiments, water/methanol mixtures were

used to overcome the foaming problem during the injection of the sample. However,
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reports of water/organic mixtures destabilizing protein structure and impeding function

are available in the literature [154, 155]. At the same time, several enzymes are known

to function as effectively in seemingly hostile conditions as they function in near-native

conditions [156, 157]. In fact, some enzymes are known to function more efficiently in

organic solvents than in aqueous conditions [158]. Given the complexity of protein solvent

interactions, determination of best suited condition for study of protein folding and activity

must be carried out experimentally.

The best case, however, would be the use of a purely aqueous dissolution solvent.

This might be of particular importance in experiments designed to study protein–protein

interactions. Some proteins, in fact, are amenable to dissolution DNP experiment using

just aqueous buffers, in the current setup without modification. For example, p27, a 88

amino acid intrinsically disordered protein that binds to Cyclin-dependent Kinase (CDK)

– cyclin A complex, can be hyperpolarized and subsequently dissolved and injected using

an aqueous buffer containing 100 mM Tris at pH 7.2. Dissolution DNP spectra measured

from [u-13C,2H]-p27 is shown in Figure 4.16.

Closer inspection of the spectra shown in Figure 4.16 reveals fine structure in many

peaks (for example, peaks at ∼183 ppm, ∼179, ∼170–175 ppm, ∼50–56 ppm, etc.) Promi-

nent peaks corresponding to aromatic residues (17 aromatic residues are present in p27) in

the protein are present between 120–140 ppm. It is likely that the p27 spectra show more

prominent peaks in this region than seen in the hyperpolarized spectra of L23 because

of higher level of deuteration in p27. The peak that is likely to correspond to Cδ of Glu

residues in p27 is well pronounced in these spectra at ∼183 ppm.

Since p27 is an intrinsically disordered protein (IDP), it is likely to show random coil

secondary structure when existing as an isolated polypeptide in solution. These IDPs typ-

ically fold upon binding their targets or act as linkers and play a role in aiding assembly of

macromolecular complexes [159]. It may be possible to observe these structural changes
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Figure 4.16: Series of spectra of [13C, 70%–2H] – p27 hyperpolarized on 13C nuclei and
dissolved using 100 mM Tris buffer, pH 7.2 containing 300 mM sodium chloride and 5
mM dithiotritol (DTT). The spectra were measured using a variable flip angle with 2H
decoupling and solvent suppression at 63.2 ppm corresponding to ethylene glycol reso-
nance. The spectrum closest to the chemical shift axis corresponds to the first scan of the
experiment and the spectrum farthest from the chemical shift axis, the last scan.
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by hyperpolarizing the intrinsically disordered protein and mixing with the hyperpolarized

protein with its biological target to monitor the folding process. To this end, in a second

experiment, the hyperpolarized sample was dissolved and mixed with 50 µl of the pro-

vided CDK2-Cyclin A complex in the sample tube prior to NMR measurement. Multiple

scans were then measured using variable flip angle excitation.

δ (13C) [ppm]

182 180 178 176 174 172 170 168 166

(a)

(b) scan 1
scan 2
scan 3
scan 4
scan 5

Figure 4.17: DNP-NMR spectra from (a) control experiment (same data as in Figure 4.16)
and from (b) experiment where p27 is mixed with CDK2/Cyclin-A complex showing the
carbonyl region. Each scan of the experiment is normalized to the same total integral in the
167 and 181.5 ppm. Peaks above 179 ppm correspond to sidechain carbonyl resonances.

The spectra obtained from the two dissolution DNP experiments were analyzed as fol-

lows. Signals from the carbonyl region (167 – 181.5 ppm) of each scan of both experiments

were normalized to a total integral of 1. Carbonyl region of the normalized spectra from
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the control experiment (no mixing) and mixing experiment are shown in Figure 4.17 (a)

& (b), respectively. Peaks above ∼179 ppm are likely to correspond to sidechain carbonyl

resonances.

In order to identify potential chemical shift changes, difference spectra were computed

using the normalized spectra. Figure 4.18 (a) shows the difference calculated by subtract-

ing the normalized first scan spectrum from normalized spectra of every scan of the control

experiment. The same analysis was repeated with data from mixing experiment as shown

in Figure 4.18 (b). The differences in the carbonyl region of the DNP-NMR spectra be-

tween the control and mixing (Figure 4.18 (a) & (b)) experiment could indicate changes

in the structure of p27 upon binding CDK2/Cyclin complex. More specifically, the peaks

in the downfield region (∼178 ppm) in the mixing experiment suggest the formation of

α–helix, which would be consistent with what has been shown in the literature. However,

most of the signal at ∼178 ppm is already present in the first scan (Figure 4.17 (b)), per-

haps because most of the structural change has already occurred at that time and could not

be observed in this experiment. Still, some increase of presumably α–helical structure is

visible as seen in Figure 4.18 (b). Difference spectra were also calculated between the two

experiments by subtracting each scan of the control experiment from the corresponding

scan of the mixing experiment (Figure 4.18 (c)). It can be seen here that the differences in

the downfield region (∼178 ppm) show a relative increase in the later scans suggesting the

formation of α–helix elements in p27.
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Figure 4.18: Difference spectra showing chemical shift changes in 13C spectra of p27
in (a) control experiment and (b) mixing experiment (hyperpolarized p27 is mixed with
CDK2/Cyclin-A complex). (c) Difference spectra between the control and mixing experi-
ment for each scan. Difference spectra shown in (a) & (b) were computed by subtracting
the first scan data from each scan of the same experiment. In (c), differences were calcu-
lated by subtracting data in each scan of the control experiment from the corresponding
scan of the mixing experiment.
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4.5 Conclusion

Surface tension of the protein plays a very important rule in the choice of solvent used

in dissolution DNP experiments. Factors that affect the surface tension of the protein - pH,

presence of salts and temperature, etc. - have been well established for almost 100 years

[160]. Studies have also shown that foaming in protein solutions depend not on the surface

tension of the protein solution but on the rate of change of surface tension as the protein

is solubilized [161]. Such a dependence, when combined with a complete absence of

literature on the relationship between the protein sequence and its surface tension, makes

it very difficult to determine the type of solvent to be used for sample transfer in dissolution

DNP.

Despite these potential difficulties, it is clear based on the results presented above that

dissolution DNP enhanced NMR spectroscopy can be used to study protein folding events.

Two state folding of L23 and potential structual changes associated with binding of p27 to

CDK2/Cyclin-A have been observed. It is of interest that these experiments were possible

using just uniformly isotopically enriched samples. Further, site selection obtained by em-

ploying selective multiple quantum coherence experiment has demonstrated one approach

to improve site resolution in the 1D 13C spectra.

While this study utilized a protein (L23), which reportedly follows the two-state model

of protein folding, it is conceivable that proteins with complicated protein folding path-

ways may also be investigated. Improvements to the sample transfer step that could

broaden the application range might be to use a flow setup where the sample is driven

using liquid as described in the literature [162].

One approach to study protein–protein interactions was already demonstrated using

p27 in this thesis. Another strategy to tackle protein–protein interactions using dissolution

DNP would be to employ a flow based system (similar to [162]), where the hyperpolarized
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protein is flown over an immobilized binding partner. The binding partner could be immo-

bilized in a setup as simple as Ni-affinity beads or in a elaborate setup similar to those used

in surface plasmon resonance experiments. A flow based strategy may also be amenable

to study protein–lipid interactions. In these experiments, changes in the 1D 13C spectrum

could be observed by measuring a series of spectra.
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5. ANALYSIS OF DNP NMR DATA USING NON-NEGATIVE MATRIX

FACTORIZATION

5.1 Introduction

Dissolution DNP NMR offers the ability to gain temporal resolution in addition to

spectral resolution. This enables observation of transient species in chemical processes

which can otherwise not be observed in NMR experiments. However, this presents a new

challenge - how can the peaks from transient species in the NMR spectra be identified

and how best to determine the contribution of each species to the observed signal? Of

course, in the best case scenario, the resonances corresponding to the “intermediates”

will be unique and the appearance of the new peaks may be followed. Even in these

cases, identification of low abundance species may prove to be challenging since signals

from these species might be low even with hyperpolarization. While conventional NMR

experiments utilize signal averaging as needed to record spectra, this is not possible in the

case of dissolution DNP experiments, since the polarization of spins generated by the DNP

process is non-renewable in the NMR spectrometer. One approach towards identification

of transient species would be to take advantage of machine learning algorithms to analyze

NMR spectra from hyperpolarization experiments.

A branch of artificial intelligence, machine learning describes development of systems

that can “learn” from the data provided and provide outputs or can “learn” from the data

provided to construct models using which new data may be analyzed. The classic prob-

lem that is presented in evaluation of machine learning algorithms is the “Cocktail party

problem” [163, 164]. The simplest formulation of this problem can read as “how does one

identify what a single person is stating when more than one person is speaking at the same

time?”. This problem stipulates that there may be overlaps in both time and frequency
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from which unique intelligible outputs must be generated.

Two of the many different approaches undertaken under the purview of machine learn-

ing are (i) supervised learning and (ii) unsupervised learning. While supervised learn-

ing outcomes are generally mapping pattern(s) between the provided input and generated

output, in unsupervised learning inputs are provided to the algorithm without expected

output. In effect, unsupervised learning procedures could be considered as pattern recog-

nition schemes. In supervised learning, given a complete set of inputs and corresponding

measured outputs, outputs for a given new set of data are predicted without the need for

experimental measurements [165]. A good example of supervised machine learning is the

spam filtering in e-mail [166, 167].

In the case of unsupervised learning, the only “input” presented to the learner (the

computer performing analysis) is the experimental data. Without providing any further in-

structions other than an algorithm that specifies the convergence rules, the learner derives

the output(s) for the given set of data. Unsupervised learning in the form of clustering

analysis has found extensive application in the field of data mining and in genomics using

a wide range of clustering algorithms. For example, one of the popular DNA sequence

analysis tool, Clustal Omega, uses the clustering analysis algorithm called k-means [168].

Weighted correlation network analysis (or Weighted Gene Co-expression Network Anal-

ysis (WGCNA)) is extensively used in studying gene expression data. This method has

been used successfully to identify a over-expression marker in glioblastoma [169] and to

identify age-dependent changes in DNA methylation patterns in human brain and blood

tissue [170].

Blind source separation (BSS) is another approach to unsupervised learning, which

is used predominantly in applications where the dimensionality of data needs to be re-

duced. In other words, BSS is used to identify different features (sources) that consti-

tute the experimental data. Several approaches including principal component analysis
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(PCA) [171], independent component analysis (ICA) [172], singular value decomposition

(SVD) [173] and non-negative matrix factorization [174] have been described. PCA and its

statistical derivative, Probabilistic PCA (PPCA) have been extensively used in analysing

metabolomics data [175, 176, 177]. ICA and modern implementations such as FastICA

[178] have been used in pattern recognition (specifically palmprint recognition) [179] and

as a tool for noise reduction in electrocardiogram data [180].

5.2 Methodology

5.2.1 Non-Negative Matrix Factorization

Non-negative matrix factorization (NNMF), also referred to as positive matrix fac-

torization and non-negative matrix approximation, is an algorithm to extract components

from the non-negative experimental data [181, 174]. Let V be the experimental data with

size m × n where m is the number of data points in a single measurement and n, the num-

ber of measurements. Let p be the number of species that can contribute to the observed

signal. Then, this data can be represented as

V ≈ W × H (5.1)

where, the matrix W represents the sources of size (m× p) that contribute to the signal.

These sources then correspond to co-efficients H of size (p × n). The symbol × in the

equation denotes matrix multiplication.

NNMF is a numerical procedure to extract W and H from the data V. The steps in-

volved in carrying out this procedure is presented as a flowchart in Figure 5.1 [181]. This

factorization of the data matrix must be carried out to minimize the error between the

reconstructed matrix (Vrecon) and initial data matrix (V). The mostly used error function,

in this application is the euclidean distance norm [182]. The euclidean distance norm is

defined as

79



Initialize W and H

Update W and H
Multiplicative update rules

Check 
Convergence

Finalize W and H
Factorization complete

Yes

No

Figure 5.1: Flow chart showing steps involved in Non-Negative Matrix Factorization of
experimental data. Multiplicative update rules are shown in equations 5.3 and 5.4 and
convergence criterion are shown in equation 5.2.
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E(W,H) = ‖ V −W×H ‖2 =
∑

i, j

(Vi j − (W×H)i j)2 (5.2)

In this work, the magnitude of change of euclidean norm between consecutive itera-

tions is used as the “convergence” criterion.

Several update rules for W and H have been proposed in the literature [183]. Of those,

the alternating least squares (ALS) update rule and the multiplicative update rule have

been reported to be most robust [182]. A desired characteristic of any of these approaches

would be that the output is a sparse representation of the data. In other words, the data

should be completely described by as few non-zero entries as possible. In this regard,

although the ALS update rule offers faster performance and greater sparsity, it can lead to

local minima rather than the global minimum due to its greater stress on sparsity [183].

The multiplicative update rule is shown in equations 5.3 & 5.4. This rule does not have

problems associated with ALS update rules, although it is comparatively slower. In this

work, multiplicative update rules have been used in the implementation of NNMF.

W ← W ·
VHT

WHHT + 10−9 (5.3)

H ← H ·
WT V

WT WH + 10−9 (5.4)

Here, the constant 10−9 in both equations are present to avoid calculations resulting in

division by zero.

5.2.2 Dynamic Nuclear Polarization

Malic acid and oxaloacetatic acid (both from Amresco Inc., Solon, OH) were used

without any further purification. 500 mM solutions of malic acid and oxaloacetic acid

were prepared in 60%(v/v) ethylene glycol/40% water glassing mixture. The solutions
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were mixed with OX-63 (final concentration - 15 mM) and Gd-DTPA (final concentration

- 1 mM) and used for 13C hyperpolarization. The samples were irradiated with 60 mM

microwaves at 93.974 GHz for 3 hours at 1.4 K and subsequently dissolved using 50 mM

potassium phosphate, pH 7.4 and NMR spectra were measured (with 1H decoupling) at

298 K using a BBO probe in an NMR spectrometer with 9.4 T magnetic field correspond-

ing to 400 MHz 1H Larmor frequency (Bruker, Billerica, MA).

Enzymatic conversion oxaloacetate to malate was carried out using porcine heart malate

dehydrogenase (Sigma Aldrich, St. Louis, MO). In this experiment, oxaloacetatic acid was

hyperpolarized as described above. The solution containing polarized oxaloacetic acid was

mixed with 40 mM of Nicotinamide adenine dinucleotide (NADH) (Sigma Aldrich, St.

Louis, MO) and 200 µM of malate dehydrogenase already present in the NMR tube. The

reaction was monitored by measuring a series of 16 spectra using variable flip angle pulse

with 1H decoupling at 298 K over a period of 10 seconds. All spectra were referenced

against DSS.

5.2.3 Data Analysis

NMR spectra were processed using Topsin 3.1 (Bruker, Billerica, MA) and subsequent

data analysis using NNMF was carried out using MATLAB (Mathworks, Natick, MA). For

simulations, 13C spectra were calculated using a Lorentzian function with 20 Hz linewidth.

All spectra (DNP experiment or simulated) were first scaled such that the highest intensity

in the dataset is unity. The input values for data analysis using the NNMF algorithm were

absolute values of the rescaled data and the number of expected sources.

5.3 Results and Discussion

5.3.1 Analysis of DNP Enhanced NMR Data using NNMF

Figure 5.2 shows the time resolved spectra of reduction of oxaloacetic acid to malic

acid. The spectra show decay of signal intensity of peaks corresponding to oxaloacetic
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acid and appearance of peaks from malic acid. It must be noted here, that the signal decay

is due to spin relaxation, effect of radiofrequency pulses and the chemical reaction. Scans

7 –11 show clearly discernible peaks from both the species present in the solution, whereas

by scan 12 almost all signal has relaxed.

This data was used for analysis using NNMF. As described in equation 5.1, matrix

V corresponds to the NMR data (matrix size, 32768×16 data points) shown in Figure

5.2. To analyze this data using the NNMF algorithm to separate two sources, the initial

values of source (W) and coefficients (H) matrices were generated randomly with 32768×2

and 2×16 entries, respectively. These matrices are updated using the multiplicative update

rules shown in equations 5.3 & 5.4 until the convergence condition is met. The results from

the separation of sources (here, peaks from oxaloacetic acid and malic acid) is shown in

Figure 5.3 (a). It can be seen that reference spectrum 1 also contains (<10%) contributions

from peaks representing the second species. This contribution, however, is random and is

variable if the calculations are repeated multiple times.

Based on the convergence condition described in equation 5.2, the reconstructed matrix

WH should be very similar to the experimental data. The comparison between the spectra

from the experiment and reconstruction is presented in Figure 5.3. Reconstructed spectra

from the other scans agree with the measured spectra (not shown). Scans 1 and 7 represent

two points in the reaction when the sample contains predominantly oxaloacetic acid and

measurable amount of malic acid respectively. It can be seen from Figure 5.3 (b) & (c)

that the reconstruction faithfully reproduces these time points in the reaction.

Additionally, the robustness of the algorithm was tested by specifying three sources

for the same dataset. In equation 5.1, the source matrix, W, has size (m× p) where p is the

number of sources. To test the robustness of separation, the number of sources, p, was set

to 3 in this case. This procedure returned a third source with just noise (Figure 5.4).

83



δ (13C) [ppm]

210 200 190 180 170 160 150

MAL OXA OXAOXA

Scan 4

Scan 12

Figure 5.2: Series of low signal-to-noise spectra showing the reduction of oxaloacetic
acid to malic acid. Spectra corresponding to scans 4 to 12 (from a total of 16 scans) are
shown. Resonances from malic acid and oxaloacetic acid are indicated as MAL and OXA
respectively. 1H decoupling was applied during acquisition with a strength of 2.5 kHz. It
should be noted that the experimental conditions were not optimized for measuring spectra
with the best possible S/N.
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Figure 5.3: (a) Reference spectra obtained using NNMF. Reference spectrum 1 and 2
refer correspond to CO resonances from malic acid and oxaloacetic acid, respectively.
The identity of the two spectra are random and may be reversed in another attempt. (b)
& (c) Comparison between spectra obtained from dissolution DNP-NMR experiment (b)
and spectra reconstructed after analysis using NNMF (c). Spectra from scans 1 and 7 are
shown where scan 1 shows peaks from hyperpolarized oxaloacetic acid while scan 7 shows
peaks from both oxaloacetic acid and malic acid generated from the reaction.
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Figure 5.4: Output from NNMF algorithm when subjected to extracting three references
instead of two. References in black and red correspond to malic acid and oxaloacetic acid
peaks.

5.3.2 Effect of Noise

It is of interest that the reconstructed spectra have significantly higher signal to noise

ratio (standard deviation of noise is ∼2 times lower in the reconstructed spectra) when

compared to the measurement (Figure 5.3 (b) & (c)). This aspect of the NNMF and spectral

reconstruction is of particular significance in DNP enhanced NMR experiments.

To evaluate the effect of noise in the spectra, a dataset with four peaks each for reactants

and products were simulated, while ignoring the effect of relaxation. The reaction was

simulated for a period of 2 seconds with 6, 16 and 32 scans. The reaction rate constant

used in the simulations was 2 s−1. Effect of noise in the spectrum was investigated by

adding noise to generate four “noisy” time series of spectra and the performance of NNMF

was evaluated using these datasets.

Initially, the dataset containing 6 spectra was reconstructed using the BSS extracted

references as shown in Figure 5.5. In all cases, an improvement in S/N was observed

in the spectra reconstructed after NNMF analysis including in (d), where the signals are

almost indistinguishable from noise in the input data. In order to obtain an estimate of
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improvement in S/N in the reconstructed spectra, the standard deviation of noise was com-

pared between the simulated spectra and reconstructed spectra. The standard deviation of

noise was computed from the absolute value data using the definitions

s =

√√
1

n − 1

n∑
i=1

(xi − x)2 (5.5)

x =
1
n

n∑
i=1

xi (5.6)

Here, s is the standard deviation, n is the number of points in the region over which

noise is calculated, xi is the ith data point and x denotes the calculated mean over the region.

For the simulation with data from 6 scans, Table 5.1 shows that the standard deviation

of noise in the case of reconstructed spectra is at least 30% lower than the input data. It

is noted here that the standard deviation calculated in this way using absolute value data

would be different from the standard deviation calculated from non-absolute value data.

While the above definition was used here for simplicity, other approaches to estimate noise

in the absolute value spectra may also be employed as reported in the literature [184, 185].

In typical kinetics experiments using dissolution DNP, the number of transients used

in the measurement is usually higher. Therefore, the effect of higher numbers of scans

on the improvement of signal to noise in the reconstructed spectra was evaluated using

datasets with 16 scans and 32 scans. The NNMF algorithm was used to extract sources

and reconstruct each of these datasets. Table 5.1 compares the standard deviation of noise

between simulations of three datasets with 6 scans, 16 scans and 32 scans. In general, later

scans in the simulations, which have higher noise, show greater (and similar) improvement

in S/N in both the 16 and 32 scans data when compared with the 6 scans data.
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Figure 5.5: Comparison between simulated and NNMF reconstructed spectra. Scans 1, 3
and 5 (out of six scans total), corresponding to scenarios of S/N (a) 100, (b) 50, (c) 25 and
(d) 10 are shown. “Simulated spectra” plotted here refers to the intensity rescaled data that
is provided as input to the NNMF algorithm.
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Table 5.1: Comparison of S/N ratio improvement between simulated and reconstructed
spectra for different noise levels

Data Standard Deviation of Noise

Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6

6 scans

S/N ratio = 25

Simulated 0.0234 0.0234 0.0236 0.0236 0.0236 0.0241

Reconstructed 0.0169 0.0128 0.0099 0.0099 0.0130 0.0169

S/N ratio = 10

Simulated 0.0925 0.0913 0.0909 0.0893 0.0888 0.0916

Reconstructed 0.0612 0.0522 0.0394 0.0395 0.0498 0.0636

16 scans

S/N ratio = 25

Simulated 0.0251 0.0247 0.0247 0.0244 0.0238 0.0251

Reconstructed 0.0115 0.0106 0.0095 0.0085 0.0076 0.0070

S/N ratio = 10

Simulated 0.0951 0.0957 0.0927 0.0925 0.0921 0.0949

Reconstructed 0.0419 0.0409 0.0344 0.0325 0.0311 0.0273

32 scans

S/N ratio = 25

Simulated 0.0246 0.0249 0.0244 0.0245 0.0247 0.0249

Reconstructed 0.0083 0.0082 0.0078 0.0074 0.0071 0.0067

S/N ratio = 10

Simulated 0.0953 0.0982 0.0984 0.0998 0.0982 0.0970

Reconstructed 0.0316 0.0319 0.0298 0.0294 0.0274 0.0267
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5.3.3 Effect of Spin Relaxation

The applicability of dissolution DNP experiments is often limited by the spin lattice

relaxation time of the analytes. It follows that the sites most amenable to study are those

that have the longest relaxation times. However, the choice of sites for observation is of-

ten dictated by the property under investigation rather than spectroscopic considerations.

An approach that improves signal to noise (S/N) ratio would be welcome in these circum-

stances and data analysis using NNMF seems to be a promising approach on this front.

Analysis of DNP enhanced NMR spectra must take into account the different spin

lattice relaxation times of various sites on the molecule of interest. To mimic the situation

where different peaks in the spectra have varying relaxation times, two situations were

considered. In the first case, spin lattice relaxation rate constants used for simulating the

spectra were smaller than the reaction rate constant (R1 < k; Figure 5.6(a)) while in the

second case relaxation rate constants are larger than the relaxation rate constants (R1 > k;

Figure 5.6(b)).

This time series of spectra was subjected to the NNMF algorithm and sources were

separated. In the first case (R1 < k), the calculated reference spectra contain all the ex-

pected resonances with only minor artifacts as seen in Figure 5.6(b). However, in the case

where R1 > k, the performance of the algorithm breaks down with one reference spectrum

containing all the peaks in the dataset. It can be seen in this case that only two out of total

six scans in the simulate data show peaks since the signal decay happens too quickly and

factorization of such datasets may not be possible using NNMF.

Based on these simulations, it can be said that in cases, where peaks from different

species are present in most of the scans, separation of sources can be accomplished albeit

with minor errors. However, when the input data is missing information, like in the case

where R1 > k, the algorithm breaks down. As would be expected from a factorization
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algorithm, datasets that can be constructed as a linear combination of two or more sources

can be analyzed using NNMF. In other cases, the results may not be representative of the

sources that make up the observed data.

In the context of BSS algorithms, it should be noted that the absolute intensities of

the references and, by extension, the weighting factors obtained from BSS are not reliable

since the intensities are scaled arbitrarily. This indeterminacy has been discussed else-

where in the literature [186]. While neither the intensity nor the weighting factors may be

utilized directly for quantitative analysis, source spectra may be integrated to obtain scal-

ing factors for each analysis. Using the scaling factors thus obtained, it would be possible

to scale the weighting factors to represent the concentrations of different species in the

sample. It should be noted, that this approach is only feasible if each reference spectrum

obtained from NNMF analysis is unique. In such cases, this approach may make it possi-

ble to use NNMF as a tool to extract quantitative information when applied to data from

dissolution DNP experiments.

5.4 Outlook

An additional consideration in developing BSS techniques for analyzing DNP en-

hanced NMR data would be to enable handling data where significant overlap of reso-

nances occur. Since multidimensional spectra are not always possible in dissolution DNP

experiments, improvements in BSS techniques would enable analysis of spectra similar to

those obtained in protein folding experiment presented in Chapter 4. One approach to get

better separation of sources is the introduction of sparsity constraints [182]. Multiplicative

update rules featuring sparsity constraints, as defined by Pauca and others in [187], are

shown in equations 5.7 and 5.8 below.

W ← W ·
VHT

WHHT + αW + 10−9 (5.7)
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H ← H ·
WT V

WT WH + βH + 10−9 (5.8)

Here, the value of α and β are constants that enforce sparsity. This algorithm may

carry greater utility in cases where significant overlap exists. An additional complication

in using sparsity based rules is that they are inherently parametric and hence the choice

of values of α and β affect the outcome, which would require additional systematic in-

vestigation. Methodological improvements that simultaneously improve noise reduction

and source separation would be of tremendous use for DNP–NMR experiments. A model

mathematical framework for such an improvement as applied to acoustic signals [188].

5.5 Conclusion

This work is a new application of NNMF to data obtained using dissolution DNP en-

hanced NMR spectroscopy. The most visible output of a blind source separation method

like NNMF is undoubtedly the different components that make up the observed signal.

NNMF was used to separate different components from a series of spectra and robust-

ness of the algorithm was evaluated. Improvement in signal-to-noise ratio was observed

in the spectra reconstructed from the matrices obtained from source separation. Several

cases which are applicable to dissolution DNP experiments were simulated and the per-

formance of NNMF algorithm was evaluated. In DNP experiments performed to identify

and/or characterize reaction intermediates, separation of different components along with

an improvement of S/N as obtained using NNMF is likely to be valuable tool for data

analysis.
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6. SUMMARY AND CONCLUSIONS

The strength of solution NMR spectroscopy as a technique to study macromolecular

samples is the almost single atom resolution that is attainable. At the same time, it is also

plagued by low sensitivity. To overcome the sensitivity problem, high sample concen-

trations or long acquisition times or both become necessary. Dissolution DNP effectively

addresses the sensitivity problem by providing large signal enhancements. A large number

of reports on dissolution DNP–NMR experiments with small molecules are available. The

work reported in this thesis is the direct observation of proteins using this technique. By

virtue of high S/N obtained in the reported experiments, signal averaging is not needed

and it becomes possible to harness the full potential of NMR spectroscopy to gain both

temporal and spectral resolution.

Dissolution DNP entails dissolving samples hyperpolarized in the solid state and trans-

ferring into an NMR tube for measurement of signal in solution state. Tendency of proteins

to foam when subjected to vigorous mixing leads to broad signals in NMR spectra. Binary

mixtures of water and organic solvents were explored in this work to reduce foaming and

measure 13C spectra from hyperpolarized protein samples. Samples of ribosomal protein

L23, were hyperpolarized on the 13C nuclei and more than 500 fold signal enhancement

in comparison with a non-hyperpolarized spectrum was obtained. A theoretical 13C spec-

trum of L23 was computed using published random coil chemical shifts. Comparing the

spectra from dissolution DNP experiment with the theoretical spectrum, identity of reso-

nances were obtained which were used to correlate the observed enhancement values with

the relaxation properties of specific sites as measured using a multiple scan experiment.

1H hyperpolarization of an unlabeled peptide, bacitracin, was shown to provide 30 and 45

fold enhancement for amide and aliphatic protons respectively.
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L23, which follows two state model of protein folding, was used as a model system to

develop the technique to monitor protein folding by measuring a series of time-resolved

13C spectra after a pH jump from a single hyperpolarized sample. Protein folding was

followed by observing the changes in the carbonyl region of the spectra. Using statistical

distribution of 13C chemical shifts, fractions of different secondary structure elements were

estimated for each transient. Cδ1 resonances of the five isoleucine residues in L23 were

resolved as refolding of L23 occurred.

Because of the non-renewability of spin polarization, DNP–NMR experiments are of-

ten limited to measuring 1D spectra. These 1D spectra are often crowded and site resolu-

tion is lost. To improve this situation, a selective multiple quantum coherence experiment

is demonstrated. This spectroscopic approach is attractive particularly in scenarios where

biochemical strategies like selective amino acid labeling or labeling specific site using

metabolic precursors are problematic. Finally, 13C spectra from hyperpolarized p27, an

intrinsically disordered protein, were measured where the sample transfer was carried out

using an aqueous buffer instead of binary mixtures. Hyperpolarized p27 was mixed with

CDK-2/Cyclin-A complex and chemical shift changes potentially reporting on structural

changes in p27 upon binding were observed.

The temporal resolution offered by DNP experiments enables identification of inter-

mediates in reactions under investigation. However, reference spectra for transient species

are difficult to obtain. Further, the population of transient species may be low, resulting

in peaks with low S/N ratio. To analyze such data, performance of a machine learning

algorithm was evaluated. Non-negative matrix factorization, a blind source separation

algorithm, was used to decompose time resolved NMR spectra from the enzymatic con-

versation of oxaloacetate to malate into different sources that make up the composite signal

in each transient. Simulations evaluating various conditions such as the effect of noise in

the spectra and variations in the relaxation times of different resonances were carried out
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and performance of the algorithm evaluated. It has been determined that in many cases,

this algorithm shows robust performance and shows tremendous potential for analyzing

DNP data.

In summary, results from experiments using dissolution DNP enhanced NMR spec-

troscopy to observe proteins directly were presented. The ability to perform time resolved

measurements with near atomic resolution could be beneficial in gaining understanding

of many transient process encountered in biological systems. Since NMR measurements

are carried out in solution state, conditions close to those encountered in vivo may be

reproducible in experiments using this technique.

In another application, interactions of different proteins with cell surface receptors

could be carried out in a similar setup as described earlier with the exception of using live

cells. It might even be possible to map the interaction interfaces using selective isotopic

labeling of the protein being hyperpolarized. In the case of uniformly labeled proteins, the

orientation of the protein at the time of binding and any interactions with the lipids during

this interactions could also be obtained simultaneously.

There are many more interesting problems that could be studied using dissolution DNP.

Numerous facets of biological systems have evaded understanding, sometimes because of

lack to tools to study these systems. It is hoped that the work in this thesis provides another

set of tools to approach the complexities of biological systems. It is also hoped that this

work provides an impetus to use dissolution DNP as a technique to study macromolecules

and develop strategies to gain insight into some of the many unanswered questions.

96



REFERENCES

[1] Timothy D. W. Claridge. High-resolution NMR Techniques in Organic Chemistry.

Elsevier, Amsterdam, Netherlands, 2009.

[2] Martin Billeter, Gerhard Wagner, and Kurt Wüthrich. Solution NMR structure de-
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