
IMPROVING PROCESSOR DESIGN BY EXPLOITING PERFORMANCE

VARIANCE

A Dissertation

by

ZHE WANG

Submitted to the Office of Graduate and Professional Studiesof
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Daniel A. Jiménez
Committee Members, Paul V. Gratz

Eun Jung Kim
Valerie E. Taylor

Head of Department, Nancy M. Amato

August 2014

Major Subject: Computer Science

Copyright 2014 Zhe Wang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79649221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Programs exhibit significant performance variance in theiraccess to microarchitectural

structures. There are three types of performance variance.First, semantically equivalent

programs running on the same system can yield different performance due to characteris-

tics of microarchitectural structures. Second, program phase behavior varies significantly.

Third, different types of operations on microarchitectural structure can lead to different

performance.

In this dissertation, we explore the performance variance and propose techniques to

improve the processor design.

We explore performance variance caused by microarchitectural structures and propose

program interferometry, a technique that perturbs benchmark executables to yield awide

variety of performance points without changing program semantics or other important

execution characteristics such as the number of retired instructions. By observing the be-

havior of the benchmarks over a range of branch prediction accuracies, we can estimate

the impact of a microarchitectural optimization optimization and not the rest of the mi-

croarchitecture.

We explore performance variance caused by phase changes anddevelop prediction-

driven last-level cache (LLC) writeback techniques. We propose a rank idle time predic-

tion driven LLC writeback technique and a last-write prediction driven LLC writeback

technique. These techniques improve performance by reducing the write-induced interfer-

ence.

We explore performance variance caused by different types of operations to Non-

Volatile Memory (NVM) and propose LLC management policies to reduce write over-

head of NVM. We propose an adaptive placement and migration policy for an STT-RAM-

ii

based hybrid cache and writeback aware dynamic cache management for NVM-based

main memory system. These techniques reduce write latency and write energy, thus lead-

ing to performance improvement and energy reduction.

iii

Dedicated to my Parents and Grandparents.

iv

ACKNOWLEDGEMENTS

I would like to thank many people who gave me assistance in my research and con-

tributed to this dissertation.

First of all, I would like to thank my advisor Daniel A. Jiménez. My interests in

computer architecture started with me taking the CS5513 Computer Architecture class

which was taught by Daniel. After taking the class, I went to Daniel’s office and told

him I wanted to work with him in computer architecture research which turned out to be

one of the best decisions I have ever made. During my graduatestudy, Daniel has been

deeply involved, with patient mentoring and insightful guiding of my research. Daniel’s

enthusiasm in research influenced and inspired me to have funin what I’m doing, as he

used to say “if you can’t have fun in this research project, you don’t have to do it.” Daniel

has made it his responsibility to provide me with the research resources and built the

research context which made it is possible for me to do the top-level research. I am and

will always be grateful for all the help he gave me to accomplish my goals.

I would like to thank my committee members at UTSA and Texas A&M for their

insightful feedback on my work. They are Paul V. Gratz, Daniel A. Jiménez, Eun Jung

Kim, Valerie E. Taylor, Dakai Zhu, Hugh Maynard, Rajendra V.Boppana and Byeong

Lee.

I would like to thank Yuan Xie who was my mentor during my intern at AMD research

in Beijing. He helped me understand the Non-Volatile Memoryand collaborated on two of

our Non-Volatile Memory projects. I appreciate the generous help and invaluable advice

Yuan provided me during the study.

I would like to thank Sooraj Puthoor and Bradford M. Beckmannwho were my men-

tors during my intern at AMD research in Austin. While Brad directed my GPU study and

v

helped me understand the GPU architecture in high level, Sooraj helped me with learning

the simulator and figuring out the implementation details ofthe experiments on a daily

basis. Thank you for giving me a stimulating intern experience.

I also would like to thank Cong Xu, a graduate student at Pennsylvania State Uni-

versity. He collaborated with us on the APM project. He helped derive the STT-RAM

parameters and helped me understand the NVSim simulator.

I am very thankful to many other graduate peers and colleges for their contribution

to my research through discussions, suggestions on paper drafts and feedback on practice

talk. They are: Jichi Guo, Yingying Tian, Elvira Teran, Samira Khan, kyungwook Chang,

Somaieh Bahrami, Ting Cao, Yi Xu, Shan, Guangyu Sun, Ehsan Fatehi, Andrew Targhetta,

Jinchun Kim and Luke McHale.

My special thanks to my friends: Meng Sun, Xin Ding and Juan Yang. Thank you for

always being there to support me, share my happiness and helpme get through countless

frustrations.

Finally, I am deeply in debt to my family for being there for me. Grandpa Jianying Xia

taught me independent thinking by personal example, and told me that it is one of the most

important characteristics I should have. Grandma Xianzheng Li is the most hard working

and considerate person I know. This dissertation could not have been written without the

impacts of my grandparents to my life. I also want to thank my aunt Shaohua Xia for

taking care of the family while I am away pursuing my PHD study. Finally, many thanks

to my parents Guohua Xia and Mingxiang Wang for their caring love and sacrifices. Their

unconditional love and support gave me the courage to complete this long journey.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . xi

LIST OF TABLES . xv

1. INTRODUCTION . 1

1.1 Performance Variance Caused by Microarchitectural Structures 1
1.2 Performance Variance Caused by Phase Change 3
1.3 Performance Variance Caused by Operation Types 4
1.4 Thesis Statement . 5
1.5 Contributions . 5

2. BACKGROUND AND RELATED WORK 7

2.1 Exploring Performance Variance to Develop the Performance Model . . . 7
2.1.1 Eliciting Performance Variance 7
2.1.2 Impact of Code Placement on Performance8
2.1.3 Estimating Simulation Results with Regression 9
2.1.4 Estimating Behavior of Real Systems9

2.2 Exploring Performance Variance to Reduce Write-Induced Interference . 10
2.2.1 DRAM Systems . 10
2.2.2 Address Mapping Scheme . 11
2.2.3 Memory Access Scheduling . 11
2.2.4 LLC Writeback . 12
2.2.5 Dead Block Prediction . 13

2.3 Exploring Performance Variance to Reduce Write Overhead of Non-Volatile
Memory . 13
2.3.1 Emerging Non-Volatile Memory 13
2.3.2 Related Work on Mitigating PCM Write Overhead 16
2.3.3 Related Work on Mitigating Write Overhead of STT-RAM 17

vii

3. EXPLORING PERFORMANCE VARIANCE TO DEVELOP PERFORMANCE
MODEL . 19

3.1 Motivation . 20
3.2 Description . 22

3.2.1 Instruction Addresses in Microarchitectural Structures 22
3.2.2 A Wide Range in Performance 23
3.2.3 Causing Collisions . 23
3.2.4 Making Predictions . 23
3.2.5 When Things Go Wrong . 24

3.3 Experimental Methodology .24
3.3.1 Compiler . 25
3.3.2 Benchmarks . 25
3.3.3 Generating Random Code Reorderings25
3.3.4 System . 25
3.3.5 Running with Performance Monitoring Counters 26
3.3.6 Simulation . 27
3.3.7 Timing Concerns . 27

3.4 Estimating Performance by Counting Microarchitectural Events 28
3.4.1 Assigning Blame . 28
3.4.2 Establishing Statistical Significance 29
3.4.3 Number of Samples . 29
3.4.4 Blame the Branch Predictor . 31
3.4.5 A Linear Performance Model . 31

3.5 Estimating Branch Prediction Performance 32
3.5.1 Branch Prediction Simulation .33
3.5.2 Impact of Mispredictions on Performance 33

4. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE-INDUCED
INTERFERENCE . 36

4.1 Rank Idle Time Prediction Driven Last-Level Cache Writeback 38
4.1.1 Description . 38
4.1.2 Address Mapping . 39
4.1.3 Two-Level Rank Idle Time Predictor40
4.1.4 LLC Writeback Policy . 45
4.1.5 Storage Overhead . 46

4.2 Last-Write Prediction Driven Last-Level Cache Writeback 47
4.2.1 Last-Write Predictor . 48
4.2.2 Writeback Mechanism . 51
4.2.3 Storage Overhead . 53

4.3 Experimental Methodology .54
4.3.1 System . 54
4.3.2 Benchmarks . 54

4.4 Experimental Results for Rank Idle Time Prediction Driven LLC Write-
back Technique . 55

viii

4.4.1 Techniques . 55
4.4.2 Performance Analysis . 56
4.4.3 Prediction Analysis . 59
4.4.4 Memory Efficiency Analysis . 61

4.5 Experimental Results for Last-Write Prediction DrivenLLC Writeback
Technique . 63
4.5.1 Techniques . 63
4.5.2 Performance Evaluation . 64
4.5.3 Prediction Evaluation . 67
4.5.4 Bus Utilization and Read Latency Evaluation 68
4.5.5 Row-buffer Hits Rate Evaluation for DRAM Writes 70

5. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE OVER-
HEAD OF NON-VOLATILE MEMORY . 71

5.1 APM: Adaptive Placement and Migration Policy for an STT-RAM-Based
Hybrid Cache . 72
5.1.1 Comparison of STT-RAM and SRAM Cache 72
5.1.2 Analysis of LLC Write Access Patterns73
5.1.3 Policy Design . 78

5.2 WADE: Writeback-Aware Dynamic Cache Management for NVM-based
Main Memory System . 84
5.2.1 Motivation . 84
5.2.2 Policy Design . 88
5.2.3 Frequent Writeback List Cache Segmentation 91

5.3 Evaluation Methodology for APM Technique 94
5.3.1 Single-Core Workloads and LLC Configuration 96
5.3.2 Multi-Core Workloads and LLC Configuration 96

5.4 Evaluation Methodology for WADE Technique 97
5.4.1 Single-Thread Workloads . 98
5.4.2 Multi-Core Workloads . 98

5.5 Evaluation Results for APM Technique 99
5.5.1 Single-Core Evaluation Results 99
5.5.2 Multi-Core Evaluation Results102
5.5.3 Storage Overhead and Power . 105

5.6 Evaluation Results for WADE Technique 106
5.6.1 Single-Core Evaluation Results 106
5.6.2 Multi-Core Evaluation Results109
5.6.3 Sensitivity Study . 112
5.6.4 Storage and Power Overhead . 113

6. CONCLUSIONS . 115

6.1 Developing Performance Model by Exploring PerformanceVariance . . . 115
6.2 Reducing Write-induced Interference by Exploring Performance Variance 116
6.3 Reducing NVM Write Overhead by Exploring Performance Variance . . . 116

ix

REFERENCES . 118

x

LIST OF FIGURES

FIGURE Page

1.1 Violin plots for SPEC CPU 2006 percentage performance variation with
code reordering. 2

1.2 The performance and dynamic energy impact of write on various systems 4

2.1 Address mapping scheme (a) cache line interleaving (b) page interleaving 11

2.2 An illustration of Phase-change RAM (PCM) cell. The GST has two
phases: the amorphous phase with high resistance and the crystalline phase
with low resistance. 14

2.3 An illustration of STT-RAM cell .. 15

3.1 Performance changes with branch prediction accuracy for 400.perlbench
and 471.omnetpp. 20

3.2 Coefficient of determination showing how much of each type of event ac-
counts for overall performance. 29

3.3 MPKI of real and simulated branch predictors. 33

3.4 Predicted CPI of real and simulated branch predictors. 34

4.1 Read latency using conventional writeback and perfect writeback tech-
niques in quard-core processor . 37

4.2 System structure . 39

4.3 Example of memory access . 40

4.4 A two-level rank idle time predictor 41

4.5 Rank idle time prediction driven writeback scheduling algorithm 43

4.6 Prediction timeline . 44

4.7 SSV structure . 45

4.8 System structure . 47

xi

4.9 Behavior of the LLC write simulator 49

4.10 Performance evaluated on eight-core two-rank system 56

4.11 Average performance evaluated on two-rank and four-rank systems 57

4.12 False positive rates for two-level predictor evaluated on eight-core two-
rank system . 59

4.13 The percentage of write access, read access and completely eliminated
write interference . 60

4.14 Read latency evaluation on eight-core two-rank system. 61

4.15 Bus Utilization evaluation on eight-core two-rank system 62

4.16 Results running on eight-core one-rank system with LRULLC 64

4.17 Results running on eight-core one-rank system with NRULLC 64

4.18 Performance evaluated for various configurations 66

4.19 False positive rate and fraction of correctly predicted last-write blocks for
last-write predictor with one-rank and NRU LLC configuration 67

4.20 Bus utilization results running on eight-core one-rank system with NRU
LLC . 68

4.21 Performance evaluated for various configurations 69

4.22 Read latency results for various configurations 69

4.23 Writes row-buffer hit rate for various configurations 70

5.1 Distribution of LLC write accesses. Each type of write access accounts for
a significant fraction of total write accesses 74

5.2 An example illustrating read range and depth range 74

5.3 The distribution of access pattern for each type of LLC write access . . . 75

5.4 Flow-chart of the adaptive block placement and migration mechanism . . 79

5.5 System structure . 80

5.6 An example illustrating the set behavior of pattern simulator 80

5.7 LLC miss penalty on throughput and energy for dirty cacheblock and
clean cache block . 84

xii

5.8 Region-based memory write access pattern in PCM for483.xalancbmkfor
500 million instructions. One region contains16 contiguous blocks. X-
axis shows the number of region access times ([M N) means the region is
accessed byX times andM <= X < N). Very few regions are accessed
frequently (e.g., only 12 regions are accessed more than 128times). . . . 85

5.9 3D view for write access pattern in PCM within seven hot regions for
483.xalancbmk. The X-axis shows the 16 cache blocks within a region.
The Z-axis shows 7 regions that the number of writeback accesses larger
than 64. 86

5.10 The impact on performance and energy for various size ofwriteback list
for 400.perlbench. For a 16-way LLC, the optimal segmentation size for
frequent writeback list is 11. 88

5.11 System structure . 89

5.12 Illustration of frequent write predictor. FWP is a set associative structure,
each set has multiple entries with multiple fields 90

5.13 FWP address mapping scheme. Every m LLC sets map to n FWP 90

5.14 The logical view of frequent writeback list segmentation mechanism. Each
set is partitioned into frequent writeback list and non-frequent writeback list 92

5.15 The mechanism of segment predictor. It consists of six leader sets with
segment size 0, 4, 8, 12, 16 and segment size 16 with bypassing. 92

5.16 The distribution of write accesses to STT-RAM lines in APM LLC for
single-core applications . 99

5.17 The comparison of IPC for single-core applications (normalized to 2M
SRAM LLC) . 100

5.18 The power breakdown for single-core applications (normalized to 2MB
SRAM) . 101

5.19 The distribution of write accesses to STT-RAM lines in APM LLC for
multi-core applications . 102

5.20 The comparison of IPC for multi-core applications (normalized to 8MB
SRAM) . 102

5.21 The LLC power breakdown for multi-core applications (normalized to
8MB SRAM) . 103

xiii

5.22 The memory energy breakdown for multi-core applications (normalized to
8MB SRAM) . 105

5.23 The comparison of IPC for single-core applications (normalized to LRU) . 107

5.24 The number of writeback requests to PCM for single-coreapplications
(normalized to LRU) . 108

5.25 The comparison of energy consumption in PCM for single-core applica-
tions (normalized to LRU) . 108

5.26 Runtime predicted best frequent writeback list size 109

5.27 The comparison of IPC for multi-core applications (normalized to LRU) . 110

5.28 The number of writeback requests to PCM for multi-core applications
(normalized to LRU) . 110

5.29 The comparison of energy consumption in PCM for multi-core applica-
tions (normalized to LRU) . 110

5.30 LLC misses per kilo-instruction (MPKI) for multi-coreapplications (nor-
malized to LRU) . 111

5.31 The impact on performance and energy for parameter p 112

5.32 Performance evaluation with various cache size (normalized to LRU with
2M LLC size) . 113

5.33 The number of writeback requests to PCM with various cache size (nor-
malized to LRU with 2M LLC size) . 113

xiv

LIST OF TABLES

TABLE Page

3.1 “Yes” means that the null hypothesis of “no correlation”is rejected with
p ≤ 0.05, i.e., with 95% probability, the given measurement is correlated
with CPI. 30

3.2 Least-squares regression model relating branch prediction to performance.
Shows high and low prediction intervals for perfect prediction i.e. 0 MPKI. 32

4.1 System configuration . 54

4.2 DDR3-1600 DRAM timing . 54

4.3 Multi-core workload mixes .55

4.4 Legend for various writeback techniques. 56

4.5 Legend for various cache optimization techniques. 63

5.1 Characteristics of SRAM and STT-RAM caches (22nm, temperature=350K) 72
5.2 System configuration . 94

5.3 Legend for various LLC techniques. 95

5.4 Multi-Core workloads . 95

5.5 System configuration. Memory timing and energies are adapted from [41] 97

5.6 Workloads . 98

xv

1. INTRODUCTION

Programs exhibit significant performance variance in theiraccess to microarchitec-

tural structures. There are three types of performance variance. First, there is performance

variance caused by microarchitectural structures. For instance, semantically equivalent

programs running on the same system with different code placements can yield different

performance. This is caused by microarchitectural structures that use a hash of instruc-

tion and data addresses, where different code layout will result in a difference impact on

performance. Second, there is performance variance causedby phase change. When a pro-

gram goes through phases, the behavior of microarchitecture events can be different, such

as cache miss ratio, branch misprediction ratio and memory access patterns, which lead

to performance variance. Third, there is performance variance caused by different types

of operations. Read and write operations have different access latency and power con-

sumption in NVM-based memory. In this dissertation, we exploit performance variance to

improve processor design.

1.1 Performance Variance Caused by Microarchitectural Structures

Mytkowicz et al. introduce the technique of object file reordering for showing that dif-

ferent link orders of object files, as well as other seeminglyrandom and harmless details

of an experimental setup, can yield significantly differentperformance [54]. Since several

microarchitectural structures use a hash of instruction and data addresses. Such as caches,

translation lookaside table and branch predictor. Sometimes addresses will accidentally

collide in some microarchitectural structure. A particular code and data placement will

result in a particular number of accidental collisions witha particular impact on perfor-

mance. A different layout will result in a difference impacton performance, thus yields

performance variance.

1

−
2

0
2

4

P
er

ce
nt

 D
iff

er
en

ce
 in

 C
P

I

400.perlbench

401.bzip2

403.gcc

410.bwaves

416.gam
ess

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusAM
D

444.nam
d

445.gobm
k

450.soplex

454.calculix

456.hm
m

er

459.Gem
sFDTD

462.libquantum

464.h264ref

465.tonto

471.om
netpp

473.astar

482.sphinx3

483.xalancbm
k

Benchmark

Figure 1.1: Violin plots for SPEC CPU 2006 percentage performance variation with code
reordering.

Figure 1.1 shows the percent difference from average performance as measured by

cycles-per-instruction (CPI) caused by 100 random but plausible code reorderings for the

SPEC CPU2006 benchmarks. The graph is a violin plot, showingthe probability density

at each CPI value, i.e., the thickness at each CPI value is proportional to the number of

CPIs observed in that neighbourhood. Clearly, some benchmarks are greatly affected by

differences in instruction addresses while some are less sensitive.

By exploring the performance variance caused by code reordering, we develop a tech-

nique to build a performance model for program and microarchitecture by using real sys-

tems. The technique is calledProgram Interferometry. It is based on perturbing placement

of code and data. By measuring the resulting adverse microarchitectural events using dif-

ferent code and data replacements, we can build a performance model for the program and

microarchitecture. Compared with cycle-accurate simulators which are inaccurate with re-

spect to real systems because many of the details of real systems are difficult or impossible

to model or even to know about [10], the performance model canexplore new microar-

chitectural ideas in the absence of clear information aboutwhat future microarchitectures

2

will look like.

1.2 Performance Variance Caused by Phase Change

Programs can go through phases where the phase behavior varies significantly. When

the program runs into different phases, the behavior of microarchitecural events are dif-

ferent, such as cache miss ratio, branch misprediction ratio and memory access patterns.

We explore the memory access variance caused by phase changeto improve the memory

efficiency.

Memory access latency is a major performance bottleneck. A LLC miss can stall

the pipeline and require hundreds of cycles of delay. Memorywrite requests compete

with read requests for the available memory resources, delay the service of the follow-

ing read requests. This write-induced interference can significantly degrade the system

performance.

The memory access pattern exhibits significant variance. Memory read requests tend

to come in bursts. The DRAM can busy service the memory requests for a while then idle

for a while. Additionally, in modern DDRx-based systems, multiple memory controllers

and multiple ranks are used to service memory requests in parallel. Due to workload

characteristics and load imbalance, some ranks often have idle cycles while the application

is running.

By exploring the memory access variance, we develop the prediction driven last-level

cache writeback (LLC) technique. We propose a rank idle timeprediction driven LLC

writeback technique. This technique sends write request toDRAM during the long rank

idle period, thus minimizing the delay it caused to the following read requests. We also

propose a last-write prediction driven LLC writeback technique. It improves the writeback

efficiency by increasing the write scheduling space. Our techniques significantly reduce

the write-induced interference.

3

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

dU
p

 PCM
DRAM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DRAM PCM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 D
yn

am
ic

 E
ne

rg
y

Write Energy
 Read Energy

(a) Speedup (b) Dynamic Energy

Figure 1.2: The performance and dynamic energy impact of write on various systems

1.3 Performance Variance Caused by Operation Types

Read and write operations in memory have different access latency and power con-

sumptions, especially for NVM-based memory. The latency and energy of write opera-

tions for NVM are significantly higher than for read operations. The long write latency

can degrade performance by causing large write-induced interference to subsequent read

requests. The high write energy can increase power consumption.

Figure 1.2 shows average performance and dynamic energy impacts of write requests

on various systems for memory intensive SPEC CPU2006 benchmark. We assume that

the read and write memory requests for DRAM-based main memory have similar access

latency and dynamic power consumption. For PCM-based main memory, the write latency

and energy consumption are assumed to be10X of that for the read requests. The schedul-

ing policy we used for evaluation isread prioritizes write[85]. From Figure 1.2(a), we can

see that the speedup of DRAM-based main memory is30% compared to PCM-based main

memory. Figure 1.2(b) shows the write energy dominates the PCM energy consumption,

and it consumes65% of total dynamic energy consumption, although write requests only

account for25.5% of all the memory accesses.

By exploring the performance variance caused by asymmetricread and write opera-

4

tions, we propose LLC management policy to reduce the large write overhead of NVM. We

propose adaptive placement and migration policy for an STT-RAM-based hybrid cache.It

can achieve high performance by making use of the large capacity of STT-RAM and main-

tain low write overhead using SRAM. We also propose writeback-aware dynamic cache

management for NVM-based main memory system. The techniqueimproves system per-

formance and energy efficiency by reducing the number of writeback requests to NVM-

based main memory.

1.4 Thesis Statement

Programs exhibit significant performance variance in theiraccess to microarchitectural

structures. To the extent that this variance is predictable, it can be exploited to improve

processor design.

1.5 Contributions

The dissertation will make the following original contributions:

• We explore the performance variance caused by microarchitectural structures and

propose program interferometry technique [83]. This technique elicits microarchi-

tectural events such as branch mispredictions and cache misses to enable the devel-

opment of a performance model for a given program. We use program interferome-

try to develop a branch prediction performance model for SPEC CPU 2006 bench-

marks running on the Intel Xeon E5440. Based on regression models developed

with branch interferometry, we make specific predictions about the performance of

the benchmarks at different branch prediction accuracies.Using a branch prediction

simulator and our regression models, we estimate the performance of the bench-

marks on a hypothetical Intel Core optimized with differentbranch predictors. We

simulate only the branch predictor and do not need to simulate the rest of the mi-

croarchitecture.

5

• We explore the memory access variance caused by phase changeand propose a rank

idle time prediction driven LLC writeback technique [86] that makes use of the

rank idle cycles to isolate the service of memory read and write requests as much as

possible. This technique uses a low-overheadrank idle time predictorto predict long

periods of idle time in memory ranks. Scheduled write requests are written back to

the memory guided by the predictor to reduce the write-induced interference.

• We propose a decoupled last-write prediction driven LLC writeback technique [85].

This technique makes last-write blocks in the LLC availableto the memory con-

troller for scheduling. It effectively expands the write scheduling space and bal-

ances memory bandwidth by re-distributing memory write requests, thus reducing

write-induced interference. The technique is completely decoupled from the LLC

replacement policy.

• We explore the asymmetric read and write operation problem of NVM and pro-

pose adaptive block placement and migration policy for an STT-RAM-based hybrid

LLC [84]. In the technique,LLC write accesses are categorized into three classes:

prefetch-write, demand-write, and core-write. Our proposed technique places a

block into either STT-RAM lines or SRAM lines by adapting to the access pat-

tern of each class. An access pattern predictor is proposed to direct block placement

and migration, which can benefit from the high density and lowleakage power of

STT-RAM lines as well as the low write overhead of SRAM lines.

• We propose a writeback-aware dynamic cache management technique to help miti-

gate the write overhead in NVM-based memory [87]. The technique predicts blocks

that are frequently written back from the LLC. The LLC sets are dynamically par-

titioned into a frequent writeback list and a non-frequent writeback list. It keeps a

best size of each list in the LLC.

6

2. BACKGROUND AND RELATED WORK

This dissertation explores performance variance to develop the performance model,

reduce the write-induced interference in main memory and mitigate write overhead of

NVM. To provide context of our research, we now give background and review some of

the recent work related to our research.

2.1 Exploring Performance Variance to Develop the Performance Model

This section gives the background and recent work related todeveloping the perfor-

mance model by exploring performance variance.

2.1.1 Eliciting Performance Variance

Mytkowicz et al. introduce the technique of object file reordering for showing that

different link orders of object files, as well as other seemingly random and harmless de-

tails of an experimental setup, can yield significantly different performance [54]. That

work indicts the architecture and programming languages community for falling victim

to measurement bias, i.e., allowing oneself to believe thatsome observed improvement in

program behavior is due to one’s own technique rather than a happy coincidence of ex-

perimental factors. Our work was partly inspired by Mytkowicz et al.. We choose to see

the phenomenon they exposed as an interesting opportunity to develop a tool to examine

microarchitectural behavior.

Rubin et al. propose a framework to explore the space of data layouts using profile

feedback to find layouts that yield good performance [71]. They point out that the general

problem of optimal data layout is NP-hard and poorly approximable. The space of data

layouts is similar to the space of code reorderings, and the impact of data layouts on

the data cache is similar to the impact of code placement on the branch predictor and

7

instruction cache.

2.1.2 Impact of Code Placement on Performance

The impact of code placement on performance has not gone unnoticed in the aca-

demic literature. Many code-improving transformations have been proposed based on

code placement. Hatfield and Gerald [18], Ferrari [15], McFarling [47], Pettis and Han-

son [59], and Gloy and Smith [16] present techniques to rearrange procedures to improve

locality using profiling. Mytkowiczet al. exploit the kind of performance variance de-

scribed in this paper to optimize programs [38]. Calder and Grunwald presentbranch

alignment, an algorithm that seeks to minimize the number of taken branches by reorder-

ing code such that the hot path through a procedure is laid outin a straight line [3]. Young

et al. present a near-optimal version of branch alignment [92]. Jiménez proposes a tech-

nique to use code placement to explicitly avoid branch mispredictions due to conflicts in

the predictor tables [27]. Knightset al. propose exploiting fortuitous object code orderings

to improve performance [38].

From the microarchitecture side, a trace cache is a specialized instruction cache that

exploits instruction locality by organizing instructionsin the order they are executed, rather

than in their static program order[70]. With a trace cache, branch prediction and instruction

fetch can be made somewhat immune to the effect of code placement when there is a high

hit rate in the trace cache. The Intel Netburst microarchitecture in the Pentium 4 processor

line featured a micro-op trace cache [23].

Our technique is not an optimization, but a tool for peering inside the microarchitecture

using code placement. If thoughtful code placement optimizations like those mentioned

above were widely adopted, our results would show less variance in execution behavior

and less confidence in the regression lines. Nevertheless, most production code is not

optimized with code placement in mind; thus, our results arewidely applicable to real

8

systems.

2.1.3 Estimating Simulation Results with Regression

Lee and Brooks [40] propose using regression modelling to estimate processor per-

formance and power under a given microarchitectural configuration after sampling a small

portion of the microarchitectural design space through simulation. Performance and power

are accurately predicted with an error of about 4% on average. Josephet al. propose non-

linear [31] regression techniques such as neural networks for estimating CPI given a set

of microarchitectural parameters. The technique predictsCPI with an error of 2.8% on

average. Both of these proposal are intended to reduce the number of points in a processor

design space that must be simulated to find parameters that give good performance.

Our technique differs in that we are modelling the behavior of a real system rather than

a simulation design space. Simulators can be inaccurate with respect to real systems [10,

11]. On the other hand, real hardware is a perfectly valid model of itself. Through careful

measurement, the performance impact of changing a single microarchitectural feature such

as branch prediction can be estimated accurately using the hardware itself to model to rest

of the microarchitecture.

2.1.4 Estimating Behavior of Real Systems

Contreras and Martonosi use performance monitoring counters to develop a linear

power model of the Intel XScale processor [8]. This approachcan enable a technique

capable of quickly estimating future power behavior and adapting to it at run-time. Our

technique is similar in that it uses performance monitoringcounters to develop a model of

program behavior. However, we focus on modelling the behavior of one program at a time

to get very precise information about the change in performance in response to a small

change in the behavior of microarchitectural structures, i.e., our work concentrates on a

much finer level of granularity, and we focus on performance instead of power.

9

2.2 Exploring Performance Variance to Reduce Write-Induced Interference

This section gives the background and recent work related toreducing write-induced

interference by exploring performance variance.

2.2.1 DRAM Systems

The DDRx based memory system [25, 9] consists of one or more dual in-line memory

modules (DIMMs) composed of multiple chips. Each chip is organized as multiple banks

that can be operated in parallel. A memory rank is made up of a set of chips where chips

in the same rank can be accessed simultaneously. In a DDRx memory module, each rank

has a 64-bit data bus. Chips within a rank work in unison to return 64 bits per cycle. The

memory channel is made up of one or multiple memory ranks. Ranks in the same channel

share the same data bus. Modern multicore processors may have multiple channels.

A memory access includes both row access and column access [9]. An entire row of

bits that contains the required data is brought into the row buffer during row access, then

a column of this row buffer is selected according to the column address. Memory access

requests may be row-buffer hit requests, row-buffer closedrequests, or row-buffer conflict

requests. A row-buffer hit request goes to a currently open row. Data can be accessed

without activating the row buffer again. A row-buffer closed request goes to a row when

there is no open row in the row buffer. The required row must beactivated before the

data in the row-buffer can be accessed. A row-buffer conflictrequest goes to a row other

than the currently open row. Data in the currently open row must be written back first,

then the required row must be activated before the data can beaccessed. Thus, the access

latency for row-buffer conflict/closed requests is significantly higher than for row-buffer

hit requests.

10

 Row
 ID

Cache
Line

Channel
 ID

Bank
 ID

Rank
 ID

Column
 ID

 Row
 ID ID

Cache
Line

Rank Bank
 ID

Channel
 ID

Column
 ID

 (b)

 (a)

Figure 2.1: Address mapping scheme (a) cache line interleaving (b) page interleaving

2.2.2 Address Mapping Scheme

The memory address mapping scheme [93] [43] maps physical addresses to memory

resources. Figure 2.1 shows the conventional cache line interleaving and page interleaving

mapping schemes. In the cache line interleaving mapping scheme, consecutive cache lines

are distributed to different rank/bank/channel combinations to maximize the parallelism of

memory access, The page interleaving mapping scheme maps the lower order bits of the

physical address into the column address to maximize the number of row buffer hits.

2.2.3 Memory Access Scheduling

Memory access scheduling [68] reorders memory references to improve memory per-

formance. Much previous work [73, 78, 53, 37, 1, 52] focuses on improving memory

efficiency by scheduling or relocating memory accesses to yield as many row hits as pos-

sible or servicing memory accesses in parallel. Shaoet al. [73] propose a burst scheduling

algorithm that schedules requests that hit in the same row buffer into a burst to increase

row buffer hit rates and bus utilization. Sudanet al. [78] propose a page migration al-

gorithm that collocates frequently accessed data in the same row buffer to increase row

buffer hit rates in a multi-core system. Nesbitet al. [56] propose a fair queue schedul-

ing algorithm for multi-core systems. The fair queue scheduling algorithm allocates to

each thread a fraction of memory resources, thus reducing destructive interference and

11

improving fairness among threads. Mutluet al. [53] propose a parallelism-aware batch

scheduling technique for multi-core systems. Their technique first organizes memory re-

quests into batches to ensure the fairness of service, then within each batch, requests are

scheduled to maximize parallelism while at the same time minimizing the number of idle

cores by using a shortest-job-first scheduling technique. Hur et al.[22] propose a schedul-

ing algorithm that uses a state machine to make the next scheduling decision based on the

past behavior. Ipeket al. [24] use a reinforcement-learning approach to learn the optimal

memory scheduling policy according to past behavior.

2.2.4 LLC Writeback

Much previous work [78, 53, 37, 1, 52, 24] does not take into account the write inter-

ference problem. Eager writeback [42] is the first proposal that increases the visibility of

the write buffer by using the LLC to reduce write-induced interference. Eager writeback

writes back dirty cache blocks in the least-recently-used (LRU) position of the last-level

cache sets whenever the bus is idle instead of waiting for theblock to be evicted to reduce

the memory traffic.

Stuecheliet al. [77] propose a virtual write queue (VWQ) technique. Their technique

takes a fraction of the LRU positions in the LLC as the virtualwrite queue (also requir-

ing LRU). Dirty cache blocks in the virtual write queue that target the same row buffer

when mapping to the memory resource will be written back in a batch, therefore reducing

write-induced interference. Changet al. [55] propose a similar technique that writes back

qualified dirty cache blocks in the LLC to improve the memory efficiency.

To reduce write-induced interference, both eager writeback and VWQ techniques issue

write requests to DRAM when the rank is idle. Unfortunately,in their techniques, the

memory controller does not have knowledge about how long therank will remain idle.

The write-induced penalty might be too long to be hidden by the short rank idle period.

12

Additionally, both eager writeback and VWQ techniques require that the LLC implement

the costly LRU replacement policy.

2.2.5 Dead Block Prediction

Lai et al.[39] proposes last touch predictor that predicts the last touch cache blocks for

core caches. The last touch predictor uses program counter (PC) traces to detect the last

touch and invalidate the shared cache blocks to reduce cachecoherence overhead. Several

dead block predictors are proposed in previous work [35, 7, 44, 32]. The trace-based dead

block predictor [39] can detect when a cache block is accessed for the last time based on

the a given sequence of memory-access PCs. This predictor isused to prefetch data into

dead blocks in the L1 data cache. Huet al. [21] propose a time based dead block predictor

that learns the number of cycles a block is live and predicts it dead if it is not accessed for

twice that number of cycles. This predictor is used to prefetch into the L1 cache and filter

a victim cache. Recent work proposes [32] sampling dead block predictor for LLC that

predict the dead blocks in the LLC and replace them for usefulcache blocks.

2.3 Exploring Performance Variance to Reduce Write Overhead of Non-Volatile

Memory

This section gives the background and recent work related toreducing write overhead

of NVM by exploring performance variance.

2.3.1 Emerging Non-Volatile Memory

In recent years, significant efforts and resources have beenput on the researches and

developments of emerging memory technologies that combineattractive features such as

scalability, fast read/write, negligible leakage, and non-volatility. Multiple promising can-

didates, such as Phase-Change RAM (PCM), Spin-Torque Transfer RAM (STT-RAM),

and Resistive RAM (RRAM), have gained substantial attentions and are being actively

13

BL

WL

GST

Top electrode

GST

Heater

 Bottom

electrode

N+

Substrate

Figure 2.2: An illustration of Phase-change RAM (PCM) cell.The GST has two phases:
the amorphous phase with high resistance and the crystalline phase with low resistance.

pursued by industry [66].

2.3.1.1 Phase Change Memory

Among various emerging memory technologies, Phase-ChangeRAM (PCM) is one

of the most promising candidates for main memory because semiconductor companies

have made dramatic R&D progress in recent years. For example, Samsung demonstrated

an 8Gbit PCM memory chip recently [6], with CMOS-compatibleembedded PCM (Hi-

tachi and STMicro) [17, 58] have been demonstrated, paving the way for integrating these

NVMs into traditional memory hierarchies. In addition, emerging 3D integration tech-

nologies [79] enable cost-effective integration of these NVMs with CMOS logic circuits.

Compared with DRAM, the PCM [89] has high density, comparable read access time and

reasonable write endurance which made it a promising alternatives to existing main mem-

ories. Thus, many innovative memory architectures using PCM as main memory have

emerged in the last several years [61][89][64, 62, 94, 41].

In a PCM memory cell, the storage node is based on a chalcogenide alloy (typically

GeSBTe (GST) material), as shown in Figure 2.2. The resistance differences between an

amorphous (high resistance) and crystalline (low resistance) phase of chalcogenide-based

material indicate the stored value as “1” and “0”, respectively. Writing a bit to the PCM

14

Free Layer

Bitline

MTJ

Source Line

Wordline

Reference Layer

Tunnel Barrier Layer

Figure 2.3: An illustration of STT-RAM cell

cell is done throughsetandresetoperations: for set operations, the phase-change mate-

rial is crystallized by applying an electrical pulse that heats a significant portion of the

cell above its crystallization temperature. In reset operations, a larger electrical current is

applied and then abruptly cut off to melt and then quench the material, leaving it an amor-

phous state. Compared to charge-based SRAM/DRAM, PCM intrinsically takes longer

and consumes more energy to overwrite the existing data which could result in perfor-

mance degradation and high energy consumption.

2.3.1.2 STT-RAM Technology

STT-RAM is the second generation of MRAM. As shown in Figure 2.3, it uses a

Magnetic Tunnel Junction (MTJ) as an information carrier. Each MTJ consists of two fer-

romagnetic layers: a reference layer and a free layer. A tunnel barrier layer is sandwiched

between the two ferromagnetic layers. The reference layer has a fixed direction while the

free layer can change its direction by passing write current. The relative direction of the

reference and free layers are used to represent a memory bit.If the layers have the same

direction, the MTJ resistance is low which indicates state 0; otherwise, the MTJ resistance

is high which indicates state 1.

A read operation is performed by turning on the access transistor and applying a small

voltage difference between the bitline (BL) and source line(SL) to sense the MTJ resis-

15

tance. A write operation is performed by establishing a highvoltage difference between

BL and SL with a positive voltage difference for writing 1 anda negative voltage differ-

ence for writing 0.

2.3.2 Related Work on Mitigating PCM Write Overhead

Many researchers propose techniques to mitigate PCM write latency and energy over-

head. For example, Lee et al. [41] propose to use narrow PCM buffers to mitigate high-

energy PCM writes. Write cancellation and Write pausing [61] has been proposed to pri-

oritize read requests over write requests by adaptively cancel or pause the service of write

requests when read requests are waiting for service. Qureshi et al. [60] exploit asymmetry

in write times for SET and PRESET operation of PCM devices andpropose to initiate a

PreSET request for a memory line as soon as data written into the LLC, thereby incurring

low write-induced interference.

Hybrid main memory architecture has been proposed to leverage the benefits of both

DRAM and PCM technologies. Qureshiet al. [64] propose a main memory system con-

sisting of PCM storage coupled with a DRAM write buffer, so that it has the latency ben-

efits of DRAM and the capacity benefits of PCM. Yoonet al. [91] propose to improve the

hybrid performance by caching the frequent row buffer miss requests in DRAM. Ramos

et al. [65] propose a page ranking and migration policy for the hybrid PCM and DRAM

based main memory.

Write endurance poses another severe challenge in PCM memory design. The cells

suffering from more frequent write operations will fail farsooner than the rest. A read-

before-write operation [30] can help identify such redundant bits and cancel those re-

dundant write operations to save energy and reduce impact onperformance. A range of

wear-leveling techniques[62, 94, 41] for PCM have been examined to increase the life

time of PCM-based main memory architectures.

16

Most of these proposed techniques mitigate the write overhead of PCM by doing op-

timizations at the main memory level. They either use new memory architectures or add

a new operation to PCM. However, write requests sent from theLLC remain unchanged.

Zhouet al.[94] take the first step to exploit the LLC partitioning and replacement policy by

considering the negative impact of writeback requests. They propose to partition the shared

LLC among multi-core by taking into account the writeback penalty. Fedorovet al. [14]

propose to divide the LRU stack into ”High-hit” and ”Low-hit” partitions. On a cache

replacement request, the technique gives higher priority to evict clean block in ”Low-hit”

part than dirty block in ”Low-hit” part. However, both of thetechniques require a cache

replacement policy with distinct recency levels, such as Least-Recently-Used (LRU) re-

placement policy. For some cheap replacement policy, such as Not-Recently-Used (NRU)

and Random, these techniques can not be applied to them.

2.3.3 Related Work on Mitigating Write Overhead of STT-RAM

Many prior papers [29, 81, 46] focus on mitigating write overhead of an STT-RAM

cache. Joget al. [29] propose to improve the write speed of STT-RAM-based LLCby re-

laxing its data retention time. However, that technique requires large capacity buffers for a

line level refreshing mechanism to retain reliability. Maoet al. [46] propose prioritization

policies for reducing the waiting time of critical requestsin the STT-RAM-based LLC.

However, the technique increases the power consumption of LLC. Recently, researchers

propose hybrid SRAM and STT-RAM techniques [79, 5, 26, 4, 80]for improving LLC

efficiency. Sunet al. [79] take the first step introducing the hybrid cache structure. That

technique uses a counter-based approach for predicting write-intensive blocks. Write-

intensive blocks are placed in SRAM ways for reducing write overhead to STT-RAM por-

tion. However, that technique is optimized only for core-write operations. It cannot reduce

the prefetch-write and demand-write operations to STT-RAM. Jadidiet al. [26] propose

17

reducing write variance of STT-RAM lines by migrating frequently written cache blocks to

other STT-RAM lines or SRAM lines. However, frequently migrating data between cache

lines incurs significant performance and energy overhead. Chenet al. [5] propose a com-

bined static and dynamic scheme to optimize the block placement for hybrid cache. The

downside of the technique is it requires the compiler to provide static hints for initializing

the block placement.

18

3. EXPLORING PERFORMANCE VARIANCE TO DEVELOP PERFORMANCE

MODEL*

Modern microprocessors have many microarchitectural features. Quantifying the per-

formance impact of one feature such as dynamic branch prediction can be difficult. On

one hand, a timing simulator can predict the difference in performance given two different

implementations of the technique, but simulators can be quite inaccurate. On the other

hand, real systems are very accurate representations of themselves, but often cannot be

modified to study the impact of a new technique.

We develop a performance model for branch prediction using real systems [83]∗. The

technique perturbs benchmark executables to yield a wide variety of performance points

without changing program semantics or other important execution characteristics such as

the number of retired instructions. By observing the behavior of the benchmarks over a

range of branch prediction accuracies, we can estimate the impact of a new branch predic-

tor by simulating only the predictor and not the rest of the microarchitecture. We call this

techniqueProgram Interferometrybased on its similarity to astronomical optical interfer-

ometry.

Figure 3.1 demonstrates the potential of program interferometry. Each of the 100

points represents an executable with a different code reordering of the SPEC CPU 2006

benchmarks400.perlbench and 471.omnetpp running onref inputs. Perfor-

mance monitoring counters enable collecting the cycles-per-instruction (CPI) and branch

mispredictions per 1000 instructions (MPKI) of each run. The plot shows actual measure-

ments as well as a least-squares regression line estimatingthe linear relationship between

MPKI and CPI. They also show 95% confidence intervals and 95% prediction intervals.

∗ c©2011 IEEE. Reprinted, with permission, from Zhe Wang; Daniel A. Jiménez, ”Program Interferometry,”
Workload Characterization (IISWC), 2011 IEEE International Symposium, Nov. 2011

19

6.0 6.5 7.0
Mispredictions per 1000 Instructions

0.68

0.70

0.72

C
yc

le
s

pe
r

In
st

ru
ct

io
ns

95% prediction intervals
95% confidence intervals
Least-squares regression line
Performance counter measurements

5 6 7
Mispredictions per 1000 Instructions

2.10

2.15

C
yc

le
s

pe
r

In
st

ru
ct

io
ns

95% prediction intervals
95% confidence intervals
Least-squares regression line
Performance counter measurements

Figure 3.1: Performance changes with branch prediction accuracy for 400.perlbench and
471.omnetpp.

As an example of the usefulness of program interferometry tobranch predictor design,

linear regression allows us to make the following predictions for400.perlbench with

95% probability:

1. A perfect branch predictor would yield a CPI of0.517 ± 0.029, an improvement of

26.0%± 4.2%.

2. Halving the average MPKI from 6.50 to 3.25 would improve CPI by 13.0%± 2.2%

from 0.70 to 0.61± 0.022.

3. A 10% improvement in CPI due to branch prediction improvement would require a

38% reduction in mispredictions.

3.1 Motivation

Astronomers used the earliest telescopes to view the universe from a single point of

view. Their observations were dim and blurry, limited by thetiny amount of light that

their small telescopes could collect and the effects of atmospheric turbulence. However, in

recent years, astronomers have used a technique called optical interferometry to combine

20

the observations of many telescopes from many different points of view to obtain images

with a much higher resolution [2].

Similarly, by sampling and observing many points in a space of program performance,

we can get a much better understanding of program behavior.Program Interferometryis

based on perturbing placement of code and data. Many executable versions of a program

are produced by pseudo-randomly re-ordering procedures and objects files. Similarly, the

memory allocator places objects pseudo-randomly on the heap. A given random place-

ment of code and data can be repeated by using the same key for the pseudo-random

number generator so that runs are reproducible. Each code and data placement is seman-

tically equivalent, but because the instruction addressesare different, different conflicts

will arise among microarchitectural structures such as thebranch predictor and instruction

cache [54]. The situation is isomorphic to one in which we keep the code and data place-

ment constant, but change the hash functions for microarchitectural structures. Thus, we

may measure the performance impact of changing these structures.

An alternative would be to use cycle-accurate simulators with best-guess estimates of

future microarchitectural structures. However, it is not clear to researchers what future

microarchitectures will be like. The return of Intel from the more complex Netburst to the

simpler P6-inspired Intel Core 2 is an example of this uncertainty. The trend in 2001 was

toward deeper and deeper pipelines, so contemporaneous branch prediction papers simu-

lating pipeline depths of up to 40 were way off the mark. Also,simulators are notoriously

inaccurate with respect to real systems because many of the details of real systems are

difficult or impossible to model or even to know about [10]. Earnest efforts at simulation

are subject to bugs that can invalidate research conclusions made with them [11]. Thus,

demonstrating that a new branch predictor (or other optimization) can improve an existing

microarchitecture is another way to have confidence in that optimization’s contribution to

unknown future microarchitectures.

21

3.2 Description

In this section we describe the technique of program interferometry. The basic idea is

to execute code under many different reorderings, causing awide variance in performance

due to different accidental collisions in microarchitectural structures. By measuring the

resulting adverse microarchitectural events, we can builda performance model for the

program and microarchitecture.

3.2.1 Instruction Addresses in Microarchitectural Structures

Program interferometry exploits the fact that several microarchitectural structures use

a hash of instruction and data addresses. For example:

1. A 128-set instruction cache with 64 byte blocks would likely use bits 6 through 12

of the instruction address as the set index.

2. A branch direction predictor might index a table of counters using a combination of

branch history and branch address bits.

3. A branch target buffer (BTB) or indirect branch predictorwould use lower-order bits

of the branch address to index a table of branch targets.

Sometimes addresses will accidentally collide in some microarchitectural structure.

For example, conflict misses in the instruction cache occur when the number of blocks

mapping to a particular set exceeds the associativity of thecache. Although this phe-

nomenon has been studied in academic research, most compilers do not optimize to protect

against these kinds of conflicts.

Compiler writers are aware of uses of instruction addressesand write compilers to

exploit these uses. For instance, a common heuristic is to align the target of a branch on a

boundary divisible by the number of bytes in a fetch block to allow the fetch beginning at

that target to read the maximum number of instruction bytes in one cycle.

22

3.2.2 A Wide Range in Performance

These accidental conflicts result in adverse microarchitectural events such as branch

mispredictions, cache misses, BTB misses, etc. A particular code and data placement will

result in a particular number of accidental collisions witha particular impact on perfor-

mance. A different layout will result in a difference impacton performance. By exploring

a wide range of layouts, we can force a wide range of adverse performance events to take

place and explore a wide range of performances.

3.2.3 Causing Collisions

To generate many random but plausible code layouts, we extend the technique of

Mytkowicz et al. [54], i.e., object-file reordering. We compile each benchmark once,

lowering it to assembly language files. Then we produce executables with hundreds of

different code reorderings. We then reorder procedures within assembly files, assemble

the files, and then link with different randomly-generated order of the object files. The

linker lays code out in the order in which it is encountered onthe command line, so each

random procedure and object-file ordering results in a different code layout.

We execute each resulting executable five times, collectingperformance monitoring

counter information such as number of instructions committed, number of branch mis-

predictions, number of clock cycles, etc. We take the performance monitoring counter

statistics that gave the median performance. Details of ourinfrastructure are given in Sec-

tion 3.3

3.2.4 Making Predictions

Once the performance monitoring counter information has been collected, we can be-

gin using statistical tools to build a performance model. Weuse least-squares linear re-

gression to estimate the relationship between various microarchitectural events and perfor-

23

mance outcomes. For instance, for the plots in the Introduction, we found a regression line

of CPI = 0.02799 ∗ MPKI + 0.51667. That is, we use the MPKI to predict the CPI. For

a range of MPKI values, we also 95% computed confidence intervals and prediction inter-

vals. A 95% confidence interval has a 95% chance of containingthe true regression line,

i.e., of all the data collected, the line that best illustrates the linear relationship between

CPI and MPKI has a 95% chance of being in that confidence interval [48]. The larger 95%

prediction interval has a 95% chance of containing all of theobservations (i.e. CPIs) that

would be encountered in a given domain (i.e. set of MPKIs).

3.2.5 When Things Go Wrong

Some benchmarks do not give a wide range in performance undercode reordering,

or the range in performance cannot be explained by events related to the instruction ad-

dress. For each type of prediction we would like to make for a given benchmark, we

first determine whether there is significant correlation between the dependent variable and

independent variables. We use Student’st-test with the null hypothesis “there is no cor-

relation,” i.e., if we cannot reject the null hypothesis, then we cannot say whether there is

any correlation between the events observed [48]. For the 23SPEC CPU2006 benchmarks

that compiled in our infrastructure, estimating CPI with MPKI, the null hypothesis was

rejected atp = 0.05 or less for 20 benchmarks. In other words, for the great majority of

the benchmarks, we determined that there was at least a 95% chance that program interfer-

ometry found significant correlation between CPI and MPKI. For the other benchmarks,

there was not enough range of MPKI to predict CPI.

3.3 Experimental Methodology

This section describes the experimental methodology used for the interferometry tech-

nique.

24

3.3.1 Compiler

We use the Camino compiler infrastructure [20]. This systemis a post-processor for

the Gnu Compiler Collection (GCC) version 4.2.4. C, C++, andFORTRAN programs

are compiled into assembly language, the assembly languageis instrumented by Camino,

and the result is assembled and linked into an executable. Camino features a number

of profiling passes and optimizations, but for this study we implement and use only the

profiling and instrumentation pass described below. All of the executables produced for

this study target the x8664 instruction set.

3.3.2 Benchmarks

We use the SPEC CPU 2006 benchmarks for this study. Of the 29 benchmarks, 23

compile and run without errors with our compiler infrastructure. These benchmarks are

listed in thex-axes of several graphs in later sections.

3.3.3 Generating Random Code Reorderings

Each benchmark is compiled once from C/C++/FORTRAN into assembly. The Camino

infrastructure is then used to reorder procedures within files and then assemble the files into

object code files. The resulting object files are randomly reordered and linked to make an

executable. Camino accepts a seed to a pseudo-random numbergenerator to generates

pseudo-random but reproducible orderings of procedures and object files.

3.3.4 System

We perform our study using four Dell systems with identical configurations running

the 64-bit version of Ubuntu Linux 8.04 Server and a custom compiled kernel with per-

formance monitoring counter support. Each system containstwo quad-core Intel Xeon

E5440 processors. The Intel processor 5400 Series are basedon 45nm Enhanced Intel

Core Microarchitecture. Each processor has 16GB of SDRAM and 12MB second level

25

cache. Each core in the Intel Xeon E5440 processor has 32KB instruction cache and a

32KB data cache. The branch predictor of the Intel Xeon E5440is not documented, but

through reverse-engineering experiments we have determined that it is likely to contain a

hybrid of a GAs-style branch predictor and a bimodal branch predictor [90, 75, 13].

3.3.5 Running with Performance Monitoring Counters

We measure a number of performance monitoring counters using theperfex com-

mand found in the PAPI performance monitoring package [50].The Intel Xeon processor

allows up to two user-defined microarchitectural events to be counted simultaneously. We

are interested in more than two events, so we make multiple runs of each benchmark to

collect all of the desired counters. We group the counters into three sets of two. For each

set we run each benchmark five times and take the measurementsgiven by the run with

the median number of cycles. Only the microarchitectural events that occur while user

code is running are counted, thus the impact of system eventsis minimized. We collect

the following statistics: 1) Retired branches mispredicted, 2) Retired x86 instructions ex-

cluding exceptions and interrupts, 3) L1 instruction cachemisses, 4) L2 cache misses, and

5) Elapsed clock cycles.

From these counters, we can derive other statistics such as cycles-per-instruction (CPI),

branch mispredictions per 1000 instructions (MPKI), various cache miss rates, etc.

Although each system is configured identically and each corehas the same microarchi-

tecture, we use the Linuxtaskset command to make sure that each benchmark always

runs on the same core to eliminate the effect of possible slight differences among the

cores. Each run is performed on an otherwise quiescent system with as many system ser-

vices stopped as possible without compromising the abilityto access remote files and log

in remotely. Stack address randomization, a security feature that resists stack-smashing

attacks, is disabled to minimize performance variance not due to code placement.

26

3.3.6 Simulation

We develop several branch predictor simulators. We implement these as a tool in

Pin [45]. We then run pin on the same executables that we run natively. Our Pin tool

instruments each branch with a callback to code that simulates a set of branch predictors.

The tool counts the number of branches executed and the number of branches mispredicted

for each predictor simulated.

3.3.7 Timing Concerns

Many of the SPEC CPU 2006 benchmarks run for over 30 minutes onthe firstref

input. For this study, we have executed each of the 23 benchmarks at least 100 times

on a set of 4 computers. To facilitate this study, we instrument the benchmarks such

that under native execution they run for up to approximatelytwo minutes each. To do

this, we implement a two-pass profiling and instrumentationpass in the Camino compiler.

The first pass inserts instrumentation that collects information about each procedure. The

benchmark is allowed to run for two minutes. Then the collected information is analyzed

to find a procedure with a low dynamic count that is also executed near the end of the two-

minute run. The second pass of the compiler instruments onlythat procedure such that

when it is executed the same number of times as before, the program is ended. The first

instrumentation has low overhead, thus the resulting executable runs for approximately

two minutes. The second instrumentation affects a low-frequency procedure and takes

two x86 instructions, thus it has negligible overhead. All of the executables in this study

are compiled from this second instrumentation, or are from benchmarks that naturally run

for less than two minutes. Because we are counting procedures and not elapsed time, each

run of a benchmark executes the same number of user instructions.

27

3.4 Estimating Performance by Counting Microarchitectural Events

This section shows the potential of program interferometryto predict performance.

We develop and evaluate regression models for a number of benchmarks using several

characteristics of program behavior such as branch prediction and cache misses.

3.4.1 Assigning Blame

Code reordering can elicit a wide range of CPIs for our benchmarks. Here, we de-

termine how much blame to place on certain microarchitectural structures for the perfor-

mance variance. We focus on what we believe to be the microarchitectural events most

likely to be affected by code placement: 1) Branch mispredictions. Conditional branch

predictors use the address of an instruction to index one or more tables. Branches may

conflict with one another in these tables leading toaliasing[49] causing branch prediction

accuracy to suffer. 2) L1 instruction cache misses. The Intel Xeon Core has a 32KB 8-way

set associative instruction cache. If nine or more frequently used blocks map to the same

set, there will be frequent cache misses. 3) L2 cache misses.

We also use multi-linear regression to develop a combined model that takes into ac-

count all three of these events in the hope that a combined model will be more accurate

than using one of the observations by itself.

Using r2, the coefficient of determination, we can determine what portion of perfor-

mance is due to a particular microarchitectural event. Figure 3.2 shows the cumulative

r2 for each of the three events, as well asr2 for the combined regression model. On av-

erage, 27% of the CPI difference between different code reorderings can be explained by

branch misprediction.Some benchmarks are more sensitive;for instance, 84.2% of the CPI

variance of462.libquantum is due to branch mispredictions.

The average bar for the combined model does not reach exactlythe same height as that

of the sum of the three measurements. This is because the three measurements are not

28

400.perlbench

401.bzip2

403.gcc

410.bwaves

416.gamess

429.mcf

433.milc

434.zeusmp

435.gromacs

436.cactusADM

444.namd

445.gobmk

450.soplex

454.calculix

456.hmmer

459.GemsFDTD

462.libquantum

464.h264ref

465.tonto

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

Arithmetic Mean
Benchmark

0.0

0.5

1.0
C

oe
ff

ic
ie

nt
 o

f
D

et
er

m
in

at
io

n

L2 Cache Misses
L1 Instruction Cache Misses
Branch Mispredictions
Combined Estimator

Figure 3.2: Coefficient of determination showing how much ofeach type of event accounts
for overall performance.

altogether independent of one another; for instance, in some cases, a branch mispredic-

tion might cause an L1 cache event, sometimes causing cache pollution and other times

causing prefetching. It must be emphasized that the correlation we report between mi-

croarchitectural events and performance is with respect tocode ordering. Other changes

to the execution environment would show other correlations.

3.4.2 Establishing Statistical Significance

Clearly many benchmarks’ performance show correlation with microarchitectural events.

However, we must ask whether the correlation is statistically significant. We use Student’s

t-test to determine statistical significance. For each of thethree measurements as well as

the combined model we attempt to reject the null hypothesis that there is no correlation.

The valuep ≤ 0.05 for the t-test is traditionally accepted as proof of statistical signifi-

cance. For the combined model we use the F-testp ≤ 0.05 instead of thet-test, as the

t-test is appropriate for single-variable linear regression models.

3.4.3 Number of Samples

For some benchmarks, the effect of code reordering on performance is harder to detect

than for others. To establish statistical significance for as many benchmarks as possible,

29

we sample a number of code reorderings in multiples of 100 until the benchmark is able

to reject the null hypothesis, or until by inspection we determine that the benchmark is

unlikely to reject the null hypothesis with a much larger number of samples. Most bench-

marks reject the null hypothesis within the first 100 samples. Some take 200 samples,

and a few require 300 samples. We do not discard any data when building or testing our

regression models: we use the data from each reordering.

Event
L1 L2

Benchmark Branch I-Cache Cache Combined
Name MPKI Misses Misses Estimator

400.perlbench yes yes - yes
401.bzip2 yes yes - yes
403.gcc yes yes yes yes
410.bwaves - - - -
416.gamess yes - yes yes
429.mcf yes - - yes
433.milc - - - -
434.zeusmp yes - - -
435.gromacs yes - - yes
436.cactusADM - - yes yes
444.namd yes - - yes
445.gobmk yes yes - yes
450.soplex yes yes yes yes
454.calculix yes - - yes
456.hmmer yes - - yes
459.GemsFDTD yes - - -
462.libquantum yes - yes yes
464.h264ref yes - - yes
465.tonto yes yes - yes
471.omnetpp yes - - yes
473.astar yes - yes yes
482.sphinx3 yes - - yes
483.xalancbmk yes - - yes

Table 3.1: “Yes” means that the null hypothesis of “no correlation” is rejected withp ≤
0.05, i.e., with 95% probability, the given measurement is correlated with CPI.

30

Table 3.1 shows “yes” for each combination of measurement and benchmark where

the null hypothesis can be rejected with at mostp = 0.05, i.e., with 95% probability there

is correlation between CPI and the measurement for that benchmark.

3.4.4 Blame the Branch Predictor

Of the 23 benchmarks, 20 show significant correlation between CPI and branch pre-

diction. No other measurement consistently shows statistically significant correlation with

CPI. The combined estimator does not increase the number of benchmarks showing signif-

icant correlation, and indeed two benchmarks that show significant linear correlation with

MPKI through thet-test fail to reject the null hypothesis for the F-test with the combined

model and multiple linear regression. Thus, in this paper wefocus our attention on branch

prediction.

3.4.5 A Linear Performance Model

We use least-squares linear regression to derive branch prediction performance models

for the Average Model and each of the benchmarks that passed the hypothesis testing

phase. For each benchmark, we find the best fit of the observed data to a regression line

y = mx + b wherey is CPI andx is MPKI. The slope (m) gives the cost for performance

of one additional MPKI and they-intercept (b) gives the predicted average CPI for perfect

branch prediction, i.e. 0 MPKI.

We also derive 95% confidence intervals and 95% prediction intervals for the regres-

sion lines. Figure 3.1 in the Introduction shows the regression line and intervals for

400.perlbench and471.omnetpp. The confidence interval has a 95% chance of

containing the true regression line for the data observed. The much wider prediction in-

terval has a 95% chance of containing future observations. Thus, we can be 95% sure

that the CPI of471.omnetpp with perfect branch prediction would be between 1.86

and 1.94. Table 3.2 shows the slopes andy-intercepts found by linear regression for each

31

benchmark. It also shows the high and low prediction intervals for perfect prediction.

Benchmark Slope y-intercept Low High

400.perlbench 0.028 0.517 0.488 0.546
401.bzip2 0.017 0.596 0.485 0.708
403.gcc 0.028 1.839 1.796 1.882
416.gamess 0.041 0.548 0.519 0.577
429.mcf 0.019 4.675 4.531 4.819
434.zeusmp 0.373 0.863 0.813 0.913
435.gromacs 0.020 0.811 0.795 0.827
444.namd 0.033 0.620 0.551 0.689
445.gobmk 0.019 0.643 0.515 0.771
450.soplex 0.016 1.822 1.741 1.904
454.calculix 0.023 0.461 0.460 0.463
456.hmmer 0.041 0.203 0.032 0.375
459.GemsFDTD 0.516 1.229 1.189 1.269
462.libquantum 0.022 1.432 1.431 1.433
464.h264ref 0.032 0.466 0.451 0.481
465.tonto 0.027 0.632 0.617 0.647
471.omnetpp 0.036 1.901 1.860 1.941
473.astar 0.022 2.373 2.289 2.456
482.sphinx3 0.036 0.916 0.798 1.034
483.xalancbmk 0.029 1.914 1.881 1.947

Table 3.2: Least-squares regression model relating branchprediction to performance.
Shows high and low prediction intervals for perfect prediction i.e. 0 MPKI.

3.5 Estimating Branch Prediction Performance

This section presents results of simulation experiments using program interferometry

to predict the performance impact of changes to the branch predictor. We use the perfor-

mance model derived with program interferometry to predictthe performance given by

several predictors.

32

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

434.zeusmp

435.gromacs

444.namd

445.gobmk

450.soplex

454.calculix

456.hmmer

459.GemsFDTD

462.libquantum

464.h264ref

465.tonto

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

Arithmetic Mean
Benchmark

0

10

20

30
M

P
K

I

Simulated 4KB Bimodal
Simulated 2KB GAs
Real Intel Xeon
Simulated 4KB GAs
Simulated 8KB GAs
Simulated 16KB GAs
Simulated 32KB L-TAGE

Figure 3.3: MPKI of real and simulated branch predictors.

3.5.1 Branch Prediction Simulation

The Pin tool instruments each branch with a callback to code that simulates a set of

branch predictors. The tool counts the number of branches executed and the number of

branches mispredicted for each predictor simulated.

3.5.2 Impact of Mispredictions on Performance

We explore only those benchmarks that were demonstrated in the previous section to

be suitable for program interferometry (i.e. those with “yes” in Table 3.1). Figure 3.3

shows the average MPKI for various branch predictors simulated with Pin as well as the

average MPKI from the real Intel Xeon branch predictor. These data are averaged over 100

different pseudo-randomly generated code reorderings. For each benchmark, these are the

same first 100 reorderings used for the performance monitoring counter measurements.

Pin runs only once for each reordering; since we control the initial conditions of the simu-

lator and Pin is not affected by system-level events, there is no variance in the simulation

result. We simulate GAs branch predictors [90] ranging in size from 2KB to 16KB to ex-

plore the effect of decreasing or increasing the hardware budget for the branch predictor.

The average MPKI over all benchmarks and code reorderings for the real branch predictor

is 6.306, compared with 5.729 for a simulated 8KB GAs predictor. A 16KB simulated

33

GAs branch predictor yields 5.542 MPKI.

400.perlbench

401.bzip2
403.gcc
416.gam

ess
429.m

cf
434.zeusm

p
435.grom

acs
444.nam

d
445.gobm

k
450.soplex
454.calculix
456.hm

m
er

459.G
em

sFDTD

462.libquantum

464.h264ref
465.tonto
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k

Arithm
etic M

ean

Benchmark

0

1

2

3

4

5

C
P

I

Simulated 4K Bimodal

Simulated 2KB GAs

Real Intel Xeon

 Simulated 4KB GAs

Simulated 8KB GAs

Simulated 16KB GAs

L-TAGE

Perfect Predictor

Figure 3.4: Predicted CPI of real and simulated branch predictors.

Figure 3.4 shows the predicted CPI for the various branch predictors as well as a perfect

(0 MPKI) predictor using the performance model derived in the previous section. Each

point in the graph shows a marker superimposed on error bars giving the 95% prediction

interval for the benchmark’s regression model. For the realbranch predictor, the error bars

indicate the tighter confidence interval since the data are observations and not predictions.

Most of the benchmarks have reasonable prediction intervals even for the perfect predictor.

3.5.2.1 Perfect Branch Prediction

The real branch predictor yields an average CPI of1.387 ± 0.012. The estimated CPI

for perfect prediction is1.223 ± 0.061. Thus, the performance improvement going from

the current predictor to perfect prediction would be between 7% and 16%, with an average

34

of 11.8%.

3.5.2.2 Academic Predictor

The L-TAGE branch predictor is currently the most accurate branch predictor in the

academic literature [72]. We simulate this predictor usingPin and estimate the CPI yielded

using our regression models. On average, L-TAGE yields 3.995 MPKI, compared with

6.306 MPKI for the real Intel predictor, an improvement of 37%. Our regression model

estimates that this predictor would yield an average1.320± 0.03 CPI, an improvement of

between 2.4% to 6.8%, with an average of 4.8%. Several different sized GAs predictors are

also shown. GAs predictors are simple global predictors uses in current microprocessors.

The accuracy of GAs improves as its size grows.

3.5.2.3 Practical Concerns

We do not suggest that Intel should or should not replace their predictor with some

other predictor. There are other concerns such as access latency to the prediction table that

would guide such a decision. Our tool allows exploring the performance impact of hypo-

thetical predictors before the decision is taken to spend design effort to accommodate them

in a microarchitecture. For instance, it is possible that Intel could spare an extra 24KB for

the L-TAGE branch predictor, but that the access latency anddesign complexity for such a

structure might exceed the time allowed for branch prediction resulting in an unacceptable

pipeline bubble. The design effort to include latency mitigating techniques [28] might

not be worth the improvement in performance or delay in time to market. Nevertheless,

our tool allows a quick way of evaluating many potential branch predictors for a given

microarchitecture.

35

4. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE-INDUCED

INTERFERENCE*

Memory access latency is a major performance bottleneck. A LLC miss can stall the

pipeline and require hundreds of cycles of delay. Memory write requests compete with

read requests for the available memory resources, increasing the average service time of

read requests. When a write request is in service, subsequent read requests to the same

rank must wait the completion of the write as well as the bus turnaround time. This write-

induced interference has a significant impact on system performance [55] [86]∗

Figure 4.1 shows read latency normalized to conventional writeback on a quad-core

processor for perfect writeback [85]∗. Perfect writeback assumes memory write access

does not cause any interference to read access, which is the optimal case. we can see the

read latency for perfect writeback is 74.6% of conventionalwriteback. Thus, 25.4% of the

read latency suffered by conventional writeback is caused by write-induced interference.

Therefore, the write-induced interference significantly degrade the system performance.

There are two aspects to reducing write-induced interference. First, we must consider

when to schedule the write requests [77]. System performance is sensitive to memory

read latency, so write requests should be scheduled to have minimal interference with read

requests. Second, we must consider how to schedule the writerequests. Write requests

should be scheduled in a way that they can be serviced by DRAM efficiently.

In a conventional writeback policy, dirty cache blocks are sent to the write buffer when

∗ c©2012 Association for Computing Machinery, Inc. Reprinted by permission, from Zhe Wang, Samira
M. Khan, and Daniel A. Jiménez. 2012. Rank idle time prediction driven last-level cache write-
back. In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness (MSPC ’12). ACM, New York, NY, USA, 21-29. DOI=10.1145/2247684.2247690
http://doi.acm.org/10.1145/2247684.2247690.

∗ c©2012 IEEE. Reprinted, with permission, from Zhe Wang; Samira, M. Khan; Daniel, A. Jiménez, ”Im-
proving writeback efficiency with decoupled last-write prediction,” Computer Architecture (ISCA), 2012
39th Annual International Symposium, June 2012

36

0.2

0

0.4

0.6

0.8

1.0

milc+gcc+xalancbmk+tonto

namd+hmmer+calculix+bwaves

GemsFDTD+namd+bzip2+gamess

gamess+soplex+libquantum+perlbench

zeusmp+lbm+xalancbmk+calculix

gcc+sphinx3+GemsFDTD+tonto

astar+lbm+gobmk+calculix

GemsFDTD+cactusADM+lbm+mcf

GMean

N
or

m
al

iz
ed

 R
ea

d
L

at
en

cy

0.
74

6

Figure 4.1: Read latency using conventional writeback and perfect writeback techniques
in quard-core processor

they are evicted from the LLC. Write requests in the write buffer are scheduled for service

according to the buffer management policy. However, the write buffer only has a small

number of entries due to design complexity and power efficiency, limiting the ability to

schedule high locality write requests as well as the possibility to flexible adjust read/write

priority.

LLC writeback techniques [42, 77] have been proposed to expand write resources using

near least recently used (LRU) position of the LLC. Eager writeback [42] sends dirty cache

blocks in the LRU position to DRAM for service when the rank isidle, thus re-distributing

write requests. The virtual write queue (VWQ) [77] issues scheduled writebacks from

near the LRU position in the LLC to improve writeback efficiency. To reducing write-

induced interference, both eager writeback and VWQ techniques issue write requests to

memory when no read requests target the same rank. Unfortunately, these techniques

have no knowledge about when the next read request will come.If a read request comes

soon after a write request is issued, the write will still impose large penalty on the read.

Additionally, the previous LLC writeback techniques depend on the recency levels of LLC

replacement policy. Thus, these techniques can not work with LLC replacement policies

37

with no distinct recency levels, such as not recently used (NRU) and random replacement

policy.

The memory access pattern exhibits significant variance. Memory read requests tend

to come in bursts. The DRAM can busy service the memory requests for a while then idle

for a while. Additionally, in modern DDRx-based systems, multiple memory controllers

and multiple ranks are used to service memory requests in parallel. Due to workload

characteristics and load imbalance, some ranks often have idle cycles while the application

is running.

By exploring the memory access variance, we develop the prediction driven last-level

cache writeback (LLC) technique. We propose a rank idle timeprediction driven LLC

writeback technique. This technique send the scheduled writebacks into the DRAM dur-

ing the long rank idle period, thus minimizing the delay it caused to the following read

requests. We also propose a last-write prediction driven LLC writeback technique. The

technique improves the writeback efficiency by increasing the write scheduling space. It

is completely decoupled with LLC replacement policy , thus it can work with any LLC

replacement policy. Our techniques significantly reduce the write-induced interference.

4.1 Rank Idle Time Prediction Driven Last-Level Cache Writeback

4.1.1 Description

The rank idle time prediction driven LLC writeback technique fills DRAM idle rank

cycles with scheduled writeback requests. The technique predicts when there will be long

stretches of idle rank cycles and issues scheduled writeback requests in those stretches

of times such that significant interference with subsequentread requests in the same rank

will not occur. This technique contrasts with eager writeback, which has no knowledge

about how long the bus idle cycles might last and can issue writeback requests in short idle

cycles that still cause large writeback penalties to subsequent read requests.

38

Search Signal

Write Buffer

Prediction

Read Buffer

PC PC xor

Idle Predictor

Thread ID
Thread ID

Dirty Cache Lines

Idle Predictor

Cache Cleaner

Prediction

Last−Level Cache

Index of Search Sets

Memory Controller

Rank Idle Counters

Dirty Cache Lines

Rank Idle Cycles

Rank Idle Cycles

Two−Level Rank 1

Two−Level Rank N

SSV

Figure 4.2: System structure

Figure 4.2 illustrates the structure of our technique. A two-level predictor is used

to predict long stretches of idle rank cycles for a given rank. The two-level predictor

is composed of two predictors making predictions at different times to predict whether

there will be significant idle rank time for a particular rank. Each rank has one two-level

predictor. Thus, the number of two-level rank idle predictors for a DRAM system is equal

to the number of ranks this system has. A sequence of scheduled dirty cache blocks that

are generated by the Cache Cleaner [77] are written back during a predicted long idle

period.

4.1.2 Address Mapping

The baseline address mapping scheme we use in our system is the page interleaving

scheme. The cache line interleaving mapping scheme maps consecutive physical addresses

to different channels and ranks. This mapping scheme will cause read requests to go to

different ranks frequently and produce fragmented short idle cycles which might be too

short to compensate for large write-induced interference.

Compared with the cache line interleaving mapping scheme, the baseline mapping

scheme tends to collect small chunks of idle rank cycles intolarge runs. Thus, the long

idle cycles can be used to write back dirty cache blocks. The service of write requests and

39

foo() {

for (int k=0; k<100; k++) {

foo1();

foo2();

foo3();

 }
}

foo1() {

for (int i=0; i<100; i++)

sumA=+A[i]; LLC Miss, Rank 0

for (int j=0; j<200; j++)

sumB=+B[j]; LLC Miss, Rank 1

}
sum=sumA+sumB;

Figure 4.3: Example of memory access

read requests are isolated from one another during this longidle time, increasing the bus

utilization and reducing the write-induced interference.Our technique prefers to map the

rank ID and channel ID bits higher than the row ID bits.

4.1.3 Two-Level Rank Idle Time Predictor

The two-level rank idle predictor is used to predict long idle rank periods. The tech-

nique works well with applications that have long stretchesof idle rank cycles, especially

for DRAM system with multiple ranks. For DRAM system with multiple ranks, memory

access can conflict in some ranks and leave other ranks idle.

The rank idle time predictor is a program counter (PC) based predictor inspired by the

PC-based sampler dead block predictor (SDBP) [32]. The SDBPuses PC information to

accurately predict whether an LLC block is “dead,” i.e. whether it will be accessed again

before being evicted. The design of the rank idle time predictor is based on the observation

that if there is a long idle rank period after an instruction related to a LLC miss when there

are no read requests in that rank, there is a high probabilitythat the same behavior will be

observed the next time this instruction causes a miss in the LLC with no read requests in

that rank.

Figure 4.3 shows an example of memory access. Functionfoo calls functionfoo1

iteratively. In functionfoo1, we assume the physical address ofA[0] − A[100] map to

40

rank zero in DRAM and access toA[i] always LLC misses. Similarly, assuming physical

address ofB[0] − B[200] map to rank one in DRAM and access toB[i] always LLC

misses. This is a practical assumption, because the consecutive physical address have

high probability of mapping to the same rank. After a miss in the LLC at the instruction

that loadsA[99], the data flow will go into accessing dataB[i] which map to rank one.

Therefore, there will be a long idle period in rank zero. After several iterations infoo,

the predictor learns the access pattern related to the instruction that loadsA[99]. The next

time, when there are no read requests in rank zero and there isa miss in the LLC at the

same instruction loading dataA[99], the predictor will predict that rank zero will be idle

for a long period.

4.1.3.1 Making Prediction

PC xor Thread ID

Rank Idle Cycle
Counter

Prediction results

First−Level Predictor

Second−Level Predictor

Prediction results

two−bit counter

 two−bit counter

Figure 4.4: A two-level rank idle time predictor

Each rank has a two-level predictor. The structure is shown in Figure 4.4. Two levels

are used so that if the first predictor mispredicts a long idleperiod, the second predictor has

another chance to predict this long idle period. The two predictors have the same structure,

make their predictions at different times, and update at thesame time. The prediction

41

state consists of a table of two-bit saturating counters, much like a branch predictor. The

predictor table is indexed by the address (PC) of the instruction and the thread number.

The PC is that of the last instruction before the rank becomesidle. The predictor makes a

prediction according to the high bit of the selected counter: long idle time if the bit is one,

short idle time if the bit is zero. The rank idle cycle counteris used to count the number of

idle cycles. This number is used to choose the predictor to make a prediction and update

the predictor.

4.1.3.2 Prediction Driven Writeback Mechanism

Figure 4.5 shows the prediction driven writeback mechanism. As soon as a rank be-

comes idle, the first-level predictor makes a prediction about whether there will be read

requests coming to that rank in the nextm cycles. A sequence ofs scheduled dirty cache

blocks will be written back to DRAM during the predictedm idle cycles. In the DRAM

system with eight-bank per rank, we chooses = 8 to maximize the bank-level parallelism

when servicing the write requests. The parameterm is related tos; we want to make sure

m can cover most of the service time ofs scheduled dirty cache blocks.

Figure 4.6 shows the time to make a prediction during the idlerank cycles. Assuming

the rank is idle from timet1, the rank idle cycle counter starts to count the rank idle cycles

and the first predictor makes a prediction at timet1. If the prediction result from the first

level predictorP1 is false (i.e., no long idle time predicted) and there are no read requests

coming aftern idle cycles, the second level predictorP2 is used to make a prediction.

If the prediction result is true,s scheduled dirty cache blocks will be send to DRAM for

service.

If both of the prediction results are false, but the idle ranktime is longer than a thresh-

old k, s scheduled dirty cache blocks are written back. This optimization comes from the

observation that if there are rank idle cycles longer thank, there is a high probability that

42

function PredDrivenSched
begin

if rank idle cycles == 1 then
prediction = first predictor predict

end
else if rank idle cycles == n

prediction=second predictor predict
end
else if rank idle cycles == k

prediction = true
end
if prediction == true then

call check writeback
end

end

function check writeback
if rank idle cycles == 0 then

return
end
else if (prediction == true&&write issued == s)

call schedule writeback
end
call add event(check writeback, write issued == s)

end

Figure 4.5: Rank idle time prediction driven writeback scheduling algorithm

the idle cycles are also longer thank +m.

If either of the predictor results is true or the idle rank period is longer than the thresh-

old k, the system will monitor the service of the write requests. If all of the previouss

write requests have been finished service. and there are still no read requests coming in,

another group ofs scheduled dirty cache blocks will be sent to the DRAM system for

service.

43

k cycles

P1

n cycles

t1 t2

P2

t3

timeline

Figure 4.6: Prediction timeline

4.1.3.3 Predictor Update

The predictor will be updated when a read request comes and the rank is idle. If the idle

rank cycles counted by the rank idle cycle counter are largerthanm, the two-bit counter

in the first-level predictor indexed by the the last PC and thread ID encountered before the

rank was idle will be incremented; otherwise it will be decremented. If there are more than

m+n idle rank cycles, the corresponding two-bit counter in the second-level predictor will

be incremented, otherwise it will be decremented.

Why does the rank idle time predictor work in multi-core systems The memory access

patterns of most applications have spatial locality. Our technique is applied to the address

mapping scheme that maps the rank and channel bits higher than the column bits, so the

application tends to access a certain rank for a while beforeswitching to another rank. In

the modern DDRx memory systems, multiple controllers and multiple ranks are used to

service the memory requests in parallel, thus in a lengthy stretch, only a small number

of applications access a certain rank. Therefore, the memory access pattern for a certain

rank is repeatable and predictable. Additionally, the rankidle predictor only makes the

prediction when the rank starts to become idle, i.e., when all of the programs leave a rank

idle. From our observation, the memory read accesses tend tocome in bursts. The same

program behavior that leads to one burst tends to lead to other bursts, as well as those

bursts ending.

44

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

���
���
���
���
���

���
���
���
���
���

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

�������
�������
�������

�������
�������
�������

���
���
���
���
���

���
���
���
���
���

Channel Rank Bank SSV Next
Ptr

0

0

0

0 3

0

0

0

0

0

0

0

0

4

5

6

7

11 1 1

0 0 0 0 1 1

0 0 2 1 1 1

0 0

1 1 1

0 1 1

1 1

0 1 0

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

1

0

0

1

0

0

1

1

1

1

Figure 4.7: SSV structure

4.1.4 LLC Writeback Policy

The LLC writeback policy searches for dirty cache blocks near the LRU position in the

LLC and sends a sequence of scheduled dirty cache blocks to the write buffer. Scheduled

writebacks are used because scheduled write requests map tomemory resources in a way

that can be serviced more efficiently.

In our implementation, a cache block is considered “near theLRU position” if it resides

in the bottom eighth of the LRU recency stack [77]. We incorporate the rank idle time

predictor into the LLC parallelism-aware writeback policy.

The LLC parallelism-aware writeback policy searches the dirty cache blocks in the

LLC that target to the same rank but different banks. Compared with LLC writeback

policy of VWQ, which exhaustively searches the row-hittingcache blocks in the related

cache sets in the direction of Cache Cleaner [77], our schemedoes not need to search

a large amount of cache sets and perform tag matching, thus consuming less power and

searching time.

The Cache Cleaner [77] uses a Search Set Vector (SSV) to help searching dirty cache

blocks in the LLC that could be serviced more efficiently whenmapping to the DRAM

resources. Figure 4.7 shows a simple example of the SSV tablewith a 32-sets LLC and a

single rank, eight-bank per rank DRAM system. Each bank has an entry in the SSV table

45

while each cache set that maps to this bank has a bit in the vector that is saved in this bank

entry. When a dirty cache block is moved close to the LRU position, the bit in the SSV

corresponding to this particular set will be set to one signifying that this set has a dirty

cache block near the LRU position. Thus, when searching the dirty cache blocks in the

LLC that target to different banks of the same bank, the cacheset that has a bit set in its

SSV entry will be issued, thus reducing the search time.

In the parallelism-aware scheduling scheme, when the predictor predicts a long idle

period, a group of dirty cache blocks composed of the writeback requests to this idle rank

but different banks are sent out to the DRAM system. In Figure4.7, dirty cache blocks in

the cache sets correspond to the bits in a vertical pattern are in the first group. If the rank is

still idle after all the write requests in the group have beenfinished service, another group

of dirty cache blocks in the horizontal pattern will be sent out to the DRAM system. Most

modern DDRx systems use an eight-bank per rank memory configuration. Therefore,

when more than one group of scheduled write requests are issued during the idle rank

period, the rank resource access latency can be overlapped by bus burst cycles, reducing

the average write request service time.

If the number of write requests in the write buffer is larger than a threshold, and there

are no predicted long idle periods, the write requests will be sent to the DRAM for service

whenever the rank is idle or the write buffer is full.

4.1.5 Storage Overhead

For each rank, we use a two-level rank idle predictor. Both levels are the same size.

Each predictor has 8K entries and each entry has a two-bit counter. Thus, the total storage

for the two-level rank idle predictor is 4K bytes. For an eight-core, 16M and 16-way LLC,

the storage for SSV table is 2K bytes. Therefore, the total storage for the memory system

with two memory controllers, two-rank per channel and four-rank per channel are 18K

46

bytes, 34K bytes, respectively. Both of them are less than 0.3% of the capacity of the 16M

LLC.

4.2 Last-Write Prediction Driven Last-Level Cache Writeback

Read Buffer

Write Buffer

DRAM Controller

Last Write Buffer

Core Cache

Last Write

 Predictor

Prediction Table

LLC Write

Simulator

data access

data access

data access

LLC
last write block

address of predicted

to address

data access

cache misses

searching data according

selected core

schedule writes

prediction

update table

Figure 4.8: System structure

We propose a last-write prediction driven (LWPD) LLC writeback policy. Figure 4.8

shows the structure of our technique. A last-write predictor (LWP) is proposed to predict

last-write blocks once they access the LLC. A last-write buffer is used to track predicted

last-write blocks. Write requests in the last-write bufferas well as the write buffer are avail-

able to memory controller for scheduling. The LWPD writeback policy has the following

advantages: 1) re-distributing the memory requests and balancing the memory bandwidth

2) expanding the scheduling space of memory controller, maintaining row-buffer hits and

bank-level parallelism locality, and 3) completely decoupling from cache replacement pol-

icy allowing it to be applied to any LLC replacement policy.

47

4.2.1 Last-Write Predictor

The last-write predictor is used to predict last-write blocks in the LLC. It is composed

of a lightweight LLC write simulator and a prediction table.Once a dirty block is evicted

from the core cache and accesses the LLC, the last-write predictor consults the prediction

table to make a prediction. The instruction PC related to thedirty block is hashed to index

the prediction table to get the prediction result. A LLC write simulator is used to update

the prediction table according to the simulated write behavior of the LLC.

The last-write predictor is a PC-based predictor. It is based on the observation that if

an instruction PC leads to the last write access to one block,then there is a high probability

that the next time this instruction is reached it will also lead to a last-write block. For a

writeback cache, once a dirty block is evicted from the core cache, it has no PC information

with it. Thus, a PC field is associated with each core block. Once a write accesses the core

cache, the PC related to this write will be stored with the block.

4.2.1.1 Prediction Table

The prediction table uses skewed organization [32, 49] to reduce the impact of conflicts

in the table. It consists of three tables, each indexed by a different hash of 16-bits partial

PC. Each entry in the table has a two-bit saturating counter.Once a dirty block is evicted

from the core cache and accesses the LLC, the LWP predicts whether or not this dirty

block is a last-write block. The prediction decision is based on the sum of the counter

values for all three tables that indexed by different hashesof the PC related to this dirty

block: if the sum is greater than a threshold, then it is a last-write block. The prediction

table is updated by the LLC write simulator.

48

ta cttb

tb ta ct td

ct tb ta td

td

tatbctte

te ct tb ta

PC5 : Read b PC1 PC2 PC3 PC4

PC2 PC1 PC3 PC4

PC6 PC2 PC1 PC4

PC7 PC6 PC2 PC1

PC7 PC6 PC2 PC1

: PC6 Write c

7 : PC Write

PC8 : Read f

e

Read hit

Write hit : update

Write miss : update prediction table

Read miss

prediction table

Figure 4.9: Behavior of the LLC write simulator

4.2.1.2 LLC Write Simulator

The LLC write simulator simulates the write behavior of the LLC and updates the

prediction table. To reduce overhead, only a few sets of the LLC are represented. LLC

sets are sampled; there is one simulated set for every 16 cache sets. Only partial tags are

represented since simulator correctness is not required; in practice, we find 16 bits of tag

leads to>99% accuracy with respect to full tags. Of course, no data arerepresented. The

LLC write simulator only simulates the write behavior of theLLC, i.e. missing reads from

memory are not placed in the simulator. The write accesses ofthe LLC account for about

1/3 of total number of accesses on average in the memory intensive SPEC CPU 2006

benchmarks. Thus, the write simulator can use a smaller associativity compared with the

LLC. The associativity of the LLC simulator is 6 while the associativity of the LLC is 16.

Each entry in the simulator set has a partial tag field, a partial write PC field, a valid bit

and an LRU recency field. When a write accesses a sampled LLC set, it also accesses the

simulator simultaneously. The corresponding sampled set is searched for an entry with a

matching tag; if there is a miss in the simulator, an entry is allocated using an LRU victim

entry. LRU is used in the simulator, but since the associativity and number of sampled

sets are low, the implementation of LRU is far more feasible than in the LLC [32]. The

simulator also updates the prediction table. When a read accesses the simulator, if it is a

49

hit, the LRU recency will be updated. If it is a miss, the simulator will do nothing. Read

access to the simulator updates the recency information forsynchronizing the behavior of

the simulator with the LLC, while the write access also needsto update the predictor.

Figure 4.9 illustrates the set behavior of the write simulator. Assuming a four-entry

set, the box on the left side shows the LRU stack of the partialtag field. The box on the

right side shows the partial write PC corresponding to the same entry with the partial tag

on the left side. The PC for write access on the left in Figure 4.9 is the partial PC related

to the evicted dirty block from the core cache.

At beginning, partial tagsat, bt, ct, dt of blocksa, b, c, d and their related PCs are

reside in the set entries. First, request “readb” accesses the simulator, it is a read hit, so

it updates the LRU recency of blockb to the MRU position. Since it is a read access, the

prediction table is not updated. Then, request “writec” accesses the simulator. It is a write

hit meaning that PC3 leads to a dirty block that could rewritten again before it isevicted.

Thus, we update the entry in prediction table that indexed byPC3 using ’not last-write’,

and update the LRU recency of blockc to MRU position. Then request “writee” accesses

the set. It is a miss, so we replaced with e since PC4 leads to a last-write blockd that

did not access again before it is evicted. Thus, we update theentry in prediction table that

indexed by PC4 using ’last-write’. Finally, request “readf ” accesses the set. It is a read

miss, so the simulator does nothing.

The write simulator itself uses LRU replacement policy, butit can also accurately

simulate the last-write behavior for LLC with other replacement policies. Write accesses

to the write simulator and LLC are the same, thus they have same behavior. Though

the replacement policy in LLC and write simulator may differ, a dirty block in the write

simulator with LRU replacement policy that will not be accessed again before it is evicted

also has a high probability that it will not be accessed againin LLC. Thus, the last-write

predictor is independent of the LLC replacement policy.

50

4.2.2 Writeback Mechanism

4.2.2.1 Last-Write Buffer

In our technique, two buffers are used to hold write requests: the write buffer and

the last-write buffer. The evicted dirty blocks are placed in the write buffer. The last-

write buffer is used to track the predicted last-write blocks in the LLC. When the predictor

predicts a last-write block, the physical address of the predicted last-write block will be

placed into the last-write buffer. The write requests in thewrite buffer and the last-write

buffer are available for scheduling. Since each entry in thelast-write buffer only contains a

64-bit physical address, the data for the write requests arestill in the LLC. Thus, memory

read requests do not need to search the last-write buffer foraddress matching. This allows

the last-write buffer to have many more entries than the write buffer. In our experiment, we

use a 256-entry/channel (256-entry/c) per-rank last-write buffer, i.e. the last-write buffer is

organized by rank and the total number of write buffer entries for a channel is 256 entries.

4.2.2.2 Priority Mechanism

An infinite write scheduling space would be able to always prioritize reads over writes,

thus eliminating all write-induced interference. Given a finite scheduling space, it is better

to prioritize writes over reads such that writes cause less interference to subsequent reads.

In our technique, the service of write requests prioritizesread requests whenever either of

the following conditions is satisfied: 1) The rank is idle andthe write buffer has more active

entries than a thresholdm, or the last-write buffer has more active entries than a threshold

n. 2) The write buffer or the last-write buffer is full. Condition 1 is to fill rank idle cycles

with writes, reducing the contention between reads and writes. In condition 2, to ensure

the progress of the application, scheduled writes in write buffer must be sent to DRAM

for service when the write buffer is full to avoid pipeline stalls. Once the last-write buffer

is full, the predicted last-write blocks must also be scheduled and sent to DRAM. Thus

51

entries in the last-write buffer can be used to hold the next predicted last-write requests.

Given the same group of scheduled write requests, writing them back through condi-

tion 1 imposes a less penalty to subsequent reads than in condition 2. Tracking last-write

blocks using the last-write buffer allows more opportunities to redistribute the write re-

quests into idle rank cycles. The threshold conditions for the write buffer and the last-write

buffer ensure that a large number of scheduling candidates are available to the DRAM con-

troller so they can be scheduled such that they can be efficiently serviced by the DRAM.

4.2.2.3 Scheduling Mechanism

When writes are prioritized over reads, the memory controller will schedule a sequence

of a maximum number ofs write requests to DRAM for service. The memory controller

first schedules the row-buffer hit requests for the write with oldest time stamp. If all the

row-buffer hit requests for this write have been scheduled,but the number of scheduled

requests is still less thans, then the requests to the adjacent banks but same rank will

be scheduled. The row-buffer hit and bank-level parallelism requests in the write buffer

have high priority to be scheduled over the requests in the last-write buffer. Choosing the

number of scheduled writebacks each time issueds is a trade off. If we issue fewer, we

cause a high bus turnaround penalty and low row-buffer hit rate. If we issue more, the

subsequent read requests can be delayed for a long time due tothe service for writes. We

chooses empirically.

Once the write request in the last-write buffer is ready to issue, it will first search the

LLC for that dirty block according to the physical address inlast-write buffer. If it is found

in the LLC, the dirty block will be pulled from the LLC and sendto DRAM for service.

Then the corresponding dirty bit for that block will be cleaned. If the block is not found,

then it has been evicted from the LLC, so this entry in the last-write buffer will be freed.

LLC misses tend to occur in bursts. Dirty blocks in or near theLRU position can be

52

evicted in a cluster. These writeback data compete for the memory bandwidth with the

data being fetched into LLC, thus degrading system performance. In our technique, the

predicted last-write blocks are exposed to DRAM controlleronce they access the LLC.

Exposing last-write blocks to the memory controller at the early stage balances the mem-

ory bandwidth, allowing the service of write requests at a time that causes less interference

with read requests.

Write requests in a small scheduling space tend to have low spatial and temporal local-

ity. Servicing write requests with low locality imposes a large penalty on subsequent read

requests. In our technique, the last-write buffer effectively expands the write scheduling

space. The predicted last-write blocks increase the available scheduling candidates. Thus,

our technique increases the possibility of scheduling row-buffer hit and bank-level paral-

lelism write requests. Servicing a sequence of write requests with high locality not only

improve write service efficiency for DRAM, but also reduces the write-imposed penalty

to the subsequent reads.

4.2.3 Storage Overhead

In our technique, each core cache keep a 16 bits partial PC related to each block. For

an eight-core 64 KB data cache, it consumes 16KB of storage. In the LLC write simulator,

each entry keeps a 16 bits partial PC, 16 bits partial tag, 1 valid bit, 3 bits LRU position.

The simulator has 1024 sets and 6 way associativity for a 16M capacity LLC, consuming

27.75KB. The three prediction tables for the skewed dead block predictor are each 4,096

two-bit counters, so they consume 3KB of storage. The dead write buffer has 512 entries,

each entry has a 64 bits partial physical address stored in it, it consumes 4K Bytes. Thus,

the total storage is 16KB+27.75KB+3KB+4KB=50.75KB, whichis less than 0.5% of the

16M LLC capacity.

53

Execution core 4.8GHZ, eight-core CMP, out of order, 256 entry buffer, 48 entry load queue
44 entry store queue, 4 width issue/decode, 15 stages, 256 physical registers

Caches L1 I-cache: 64KB/2 way, private, 64 bytes block size, LRU, 2-cycle
L1 D-cache: 64KB/2 way, private, 64 bytes block size, LRU, 2-cycle
L2 Cache: 16MB/16 way, shared, 64 bytes block size, LRU, 14-cycle

Main Memory 2 memory controllers, 8 banks per rank, 8K bytes row buffer per-bank
DDR3-1600 11-11-11

Table 4.1: System configuration

4.3 Experimental Methodology

This section outlines the experimental methodology used inthis study.

4.3.1 System

Name Symbol Timings Name Symbol Timings
Precharge tRP 11 Burst Length BL 4
Row access strobe tRAS 28 Row to column command delay tRCD 11
Read column address strobe tCL 11 Write column address strobe tCWL 8
Row activate to row activate delay tRRD 6 Row cycle tRC 39
Column address strobe to column address strobetCCD 4 Read to precharge tRTP 6
Write recovery time tWR 12 Write to read delay time tWTR 6
Four activation window tFAW 24 Rank to rank switching time tRTRS 1

Table 4.2: DDR3-1600 DRAM timing

We use the MARSSx86 [57], a cycle-accurate simulator for X86-64 architecture. The

experiment models an out-of-order eight-core processor with 16M shared LLC. The sys-

tem configuration is shown in Table 4.1. The DRAMsim2 [69] is incorporated into MARSSx86

to simulate a detailed cycle-accurate DRAM system. We configure DRAMsim2 to model

a DDR3-1600 DRAM system with two channels. Table 4.2 shows the detailed timing

constraint for the DDR3-1600 DRAM modeled in our system.

4.3.2 Benchmarks

We use the SPEC CPU2006 [19] benchmarks for this study. Of the29 SPEC CPU2006

benchmarks, 24 could be compiled and run without errors on MARSSx86. Table 4.3 shows

54

Name Benchmarks
mix1 hmmer sphinx3 libquantum GemsFDTD gobmk perlbench lbm astar
mix2 perlbench gobmk namd lbm gamess GemsFDTD xalancbmk cactusADM
mix3 omnetpp hmmer cactusADM xalancbmk GemsFDTD gcc soplex astar
mix4 gromacs astar h264ref lbm omnetpp gcc libquantum calculix
mix5 gobmk tonto zeusmp milc bzip2 mcf hmmer astar
mix6 omnetpp libquantum hmmer sphinx3 bwaves milc xalancbmk calculix

Table 4.3: Multi-core workload mixes

six mixes of these 24 SPEC CPU2006 benchmarks randomly chosen eight at a time. We

use these mixes for eight-core simulation. Each benchmark runs simultaneously with the

others. For each mix, we made a checkpoint by running the one of the memory intensive

benchmarks to a typical phase identified by SimPoint [74]. Then we run the experiment for

2 billion instructions total for all eight cores starting from the checkpoint. Each benchmark

is run with the firstref input provided by therunspeccommand.

The memory scheduling technique we use for evaluation is First Ready-First Come

First-Served (FRFCFS) [68, 67]. The other memory read scheduling techniquescould

also work with our write scheduling optimization, we chooseFR FCFS for simplicity.

4.4 Experimental Results for Rank Idle Time Prediction Driven LLC Writeback

Technique

In this section, we give the experimental results of rank idle time prediction driven

LLC writeback studies.

4.4.1 Techniques

We evaluate six techniques for this study. Table 4.4 gives these techniques and a leg-

end for their name. For traditional writeback, we simulatedthe following write buffer

management policies: 1) writes in the write buffer are sent to the DRAM for service when

the corresponding rank is idle or the write buffer is full, 2)writes in the write buffer are

55

Name Technique

CI-CWB Conventional writeback with cache line interleaving mapping scheme
PI-CWB Conventional writeback with page interleaving mapping scheme
PA-WB Parallelism-aware writeback
Eager-WB Eager writeback
VWQ Virtual Write Queue
RITPD-WB Rank Idle Time Prediction Driven LLC Writeback in Section 4.1

Table 4.4: Legend for various writeback techniques.

sent to the DRAM only when the write buffer is full, 3) writes in the write buffer are sent

to DRAM when the corresponding bank is idle or the write buffer is full. Our evaluation

shows the policy 1) yields the best performance. To ensure fairness we choose to use

the policy 1) for conventional writeback evaluation. Both two-rank per channel and four-

rank per channel configurations are evaluated. The size of write buffer is 32-entry in our

experiment.

4.4.2 Performance Analysis

401.bzip2
410.bw

aves
429.m

cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusAD
M

450.soplex
456.hm

m
er

459.G
em

sFD
TD

462.libquantum
464.h264ref
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
G

M
ean

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

CI-CWB
Eager-WB
VWQ
PA-WB
RITPD-WB

0.
86

0.
76

0.
87

0.
84

0.
81

Figure 4.10: Performance evaluated on eight-core two-ranksystem

The baseline technique in our evaluation is PI-CWB. Figure 4.10 shows the IPC speedups

56

8core,2ranks

8core,4ranks

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

CI-CWB
Eager-WB
VWQ
PA-WB
RITPD-WB

0.
93

0.
92

Figure 4.11: Average performance evaluated on two-rank andfour-rank systems

normalized to baseline in a simulated eight-core processorwith a two-rank DRAM sys-

tem; that is, each channel has two ranks. For each benchmark,we show the speedup of

the first run in the random combination. Benchmarks showing in Figure 4.10 are those

the performance of perfect writeback could be improved morethan10% over the baseline.

Perfect writeback means all write-induced interference iseliminated. If perfect writeback

gives a significant improvement over the baseline for a particular benchmark, that means

the performance of this benchmark has a potential to be improved when using writeback

optimization. In this experiment, for 16 of 24 benchmarks, the performance of perfect

writeback could be improved more than10% over the baseline. Thus, most of the bench-

marks can benefit from writeback optimization in a multi-core system.

In Figure 4.10, conventional writeback with page interleaving mapping scheme yields

much better performance than conventional writeback with cache line interleaving map-

ping scheme. Therefore, we implement page interleaving mapping scheme in all the other

techniques. From Figure 4.10, we can see RITPD-WB techniqueoutperforms all the other

techniques tested across all the benchmarks. Benchmarklibquantumhas a performance

improvement as large as30.0% when using the RITPD-WB technique due to its high

memory access spatial locality. That is, the memory read requests access a particular rank

57

consecutively for a long stretch. So if write requests access the busy rank that services

the read requests, there will be significant interference with the read requests. Therefore,

libquantumbenefits significantly by using the prediction driven technique to service mem-

ory write requests when the rank is idle.

In Figure 4.10, eager writeback improves performance by a geometric mean speedup

of 4.3%. The performance improvement for the VWQ is 7.3%. Notice that the VWQ tech-

nique we implemented is in an optimal assumption that all therow-hitting write requests

can be transferred back-to-back [77]; that is all the row-hitting dirty cache blocks in the

near LRU position in LLC can be searched and provided during transferring the previous

data from write buffer to DRAM. However, it is possible that the optimal assumption is

not always satisfied in real systems, because searching a large number of cache blocks

for tag matching is time consuming. The row-hitting ratio for write requests will be de-

creased when the optimal assumption is not satisfied, thus the system performance will

be degraded compared with the optimal VWQ. Additionally, searching a large number of

cache blocks for tag matching consumes significant LLC power. PAWB yields an aver-

age speedup of 2.4%. The RITPD-WB technique yields better performance over all other

techniques. It improves performance by at least 10% of eightbenchmarks and delivers an

geometric mean speedup of 10.5%.

Figure 4.11 shows the average IPC improvement for two-rank and four-rank mem-

ory system configurations. For the four-rank configuration,eager writeback yields 3.5%

speedup. The VWQ and PAWB techniques improve performance by8.9% and 2.7% re-

spectively, The RITPD-WB technique also delivers the best performance among all the

tested techniques. It yields a 10.1% speedup.

58

mix1
mix2

mix3
mix4

mix5
mix6

AMean

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

0.00

0.05

0.10

0.15

0.20

F
al

se
 P

os
it

iv
e

R
at

es

first predictor
second predictor

Figure 4.12: False positive rates for two-level predictor evaluated on eight-core two-rank
system

4.4.3 Prediction Analysis

4.4.3.1 Predictor Accuracy

Mispredictions comes in two varieties: false positives andfalse negatives. False posi-

tives are more harmful because they wrongly allow the short rank idle periods to service

the LLC writebacks. Those short idle periods can not cover the majority of the service

time of writebacks, thus still causing significant write-induced interference. The false pos-

itive rate is calculated by the number of mispredicted positive predictions divided by the

total number of predictions. Figure 4.12 shows the false positive rates of the two-level

predictor for a two-rank system. False positive rates for the first-level and second-level

predictors are8.5% and14.7% on average, respectively. These low false positive rates

allow our predictor to effectively predict the large rank idle period while minimizing the

damage caused by mispredictions.

4.4.3.2 Choosing Parameter

The thresholdm is the minimum number of idle cycles the predictor predicts it will

occur. We wantm to cover most of the service time of thes (s=8 in our experiment)

scheduled writebacks. In the DDR 1600 11-11-11 memory system, servicing a write re-

59

quest requires≈ 29ns, and the write-to-precharge latency is≈ 14ns. The write-to-read

delay is≈ 8ns. So if the idle rank cycles≥ 29+14+8 = 51ns, most of the write-induced

interference to the subsequent read will be eliminated. With a 4.8GHZ clock frequency,

51ns is 245 cycles, so we setm = 300 cycles for two-rank configuration. With the number

of ranks in the same channel increasing, when a particular rank is idle, the data bus might

be busy with transferring the data requested by other ranks.It might take a while for the

bus to transfer the write request data for that idle rank. We set m = 400 cycles in the

four-rank configuration.

The first predictor makes a prediction immediately after therank becomes idle. The

second predictor will make a prediction after the rank has been idle forn cycles. Parameter

k is the threshold that if the number of idle cycles more thank, the scheduled writebacks

will also be send to DRAM. In our experiment, we foundn = 200 cycles andk = 600

cycles yield the best result.

4.4.3.3 Eliminated Write Interference

20

0

40

60

80

100

mix1
mix2

mix3
mix4

mix5
mix6

AMean

P
er

ce
nt

ag
e

eliminated write interferencewrite accessread access

Figure 4.13: The percentage of write access, read access andcompletely eliminated write
interference

Figure 4.13 shows the percentage of read accesses, write accesses and the completely

60

eliminated write interference using the rank idle time predictor. Eliminated write inter-

ference means write accesses that could be serviced during the predicted rank idle time.

Write accesses account for 31.1% memory accesses on average. By using the prediction

driven technique, 41.8% write accesses can be serviced during the predicted rank idle time.

Our technique significantly reduces the write-induced interference.

4.4.4 Memory Efficiency Analysis

4.4.4.1 Read Latency

0.6

0.8

1.0

1.2

mix1
mix2

mix3
mix4

mix5
mix6

GMean

N
or

m
al

iz
ed

 R
ea

d
L

at
en

cy
 CI-CWB Eager-WB VWQ PA-WB RITPD-WB

Figure 4.14: Read latency evaluation on eight-core two-rank system

Figure 4.14 shows the read latency normalized to eager writeback for the two-rank

configuration. The RITPD-WB technique reduces the write-induced interference to read

accesses, thus reducing the average read latency. From Figure 4.14, we can see the RITPD-

WB technique reduces the read latency significantly across all the workloads. The VWQ

technique even increases the read latency for mix2; in orderto schedule more memory

row-hitting write requests, the dirty cache blocks that reside in the bottom fourth [77] of

the LRU recency stack are considered eligible for early writebacks in the VWQ technique.

Although they use the cleaned bit technique to eliminate theextra writebacks, this tech-

nique can not eliminate the extra writebacks caused by earlywriting back the dirty cache

61

blocks for the first time. Compared with RITPD-WB technique,the VWQ technique has a

larger rewrite ratio for mix2. These extra writebacks interfere with the read accesses, thus

hurting the performance and increase the average read latency for mix2.

In our experiments, RITPD-WB reduces the read latency on average by 12.7% with

two-rank configuration and 14.8% with four-rank configuration.

4.4.4.2 Bus Utilization

mix1
mix2

mix3
mix4

mix5
mix6

AMean

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

CI-CWB PI-CWB Eager-WB VWQ PA-WB RITPD-WB

Figure 4.15: Bus Utilization evaluation on eight-core two-rank system

Bus utilization is calculated as the number of cycles the bustransfers data for read

accesses divided by the total number of execution cycles. Memory write accesses are

not taken into account for calculating bus utilization because the techniques we used for

evaluation cause extra memory write accesses due to the early writebacks. If the write

accesses are taken into account to calculate the bus utilization, the extra writebacks are

contribute to the bus utilization, but the bus cycles used totransfer the extra writebacks

are wasted. So to ensure fairness, only the read accesses areused to evaluate the bus

utilization.

Figure 4.15 shows the bus utilization for the two-rank configuration. The RITPD-WB

technique reduces the write-induced interference to reads, thus increasing bus utilization.

The RITPD-WB technique delivers bus utilization superior to all the other techniques

62

Name Technique

32-entry/c per-channel WB Conventional writeback with 32-entry/c per-channel writebuffer,
this is the baseline

256-entry/c per-bank WB Conventional writeback with 256-entry/c per-bank write buffer
512-entry/c per-bank WB Conventional writeback with 512-entry/c per-bank write buffer
Eager Writeback Eager writeback
VWQ Virtual writeback queue
LWPG Writeback Last write predictor guided writeback with 32-entry/c per-channel

write buffer in Section 4.2

Table 4.5: Legend for various cache optimization techniques.

across all the workloads. It improves bus utilization on average by 14.5% and 15.3% with

two-rank and four-rank configurations over PI-CWB technique.

4.5 Experimental Results for Last-Write Prediction DrivenLLC Writeback Technique

In this section, we give the experimental results of last-write prediction driven LLC

writeback studies.

4.5.1 Techniques

We use five distinct writeback optimizations for evaluation. In the graphs that follow,

these techniques are referred to with abbreviated names. Table 4.5 gives a legend for these

names.

A large per-channel and per-rank write buffer is complex andpower inefficient. Given

the same number of write buffer entries for a channel, a writebuffer organized by bank

consumes less on-chip power because memory read requests only need to search the write

entries that target the same bank of the read request. Thus, we evaluate the per-bank write

buffer structure with large number of entries, such as 512-entry/c, that is the total number

of write buffer entries for a channel is 512 entries. A large number of write buffer entries

is space inefficient, thus 512-entry/c per-bank write buffer is the largest write buffer we

63

401.bzip2
410.bw

aves
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusAD

M
450.soplex
456.hm

m
er

459.G
em

sFD
TD

462.libquantum
464.h264ref
470.lbm
473.astar
482.sphinx3
483.xalancbm

k
G

M
ean

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

Eager Writeback
VWQ
256-entry/c per-bank WB
512-entry/c per-bank WB
LWPG Writeback

1.
22

Figure 4.16: Results running on eight-core one-rank systemwith LRU LLC

evaluate. In the LWPG writeback technique, we use a 32-entry/c per channel write buffer

and 256-entry/c per rank last-write buffer.

4.5.2 Performance Evaluation

401.bzip2
410.bw

aves
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusAD

M
450.soplex
456.hm

m
er

459.G
em

sFD
TD

462.libquantum
464.h264ref
470.lbm
473.astar
482.sphinx3
483.xalancbm

k
G

M
ean

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

256-entry/c per-bank WB
512-entry/c per-bank WB
LWPG Writeback

1.
20

Figure 4.17: Results running on eight-core one-rank systemwith NRU LLC

We evaluate writeback optimizations with three LLC replacement policies: LRU, NRU

and random.

Figure 4.16 shows the speedups of various writeback optimizations over the baseline

64

in a simulated eight-core processor with LRU LLC and a one-rank memory system; that

is, each channel has one rank. For each benchmark we show the speedup of the first run in

the random combination.

We choose benchmarks for which the performance of perfect writeback could be im-

proved more than10% over the baseline. Perfect writeback means all write-induced in-

terference is eliminated. If perfect writeback gives a significant improvement over the

baseline for a particular benchmark, that means the performance of this benchmark has a

potential to be improved when using writeback optimization. In this experiment, for 16 of

24 benchmarks, the performance of perfect writeback could be improved more than10%

over the baseline. Thus, most of the benchmarks can benefit from writeback optimization

in a multi-core system.

From Figure 4.16, we can see that LWPG writeback technique yields better perfor-

mance than other techniques. The performance improvement over eager writeback is

4.3% on average over the baseline. The state-of-the-art VWQ technique achieves a8.1%

speedup on average. The LWPG writeback technique yields a average of8.2% speedup.

The traditional writeback with 256-entry/c and 512-entry/c per-bank write buffer yields

2.4% and6.8% speedup respectively. Though the 512-entry/c per-bank write buffer has

more buffer entries than the LWPG technique, its performance is not as good as the LWPG

technique since the per-bank write buffer structure causesconflict misses for write requests

that target to the same bank.

Figure 4.17 shows the IPC speedups with NRU LLC. The NRU recency stack has two

levels. The recency information for NRU can not be used to accurately detect the last-

write cache blocks. Thus, the eager writeback and VWQ techniques can not be applied

to it. The traditional writeback with 256-entry/c and 512-entry/c per-bank write buffer

achieve geometric mean of2.3% and6.7% speedups respectively. The LWPG writeback

technique yields8.4% geometric mean speedup.

65

NRU,1-rank

NRU,2-rank

NRU,4-rank

Random,1-rank

Random,2-rank

Random,4-rank

LRU,1-rank

LRU,2-rank

LRU,4-rank

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

256-entry/c per-bank WB 512-entry/c per-bank WB
LWPG Writeback Eager writeback(LRU)
VWQ(LRU)

Figure 4.18: Performance evaluated for various configurations

Figure 4.18 shows the average IPC improvement for one-rank,two-rank and four-rank

memory system configurations with LRU, NRU and random replacement policies. The

LWPG writeback technique improves performance by6.5%-11.4% with various DRAM

configurations and LLC replacement policies. The system with random LLC replacement

policy yields the best performance improvement since the random replacement policy ran-

domly chooses a cache block to be evicted when a new block is placed. Thus, writes in

a small write buffer have low temporal and spatial locality.The LWPG writeback tech-

nique that expands the scheduling space, providing more scheduling candidates. For the

traditional writeback with 256-entry/c and 512-entry/c per-bank techniques, the speedups

decrease as the number of ranks per-channel increases because increasing the number of

ranks per channel decreases the number of write buffer entries for each bank, thus causing

more conflict misses for write requests.

In our technique, once the rank is idle and the write buffer has more thanm active

entries, or the last-write buffer has more thann active entries for this idle rank, a sequence

of scheduled write requests will be sent to DRAM for service.Choosing the parameters

m andn is a trade-off between the ability to balance memory bandwidth and expanding

the scheduling candidates. Choosing large values form andn increases the possibility of

66

2

0

4

6

8

10

12

Workload 1

Workload 2

Workload 3

Workload 4

Workload 5

Workload 6

AMean

P
er

ce
nt

ag
e

20

0

40

60

80

100

Workload 1

Workload 2

Workload 3

Workload 4

Workload 5

Workload 6

AMean

P
er

ce
nt

ag
e

(a) False positive rate (b) Fraction of correctly predictedlast-write blocks

Figure 4.19: False positive rate and fraction of correctly predicted last-write blocks for
last-write predictor with one-rank and NRU LLC configuration

high locality write requests, but decrease ability to balancing the memory bandwidth. In

our experiment,m = 12, 8, 4 andn = 96, 64, 32 for 1/2/4 rank configurations respectively

yields best performance. The maximum number of scheduled requestss each time issued

by DRAM controller is also trade-off. A large value ofs allows high row-buffer hit rate and

low bus turnaround penalty, but can stall pipeline for a longtime. In our experiment, we

founds = 12, 16, 16 for 1/2/4 rank configurations respectively achieves best performance.

4.5.3 Prediction Evaluation

We evaluate the last-write predictor using false positive rate. The false positive rate is

calculated by the number of mispredicted positive predictions divided by the total number

of predictions. False positives allow the dirty cache blocks to be written again before they

are evicted from the LLC to be written into the DRAM, thus causing extra memory writes.

Figure 4.19 (a) shows the LWP yields a low false positive rateof 6.6% on average for NRU

LLC with one-rank DRAM configuration.

We also evaluate the fraction of correctly predicted last-write blocks of LWP. The

fraction of correctly predicted last-write blocks is calculated by the number of correctly

predicted last-write blocks divided by the number of last-write blocks. A large fraction

67

means more opportunities for optimizations. Figure 4.19 (b) shows the fraction of cor-

rectly predicted last-write blocks is 68.8% on aveage for NRU LLC with one-rank DRAM

configuration.

We also evaluate the LWP with all the 1/2/4 rank configurations and LRU, NRU and

Random LLC. It yields false positive rate between6.4%-7.1% and fraction of correctly

predicted last-write blocks between68.8%-76.0% on average with various configurations.

This large fraction of correctly predicted last-write blocks and low false positive rates

allows more opportunities for optimization without inducing significant extra writebacks.

4.5.4 Bus Utilization and Read Latency Evaluation

Workload 1

Workload 2

Workload 3

Workload 4

Workload 5

Workload 6

AMean

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

 U
ti

liz
at

io
n

32-entry/c per-channel WB
256-entry/c per-bank WB
512-entry/c per-bank WB
LWPG Writeback

Figure 4.20: Bus utilization results running on eight-coreone-rank system with NRU LLC

Bus utilization is calculated as the number of cycles the bustransfers data for read

accesses divided by the total number of execution cycles. Memory write accesses are not

taken into account for calculating bus utilization becausethe techniques we used for evalu-

ation cause extra memory write accesses due to the early writebacks. If the write accesses

are taken into account to calculate the bus utilization, theextra writebacks contribute to

the bus utilization, but the bus cycles used to transfer the extra writebacks are wasted. So

to ensure fairness, only the read accesses are used to evaluate the bus utilization.

68

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

NRU,1-rank

NRU,2-rank

NRU,4-rank

Random,1-rank

Random,2-rank

Random,4-rank

LRU,1-rank

LRU,2-rank

LRU,4-rank

0.0

0.2

0.4

0.6

0.8

B
us

 U
ti

liz
at

io
n

32-entry/c per-bank WB 256-entry/c per-bank WB
256-entry/c per-bank WB LWPG Writeback
Eager Writeback(LRU) VWQ(LRU)

Figure 4.21: Performance evaluated for various configurations

0.2

0

0.4

0.6

0.8

1.0

1.2

NRU,1-rank

NRU,2-rank

NRU,4-rank

Random,1-rank

Random,2-rank

Random,4-rank

LRU,1-rank

LRU,2-rank

LRU,4-rank

N
or

m
al

iz
ed

 r
ea

d
la

te
nc

y 32-entry/c per-channel WB 256-entry/c per-bank WB 512-entry/c per-bank WB
LWPG Writeback Eager Writeback(LRU) VWQ(LRU)

Figure 4.22: Read latency results for various configurations

Figure 4.20 shows the bus utilization results for system with NRU LLC. The LWPG

writeback technique improves bus utilization across all workloads with an average of

11.6% compared with the baseline. Figure 4.21 shows the average bus utilization for

multi-rank configurations for LRU, NRU and random replacement policies. Our technique

consistently improves bus utilization by9.2%- 13.6% for various DRAM configurations

and LLC replacement policies.

Figure 4.22 shows the read latency for various configurations. The read latency is

computed as the sum of the DRAM busy cycles for each core divided by the number of

LLC misses. The LWPG writeback technique reduces the write-induced interference to

read accesses, thus reducing the average read latency. The LWPG technique reduces the

69

read latency by8.8%-12.4% on average across various configurations.

4.5.5 Row-buffer Hits Rate Evaluation for DRAM Writes

NRU,1-rank

NRU,2-rank

NRU,4-rank

Random,1-rank

Random,2-rank

Random,4-rank

LRU,1-rank

LRU,2-rank

LRU,4-rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

ow
-b

uf
fe

r
H

it
 R

at
e 32-entry/c per-bank WB 256-entry/c per-bank WB 512-entry/c per-bank WB

LWPG Writeback Eager Writeback(LRU) VWQ(LRU)

Figure 4.23: Writes row-buffer hit rate for various configurations

Figure 4.23 shows results for average write row-buffer hit rates with various configura-

tions. Since caches filter the spatial locality of writes, the traditional writeback with a small

write buffer yields low row-buffer hit rate. The traditional writeback with a randomly-

replaced cache only yields13.7%-17.3% row-buffer hit rate on average because the ran-

dom replacement policy randomly chooses a cache block to be evicted once a new cache

block comes in. Our technique significantly improves row-buffer hit rate for writes across

various configurations to59.6%-68.6% on average.

70

5. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE OVERHEAD

OF NON-VOLATILE MEMORY*

Technology scaling of SRAM and DRAM is increasingly constrained by fundamen-

tal technology limits. Emerging memory technologies, suchas Spin Torque Transfer

RAM (STT-RAM), Phase-Change RAM (PCM), and Resistive RAM (RRAM) are be-

ing explored as potential alternatives to existing memories in future computing systems.

Compared to the traditional SRAM/DRAM technology, these emerging memories have

the common advantages of high density, low standby power, better scalability, and non-

volatility, and hence become very attractive as the alternatives for future memory hierar-

chy [84]∗.

In order to use such emerging memories, several design issues must be solved. The

most important is the performance and energy costs of writes. Since NVM has an in-

herently stable mechanism for data storage, it takes more time and energy to overwrite

data [87]∗.

From the previous chapter, we know that write-induced interference can significantly

reduce performance. Large write overhead is a more severe problem in NVM-based mem-

ory. The long write latency can degrade performance by causing large write-induced in-

terference to subsequent read requests. The high write energy can increase the power

consumption.

By exploring the asymmetric read/write feature of an STT-RAM based LLC, we pro-

∗ c©2014 IEEE. Reprinted, with permission, from Wang, Zhe; Jim´enez, Daniel A.; Xu, Cong; Sun, Guangyu;
Xie, Yuan, ”Adaptive placement and migration policy for an STT-RAM-based hybrid cache,” High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium,Feb. 2014

∗ c©2013 Association for Computing Machinery, Inc. Reprinted by permission, from Zhe Wang,
Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan Xie, and Daniel A. Jiménez. WADE:
Writeback-aware dynamic cache management for NVM-based main memory system. ACM Trans. Ar-
chit. Code Optim. 10, 4, Article 51 (December 2013), 21 pages. DOI=10.1145/2555289.2555307
http://doi.acm.org/10.1145/2555289.2555307

71

Memory Type 1M SRAM 2M SRAM 2M STT-RAM 4M STT-RAM
Area (mm

2) 0.825 1.650 0.518 1.035
Read Latency (ns) 1.751 2.017 2.681 2.759
Write Latency (ns) 1.530 1.663 10.954 10.993

Read Energy (nJ/access) 0.055 0.072 0.132 0.142
Write Energy (nJ/access) 0.039 0.056 0.608 0.618

leakage power (mW) 29.798 59.596 7.108 14.216

Table 5.1: Characteristics of SRAM and STT-RAM caches (22nm, temperature=350K)

pose an adaptive placement and migration policy for an STT-RAM-based hybrid cache.

The technique places a block into either STT-RAM lines or SRAM lines by adapting to

the access pattern of write requests. It can achieve high performance by making use of the

large capacity of STT-RAM and maintain low write overhead using SRAM.

By exploring read/write disparity of PCM-based main memory, we propose writeback-

aware dynamic cache management for NVM-based main memory system. The technique

improves performance and energy efficiency by reducing the number of writeback requests

to NVM-based main memory.

5.1 APM: Adaptive Placement and Migration Policy for an STT-RAM-Based Hybrid

Cache

5.1.1 Comparison of STT-RAM and SRAM Cache

Compared to SRAM, STT-RAM caches have higher density and lower leakage power,

but higher write latency and write power consumption. Table5.1 lists the technology

features of various STT-RAM cache bank sizes and SRAM cache bank sizes used in our

evaluation. The technology parameters are generated by NVSim [12], a performance,

energy, and area model based on CACTI [51]. The cell parameters we used in NVSim are

based on the projection from Wanget al.[82]. We assume a 22nm× 45nm MTJ built with

22nm CMOS technology. The SRAM cell parameters are estimated using CACTI [51].

72

The density of STT-RAM is currently 3×-4× higher than SRAM. Another benefit

for STT-RAM is its low leakage power. Leakage power can dominate the total power

consumption for large SRAM-based LLCs [36]. Thus, the low leakage power consumption

of STT-RAM makes it suitable for a large LLC. Disadvantages of STT-RAM are long write

latency and high write energy.

5.1.1.1 Hybrid Cache Structure

The hybrid cache structure is composed of STT-RAM banks and SRAM banks. Each

cache set consists of a large portion of STT-RAM cache lines and a small portion of SRAM

cache lines distributed among multiple banks. The hybrid cache architecture relies on an

intelligent block placement policy to bridge the performance and power gaps between

STT-RAM and SRAM.

An intelligent block placement policy for hybrid cache design should be optimized

for three requirements. First, the SRAM portion should service as many write requests

as possible, thus minimizing the write overhead of STT-RAM portion. However, sending

many write operations to SRAM without considering the access pattern can cause misses

due to the small capacity of SRAM, leading to performance degradation. Thus, the second

requirement is that reused cache blocks should be placed in the LLC to maintain perfor-

mance by hiding the memory access latency. Finally, the block placement policy should be

a low overhead and low complexity design without incurring frequent migration between

cache lines.

5.1.2 Analysis of LLC Write Access Patterns

LLC block placement is often initiated by a LLC write access that can be categorized

into three classes:prefetch-write, core-write and demand-write. Figure 5.1 shows the

breakdown of each class of LLC write accesses for 17 memory intensive SPEC CPU2006

benchmarks. The study is performed using the MARSSx86 [57] simulator with single-

73

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
456.hm

m
er

459.G
em

sFDTD
462.libquantum
470.lbm
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k
Average

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 L

L
C

 A
cc

es
se

s

Demand-write Core-write Prefetch-write

Figure 5.1: Distribution of LLC write accesses. Each type ofwrite access accounts for a
significant fraction of total write accesses

Ra, Ra, Rb, Rc, Rd, Ra, Wa, Rc, Ra, Wa, Rf, Rb, Rc, Rd, Re, Rm, Rn, Rs

RR of block a: 4

DR of the first Wa: 2

DR of the second Wa: 0

Figure 5.2: An example illustrating read range and depth range

core configuration and a 4MB LLC. We implement a middle-of-the-road stream prefetcher

that models the prefetcher of the Intel Core i7. From Figure 5.1, we can see that each

type of write access accounts for a significant fraction of total write accesses. Prefetch-

writes account for 21.9% on average while core-writes and demand-writes take 45.6% and

32.5%, respectively. In this section, we analyze the accesspattern of each write access

type and suggest a block placement policy that adapts to the access pattern for each class.

We first define the terminology that will be used later in this section for pattern anal-

ysis. To be clear, when we write “block” we mean a block of dataapart from its physical

realization. When we write “line” we mean the physical frame, whether in STT-RAM or

SRAM, where a block may reside.

• Read-range: The read-range is a property of a cache block that fills the LLC by a

demand-write or prefetch-write request. It is the largest interval between consecutive

74

400.perlbench
401.bzip2
403.gcc

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusADM
450.soplex
456.hm

m
er

459.G
em

sFDTD
462.libquantum
470.lbm

471.om
netpp

473.astar
482.sphinx3
483.xalancbm

k
Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

es
se

s

Zero-read/depth-range
Immediate-read/depth-range
Distant-read/depth-range1st bar: Prefetch-write 2nd bar: Core-write 3rd bar: Demand-write

Figure 5.3: The distribution of access pattern for each typeof LLC write access

reads of the block from the time it is filled into the LLC until the time it is evicted.

• Depth-range: The depth-range is a property of a core-write access. It is the largest

interval between accesses to the block from the current core-write access until the

next core-write access to the same block. The “depth” refersto how deep the block

descends into the LRU recency stack before it is accessed again.

We use an example to illustrate the read range and depth range. Figure 5.2 shows

the behavior of a blocka from the time it fills into a 8-way set until it is evicted. In the

example,Ra represents ”read blocka” while Wa represents ”write blocka”. The largest

re-read interval of blocka during the time it resides in the cache is 4 which is the read

interval between the secondRa and the thirdRa. Thus, the read range (RR) of blocka is

4. The depth range (DR) of the firstWa access is 2 which is the access interval between

the firstWa access and the fourthRa access. The depth range of the secondWa access is

0 meaninga is not re-written from the secondWa until it is evicted from the LLC.

We further classify the read/depth-range into three types:zero-read/depth-range, immediate-

read/depth-rangeanddistant-read/depth-range.

• Zero-read/depth-range: Data is filled into the LLC by a prefetch or demand request/core-

write request, and it is never read/written again before it is evicted.

75

• Immediate-read/depth-range: The read/depth-range is smaller than a parameterm.

We setm = 2 which is the same as the number of SRAM ways in our hybrid cache

configuration as in Section 5.

• Distant-read/depth-range: The read/depth-range is larger thanm = 2 and at most

the associativity of the cache set which is 16 in our configuration.

5.1.2.1 Pattern Analysis of Prefetch-Write Block

Prefetching [76, 88] data into the cache before it is accessed can improve performance

by hiding memory access latency. However, prefetching can also induce cache pollution

by inaccurate prefetch requests.

We analyze the access pattern for the LLC prefetch-write blocks by using read-range.

The first bar in Figure 5.3 shows each type of access pattern asa fraction of the total

number of prefetch-write blocks. Zero-read-range prefetch-write blocks are inaccurately

prefetched blocks accounting for 26% of all of prefetch blocks. Placing the zero-read-

range prefetch-write blocks into the STT-RAM lines causes pollution and high write over-

head. Thus, zero-read-range prefetch-write blocks shouldbe placed in SRAM lines.

The immediate-read-range access pattern is related to cache bursts. After an initial

burst of references, a cache block becomes dead, i.e. it is never used again prior to eviction.

Of all prefetch-write blocks, 56.9% are immediate-read-range blocks. Immediate-read-

range prefetch-write blocks should be placed in SRAM lines so they can be accessed

by subsequent demand requests without incurring write operations to STT-RAM lines.

Moreover, placing immediate-read-range prefetch-write blocks in SRAM allows them to

be evicted when they are dead, reducing pollution.

Distant-read-range prefetch-write blocks should be placed in STT-RAM lines to make

use of the large capacity to avoid cache misses. Distant-read-range prefetch-write blocks

account for only 17.5% of all prefetch blocks.

76

Zero-read-range and immediate-read-range prefetch-write blocks account for 82.5%

of all prefetch-write blocks. Thus, we suggest the initial placement of the prefetch-write

blocks in SRAM. Once a block is evicted from the SRAM, if it is adistant-read-range

block, i.e. it is still live, it should be migrated to STT-RAMlines. Otherwise, the block

is dead and should be evicted from the LLC. Since only 17.5% ofprefetch blocks are

distant-access prefetch blocks, the migration will not cause significantly increased traffic.

5.1.2.2 Pattern Analysis of Core-Write Access

In our design, if a core-write access misses in the LLC, the data will be written back

to the main memory directly. Thus, our core-write placementpolicy is only designed for

core-write hit accesses.

We analyze the access pattern of the LLC core-write access byusing depth-range. The

second bar in Figure 5.3 shows the access pattern for core-write accesses. Zero-depth-

range accesses account for 49.1% of all core-write accesses. Though the data written by

the zero-depth-range core-write access will not be rewritten before it is evicted, it still

has some chance to be read again. Thus, we suggest leaving zero-depth-range data in its

original cache line for avoiding read misses and block migrations.

Immediate-depth-range accesses account for 32.9% of totalcore-write accesses. The

immediate-depth-range accesses are the write-intensive accesses with write burst behavior.

Thus, the immediate-depth-range access data is preferred to be placed in the SRAM line

for low write overhead. The distant-depth-range access data should remain in its original

cache line, thus minimizing migration overhead.

5.1.2.3 Pattern Analysis of Demand-Write Block

The access pattern of demand-write blocks is analyzed usingread-range. Zero-read-

range demand-write blocks, also known in the literature as “dead-on-arrival” blocks, are

brought to the LLC by a demand request and never referenced again before being evicted.

77

It is unnecessary to place zero-read-range demand-write block into the LLC so the block

should bypass the cache (assuming a non-inclusive cache). The third bar in Figure 5.3

shows dead-on-arrival blocks account for 61.2% of LLC demand-write blocks. Thus, by-

passing dead-on-arrival blocks can significantly reduce write operations to LLC. More-

over, bypassing can improve cache efficiency by allowing theLLC to save space for other

useful blocks in the cache.

The immediate-read-range and distant-read-range demand-write blocks account for

38.8% of the total demand-write blocks. We suggest placing them in the STT-RAM ways

for making use of the large capacity of the STT-RAM portion and reducing pressure on

the SRAM portion.

5.1.2.4 Pattern Analysis Conclusions

Each class of LLC write access can be applied to a different placement policy. The

access pattern of each class type can be used to guide the block placement policy. From

the analysis of the access pattern of each access class, we make the following conclusions:

(1) The initial placement of prefetch-write blocks should be to SRAM lines. (2) Write-

burst core-write data should be placed in SRAM lines while other types of core-write

data should remain in their original cache lines. (3) Dead-on-arrival demand-write blocks

should bypass the LLC while the other types of demand-write blocks should be placed in

the STT-RAM lines. (4) When a block is evicted from SRAM, if itis live, it should be

migrated to STT-RAM lines for avoiding LLC misses.

5.1.3 Policy Design

The design of the block placement and migration policy is guided by the access pattern

of each write access type. An access pattern predictor is proposed to predict write-burst

blocks and dead blocks. The information provided by the access pattern predictor is used

to direct bypass and migration of blocks between STT-RAM lines and SRAM lines. The

78

 Core-Write ?

 Hit?

 Dead?

Place in STT-RAM
to STT-RAM

Place in SRAM

 Dead?

Yes

 Evict
Migrate

No

 Access to LLC

 Prefetch-Write?

 Evicted Block

No

 Write Hit?

No
Hit in SRAM?

 Write Burst?

Yes No

Write to Original

Write to
 Memory

Yes

Yes No

Migrate to SRAM

 Demand

Fetched Block

Bypassing

DeDeYes

Return Data

No

FeFeYes No

Yes No

Yes No

Cache Line

Write to Original

Ye
Cache Line

Figure 5.4: Flow-chart of the adaptive block placement and migration mechanism

policy targets reducing write overhead by allowing the SRAMportion to service as many

write requests as possible and attain high performance by benefiting from the high density

of the STT-RAM portion.

Figure 5.4 shows a flow-chart for the technique. In our design, a prediction bit is

associated with each block in the LLC for representing whether the block is predicted

dead. An access to the LLC searches all the STT-RAM lines and SRAM lines in the set.

On a prefetch miss, the prefetched data is placed into an SRAMline and the prediction bit

is set to 1 meaning we assume the prefetch block is dead on arrival. For every demand hit

request in the SRAM lines, the access pattern predictor makes a prediction about whether

the block is dead. Once the block is evicted from the SRAM lines, if it is predicted dead,

it will be evicted from the LLC. Otherwise, it will be migrated to the STT-RAM lines. In

this case, if a prefetch block is never accessed before it is evicted from the SRAM lines,

it is taken as an inaccurately prefetched block and evicted based on the observation that

accurately prefetched blocks are usually accessed soon by subsequent demand requests.

On a core-write request to the LLC, if it is an LLC miss, it willbe written to main

memory directly. For the core-write hit request in the STT-RAM lines, if it is predicted

79

S
am

pled C
ore C

ache M
iss

Data Access

Prediction

Sampled Prefetch
Request

Update

Simulator

LLC

Selected Core Cache Miss

Prediction Table

Core Cache

 Pattern

&
 C

ore−
W

rite R
equest

& Core−Write Request

Figure 5.5: System structure

Initial

Status

Partial Tag Partial Read PC Partial Write PC

DEC Read

PCR1 PCR2 PCR3 PCR4 a b c d PCW1 PCW2

Read B
DEC
DCNT PCR2

CW A WCNT PCW1

INC
Hit

CW C

Prefetch E

Read E

Miss

INC

Hit

INC
DCNT PCR4 WCNT PCW3 WCNT PC

DEC

MRU LRU

 DEC/INC C DCNT PCR*: R*: Decrease/Increase the counter in the dead block prediction table indexed by PCR*

 DEC/INC INC WCNT PCW*:

LRU

W*: Decrease/Increase the counter in the write burst prediction table indexed by PCW*

Read
Hit

PCR5 PCR1 PCR3 PCR4 b a c Hid PCW2 WC
IN

PCW3

PCR5 PCR1 PCR3 PCR4 b a c
Mi

d PCW2 PCW3

PCR5 PCR1 PCR3
DEDE
DDPCR4 b a c

ReRe
Hid PCW2 PCW1

 I PCR5 PCR1
ININ
DDPCR3 e b a c I WCWC

DEDE
PCW2

PCR6 PCR5 PCR1 PCR3 e b a Hic I PCW2

HitHi
CW

MissMi
CW

HitHi
Read

I : Invalid CW : core-write access hit

Figure 5.6: An example illustrating the set behavior of pattern simulator

to be a write burst access, then data will be written to the SRAM lines with the prediction

bit set to 0 indicating the block is predicted live; the priorposition in the STT-RAM line

is set to invalid. Then, as with prefetched blocks, once the data is evicted from the SRAM

portion, a predicted dead block is evicted from the LLC whilea live block is migrated to

the STT-RAM portion.

On a demand miss to the LLC, the data is fetched from the main memory. If the fetched

block is predicted to be a dead-on-arrival block, it will bypass the LLC. Otherwise, the

80

block will be placed in the STT-RAM lines.

Minimizing Write Overhead The proposed scheme reduces write operations to STT-

RAM portion in the following ways. First, bypass can reduce write operations to STT-

RAM lines caused by dead-on-arrival requests. Second, SRAMlines filter the write oper-

ations caused by the inaccurate and immediate-read-range prefetch requests. Finally, the

core-write-intensive blocks are placed in the SRAM lines, reducing the write operations

to STT-RAM lines caused by write burst behavior.

Attaining High Performance The block placement policy can attain high performance

for the hybrid cache by benefiting from the high density of theSTT-RAM portion. Specif-

ically, the distant-read-range blocks are placed in STT-RAM lines that can reduce cache

misses by making use of the large capacity of STT-RAM. Also, bypassing zero-range de-

mand blocks saves space in the LLC for other useful data. Moreover, filtering zero-range

prefetch blocks and immediate-read-range blocks using SRAM lines can improve cache

efficiency by reducing inaccurately prefetched blocks and dead blocks in the LLC.

The technique relies on an access pattern predictor for directing block bypassing and

migration.

5.1.3.1 Access Pattern Predictor

The goal of the access pattern predictor is to predict dead blocks and write burst blocks

for guiding block placement. The predicted dead blocks are used to direct bypassing and

block migration from SRAM lines to STT-RAM lines. Write burst blocks are used to

guide block migration from STT-RAM lines to SRAM lines for core-write accesses. The

access pattern predictor consists of a prediction table anda pattern simulator as shown

in Figure 5.5. The prediction table is composed of a dead block prediction table and a

write burst prediction table having the same structure but making predictions for different

types of accesses. The pattern simulator is used to learn theaccess pattern for updating the

81

prediction table.

The design of the access pattern predictor is inspired by thesampling dead block pre-

dictor (SDBP) [34]. However, the SDBP predicts dead blocks only taking into account

demand accesses, while the access pattern predictor predicts both dead blocks and write-

intensive blocks by considering all types of LLC accesses. The predictor predicts access

pattern using the Program Counter (PC) of memory access instructions. The intuition is

the cache access pattern can be classified based on the instructions of the memory ac-

cesses. Specifically, if a given memory access instruction PC leads to some access pattern

in previous accesses, then the future access pattern of samePC will be similar.

Making Prediction The access pattern predictor makes a prediction in the following three

conditions: (1) When a core-write request hits in the STT-RAM lines, the write burst

prediction table will be accessed to predict whether it is a write burst request. (2) For each

read hit request in the SRAM lines, the dead block predictiontable will be accessed to

predict whether it is a dead block. (3) On a demand-write request, dead block prediction

table will be accessed to predict whether it is a dead-on-arrival request.

The dead block prediction and write burst prediction tableshave the same structure.

Each entry in a prediction table has a two-bit saturating counter. When making a predic-

tion, bits from the related memory access instruction PC arehashed to index a prediction

table entry. The prediction result is generated by thresholding the counter value in the

prediction table entry. In our implementation, we use a skewed organization [85, 34, 49]

to reduce the impact of conflicts in the hash table.

Updating Predictor The pattern simulator samples LLC sets and simulates the access

behavior of the LLC by using sampled sets. It updates the prediction table by learning the

access pattern of the PCs from the simulated LLC access behavior. It targets learning the

dead/live behavior and write burst behavior of LLC blocks.

82

Each simulated set in the pattern simulator has a tag field, a read PC field, an LRU

field, a write PC field, a write LRU field and a valid bit field. Thepartial tag and partial

read/write PC which are the lower 16-bit of the full tag and full read/write PC are stored

in the tag field and read/write PC field. The read PC field is for learning the dead/live

behavior of the block while the write PC field is for learning the write-burst behavior of

the block.

A write burst occurs within a small number of cache lines. Thus the write PC field

should have a small associativity. The pattern simulator consists of two parts: the tag

array and its related read PC field, LRU field and valid bit fieldwhich have the same

associativity while the write PC field and its write LRU field have a smaller associativity.

In our implementation, we found 4-way associativity of the write PC field and 12-way

associativity of the read PC field yield the best performancewhile the associativity of

LLC is 18.

The behavior of a pattern simulator set is illustrated in Figure 5.6 using an example

access pattern. In the example, the associativity of the tagand read PC fields is 4 while the

associativity of the write PC field is 2. On each demand hit request, the pattern simulator

updates the dead block prediction table entry indexed with the related read PC by decreas-

ing the counter value indicating “not dead.” When a block is evicted from the simulator

set, the pattern simulator updates the dead block prediction table entry indexed with the

related read PC by increasing the counter value indicating “dead.” The LRU recency is

updated for every demand request and prefetch-write request. The write PC field is for

learning the write-burst behavior for core-write requests. On each core-write hit request,

the simulator increments the counter value stored in the write burst prediction table en-

try indexed with the related write PC indicating “write burst.” When a block is evicted

from the write field, the simulator decrements the counter value stored in the write burst

prediction table entry indexed with the related write PC indicating “not write burst.”

83

Read B Write A

Read A Read B Write A

Read C

Timing

Read C

t1 t2 t3 t4

Requests

Memory

Read A

LLC Miss Penalty

Throughput Energy
4 units 5120pJA
1 unit 1024pJB

Figure 5.7: LLC miss penalty on throughput and energy for dirty cache block and clean
cache block

5.2 WADE: Writeback-Aware Dynamic Cache Management for NVM-based Main

Memory System

5.2.1 Motivation

Dirty and clean cache blocks in the LLC have different properties. When dirty cache

blocks are evicted from the LLC, they will be written into main memory incurring per-

formance and energy overhead, while clean cache blocks willnot affect the system when

they are evicted.

Figure 5.7 shows an example demonstrating the disparity in LLC miss penalties for

dirty data and clean data on PCM throughput and energy. Assuming a request ‘read

A’ missed in the LLC and is sent to PCM for service, servicing request ‘read A’ takes

one time unit and A is brought into the LLC. Then a request ‘read B’ missed in the

LLC and is serviced by PCM for one time unit. In the LLC, ‘blockA’ is accessed by

a write hit and the dirty bit is set. After ‘dirty block A’ is evicted from the LLC, it

will be written back to PCM. Assuming servicing write request ‘write A’ takes 4 time

units. At time t4, a request ‘read C’ is sent to PCM that targets to the same device

with ‘request A’. Then C has to wait until the completion of servicing ‘A’. In this case,

84

0

200

400

600

800

1000

1200

access

>
=

128

[64 128)

[32 64)

[16 32)

[8 16)

[4 8)

[1 4)

N
um

be
r

of
 R

eg
io

ns

0

20

40

60

80

100

P
ercentage

12 21
11

6
24

6

53
1

19
4

10
68

Figure 5.8: Region-based memory write access pattern in PCMfor 483.xalancbmkfor
500 million instructions. One region contains16 contiguous blocks. X-axis shows the
number of region access times ([M N) means the region is accessed byX times and
M <= X < N). Very few regions are accessed frequently (e.g., only 12 regions are
accessed more than 128 times).

C is delayed by servicing request ‘write A’ for3 units. Therefore, the LLC perfor-

mance miss penalty of ‘clean data B’ takes one time unit whilethe LLC performance

miss penalty of ‘dirty data A’ takes4 units: 1 unit for reading ‘A’ and3 unit for de-

laying ‘C’. Assuming the PCM read/write energy is2/8 pJ/bit. Then the energy miss

penalty for ‘A’ and ‘B’ is (64bytes×8bits×2pJ/bit)+(64bytes×8bits×8pJ/bit)=5120pJ and

64bytes×8bits×2pJ/bit=1024pJ, respectively. Therefore, the miss penalty for dirty data is

more significant than the clean data.

Based on the observation, we propose to adapt the cache management technique to

reduce the writeback requests. Since the performance and energy cost is more significant

for the dirty cache blocks, the system could benefit by keeping frequent writeback cache

blocks in the LLC. However, blindly allocating large cache capacity to frequent writeback

data can evict the more critical cache blocks that will be re-referenced soon. This will

result in performance degradation. Consequently, there are two questions that need to be

answered:(1) are the frequent writeback blocks predictable? (2) whatis the optimal cache

85

Figure 5.9: 3D view for write access pattern in PCM within seven hot regions for
483.xalancbmk. The X-axis shows the 16 cache blocks within a region. The Z-axis shows
7 regions that the number of writeback accesses larger than 64.

capacity that should be allocated to frequent writeback data? We performed experiments

and have the following two observations:

Observation 1 : The writeback accesses have spatial and temporal locality. A small
percentage of regions account for a large percentage of writeback accesses. Within
a heavily accessed region, the writeback accesses are clustered.

Figure 5.8 shows access patterns for writeback requests to PCM for the benchmark

xalancbmkfor 500 million instructions. We evaluate the access pattern at theregion level.

One region includes1/4 size of memory page which has16 contiguous blocks. X-axis

shows the number of region access times, such as[32 64) means the region is accessed

by no less than32 times and less than64 times. Y-axis gives the number of regions that

correspond to the access times on the X-axis. For instance, the first bar shows there are

12 regions have been accessed more than 128 times. The last bar shows the percentage

of number of accesses for each type of region account for all the writeback accesses. We

86

can see the writeback accesses have temporal locality. Lessthan18% percent of regions

account for60% writeback accesses. Figure 5.9 shows the3D graph for writeback access

pattern within the frequent writeback regions. The X-axis shows the16 cache blocks

within a region. The Z-axis shows seven regions that the number of writeback accesses

larger than64. The Y-axis gives the percentage of total write accesses foreach block

within the region. We can see the writeback accesses for blocks are clustered within the

region.

Based on this observation, we propose a two-stage predictorfor frequent writeback

cache blocks, at both coarse-granularity and fine-granularity: The region granularitypre-

diction predicts the hot region by capturing the spatial locality and temporal locality. The

cache line granularityprediction identifies the frequent writeback blocks withinthe hot

region.

Observation 2 : The segment size of frequent writeback list for cache set
significantly affects the performance and energy consumption for workloads.

The last-level cache set is partitioned intofrequent writeback listand non-frequent

writeback list. The frequent writeback listconsists of frequent writeback cache blocks,

while thenon-frequent writeback listconsists of the remaining cache blocks in the set.

Figure 5.10 shows the performance and energy impact for various sizes of frequent write-

back list for benchmarkperlbench. For a 16-way LLC, the best segment size forperlbench

is 11 which generates the best performance and lowest energy cost. We can see the seg-

ment size of frequent writeback list do significantly affectthe performance and energy

consumption.

Based on this observation, we propose to segment the cache set into frequent writeback

87

0 4 8 12 16
Static Frequent Writback List Segmentation

0.80

0.82

0.84

0.86

0.88

0.90

IP
C

SFWLS with LRU Policy
LRU policy

0 4 8 12 16
Static Frequent Writback List Segmentation

25

30

35

40

45

E
ne

rg
y

(1
0^

7
P

J)
 SFWLS with LRU Policy

LRU policy

(a) SpeedUp (b) Energy

Figure 5.10: The impact on performance and energy for various size of writeback list for
400.perlbench. For a 16-way LLC, the optimal segmentation size for frequent writeback
list is 11.

list and non-frequent writeback list. A segment predictor [33] is used to dynamically learn

an optimal size of each list in the set according to the miss penalty for dirty and clean

cache blocks.

5.2.2 Policy Design

The WADE technique improves system efficiency by reducing frequent writes to main

memory. Figure 5.11 shows the structure of WADE. It uses a frequent write predictor

(FWP) to predict LLC blocks that are written back to main memory with high frequency

within a certain access interval. The insight of the technique is that frequent writeback

data is also highly reused dirty data in the LLC. If frequent writeback data can be stored in

the LLC, it can reduce write-induced interference as well asenergy consumption of PCM.

However, blindly replacing LLC blocks with frequent writeback data can evict more criti-

cal cache blocks that have a larger miss penalty, such as clean cache blocks accessed more

frequently than the predicted frequent writeback cache blocks. This can lead to perfor-

mance degradation. In WADE technique, the LLC set is partitioned into frequent write-

back list and non-frequent writeback list. A segment predictor [33] is used to intelligently

88

Data Accesses

Write Accesses

Core Cache

LLC

Selected Core Cache Misses

 Predictor

Frequent Write

Evicted Write Accesses

Frequent Write Prediction

Segment Predictor

Segment Size Prediction

Figure 5.11: System structure

learn the best partition size of each list.

5.2.2.1 Frequent Write Prediction

A frequent write predictor is proposed to keep track of the frequent writeback data

and predict the frequent writeback block in the LLC. Figure 5.12 shows the structure of

the FWP which is located on chip along with the LLC tag arrays.FWP is organized as

a set associative structure. Everym LLC sets map ton FWP sets. Figure 5.13 shows

the address mapping scheme for FWP. In our experiment, we setm = 16, n = 4. This

address mapping scheme allows FWP keeping track of the frequent writeback data in

region granularity where each region consists ofm cache blocks.

Each entry in the FWP set has a partial tag field (PTag), an LRU field, a frequency

counter field indicating how often the region data being written back and a set flag field

that each flag bit corresponding to each LLC set that map to this FWP set. The set flag field

allows the technique to keep track of frequent writeback data at the cache line granularity.

Thus, the FWP table keeps track of the frequent writeback data in both coarse granularity

and fine granularity: region granularity and cache line granularity. Since applications often

have spatial and temporal locality, tracking data in coarsegranularity (region granularity)

can minimize the capacity overhead as well as improve prediction accuracy.

89

PTag LRU
Frequency
 Counter Set Flag

Prediction Table Set

Cache Frequent Write Predictor

m n

}

}

Figure 5.12: Illustration of frequent write predictor. FWPis a set associative structure,
each set has multiple entries with multiple fields

Block OffsetSet Index

logmlogn

Tag

PTag Set IndexFWP

LLC

Figure 5.13: FWP address mapping scheme. Every m LLC sets mapto n FWP

Making a Prediction For each cache block in the LLC, one Fbit is added for indicating

that block is a frequent writeback block. Once a write request accesses the LLC, it will

also access the FWP set for partial tag matching. Since correctness of matches is not

necessary in the tag array, only 16 bits of tag are stored in the FWP set entry to conserve

area and energy. If it is a partial tag hit and the corresponding set flag bit is set, the Fbit

for this cache block is set indicating that the cache block isa frequent write cache block.

Otherwise the Fbit of the cache block is unset.

Updating Predictor Once a dirty cache block is evicted from the LLC, the FWP is up-

dated. The evicted dirty cache block accesses the FWP. The LRU recency in the corre-

sponding FWP set is updated for each access. On a partial tag hit, the frequency counter

value in the entry is increased by 1. The corresponding set flag bit is set to 1. On a miss,

90

a new entry is allocated in the FWP set. The initial frequencycounter value is reset to

0. The corresponding set flag bit is set to 1 while all the otherset flag bits in the set flag

fields for the newly allocated entry are reset to 0. The replacement candidate is chosen by

taking into account both recency and frequency information. The frequency information

is used to recognize the frequent writeback region. The recency information can be used

to remove the stale data in the FWP table. Assuming the LRU recency value isR(i) where

the highest value indicates MRU position and the frequency counter value isF (i). Then

the replacement victim is chosen as follows:

V ictim = argmin
i
{F (i) + γR(i)} (5.1)

The parameterγ gives the weight ofR(i). It determines the access interval for comput-

ing the frequency for writeback data. The larger the value, the smaller the access interval.

If the access interval is too small, it could result in local optimal prediction result instead

of global optimal prediction result. If the access intervalis too large, the stale data stored

in FWP prevent the learning process. In our experiment, we foundγ = 4 gives the best

performance.

5.2.3 Frequent Writeback List Cache Segmentation

The LLC set is logically segmented into frequent writeback and non-frequent write-

back lists. The cache blocks with the Fbit set belong to the frequent writeback list, the

remaining cache blocks belong to the non-frequent writeback list. The segment predic-

tor [33] is used to predict the optimal segment size of frequent writeback list for all sets.

Figure 5.14 illustrates the mechanism of the technique. It tries to keep the optimal seg-

ment size that minimizes the LLC miss penalties. The technique is decoupled from LLC

replacement policy. Any replacement policy can be applied to each list.

91

Last−Level Cache

Frequent Writeback List
If Segment Frequent Writeback List.Size > Predicted Frequent Writeback List.Size

Non−Frequent Writeback List
If Segment Frequent Writeback List.Size <= Predicted Frequent Writeback List.Size

Evict

Evict

Figure 5.14: The logical view of frequent writeback list segmentation mechanism. Each
set is partitioned into frequent writeback list and non-frequent writeback list

Follower Sets

Segment Size : 16

Segment Size : 0

Segment Size : 4, 8, 12

Segment Size 16 with Bypassing

+1, if RM

+p, if WM

−1, if RM

PSEL1
+1, if RM && winner sets

+p, if WM && winner sets
PSEL2

+1, if RM && winner sets

+p, if WM && winner sets
PSEL3

−p, if WM

−1, if RM

−p, if WM
−1, if RM && winner sets

−p, if WM && winner sets

Figure 5.15: The mechanism of segment predictor. It consists of six leader sets with
segment size 0, 4, 8, 12, 16 and segment size 16 with bypassing.

Once a request accesses the LLC, all the ways in the set are searched. On a miss, the

size of frequent writeback list of the set is calculated. If it is larger than the predicted

optimal size, the replacement candidate will be chosen fromthe frequent writeback list.

Otherwise it will be chosen from the non-frequent writebacklist.

5.2.3.1 Optimal Segment Size Prediction

The segment predictor [33] uses set duelling to determine optimal segment size. It

estimates the miss penalty for any given segment size by always dedicates a few “leader

sets” follow that segment size. As shown in Figure 5.15, we evaluate five segment sizes for

16-way associative set: 0, 4, 8, 12, 16. The leader sets use decision tree analysis to pairwise

set duel at each level as proposed in [33]. For instance, segment size 8 duel with segment

92

size 16 in first level. The policy selection counter 1 (PSEL1)increases on a miss in leader

sets following segment size 8 and decreases on a miss in leader sets following segment size

16. The PSEL1 estimates which segment size is the winner sizein the first level. If size 8

is the winner size, the second level duel will be between segment size 0 and 8. Otherwise,

the second level duel will be between size 12 and 16. The process will continue until

the optimal segment size is found. In our experiment, we use an out-of-cache segment

predictor, that is a set associative structure is added to simulate the sampled leader sets.

The LLC sets follows the optimal segment size predicted by the segment predictor.

5.2.3.2 Bypass Incoming Read Blocks

If a block to be placed in a set will not be reused before it is evicted from the set, it

should bypass the cache. Bypassing can improve cache efficiency by allocating the capac-

ity to other reused blocks in the cache. Our segment predictor also considers bypassing the

read requests. If the predicted optimal segment size is 16, the leader sets with bypassing

the read requests duel with the leader sets of segment size 16without bypassing. The LLC

sets will follow the winner policy indicated by PSEL3.

5.2.3.3 Determining Miss Penalty

The traditional cache replacement policy assumes the absolute number of cache misses

is fully correlated with memory-related stall cycles [63].It assumes the same miss penalty

for dirty and clean cache blocks. In the traditional set duelling technique, for each leader

cache set miss whether the data is dirty or clean, the PSEL is increased/decreased by 1.

Our technique is different from previous work in that it is aware of the write inefficiency

problem and assign miss penalty according to the type of cache blocks. If a clean cache

block is evicted from the leader set, the PSEL is increased/decreased by 1. If a dirty cache

cache block is evicted from the leader set, the PSEL is increased/decreased byp, defined

as follows:

93

p = 1.5 + 0.5× l (5.2)

l is defined as:

l = W/R (5.3)

In the formula,W is the write latency whileR is the read latency. For a certain memory

system,l is a constant. Thenl is quantized into 2 bits value by divided by 8. The larger

the value ofl, the larger the write latencyp. p is measured in steps of0.5. For each leader

set, we add1 bit even write flag. Ifp is not a integer, such asp = 1.5, then for every two

write misses, the PSEL is increased by three.

5.3 Evaluation Methodology for APM Technique

Execution core 4.0GHZ, 1-core/4-core CMP, out of order,
128 entry reorder buffer, 48 entry load queue,
44 entry store queue, 4 width issue/decode

Caches L1 I-cache: 64KB/2 way, private, 2-cycle
64 bytes block size, LRU
L1 D-cache: 64KB/2 way, private, 2-cycle
64 bytes block size, LRU
L2 Cache: shared, 64 bytes block size, LRU

DRAM DDR3-1333, open-page policy, 2-channel,
8-bank/channel, FRFCFS [68] policy,
32-entry/channel write buffer,
drain when full write buffer policy

Table 5.2: System configuration

We use MARSSx86 [57], a cycle-accurate simulator for the 64-bit x86 instruction set.

The DRAMSim2 [69] simulator is integrated into MARSSx86 to simulate DDR3-1333

system. Table 5.5 lists the system configuration. We model a per-core LLC middle-of-

94

Name Technique
SRAM SRAM-based LLC
STT-RAM STT-RAM-based LLC
OPT-STT-RAM STT-RAM-based LLC

Assuming symmetric read/write overhead
Sun-Hybrid Hybrid LLC technique as described in [79]
APM Adaptive placement and migration based

hybrid cache as described in Section 5.2.2

Table 5.3: Legend for various LLC techniques.

Name Benchmarks
Mix 1 milc gcc xalancbmk tonto
Mix 2 gamess soplex libquantum perlbench
Mix 3 gcc sphinx3 GemsFDTD tonto
Mix 4 lbm mcf cactusADM GemsFDTD
Mix 5 zeusmp bzip2 astar libquantum
Mix 6 mcf soplex zeusmp bwaves
Mix 7 omnetpp lbm cactusADM sphinx3
Mix 8 bwaves libquantum mcf GemsFDTD
Mix 9 omnetpp cactusADM tonto gcc
Mix 10 soplex mcf bzip2 gcc
Mix 11 perlbench sphinx3 libquantum lbm

Table 5.4: Multi-Core workloads

the-road stream prefetcher [76] with 32 streams for each core. The prefetcher looks up

the stream table at each LLC request for issuing eligible prefetch requests. The LLC

is configured with multiple banks. Requests to different banks are serviced in parallel.

Within the same bank, requests are be pipelined. The LLC is implemented with single-

port memory bitcell. We obtain STT-RAM and SRAM parameters using NVSim [12] and

CACTI [51] as shown in Table 5.1.

The SPEC CPU2006 [19] benchmarks are used for the evaluation. We evaluate five

LLC techniques based on the same area configuration. Table 5.3 shows the legends for

these techniques referred to in the graphs that follow. The OPT-STT-RAM technique

assumes write operations have similar access latency to read operations which is the op-

95

timistic case. The Sun-Hybrid [79] technique assumes that acache block that has been

consecutively written to the LLC twice is a write-intensiveblock. The technique migrates

the write-intensive blocks to SRAM lines for reducing the write operations to STT-RAM

lines. The APM technique is our proposed adaptive block placement and migration policy

based hybrid cache technique as described in section 5.2.2.We modify MARSSx86 to

support all types of LLC listed in Table 5.3.

5.3.1 Single-Core Workloads and LLC Configuration

Of the 29 SPEC CPU2006 benchmarks, 22 can be compiled and run with our in-

frastructure. We use all 22 of these benchmarks for evaluation including both memory-

intensive benchmarks and non-memory-intensive benchmarks. For each workload, we

simulate 250 million instructions from a typical phase identified by SimPoint [74].

Various LLC techniques are evaluated with the same area. A 2MB SRAM has similar

area to a 6MB STT-RAM. Thus, we evaluate a 16-way SRAM with 2MBcapacity and 24-

way STT-RAM/OPT-STT-RAM with 6MB capacity. The hybrid cache design for the APM

technique has 16 STT-RAM lines and 2 SRAM lines in each set andhence we evaluate a

4.5MB APM hybrid cache which has the same area with a 2MB SRAM.In the Sun-Hybrid

technique, each cache set allocates 1 SRAM line. Thus we evaluate a 20 STT-RAM lines

and 1 SRAM line hybrid cache with a 5.25MB capacity for Sun-Hybrid technique. We

implement a 1MB SRAM cache bank and 2MB STT-RAM cache bank fora single-core

configuration yielding the best trade off of access latency and bank level parallelism. If

the capacity of SRAM is smaller than 1M, it is configured as onebank.

5.3.2 Multi-Core Workloads and LLC Configuration

We use quad-core workloads for evaluation. Table 5.6 shows eleven mixes of SPEC

CPU2006 benchmarks with a variety of memory behaviors. For each mix, we run the

experiment with 1 billion instructions total for all four cores starting from the typical

96

phase. Each benchmark runs simultaneously with others. Forthe multi-core configuration,

we evaluate a 16-way SRAM with 8MB capacity, 24-way STT-RAM/OPT-STT-RAM with

24MB capacity, 16-way STT-RAM and 2-way SRAM Hybrid APM technique with 18MB

capacity, and 21MB 20-way STT-RAM and 1-way SRAM Sun-Hybridtechnique. In the

multi-core configuration, we use 2MB SRAM cache bank and 4MB STT-RAM cache bank

which yield best performance. If the capacity of SRAM is smaller than 2M, it is configured

as one bank.

5.4 Evaluation Methodology for WADE Technique

Execution core 4.8GHZ, 1-core/ 4-core CMP, out of order
256 entry reorder buffer, 4 width issue/decode
15 stages, 256 physical registers

Caches L1 I/D-cache: 64KB, 2 way, private
64 bytes block, 2-cycle, LRU,
L2 Cache: 2MB/1core, 8MB/4core
16-way, shared, 64 bytes block, 14-cycle

PCM 1 channel/1core, 2 channels/4-core CMP
8 banks per channel, 8K bytes row buffer
32-entry write buffer per channel
read prioritize write scheduling policy

PCM Timing row hit (clean miss, dirty miss)
=200 (450, 5000) cycles

PCM Energy array read (write) = 2.47 (16.82) pJ/bit
row buffer read (write) = 0.93 (1.02) pJ/bit

Table 5.5: System configuration. Memory timing and energiesare adapted from [41]

We use the MARSSx86 [57], a cycle-accurate simulator for thex86-64 architecture.

We modify the DRAMSim2 [69] simulator to simulate PCM memoryand incorporate it

into MARSSx86. The system configuration is shown in Table 5.5. We use the SPEC CPU

2006 [19] benchmarks for the evaluation. Each benchmark is run with the firstref input

97

Name Benchmarks
Mix 1 milc gcc xalancbmk tonto
Mix 2 GemsFDTD namd bzip2 gamess
Mix 3 gamess soplex libquantum perlbench
Mix 4 zeusmp lbm xalancbmk calculix
Mix 5 gamess milc namd soplex
Mix 6 astar lbm gobmk calculix
Mix 7 soplex calculix tonto lbm
Mix 8 lbm mcf cactusADM GemsFDTD
Mix 9 mcf soplex zeusmp bwaves
Mix 10 lbm milc astar libquantum
Mix 11 xalancbmk lbm perlbench tonto

Table 5.6: Workloads

provided by therunspeccommand.

5.4.1 Single-Thread Workloads

We use 15 memory intensive benchmarks for this study. A 2MB LLC is simulated for

the single thread workloads. For each workload, we made a checkpoint by running the

benchmark to a typical phase identified by SimPoint [74]. Then we run the experiment

starting from the checkpoint,the infrastructure simulates 200 million instructions from the

checkpoint.

5.4.2 Multi-Core Workloads

Table 5.6 shows eleven mixes of SPEC CPU 2006 benchmarks chosen four at a time

with a variety of memory behaviors. We use these mixes for quad-core simulations. Each

benchmark runs simultaneously with the others. For each mix, we made a checkpoint by

running the one of the memory intensive benchmarks to a typical phase . Then we run the

experiment for 1 billion instructions total for all four cores starting from the checkpoint.

We simulate an 8MB shared LLC for the multi-core workloads.

98

400.perlbench
401.bzip2
403.gcc
410.bwaves
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM

444.nam
d

445.gobm
k

450.soplex
456.hm

m
er

459.G
em

sFDTD

462.libquantum

464.h264ref
465.tonto
470.lbm
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 W
ri

te
 O

pe
ra

ti
on

s

Core-write
Demand-write
Prefetch-write1st bar: All write operations 2nd bar: Write operations to STT-RAM

Figure 5.16: The distribution of write accesses to STT-RAM lines in APM LLC for single-
core applications

5.5 Evaluation Results for APM Technique

5.5.1 Single-Core Evaluation Results

5.5.1.1 Reduced Writes Evaluation

The APM technique allows SRAM lines to service as many write requests as possible,

thus reducing write operations to STT-RAM lines. Figure 5.16 shows the distribution of

write operations to STT-RAM lines in the APM technique normalized to all write opera-

tions to the LLC for single-core workloads. We can see the APMLLC reduces write oper-

ations to STT-RAM lines for each type of write accesses. In APM LLC, only 32.9% of the

total LLC write requests are serviced by the STT-RAM portion, significantly reducing the

write overhead of the STT-RAM portion and translating into performance improvement

and power reduction of the LLC.

5.5.1.2 Performance Evaluation

Figure 5.17 shows the speedup for various techniques compared with baseline tech-

nique which is 2MB SRAM LLC. The 6MB STT-RAM LLC has similar area to 2MB

SRAM LLC. It improves the performance by 6.2% on average due to the increased ca-

pacity. Most of the benchmarks can benefit from the increasedcapacity of STT-RAM.

99

400.perlbench
401.bzip2
403.gcc
410.bwaves
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM

444.nam
d

445.gobm
k

450.soplex
456.hm

m
er

459.G
em

sFDTD

462.libquantum

464.h264ref
465.tonto
470.lbm
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k

G
m

ean

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

6M-STT-RAM
5.25M-Sun-Hybrid
4.5M-APM
6M-OPT-STT-RAM

0.
85

0.
81

0.89
0.

88

1.
49
1.

48
1.

39
1.

50
1.

36
1.

38
1.

41
1.

35
1.

39
1.

35

Figure 5.17: The comparison of IPC for single-core applications (normalized to 2M
SRAM LLC)

However, several benchmarks such asgcc, milc, libquantum andlbm suffer more

from the large write overhead of STT-RAM. The OPT-STT-RAM LLC assumes symmetric

read/write latency meaning large write-induced interference to read request is removed. It

yields a geometric mean speedup of 9.3%. The performance difference between OPT-STT-

RAM and STT-RAM is caused by the long write latency of STT-RAM. The 4.5MB APM

LLC reduces the write overhead of the STT-RAM portion, delivering a geometric mean

speedup of 8.0%. It yields even higher speedup for benchmarks 462.libquantum,

482.sphinx3, and483.xalancbmk than the 6MB OPT-STT-RAM LLC. Because

those workloads generate a large number of dead blocks or inaccurate prefetch blocks in

the LLC and hence reducing the LLC efficiency. The APM technique reduces the LLC

pollution cased by dead blocks and inaccurate prefetch blocks, thus improving the LLC

efficiency for those workloads. The 5.25MB Sun-Hybrid LLC improves the performance

by 5.0% on average.

5.5.1.3 Power Evaluation

Figure 5.18 shows the normalized power consumption for various techniques due to

leakage power, dynamic power caused by reads and dynamic power caused by writes. The

baseline technique is a 2MB SRAM. For the SRAM technique, theleakage power dom-

100

400.perlbench
401.bzip2
403.gcc
410.bwaves
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM

444.nam
d

445.gobm
k

450.soplex
456.hm

m
er

459.G
em

sFDTD

462.libquantum

464.h264ref
465.tonto
470.lbm
471.om

netpp
473.astar
482.sphinx3
483.xalancbm

k

G
m

ean

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 P
ow

er

Write Power
Read Power
Leakage Power

1st bar: 2M-SRAM 2nd bar: 6M-STT-RAM 3rd bar: 5.25M-Sun-Hybrid 4th bar: 4.5M-APM

3.
57
2.

29
2.

68
2.

43
2.

37
2.

38
2.

32

Figure 5.18: The power breakdown for single-core applications (normalized to 2MB
SRAM)

inates the total power consumption. The STT-RAM technique consumes lower leakage

power. However, the dynamic power caused by writes is significantly increased due to

the large write energy of STT-RAM. Thus the STT-RAM technique increases the overall

power consumption by 11.9% on average. The APM technique reduces write operations to

the STT-RAM portion, thus reducing the dynamic power causedby writes. It reduces the

overall power consumption by 18.9% on average compared withthe baseline. The Sun-

Hybrid technique does not significantly reduce the write power because the Sun-Hybrid

technique does not reduce write operations to STT-RAM caused by LLC replacement.

5.5.1.4 Extra LLC Traffic Evaluation

The APM technique migrates blocks between SRAM lines and STT-RAM lines. Mi-

grating blocks from SRAM lines to STT-RAM lines causes extracache traffic. We evaluate

the LLC traffic caused by migration. Migration causes only 3.8% extra LLC traffic. Most

of the blocks evicted from SRAM ways are dead blocks, thus only a small number of

distant-read-range blocks need to be migrated to STT-RAM. Thus, the small percentage

of traffic caused by migration will not cause significant traffic overhead.

101

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 W
ri

te
 O

pe
ra

ti
on

s

Core-write
Demand-write
Prefetch-write

1st bar: All write operations

2nd bar: Write operations to STT-RAM

Figure 5.19: The distribution of write accesses to STT-RAM lines in APM LLC for multi-
core applications

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

G
m

ean

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

Sp
ee

du
p

24M-STT-RAM
21M-Sun-Hybrid
18M-APM
24M-OPT-STT-RAM

1.
42

Figure 5.20: The comparison of IPC for multi-core applications (normalized to 8MB
SRAM)

5.5.2 Multi-Core Evaluation Results

5.5.2.1 Reduced Writes, Endurance, Performance and Power Evaluation

Figure 5.19 shows the distribution of write operations to STT-RAM lines normalized

to all write operations to LLC for the multi-core workloads.The APM technique reduces

write operations to the STT-RAM portion to 28.9% on average of the total number of write

operations.

Figure 5.20 shows the speedups of the various techniques forthe multi-core workloads

normalized to 8MB SRAM LLC. The 24MB STT-RAM LLC improves performance by

14.8% on average. Removing write-induced interference caused by asymmetric writes

102

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

G
m

ean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 P
ow

er

Write Power
Read Power
Leakage Power

1st bar: 8M-SRAM 2nd bar: 24M-STT-RAM 3rd bar: 21M-Sun-Hybrid 4th bar: 18M-APM

Figure 5.21: The LLC power breakdown for multi-core applications (normalized to 8MB
SRAM)

improves the average performance by 18.7% in the OPT-STT-RAM LLC. The 18M APM

technique reduces write overhead of the STT-RAM portion. Itachieves a geometric mean

speedup of 20.5% which is higher than the 24MB OPT-STT-RAM LLC. In multi-core

workloads, the large number of dead or inaccurately prefetched blocks generated from

one workload can also negatively affect the performance of other workloads, significantly

reducing performance. The APM technique reduces cache pollution caused by dead blocks

and inaccurately prefetched blocks. Our evaluation shows the 18MB APM LLC yields

better performance and fewer misses for 5 out of 11 multi-core workloads compared with

24MB OPT-STT-RAM LLC.

Figure 5.21 shows the distribution of normalized power consumption for various tech-

niques. The baseline is the 8MB SRAM cache. For a large LLC, the majority of power

consumption comes from leakage power. The 24MB STT-RAM technique reduces overall

power consumption to 87.8% of baseline due to low leakage power. The APM technique

reduces dynamic power caused by the STT-RAM write operations. Thus, it further reduces

power consumption to 80.7% of baseline on average.

5.5.2.2 Prediction Evaluation

We evaluate the access pattern predictor using false positive rate and coverage. Mis-

predictons can be false positives and false negatives. False positives are more harmful for

103

two reasons: mispredicting a live block as a dead block can cause bypass or eviction of

a live block from LLC early and generate LLC misses, and mispredicting a non-write-

burst request as a write-burst request can cause extra migrations between STT-RAM lines

and SRAM lines. False positive rate is measured as the numberof mispredicted positive

predictions divided by the total number of predictions.

Among the 11 multi-core workloads, the access pattern predictor yields a low false

positive rate ranging from 2.1% to 14.8%, with a geometric mean of 8.3%.

The access pattern predictor achieves an average coverage of 71.7%. Thus, the major-

ity of dead blocks and write burst blocks can be predicted by the access pattern predictor.

5.5.2.3 Memory Energy Evaluation

Figure 5.22 shows the memory energy evaluation results normalized to 8MB SRAM

LLC. The 24MB STT-RAM LLC reduces the average memory energy to 72.9% of the

baseline. The 18MB APM LLC technique reduces average memoryenergy to 72.4%.

Compared with 24MB STT-RAM LLC, the 18MB APM LLC increases average mem-

ory traffic by 5.6% due to its smaller capacity. However, it does not increase the dynamic

energy consumption because it consumes less activation/precharge energy. The APM LLC

achieves a higher DRAM row-buffer hit rate for write requests than the STT-RAM LLC

which can reduce the activation/precharge energy. The large LLC can filter the locality of

dirty blocks, so the dirty blocks have low spatial locality when they are evicted from the

LLC and written back to the main memory. However, in the APM LLC, a significant frac-

tion of dirty blocks are written back to the main memory when they are evicted from the

SRAM portion where the small capacity of SRAM allows the evicted dirty blocks to have

higher spatial locality. Our evaluation result shows the DRAM row-buffer hit rates for

writes are 21.1% and 35.6% for 24M STT-RAM LLC and 18M APM LLC respectively.

104

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

G
m

ean

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
em

or
y

E
ne

rg
y

Background Energy
Refresh Energy
Read/Write Energy
Activation/Precharge Energy

1st bar: 8M-SRAM 2nd bar: 24M-STT-RAM 3nd bar: 21M-Sun-Hybrid 4th bar: 18M-APM

Figure 5.22: The memory energy breakdown for multi-core applications (normalized to
8MB SRAM)

5.5.3 Storage Overhead and Power

The technique uses an access pattern predictor to predict the dead blocks and write

burst blocks which cause extra storage and power overhead.

5.5.3.1 Storage Overhead

Each cache block in the LLC adds 1 bit for representing whether it is a dead block,

using 9.2K storage total. For the pattern predictor, each prediction table has 4,096 entries

with a 2-bit counter in each entry. There are 6 tables for the skewed structure for the dead

block prediction table and write burst prediction table using a total of 6KB of storage. In

the pattern simulator, one simulated set corresponding 32 LLC sets, each simulated set

has 12-entry 16-bit partial read PC, 12-entry 16-bits partial tag, 12-entry 4-bit LRU po-

sition, 12-entry 1-bit valid flag, 4-entry 16-bits partial write PC and 4-entry 2-bits write

LRU position. For a 4.5MB hybrid cache, it consumes 8.5K storage. Thus, the storage

overhead for single-core configuration is 6K+8.5K+9.2K=23.7K which is only 0.53% ca-

pacity overhead of the hybrid 4.5MB LLC. For the quad-core configuration, the storage

overhead of the APM technique is 6K+8.5K×4+9.2K×4=84.8K, which is 0.43% of the

hybrid 18MB cache capacity.

105

5.5.3.2 Power Overhead

We evaluate the power overhead of our technique using NVSim [12] and CACTI [51].

For the single-core configuration, the extra dynamic and leakage power consumed by the

access pattern predictor is 1.6% and 1.9% of the LLC dynamic and leakage power respec-

tively. It induces a power overhead of 1.8% of the total LLC power consumption. For

the quad-core system configuration, the extra dynamic and leakage power consumed by

the access pattern predictor is 1.1% and 0.60% of the LLC dynamic and leakage power

respectively. The overall power overhead caused by the access pattern predictor is 0.76%

of the overall LLC power consumption for quad-core configuration.

5.6 Evaluation Results for WADE Technique

5.6.1 Single-Core Evaluation Results

5.6.1.1 Performance Evaluation

We evaluate three cache replacement polices: LRU, WADE withLRU and Memory

Level Parallelism (MLP) aware cache replacement technique[63]. The MLP technique

takes into account the memory level parallelism dependent cost differential between dif-

ferent misses. The replacement decision is made by considering the MLP-based cost for

each cache miss as well as the recency information. The baseline technique is LRU re-

placement policy. Our technique segments the cache set intotwo lists. Within the list, any

replacement policies could be applied. So it is decoupled with LLC replacement polices.

We use LRU replacement policy with our techniques for simplicity. Figure 5.23 shows

the performance evaluation results for single core applications. MLP provides a speedup

on some benchmarks and a slow-down on others, resulting in a geometric mean speedup

of approximately0.6%. The long write latency in the PCM system makes it hard to learn

the memory level parallelism cost, thereby the MLP replacement policy does not perform

106

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
G

m
ean

0.95

1.00

1.05

1.10

Sp
ee

du
p

0.95

1.00

1.05

1.10

Sp
ee

du
p

0.95

1.00

1.05

1.10

Sp
ee

du
p

0.95

1.00

1.05

1.10

Sp
ee

du
p

0.95

1.00

1.05

1.10

Sp
ee

du
p

WADE with LRU
MLP

1.
22

1.
39

1.
18

1.
30

0.
93

0.
88

Figure 5.23: The comparison of IPC for single-core applications (normalized to LRU)

well in the context of PCM system. The WADE technique delivers a geometric mean

speedup of5.1%. The technique significantly improves system performance for bench-

mark 450.soplex, 482.sphinx3and483.xalancbmkby 22%, 39% and18%. Because the

writeback requests for these three benchmarks are highly reused. For benchmarks that do

not benefit from our techniques, there are two categories: first, they do not have significant

highly reused access requests such as for streaming benchmarks, libquantumandmilc, the

writeback requests are not re-written frequently. Second,the frequent writeback requests

are hard to predict mainly because they do not have good spatial and temporal locality,

such as436.cactusADM.

5.6.1.2 Reduced Write Requests Evaluation

The WADE technique takes into account the disparity in miss penalty of clean data

and dirty data. It keeps an optimal size of frequent writeback list in the LLC. Thereby it

can reduce the writeback requests to the PCM. Figure 5.24 shows the writeback requests

normalized to LRU policy. The MLP technique only reduces0.05% writeback requests

compared with LRU policy. The WADE technique reduces16.5% writeback requests on

average. This large percent of writeback requests reduction leads to performance im-

provement and energy reduction. It can also improve the endurance of the PCM based

107

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 W
ri

te
ba

ck
s

WADE with LRU
MLP

Figure 5.24: The number of writeback requests to PCM for single-core applications (nor-
malized to LRU)

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

Read Energy
Write Energy

1st bar: LRU 2nd bar: WADE with LRU 3rd bar: MLP

Figure 5.25: The comparison of energy consumption in PCM forsingle-core applications
(normalized to LRU)

main memory. Compared with figure 5.23, we can see for the benchmarks that have large

percent of reduced writeback requests also have significantperformance improvements.

5.6.1.3 Energy Evaluation

The obvious reduction in the writeback requests can lead to reduced energy consump-

tion in PCM based main memory. Figure 5.25 shows the energy evaluation results for

various techniques. The figure shows the energy consumptionnormalized to LRU policy.

It also gives the percentage of read energy and write energy consumption for each work-

load. In the PCM based main memory, the write energy consumption dominates the main

108

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 L

L
C

 a
cc

es
se

s
Size16+Bypass
Size16
Size12
Size8
Size4
Size0

Figure 5.26: Runtime predicted best frequent writeback list size

memory energy consumption. It accounts for about65% of all main memory consump-

tion in the LRU policy. The WADE technique achieves an energyreduction by8.1% on

average. The MLP technique only reduces the energy by0.01%. We can see most of the

energy reduction of our techniques comes from the write energy reduction. The average

read energy consumption for WADE technique is similar with LRU.

5.6.1.4 Dynamic Segment Size

Figure 5.26 shows the runtime predicted best frequent writeback list size for each of

the benchmarks. Benchmarks483.sphinx3and483.xalancbmkare thrashing workloads

that benefit from bypassing incoming read blocks. Segment size 16 dominates the running

phase of benchmarks403.gcc, 429.mcf, 434.zeusmp, 435.gromacs,and 473.astar. The run-

time predicted best segment size of benchmarks462.libquantumand470.lbmis 4. The

running phase of other benchmarks go through various segment sizes.

5.6.2 Multi-Core Evaluation Results

The write problem is worse in multi-core system since the performance of an applica-

tion is affected not only by its own write requests but also bywrite requests from other

applications.

Figure 5.27 shows the speedup achieved by various techniques on the multi-core work-

109

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

G
m

ean

0.9

1.0

1.1

1.2

Sp
ee

du
p

WADE with LRU
MLP

Figure 5.27: The comparison of IPC for multi-core applications (normalized to LRU)

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

Average

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 W
ri

te
ba

ck
s

WADE with LRU
MLP

Figure 5.28: The number of writeback requests to PCM for multi-core applications (nor-
malized to LRU)

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

Read Energy
Write Energy

1st bar: LRU 2nd bar: WADE with LRU 3rd bar: MLP

Figure 5.29: The comparison of energy consumption in PCM formulti-core applications
(normalized to LRU)

110

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

Average

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 M
P

K
I

WADE with LRU
MLP

Figure 5.30: LLC misses per kilo-instruction (MPKI) for multi-core applications (normal-
ized to LRU)

loads with an 8MB last-level cache. The speedups are still normalized to a default LRU

cache. The normalized speedup for WADE technique over all 11workloads ranges from

2.2% to 13.1% for the WADE, with a geometric mean speedup of7.6%. The technique

significantly improves the system performance for five workloads by more than10%. The

MLP technique only yields a geometric mean speedup of0.3%.

Figure 5.28 shows the normalized writeback requests evaluation results for multi-core

application. The WADE technique achieves a writeback requests reduction by10.9% on

average. Figure 5.29 shows the energy evaluation results normalized to LRU policy. The

WADE technique reduces energy by7.6% on average.

We also evaluate the misses per 1000 instructions (MPKI) formulti-core workloads.

Figure 5.30 shows the MPKI for various techniques normalized to LRU policy. The av-

erage normalized MPKIs are 1.00 for WADE, and 0.99 for MLP. Wecan see the WADE

technique does not reduce the miss rate. In WADE technique, the performance benefits

actually come from the reduced write requests which generate a large write-induced inter-

ference.

111

1 1.5 2 2.5 3 3.5
p

1.05

1.06

1.07

1.08

Sp
ee

du
p

1 1.5 2 2.5 3 3.5
p

0.91

0.92

0.93

0.94

0.95

N
or

m
al

iz
ed

 E
ne

rg
y

(a) Speedup (b) Energy

Figure 5.31: The impact on performance and energy for parameter p

5.6.3 Sensitivity Study

5.6.3.1 Miss Penalty Sensitivity Study

An LLC miss for dirty cache block is more harmful than for a clean cache block. Our

technique assigns different miss penalty according to the type of data. The miss penalty for

clean data is set to 1 while the miss penalty for dirty data isp. In our experiment setting,

we getp = 2 calculated by equation (2). We also did an experiment to testthe change in

performance and energy whenp ranges from 1 to 6. Figure 5.31 shows the performance

speedup and energy consumption for various values ofp in multi-core workloads in WADE

technique. We can see the performance and energy consumption varies significantly with

different values ofp. The best performance is achieved whenp = 2, and the lowest energy

consumption whenp = 1.5. Generally, thep value that gives better performance is also

the value that yields lower energy, is because the reduced write requests could lead to both

performance improvement and energy reduction. In our experiment, we choosep = 2.

5.6.3.2 Cache Size Sensitivity Study

Figure 5.32 and 5.33 show the performance and writeback reduction evaluation re-

sults with various cache sizes. We evaluate LRU and WADE LLC replacement policies

with cache sizes 2M, 4M and 8M. Compared with the LRU replacement policy with the

112

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
G

m
ean

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Sp
ee

du
p

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Sp
ee

du
p

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Sp
ee

du
p

WADE with LRU(2M)
LRU(4M)
WADE with LRU(4M)
LRU(8M)
WADE with LRU(8M)

2.
08
3.

51
2.

58
3.

23
2.

87
3.

13
4.

21
4.

23

Figure 5.32: Performance evaluation with various cache size (normalized to LRU with 2M
LLC size)

400.perlbench
401.bzip2
403.gcc
429.m

cf
433.m

ilc
434.zeusm

p
435.grom

acs
436.cactusADM
450.soplex
459.G

em
sFDTD

462.libquantum
470.lbm

473.astar
482.sphinx3
483.xalancbm

k
Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 W
ri

te
ba

ck
s

WADE with LRU(2M)
LRU(4M)
WADE with LRU(4M)
LRU(8M)
WADE with LRU(8M)

Figure 5.33: The number of writeback requests to PCM with various cache size (normal-
ized to LRU with 2M LLC size)

same capacity 2M, 4M and 8M cache sizes, the WADE technique improves the system per-

formance by 5.1%, 5.4% and 6.9% and reduces the writeback requests to PCM by 16.5%,

11.4% and 9.9% respectively.

5.6.4 Storage and Power Overhead

5.6.4.1 Storage Overhead

The technique uses a frequent write predictor (FWP) and an optimal segment predictor.

For the FWP, every 16 LLC sets map to 4 FWP sets. Each FWP set has6 entries. Each

113

entry in the set has a 16-bit partial tag field, a 3-bit LRU field, a 6-bit frequent counter

field, and a 16-bit set flag field. For each cache block in the LLC, we add one bit to rep-

resent whether it is a frequent writeback block. The FWP consumes extra state equivalent

to about0.95% of LLC capacity. We use an out-of-cache segment predictor. This set as-

sociative structure is added to simulate sampled leader sets. It uses four types of leader

sets as shows in figure 5.15. For each type of leader set, one set is sampled for every 128

LLC sets. Each leader set has one bit even write counter. Eachentry in the leader set has

16-bit partial tag field, 1 Fbit field, and 3-bit LRU fields. Thesegment predictor uses three

12-bit PSEL counters. Thus, it consumes less than0.13% of LLC capacity. All together,

The WADE technique takes about1% of LLC capacity.

5.6.4.2 Power Overhead

We use CACTI [51] to measure the potential impact of the segment predictor and

frequent write predictor on power. The segment predictor ismodeled as a tag array of

extra LLC sets. We model the LLC both with and without the extra cache sets, and report

the difference of the tag power between the two. We model the frequent write predictor

as a tag array of a cache, with only the tag power being reported. A 2MB LLC in a

single-core configuration consumes1.99W power. The segment predictor consumes only

0.0025W dynamic power which is only0.13% of LLC power consumption. The power

for frequent write predictor is0.024W . The total power for structures required by the

WADE technique is about1.3% of LLC power. An 8M LLC in a multi-core configuration

consumes3.73W . The structures needed by the WADE technique take0.035W which

is 0.93% of LLC power. Although the segment predictor and frequent write predictor

consume extra power, the WADE technique reduces the execution cycles of applications,

thus reducing the leakage energy of LLC.

114

6. CONCLUSIONS

Recall the thesis statement from the introduction:

Programs exhibit significant performance variance in theiraccess to microarchitectural

structures. To the extent that this variance is predictable, it can be exploited to improve

processor design.

In this dissertation, we have analyzed three types of performance variance: perfor-

mance variance caused by microarchitectural structures, performance variance caused by

phase change and performance variance caused by operation types. By exploiting the

three types of performance variance, we propose various techniques to improve processor

design. In this section, we review the contribution of our techniques.

6.1 Developing Performance Model by Exploring PerformanceVariance

In this dissertation, we demonstrate how to develop a performance model for branch

predictor using real systems. The technique perturbs benchmark executables to yield a

wide variety of performance points without changing program semantics or other impor-

tant execution characteristics. By observing the behaviorof the benchmarks over a range

of branch prediction accuracies, we can estimate the impactof a new branch predictor by

simulating only the predictor and not the rest of the microarchitecture.

Using measurements of the Intel Xeon E5440 Processor, we quantify the impact of

branch prediction on a set of benchmarks, developing regression models that estimate the

performance given by changes in the branch predictor. We incorporate these models into

a simulator allowing us to estimate the impact of several branch predictors.

This study points the way to future work on estimating the impact of other microarchi-

tectural structures. We demonstrate the potential for interferometry to estimate the impact

of L1 and L2 caches by perturbing data layouts.

115

6.2 Reducing Write-induced Interference by Exploring Performance Variance

In memory systems, write requests can cause significant performance loss by increas-

ing memory access latency for subsequent read requests targeting the same device.

In the dissertation, we propose to use a rank idle time predictor to predict when a

rank will have significant idle time. “Rank idle” means that there will be no read request

for this rank that will be delayed by scheduling writeback events. The scheduled write

requests can be written back during this idle rank period. Weincorporate the rank idle time

predictor into the parallelism-aware LLC scheduling technique and propose a prediction

driven parallelism-aware LLC writeback technique. The proposed technique applies to the

DRAM system that maps the rank and channel into the higher order bits than the column in

the physical address. Write-induced interference is significantly reduced by our technique.

We also propose a decoupled last-write predictor guided LLCwriteback technique.

It uses a last-write predictor to predict last-write blocksin LLC. The predicted last-write

blocks are exposed to the memory controller for scheduling.Our technique can balance the

memory bandwidth and effectively expands the scheduling space of the memory controller,

thus significantly reducing write-induced interference. It is completely decoupled from

LLC replacement policy. Our techniques are evaluated for various DRAM configuration

by using MARSSx86 Simulator together with DRAMSim2. Experiment results show a

significant performance improvement over traditional writeback technique.

6.3 Reducing NVM Write Overhead by Exploring Performance Variance

Write-induced interference in the memory system can significantly degrade perfor-

mance. This large write overhead is a more severe problem in NVM-based memory. We

propose techniques to mitigate the write overhead in NVM-based memory.

In this dissertation, we propose a new block placement and migration policy for a

hybrid STT-RAM-based LLC. LLC writes are categorized into three classes: core-write,

116

prefetch-write, and demand-write. We analyze the access pattern for each class of LLC

writes and design a block placement policy that adapt to the access pattern of each class.

A low cost access pattern predictor is proposed for guiding the block placement. Ex-

perimental results show our technique can improve performance and reduce LLC power

consumption compared with both SRAM LLC and STT-RAM LLC withthe same area

configuration.

We also propose a dynamic cache management policy in the context of PCM- based

main memory. The technique improves system performance andenergy efficiency by

reducing the writeback requests to PCM. It keeps highly reused dirty cache blocks in

the LLC. A frequent write predictor is proposed to predict the frequent writeback cache

blocks. The cache set is partitioned into frequent writeback and non- frequent writeback

lists. It dynamically determines the optimal size of each list ac- cording to the miss penalty.

Our evaluation shows the proposed techniques reduce the writeback requests which could

result in improved performance as well as reduced energy consumption.

117

REFERENCES

[1] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasubramonian, and

Al Davis. Handling the problems and opportunities posed by multiple on-chip mem-

ory controllers. InProceedings of the 19th international conference on Parallel ar-

chitectures and compilation techniques, PACT ’10, pages 319–330, New York, NY,

USA, 2010. ACM.

[2] John E. Baldwin and Christopher A. Haniff. The application of interferometry to

optical astronomical imaging.Philosophical Transactions of The Royal Society,

360(1794):969–986, May 2002.

[3] Brad Calder and Dirk Grunwald. Reducing branch costs viabranch alignment. In

Proceedings of the Sixth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS VI, pages 242–251, New

York, NY, USA, 1994. ACM.

[4] Yu-Ting Chen, Jason Cong, Hui Huang, Bin Liu, Chunyue Liu, Miodrag Potkonjak,

and Glenn Reinman. Dynamically reconfigurable hybrid cache: An energy-efficient

last-level cache design. InDATE’12, pages 45–50, 2012.

[5] Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu, Raghu Prabhakar, and Glenn

Reinman. Static and dynamic co-optimizations for blocks mapping in hybrid caches.

In Proceedings of the 2012 ACM/IEEE international symposium on Low power elec-

tronics and design, ISLPED ’12, pages 237–242, New York, NY, USA, 2012. ACM.

[6] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang,

Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo,

Junho Shin, Yoohwan Rho, Changsoo Lee, Min-Gu Kang, Jaeyun Lee, Yongjin

118

Kwon, Soehee Kim, Jaehwan Kim, Yong-Jun Lee, Qi Wang, Sooho Cha, Sujin Ahn,

H. Horii, Jaewook Lee, Kisung Kim, Hansung Joo, Kwangjin Lee, Yeong-Taek Lee,

Jeihwan Yoo, and G. Jeong. A 20nm 1.8v 8gb pram with 40mb/s program band-

width. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012

IEEE International, pages 46–48, Feb 2012.

[7] An chow Lai. Dead-block prediction and dead-block correlating prefetchers. InIn

Proceedings of the 28th International Symposium on Computer Architecture, pages

144–154, 2001.

[8] Gilberto Contreras and Margaret Martonosi. Power prediction for intel xscale pro-

cessors using performance monitoring unit events. InProceedings of the 2005 In-

ternational Symposium on Low Power Electronics and Design, ISLPED ’05, pages

221–226, New York, NY, USA, 2005. ACM.

[9] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. High-performance

drams in workstation environments.IEEE Trans. Comput., 50:1133–1153, Novem-

ber 2001.

[10] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring experimen-

tal error in microprocessor simulation. InISCA ’01: Proceedings of the 28th annual

international symposium on Computer architecture, pages 266–277, New York, NY,

USA, 2001. ACM.

[11] Rajagopalan Desikan, Doug Burger, Stephen W. Keckler,Llorenc Cruz, Fernando

Latorre, Antonio González, and Mateo Valero. Errata on ”measuring experimental

error in microprocessor simulation”.SIGARCH Comput. Archit. News, 30(1):2–4,

2002.

[12] Xiangyu Dong, Cong Xu, Yuan Xie, and N.P. Jouppi. Nvsim:A circuit-level perfor-

mance, energy, and area model for emerging nonvolatile memory. Computer-Aided

119

Design of Integrated Circuits and Systems, IEEE Transactions on, 31(7):994–1007,

2012.

[13] Marius Evers, Po-Yung Chang, and Yale N. Patt. Using hybrid branch predictors to

improve branch prediction accuracy in the presence of context switches. InProceed-

ings of the 23rd Annual International Symposium on ComputerArchitecture, ISCA

’96, pages 3–11, New York, NY, USA, 1996. ACM.

[14] Viacheslav V. Fedorov, Sheng Qiu, A. L. Narasimha Reddy, and Paul V. Gratz.

Ari: Adaptive llc-memory traffic management.ACM Trans. Archit. Code Optim.,

10(4):46:1–46:19, December 2013.

[15] Domenico Ferrari. Improving locality by critical working sets.Communications of

the ACM, 17(11):614–620, November 1974.

[16] Nikolas Gloy and Michael D. Smith. Procedure placementusing Temporal-

Ordering information.ACM Transactions on Programming Languages and Systems,

21(5):977–1027, September 1999.

[17] Satoru Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matsui, N. Matsuzaki,

N. Takaura, M. Moniwa, and T. Kawahara. A 512kB Embedded Phase Change Mem-

ory with 416kB/s Write Throughput at 100µA Cell Write Current. InSolid-State

Circuits Conference, 2007. ISSCC 2007. Digest of TechnicalPapers. IEEE Interna-

tional, pages 474–616, Feb 2007.

[18] D. J. Hatfield and J. Gerald. Program restructuring for virtual memory.IBM Syst. J.,

10(3):168–192, September 1971.

[19] John L. Henning. Spec cpu2006 benchmark descriptions.SIGARCH Comput. Archit.

News, 34:1–17, September 2006.

120

[20] Chunling Hu, John McCabe, Daniel A. Jiménez, and Ulrich Kremer. The camino

compiler infrastructure.SIGARCH Comput. Archit. News Special Issue on the 2005

Workshop on Binary Instrumentation and Application, 33(5):3–8, 2005.

[21] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi.Timekeeping in the memory

system: predicting and optimizing memory behavior. InProceedings of the 29th

annual international symposium on Computer architecture, ISCA ’02, pages 209–

220, Washington, DC, USA, 2002. IEEE Computer Society.

[22] Ibrahim Hur and Calvin Lin. Adaptive history-based memory schedulers. InPro-

ceedings of the 37th annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO 37, pages 343–354, Washington, DC, USA, 2004. IEEE Computer

Society.

[23] Intel Corporation. Intel Pentium 4 processor optimization. Technical Report Order

Number: 248966, Intel Corporation, 2001.

[24] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caruana. Self-optimizing mem-

ory controllers: A reinforcement learning approach. InProceedings of the 35th An-

nual International Symposium on Computer Architecture, ISCA ’08, pages 39–50,

Washington, DC, USA, 2008. IEEE Computer Society.

[25] Bruce Jacob, Spencer Ng, and David Wang.Memory Systems: Cache, DRAM, Disk.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[26] Amin Jadidi, Mohammad Arjomand, and Hamid Sarbazi-Azad. High-endurance and

performance-efficient design of hybrid cache architectures through adaptive line re-

placement. InProceedings of the 17th IEEE/ACM International Symposium on Low-

power Electronics and Design, ISLPED ’11, pages 79–84, Piscataway, NJ, USA,

2011. IEEE Press.

121

[27] Daniel A. Jiménez. Code placement for improving dynamic branch prediction ac-

curacy. InProceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’05, pages 107–116, New York, NY,

USA, 2005. ACM.

[28] Daniel A. Jiménez, Stephen W. Keckler, and Calvin Lin.The impact of delay on the

design of branch predictors. InProceedings of the 33rd Annual ACM/IEEE Interna-

tional Symposium on Microarchitecture, MICRO 33, pages 67–76, New York, NY,

USA, 2000. ACM.

[29] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykrishnan Narayanan, Ravis-

hankar Iyer, and Chita R. Das. Cache revive: Architecting volatile stt-ram caches for

enhanced performance in cmps. InProceedings of the 49th Annual Design Automa-

tion Conference, DAC ’12, pages 243–252, New York, NY, USA, 2012. ACM.

[30] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and Yuan

Xie. Energy- and endurance-aware design of phase change memory caches. InDATE,

pages 136–141, 2010.

[31] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. A predictive perfor-

mance model for superscalar processors. InMICRO 39: Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 161–170,

Washington, DC, USA, 2006. IEEE Computer Society.

[32] Samira M. Khan, Yingying Tian, and Daniel A. Jiménez. Sampling dead block pre-

diction for last-level caches. InMICRO, pages 175–186, December 2010.

[33] Samira M. Khan, Zhe Wang, and Daniel A. Jimenez. Decoupled dynamic cache

segmentation. InProceedings of the 2012 IEEE 18th International Symposium on

High-Performance Computer Architecture, HPCA ’12, pages 1–12, Washington, DC,

USA, 2012. IEEE Computer Society.

122

[34] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. Sampling dead block

prediction for last-level caches. InProceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’43, pages 175–186, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[35] Mazen Kharbutli and Yan Solihin. Counter-based cache replacement and bypassing

algorithms.IEEE Trans. Comput., 57:433–447, April 2008.

[36] C.H. Kim, Jae-Joon Kim, S. Mukhopadhyay, and K. Roy. A forward body-biased

low-leakage sram cache: device, circuit and architecture considerations.Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 13(3):349–357, 2005.

[37] Yoongu Kim, Dongsu Han, O. Mutlu, and M. Harchol-Balter. Atlas: A scalable and

high-performance scheduling algorithm for multiple memory controllers. InHigh

Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-

sium on, pages 1–12, jan. 2010.

[38] Dan Knights, Todd Mytkowicz, Peter F. Sweeney, MichaelC. Mozer, and Amer Di-

wan. Blind optimization for exploiting hardware features.In CC ’09: Proceedings of

the 18th International Conference on Compiler Construction, pages 251–265, Berlin,

Heidelberg, 2009. Springer-Verlag.

[39] An-Chow Lai and Babak Falsafi. Selective, accurate, andtimely self-invalidation us-

ing last-touch prediction. InProceedings of the 27th annual international symposium

on Computer architecture, ISCA ’00, pages 139–148, New York, NY, USA, 2000.

ACM.

[40] Benjamin C. Lee and David M. Brooks. Accurate and efficient regression mod-

eling for microarchitectural performance and power prediction. SIGPLAN Not.,

41(11):185–194, October 2006.

123

[41] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase

change memory as a scalable dram alternative. InProceedings of the 36th annual

international symposium on Computer architecture, ISCA ’09, pages 2–13, New

York, NY, USA, 2009. ACM.

[42] Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. Farrens. Eager writeback - a

technique for improving bandwidth utilization. InProceedings of the 33rd annual

ACM/IEEE international symposium on Microarchitecture, MICRO 33, pages 11–

21, New York, NY, USA, 2000. ACM.

[43] Wei-Fen Lin, Steven K. Reinhardt, and Doug Burger. Designing a modern memory

hierarchy with hardware prefetching.IEEE Trans. Comput., 50:1202–1218, Novem-

ber 2001.

[44] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache bursts:

A new approach for eliminating dead blocks and increasing cache efficiency. In

Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO 41, pages 222–233, Washington, DC, USA, 2008. IEEE Computer

Society.

[45] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. InPLDI ’05: Pro-

ceedings of the 2005 ACM SIGPLAN conference on Programming language design

and implementation, pages 190–200, New York, NY, USA, 2005. ACM.

[46] Mengjie Mao, Hai (Helen) Li, Alex K. Jones, and Yiran Chen. Coordinating

prefetching and stt-ram based last-level cache managementfor multicore systems.

In Proceedings of the 23rd ACM international conference on Great lakes symposium

on VLSI, GLSVLSI ’13, pages 55–60, New York, NY, USA, 2013. ACM.

124

[47] Scott McFarling. Program optimization for instruction caches. InProceedings of

the Third International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 183–191. ACM, 1989.

[48] William Mendenhall, Dennis D. Wackerly, and Richrd L. Sheaffer. Mathematical

Statistics withh Applications, Fourth Edition. PWS Publishers, Boston, MA, 1986.

[49] Pierre Michaud, André Seznec, and Richard Uhlig. Trading conflict and capacity

aliasing in conditional branch predictors. InProceedings of the 24th International

Symposium on Computer Architecture, pages 292–303, June 1997.

[50] Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia Teller, Robert

Araiza, Maria Gabriela Aguilera, and Jamie Nava. Performance profiling and anal-

ysis of dod applications using papi and tau. InDOD UGC ’05: Proceedings of the

2005 Users Group Conference on 2005 Users Group Conference, page 394, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[51] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing

nuca organizations and wiring alternatives for large caches with cacti 6.0. InProceed-

ings of the 40th Annual IEEE/ACM International Symposium onMicroarchitecture,

MICRO 40, pages 3–14, Washington, DC, USA, 2007. IEEE Computer Society.

[52] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling

for chip multiprocessors. InProceedings of the 40th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, MICRO 40, pages 146–160, Washington,

DC, USA, 2007. IEEE Computer Society.

[53] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhanc-

ing both performance and fairness of shared dram systems. InProceedings of the

35th Annual International Symposium on Computer Architecture, ISCA ’08, pages

63–74, Washington, DC, USA, 2008. IEEE Computer Society.

125

[54] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Produc-

ing wrong data without doing anything obviously wrong! InASPLOS ’09: Proceed-

ing of the 14th international conference on Architectural support for programming

languages and operating systems, pages 265–276, New York, NY, USA, 2009. ACM.

[55] Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, Chang JooLee, and Yale N. Patt.

Dram-aware last level cache writeback: Reducing write-caused interference in mem-

ory system. InHPS Technical Report, TR-HPS-2010-002.

[56] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and JamesE. Smith. Fair queuing

memory systems. InProceedings of the 39th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO 39, pages 208–222, Washington, DC, USA,

2006. IEEE Computer Society.

[57] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86: A full

system simulator for x86 CPUs. InProceedings of the 2011 Design Automation

Conference, June 2011.

[58] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, et al. Novel

µTrench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile

Memory Applications. InVLSI Technology, 2004. Digest of Technical Papers. 2004

Symposium on, pages 18–19, 2004.

[59] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Proceed-

ings of the ACM SIGPLAN’90 Conference on Programming Language Design and

Implementation, pages 16–27, June 1990.

[60] Moinuddin K. Qureshi, Michele M. Franceschini, AshishJagmohan, and Luis A.

Lastras. Preset: improving performance of phase change memories by exploiting

asymmetry in write times. InProceedings of the 39th International Symposium

126

on Computer Architecture, ISCA ’12, pages 380–391, Piscataway, NJ, USA, 2012.

IEEE Press.

[61] Moinuddin K. Qureshi, Michele M. Franceschini, and Luis A. Lastras-montao. Im-

proving read performance of phase change memories via writecancellation and write

pausing. InInternational Symposium on High Performance Computer Architecture,

HPCA ’10, pages 1–11, 2010.

[62] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-

vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of pcm-

based main memory with start-gap wear leveling. InProceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages 14–

23, New York, NY, USA, 2009. ACM.

[63] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. A case

for mlp-aware cache replacement. InProceedings of the 33rd annual international

symposium on Computer Architecture, ISCA ’06, pages 167–178, Washington, DC,

USA, 2006. IEEE Computer Society.

[64] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high

performance main memory system using phase-change memory technology. InIn

International Symposium on Computer Architecture (ISCA, 2009.

[65] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini.Page placement in hybrid

memory systems. InProceedings of the international conference on Supercomputing,

ICS ’11, pages 85–95, New York, NY, USA, 2011. ACM.

[66] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,

M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam. Phase-change random

access memory: A scalable technology.IBM J. Res. Dev., 52(4):465–479, July 2008.

127

[67] Scott Rixner. Memory controller optimizations for webservers. InProceedings of

the 37th annual IEEE/ACM International Symposium on Microarchitecture, MICRO

37, pages 355–366, Washington, DC, USA, 2004. IEEE ComputerSociety.

[68] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens.

Memory access scheduling. InProceedings of the 27th annual international sym-

posium on Computer architecture, ISCA ’00, pages 128–138, New York, NY, USA,

2000. ACM.

[69] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2:A cycle accurate memory

system simulator.Computer Architecture Letters, 10(1):16–19, Jan 2011.

[70] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low latency

approach to high bandwidth instruction fetching. InProceedings of the 29th Interna-

tional Symposium on Microarchitecture, December 1996.

[71] Shai Rubin, Rastislav Bodı́k, and Trishul Chilimbi. Anefficient profile-analysis

framework for data-layout optimizations. InPOPL ’02: Proceedings of the 29th

ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages,

pages 140–153, New York, NY, USA, 2002. ACM.

[72] André Seznec. A 256 kbits l-tage branch predictor.Journal of Instruction-Level Par-

allelism (JILP) Special Issue: The Second Championship Branch Prediction Compe-

tition (CBP-2), 9, May 2007.

[73] Jun Shao and Brian T. Davis. A burst scheduling access reordering mechanism. In

Proceedings of the 2007 IEEE 13th International Symposium on High Performance

Computer Architecture, pages 285–294, Washington, DC, USA, 2007. IEEE Com-

puter Society.

128

[74] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically

characterizing large scale program behavior. InProceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating

Systems, October 2002.

[75] James E. Smith. A study of branch prediction strategies. In Proceedings of the 8th

Annual International Symposium on Computer Architecture, pages 135–148, May

1981.

[76] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feedback di-

rected prefetching: Improving the performance and bandwidth-efficiency of hard-

ware prefetchers. InProceedings of the 2007 IEEE 13th International Symposium

on High Performance Computer Architecture, HPCA ’07, pages 63–74, Washington,

DC, USA, 2007. IEEE Computer Society.

[77] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K.

John. The virtual write queue: coordinating dram and last-level cache policies. In

Proceedings of the 37th annual international symposium on Computer architecture,

ISCA ’10, pages 72–82, New York, NY, USA, 2010. ACM.

[78] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Balasub-

ramonian, and Al Davis. Micro-pages: increasing dram efficiency with locality-

aware data placement. InProceedings of the fifteenth edition of ASPLOS on Archi-

tectural support for programming languages and operating systems, ASPLOS ’10,

pages 219–230, New York, NY, USA, 2010. ACM.

[79] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. A novel architec-

ture of the 3d stacked mram l2 cache for cmps. InHPCA, pages 239–249, 2009.

[80] Shun-Ming Syu, Yu-Hui Shao, and Ing-Chao Lin. High-endurance hybrid cache

design in cmp architecture with cache partitioning and access-aware policy. InPro-

129

ceedings of the 23rd ACM international conference on Great lakes symposium on

VLSI, GLSVLSI ’13, pages 19–24, New York, NY, USA, 2013. ACM.

[81] Jue Wang, Xiangyu Dong, and Yuan Xie. Oap: An obstruction-aware cache man-

agement policy for stt-ram last-level caches. InDesign, Automation Test in Europe

Conference Exhibition (DATE), 2013, pages 847–852, 2013.

[82] Xiaobin Wang, Yiran Chen, Hai Li, D. Dimitrov, and H. Liu. Spin torque ran-

dom access memory down to 22 nm technology.IEEE Transactions on Magnetics,

44(11):2479–2482, 2008.

[83] Zhe Wang and Daniel A. Jiménez. Program interferometry. In Workload Character-

ization (IISWC), 2011 IEEE International Symposium on, pages 172–175, 2011.

[84] Zhe Wang, Daniel A. Jiménez, Cong Xu, Guangyu Sun, and Yuan Xie. Adaptive

placement and migration policy for an stt-ram-based hybridcache. InProceedings

of the 20th International Symposium on High Performance Computer Architecture

(HPCA-20), Orlando, FL, USA, February 2014. IEEE Computer Society.

[85] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Improving writeback efficiency

with decoupled last-write prediction. InProceedings of the 39th International Sym-

posium on Computer Architecture, ISCA ’12, pages 309–320, Piscataway, NJ, USA,

2012. IEEE Press.

[86] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Rank idle time prediction driven

last-level cache writeback. InProceedings of the 2012 ACM SIGPLAN Workshop on

Memory Systems Performance and Correctness, MSPC ’12, pages 21–29, New York,

NY, USA, 2012. ACM.

[87] Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, ShuaiMu, Yuan Xie, and

Daniel A. Jiménez. Wade: Writeback-aware dynamic cache management for nvm-

130

based main memory system.ACM Trans. Archit. Code Optim., 10(4):51:1–51:21,

December 2013.

[88] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C. Steely, Jr., and Joel

Emer. Pacman: prefetch-aware cache management for high performance caching.

In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO-44 ’11, pages 442–453, New York, NY, USA, 2011. ACM.

[89] Yuan Xie. Modeling, architecture, and applications for emerging memory technolo-

gies. IEEE Computer Design and Test, 28:41–51, January 2011.

[90] T.-Y. Yeh and Yale N. Patt. Two-level adaptive trainingbranch prediction. In

Proceedings of the 24th ACM/IEEE International Symposium on Microarchitecture,

pages 51–61, November 1991.

[91] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur

Mutlu. Row buffer locality aware caching policies for hybrid memories. InInterna-

tional Conference on Computer Design, ICCD ’12, 2012.

[92] Cliff Young, David S. Johnson, David R. Karger, and Michael D. Smith. Near-

optimal intraprocedural branch alignment. InProceedings of the SIGPLAN’97 Con-

ference on Program Language Design and Implementation, June 1997.

[93] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based page inter-

leaving scheme to reduce row-buffer conflicts and exploit data locality. InProceed-

ings of the 33rd annual ACM/IEEE international symposium onMicroarchitecture,

MICRO 33, pages 32–41, New York, NY, USA, 2000. ACM.

[94] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durableand energy efficient

main memory using phase change memory technology. InProceedings of the 36th

131

annual international symposium on Computer architecture, ISCA ’09, pages 14–23,

New York, NY, USA, 2009. ACM.

132

