View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Texas A&M Repository

IMPROVING PROCESSOR DESIGN BY EXPLOITING PERFORMANCE
VARIANCE

A Dissertation

by
ZHE WANG

Submitted to the Office of Graduate and Professional Studies
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Daniel A. Jiménez
Committee Members, Paul V. Gratz
Eun Jung Kim
Valerie E. Taylor
Head of Department, Nancy M. Amato

August 2014

Major Subject: Computer Science

Copyright 2014 Zhe Wang

https://core.ac.uk/display/79649221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Programs exhibit significant performance variance in thetess to microarchitectural
structures. There are three types of performance varidficgl, semantically equivalent
programs running on the same system can yield differenbpaence due to characteris-
tics of microarchitectural structures. Second, prograasptbehavior varies significantly.
Third, different types of operations on microarchitectwtaucture can lead to different
performance.

In this dissertation, we explore the performance variamzk @opose techniques to
improve the processor design.

We explore performance variance caused by microarchi@ctructures and propose
program interferometrya technique that perturbs benchmark executables to ywidex
variety of performance points without changing program aetncs or other important
execution characteristics such as the number of retirgtlictgons. By observing the be-
havior of the benchmarks over a range of branch predicticnracies, we can estimate
the impact of a microarchitectural optimization optimieatand not the rest of the mi-
croarchitecture.

We explore performance variance caused by phase changeseaelkdp prediction-
driven last-level cache (LLC) writeback techniques. Wepmse a rank idle time predic-
tion driven LLC writeback technique and a last-write préidic driven LLC writeback
technique. These techniques improve performance by negtice write-induced interfer-
ence.

We explore performance variance caused by different typesperations to Non-
\olatile Memory (NVM) and propose LLC management policiesr¢duce write over-

head of NVM. We propose an adaptive placement and migrabboygfor an STT-RAM-

based hybrid cache and writeback aware dynamic cache nraeagdor NVM-based
main memory system. These techniques reduce write laterttwete energy, thus lead-

ing to performance improvement and energy reduction.

Dedicated to my Parents and Grandparents.

ACKNOWLEDGEMENTS

| would like to thank many people who gave me assistance ineagarch and con-
tributed to this dissertation.

First of all, 1 would like to thank my advisor Daniel A. Jimén My interests in
computer architecture started with me taking the CS5513 fitben Architecture class
which was taught by Daniel. After taking the class, | went tani2l's office and told
him | wanted to work with him in computer architecture resbawhich turned out to be
one of the best decisions | have ever made. During my gracitiatly, Daniel has been
deeply involved, with patient mentoring and insightful diag of my research. Daniel’s
enthusiasm in research influenced and inspired me to have fwshat I'm doing, as he
used to say “if you can’t have fun in this research projectj gon’t have to do it.” Daniel
has made it his responsibility to provide me with the redeassources and built the
research context which made it is possible for me to do thdeegl research. | am and
will always be grateful for all the help he gave me to accosipiny goals.

| would like to thank my committee members at UTSA and TexasVA&r their
insightful feedback on my work. They are Paul V. Gratz, DhAieJiménez, Eun Jung
Kim, Valerie E. Taylor, Dakai Zhu, Hugh Maynard, RajendraBappana and Byeong
Lee.

| would like to thank Yuan Xie who was my mentor during my imtet AMD research
in Beijing. He helped me understand the Non-Volatile Menamg collaborated on two of
our Non-\olatile Memory projects. | appreciate the generbalp and invaluable advice
Yuan provided me during the study.

| would like to thank Sooraj Puthoor and Bradford M. Beckmawito were my men-

tors during my intern at AMD research in Austin. While Bradetited my GPU study and

helped me understand the GPU architecture in high levekgbelped me with learning
the simulator and figuring out the implementation detailshef experiments on a daily
basis. Thank you for giving me a stimulating intern experesn

| also would like to thank Cong Xu, a graduate student at Rduasia State Uni-
versity. He collaborated with us on the APM project. He hdlperive the STT-RAM
parameters and helped me understand the NVSim simulator.

| am very thankful to many other graduate peers and collegeetheir contribution
to my research through discussions, suggestions on pagits dnd feedback on practice
talk. They are: Jichi Guo, Yingying Tian, Elvira Teran, SaariKhan, kyungwook Chang,
Somaieh Bahrami, Ting Cao, Yi Xu, Shan, Guangyu Sun, EhsehEa&ndrew Targhetta,
Jinchun Kim and Luke McHale.

My special thanks to my friends: Meng Sun, Xin Ding and Juangvarhank you for
always being there to support me, share my happiness ananeetyet through countless
frustrations.

Finally, I am deeply in debt to my family for being there for n@@randpa Jianying Xia
taught me independent thinking by personal example, addtelthat it is one of the most
important characteristics | should have. Grandma Xiangheims the most hard working
and considerate person | know. This dissertation could ae¢ lheen written without the
impacts of my grandparents to my life. | also want to thank magtéShaohua Xia for
taking care of the family while | am away pursuing my PHD stuBinally, many thanks
to my parents Guohua Xia and Mingxiang Wang for their carovgland sacrifices. Their

unconditional love and support gave me the courage to camhles long journey.

Vi

TABLE OF CONTENTS

ABSTRACT . . . o Ii

DEDICATION e e e \Y

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS e e vii

LISTOFFIGURES Xi

LISTOFTABLES e XV

1.

INTRODUCTION e e 1

1.1 Performance Variance Caused by Microarchitecturaic8ires 1
1.2 Performance Variance Caused by Phase Change 3
1.3 Performance Variance Caused by Operation Types 4
1.4 ThesisStatement 5
1.5 Contributions 5

BACKGROUND AND RELATEDWORK 7

2.1 Exploring Performance Variance to Develop the Perfocaavodel . . . 7
2.1.1 Eliciting Performance Variance 7
2.1.2 Impact of Code Placement on Performance 8
2.1.3 Estimating Simulation Results with Regression 9
2.1.4 Estimating Behavior of Real Systems 9

2.2 Exploring Performance Variance to Reduce Write-Inddogerference . 10
22.1 DRAMSystems. e 10
2.2.2 Address Mapping Scheme 11
2.2.3 Memory Access Scheduling 11
224 LLCWriteback 12
2.2.5 DeadBlock Prediction 13

2.3 Exploring Performance Variance to Reduce Write Ovetloé&lon-Volatile
Memory e e 13
2.3.1 Emerging Non-\olatile Memory 13
2.3.2 Related Work on Mitigating PCM Write Overhead16
2.3.3 Related Work on Mitigating Write Overhead of STT-RAM. . . 17

vii

3. EXPLORING PERFORMANCE VARIANCE TO DEVELOP PERFORMANCE

MODEL e e 19
3.1 Motivation 20
3.2 Description 22
3.2.1 Instruction Addresses in Microarchitectural Stowes 22
3.2.2 AWide Range in Performance 23
3.2.3 CausingCollisions 23
3.2.4 Making Predictions 23
3.25 WhenThingsGoWrong 24
3.3 Experimental Methodology 24
3.3.1 Compiler 25
332 Benchmarks 25
3.3.3 Generating Random Code Reorderings 25
3.34 System 25
3.3.5 Running with Performance Monitoring Counters 26
3.3.6 Simulation. L 27
3.3.7 TiMINgCoNCerns v i e e 27
3.4 Estimating Performance by Counting Microarchitedtirents 28
3.4.1 AssigningBlame 28
3.4.2 Establishing Statistical Significance 29
3.4.3 NumberofSamples 29
3.4.4 Blamethe Branch Predictor. 31
3.4.5 AlLinearPerformanceModel 31
3.5 Estimating Branch Prediction Performance 32
3.5.1 Branch Prediction Simulation. 33
3.5.2 Impact of Mispredictions on Performance 33
4. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE-INDUCED
INTERFERENCE e e e e 36
4.1 Rank Idle Time Prediction Driven Last-Level Cache Wodtek 38
4.1.1 Description e 38
4.1.2 AddressMapping e 39
4.1.3 Two-Level Rank Idle Time Predictor 40
4.1.4 LLCWritebackPolicy 45
415 StorageOverhead 46
4.2 Last-Write Prediction Driven Last-Level Cache Writeba. 47
4.2.1 Last-Write Predictor L o 48
4.2.2 Writeback Mechanism 51
423 StorageOverhead 53
4.3 Experimental Methodology L. 54
4.3.1 System 54
4.3.2 Benchmarks 54
4.4 Experimental Results for Rank Idle Time Prediction Bn\LLC Write-
back Technique 55

441 Techniques 55

4.4.2 Performance Analysis. L L. 56
4.4.3 PredictionAnalysis oo oo 59
4.4.4 Memory Efficiency Analysis 61
4.5 Experimental Results for Last-Write Prediction DrivelnlC Writeback
Technique e 63
451 Techniques 63
4.5.2 Performance Evaluation 64
4.5.3 Prediction Evaluation, 67
4.5.4 Bus Utilization and Read Latency Evaluation 68
4.5.5 Row-buffer Hits Rate Evaluation for DRAM Writes 70
. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE OVER-
HEAD OF NON-VOLATILEMEMORY 71
5.1 APM: Adaptive Placement and Migration Policy for an SRAM-Based
HybridCache 72
5.1.1 Comparison of STT-RAM and SRAM Cache 72
5.1.2 Analysis of LLC Write Access Patterns 73
5.1.3 PolicyDesign 78
5.2 WADE: Writeback-Aware Dynamic Cache Management for NYshted
Main Memory System 84
521 Motivation. 84
5.2.2 PolicyDesign 88
5.2.3 Frequent Writeback List Cache Segmentation 91
5.3 Evaluation Methodology for APM Technique 94
5.3.1 Single-Core Workloads and LLC Configuration 96
5.3.2 Multi-Core Workloads and LLC Configuration 96
5.4 Evaluation Methodology for WADE Technique 97
5.4.1 Single-ThreadWorkloads 98
5.4.2 Multi-Core Workloads 98
5.5 Evaluation Results for APM Technique 99
5.5.1 Single-Core EvaluationResults 99
5.5.2 Multi-Core EvaluationResults 102
5.5.3 Storage Overheadand Power 105
5.6 Evaluation Results for WADE Technique 106
5.6.1 Single-Core EvaluationResults. 106
5.6.2 Multi-Core EvaluationResults 109
5.6.3 Sensitivity Study 112
5.6.4 Storage and PowerOverhead 113
. CONCLUSIONS e s e s 115
6.1 Developing Performance Model by Exploring Performavieance . . . 115
6.2 Reducing Write-induced Interference by Exploring Berfance Variance 116
6.3 Reducing NVM Write Overhead by Exploring Performancearece . . . 116

REFERENCES

LIST OF FIGURES

FIGURE Page
1.1 Violin plots for SPEC CPU 2006 percentage performancatian with
codereordering. 2
1.2 The performance and dynamic energy impact of write oloumarsystems 4
2.1 Address mapping scheme (a) cache line interleavingape jterleaving 11
2.2 An illustration of Phase-change RAM (PCM) cell. The GS3s hwo

2.3
3.1

3.2

3.3
3.4
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

phases: the amorphous phase with high resistance and telting phase

with lowresistance. 14
An illustration of STT-RAMcell 15
Performance changes with branch prediction accuracd0.perlbench

and 471.0mnetpp.o . e e 20
Coefficient of determination showing how much of eacletgpevent ac-

counts for overall performance. 9 2
MPKI of real and simulated branch predictors. 33
Predicted CPI of real and simulated branch predictors. 34
Read latency using conventional writeback and perfeteback tech-

niques in quard-core processor A 3
Systemstructure L 39
Example of memoryaccess oo 40
A two-level rank idle time predictor 41
Rank idle time prediction driven writeback schedulifgpathm 43
Predictiontimeline 44
SSVstructure 45
Systemstructure L 47

Xi

4.9 Behavior of the LLC write simulator
4.10 Performance evaluated on eight-core two-rank system
4.11 Average performance evaluated on two-rank and foutggstems

4.12 False positive rates for two-level predictor evaldata eight-core two-
rank system

4.13 The percentage of write access, read access and celyméminated
write interference L.

4.14 Read latency evaluation on eight-core two-rank system.
4.15 Bus Utilization evaluation on eight-core two-rankteys
4.16 Results running on eight-core one-rank system with LRO
4.17 Results running on eight-core one-rank system with NRO
4.18 Performance evaluated for various configurations

4.19 False positive rate and fraction of correctly predidésst-write blocks for
last-write predictor with one-rank and NRU LLC configuratio

4.20 Bus utilization results running on eight-core onekragstem with NRU

LLC .

4.21 Performance evaluated for various configurations
4.22 Read latency results for various configurations
4.23 Writes row-buffer hit rate for various configurations

5.1 Distribution of LLC write accesses. Each type of writeess accounts for
a significant fraction of total write accesses

5.2 Anexample illustrating read range and depthrange
5.3 The distribution of access pattern for each type of LL@enaccess

5.4 Flow-chart of the adaptive block placement and migrati@chanism

55 Systemstructure e

5.6 Anexample illustrating the set behavior of patterndatar

5.7 LLC miss penalty on throughput and energy for dirty cableek and

cleancacheblock

Xii

74

74
75
79

5.8 Region-based memory write access pattern in PCM&%.xalancbmkor
500 million instructions. One region contaim€ contiguous blocks. X-
axis shows the number of region access tinigs (V) means the region is
accessed by times andV/ <= X < N). Very few regions are accessed
frequently (e.g., only 12 regions are accessed more thatih28). . .. 85

5.9 3D view for write access pattern in PCM within seven hafiars for
483.xalancbmk The X-axis shows the 16 cache blocks within a region.
The Z-axis shows 7 regions that the number of writeback aeselarger
than 64. 86

5.10 The impact on performance and energy for various sizeribéback list
for 400.perlbenchFor a 16-way LLC, the optimal segmentation size for
frequent writeback listis11. 8 8

5.11 Systemstructure 9 8

5.12 lllustration of frequent write predictor. FWP is a sg$@ciative structure,
each set has multiple entries with multiplefields 90

5.13 FWP address mapping scheme. Every m LLC sets mapton FWP... 90

5.14 The logical view of frequent writeback list segmematnechanism. Each
set is partitioned into frequent writeback list and norgtrent writeback list 92

5.15 The mechanism of segment predictor. It consists ofesidér sets with
segment size 0, 4, 8, 12, 16 and segment size 16 with bypassing . . 92

5.16 The distribution of write accesses to STT-RAM lines iRM\ LLC for
single-core applications 99

5.17 The comparison of IPC for single-core applicationgrfradized to 2M
SRAMLLC) e 100

5.18 The power breakdown for single-core applicationsrradized to 2MB
SRAM) . . e, 101

5.19 The distribution of write accesses to STT-RAM lines iRM LLC for
multi-core applications 210

5.20 The comparison of IPC for multi-core applications (nalized to 8MB
SRAM) . . e 102

5.21 The LLC power breakdown for multi-core applicationsr(nalized to
8MB SRAM) 103

Xiii

5.22 The memory energy breakdown for multi-core applicetigmormalized to
8MB SRAM) e

5.23 The comparison of IPC for single-core applicationsrfradized to LRU) .

5.24 The number of writeback requests to PCM for single-amglications
(normalizedtoLRU)

5.25 The comparison of energy consumption in PCM for singles applica-
tions (normalizedtoLRU)

5.26 Runtime predicted best frequent writeback listsize
5.27 The comparison of IPC for multi-core applications (nalized to LRU) .

5.28 The number of writeback requests to PCM for multi-cqopliaations
(normalizedtoLRU)

5.29 The comparison of energy consumption in PCM for mutecapplica-
tions (normalizedtoLRU)

5.30 LLC misses per kilo-instruction (MPKI) for multi-coepplications (nor-
malizedtoLRU)

5.31 The impact on performance and energy for parameterp

5.32 Performance evaluation with various cache size (nkizethto LRU with

2MLLCSIze) e

5.33 The number of writeback requests to PCM with varioutheaize (nor-

malized to LRU with2M LLC size)

Xiv

TABLE

3.1

3.2

4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
5.6

LIST OF TABLES

Page
“Yes” means that the null hypothesis of “no correlatiomtejected with
p < 0.05, i.e., with 95% probability, the given measurement is datssl
With CPL. . . 30

Least-squares regression model relating branch pi@uio performance.
Shows high and low prediction intervals for perfect pradici.e. 0 MPKI. 32

System configuration L 54
DDR3-1600 DRAMtIMING o o it 54
Multi-coreworkload mixes o 55
Legend for various writeback techniques. 56
Legend for various cache optimization techniques. 63

Characteristics of SRAM and STT-RAM caches (22nm, teatpee=350K) 72

System configuration 94
Legend for various LLC techniques. 95
Multi-Coreworkloads 59

System configuration. Memory timing and energies arptaddrom [41] 97

Workloads 98

XV

1. INTRODUCTION

Programs exhibit significant performance variance in theress to microarchitec-
tural structures. There are three types of performancarmeei First, there is performance
variance caused by microarchitectural structures. Fdamte, semantically equivalent
programs running on the same system with different codeeptants can yield different
performance. This is caused by microarchitectural strestthat use a hash of instruc-
tion and data addresses, where different code layout vellltén a difference impact on
performance. Second, there is performance variance chyggthse change. When a pro-
gram goes through phases, the behavior of microarchieettents can be different, such
as cache miss ratio, branch misprediction ratio and memmgss patterns, which lead
to performance variance. Third, there is performance madgacaused by different types
of operations. Read and write operations have differenésctatency and power con-
sumption in NVM-based memory. In this dissertation, we eierformance variance to

improve processor design.
1.1 Performance Variance Caused by Microarchitecturaic8ires

Mytkowicz et al. introduce the technique of object file reordering for shaytimat dif-
ferent link orders of object files, as well as other seemimghydom and harmless details
of an experimental setup, can yield significantly diffenpatformance [54]. Since several
microarchitectural structures use a hash of instructiahdata addresses. Such as caches,
translation lookaside table and branch predictor. Sonmetiaddresses will accidentally
collide in some microarchitectural structure. A particudade and data placement will
result in a particular number of accidental collisions watiparticular impact on perfor-
mance. A different layout will result in a difference impaxt performance, thus yields

performance variance.

Percent Difference in CPI

1 90 ¢¢®¢o$®¢¢©00 ®$®®

L. % T T T o T T T T T %
9, %, % Dy 0y, e, O Q. ?59 &O\s‘ \970 %/} 6‘\90 6;‘)/45 676 S‘?f)‘{o)% é;?@ 0"?4—
@ by, R % & 0. % S, % "%, 2, Ve 2% 9 D O K. T
t o % %, 0, % 6, %, V% 2 S, 7

(?,,@ /))Q\s\ > 5, D /bo, %y, o, S 9({9 0“/\ % o@, N

: s
K2 & %y 2, %, %,
25 % % %Yy, A R A %, * %,
Benchmark

Figure 1.1: Violin plots for SPEC CPU 2006 percentage penorce variation with code
reordering.

Figure 1.1 shows the percent difference from average pegoce as measured by
cycles-per-instruction (CPI) caused by 100 random butgitdel code reorderings for the
SPEC CPU2006 benchmarks. The graph is a violin plot, shothiagrobability density
at each CPI value, i.e., the thickness at each CPI value goptional to the number of
CPIs observed in that neighbourhood. Clearly, some bendtsnaae greatly affected by
differences in instruction addresses while some are |esstse.

By exploring the performance variance caused by code reagjeve develop a tech-
nique to build a performance model for program and micragecture by using real sys-
tems. The technique is call@fogram Interferometrylt is based on perturbing placement
of code and data. By measuring the resulting adverse minactural events using dif-
ferent code and data replacements, we can build a perfoemaadel for the program and
microarchitecture. Compared with cycle-accurate sinonsatvhich are inaccurate with re-
spect to real systems because many of the details of realsystre difficult orimpossible
to model or even to know about [10], the performance modelecgaiore new microar-

chitectural ideas in the absence of clear information ataat future microarchitectures

will look like.
1.2 Performance Variance Caused by Phase Change

Programs can go through phases where the phase behavies samificantly. When
the program runs into different phases, the behavior of aimhitecural events are dif-
ferent, such as cache miss ratio, branch mispredictioo atil memory access patterns.
We explore the memory access variance caused by phase dieang#ove the memory
efficiency.

Memory access latency is a major performance bottleneck.L& miss can stall
the pipeline and require hundreds of cycles of delay. Menvatiye requests compete
with read requests for the available memory resourcesydbkaservice of the follow-
ing read requests. This write-induced interference canifsigntly degrade the system
performance.

The memory access pattern exhibits significant variancendftg read requests tend
to come in bursts. The DRAM can busy service the memory regd@sa while then idle
for a while. Additionally, in modern DDRx-based systemsltiple memory controllers
and multiple ranks are used to service memory requests all@lar Due to workload
characteristics and load imbalance, some ranks often bieveyicles while the application
IS running.

By exploring the memory access variance, we develop thagtiea driven last-level
cache writeback (LLC) technique. We propose a rank idle tomesliction driven LLC
writeback technique. This technique sends write requeBiRAM during the long rank
idle period, thus minimizing the delay it caused to the failog read requests. We also
propose a last-write prediction driven LLC writeback teicjue. It improves the writeback
efficiency by increasing the write scheduling space. Ounrigpies significantly reduce

the write-induced interference.

- _ = \\'rite Energy

w
G

16 = === Read Ener
— PCM T 0 i
——= DRAM LICJ ’
14 © 25
IS
% g 2.0
=
'@ 12 B ..
& B
N 104
1.0 —— @
l € o5 S
5
z
0.8 0.0

DRAM PCM

(a) Speedup (b) Dynamic Energy

Figure 1.2: The performance and dynamic energy impact déwn various systems

1.3 Performance Variance Caused by Operation Types

Read and write operations in memory have different accéeadg and power con-
sumptions, especially for NVM-based memory. The latenay amergy of write opera-
tions for NVM are significantly higher than for read operaso The long write latency
can degrade performance by causing large write-inducedfémence to subsequent read
requests. The high write energy can increase power congumpt

Figure 1.2 shows average performance and dynamic energcimpf write requests
on various systems for memory intensive SPEC CPU2006 besrthnWe assume that
the read and write memory requests for DRAM-based main mgimare similar access
latency and dynamic power consumption. For PCM-based mamary, the write latency
and energy consumption are assumed td(b€ of that for the read requests. The schedul-
ing policy we used for evaluation iead prioritizes writg[85]. From Figure 1.2(a), we can
see that the speedup of DRAM-based main mema?9is compared to PCM-based main
memory. Figure 1.2(b) shows the write energy dominates @M Bnergy consumption,
and it consumeg5% of total dynamic energy consumption, although write retgiesly
account for25.5% of all the memory accesses.

By exploring the performance variance caused by asymmeaid and write opera-

tions, we propose LLC management policy to reduce the large awverhead of NVM. We
propose adaptive placement and migration policy for an BAM-based hybrid cache.lt
can achieve high performance by making use of the large tgmdSTT-RAM and main-
tain low write overhead using SRAM. We also propose writgbaware dynamic cache
management for NVM-based main memory system. The techigpeves system per-
formance and energy efficiency by reducing the number ofelvatk requests to NVM-

based main memory.
1.4 Thesis Statement

Programs exhibit significant performance variance in thetess to microarchitectural
structures. To the extent that this variance is predictabtan be exploited to improve

processor design.
1.5 Contributions

The dissertation will make the following original contriimns:

e We explore the performance variance caused by microaothitd structures and
propose program interferometry technique [83]. This témin elicits microarchi-
tectural events such as branch mispredictions and caclsesnis enable the devel-
opment of a performance model for a given program. We useanognterferome-
try to develop a branch prediction performance model for GREPU 2006 bench-
marks running on the Intel Xeon E5440. Based on regressiatelsaleveloped
with branch interferometry, we make specific predictionsutihe performance of
the benchmarks at different branch prediction accuratiesg a branch prediction
simulator and our regression models, we estimate the peafoce of the bench-
marks on a hypothetical Intel Core optimized with differbréinch predictors. We
simulate only the branch predictor and do not need to siraula rest of the mi-

croarchitecture.

e \We explore the memory access variance caused by phase cdrahgeopose a rank
idle time prediction driven LLC writeback technique [86Jathmakes use of the
rank idle cycles to isolate the service of memory read anteweiquests as much as
possible. This technique uses a low-overheauk idle time predictoto predict long
periods of idle time in memory ranks. Scheduled write retpiage written back to

the memory guided by the predictor to reduce the write-iedunterference.

e We propose a decoupled last-write prediction driven LLGelrack technique [85].
This technique makes last-write blocks in the LLC availaioléhe memory con-
troller for scheduling. It effectively expands the writeheduling space and bal-
ances memory bandwidth by re-distributing memory writeuesgs, thus reducing
write-induced interference. The technique is completegadipled from the LLC

replacement policy.

e We explore the asymmetric read and write operation probleM\M and pro-
pose adaptive block placement and migration policy for am-BAM-based hybrid
LLC [84]. In the technique,LLC write accesses are categarinto three classes:
prefetch-write, demand-write, and core-write. Our pragubsechnique places a
block into either STT-RAM lines or SRAM lines by adapting teetaccess pat-
tern of each class. An access pattern predictor is proposgicsict block placement
and migration, which can benefit from the high density and llemkage power of

STT-RAM lines as well as the low write overhead of SRAM lines.

e We propose a writeback-aware dynamic cache managemenidaelto help miti-
gate the write overhead in NVM-based memory [87]. The teqpinmpredicts blocks
that are frequently written back from the LLC. The LLC sets dynamically par-
titioned into a frequent writeback list and a non-frequenteback list. It keeps a

best size of each list in the LLC.

2. BACKGROUND AND RELATED WORK

This dissertation explores performance variance to deviile performance model,
reduce the write-induced interference in main memory antigaie write overhead of
NVM. To provide context of our research, we now give backgiband review some of

the recent work related to our research.
2.1 Exploring Performance Variance to Develop the Perfoicadviodel

This section gives the background and recent work relatetbveloping the perfor-

mance model by exploring performance variance.
2.1.1 Eliciting Performance Variance

Mytkowicz et al. introduce the technique of object file reordering for shapihat
different link orders of object files, as well as other seaghyimandom and harmless de-
tails of an experimental setup, can yield significantly etiént performance [54]. That
work indicts the architecture and programming languag@sneonity for falling victim
to measurement bias, i.e., allowing oneself to believegbate observed improvement in
program behavior is due to one’s own technique rather thaapayhcoincidence of ex-
perimental factors. Our work was partly inspired by Mytkorvset al. We choose to see
the phenomenon they exposed as an interesting opportonitgvielop a tool to examine
microarchitectural behavior.

Rubin et al. propose a framework to explore the space of data layoutg ysifile
feedback to find layouts that yield good performance [71kyTpoint out that the general
problem of optimal data layout is NP-hard and poorly appr@ble. The space of data
layouts is similar to the space of code reorderings, and rtigact of data layouts on

the data cache is similar to the impact of code placement erbtanch predictor and

instruction cache.
2.1.2 Impact of Code Placement on Performance

The impact of code placement on performance has not gonetioedan the aca-
demic literature. Many code-improving transformationséhdeen proposed based on
code placement. Hatfield and Gerald [18], Ferrari [15], MtRg [47], Pettis and Han-
son [59], and Gloy and Smith [16] present techniques to aaae procedures to improve
locality using profiling. Mytkowiczet al. exploit the kind of performance variance de-
scribed in this paper to optimize programs [38]. Calder amdn@&ald presenbranch
alignment an algorithm that seeks to minimize the number of takendivas by reorder-
ing code such that the hot path through a procedure is laith@ustraight line [3]. Young
et al. present a near-optimal version of branch alignment [92hédiez proposes a tech-
nique to use code placement to explicitly avoid branch nedigtions due to conflicts in
the predictor tables [27]. Knightt al. propose exploiting fortuitous object code orderings
to improve performance [38].

From the microarchitecture side, a trace cache is a spesiainstruction cache that
exploits instruction locality by organizing instructioimsthe order they are executed, rather
than in their static program order[70]. With a trace cachanbh prediction and instruction
fetch can be made somewhat immune to the effect of code ptatesmen there is a high
hit rate in the trace cache. The Intel Netburst microarchite in the Pentium 4 processor
line featured a micro-op trace cache [23].

Our technique is not an optimization, but a tool for peerimgide the microarchitecture
using code placement. If thoughtful code placement opttions like those mentioned
above were widely adopted, our results would show less vegian execution behavior
and less confidence in the regression lines. Neverthelesst pnoduction code is not

optimized with code placement in mind; thus, our resultsveigely applicable to real

systems.
2.1.3 Estimating Simulation Results with Regression

Lee and Brooks [40] propose using regression modelling tionage processor per-
formance and power under a given microarchitectural cordigan after sampling a small
portion of the microarchitectural design space throughutation. Performance and power
are accurately predicted with an error of about 4% on averdageplet al. propose non-
linear [31] regression techniques such as neural netwarksdtimating CPI given a set
of microarchitectural parameters. The technique predi&swith an error of 2.8% on
average. Both of these proposal are intended to reduce thearof points in a processor
design space that must be simulated to find parameters tleatjgod performance.

Our technique differs in that we are modelling the behavi@r i@al system rather than
a simulation design space. Simulators can be inaccuraker@spect to real systems [10,
11]. On the other hand, real hardware is a perfectly validehotlitself. Through careful
measurement, the performance impact of changing a singlearchitectural feature such
as branch prediction can be estimated accurately usinggiftsvare itself to model to rest

of the microarchitecture.
2.1.4 Estimating Behavior of Real Systems

Contreras and Martonosi use performance monitoring cosiritedevelop a linear
power model of the Intel XScale processor [8]. This approea enable a technique
capable of quickly estimating future power behavior andptidg to it at run-time. Our
technique is similar in that it uses performance monitodognters to develop a model of
program behavior. However, we focus on modelling the beirafione program at a time
to get very precise information about the change in perfoceaan response to a small
change in the behavior of microarchitectural structures, our work concentrates on a

much finer level of granularity, and we focus on performamstead of power.

2.2 Exploring Performance Variance to Reduce Write-Induogerference

This section gives the background and recent work relateddocing write-induced

interference by exploring performance variance.
2.2.1 DRAM Systems

The DDRx based memory system [25, 9] consists of one or makigkline memory
modules (DIMMs) composed of multiple chips. Each chip isamiged as multiple banks
that can be operated in parallel. A memory rank is made up ef af<hips where chips
in the same rank can be accessed simultaneously. In a DDRxmnenodule, each rank
has a 64-bit data bus. Chips within a rank work in unison torre64 bits per cycle. The
memory channel is made up of one or multiple memory ranksk&amthe same channel
share the same data bus. Modern multicore processors mayrhadtiple channels.

A memory access includes both row access and column acdessn@ntire row of
bits that contains the required data is brought into the roffeb during row access, then
a column of this row buffer is selected according to the colladdress. Memory access
requests may be row-buffer hit requests, row-buffer closegdests, or row-buffer conflict
requests. A row-buffer hit request goes to a currently opewn rData can be accessed
without activating the row buffer again. A row-buffer cleseequest goes to a row when
there is no open row in the row buffer. The required row musabiévated before the
data in the row-buffer can be accessed. A row-buffer coniiquest goes to a row other
than the currently open row. Data in the currently open rovstnne written back first,
then the required row must be activated before the data candessed. Thus, the access
latency for row-buffer conflict/closed requests is siguifity higher than for row-buffer

hit requests.

10

Row Column Rank Bank Channel Cache
1D 1D ID ID ID Line
(a)
Row Rank Bank | Channel Column Cache
1D ID 1D ID ID Line

(b)

Figure 2.1: Address mapping scheme (a) cache line interigdis) page interleaving

2.2.2 Address Mapping Scheme

The memory address mapping scheme [93] [43] maps physidatsses to memory
resources. Figure 2.1 shows the conventional cache liadeéat/ing and page interleaving
mapping schemes. In the cache line interleaving mappingnsehconsecutive cache lines
are distributed to different rank/bank/channel comboatito maximize the parallelism of
memory access, The page interleaving mapping scheme mapsatér order bits of the

physical address into the column address to maximize théauof row buffer hits.
2.2.3 Memory Access Scheduling

Memory access scheduling [68] reorders memory referecesprove memory per-
formance. Much previous work [73, 78, 53, 37, 1, 52] focusesneproving memory
efficiency by scheduling or relocating memory accessesdiol s many row hits as pos-
sible or servicing memory accesses in parallel. Skta.[73] propose a burst scheduling
algorithm that schedules requests that hit in the same rdferato a burst to increase
row buffer hit rates and bus utilization. Sudanal. [78] propose a page migration al-
gorithm that collocates frequently accessed data in theegam buffer to increase row
buffer hit rates in a multi-core system. Nesébital. [56] propose a fair queue schedul-
ing algorithm for multi-core systems. The fair queue schiedualgorithm allocates to

each thread a fraction of memory resources, thus reducisfyudgive interference and

11

improving fairness among threads. Muttial. [53] propose a parallelism-aware batch
scheduling technique for multi-core systems. Their tegheifirst organizes memory re-
guests into batches to ensure the fairness of service, thieimwach batch, requests are
scheduled to maximize parallelism while at the same timemiing the number of idle
cores by using a shortest-job-first scheduling technique eitfal. [22] propose a schedul-
ing algorithm that uses a state machine to make the next skthgdlecision based on the
past behavior. Ipekt al.[24] use a reinforcement-learning approach to learn themabt

memory scheduling policy according to past behavior.
2.2.4 LLC Writeback

Much previous work [78, 53, 37, 1, 52, 24] does not take intmaat the write inter-
ference problem. Eager writeback [42] is the first propdsal increases the visibility of
the write buffer by using the LLC to reduce write-inducecenfiérence. Eager writeback
writes back dirty cache blocks in the least-recently-usdRl)) position of the last-level
cache sets whenever the bus is idle instead of waiting foblthek to be evicted to reduce
the memory traffic.

Stuecheliet al.[77] propose a virtual write queue (VWQ) technique. Theaht@ique
takes a fraction of the LRU positions in the LLC as the virtwaite queue (also requir-
ing LRU). Dirty cache blocks in the virtual write queue thatget the same row buffer
when mapping to the memory resource will be written back iatal, therefore reducing
write-induced interference. Chamgal.[55] propose a similar technique that writes back
qualified dirty cache blocks in the LLC to improve the memdificeency.

To reduce write-induced interference, both eager writklaad VWQ techniques issue
write requests to DRAM when the rank is idle. Unfortunateéhytheir techniques, the
memory controller does not have knowledge about how longah& will remain idle.

The write-induced penalty might be too long to be hidden k®/dhort rank idle period.

12

Additionally, both eager writeback and VWQ techniques megjthat the LLC implement

the costly LRU replacement policy.
2.2.5 Dead Block Prediction

Lai et al.[39] proposes last touch predictor that predicts the lagtha@ache blocks for
core caches. The last touch predictor uses program col@rtfaces to detect the last
touch and invalidate the shared cache blocks to reduce catiegence overhead. Several
dead block predictors are proposed in previous work [354732]. The trace-based dead
block predictor [39] can detect when a cache block is accefssehe last time based on
the a given sequence of memory-access PCs. This prediaieedsto prefetch data into
dead blocks in the L1 data cache. Bfial.[21] propose a time based dead block predictor
that learns the number of cycles a block is live and predictead if it is not accessed for
twice that number of cycles. This predictor is used to poifétto the L1 cache and filter
a victim cache. Recent work proposes [32] sampling deadkipoedictor for LLC that

predict the dead blocks in the LLC and replace them for uszfahe blocks.

2.3 Exploring Performance Variance to Reduce Write OvetlugddNon-Volatile

Memory

This section gives the background and recent work relateeldiocing write overhead

of NVM by exploring performance variance.
2.3.1 Emerging Non-Volatile Memory

In recent years, significant efforts and resources have petan the researches and
developments of emerging memory technologies that conddinactive features such as
scalability, fast read/write, negligible leakage, and-wofatility. Multiple promising can-
didates, such as Phase-Change RAM (PCM), Spin-Torque féraR&M (STT-RAM),

and Resistive RAM (RRAM), have gained substantial atterstiand are being actively

13

Top electrode

E—

Heater

- Bottom
WL
electrode

BL

GST

Nt

Substrate

Figure 2.2: An illustration of Phase-change RAM (PCM) cdlhe GST has two phases:
the amorphous phase with high resistance and the crystaliase with low resistance.

pursued by industry [66].
2.3.1.1 Phase Change Memory

Among various emerging memory technologies, Phase-ChRédé¢ (PCM) is one
of the most promising candidates for main memory becauséceaductor companies
have made dramatic R&D progress in recent years. For exa®alasung demonstrated
an 8Gbit PCM memory chip recently [6], with CMOS-compatiklmbedded PCM (Hi-
tachi and STMicro) [17, 58] have been demonstrated, paviagvay for integrating these
NVMs into traditional memory hierarchies. In addition, egiag 3D integration tech-
nologies [79] enable cost-effective integration of thedd¢ with CMOS logic circuits.
Compared with DRAM, the PCM [89] has high density, compagabhd access time and
reasonable write endurance which made it a promising @ti&es to existing main mem-
ories. Thus, many innovative memory architectures usinylRS main memory have
emerged in the last several years [61][89][64, 62, 94, 41].

In a PCM memory cell, the storage node is based on a chalagatioy (typically
GeSBTe (GST) material), as shown in Figure 2.2. The resistdifferences between an
amorphous (high resistance) and crystalline (low rest&pphase of chalcogenide-based

material indicate the stored value as “1” and “0”, respetyivWriting a bit to the PCM

14

Bitline

2
vV
M Reference Layer
Tunnel Barrier Layer
Free Layer

\J—

Wordline

Source Line

Figure 2.3: An illustration of STT-RAM cell

cell is done througlsetandresetoperations: for set operations, the phase-change mate-
rial is crystallized by applying an electrical pulse thaatsea significant portion of the
cell above its crystallization temperature. In reset of@na, a larger electrical current is
applied and then abruptly cut off to melt and then quench theral, leaving it an amor-
phous state. Compared to charge-based SRAM/DRAM, PCMnhsitdlly takes longer
and consumes more energy to overwrite the existing datahwdoald result in perfor-

mance degradation and high energy consumption.
2.3.1.2 STT-RAM Technology

STT-RAM is the second generation of MRAM. As shown in Figur8,dt uses a
Magnetic Tunnel Junction (MTJ) as an information carrieaclEMTJ consists of two fer-
romagnetic layers: a reference layer and a free layer. Adiumarrier layer is sandwiched
between the two ferromagnetic layers. The reference lagealfixed direction while the
free layer can change its direction by passing write curréhe relative direction of the
reference and free layers are used to represent a memoty thie layers have the same
direction, the MTJ resistance is low which indicates staw@erwise, the MTJ resistance
is high which indicates state 1.

A read operation is performed by turning on the access storsaand applying a small

voltage difference between the bitline (BL) and source (fBk) to sense the MTJ resis-

15

tance. A write operation is performed by establishing a higlage difference between
BL and SL with a positive voltage difference for writing 1 aadegative voltage differ-

ence for writing 0.
2.3.2 Related Work on Mitigating PCM Write Overhead

Many researchers propose techniques to mitigate PCM vatiéety and energy over-
head. For example, Lee et al. [41] propose to use narrow PGfMrbuo mitigate high-
energy PCM writes. Write cancellation and Write pausing s been proposed to pri-
oritize read requests over write requests by adaptivelgalar pause the service of write
requests when read requests are waiting for service. Quaeah [60] exploit asymmetry
in write times for SET and PRESET operation of PCM devices@agose to initiate a
PreSET request for a memory line as soon as data writtenhetbltC, thereby incurring
low write-induced interference.

Hybrid main memory architecture has been proposed to Igediee benefits of both
DRAM and PCM technologies. Quressi al. [64] propose a main memory system con-
sisting of PCM storage coupled with a DRAM write buffer, sattit has the latency ben-
efits of DRAM and the capacity benefits of PCM. Yoetral.[91] propose to improve the
hybrid performance by caching the frequent row buffer mégpuests in DRAM. Ramos
et al. [65] propose a page ranking and migration policy fer bigbrid PCM and DRAM
based main memory.

Write endurance poses another severe challenge in PCM matasign. The cells
suffering from more frequent write operations will fail faboner than the rest. A read-
before-write operation [30] can help identify such redumtdaits and cancel those re-
dundant write operations to save energy and reduce impagedarmance. A range of
wear-leveling techniquel$2, 94, 41] for PCM have been examined to increase the life

time of PCM-based main memory architectures.

16

Most of these proposed techniques mitigate the write owetloé PCM by doing op-
timizations at the main memory level. They either use new orgrarchitectures or add
a new operation to PCM. However, write requests sent froniLig& remain unchanged.
Zhouet al.[94] take the first step to exploit the LLC partitioning anglacement policy by
considering the negative impact of writeback requestsy phepose to partition the shared
LLC among multi-core by taking into account the writeback@éy. Fedorowet al. [14]
propose to divide the LRU stack into "High-hit” and "Low-hipartitions. On a cache
replacement request, the technique gives higher priarigvict clean block in "Low-hit”
part than dirty block in "Low-hit” part. However, both of thechniques require a cache
replacement policy with distinct recency levels, such aast-&kecently-Used (LRU) re-
placement policy. For some cheap replacement policy, ssitlo&Recently-Used (NRU)

and Random, these techniques can not be applied to them.
2.3.3 Related Work on Mitigating Write Overhead of STT-RAM

Many prior papers [29, 81, 46] focus on mitigating write dwead of an STT-RAM
cache. Jo@t al.[29] propose to improve the write speed of STT-RAM-based ldyGe-
laxing its data retention time. However, that techniqueinexs large capacity buffers for a
line level refreshing mechanism to retain reliability. Metaal. [46] propose prioritization
policies for reducing the waiting time of critical requeststhe STT-RAM-based LLC.
However, the technique increases the power consumptioh.Gf Recently, researchers
propose hybrid SRAM and STT-RAM techniques [79, 5, 26, 4, #@0]improving LLC
efficiency. Suret al. [79] take the first step introducing the hybrid cache sttt hat
technique uses a counter-based approach for predicting-imtensive blocks. Write-
intensive blocks are placed in SRAM ways for reducing writerbead to STT-RAM por-
tion. However, that technique is optimized only for coratevoperations. It cannot reduce

the prefetch-write and demand-write operations to STT-RARtidiet al. [26] propose

17

reducing write variance of STT-RAM lines by migrating fresntly written cache blocks to
other STT-RAM lines or SRAM lines. However, frequently nmagng data between cache
lines incurs significant performance and energy overhe&éné€t al. [5] propose a com-
bined static and dynamic scheme to optimize the block placerior hybrid cache. The
downside of the technique is it requires the compiler to estatic hints for initializing

the block placement.

18

3. EXPLORING PERFORMANCE VARIANCE TO DEVELOP PERFORMANCE
MODEL*

Modern microprocessors have many microarchitecturalifeat Quantifying the per-
formance impact of one feature such as dynamic branch piadican be difficult. On
one hand, a timing simulator can predict the difference nigomance given two different
implementations of the technique, but simulators can b&edoaccurate. On the other
hand, real systems are very accurate representationsroséees, but often cannot be
modified to study the impact of a new technique.

We develop a performance model for branch prediction ussajsystems [83] The
technique perturbs benchmark executables to yield a widetyaf performance points
without changing program semantics or other important @k characteristics such as
the number of retired instructions. By observing the bebrasf the benchmarks over a
range of branch prediction accuracies, we can estimatetpadt of a new branch predic-
tor by simulating only the predictor and not the rest of thenwarchitecture. We call this
techniqueProgram Interferometrypased on its similarity to astronomical optical interfer-
ometry.

Figure 3.1 demonstrates the potential of program intenfietoy. Each of the 100
points represents an executable with a different code eeimgl of the SPEC CPU 2006
benchmarks400. per | bench and471. ommet pp running onr ef inputs. Perfor-
mance monitoring counters enable collecting the cyclesfastruction (CPI) and branch
mispredictions per 1000 instructions (MPKI) of each rune ot shows actual measure-
ments as well as a least-squares regression line estintaérigear relationship between

MPKI and CPI. They also show 95% confidence intervals and 9&digtion intervals.

*(©2011 IEEE. Reprinted, with permission, from Zhe Wang; DbAieliménez, "Program Interferometry,”
Workload Characterization (1ISWC), 2011 IEEE Internatib8ymposium, Nov. 2011

19

0.72

2.154

o
N
2

2.10q

Cyclesper Instructions
Cyclesper Instructions

--- 95% prediction intervals

--- 95% confidence intervals

— Least-squares regression line

- Performance counter measurements

---- 95% prediction intervals
----95% confidence intervals
— Least-squares regression line
- Performance counter measurements

o
@
@

6.0 6.5 7.0 5 6 7
Mispredictions per 1000 I nstructions Mispredictions per 1000 I nstructions

Figure 3.1: Performance changes with branch predictioaracy for 400.perlbench and
471.omnetpp.

As an example of the usefulness of program interferometbydach predictor design,
linear regression allows us to make the following predit$ifor400. per | bench with

95% probability:

1. A perfect branch predictor would yield a CPI®517 + 0.029, an improvement of
26.0% + 4.2%.

2. Halving the average MPKI from 6.50 to 3.25 would improvd 6¥13.0% =+ 2.2%
from 0.70 t0 0.61 £ 0.022.

3. A10% improvement in CPI due to branch prediction improvementidoequire a

38% reduction in mispredictions.

3.1 Motivation

Astronomers used the earliest telescopes to view the wavfeom a single point of
view. Their observations were dim and blurry, limited by tiry amount of light that
their small telescopes could collect and the effects of apheric turbulence. However, in

recent years, astronomers have used a technique calledlapterferometry to combine

20

the observations of many telescopes from many differenttpaf view to obtain images
with a much higher resolution [2].

Similarly, by sampling and observing many points in a spdggagram performance,
we can get a much better understanding of program behaiogram Interferometrys
based on perturbing placement of code and data. Many ex#ewarsions of a program
are produced by pseudo-randomly re-ordering proceduisiajects files. Similarly, the
memory allocator places objects pseudo-randomly on thp.h&agiven random place-
ment of code and data can be repeated by using the same kdyef@séudo-random
number generator so that runs are reproducible. Each calldada placement is seman-
tically equivalent, but because the instruction addreassedifferent, different conflicts
will arise among microarchitectural structures such avthach predictor and instruction
cache [54]. The situation is isomorphic to one in which wepkéiee code and data place-
ment constant, but change the hash functions for micra@athral structures. Thus, we
may measure the performance impact of changing thesestesct

An alternative would be to use cycle-accurate simulatoth est-guess estimates of
future microarchitectural structures. However, it is nigtac to researchers what future
microarchitectures will be like. The return of Intel frormretinore complex Netburst to the
simpler P6-inspired Intel Core 2 is an example of this uraety. The trend in 2001 was
toward deeper and deeper pipelines, so contemporanecquwshiypeediction papers simu-
lating pipeline depths of up to 40 were way off the mark. Alsimjulators are notoriously
inaccurate with respect to real systems because many ofetiadsdof real systems are
difficult or impossible to model or even to know about [10].riest efforts at simulation
are subject to bugs that can invalidate research conclisiaue with them [11]. Thus,
demonstrating that a new branch predictor (or other opation) can improve an existing
microarchitecture is another way to have confidence in tphaitrazation’s contribution to

unknown future microarchitectures.

21

3.2 Description

In this section we describe the technique of program intenfetry. The basic idea is
to execute code under many different reorderings, causwigevariance in performance
due to different accidental collisions in microarchiteelustructures. By measuring the
resulting adverse microarchitectural events, we can haifgerformance model for the

program and microarchitecture.
3.2.1 Instruction Addresses in Microarchitectural Sturefs

Program interferometry exploits the fact that several oacchitectural structures use

a hash of instruction and data addresses. For example:

1. A 128-set instruction cache with 64 byte blocks wouldlijkese bits 6 through 12

of the instruction address as the set index.

2. A branch direction predictor might index a table of coustgsing a combination of

branch history and branch address bits.

3. Abranch target buffer (BTB) or indirect branch prediat@muld use lower-order bits

of the branch address to index a table of branch targets.

Sometimes addresses will accidentally collide in some maichitectural structure.
For example, conflict misses in the instruction cache ocduenthe number of blocks
mapping to a particular set exceeds the associativity otcttuhe. Although this phe-
nomenon has been studied in academic research, most coswjaleot optimize to protect
against these kinds of conflicts.

Compiler writers are aware of uses of instruction addreaseswrite compilers to
exploit these uses. For instance, a common heuristic isgo #ie target of a branch on a
boundary divisible by the number of bytes in a fetch blockltovathe fetch beginning at

that target to read the maximum number of instruction bytesie cycle.

22

3.2.2 A Wide Range in Performance

These accidental conflicts result in adverse microarchitatevents such as branch
mispredictions, cache misses, BTB misses, etc. A particolde and data placement will
result in a particular number of accidental collisions vatlparticular impact on perfor-
mance. A different layout will result in a difference impact performance. By exploring
a wide range of layouts, we can force a wide range of advenrgerpence events to take

place and explore a wide range of performances.
3.2.3 Causing Collisions

To generate many random but plausible code layouts, we @xten technique of
Mytkowicz et al. [54], i.e., object-file reordering. We compile each benchonce,
lowering it to assembly language files. Then we produce dabtes with hundreds of
different code reorderings. We then reorder proceduresinvdssembly files, assemble
the files, and then link with different randomly-generateden of the object files. The
linker lays code out in the order in which it is encounteredtsmcommand line, so each
random procedure and object-file ordering results in amiffecode layout.

We execute each resulting executable five times, collegi@réprmance monitoring
counter information such as number of instructions conadjthumber of branch mis-
predictions, number of clock cycles, etc. We take the peréorce monitoring counter
statistics that gave the median performance. Details ofrdtastructure are given in Sec-

tion 3.3
3.2.4 Making Predictions

Once the performance monitoring counter information hanlmellected, we can be-
gin using statistical tools to build a performance model. We least-squares linear re-

gression to estimate the relationship between variousoaichitectural events and perfor-

23

mance outcomes. For instance, for the plots in the Intrediicive found a regression line
of CPI = 0.02799 x* MPKI + 0.51667. That is, we use the MPKI to predict the CPI. For
a range of MPKI values, we also 95% computed confidence ialteand prediction inter-
vals. A 95% confidence interval has a 95% chance of contaihi@grue regression line,
i.e., of all the data collected, the line that best illusisathe linear relationship between
CPIl and MPKI has a 95% chance of being in that confidence iatf48]. The larger 95%
prediction interval has a 95% chance of containing all ofdhservations (i.e. CPIs) that

would be encountered in a given domain (i.e. set of MPKISs).
3.2.5 When Things Go Wrong

Some benchmarks do not give a wide range in performance wdier reordering,
or the range in performance cannot be explained by everatedeto the instruction ad-
dress. For each type of prediction we would like to make foivergbenchmark, we
first determine whether there is significant correlatiomiaein the dependent variable and
independent variables. We use Studetsst with the null hypothesis “there is no cor-
relation,” i.e., if we cannot reject the null hypothesisntwe cannot say whether there is
any correlation between the events observed [48]. For tf&PEC CPU2006 benchmarks
that compiled in our infrastructure, estimating CPI with KIPthe null hypothesis was
rejected ap = 0.05 or less for 20 benchmarks. In other words, for the great nigjof
the benchmarks, we determined that there was at least a 9&86ethat program interfer-
ometry found significant correlation between CPIl and MPKlr the other benchmarks,

there was not enough range of MPKI to predict CPI.
3.3 Experimental Methodology

This section describes the experimental methodology useti¢ interferometry tech-

nique.

24

3.3.1 Compiler

We use the Camino compiler infrastructure [20]. This system post-processor for
the Gnu Compiler Collection (GCC) version 4.2.4. C, C++, &@RTRAN programs
are compiled into assembly language, the assembly langsi@aggrumented by Camino,
and the result is assembled and linked into an executablenir@afeatures a number
of profiling passes and optimizations, but for this study melement and use only the
profiling and instrumentation pass described below. Allhaf éxecutables produced for

this study target the x864 instruction set.
3.3.2 Benchmarks

We use the SPEC CPU 2006 benchmarks for this study. Of the @&éhbearks, 23
compile and run without errors with our compiler infrastwwe. These benchmarks are

listed in thex-axes of several graphs in later sections.
3.3.3 Generating Random Code Reorderings

Each benchmark is compiled once from C/C++/FORTRAN inteaddy. The Camino
infrastructure is then used to reorder procedures withes Bihd then assemble the files into
object code files. The resulting object files are randomlydex@d and linked to make an
executable. Camino accepts a seed to a pseudo-random ngerierator to generates

pseudo-random but reproducible orderings of proceduré®hbject files.
3.3.4 System

We perform our study using four Dell systems with identicahfigurations running
the 64-bit version of Ubuntu Linux 8.04 Server and a custommited kernel with per-
formance monitoring counter support. Each system contarosgquad-core Intel Xeon
E5440 processors. The Intel processor 5400 Series are baséshm Enhanced Intel

Core Microarchitecture. Each processor has 16GB of SDRAM HtMB second level

25

cache. Each core in the Intel Xeon E5440 processor has 32&tBiagtion cache and a
32KB data cache. The branch predictor of the Intel Xeon E544®t documented, but
through reverse-engineering experiments we have detedhtivat it is likely to contain a

hybrid of a GAs-style branch predictor and a bimodal branedistor [90, 75, 13].
3.3.5 Running with Performance Monitoring Counters

We measure a number of performance monitoring counterg tisaper f ex com-
mand found in the PAPI performance monitoring package [b0g Intel Xeon processor
allows up to two user-defined microarchitectural eventstadunted simultaneously. We
are interested in more than two events, so we make multiple ofi each benchmark to
collect all of the desired counters. We group the countdosthree sets of two. For each
set we run each benchmark five times and take the measuregiegrtisby the run with
the median number of cycles. Only the microarchitecturainév that occur while user
code is running are counted, thus the impact of system ei@ntimized. We collect
the following statistics: 1) Retired branches mispredic®) Retired x86 instructions ex-
cluding exceptions and interrupts, 3) L1 instruction cacheses, 4) L2 cache misses, and
5) Elapsed clock cycles.

From these counters, we can derive other statistics sugitkeseper-instruction (CPI),
branch mispredictions per 1000 instructions (MPKI), vasi@ache miss rates, etc.

Although each system is configured identically and eachlcasg¢he same microarchi-
tecture, we use the Linuxaskset command to make sure that each benchmark always
runs on the same core to eliminate the effect of possibléntstigfferences among the
cores. Each run is performed on an otherwise quiescentsysiih as many system ser-
vices stopped as possible without compromising the aliditgccess remote files and log
in remotely. Stack address randomization, a security feahat resists stack-smashing

attacks, is disabled to minimize performance variance nettd code placement.

26

3.3.6 Simulation

We develop several branch predictor simulators. We implgrtigese as a tool in
Pin [45]. We then run pin on the same executables that we rtimeha Our Pin tool
instruments each branch with a callback to code that simsiiset of branch predictors.
The tool counts the number of branches executed and the maiianches mispredicted

for each predictor simulated.
3.3.7 Timing Concerns

Many of the SPEC CPU 2006 benchmarks run for over 30 minutebefirstr ef
input. For this study, we have executed each of the 23 bengisna least 100 times
on a set of 4 computers. To facilitate this study, we instmimibe benchmarks such
that under native execution they run for up to approximately minutes each. To do
this, we implement a two-pass profiling and instrumentgpass in the Camino compiler.
The first pass inserts instrumentation that collects in&drom about each procedure. The
benchmark is allowed to run for two minutes. Then the coldeéhformation is analyzed
to find a procedure with a low dynamic count that is also exagtaear the end of the two-
minute run. The second pass of the compiler instruments thialtyprocedure such that
when it is executed the same number of times as before, tlgggmois ended. The first
instrumentation has low overhead, thus the resulting d¢abteiruns for approximately
two minutes. The second instrumentation affects a lowtfeegy procedure and takes
two x86 instructions, thus it has negligible overhead. Altree executables in this study
are compiled from this second instrumentation, or are fremchmarks that naturally run
for less than two minutes. Because we are counting procedmetnot elapsed time, each

run of a benchmark executes the same number of user insingcti

27

3.4 Estimating Performance by Counting Microarchitedtiraents

This section shows the potential of program interferomébrypredict performance.
We develop and evaluate regression models for a number @hbwarks using several

characteristics of program behavior such as branch prediahd cache misses.
3.4.1 Assigning Blame

Code reordering can elicit a wide range of CPlIs for our beraohs Here, we de-
termine how much blame to place on certain microarchitattructures for the perfor-
mance variance. We focus on what we believe to be the midrdectural events most
likely to be affected by code placement: 1) Branch mispteshs. Conditional branch
predictors use the address of an instruction to index onease riables. Branches may
conflict with one another in these tables leadingliasing[49] causing branch prediction
accuracy to suffer. 2) L1 instruction cache misses. Thd ¥#¢en Core has a 32KB 8-way
set associative instruction cache. If nine or more fredyarged blocks map to the same
set, there will be frequent cache misses. 3) L2 cache misses.

We also use multi-linear regression to develop a combinedeinibat takes into ac-
count all three of these events in the hope that a combinectingtl be more accurate
than using one of the observations by itself.

Using 72, the coefficient of determination, we can determine whatipomf perfor-
mance is due to a particular microarchitectural event. @2 shows the cumulative
r? for each of the three events, as well:dfor the combined regression model. On av-
erage, 27% of the CPI difference between different codederorgs can be explained by
branch misprediction.Some benchmarks are more sensan@stance, 84.2% of the CPI
variance o#462. | i bquant umis due to branch mispredictions.

The average bar for the combined model does not reach exhetbame height as that

of the sum of the three measurements. This is because trerigasurements are not

28

[y
@

=L2 Cache Misses

=L1 Instruction Cache Misses
=Branch Mispredictions
=Combined Estimator

Coefficient of Determination
o
o

o

0,
Y00 707 703 Mo M o P33 F3g 335 %6 g 5 %5n %q W6 Y59 Y6 Y6 Y65 927 Y25 %8 %85
Pery82)9cc Ong9an, ey S :
e NN

> s '?e%"gro/)'?eaq'”a%‘gob‘ G, S &
o5 e ey “Sagy

e

0y, Ctp ey 22 Ory, Oy Qs Sy e .
4 Doy s, s Qs 69,0 "’o%;ff Py %ir,//f e
)

Q)
r SRy 7%7,0 /7: (3 >

Benchmark

Figure 3.2: Coefficient of determination showing how muckadh type of event accounts
for overall performance.

altogether independent of one another; for instance, inesceses, a branch mispredic-
tion might cause an L1 cache event, sometimes causing cadiign and other times
causing prefetching. It must be emphasized that the ctioelave report between mi-
croarchitectural events and performance is with respecbtie ordering. Other changes

to the execution environment would show other correlations
3.4.2 Establishing Statistical Significance

Clearly many benchmarks’ performance show correlatioh miicroarchitectural events.
However, we must ask whether the correlation is statigyisaynificant. We use Student’s
t-test to determine statistical significance. For each otlihee measurements as well as
the combined model we attempt to reject the null hypothésisthere is no correlation.
The valuep < 0.05 for the t-test is traditionally accepted as proof of statisticahgig
cance. For the combined model we use the Fstest 0.05 instead of the-test, as the

t-test is appropriate for single-variable linear regressimdels.
3.4.3 Number of Samples
For some benchmarks, the effect of code reordering on pediace is harder to detect

than for others. To establish statistical significance ®meany benchmarks as possible,

29

we sample a number of code reorderings in multiples of 100 thvat benchmark is able
to reject the null hypothesis, or until by inspection we detiee that the benchmark is
unlikely to reject the null hypothesis with a much larger fueanof samples. Most bench-
marks reject the null hypothesis within the first 100 sampl8eme take 200 samples,
and a few require 300 samples. We do not discard any data wihilelinly or testing our

regression models: we use the data from each reordering.

Event
L1 L2

Benchmark Branch |1-Cache| Cache | Combined
Name MPKI | Misses |Misses| Estimator
400. per | bench yes yes - yes
401. bzi p2 yes yes - yes
403. gcc yes yes yes yes
410. bwaves - - - -
416. ganess yes - yes yes
429. ncf yes - - yes
433.mlc - - - -
434, zeusnp yes - - -
435. gromacs yes - - yes
436. cact usADM - - yes yes
444, namd yes - - yes
445, gobnk yes yes - yes
450. sopl ex yes yes yes yes
454, cal cul i x yes - - yes
456. hmrer yes - - yes
459. GensFDTD yes - - -
462. 1 i bquantum| vyes - yes yes
464. h264r ef yes - - yes
465.tonto yes yes - yes
471. ommet pp yes - - yes
473. ast ar yes - yes yes
482. sphi nx3 yes - - yes
483. xal ancbnk yes - - yes

Table 3.1: “Yes” means that the null hypothesis of “no catieh” is rejected withp <
0.05, i.e., with 95% probability, the given measurement is datezl with CPI.

30

Table 3.1 shows “yes” for each combination of measuremedtemchmark where
the null hypothesis can be rejected with at most 0.05, i.e., with 95% probability there

is correlation between CPI and the measurement for thatipesud.
3.4.4 Blame the Branch Predictor

Of the 23 benchmarks, 20 show significant correlation betw@el and branch pre-
diction. No other measurement consistently shows steaisfisignificant correlation with
CPI. The combined estimator does not increase the numbenchinarks showing signif-
icant correlation, and indeed two benchmarks that showfgignt linear correlation with
MPKI through thet-test fail to reject the null hypothesis for the F-test witle tombined
model and multiple linear regression. Thus, in this papefogas our attention on branch

prediction.
3.4.5 A Linear Performance Model

We use least-squares linear regression to derive brandicpom performance models
for the Average Model and each of the benchmarks that pass&etypothesis testing
phase. For each benchmark, we find the best fit of the obsentada a regression line
y = mx + b wherey is CPI andr is MPKI. The slope) gives the cost for performance
of one additional MPKI and thg-intercept §) gives the predicted average CPI for perfect
branch prediction, i.e. 0 MPKI.

We also derive 95% confidence intervals and 95% predictitarvals for the regres-
sion lines. Figure 3.1 in the Introduction shows the regoestine and intervals for
400. per |l bench and471. oormet pp. The confidence interval has a 95% chance of
containing the true regression line for the data observda: mMuch wider prediction in-
terval has a 95% chance of containing future observatiorsis,Twe can be 95% sure
that the CPl of471. ommet pp with perfect branch prediction would be between 1.86

and 1.94. Table 3.2 shows the slopes agridtercepts found by linear regression for each

31

benchmark. It also shows the high and low prediction interi@ perfect prediction.

| Benchmark | Slope| y-intercept| Low | High |
400. per| bench | 0.028 0.517 0.488| 0.546
401. bzi p2 0.017 0.596 0.485| 0.708
403. gcc 0.028 1.839 1.796| 1.882
416. ganess 0.041 0.548 0.519| 0.577
429. ncf 0.019 4.675 4.531| 4.819
434, zeusnp 0.373 0.863 0.813| 0.913
435. gronacs 0.020 0.811 0.795| 0.827
444, nand 0.033 0.620 0.551| 0.689
445. gobnk 0.019 0.643 0.515| 0.771
450. sopl ex 0.016 1.822 1.741| 1.904
454, cal cul i x 0.023 0.461 0.460| 0.463
456. hmrer 0.041 0.203 0.032| 0.375

459. GensFDTD 0.516 1.229 1.189| 1.269
462. | i bquant um| 0.022 1.432 1.431| 1.433

464. h264r ef 0.032] 0.466 | 0.451| 0.481
465. tont o 0.027] 0.632 | 0.617] 0.647
471. onmet pp 0.036] 1.901 | 1.860] 1.941
473. ast ar 0.022| 2.373 | 2.289| 2.456
482. sphi nx3 0.036| 0.916 | 0.798| 1.034

483. xal ancbnk | 0.029 1.914 1.881| 1.947

Table 3.2: Least-squares regression model relating branetiiction to performance.
Shows high and low prediction intervals for perfect predici.e. 0 MPKI.

3.5 Estimating Branch Prediction Performance

This section presents results of simulation experimentgysrogram interferometry
to predict the performance impact of changes to the branetiigior. We use the perfor-
mance model derived with program interferometry to prethet performance given by

several predictors.

32

=Simulated 4KB Bimodal
=Simulated 2KB GAs
=Real Intel Xeon
=Simulated 4KB GAs
=Simulated 8KB GAs
-Simulated 16KB GAs
-Simulated 32KB L-TAGE

h g ||.
Y0 %07, %05 g Y9 *

||| i I oo WL WNITL
W Y2g Y25 Yp %y 455,99 65 %64, %5 Y27 25 8> 985 Ay
% 0 238 o 74, 55 e 9,602,767, %05, %77 ., ¥3 N
e, s, 900 ‘g, ’hcf ?e(, 1o ’7 % Sop, S, /7/7; R '/’96‘ 007, Ony,, sy by U, ey,
Congg? ey a0 e ey s 0 e ey ey,

Benchmark

Figure 3.3: MPKI of real and simulated branch predictors.

3.5.1 Branch Prediction Simulation

The Pin tool instruments each branch with a callback to chdedimulates a set of
branch predictors. The tool counts the number of branchesuted and the number of

branches mispredicted for each predictor simulated.
3.5.2 Impact of Mispredictions on Performance

We explore only those benchmarks that were demonstratdeiprevious section to
be suitable for program interferometry (i.e. those withs¥e Table 3.1). Figure 3.3
shows the average MPKI for various branch predictors sitedlaith Pin as well as the
average MPKI from the real Intel Xeon branch predictor. Edata are averaged over 100
different pseudo-randomly generated code reorderingsed&ah benchmark, these are the
same first 100 reorderings used for the performance mongarunter measurements.
Pin runs only once for each reordering; since we controlriiteal conditions of the simu-
lator and Pin is not affected by system-level events, tremmivariance in the simulation
result. We simulate GAs branch predictors [90] ranging e $fom 2KB to 16KB to ex-
plore the effect of decreasing or increasing the hardwadgdiufor the branch predictor.
The average MPKI over all benchmarks and code reorderingbéaeal branch predictor

is 6.306, compared with 5.729 for a simulated 8KB GAs predicA 16KB simulated

33

GAs branch predictor yields 5.542 MPKI.

CPI

~Simulated 4K Bimodal -Real Intel Xeon *Simulated 8KB GAs =L-TAGE
=Simulated 2KB GAs - Simulated 4KB GAs -Simulated 16KB GAs o Perfect Predictor
5 +
A
3 =
-’!ﬁ
ES = : Ed
2 = - e .
N s
1. T = - ECE:
m e L e, £ — E B
-Fc.-‘ $ —‘- E i = - Tt

Gy G @y B ., B QG By G O R Sy,

% %e ° %, % % % E3 %0/« K e % %7» % ’&% % %’/} %, %
%, & % % ¥ F 4 e %9 % % % % 1
(o) & O, %, ©
2 > > % S,

Benchmark

Figure 3.4 shows the predicted CPI for the various branatigi@s as well as a perfect
(0 MPKI) predictor using the performance model derived ia pinevious section. Each
point in the graph shows a marker superimposed on error bargdhe 95% prediction
interval for the benchmark’s regression model. For thelseshch predictor, the error bars
indicate the tighter confidence interval since the data bsewations and not predictions.

Most of the benchmarks have reasonable prediction inteexedn for the perfect predictor.

The real branch predictor yields an average CPI.887 + 0.012. The estimated CPI
for perfect prediction i4.223 + 0.061. Thus, the performance improvement going from

the current predictor to perfect prediction would be betwg¥® and 16%, with an average

Figure 3.4: Predicted CPI of real and simulated branch pted.

3.5.2.1 Perfect Branch Prediction

34

of 11.8%.
3.5.2.2 Academic Predictor

The L-TAGE branch predictor is currently the most accurasnbh predictor in the
academic literature [72]. We simulate this predictor ustigand estimate the CPI yielded
using our regression models. On average, L-TAGE yields33MPKI, compared with
6.306 MPKI for the real Intel predictor, an improvement o2@70ur regression model
estimates that this predictor would yield an average0 + 0.03 CPI, an improvement of
between 2.4% to 6.8%, with an average of 4.8%. Several diifesized GAs predictors are
also shown. GAs predictors are simple global predictors useurrent microprocessors.

The accuracy of GAs improves as its size grows.
3.5.2.3 Practical Concerns

We do not suggest that Intel should or should not replace tiredictor with some
other predictor. There are other concerns such as accessydb the prediction table that
would guide such a decision. Our tool allows exploring thegrenance impact of hypo-
thetical predictors before the decision is taken to spesdjdeffort to accommodate them
in a microarchitecture. For instance, it is possible thaglloould spare an extra 24KB for
the L-TAGE branch predictor, but that the access latencydaseyn complexity for such a
structure might exceed the time allowed for branch preaiatesulting in an unacceptable
pipeline bubble. The design effort to include latency natigg techniques [28] might
not be worth the improvement in performance or delay in timenarket. Nevertheless,
our tool allows a quick way of evaluating many potential lmfampredictors for a given

microarchitecture.

35

4. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE-INDUCED
INTERFERENCE*

Memory access latency is a major performance bottleneckL@ iniss can stall the
pipeline and require hundreds of cycles of delay. Memoryemgequests compete with
read requests for the available memory resources, inag#se average service time of
read requests. When a write request is in service, subserpahrequests to the same
rank must wait the completion of the write as well as the busaround time. This write-
induced interference has a significant impact on systenopeence [55] [86]

Figure 4.1 shows read latency normalized to conventionaélack on a quad-core
processor for perfect writeback [85] Perfect writeback assumes memory write access
does not cause any interference to read access, which iptineabcase. we can see the
read latency for perfect writeback is 74.6% of conventiomdleback. Thus, 25.4% of the
read latency suffered by conventional writeback is causedrite-induced interference.
Therefore, the write-induced interference significantgihde the system performance.

There are two aspects to reducing write-induced interfaxeRirst, we must consider
when to schedule the write requests [77]. System perform#@sensitive to memory
read latency, so write requests should be scheduled to havaahinterference with read
requests. Second, we must consider how to schedule theregtests. Write requests
should be scheduled in a way that they can be serviced by DRifidieatly.

In a conventional writeback policy, dirty cache blocks aetgo the write buffer when

*(©2012 Association for Computing Machinery, Inc. Reprintgddermission, from Zhe Wang, Samira
M. Khan, and Daniel A. Jiménez. 2012. Rank idle time predictdriven last-level cache write-

back. In Proceedings of the 2012 ACM SIGPLAN Workshop on Msm8ystems Performance
and Correctness (MSPC '12). ACM, New York, NY, USA, 21-29. B@0.1145/2247684.2247690
http://doi.acm.org/10.1145/2247684.2247690.

*(©2012 IEEE. Reprinted, with permission, from Zhe Wang; Samil. Khan; Daniel, A. Jiménez, "Im-

proving writeback efficiency with decoupled last-write giation,” Computer Architecture (ISCA), 2012
39th Annual International Symposium, June 2012

36

Normalized Read L atency

Figure 4.1: Read latency using conventional writeback asréept writeback techniques
in quard-core processor

they are evicted from the LLC. Write requests in the writef@uére scheduled for service
according to the buffer management policy. However, théensuffer only has a small
number of entries due to design complexity and power effayielmiting the ability to
schedule high locality write requests as well as the pdggibo flexible adjust read/write
priority.

LLC writeback techniques [42, 77] have been proposed torakpatite resources using
near least recently used (LRU) position of the LLC. Eagetetaack [42] sends dirty cache
blocks in the LRU position to DRAM for service when the rankd, thus re-distributing
write requests. The virtual write queue (VWQ) [77] issueBestuled writebacks from
near the LRU position in the LLC to improve writeback effiadgn To reducing write-
induced interference, both eager writeback and VWQ teclesdssue write requests to
memory when no read requests target the same rank. Unftetynthese techniques
have no knowledge about when the next read request will céingeread request comes
soon after a write request is issued, the write will still msp large penalty on the read.
Additionally, the previous LLC writeback techniques degen the recency levels of LLC

replacement policy. Thus, these techniques can not wotk WiC replacement policies

37

with no distinct recency levels, such as not recently uséRl{Nand random replacement
policy.

The memory access pattern exhibits significant variancendftg read requests tend
to come in bursts. The DRAM can busy service the memory régd@sa while then idle
for a while. Additionally, in modern DDRx-based systemsltiple memory controllers
and multiple ranks are used to service memory requests all@lar Due to workload
characteristics and load imbalance, some ranks often bieveyicles while the application
IS running.

By exploring the memory access variance, we develop thegtrea driven last-level
cache writeback (LLC) technique. We propose a rank idle tomesliction driven LLC
writeback technique. This technique send the scheduladlvacks into the DRAM dur-
ing the long rank idle period, thus minimizing the delay itisad to the following read
requests. We also propose a last-write prediction drive@ hriteback technique. The
technique improves the writeback efficiency by increashegwrite scheduling space. It
is completely decoupled with LLC replacement policy , thusan work with any LLC

replacement policy. Our techniques significantly redueawhite-induced interference.
4.1 Rank Idle Time Prediction Driven Last-Level Cache Wr#ek
4.1.1 Description

The rank idle time prediction driven LLC writeback technggiills DRAM idle rank
cycles with scheduled writeback requests. The technigedigts when there will be long
stretches of idle rank cycles and issues scheduled writetempests in those stretches
of times such that significant interference with subsequesd requests in the same rank
will not occur. This technique contrasts with eager writdhavhich has no knowledge
about how long the bus idle cycles might last and can issuelack requests in short idle

cycles that still cause large writeback penalties to sulsetyead requests.

38

Prediction

PC Two-Level Rank 1
PC xor Thread ID ;
Idle Predictor
Thread ID ‘ Rank Idie Cycle ;Memory Controller
Rank Idle Counters
Prediction
Two-Level Rank N
Idle Predictor
Last-Level Cache Rank Idle Cycles | __Read Buffer
Dirty Cache Lines Dirty Cache Lines
Cache Cleane Write Buffer
Index of Search Setg SSv Search Signal

Figure 4.2: System structure

Figure 4.2 illustrates the structure of our technique. A-texeel predictor is used
to predict long stretches of idle rank cycles for a given raihe two-level predictor
is composed of two predictors making predictions at difietemes to predict whether
there will be significant idle rank time for a particular rarikkach rank has one two-level
predictor. Thus, the number of two-level rank idle predistior a DRAM system is equal
to the number of ranks this system has. A sequence of scliedintg cache blocks that
are generated by the Cache Cleaner [77] are written backglaripredicted long idle

period.
4.1.2 Address Mapping

The baseline address mapping scheme we use in our systempsadle interleaving
scheme. The cache line interleaving mapping scheme mapsaative physical addresses
to different channels and ranks. This mapping scheme wilteaead requests to go to
different ranks frequently and produce fragmented shdet agicles which might be too
short to compensate for large write-induced interference.

Compared with the cache line interleaving mapping scheme baseline mapping
scheme tends to collect small chunks of idle rank cycleslarge runs. Thus, the long

idle cycles can be used to write back dirty cache blocks. Enace of write requests and

39

foo() { fool() {
for (int k=0; k<100; k++) {| for (inti=0; i<100; i++)

fool(); sumA=+A[i]; ----LLC Miss, Rank C
foo2(); for (int j=0; j<200; j++)

foo3(); sumB=+B[j];---~LLC Miss, Rank
1 sum=sumA+sumB;

} } }

Figure 4.3: Example of memory access

read requests are isolated from one another during thisitbedime, increasing the bus
utilization and reducing the write-induced interferen@air technique prefers to map the

rank ID and channel ID bits higher than the row ID bits.
4.1.3 Two-Level Rank Idle Time Predictor

The two-level rank idle predictor is used to predict longidhnk periods. The tech-
nique works well with applications that have long stretcbieislle rank cycles, especially
for DRAM system with multiple ranks. For DRAM system with rtiple ranks, memory
access can conflict in some ranks and leave other ranks idle.

The rank idle time predictor is a program counter (PC) basedigtor inspired by the
PC-based sampler dead block predictor (SDBP) [32]. The SOdd3 PC information to
accurately predict whether an LLC block is “dead,” i.e. wWieetit will be accessed again
before being evicted. The design of the rank idle time ptedis based on the observation
that if there is a long idle rank period after an instructielated to a LLC miss when there
are no read requests in that rank, there is a high probathbtythe same behavior will be
observed the next time this instruction causes a miss in ltli&Wwith no read requests in
that rank.

Figure 4.3 shows an example of memory access. Fundiorcalls function fool

iteratively. In functionfool, we assume the physical address4dfi] — A[100] map to

40

rank zero in DRAM and access #ji] always LLC misses. Similarly, assuming physical
address ofB[0] — B[200] map to rank one in DRAM and access B}i| always LLC
misses. This is a practical assumption, because the cdngephysical address have
high probability of mapping to the same rank. After a misshia LLC at the instruction
that loadsA[99], the data flow will go into accessing dai#:] which map to rank one.
Therefore, there will be a long idle period in rank zero. Afeveral iterations irfoo,
the predictor learns the access pattern related to theigtigin that loadsA[99]. The next
time, when there are no read requests in rank zero and tharmiss in the LLC at the
same instruction loading dat&[99], the predictor will predict that rank zero will be idle

for a long period.

4.1.3.1 Making Prediction

Rank Idle Cycl
Counter

PC xor Thread | icti
wwo—bit counte Prediction results

First-Level Predictor

two—bit counte

Prediction result:

Second-Level Predictor

Figure 4.4: A two-level rank idle time predictor

Each rank has a two-level predictor. The structure is showiigure 4.4. Two levels
are used so that if the first predictor mispredicts a longpeieod, the second predictor has
another chance to predict this long idle period. The twoigteds have the same structure,

make their predictions at different times, and update atstrae time. The prediction

41

state consists of a table of two-bit saturating counters;imiike a branch predictor. The
predictor table is indexed by the address (PC) of the instmu@nd the thread number.
The PC is that of the last instruction before the rank becadies The predictor makes a
prediction according to the high bit of the selected courterg idle time if the bit is one,

short idle time if the bit is zero. The rank idle cycle countaused to count the number of
idle cycles. This number is used to choose the predictor tkeragorediction and update

the predictor.
4.1.3.2 Prediction Driven Writeback Mechanism

Figure 4.5 shows the prediction driven writeback mechani8sisoon as a rank be-
comes idle, the first-level predictor makes a predictionualhether there will be read
requests coming to that rank in the nextcycles. A sequence afscheduled dirty cache
blocks will be written back to DRAM during the predicted idle cycles. In the DRAM
system with eight-bank per rank, we choagse 8 to maximize the bank-level parallelism
when servicing the write requests. The parametés related tos; we want to make sure
m can cover most of the service time©$cheduled dirty cache blocks.

Figure 4.6 shows the time to make a prediction during theriit cycles. Assuming
the rank is idle from time,, the rank idle cycle counter starts to count the rank idlées/c
and the first predictor makes a prediction at timelf the prediction result from the first
level predictorP1 is false (i.e., no long idle time predicted) and there areeamlrequests
coming aftern idle cycles, the second level predictBe is used to make a prediction.
If the prediction result is trues scheduled dirty cache blocks will be send to DRAM for
service.

If both of the prediction results are false, but the idle réinde is longer than a thresh-
old k, s scheduled dirty cache blocks are written back. This optimn comes from the

observation that if there are rank idle cycles longer thatiere is a high probability that

42

function PredDrivenSched
begin

end

if rank_idle_cycles == 1 then
prediction = first_predictor_predict
end
elseif rank_idle_cycles == n
prediction=second_predictor _predict
end
elseif rank_idle_cycles ==
prediction = true
end
if prediction == true then
call check_writeback
end

function check_writeback

end

the

old

write requests have been finished service. and there dractiéad requests coming in,

another group ok scheduled dirty cache blocks will be sent to the DRAM system f

if rank_idle_cycles == 0 then
return
end

elseif (prediction == true&&write_issued == s)

call schedule_writeback
end

call add_event(check_writeback, write_issued == s)

Figure 4.5: Rank idle time prediction driven writeback seng algorithm

idle cycles are also longer thar- m.

If either of the predictor results is true or the idle rankipéis longer than the thresh-

k, the system will monitor the service of the write requestsalll of the previouss

service.

43

t1l t2 t3
| k cycles

timeline
n cycles

P1 P2

Figure 4.6: Prediction timeline

4.1.3.3 Predictor Update

The predictor will be updated when a read request comes andnlk is idle. If the idle
rank cycles counted by the rank idle cycle counter are laftganm, the two-bit counter
in the first-level predictor indexed by the the last PC andalriD encountered before the
rank was idle will be incremented; otherwise it will be denented. If there are more than
m-+n idle rank cycles, the corresponding two-bit counter in #hasd-level predictor will

be incremented, otherwise it will be decremented.

Why does the rank idle time predictor work in multi-core gyss The memory access
patterns of most applications have spatial locality. Oohteque is applied to the address
mapping scheme that maps the rank and channel bits highetitbacolumn bits, so the
application tends to access a certain rank for a while befarching to another rank. In
the modern DDRx memory systems, multiple controllers andtipie ranks are used to
service the memory requests in parallel, thus in a lengtigtcét, only a small number
of applications access a certain rank. Therefore, the meammress pattern for a certain
rank is repeatable and predictable. Additionally, the raié predictor only makes the
prediction when the rank starts to become idle, i.e., whieof dhe programs leave a rank
idle. From our observation, the memory read accesses terwe in bursts. The same
program behavior that leads to one burst tends to lead ta btirsts, as well as those

bursts ending.

44

Channe| Rank | Bank Ssv Ngét

0 0 0 0 il ! Ptr

= =

il = Ptr

==

I o | pu

0 0 Ptr

[==

Ptr

» | o

0 Ptr

o o|lo|o|o|o |o
o o|lo|o|o|o|o
~ oo |~ |w N |-

o |r |O |r
o

0 ! Ptr

Figure 4.7: SSV structure

4.1.4 LLC Writeback Policy

The LLC writeback policy searches for dirty cache blocksriiea LRU position in the
LLC and sends a sequence of scheduled dirty cache blocks tertte buffer. Scheduled
writebacks are used because scheduled write requests nragory resources in a way
that can be serviced more efficiently.

In our implementation, a cache block is considered “neak Rlg position” if it resides
in the bottom eighth of the LRU recency stack [77]. We incogpe the rank idle time
predictor into the LLC parallelism-aware writeback policy

The LLC parallelism-aware writeback policy searches théydiache blocks in the
LLC that target to the same rank but different banks. Contparith LLC writeback
policy of VWQ, which exhaustively searches the row-hittcarhe blocks in the related
cache sets in the direction of Cache Cleaner [77], our schimae not need to search
a large amount of cache sets and perform tag matching, tmsioong less power and
searching time.

The Cache Cleaner [77] uses a Search Set Vector (SSV) to éatptsng dirty cache
blocks in the LLC that could be serviced more efficiently wimeapping to the DRAM
resources. Figure 4.7 shows a simple example of the SSVwathlex 32-sets LLC and a

single rank, eight-bank per rank DRAM system. Each bank han&ry in the SSV table

45

while each cache set that maps to this bank has a bit in thentbett is saved in this bank
entry. When a dirty cache block is moved close to the LRU pmsithe bit in the SSV

corresponding to this particular set will be set to one $ygng that this set has a dirty
cache block near the LRU position. Thus, when searching ittye @hche blocks in the

LLC that target to different banks of the same bank, the caeli¢hat has a bit set in its
SSV entry will be issued, thus reducing the search time.

In the parallelism-aware scheduling scheme, when the gdpredicts a long idle
period, a group of dirty cache blocks composed of the writklvaquests to this idle rank
but different banks are sent out to the DRAM system. In Figuve dirty cache blocks in
the cache sets correspond to the bits in a vertical patterimaine first group. If the rank is
still idle after all the write requests in the group have bieished service, another group
of dirty cache blocks in the horizontal pattern will be seut t the DRAM system. Most
modern DDRx systems use an eight-bank per rank memory coafign. Therefore,
when more than one group of scheduled write requests aredsduring the idle rank
period, the rank resource access latency can be overlagpeaskburst cycles, reducing
the average write request service time.

If the number of write requests in the write buffer is largean a threshold, and there
are no predicted long idle periods, the write requests wikként to the DRAM for service

whenever the rank is idle or the write buffer is full.
4.1.5 Storage Overhead

For each rank, we use a two-level rank idle predictor. Botelkare the same size.
Each predictor has 8K entries and each entry has a two-hitteour hus, the total storage
for the two-level rank idle predictor is 4K bytes. For an gighre, 16M and 16-way LLC,
the storage for SSV table is 2K bytes. Therefore, the totahge for the memory system

with two memory controllers, two-rank per channel and foank per channel are 18K

46

bytes, 34K bytes, respectively. Both of them are less tha%@f the capacity of the 16M
LLC.

4.2 Last-Write Prediction Driven Last-Level Cache Writelba

data access
DRAM Controller
data access
Write Buffer
LLC address of predicted
last write block schedule writes
Last Write Buffer
searching data accordin Read Buffer
to address
A
d d prediction
ata access ata access Prediction Table
- A
selected core ;
cache misses Last erte update table
Core Cache Predictor
LLC Write
Simulator

Figure 4.8: System structure

We propose a last-write prediction driven (LWPD) LLC wrigelx policy. Figure 4.8
shows the structure of our technique. A last-write predi@ttVP) is proposed to predict
last-write blocks once they access the LLC. A last-writefdifs used to track predicted
last-write blocks. Write requests in the last-write butiswell as the write buffer are avail-
able to memory controller for scheduling. The LWPD writebgaolicy has the following
advantages: 1) re-distributing the memory requests arahbizlg the memory bandwidth
2) expanding the scheduling space of memory controllemtaaiing row-buffer hits and
bank-level parallelism locality, and 3) completely deckngpfrom cache replacement pol-

icy allowing it to be applied to any LLC replacement policy.

47

4.2.1 Last-Write Predictor

The last-write predictor is used to predict last-write lBl®m the LLC. It is composed
of a lightweight LLC write simulator and a prediction tab{@nce a dirty block is evicted
from the core cache and accesses the LLC, the last-writégioedonsults the prediction
table to make a prediction. The instruction PC related talttg block is hashed to index
the prediction table to get the prediction result. A LLC wrdimulator is used to update
the prediction table according to the simulated write berasf the LLC.

The last-write predictor is a PC-based predictor. It is Hasethe observation that if
an instruction PC leads to the last write access to one bilbek,there is a high probability
that the next time this instruction is reached it will alsadeo a last-write block. For a
writeback cache, once a dirty block is evicted from the cadhe, it has no PC information
with it. Thus, a PC field is associated with each core blockceOmwrite accesses the core

cache, the PC related to this write will be stored with thecklo
42.1.1 Prediction Table

The prediction table uses skewed organization [32, 49]daae the impact of conflicts
in the table. It consists of three tables, each indexed byfereint hash of 16-bits partial
PC. Each entry in the table has a two-bit saturating couftece a dirty block is evicted
from the core cache and accesses the LLC, the LWP predicttherher not this dirty
block is a last-write block. The prediction decision is mhs® the sum of the counter
values for all three tables that indexed by different hasiighe PC related to this dirty
block: if the sum is greater than a threshold, then it is awa#ie block. The prediction

table is updated by the LLC write simulator.

48

PCs-Readb [@& [b c [d] PG| PG| PG| PC:| Read hit

PCs.Writec | bt] & o] d] PG| PG| PG| PG| Write hit : updaterediction table
PC/ Writee | G [bi|a&]d] | PG[PG| PG| PG| Write miss : update prediction table
PCs: Readf | @[c |[bifa] [PG|PG|PG|PG| Readmiss

el a|b]a] | PG| PG| PG| PG|

Figure 4.9: Behavior of the LLC write simulator

42.1.2 LLC Write Simulator

The LLC write simulator simulates the write behavior of theQ.and updates the
prediction table. To reduce overhead, only a few sets of 1€ are represented. LLC
sets are sampled; there is one simulated set for every 1@ cath. Only partial tags are
represented since simulator correctness is not requingalaictice, we find 16 bits of tag
leads t0>99% accuracy with respect to full tags. Of course, no dataegmeesented. The
LLC write simulator only simulates the write behavior of theC, i.e. missing reads from
memory are not placed in the simulator. The write accesst#sediL.C account for about
1/3 of total number of accesses on average in the memory ine/@REC CPU 2006
benchmarks. Thus, the write simulator can use a smallecisistity compared with the
LLC. The associativity of the LLC simulator is 6 while the asmtivity of the LLC is 16.
Each entry in the simulator set has a partial tag field, agdastiite PC field, a valid bit
and an LRU recency field. When a write accesses a sampled U@ akso accesses the
simulator simultaneously. The corresponding sampledss&tarched for an entry with a
matching tag; if there is a miss in the simulator, an entnjlgecated using an LRU victim
entry. LRU is used in the simulator, but since the assodigtand number of sampled
sets are low, the implementation of LRU is far more feasibbntin the LLC [32]. The

simulator also updates the prediction table. When a reaglsaes the simulator, if it is a

49

hit, the LRU recency will be updated. If it is a miss, the siatal will do nothing. Read
access to the simulator updates the recency informatiosyfochronizing the behavior of
the simulator with the LLC, while the write access also ndedgpdate the predictor.

Figure 4.9 illustrates the set behavior of the write simarlaAssuming a four-entry
set, the box on the left side shows the LRU stack of the pa#gafield. The box on the
right side shows the partial write PC corresponding to tmeesantry with the partial tag
on the left side. The PC for write access on the left in Figur@ igithe partial PC related
to the evicted dirty block from the core cache.

At beginning, partial tags,, b;, ¢, d; of blocksa, b, ¢, d and their related PCs are
reside in the set entries. First, request “réadccesses the simulator, it is a read hit, so
it updates the LRU recency of bloékto the MRU position. Since it is a read access, the
prediction table is not updated. Then, request “wtitaccesses the simulator. It is a write
hit meaning that PCleads to a dirty block that could rewritten again before gvscted.
Thus, we update the entry in prediction table that indexe®®Gyusing 'not last-write’,
and update the LRU recency of bloeko MRU position. Then request “writ€’ accesses
the set. It is a miss, so we replagevith e since PG leads to a last-write block that
did not access again before it is evicted. Thus, we updaterttrg in prediction table that
indexed by PG using 'last-write’. Finally, request “reagi” accesses the set. It is a read
miss, so the simulator does nothing.

The write simulator itself uses LRU replacement policy, liutan also accurately
simulate the last-write behavior for LLC with other replamnt policies. Write accesses
to the write simulator and LLC are the same, thus they haveeda@havior. Though
the replacement policy in LLC and write simulator may differdirty block in the write
simulator with LRU replacement policy that will not be aceed again before it is evicted
also has a high probability that it will not be accessed agalil.C. Thus, the last-write

predictor is independent of the LLC replacement policy.

50

4.2.2 Writeback Mechanism
4.2.2.1 Last-Write Buffer

In our technique, two buffers are used to hold write requette write buffer and
the last-write buffer. The evicted dirty blocks are placedhe write buffer. The last-
write buffer is used to track the predicted last-write bakthe LLC. When the predictor
predicts a last-write block, the physical address of thelipted last-write block will be
placed into the last-write buffer. The write requests inwrge buffer and the last-write
buffer are available for scheduling. Since each entry inakewrite buffer only contains a
64-bit physical address, the data for the write requeststdren the LLC. Thus, memory
read requests do not need to search the last-write buffedidress matching. This allows
the last-write buffer to have many more entries than theafniiffer. In our experiment, we
use a 256-entry/channel (256-entry/c) per-rank lastevmitffer, i.e. the last-write buffer is

organized by rank and the total number of write buffer estftg a channel is 256 entries.
4.2.2.2 Priority Mechanism

An infinite write scheduling space would be able to alwaystize reads over writes,
thus eliminating all write-induced interference. Givenraté scheduling space, itis better
to prioritize writes over reads such that writes cause lessfierence to subsequent reads.
In our technique, the service of write requests prioritizesl requests whenever either of
the following conditions is satisfied: 1) The rank is idle ane write buffer has more active
entries than a threshotd, or the last-write buffer has more active entries than asthotl
n. 2) The write buffer or the last-write buffer is full. Conigin 1 is to fill rank idle cycles
with writes, reducing the contention between reads andesuritn condition 2, to ensure
the progress of the application, scheduled writes in writfielb must be sent to DRAM
for service when the write buffer is full to avoid pipelin@ks. Once the last-write buffer

is full, the predicted last-write blocks must also be schediand sent to DRAM. Thus

51

entries in the last-write buffer can be used to hold the neadlipted last-write requests.
Given the same group of scheduled write requests, writiegithack through condi-
tion 1 imposes a less penalty to subsequent reads than iiticor2l Tracking last-write
blocks using the last-write buffer allows more opportwestio redistribute the write re-
guests into idle rank cycles. The threshold conditionstientrite buffer and the last-write
buffer ensure that a large number of scheduling candida¢ess/ailable to the DRAM con-

troller so they can be scheduled such that they can be efficerviced by the DRAM.
4.2.2.3 Scheduling Mechanism

When writes are prioritized over reads, the memory cordralill schedule a sequence
of a maximum number of write requests to DRAM for service. The memory controller
first schedules the row-buffer hit requests for the writehvaitdest time stamp. If all the
row-buffer hit requests for this write have been schedubed the number of scheduled
requests is still less thasy then the requests to the adjacent banks but same rank will
be scheduled. The row-buffer hit and bank-level parahelisquests in the write buffer
have high priority to be scheduled over the requests in stewaite buffer. Choosing the
number of scheduled writebacks each time issuexla trade off. If we issue fewer, we
cause a high bus turnaround penalty and low row-buffer . réf we issue more, the
subsequent read requests can be delayed for a long time thgervice for writes. We
chooses empirically.

Once the write request in the last-write buffer is ready swés it will first search the
LLC for that dirty block according to the physical addrestast-write buffer. If it is found
in the LLC, the dirty block will be pulled from the LLC and setal DRAM for service.
Then the corresponding dirty bit for that block will be clean If the block is not found,
then it has been evicted from the LLC, so this entry in thevastie buffer will be freed.

LLC misses tend to occur in bursts. Dirty blocks in or nearltR&J position can be

52

evicted in a cluster. These writeback data compete for thmaong bandwidth with the
data being fetched into LLC, thus degrading system perfoo@a In our technique, the
predicted last-write blocks are exposed to DRAM controtiace they access the LLC.
Exposing last-write blocks to the memory controller at theyestage balances the mem-
ory bandwidth, allowing the service of write requests atreetthat causes less interference
with read requests.

Write requests in a small scheduling space tend to have latiespnd temporal local-
ity. Servicing write requests with low locality imposes &la penalty on subsequent read
requests. In our technique, the last-write buffer effeyivexpands the write scheduling
space. The predicted last-write blocks increase the dlaitheduling candidates. Thus,
our technique increases the possibility of scheduling boifer hit and bank-level paral-
lelism write requests. Servicing a sequence of write retigugih high locality not only
improve write service efficiency for DRAM, but also reduchs trite-imposed penalty

to the subsequent reads.
4.2.3 Storage Overhead

In our technique, each core cache keep a 16 bits partial R€deto each block. For
an eight-core 64 KB data cache, it consumes 16KB of storaghel LLC write simulator,
each entry keeps a 16 bits partial PC, 16 bits partial tagJid b, 3 bits LRU position.
The simulator has 1024 sets and 6 way associativity for a 1&pacity LLC, consuming
27.75KB. The three prediction tables for the skewed deadkigboedictor are each 4,096
two-bit counters, so they consume 3KB of storage. The de#d twuffer has 512 entries,
each entry has a 64 bits partial physical address storediirtdnsumes 4K Bytes. Thus,
the total storage is 16KB+27.75KB+3KB+4KB=50.75KB, whisHess than 0.5% of the
16M LLC capacity.

53

Execution core| 4.8GHZ, eight-core CMP, out of order, 256 entry buffer, 48eioad queue
44 entry store queue, 4 width issue/decode, 15 stages, 35&phregisters
Caches L1 I-cache: 64KB/2 way, private, 64 bytes block size, LRUy2le

L1 D-cache: 64KB/2 way, private, 64 bytes block size, LRUWy2le

L2 Cache: 16MB/16 way, shared, 64 bytes block size, LRU, yiclec

Main Memory | 2 memory controllers, 8 banks per rank, 8K bytes row bufferzak
DDR3-1600 11-11-11

Table 4.1: System configuration

4.3 Experimental Methodology

This section outlines the experimental methodology usehigstudy.

4.3.1 System
Name Symbol | Timings | Name Symbol | Timings
Precharge ‘RP 11 Burst Length BL 4
Row access strobe tRAS 28 Row to column command delay *RCD 11
Read column address strobe ICL 11 Write column address strobe ICWL 8
Row activate to row activate delay 'RRD 6 Row cycle tRC 39
Column address strobe to column address strbbeC'C' D 4 Read to precharge 'RTP 6
Write recovery time 'WR 12 Write to read delay time "WTR 6
Four activation window tFAW 24 Rank to rank switching time tRTRS 1

Table 4.2: DDR3-1600 DRAM timing

We use the MARSSXx86 [57], a cycle-accurate simulator for-88@rchitecture. The
experiment models an out-of-order eight-core processthr WM shared LLC. The sys-
tem configuration is shown in Table 4.1. The DRAMsim2 [69hisarporated into MARSSx86
to simulate a detailed cycle-accurate DRAM system. We cardifpRAMsim2 to model
a DDR3-1600 DRAM system with two channels. Table 4.2 shovwesdétailed timing
constraint for the DDR3-1600 DRAM modeled in our system.

4.3.2 Benchmarks

We use the SPEC CPU2006 [19] benchmarks for this study. GRat&PEC CPU2006

benchmarks, 24 could be compiled and run without errors ofiRl88x86. Table 4.3 shows

54

Name | Benchmarks

mix1l | hmmer sphinx3 libquantum GemsFDTD gobmk perlbench Ibnrasta
mix2 | perlbench gobmk namd Ibm gamess GemsFDTD xalancbmk cadtdsA
mix3 | omnetpp hmmer cactusADM xalancbmk GemsFDTD gcc soplex ast
mix4 | gromacs astar h264ref lbm omnetpp gcc libquantum calculix

mix5 | gobmk tonto zeusmp milc bzip2 mcf hmmer astar

mix6 | omnetpp libquantum hmmer sphinx3 bwaves milc xalancbméutial

j8Y)

Table 4.3: Multi-core workload mixes

six mixes of these 24 SPEC CPU2006 benchmarks randomly cleght at a time. We
use these mixes for eight-core simulation. Each benchmeuk simultaneously with the
others. For each mix, we made a checkpoint by running the btlteeanemory intensive
benchmarks to a typical phase identified by SimPoint [74EnTve run the experiment for
2 billion instructions total for all eight cores startingin the checkpoint. Each benchmark
is run with the firstref input provided by theunspeccommand.

The memory scheduling technique we use for evaluation & Ready-First Come
First-Served (FRFCFS) [68, 67]. The other memory read scheduling technigoe&d

also work with our write scheduling optimization, we cho&$&FCFS for simplicity.

4.4 Experimental Results for Rank Idle Time Prediction B\ LC Writeback

Technique

In this section, we give the experimental results of rank ititne prediction driven

LLC writeback studies.
4.4.1 Techniques

We evaluate six techniques for this study. Table 4.4 givesdahechniques and a leg-
end for their name. For traditional writeback, we simulatieel following write buffer
management policies: 1) writes in the write buffer are sethé DRAM for service when

the corresponding rank is idle or the write buffer is full,v@)tes in the write buffer are

55

| Name | Technique \

CI-CwB Conventional writeback with cache line interleaving magpscheme
PI1-CWB Conventional writeback with page interleaving mappingesca
PA-WB Parallelism-aware writeback

Eager-WB | Eager writeback

VWQ Virtual Write Queue

RITPD-WB | Rank Idle Time Prediction Driven LLC Writeback in Sectiori4.

Table 4.4: Legend for various writeback techniques.

sent to the DRAM only when the write buffer is full, 3) writesthe write buffer are sent
to DRAM when the corresponding bank is idle or the write buiéefull. Our evaluation

shows the policy 1) yields the best performance. To ensureefss we choose to use
the policy 1) for conventional writeback evaluation. Bototrank per channel and four-

rank per channel configurations are evaluated. The sizeitd tuffer is 32-entry in our

experiment.
4.4.2 Performance Analysis
1.30 = CI-CWB
1.25] = Eager-WB
’ = VWQ
0_1'20 SPA-WB =
5 1.15 o RITPD-WB
B 1104 1 H 1
& 1.05;
1.0
0.951 & G B 3 8
090 o 7O 7O o o
% 0% v % Y T % % % % % R % % B R
2 o, R N S S A %, % e % s
2 % %

Figure 4.10: Performance evaluated on eight-core two-sgstem

The baseline technique in our evaluation is PI-CWB. Figut®4hows the IPC speedups

56

112 = C|-CWB

== Eager-WB
1.10 — WO —
== PA-WB
108 —=RITPD-WB
o 1.06]
> E
B 104
B 1o
1.001
0.98 _ _
23 @
0.96 s a
8§ &
Cor oz,
s Y,
N Mk

Figure 4.11: Average performance evaluated on two-rank@umdrank systems

normalized to baseline in a simulated eight-core processtbra two-rank DRAM sys-
tem; that is, each channel has two ranks. For each benchmarghow the speedup of
the first run in the random combination. Benchmarks showmgigure 4.10 are those
the performance of perfect writeback could be improved niwaa10% over the baseline.
Perfect writeback means all write-induced interferenadiminated. If perfect writeback
gives a significant improvement over the baseline for a @algr benchmark, that means
the performance of this benchmark has a potential to be wgpkavhen using writeback
optimization. In this experiment, for 16 of 24 benchmarke performance of perfect
writeback could be improved more thaf% over the baseline. Thus, most of the bench-
marks can benefit from writeback optimization in a multie€system.

In Figure 4.10, conventional writeback with page interlagymapping scheme yields
much better performance than conventional writeback waithe line interleaving map-
ping scheme. Therefore, we implement page interleavingomgscheme in all the other
techniques. From Figure 4.10, we can see RITPD-WB techrgtperforms all the other
techniques tested across all the benchmarks. Benchibgtikantumhas a performance
improvement as large &.0% when using the RITPD-WB technique due to its high

memory access spatial locality. That is, the memory readastg access a particular rank

57

consecutively for a long stretch. So if write requests as¢he busy rank that services
the read requests, there will be significant interferendh thie read requests. Therefore,
libquantumbenefits significantly by using the prediction driven tecjua to service mem-
ory write requests when the rank is idle.

In Figure 4.10, eager writeback improves performance byoangéric mean speedup
of 4.3%. The performance improvement for the VWQ is 7.3%.id¢athat the VWQ tech-
nique we implemented is in an optimal assumption that alrthe hitting write requests
can be transferred back-to-back [77]; that is all the rottifg dirty cache blocks in the
near LRU position in LLC can be searched and provided duriagsterring the previous
data from write buffer to DRAM. However, it is possible thhetoptimal assumption is
not always satisfied in real systems, because searchinge haimber of cache blocks
for tag matching is time consuming. The row-hitting ratio ferite requests will be de-
creased when the optimal assumption is not satisfied, tlreusytstem performance will
be degraded compared with the optimal VWQ. Additionallgrsking a large number of
cache blocks for tag matching consumes significant LLC poWw&iVB yields an aver-
age speedup of 2.4%. The RITPD-WB technique yields bettdoqmeance over all other
techniques. It improves performance by at least 10% of dighthmarks and delivers an
geometric mean speedup of 10.5%.

Figure 4.11 shows the average IPC improvement for two-ramkfaur-rank mem-
ory system configurations. For the four-rank configurateeger writeback yields 3.5%
speedup. The VWQ and PAWB techniques improve performand& 3% and 2.7% re-
spectively, The RITPD-WB technique also delivers the bestgpmance among all the

tested techniques. It yields a 10.1% speedup.

58

o
N

== first predictor
= second predictor

©
-
n

False Positive Rates
o o
o B
o @

o
o
S

My 7 e > M. > M, v M s o n 4’14@%

Figure 4.12: False positive rates for two-level predictaaleated on eight-core two-rank
system

4.4.3 Prediction Analysis
4.4.3.1 Predictor Accuracy

Mispredictions comes in two varieties: false positives talse negatives. False posi-
tives are more harmful because they wrongly allow the stzork idle periods to service
the LLC writebacks. Those short idle periods can not coverntajority of the service
time of writebacks, thus still causing significant writeluted interference. The false pos-
itive rate is calculated by the number of mispredicted paspredictions divided by the
total number of predictions. Figure 4.12 shows the falsetipesrates of the two-level
predictor for a two-rank system. False positive rates ferfttst-level and second-level
predictors are3.5% and 14.7% on average, respectively. These low false positive rates
allow our predictor to effectively predict the large rankeigheriod while minimizing the

damage caused by mispredictions.

4.4.3.2 Choosing Parameter

The thresholdn is the minimum number of idle cycles the predictor predittsill
occur. We wantn to cover most of the service time of the(s=8 in our experiment)

scheduled writebacks. In the DDR 1600 11-11-11 memory sysservicing a write re-

59

guest requires- 29ns, and the write-to-precharge latencyais14ns. The write-to-read
delay is~ 8ns. Soif the idle rank cycles 29+ 1448 = 51ns, most of the write-induced
interference to the subsequent read will be eliminated h\&i#.8GHZ clock frequency,
51ns is 245 cycles, so we set, = 300 cycles for two-rank configuration. With the number
of ranks in the same channel increasing, when a particutkrisadle, the data bus might
be busy with transferring the data requested by other rdhksight take a while for the
bus to transfer the write request data for that idle rank. @ers = 400 cycles in the
four-rank configuration.

The first predictor makes a prediction immediately afterrdmek becomes idle. The
second predictor will make a prediction after the rank hanbele forn cycles. Parameter
k is the threshold that if the number of idle cycles more thathe scheduled writebacks
will also be send to DRAM. In our experiment, we found= 200 cycles andk = 600

cycles yield the best result.

4.4.3.3 Eliminated Write Interference

——read access ===m\yrite access ==mmeliminated write interference
100+

801
60+

404

Per centage

204

0

M 7 ’77/;,@ ’77/;‘(3 . v My 5 g n 4/14@%

Figure 4.13: The percentage of write access, read accesoamletely eliminated write
interference

Figure 4.13 shows the percentage of read accesses, wréssascand the completely

60

eliminated write interference using the rank idle time peeat. Eliminated write inter-

ference means write accesses that could be serviced daengrédicted rank idle time.
Write accesses account for 31.1% memory accesses on avéwagesing the prediction
driven technique, 41.8% write accesses can be serviceaghine predicted rank idle time.

Our technique significantly reduces the write-inducedrfetence.
4.4.4 Memory Efficiency Analysis

4.4.4.1 Read Latency

== C|-CWB == Eager-WB =VWQ = PA-WB = RITPD-WB

1.2

1.0

0.8

Normalized Read L atency

1

K (= K Py Pixs Mg W, "

0.6

Figure 4.14: Read latency evaluation on eight-core twd-system

Figure 4.14 shows the read latency normalized to eagerbagtefor the two-rank
configuration. The RITPD-WB technique reduces the writkiized interference to read
accesses, thus reducing the average read latency. Frone Bid4, we can see the RITPD-
WB technique reduces the read latency significantly acrb$iseaworkloads. The VWQ
technique even increases the read latency for mix2; in dalschedule more memory
row-hitting write requests, the dirty cache blocks thatdesn the bottom fourth [77] of
the LRU recency stack are considered eligible for earlyakaicks in the VWQ technique.
Although they use the cleaned bit technique to eliminateettiea writebacks, this tech-

nique can not eliminate the extra writebacks caused by eaiting back the dirty cache

61

blocks for the first time. Compared with RITPD-WB technigtes VWQ technique has a
larger rewrite ratio for mix2. These extra writebacks ifeez with the read accesses, thus
hurting the performance and increase the average readyd@mmix2.

In our experiments, RITPD-WB reduces the read latency onageeby 12.7% with

two-rank configuration and 14.8% with four-rank configurati

4.4.4.2 Bus Utilization

== CI-CWB ==P|-CWB == Eager-WB =VWQ = PA-WB = RITPD-WB

m N

"y s K > s ke 'q%%

o o
o N

Bus Utilization
o o
P

o
w

o
i

Figure 4.15: Bus Utilization evaluation on eight-core tvamk system

Bus utilization is calculated as the number of cycles thetbassfers data for read
accesses divided by the total number of execution cyclesmd#fg write accesses are
not taken into account for calculating bus utilization hesmthe techniques we used for
evaluation cause extra memory write accesses due to theveaitbacks. If the write
accesses are taken into account to calculate the bus tibilizéahe extra writebacks are
contribute to the bus utilization, but the bus cycles usettansfer the extra writebacks
are wasted. So to ensure fairness, only the read accessaseatdo evaluate the bus
utilization.

Figure 4.15 shows the bus utilization for the two-rank camfgion. The RITPD-WB
technique reduces the write-induced interference to reéhds increasing bus utilization.

The RITPD-WB technique delivers bus utilization superiorall the other techniques

62

| Name | Technique \
32-entry/c per-channel WB Conventional writeback with 32-entry/c per-channel wiitdfer,
this is the baseline

256-entry/c per-bank WB | Conventional writeback with 256-entry/c per-bank writdfeu
512-entry/c per-bank WB | Conventional writeback with 512-entry/c per-bank writdfeu

Eager Writeback Eager writeback
VWQ Virtual writeback queue
LWPG Writeback Last write predictor guided writeback with 32-entry/c pliannel

write buffer in Section 4.2

Table 4.5: Legend for various cache optimization techrsque

across all the workloads. It improves bus utilization onrage by 14.5% and 15.3% with

two-rank and four-rank configurations over PI-CWB techeiqu
4.5 Experimental Results for Last-Write Prediction DriverC Writeback Technique

In this section, we give the experimental results of lagtemprediction driven LLC

writeback studies.
4.5.1 Techniques

We use five distinct writeback optimizations for evaluatibmthe graphs that follow,
these techniques are referred to with abbreviated nambke & gives a legend for these
names.

A large per-channel and per-rank write buffer is complex poer inefficient. Given
the same number of write buffer entries for a channel, a vimitiéer organized by bank
consumes less on-chip power because memory read requisiteed to search the write
entries that target the same bank of the read request. Tleusvaluate the per-bank write
buffer structure with large number of entries, such as SiPyf, that is the total number
of write buffer entries for a channel is 512 entries. A largenber of write buffer entries

is space inefficient, thus 512-entry/c per-bank write bufethe largest write buffer we

63

= Eager Writeback

g
“ =VWQ
1.2 = 256-entry/c per-bank WB
11 =512-entry/c per-bank WB
' =LWPG Writeback
Il n [-

Speedup
S5 b
5

1.001 |
0.9’: A 3 37- 37- - - - o 2, S A A 37 s e e G\
%6 \}% v?%)) U‘}g U)Vv\ "3{\9 L%\0 6\% %4 %o %/ > 6;?4 AQ/@ T\P@ déu\ d‘}+ %"
. 7

AN N AT T T
2> %L S B % % 2 2 < A N %, 2

& /?o % & + o T 2 i) % (o)

%) 2 e >)

® 0, X C 2

Z o) > F

Figure 4.16: Results running on eight-core one-rank systgmLRU LLC

evaluate. In the LWPG writeback technique, we use a 32-&npgr channel write buffer
and 256-entry/c per rank last-write buffer.

4 5.2 Performance Evaluation

= 256-entry/c per-bank WB
=512-entry/c per-bank WB
= LWPG Writeback

=
N
——— WY1 0]

A 3 - 37- - - - Ve 2, S A A 37 4 e o
<) \’96 ﬁ% "% U)Ve “’3?9 ‘%»O &% ‘%; ‘%70 <, ‘5?74 ’56 T‘p@ "é\y %
. 7
%, B e B Y Y B B 3 8 B % B Y Y B P
> L. () 2 <. D, 2 2 (4 EA > 2 2
) 2,) & + X S 2 S % 2
& o) (&Y 7() O %, o () 63
4 > % %

Figure 4.17: Results running on eight-core one-rank syst¢emNRU LLC

We evaluate writeback optimizations with three LLC replaeat policies: LRU, NRU

and random.
Figure 4.16 shows the speedups of various writeback opsainizs over the baseline

64

in a simulated eight-core processor with LRU LLC and a omé«r@memory system; that
is, each channel has one rank. For each benchmark we shopetbe@up of the first run in
the random combination.

We choose benchmarks for which the performance of perfetthack could be im-
proved more than(0% over the baseline. Perfect writeback means all write-ieduo-
terference is eliminated. If perfect writeback gives a gigant improvement over the
baseline for a particular benchmark, that means the pesdioce of this benchmark has a
potential to be improved when using writeback optimizatiorthis experiment, for 16 of
24 benchmarks, the performance of perfect writeback coelriproved more thah0%
over the baseline. Thus, most of the benchmarks can berwfitviriteback optimization
in a multi-core system.

From Figure 4.16, we can see that LWPG writeback techniqeklyibetter perfor-
mance than other techniques. The performance improvenventeager writeback is
4.3% on average over the baseline. The state-of-the-art VWtqabk achieves &.1%
speedup on average. The LWPG writeback technique yielderage of.2% speedup.
The traditional writeback with 256-entry/c and 512-endrgér-bank write buffer yields
2.4% and6.8% speedup respectively. Though the 512-entry/c per-bante wrtiffer has
more buffer entries than the LWPG technique, its perforreasaot as good as the LWPG
technique since the per-bank write buffer structure cacsesict misses for write requests
that target to the same bank.

Figure 4.17 shows the IPC speedups with NRU LLC. The NRU recstack has two
levels. The recency information for NRU can not be used taaately detect the last-
write cache blocks. Thus, the eager writeback and VWQ tegles can not be applied
to it. The traditional writeback with 256-entry/c and 5li24g/c per-bank write buffer
achieve geometric mean 2f3% and6.7% speedups respectively. The LWPG writeback

technique yields.4% geometric mean speedup.

65

=256-entry/c per-bank WB =512-entry/c per-bank WB
=LWPG Writeback = Eager writeback(LRU)

L12——=ywoRU) r
11

1.08
o 1.06]
3 1.04
'ﬁ 1.02-
1.004

0.90 I
I I

0.9]

0.94
o, Mo Mo, Ry Ry Ry (L Z ¢
R R S R, g, g %0% R, Ry, Ry

TR 12 2, 23
e Ty e, 2, R, e, e “a, ‘a
k k 3 ’Q/M_ ’Q/% ’Q/% k k k

Figure 4.18: Performance evaluated for various configomati

Figure 4.18 shows the average IPC improvement for one-taakrank and four-rank
memory system configurations with LRU, NRU and random regpiaent policies. The
LWPG writeback technique improves performancetty/o-11.4% with various DRAM
configurations and LLC replacement policies. The systerh veihdom LLC replacement
policy yields the best performance improvement since thdae replacement policy ran-
domly chooses a cache block to be evicted when a new bloclaceg@l Thus, writes in
a small write buffer have low temporal and spatial localitthe LWPG writeback tech-
nique that expands the scheduling space, providing momdsting candidates. For the
traditional writeback with 256-entry/c and 512-entry/e-pank techniques, the speedups
decrease as the number of ranks per-channel increasesbanareasing the number of
ranks per channel decreases the number of write buffeesrfor each bank, thus causing
more conflict misses for write requests.

In our technique, once the rank is idle and the write buffes mre thann active
entries, or the last-write buffer has more thaactive entries for this idle rank, a sequence
of scheduled write requests will be sent to DRAM for servi€hoosing the parameters
m andn is a trade-off between the ability to balance memory bantiwashd expanding

the scheduling candidates. Choosing large values:fandn increases the possibility of

66

2 8 2
%. . & 604
4
o o
2 201
0- 0-
%r/r %f/r %f/r %f/r %% %ffr Ve h’of/r %f/r %f/r %% %f/r %f/r e
W, 05 ‘903 Wy %5 ‘306 ” %, ‘909 W5 %q ‘3:75 @06 7
(a) False positive rate (b) Fraction of correctly predideed-write blocks

Figure 4.19: False positive rate and fraction of correctigdicted last-write blocks for
last-write predictor with one-rank and NRU LLC configuratio

high locality write requests, but decrease ability to beiag the memory bandwidth. In
our experimentyn = 12, 8,4 andn = 96, 64, 32 for 1/2/4 rank configurations respectively
yields best performance. The maximum number of schedubpeestss each time issued
by DRAM controller is also trade-off. A large value o&llows high row-buffer hit rate and
low bus turnaround penalty, but can stall pipeline for a lange. In our experiment, we

founds = 12, 16, 16 for 1/2/4 rank configurations respectively achieves besbpmance.
4.5.3 Prediction Evaluation

We evaluate the last-write predictor using false positate.r The false positive rate is
calculated by the number of mispredicted positive predingidivided by the total number
of predictions. False positives allow the dirty cache bfottkbe written again before they
are evicted from the LLC to be written into the DRAM, thus dagsextra memory writes.
Figure 4.19 (a) shows the LWP yields a low false positive 0&d&6% on average for NRU
LLC with one-rank DRAM configuration.

We also evaluate the fraction of correctly predicted lastenblocks of LWP. The
fraction of correctly predicted last-write blocks is cdbted by the number of correctly

predicted last-write blocks divided by the number of lasit@vblocks. A large fraction

67

means more opportunities for optimizations. Figure 4.19sfiows the fraction of cor-
rectly predicted last-write blocks is 68.8% on aveage fotJNR.C with one-rank DRAM
configuration.

We also evaluate the LWP with all the 1/2/4 rank configuratiand LRU, NRU and
Random LLC. It yields false positive rate betwe@rd%-7.1% and fraction of correctly
predicted last-write blocks betweéR.8%-76.0% on average with various configurations.
This large fraction of correctly predicted last-write btscand low false positive rates

allows more opportunities for optimization without indagisignificant extra writebacks.

4.5.4 Bus Utilization and Read Latency Evaluation

== 32-entry/c per-channel WB

0.7 == 256-entry/c per-bank WB
==512-entry/c per-bank WB

§ 06 LWPG Writeback
g 05 ritebac
N
= 0.4 —
5
> 03 .
@ 0.2 -
0.1 __—
0.0 L
or, W, W, W, W, W, Ay,
o, g s, s, Hos o San
7, 75 0 5 7, 0 5 76

Figure 4.20: Bus utilization results running on eight-cone-rank system with NRU LLC

Bus utilization is calculated as the number of cycles thetbassfers data for read
accesses divided by the total number of execution cyclesndig write accesses are not
taken into account for calculating bus utilization becahsgechniques we used for evalu-
ation cause extra memory write accesses due to the earbadks. If the write accesses
are taken into account to calculate the bus utilization,etktea writebacks contribute to
the bus utilization, but the bus cycles used to transfer ttra evritebacks are wasted. So

to ensure fairness, only the read accesses are used totewvihleidus utilization.

68

8= 32-entry/c per-bank WB = 256-entry/c per-bank WB
= 256-entry/c per-bank WB =LWPG Writeback
0.6]_=Eager Writeback(LRU) 5 VWQ(LRU)

Bus Utilization
o
»

/V,(PU /V,(PU /V,(PU APQ”O’ '(PQ”U APQ”O’ &, (,902 &,
J’%(,er%(,q’%‘, 72,72, ., Tany ' Ty ’q"‘i’o,(.
"9/74 Tang Tany.

Figure 4.22: Read latency results for various configuration

Figure 4.20 shows the bus utilization results for systenmWRU LLC. The LWPG
writeback technique improves bus utilization across altkieads with an average of
11.6% compared with the baseline. Figure 4.21 shows the averagaiftilization for
multi-rank configurations for LRU, NRU and random replacetrpolicies. Our technique
consistently improves bus utilization By2%- 13.6% for various DRAM configurations
and LLC replacement policies.

Figure 4.22 shows the read latency for various configuratiofihe read latency is
computed as the sum of the DRAM busy cycles for each core @livi/ the number of
LLC misses. The LWPG writeback technique reduces the vimdleced interference to

read accesses, thus reducing the average read latency. W& technique reduces the

69

read latency by.8%-12.4% on average across various configurations.

455 Row-buffer Hits Rate Evaluation for DRAM Writes

q) - - - - - - =] -
§ 07 = | WPG Writeback = Eager Writeback(LRU) =VWQ(LRU)
-‘f 0.6]] - M |] | |
J o5 |
"_g 0.4 u = -

0.3 e
é 0.2 e
©
£ 01 e
= 00

T T P . R L A 0,
’Q/;)(_ ’Q/;)(_ ’Q/;)(_ ,77,1 /779 m, ’Q/% "3/;4_ /.13/7‘,

. 23 A
"3/% "3/% "3/%

Figure 4.23: Writes row-buffer hit rate for various configtions

Figure 4.23 shows results for average write row-bufferdt#s with various configura-
tions. Since caches filter the spatial locality of writeg, tfaditional writeback with a small
write buffer yields low row-buffer hit rate. The traditiohariteback with a randomly-
replaced cache only yields3.7%-17.3% row-buffer hit rate on average because the ran-
dom replacement policy randomly chooses a cache block teibed once a new cache
block comes in. Our technique significantly improves rovifdauhit rate for writes across

various configurations t69.6%-68.6% on average.

70

5. EXPLORING PERFORMANCE VARIANCE TO REDUCE WRITE OVERHEAD
OF NON-VOLATILE MEMORY*

Technology scaling of SRAM and DRAM is increasingly consteal by fundamen-
tal technology limits. Emerging memory technologies, sashSpin Torque Transfer
RAM (STT-RAM), Phase-Change RAM (PCM), and Resistive RAMR@EM) are be-
ing explored as potential alternatives to existing mensoinefuture computing systems.
Compared to the traditional SRAM/DRAM technology, theseeegmg memories have
the common advantages of high density, low standby pow&erbscalability, and non-
volatility, and hence become very attractive as the alteras for future memory hierar-
chy [84F.

In order to use such emerging memories, several designsissust be solved. The
most important is the performance and energy costs of wriggace NVM has an in-
herently stable mechanism for data storage, it takes more énd energy to overwrite
data [87F.

From the previous chapter, we know that write-induced fatence can significantly
reduce performance. Large write overhead is a more seveiégpn in NVM-based mem-
ory. The long write latency can degrade performance by ngusrge write-induced in-
terference to subsequent read requests. The high writgyeran increase the power
consumption.

By exploring the asymmetric read/write feature of an STTNRBased LLC, we pro-

*(©2014 IEEE. Reprinted, with permission, from Wang, Zhe;ele¥, Daniel A.; Xu, Cong; Sun, Guangyu;
Xie, Yuan, "Adaptive placement and migration policy for ahTSRAM-based hybrid cache,” High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th Intomal Symposium,Feb. 2014

*(©2013 Association for Computing Machinery, Inc. Reprintegd jpermission, from Zhe Wang,
Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan Xied ®aniel A. Jiménez. WADE:
Writeback-aware dynamic cache management for NVM-basdd mamory system. ACM Trans. Ar-
chit. Code Optim. 10, 4, Article 51 (December 2013), 21 pag&0I=10.1145/2555289.2555307
http://doi.acm.org/10.1145/2555289.2555307

71

Memory Type | IM SRAM | 2M SRAM | 2M STT-RAM [4M STT-RAM |

Area (mm?) 0.825 1.650 0.518 1.035
Read Latency (ns) 1.751 2.017 2.681 2.759
Write Latency (ns) 1.530 1.663 10.954 10.993

Read Energy (nJ/access) 0.055 0.072 0.132 0.142
Write Energy (nJ/access) 0.039 0.056 0.608 0.618
leakage power (mW) 29.798 59.596 7.108 14.216

Table 5.1: Characteristics of SRAM and STT-RAM caches (22emperature=350K)

pose an adaptive placement and migration policy for an SAMBased hybrid cache.
The technique places a block into either STT-RAM lines or $Rlkes by adapting to
the access pattern of write requests. It can achieve higarpgnce by making use of the
large capacity of STT-RAM and maintain low write overheathgsSSRAM.

By exploring read/write disparity of PCM-based main memury propose writeback-
aware dynamic cache management for NVM-based main memetgray The technique
improves performance and energy efficiency by reducing tineaer of writeback requests

to NVM-based main memory.

5.1 APM: Adaptive Placement and Migration Policy for an SHAM-Based Hybrid

Cache
5.1.1 Comparison of STT-RAM and SRAM Cache

Compared to SRAM, STT-RAM caches have higher density andidsakage power,
but higher write latency and write power consumption. Tdhlk lists the technology
features of various STT-RAM cache bank sizes and SRAM caahk& bizes used in our
evaluation. The technology parameters are generated byimllY12], a performance,
energy, and area model based on CACTI [51]. The cell parasmeteused in NVSim are
based on the projection from Waegal.[82]. We assume a 22nm 45nm MTJ built with

22nm CMOS technology. The SRAM cell parameters are estinagng CACTI [51].

72

The density of STT-RAM is currently :3-4x higher than SRAM. Another benefit
for STT-RAM is its low leakage power. Leakage power can datarthe total power
consumption for large SRAM-based LLCs [36]. Thus, the lomkkge power consumption
of STT-RAM makes it suitable for a large LLC. DisadvantageSBTI-RAM are long write

latency and high write energy.
5.1.1.1 Hybrid Cache Structure

The hybrid cache structure is composed of STT-RAM banks &N banks. Each
cache set consists of a large portion of STT-RAM cache lindssssmall portion of SRAM
cache lines distributed among multiple banks. The hybrahearchitecture relies on an
intelligent block placement policy to bridge the perforrnarand power gaps between
STT-RAM and SRAM.

An intelligent block placement policy for hybrid cache dgsishould be optimized
for three requirements. First, the SRAM portion should ®enas many write requests
as possible, thus minimizing the write overhead of STT-RAMton. However, sending
many write operations to SRAM without considering the asqestern can cause misses
due to the small capacity of SRAM, leading to performanceakgtion. Thus, the second
requirement is that reused cache blocks should be placds ibliC to maintain perfor-
mance by hiding the memory access latency. Finally, thekigptacement policy should be
a low overhead and low complexity design without incurrirggiuent migration between

cache lines.
5.1.2 Analysis of LLC Write Access Patterns

LLC block placement is often initiated by a LLC write accelsattcan be categorized
into three classesprefetch-write, core-write and demand-writd=igure 5.1 shows the
breakdown of each class of LLC write accesses for 17 memeensive SPEC CPU2006

benchmarks. The study is performed using the MARSSx86 [Bililator with single-

73

=== Demand-write === Core-write === Prefetch-write

1.0
go.s
o
< 06
o
204
-
B 02
o
% %, % R % U e B B R R % % % T
% % % % %, % % % B % % % N M Y %
3 °© % % G F & R %, Y %
2 9, % %

Figure 5.1: Distribution of LLC write accesses. Each typevate access accounts for a
significant fraction of total write accesses

DR of the first Wa: 2
Ra, Ra, Rb, Rc, Rd, Ra, Wa, Rc, Ra, Wa, Rf, Rb, Rc, Rd, Re, Rm, Rn, Rs

RR of block a: 4 DR of the second Wa: 0

Figure 5.2: An example illustrating read range and depthean

core configuration and a 4MB LLC. We implement a middle-cé-tbhad stream prefetcher
that models the prefetcher of the Intel Core i7. From Figufe %e can see that each
type of write access accounts for a significant fraction tdltarite accesses. Prefetch-
writes account for 21.9% on average while core-writes amdadhel-writes take 45.6% and
32.5%, respectively. In this section, we analyze the acpatiern of each write access
type and suggest a block placement policy that adapts tocttessa pattern for each class.
We first define the terminology that will be used later in thesteon for pattern anal-
ysis. To be clear, when we write “block” we mean a block of dgtart from its physical
realization. When we write “line” we mean the physical framéether in STT-RAM or

SRAM, where a block may reside.

e Read-range: The read-range is a property of a cache block that fills th€ bly a

demand-write or prefetch-write request. It is the largetsnval between consecutive

74

1.0

1st bar: Prefetch-write 2nd bar: Core-write

3rd bar: Demand-write

=== Zero-read/depth-range
=== |mmediate-read/depth-range
== Distant-read/depth-range

UAA EBEFZ 7IERG AP PP AP GRF BOEE Ay AP A7 A muG A Aam Daw izl

Dottt 0 222 0 i A Mo IR o e 0 7 v e e

- Y v v / ‘I 7178 17 an NG B v / WA Lis

g el WAY AMe 4ad Wod WY 9 027 Wae OMG BN Bed W2 aAv ued dos A2 e

< oslfl4 NG ANY A7W WAA NA 4 Ned Tdd NEY BN W44 AN Mg Adl BAd Gae Bad

91817 q iy Bvy U 4 Hn Vi v i Yl |7 Ve An Ui ARG NG

So 1 A N bk A b WA b N
e /| /I | 1 v /|
s o= 0 I Wi 11 1l R Al Al
z 7 7 / -

0.0 - .

R U N A R T O N Y T N~V AN O -S4

(%) < @ X3 @ 4 &) ()]) (% < ['Y 4 < 4)

£ RS - 7y, EN K2 \3\ K o) % % ‘9 B! S, * c

o%s %‘3 © O)Of z% %’)) %@ @D{(ﬁ‘ 9o<°+ ,é))& G%X\ 6%9 ke &)‘“f %’ 0%+ %’)o ?90

72 % Qs «7047 O/}) %4) % > 6,%

Figure 5.3: The distribution of access pattern for each tfdC write access

reads of the block from the time it is filled into the LLC untilg time it is evicted.

e Depth-range: The depth-range is a property of a core-write access. higidargest
interval between accesses to the block from the currentwadte access until the
next core-write access to the same block. The “depth” reteh®w deep the block

descends into the LRU recency stack before it is accesseul aga

We use an example to illustrate the read range and depth.rdfigare 5.2 shows
the behavior of a block from the time it fills into a 8-way set until it is evicted. Ingh

example,Ra represents "read bloak’ while Wa represents "write block”. The largest

re-read interval of block during the time it resides in the cache is 4 which is the read

interval between the secorith and the thirdRa. Thus, the read range (RR) of blogks

4. The depth range (DR) of the firBi' a access is 2 which is the access interval between

the firsti a access and the fourtRa access. The depth range of the secdndaccess is

0 meaning: is not re-written from the second’« until it is evicted from the LLC.

We further classify the read/depth-range into three typeso-read/depth-rangenmediate-

read/depth-ranganddistant-read/depth-range

e Zero-read/depth-range: Data is filled into the LLC by a pickf@®r demand request/core-

write request, and it is never read/written again beforg évicted.

75

e Immediate-read/depth-range: The read/depth-range ilegrttaan a parameten.

We setm = 2 which is the same as the number of SRAM ways in our hybrid cache

configuration as in Section 5.

¢ Distant-read/depth-range: The read/depth-range isrlding@m = 2 and at most

the associativity of the cache set which is 16 in our confitjoma

5.1.2.1 Pattern Analysis of Prefetch-Write Block

Prefetching [76, 88] data into the cache before it is acaksar improve performance
by hiding memory access latency. However, prefetching ¢emiaduce cache pollution
by inaccurate prefetch requests.

We analyze the access pattern for the LLC prefetch-writeksidoy using read-range.
The first bar in Figure 5.3 shows each type of access patteenfection of the total
number of prefetch-write blocks. Zero-read-range préfetdte blocks are inaccurately
prefetched blocks accounting for 26% of all of prefetch kiocPlacing the zero-read-
range prefetch-write blocks into the STT-RAM lines causatupion and high write over-
head. Thus, zero-read-range prefetch-write blocks sHmilglaced in SRAM lines.

The immediate-read-range access pattern is related t@ daoists. After an initial
burst of references, a cache block becomes dead, i.e. ités nsed again prior to eviction.
Of all prefetch-write blocks, 56.9% are immediate-reanige blocks. Immediate-read-
range prefetch-write blocks should be placed in SRAM lineghey can be accessed
by subsequent demand requests without incurring writeadipgrs to STT-RAM lines.
Moreover, placing immediate-read-range prefetch-writeks in SRAM allows them to
be evicted when they are dead, reducing pollution.

Distant-read-range prefetch-write blocks should be plac&STT-RAM lines to make
use of the large capacity to avoid cache misses. Distadtnaage prefetch-write blocks

account for only 17.5% of all prefetch blocks.

76

Zero-read-range and immediate-read-range prefetcle-wlridcks account for 82.5%
of all prefetch-write blocks. Thus, we suggest the initi@gement of the prefetch-write
blocks in SRAM. Once a block is evicted from the SRAM, if it igdsstant-read-range
block, i.e. it is still live, it should be migrated to STT-RANhes. Otherwise, the block
is dead and should be evicted from the LLC. Since only 17.5%refetch blocks are

distant-access prefetch blocks, the migration will notseasignificantly increased traffic.
5.1.2.2 Pattern Analysis of Core-Write Access

In our design, if a core-write access misses in the LLC, tha dél be written back
to the main memory directly. Thus, our core-write placenmaiicy is only designed for
core-write hit accesses.

We analyze the access pattern of the LLC core-write accessiby depth-range. The
second bar in Figure 5.3 shows the access pattern for cote-aacesses. Zero-depth-
range accesses account for 49.1% of all core-write acce$besigh the data written by
the zero-depth-range core-write access will not be resvritiefore it is evicted, it still
has some chance to be read again. Thus, we suggest leavindegth-range data in its
original cache line for avoiding read misses and block ntigne.

Immediate-depth-range accesses account for 32.9% ofdotedwrite accesses. The
immediate-depth-range accesses are the write-intenstesses with write burst behavior.
Thus, the immediate-depth-range access data is preferiee placed in the SRAM line
for low write overhead. The distant-depth-range access staduld remain in its original

cache line, thus minimizing migration overhead.
5.1.2.3 Pattern Analysis of Demand-Write Block

The access pattern of demand-write blocks is analyzed weadyrange. Zero-read-
range demand-write blocks, also known in the literaturedesat-on-arrival” blocks, are

brought to the LLC by a demand request and never referenaad bgfore being evicted.

77

It is unnecessary to place zero-read-range demand-watk lnhto the LLC so the block
should bypass the cache (assuming a non-inclusive cache.third bar in Figure 5.3
shows dead-on-arrival blocks account for 61.2% of LLC dednamite blocks. Thus, by-
passing dead-on-arrival blocks can significantly reducéevaperations to LLC. More-
over, bypassing can improve cache efficiency by allowind i@ to save space for other
useful blocks in the cache.

The immediate-read-range and distant-read-range demetedblocks account for
38.8% of the total demand-write blocks. We suggest pladiegtin the STT-RAM ways
for making use of the large capacity of the STT-RAM portiom aeducing pressure on

the SRAM portion.
5.1.2.4 Pattern Analysis Conclusions

Each class of LLC write access can be applied to a differeattgohent policy. The
access pattern of each class type can be used to guide theptdaement policy. From
the analysis of the access pattern of each access class,kedmedollowing conclusions:
(1) The initial placement of prefetch-write blocks shouklto SRAM lines. (2) Write-
burst core-write data should be placed in SRAM lines whileeottypes of core-write
data should remain in their original cache lines. (3) Dea¢xival demand-write blocks
should bypass the LLC while the other types of demand-wideks should be placed in
the STT-RAM lines. (4) When a block is evicted from SRAM, ifistlive, it should be

migrated to STT-RAM lines for avoiding LLC misses.
5.1.3 Policy Design

The design of the block placement and migration policy islgdiby the access pattern
of each write access type. An access pattern predictor el to predict write-burst
blocks and dead blocks. The information provided by the sspattern predictor is used

to direct bypass and migration of blocks between STT-RAMdiand SRAM lines. The

78

Access to LLC
N
ves Prefetch-Write? °

Place in SRAM

Fetched Block~No
Dead? \l,

Write to Original -
fes Write Burst? N_o\l/ Bypassing __Place in STT-RAM
Migrate to SRAM Write to Original
Cache Line

Figure 5.4: Flow-chart of the adaptive block placement angtation mechanism

policy targets reducing write overhead by allowing the SRpMtion to service as many
write requests as possible and attain high performance gfiti@g from the high density
of the STT-RAM portion.

Figure 5.4 shows a flow-chart for the technique. In our des#gprediction bit is
associated with each block in the LLC for representing wiethe block is predicted
dead. An access to the LLC searches all the STT-RAM lines &A\blines in the set.
On a prefetch miss, the prefetched data is placed into an SR#\Vnd the prediction bit
is set to 1 meaning we assume the prefetch block is dead ealafor every demand hit
request in the SRAM lines, the access pattern predictor snakeediction about whether
the block is dead. Once the block is evicted from the SRAMdjrikit is predicted dead,
it will be evicted from the LLC. Otherwise, it will be migradgo the STT-RAM lines. In
this case, if a prefetch block is never accessed before ticteel from the SRAM lines,
it is taken as an inaccurately prefetched block and evictsgdh on the observation that
accurately prefetched blocks are usually accessed soamisgguent demand requests.

On a core-write request to the LLC, if it is an LLC miss, it wile written to main

memory directly. For the core-write hit request in the STANRIines, if it is predicted

Data Access
Core Cache '7

Selected Core Cache Misg o P
& Core-Write Request o3
[=ia=1
s 2

Prediction L !
Prediction Table 9
T o
LLC Q9

[0}
o o
Sampled Prefetch T Update S 3
Request 2 %
Pattern 2

Simulator

Figure 5.5: System structure

Partial Tag Partial Read PC Partial Write PC
| e | e e e e [e |
o e e 0 o o o o 2 o o
N o e e e [[e R = e [
e I & | el el el e
eretetcn e[o Lo JLadlo] | Lollrom]lro] [ron] BSerec. | odlmom] rven,
Crease | L] % |Celledlodleal |Cleed

DEC/INC DCNT PCg-: Decrease/Increase the counter in the dead block prediction table indexed by PCr-
DEC/INC WCNT PCyy+: Decrease/Increase the counter in the write burst prediction table indexed by PCw+
MRU €<—> LRU 2 Invalid CW : core-write - access hit

Figure 5.6: An example illustrating the set behavior of @attsimulator

to be a write burst access, then data will be written to the BRiAes with the prediction
bit set to 0 indicating the block is predicted live; the pnomsition in the STT-RAM line
is set to invalid. Then, as with prefetched blocks, once tita & evicted from the SRAM
portion, a predicted dead block is evicted from the LLC wihilkve block is migrated to
the STT-RAM portion.

On a demand miss to the LLC, the data is fetched from the mamong If the fetched

block is predicted to be a dead-on-arrival block, it will lags the LLC. Otherwise, the

80

block will be placed in the STT-RAM lines.

Minimizing Write Overhead The proposed scheme reducesevajterations to STT-
RAM portion in the following ways. First, bypass can reducetevoperations to STT-
RAM lines caused by dead-on-arrival requests. Second, SRRAdd filter the write oper-
ations caused by the inaccurate and immediate-read-raefgtqh requests. Finally, the
core-write-intensive blocks are placed in the SRAM linesjucing the write operations

to STT-RAM lines caused by write burst behavior.

Attaining High Performance The block placement policy c#aia high performance
for the hybrid cache by benefiting from the high density of 5i@-RAM portion. Specif-
ically, the distant-read-range blocks are placed in STIMRies that can reduce cache
misses by making use of the large capacity of STT-RAM. Alsmdssing zero-range de-
mand blocks saves space in the LLC for other useful data. derefiltering zero-range
prefetch blocks and immediate-read-range blocks usingNbRAes can improve cache
efficiency by reducing inaccurately prefetched blocks agaldiblocks in the LLC.

The technique relies on an access pattern predictor foctthigeblock bypassing and

migration.
5.1.3.1 Access Pattern Predictor

The goal of the access pattern predictor is to predict demakbland write burst blocks
for guiding block placement. The predicted dead blocks aeslio direct bypassing and
block migration from SRAM lines to STT-RAM lines. Write burklocks are used to
guide block migration from STT-RAM lines to SRAM lines foreawrite accesses. The
access pattern predictor consists of a prediction tableagpdttern simulator as shown
in Figure 5.5. The prediction table is composed of a deadkbjpwediction table and a
write burst prediction table having the same structure baking predictions for different

types of accesses. The pattern simulator is used to leaattess pattern for updating the

81

prediction table.

The design of the access pattern predictor is inspired bgdah#pling dead block pre-
dictor (SDBP) [34]. However, the SDBP predicts dead blochly ¢éaking into account
demand accesses, while the access pattern predictorgsrbdib dead blocks and write-
intensive blocks by considering all types of LLC accessd®e fredictor predicts access
pattern using the Program Counter (PC) of memory accessiatieins. The intuition is
the cache access pattern can be classified based on thectiosisuof the memory ac-
cesses. Specifically, if a given memory access instructidteRds to some access pattern

in previous accesses, then the future access pattern of@mal be similar.

Making Prediction The access pattern predictor makes aghi@dlin the following three
conditions: (1) When a core-write request hits in the STTMRAnes, the write burst
prediction table will be accessed to predict whether it igidgeburst request. (2) For each
read hit request in the SRAM lines, the dead block predictadoie will be accessed to
predict whether it is a dead block. (3) On a demand-write esjudead block prediction
table will be accessed to predict whether it is a dead-onehmequest.

The dead block prediction and write burst prediction talblege the same structure.
Each entry in a prediction table has a two-bit saturatinghteu When making a predic-
tion, bits from the related memory access instruction P(hashed to index a prediction
table entry. The prediction result is generated by threihglthe counter value in the
prediction table entry. In our implementation, we use a €learganization [85, 34, 49]

to reduce the impact of conflicts in the hash table.

Updating Predictor The pattern simulator samples LLC setssamulates the access
behavior of the LLC by using sampled sets. It updates theigtied table by learning the
access pattern of the PCs from the simulated LLC access ioehtvargets learning the

dead/live behavior and write burst behavior of LLC blocks.

82

Each simulated set in the pattern simulator has a tag fieldad PC field, an LRU
field, a write PC field, a write LRU field and a valid bit field. Tpartial tag and partial
read/write PC which are the lower 16-bit of the full tag antl fead/write PC are stored
in the tag field and read/write PC field. The read PC field is éarning the dead/live
behavior of the block while the write PC field is for learnidge twrite-burst behavior of
the block.

A write burst occurs within a small number of cache lines. Fthe write PC field
should have a small associativity. The pattern simulatoisists of two parts: the tag
array and its related read PC field, LRU field and valid bit fieldich have the same
associativity while the write PC field and its write LRU fieldye a smaller associativity.
In our implementation, we found 4-way associativity of thetevPC field and 12-way
associativity of the read PC field yield the best performanbéde the associativity of
LLC is 18.

The behavior of a pattern simulator set is illustrated inuFég5.6 using an example
access pattern. In the example, the associativity of thantdgead PC fields is 4 while the
associativity of the write PC field is 2. On each demand hitiest), the pattern simulator
updates the dead block prediction table entry indexed Wwétrélated read PC by decreas-
ing the counter value indicating “not dead.” When a blockvigted from the simulator
set, the pattern simulator updates the dead block preditaiole entry indexed with the
related read PC by increasing the counter value indicatitegd.” The LRU recency is
updated for every demand request and prefetch-write reqdé® write PC field is for
learning the write-burst behavior for core-write reque€ds each core-write hit request,
the simulator increments the counter value stored in theevimiirst prediction table en-
try indexed with the related write PC indicating “write bursWhen a block is evicted
from the write field, the simulator decrements the countéwesatored in the write burst

prediction table entry indexed with the related write PAgating “not write burst.”

83

LLC Miss Penalty

Throughput Energy
A 4units 5120pJ

B 1unit 1024pJ
Read A Read B Write A Read C
Memory 1 e s I
Requests™ . . " ;

Read A ¢Read B ¢—————————— Write A¢—————————— ¢ Read C

Figure 5.7: LLC miss penalty on throughput and energy fatydiache block and clean
cache block

5.2 WADE: Writeback-Aware Dynamic Cache Management for Nsbsed Main

Memory System
5.2.1 Motivation

Dirty and clean cache blocks in the LLC have different prtipsr When dirty cache
blocks are evicted from the LLC, they will be written into manemory incurring per-
formance and energy overhead, while clean cache blocksatilhffect the system when
they are evicted.

Figure 5.7 shows an example demonstrating the disparityLid iniss penalties for
dirty data and clean data on PCM throughput and energy. Asgum request ‘read
A missed in the LLC and is sent to PCM for service, servicieguest ‘read A takes
one time unit and A is brought into the LLC. Then a requestdr& missed in the
LLC and is serviced by PCM for one time unit. In the LLC, ‘blogkis accessed by
a write hit and the dirty bit is set. After ‘dirty block A is ésted from the LLC, it
will be written back to PCM. Assuming servicing write requégrite A takes 4 time
units. At timet4, a request ‘read C’ is sent to PCM that targets to the sameelevi

with ‘request A. Then C has to wait until the completion ofgeing ‘A. In this case,

84

100

1200

G

N —
‘é 100 80
g 800 I
@ — 602
s 600 o @
z 400!] 0%
% o® S °
Z 200 & —[» N 20
4z "
ol X MW Lo
vV 3 08 B ® T W 2
N R TS o
N - o w)} ~ ~ D
© N B N 7
&

Figure 5.8: Region-based memory write access pattern in REEMA83.xalancbmkior
500 million instructions. One region contaimé contiguous blocks. X-axis shows the
number of region access timesl{ V) means the region is accessed Kytimes and
M <= X < N). Very few regions are accessed frequently (e.g., only gjibres are
accessed more than 128 times).

C is delayed by servicing request ‘write A" f&r units. Therefore, the LLC perfor-
mance miss penalty of ‘clean data B’ takes one time unit wttite LLC performance
miss penalty of ‘dirty data A’ taked units: 1 unit for reading ‘A" and3 unit for de-
laying ‘C’. Assuming the PCM read/write energy 488 pJ/bit. Then the energy miss
penalty for ‘A and ‘B’ is (64bytesx8bitsx 2pJ/bit)+(64bytes 8bitsx 8pJ/bit)=5120pJ and
64bytes< 8bitsx 2pJ/bit=1024pJ, respectively. Therefore, the miss pehaitdirty data is
more significant than the clean data.

Based on the observation, we propose to adapt the cache emeagtechnique to
reduce the writeback requests. Since the performance angyecost is more significant
for the dirty cache blocks, the system could benefit by keepiaquent writeback cache
blocks in the LLC. However, blindly allocating large caclapacity to frequent writeback
data can evict the more critical cache blocks that will beeferenced soon. This will
result in performance degradation. Consequently, therévay questions that need to be

answered(1) are the frequent writeback blocks predictable? (2) whahe optimal cache

85

2062494
2074014
7 m22523
= 2062817
1989881
1989872
2061650

N
N
U
et
W
Region ID

Figure 5.9: 3D view for write access pattern in PCM within ex@vhot regions for
483.xalancbmkThe X-axis shows the 16 cache blocks within a region. The&ig-shows
7 regions that the number of writeback accesses larger #han 6

capacity that should be allocated to frequent writebacka@al/e performed experiments

and have the following two observations:

Observation 1: The writeback accesses have spatial and temporal lacAlgynall
percentage of regions account for a large percentage ahadk accesses. Within
a heavily accessed region, the writeback accesses arereldst

Figure 5.8 shows access patterns for writeback request€hko fiér the benchmark
xalancbmior 500 million instructions. We evaluate the access pattern atgbmn level.
One region includes /4 size of memory page which has contiguous blocks. X-axis
shows the number of region access times, sucl3zg4) means the region is accessed
by no less thars2 times and less thaf4 times. Y-axis gives the number of regions that
correspond to the access times on the X-axis. For instahedirst bar shows there are
12 regions have been accessed more than 128 times. The ladtdves the percentage

of number of accesses for each type of region account fon@alWriteback accesses. We

86

can see the writeback accesses have temporal locality.thas$8% percent of regions
account for60% writeback accesses. Figure 5.9 shows3hegraph for writeback access
pattern within the frequent writeback regions. The X-axiswgs thel6 cache blocks
within a region. The Z-axis shows seven regions that the murabwriteback accesses
larger than64. The Y-axis gives the percentage of total write accessegdoh block
within the region. We can see the writeback accesses fokblae clustered within the
region.

Based on this observation, we propose a two-stage predatdrequent writeback
cache blocks, at both coarse-granularity and fine-graityildihe region granularitypre-
diction predicts the hot region by capturing the spatiahlilg and temporal locality. The
cache line granularityprediction identifies the frequent writeback blocks witkive hot

region.

Observation 2 : The segment size of frequent writeback list for cache set
significantly affects the performance and energy conswongtr workloads.

The last-level cache set is partitioned iritequent writeback lisand non-frequent
writeback list The frequent writeback listonsists of frequent writeback cache blocks,
while the non-frequent writeback listonsists of the remaining cache blocks in the set.
Figure 5.10 shows the performance and energy impact foowasizes of frequent write-
back list for benchmargerlbench For a 16-way LLC, the best segment sizegerlbench
is 11 which generates the best performance and lowest energy\&estan see the seg-
ment size of frequent writeback list do significantly afféiceé performance and energy
consumption.

Based on this observation, we propose to segment the cadh&deequent writeback

87

0.904 454

0.88+ = 40\~ SFWLS with LRU Policy
E --- LRU policy
N~
0.86-
O)
a A
~ 0.84 o)
—e— SFWLS with LRU Policy
--- LRU policy
0.82
080 g7 g 17 16 G Tg 12 16
Static Frequent Writback List Segmentation Static Frequent Writback List Segmentation
(a) SpeedUp (b) Energy

Figure 5.10: The impact on performance and energy for vargize of writeback list for
400.perlbenchFor a 16-way LLC, the optimal segmentation size for frequenmteback
listis 11.

list and non-frequent writeback list. A segment predic88][is used to dynamically learn
an optimal size of each list in the set according to the misglbe for dirty and clean

cache blocks.
5.2.2 Policy Design

The WADE technique improves system efficiency by reduciegdient writes to main
memory. Figure 5.11 shows the structure of WADE. It uses quieat write predictor
(FWP) to predict LLC blocks that are written back to main meynweith high frequency
within a certain access interval. The insight of the techaics that frequent writeback
data is also highly reused dirty data in the LLC. If frequent&back data can be stored in
the LLC, it can reduce write-induced interference as wedraargy consumption of PCM.
However, blindly replacing LLC blocks with frequent writetk data can evict more criti-
cal cache blocks that have a larger miss penalty, such ascdehe blocks accessed more
frequently than the predicted frequent writeback cachekso This can lead to perfor-
mance degradation. In WADE technique, the LLC set is partéd into frequent write-

back list and non-frequent writeback list. A segment priexdif33] is used to intelligently

88

Data Accesses Selected Core Cache Misses
Core Cache

Write Accesses

Evicted Write Accesses

Frequent Write Segment Predictor|
LLC Frequent Write Prediction Predictor

Segment Size Prediction

Figure 5.11: System structure

learn the best partition size of each list.
5.2.2.1 Frequent Write Prediction

A frequent write predictor is proposed to keep track of trexjfrent writeback data
and predict the frequent writeback block in the LLC. FigurgéZshows the structure of
the FWP which is located on chip along with the LLC tag array®VP is organized as
a set associative structure. EveryLLC sets map ton FWP sets. Figure 5.13 shows
the address mapping scheme for FWP. In our experiment, we set16, n = 4. This
address mapping scheme allows FWP keeping track of thedntéquriteback data in
region granularity where each region consistaofache blocks.

Each entry in the FWP set has a partial tag field (PTag), an LBId, fa frequency
counter field indicating how often the region data being tenitback and a set flag field
that each flag bit corresponding to each LLC set that map $d®WP set. The set flag field
allows the technique to keep track of frequent writebacl dathe cache line granularity.
Thus, the FWP table keeps track of the frequent writeback idaboth coarse granularity
and fine granularity: region granularity and cache line glaity. Since applications often
have spatial and temporal locality, tracking data in cogrs@ularity (region granularity)

can minimize the capacity overhead as well as improve ptiediaccuracy.

89

Cache Frequent Write Predictor

r} n Prediction Table Set

/ Frequenc
/| PTag| LRU| rEueNY

Counter

: ’
: ’
- ’
: 4 | |
- ’ [[
/5 NS S S S |
/ |
’ |
4 |
|
|
RN |
RN |

Figure 5.12: lllustration of frequent write predictor. FVifPa set associative structure,
each set has multiple entries with multiple fields

Set Flag

LLC Tag Set Index Block Offset

FWP PTag Set Index

 logn= = logm-+-

Figure 5.13: FWP address mapping scheme. Every m LLC setsomapWP

Making a Prediction For each cache block in the LLC, one Fbitdded for indicating
that block is a frequent writeback block. Once a write retjaesesses the LLC, it will
also access the FWP set for partial tag matching. Sinceatoegs of matches is not
necessary in the tag array, only 16 bits of tag are storedei-¥WWP set entry to conserve
area and energy. If it is a partial tag hit and the correspandet flag bit is set, the Fbit
for this cache block is set indicating that the cache blockfiequent write cache block.

Otherwise the Fbit of the cache block is unset.

Updating Predictor Once a dirty cache block is evicted from tLC, the FWP is up-
dated. The evicted dirty cache block accesses the FWP. Therke&ency in the corre-
sponding FWP set is updated for each access. On a patrtiaitfdigehfrequency counter

value in the entry is increased by 1. The corresponding sgbftas set to 1. On a miss,

90

a new entry is allocated in the FWP set. The initial frequecaynter value is reset to
0. The corresponding set flag bit is set to 1 while all the ofetiflag bits in the set flag
fields for the newly allocated entry are reset to 0. The repteent candidate is chosen by
taking into account both recency and frequency informatibime frequency information
is used to recognize the frequent writeback region. Then@caformation can be used
to remove the stale data in the FWP table. Assuming the LReh@cvalue isz(:) where
the highest value indicates MRU position and the frequementer value i'(i). Then

the replacement victim is chosen as follows:

Victim = arg len{F(l) +vR(7)} (5.1)

The parametey gives the weight ofz(). It determines the access interval for comput-
ing the frequency for writeback data. The larger the valoe simaller the access interval.
If the access interval is too small, it could result in locptimal prediction result instead
of global optimal prediction result. If the access intengaioo large, the stale data stored
in FWP prevent the learning process. In our experiment, wadoy = 4 gives the best

performance.
5.2.3 Frequent Writeback List Cache Segmentation

The LLC set is logically segmented into frequent writebankl aon-frequent write-
back lists. The cache blocks with the Fbit set belong to thguent writeback list, the
remaining cache blocks belong to the non-frequent writeliat The segment predic-
tor [33] is used to predict the optimal segment size of freqjueiteback list for all sets.
Figure 5.14 illustrates the mechanism of the techniquerids to keep the optimal seg-
ment size that minimizes the LLC miss penalties. The teakaig decoupled from LLC

replacement policy. Any replacement policy can be applieekich list.

91

Last-Level Cache

Frequent Writeback List

D:‘E If Segment Frequent Writeback List.Size > Predicted Frequent Writeback List,SizeE ict
VICI

“~._ Non-Frequent Writeback List
) ‘ ‘ ‘ ‘ ‘ ‘ ‘ If Segment Frequent Writeback List.Size <= Predicted Frequent Writeback List.Size
| Evict

Figure 5.14: The logical view of frequent writeback list segntation mechanism. Each
set is partitioned into frequent writeback list and norgtrent writeback list

+1, if RM +1. if RM && winner sets -\ _+1,if RM && winner sets
o s PSEL3
Segment Size : 16 +p, if WM PSELL +p, if WM && winner sets ~ \ PSEL2 J +p, if WM && winner sets
) -1,ifRM | -p, if WM
Segment Size : 0

-1,ifRM
Segment Size : 4, 8, 12 -p, if WM

-1, if RM && winner sets

Segment Size 16 with Bypassing if WM && wil
-p, i winner sets

Follower Sets

Figure 5.15: The mechanism of segment predictor. It congbisix leader sets with
segment size 0, 4, 8, 12, 16 and segment size 16 with bypassing

Once a request accesses the LLC, all the ways in the set aohedaOn a miss, the
size of frequent writeback list of the set is calculated. tlisilarger than the predicted
optimal size, the replacement candidate will be chosen ttwerfrequent writeback list.

Otherwise it will be chosen from the non-frequent writebhsk
5.2.3.1 Optimal Segment Size Prediction

The segment predictor [33] uses set duelling to determinenap segment size. It
estimates the miss penalty for any given segment size byyaldedicates a few “leader
sets” follow that segment size. As shown in Figure 5.15, veduate five segment sizes for
16-way associative set: 0, 4, 8, 12, 16. The leader sets sgatetree analysis to pairwise

set duel at each level as proposed in [33]. For instance, eseigsize 8 duel with segment

92

size 16 in first level. The policy selection counter 1 (PSEityeases on a miss in leader
sets following segment size 8 and decreases on a miss ir legtddollowing segment size
16. The PSEL1 estimates which segment size is the winneirsthe first level. If size 8

is the winner size, the second level duel will be between seqsize 0 and 8. Otherwise,
the second level duel will be between size 12 and 16. The psoedl continue until
the optimal segment size is found. In our experiment, we useud-of-cache segment
predictor, that is a set associative structure is addedalate the sampled leader sets.

The LLC sets follows the optimal segment size predicted kysgtgment predictor.
5.2.3.2 Bypass Incoming Read Blocks

If a block to be placed in a set will not be reused before it isted from the set, it
should bypass the cache. Bypassing can improve cache refydiy allocating the capac-
ity to other reused blocks in the cache. Our segment praditdo considers bypassing the
read requests. If the predicted optimal segment size ishedetder sets with bypassing
the read requests duel with the leader sets of segment st bypassing. The LLC

sets will follow the winner policy indicated by PSELS3.
5.2.3.3 Determining Miss Penalty

The traditional cache replacement policy assumes theatesuimber of cache misses
is fully correlated with memory-related stall cycles [6BJassumes the same miss penalty
for dirty and clean cache blocks. In the traditional set lilngtechnique, for each leader
cache set miss whether the data is dirty or clean, the PSHicisased/decreased by 1.
Our technique is different from previous work in that it isae of the write inefficiency
problem and assign miss penalty according to the type ofechlitks. If a clean cache
block is evicted from the leader set, the PSEL is increasetdédsed by 1. If a dirty cache
cache block is evicted from the leader set, the PSEL is isexddecreased hy defined

as follows:

93

p=15+05x1 (5.2)

[is defined as:

|=W/R (5.3)

In the formulaJV is the write latency while? is the read latency. For a certain memory
system/] is a constant. Thehis quantized into 2 bits value by divided by 8. The larger
the value of,, the larger the write latengy. p is measured in steps 06f5. For each leader
set, we add bit even write flag. Ifp is not a integer, such as= 1.5, then for every two

write misses, the PSEL is increased by three.

5.3 Evaluation Methodology for APM Technique

Execution corel 4.0GHZ, 1-core/4-core CMP, out of order,
128 entry reorder buffer, 48 entry load quele,
44 entry store queue, 4 width issue/decode
Caches L1 I-cache: 64KB/2 way, private, 2-cycle
64 bytes block size, LRU

L1 D-cache: 64KB/2 way, private, 2-cycle
64 bytes block size, LRU

L2 Cache: shared, 64 bytes block size, LRU
DRAM DDR3-1333, open-page policy, 2-channel,
8-bank/channel, FFECFS [68] policy,
32-entry/channel write buffer,
drain.whenfull write buffer policy

Table 5.2: System configuration

We use MARSSx86 [57], a cycle-accurate simulator for thédi®486 instruction set.
The DRAMSIm2 [69] simulator is integrated into MARSSx86 imslate DDR3-1333

system. Table 5.5 lists the system configuration. We mod@rag@e LLC middle-of-

94

| Name | Technique
SRAM SRAM-based LLC
STT-RAM STT-RAM-based LLC
OPT-STT-RAM | STT-RAM-based LLC
Assuming symmetric read/write overhead
Sun-Hybrid Hybrid LLC technique as described in [79]
APM Adaptive placement and migration based
hybrid cache as described in Section 5.2/2

Table 5.3: Legend for various LLC techniques.

| Name |

Benchmarks

Mix 1

milc gcc xalancbmk tonto

Mix 2

gamess soplex libguantum perlben

Mix 3

gcc sphinx3 GemsFDTD tonto

Mix 4

Ibom mcf cactusADM GemsFDTD

Mix 5

zeusmp bzip2 astar libquantum

Mix 6

mcf soplex zeusmp bwaves

Mix 7

omnetpp Ibm cactusADM sphinx3

Mix 8

bwaves libquantum mcf GemsFDT

Mix 9

omnetpp cactusADM tonto gcc

Mix 10

soplex mcf bzip2 gcc

Mix 11

perlbench sphinx3 libquantum Ibm

Table 5.4: Multi-Core workloads

the-road stream prefetcher [76] with 32 streams for each.c®he prefetcher looks up

the stream table at each LLC request for issuing eligibléepck requests. The LLC

is configured with multiple banks. Requests to differentksaare serviced in parallel.

Within the same bank, requests are be pipelined. The LLC jdemented with single-

port memory bitcell. We obtain STT-RAM and SRAM parametesgig NVSim [12] and

CACTI [51] as shown in Table 5.1.

The SPEC CPU2006 [19] benchmarks are used for the evaluafienevaluate five

LLC techniques based on the same area configuration. Tablehbws the legends for

these techniques referred to in the graphs that follow. TR&-STT-RAM technique

assumes write operations have similar access latency dooggerations which is the op-

95

timistic case. The Sun-Hybrid [79] technique assumes thatche block that has been
consecutively written to the LLC twice is a write-intensieck. The technique migrates
the write-intensive blocks to SRAM lines for reducing thatemoperations to STT-RAM
lines. The APM technique is our proposed adaptive blockgsteent and migration policy
based hybrid cache technique as described in section 5/#e2modify MARSSx86 to

support all types of LLC listed in Table 5.3.
5.3.1 Single-Core Workloads and LLC Configuration

Of the 29 SPEC CPU2006 benchmarks, 22 can be compiled and itbhrowur in-
frastructure. We use all 22 of these benchmarks for evalaticluding both memory-
intensive benchmarks and non-memory-intensive benchsnalor each workload, we
simulate 250 million instructions from a typical phase itiged by SimPoint [74].

Various LLC techniques are evaluated with the same area. B 3RAM has similar
area to a 6MB STT-RAM. Thus, we evaluate a 16-way SRAM with 26&Bacity and 24-
way STT-RAM/OPT-STT-RAM with 6MB capacity. The hybrid caebesign for the APM
technique has 16 STT-RAM lines and 2 SRAM lines in each seth@mde we evaluate a
4.5MB APM hybrid cache which has the same area with a 2MB SRNhe Sun-Hybrid
technique, each cache set allocates 1 SRAM line. Thus weaeah 20 STT-RAM lines
and 1 SRAM line hybrid cache with a 5.25MB capacity for SurbHg technique. We
implement a 1MB SRAM cache bank and 2MB STT-RAM cache bankafsmgle-core
configuration yielding the best trade off of access latemay laank level parallelism. If

the capacity of SRAM is smaller than 1M, it is configured as baek.
5.3.2 Multi-Core Workloads and LLC Configuration

We use quad-core workloads for evaluation. Table 5.6 shisvee mixes of SPEC
CPU2006 benchmarks with a variety of memory behaviors. Bohenix, we run the

experiment with 1 billion instructions total for all four s starting from the typical

96

phase. Each benchmark runs simultaneously with otherghEaenulti-core configuration,
we evaluate a 16-way SRAM with 8MB capacity, 24-way STT-RANRT-STT-RAM with
24MB capacity, 16-way STT-RAM and 2-way SRAM Hybrid APM texue with 18MB
capacity, and 21MB 20-way STT-RAM and 1-way SRAM Sun-Hylegdhnique. In the
multi-core configuration, we use 2MB SRAM cache bank and 4AMB-8AM cache bank
which yield best performance. If the capacity of SRAM is derghan 2M, it is configured

as one bank.

5.4 Evaluation Methodology for WADE Technique

Execution core 4.8GHZ, 1-core/ 4-core CMP, out of order
256 entry reorder buffer, 4 width issue/decqde
15 stages, 256 physical registers

Caches L1 I/D-cache: 64KB, 2 way, private

64 bytes block, 2-cycle, LRU,

L2 Cache: 2MB/1core, 8MB/4core
16-way, shared, 64 bytes block, 14-cycle
PCM 1 channel/1core, 2 channels/4-core CMP
8 banks per channel, 8K bytes row buffer
32-entry write buffer per channel

read prioritize write scheduling policy
PCM Timing | row hit (clean miss, dirty miss)

=200 (450, 5000) cycles

PCM Energy | array read (write) = 2.47 (16.82) pJ/bit
row buffer read (write) = 0.93 (1.02) pJ/bit

Table 5.5: System configuration. Memory timing and energresadapted from [41]

We use the MARSSx86 [57], a cycle-accurate simulator forx®@-64 architecture.
We modify the DRAMSIm2 [69] simulator to simulate PCM memanyd incorporate it
into MARSSx86. The system configuration is shown in Table ¥/8 use the SPEC CPU

2006 [19] benchmarks for the evaluation. Each benchmarknsaith the firstref input

97

| Name | Benchmarks

Mix 1

milc gcc xalancbmk tonto

Mix 2

GemsFDTD namd bzip2 gamess

Mix 3

gamess soplex libquantum perlben

Mix 4

zeusmp Ibm xalancbmk calculix

Mix 5

gamess milc namd soplex

Mix 6

astar lbm gobmk calculix

Mix 7

soplex calculix tonto Ibm

Mix 8

Ibm mcf cactusADM GemsFDTD

Mix 9

mcf soplex zeusmp bwaves

Mix 10

Ibm milc astar libquantum

Mix 11

xalancbmk Ibm perlbench tonto

Table 5.6: Workloads

provided by theunspeccommand.

5.4.1 Single-Thread Workloads

We use 15 memory intensive benchmarks for this study. A 2ME lid_simulated for
the single thread workloads. For each workload, we made ekploént by running the
benchmark to a typical phase identified by SimPoint [74]. The run the experiment

starting from the checkpoint,the infrastructure simwd&@0 million instructions from the

checkpoint.

Table 5.6 shows eleven mixes of SPEC CPU 2006 benchmarksrchosr at a time
with a variety of memory behaviors. We use these mixes fodegumae simulations. Each
benchmark runs simultaneously with the others. For eachwexmade a checkpoint by
running the one of the memory intensive benchmarks to aaypitase . Then we run the

experiment for 1 billion instructions total for all four cs starting from the checkpoint.

5.4.2 Multi-Core Workloads

We simulate an 8MB shared LLC for the multi-core workloads.

98

ch

== Core-write

0 —= Demand-write
_5 10 1st bar All write operations 2nd bar: Write operations to STT-RAM = Prefetch-write
SN '2;222222’222223“2
o U /
Sorifl Y 4 7 79 0% 99 0o 9.9 9 % % /
s it | 074979 LWy q0 L7
|,2;z|z Twl L
031 L4 A% ¥, - A % U 7\ o | A
No2 WA ¥ I 7/ 9 W JA W Re 79 b , 7
el %7 l-fl-aaal-al_,'ui.l Al i
o 7 7 N7 . - - Z Z e e e 7 7 7 7 v 7 e e 9,
270 % % % % % % % b % 6 % %% B % % % kT
o@%g %, % %% % % %(’%%% %»% %, %, ““%6+ %% %, %9% ?z;; %% % %’%, B, %% 4&%%
0% B RN ‘70@ * S %)é o/(,/z (N %, k> é/)%

Figure 5.16: The distribution of write accesses to STT-RAM$ in APM LLC for single-
core applications

5.5 Evaluation Results for APM Technique
5.5.1 Single-Core Evaluation Results
5.5.1.1 Reduced Writes Evaluation

The APM technique allows SRAM lines to service as many weatpiests as possible,
thus reducing write operations to STT-RAM lines. Figureéshows the distribution of
write operations to STT-RAM lines in the APM technique nolized to all write opera-
tions to the LLC for single-core workloads. We can see the ARIZ reduces write oper-
ations to STT-RAM lines for each type of write accesses. IMAR.C, only 32.9% of the
total LLC write requests are serviced by the STT-RAM portisignificantly reducing the
write overhead of the STT-RAM portion and translating ingrfprmance improvement

and power reduction of the LLC.
5.5.1.2 Performance Evaluation

Figure 5.17 shows the speedup for various techniques caupeith baseline tech-
nique which is 2MB SRAM LLC. The 6MB STT-RAM LLC has similarea to 2MB
SRAM LLC. It improves the performance by 6.2% on average authé increased ca-

pacity. Most of the benchmarks can benefit from the increasgacity of STT-RAM.

99

130 DRPS === 6M-STT-RAM RN ¢ Rt
’ == 5.25M-Sun-Hybrid
1.257 = 4.5M-APM
o 1.204 == 6M-OPT-STT-RAM
S 1.15]
'g 1.104
& 105! Iﬂ
1.00iam 1 {]l lﬁ e acl _Uﬂ 1] -
0.954 IJ: ®
& 3 $
0.90 S Sl 11RS 2
7 7 7 . - - - - - Z Z 4 7 4 7 7 7 s s s e 7,
2, %% % % % T e B % % Y Y R R R R R N R R Y,
% %, % % % % % %, %o, %y % % 7, %, % R Y S Y N Yy Y
4, R %, S A G o % B A R % % © %, > % %
2, ¥ % %, 'S—\yo N %, & %, Ko Oé,))
g % > > *

Figure 5.17: The comparison of IPC for single-core applicet (normalized to 2M
SRAM LLC)

However, several benchmarks suchgax, m | ¢, | i bquant umandl bmsuffer more
from the large write overhead of STT-RAM. The OPT-STT-RAMC Bssumes symmetric
read/write latency meaning large write-induced intenfieeeto read request is removed. It
yields a geometric mean speedup of 9.3%. The performanfeeaehte between OPT-STT-
RAM and STT-RAM is caused by the long write latency of STT-RAMe 4.5MB APM
LLC reduces the write overhead of the STT-RAM portion, delimg a geometric mean
speedup of 8.0%. It yields even higher speedup for benchs6R. | i bquant um
482. sphi nx3, and483. xal ancbnk than the 6MB OPT-STT-RAM LLC. Because
those workloads generate a large number of dead blocks ccurate prefetch blocks in
the LLC and hence reducing the LLC efficiency. The APM techerigeduces the LLC
pollution cased by dead blocks and inaccurate prefetchkb)dbus improving the LLC
efficiency for those workloads. The 5.25MB Sun-Hybrid LLCpraves the performance

by 5.0% on average.
5.5.1.3 Power Evaluation

Figure 5.18 shows the normalized power consumption folouariechniques due to
leakage power, dynamic power caused by reads and dynamar pawsed by writes. The

baseline technique is a 2MB SRAM. For the SRAM technique |ehkage power dom-

100

1st bar: 2M-SRAM 2nd bar: 6M-STT-RAM 3rd bar: 5.25M-Sun-Hybrid 4th bar: 4.5M-APM
9

%

N L% vV
2.0 iy == Write Power

A
— R
g 18 ;: Yl == Read Power - 11y ::'
%LS ul Wi = | cakage Power o W4 W
c 14 o M ’ i i o
1.2 Wi o rl/ Il i 0o
Yl ur | " ar q 71/ 4 _ 3 o
§ 1.0 =] '/: ;::V'N alln g Vf::" A:‘ B ,:’V'/N'N:=¢: 4:' mWld
— A A Bul 4 Al 1y il wldl ua wuan gt q ua
3 08) N i o P e add L R0 2K g e e e Bta Bitdn
= PTTY [aff[* I| il PR e ilil= N0 WESR NCLg Rede 0 S g (oY e ol
=
5 04
Z 02
0.0
7 7 7 ¥ - - - - - Z Z 7 3 W 7 7 7 'S 3 'S K7, 7 O
%, %,% %% % Y % N % e B %R YN % % Y
. 7
% %, % % e % o %, %, B % % %, %, %, % Y D Y, N Y Ty Y
%, ° % % % b, T % & B Ay %, % O %, T %y %
2) 2 %% O 7 >Ry, & 2, >
2 % > %

Figure 5.18: The power breakdown for single-core appliceti(normalized to 2MB
SRAM)

inates the total power consumption. The STT-RAM techniguesames lower leakage
power. However, the dynamic power caused by writes is smtly increased due to
the large write energy of STT-RAM. Thus the STT-RAM techradacreases the overall
power consumption by 11.9% on average. The APM techniquecesdwrite operations to
the STT-RAM portion, thus reducing the dynamic power causedrites. It reduces the
overall power consumption by 18.9% on average comparedtivdtbaseline. The Sun-
Hybrid technique does not significantly reduce the write potecause the Sun-Hybrid

technique does not reduce write operations to STT-RAM ahbgd LC replacement.
5.5.1.4 Extra LLC Traffic Evaluation

The APM technique migrates blocks between SRAM lines and-BAM lines. Mi-
grating blocks from SRAM lines to STT-RAM lines causes extiahe traffic. We evaluate
the LLC traffic caused by migration. Migration causes onB?8.extra LLC traffic. Most
of the blocks evicted from SRAM ways are dead blocks, thuy engmall number of
distant-read-range blocks need to be migrated to STT-RAMisT the small percentage

of traffic caused by migration will not cause significantfiabverhead.

101

.) e===a COre-write
1st bar: All write operations ——= Demand-write

10 2nd bar: Write operations to STT-RAM — Prefetch-write
. - 7 7 g .

Normalized Write Operations

Figure 5.19: The distribution of write accesses to STT-RAM$ in APM LLC for multi-
core applications

= 24M-STT-RAM
=== 21 M-Sun-Hybrid
———18M-APM

m—— 24M-OPT-STT-RAM

w

”

e %

Y 2, 2, 2, Q
%, % o 4\,0 4/—\{} %

O

2%, %,
K= %o >

Figure 5.20: The comparison of IPC for multi-core appliocat (normalized to 8MB
SRAM)

5.5.2 Multi-Core Evaluation Results
5.5.2.1 Reduced Writes, Endurance, Performance and Povadu&tion

Figure 5.19 shows the distribution of write operations ta-&IAM lines normalized
to all write operations to LLC for the multi-core workloadghe APM technique reduces
write operations to the STT-RAM portion to 28.9% on averaig@e total number of write
operations.

Figure 5.20 shows the speedups of the various techniquésgfonulti-core workloads
normalized to 8MB SRAM LLC. The 24MB STT-RAM LLC improves germance by

14.8% on average. Removing write-induced interferenceexhly asymmetric writes

102

==== \\rite Power
1st bar: 8M-SRAM 2nd bar: 24M-STT-RAM 3rd bar: 21M-Sun-Hybrid 4th bar: 18M-APM ——— Read Power
— | cakage Power

12
210 7Y] 7
3 1 | [WA B N = '/f B 577 Wum |,
@ os IR v, e Btz BiVie B7 2 - 92 W47 007,
-§06 “FR 4R E14F ‘.‘l é“ ‘ﬁ- ‘.l ﬁ{‘ ‘.’I é‘- ‘éz é-“
éOA
S 02
ZD.O

R kS kS T Ko) > Yo Yo % %, K

%

Figure 5.21: The LLC power breakdown for multi-core apgii@as (normalized to 8MB
SRAM)

improves the average performance by 18.7% in the OPT-STMHRAC. The 18M APM
technique reduces write overhead of the STT-RAM portioactiieves a geometric mean
speedup of 20.5% which is higher than the 24MB OPT-STT-RAMCLIN multi-core
workloads, the large number of dead or inaccurately prieéstdlocks generated from
one workload can also negatively affect the performancehsraovorkloads, significantly
reducing performance. The APM technique reduces cachetolicaused by dead blocks
and inaccurately prefetched blocks. Our evaluation shtnesl8BMB APM LLC yields
better performance and fewer misses for 5 out of 11 multe-earrkloads compared with
24MB OPT-STT-RAM LLC.

Figure 5.21 shows the distribution of normalized power comgtion for various tech-
niques. The baseline is the 8MB SRAM cache. For a large LLE ntljority of power
consumption comes from leakage power. The 24MB STT-RAMnegke reduces overall
power consumption to 87.8% of baseline due to low leakageepovhe APM technique
reduces dynamic power caused by the STT-RAM write opersti®hus, it further reduces

power consumption to 80.7% of baseline on average.
5.5.2.2 Prediction Evaluation
We evaluate the access pattern predictor using false ypos#tie and coverage. Mis-

predictons can be false positives and false negativese palsitives are more harmful for

103

two reasons: mispredicting a live block as a dead block casechypass or eviction of
a live block from LLC early and generate LLC misses, and nadfmting a non-write-
burst request as a write-burst request can cause extratioiggrédetween STT-RAM lines
and SRAM lines. False positive rate is measured as the nuaflmispredicted positive
predictions divided by the total number of predictions.

Among the 11 multi-core workloads, the access pattern pi@dyields a low false
positive rate ranging from 2.1% to 14.8%, with a geometriamef 8.3%.

The access pattern predictor achieves an average covdrayyg@%. Thus, the major-

ity of dead blocks and write burst blocks can be predictechiyaiccess pattern predictor.
5.5.2.3 Memory Energy Evaluation

Figure 5.22 shows the memory energy evaluation results alcred to SMB SRAM
LLC. The 24MB STT-RAM LLC reduces the average memory enemy2.9% of the
baseline. The 18MB APM LLC technique reduces average meegragygy to 72.4%.

Compared with 24MB STT-RAM LLC, the 18MB APM LLC increasesaage mem-
ory traffic by 5.6% due to its smaller capacity. However, iedmot increase the dynamic
energy consumption because it consumes less activatemhig@rge energy. The APM LLC
achieves a higher DRAM row-buffer hit rate for write requeetttan the STT-RAM LLC
which can reduce the activation/precharge energy. The lag can filter the locality of
dirty blocks, so the dirty blocks have low spatial localithen they are evicted from the
LLC and written back to the main memory. However, in the APM1,la significant frac-
tion of dirty blocks are written back to the main memory whieeyt are evicted from the
SRAM portion where the small capacity of SRAM allows the &itdirty blocks to have
higher spatial locality. Our evaluation result shows theADRrow-buffer hit rates for

writes are 21.1% and 35.6% for 24M STT-RAM LLC and 18M APM LL€&Spectively.

104

===z Background Energy
——— Refresh Energy

1st bar: 8M-SRAM 2nd bar: 24M-STT-RAM 3nd bar: 21M-Sun-Hybrid 4th bar: 18M-APM -
===== Read/Write Energy

) = Activation/Precharge Energy

T 97 7 /. 7 i 7 7 W.7 B 7 7 y

S0 Unl 409, 84,500 40,8 Alndt.%% Ag %y

5 18947 NY4, N7 NL AR NGE. N9S N & Q9799 N8, Nk, Npéy

lmné AN NN N NONT B YN 201 g N NG

= NN < l N ' 2NN NV NENE N —l—
04 “ ~ A

- "l'l”' L T

":‘02 'I

©

£

50.0

S % R m % % a B B m, R 9

%

Figure 5.22: The memory energy breakdown for multi-coreliapfions (normalized to
8MB SRAM)

5.5.3 Storage Overhead and Power

The technique uses an access pattern predictor to predictetad blocks and write

burst blocks which cause extra storage and power overhead.
5.5.3.1 Storage Overhead

Each cache block in the LLC adds 1 bit for representing whathe a dead block,
using 9.2K storage total. For the pattern predictor, eaeldiption table has 4,096 entries
with a 2-bit counter in each entry. There are 6 tables for keeved structure for the dead
block prediction table and write burst prediction tablengsa total of 6KB of storage. In
the pattern simulator, one simulated set correspondingl32 $ets, each simulated set
has 12-entry 16-bit partial read PC, 12-entry 16-bits phtdg, 12-entry 4-bit LRU po-
sition, 12-entry 1-bit valid flag, 4-entry 16-bits partiatite PC and 4-entry 2-bits write
LRU position. For a 4.5MB hybrid cache, it consumes 8.5Kager Thus, the storage
overhead for single-core configuration is 6K+8.5K+9.2KFX3which is only 0.53% ca-
pacity overhead of the hybrid 4.5MB LLC. For the quad-corafiuration, the storage
overhead of the APM technique is 6K+8.5K+9.2Kx4=84.8K, which is 0.43% of the

hybrid 18MB cache capacity.

105

5.5.3.2 Power Overhead

We evaluate the power overhead of our technique using NV$2hgdnd CACTI [51].
For the single-core configuration, the extra dynamic ankldga power consumed by the
access pattern predictor is 1.6% and 1.9% of the LLC dynanddeakage power respec-
tively. It induces a power overhead of 1.8% of the total LLGveo consumption. For
the quad-core system configuration, the extra dynamic aaidhfge power consumed by
the access pattern predictor is 1.1% and 0.60% of the LLC mymand leakage power
respectively. The overall power overhead caused by thesaquatern predictor is 0.76%

of the overall LLC power consumption for quad-core configiora
5.6 Evaluation Results for WADE Technique
5.6.1 Single-Core Evaluation Results
5.6.1.1 Performance Evaluation

We evaluate three cache replacement polices: LRU, WADE Rt and Memory
Level Parallelism (MLP) aware cache replacement technj§8¢ The MLP technique
takes into account the memory level parallelism dependesttdifferential between dif-
ferent misses. The replacement decision is made by comsydive MLP-based cost for
each cache miss as well as the recency information. Theibagethnique is LRU re-
placement policy. Our technique segments the cache setntlists. Within the list, any
replacement policies could be applied. So it is decoupled lliC replacement polices.
We use LRU replacement policy with our techniques for sigigli Figure 5.23 shows
the performance evaluation results for single core apjtica. MLP provides a speedup
on some benchmarks and a slow-down on others, resulting @ometric mean speedup
of approximately0.6%. The long write latency in the PCM system makes it hard tanear

the memory level parallelism cost, thereby the MLP replamatinpolicy does not perform

106

== WADE with LRU g ey P o

1 ; RN
1.10 = NLP 4 b NN
Q. 1.05
g
& 1.00] _ [m 0
> D
0.95 0?)

Figure 5.23: The comparison of IPC for single-core appiicet (hormalized to LRU)

well in the context of PCM system. The WADE technique dekvargeometric mean
speedup 06.1%. The technique significantly improves system performanceénch-
mark 450.soplex482.sphinx3and 483.xalancbmiby 22%, 39% and 18%. Because the
writeback requests for these three benchmarks are highdede For benchmarks that do
not benefit from our techniques, there are two categories; firey do not have significant
highly reused access requests such as for streaming berkchhteuantumandmilc, the
writeback requests are not re-written frequently. Sectmelfrequent writeback requests
are hard to predict mainly because they do not have gooda$gaiil temporal locality,

such a#t36.cactusADM
5.6.1.2 Reduced Write Requests Evaluation

The WADE technique takes into account the disparity in missalty of clean data
and dirty data. It keeps an optimal size of frequent writ&dest in the LLC. Thereby it
can reduce the writeback requests to the PCM. Figure 5.24sstiee writeback requests
normalized to LRU policy. The MLP technique only reduced5% writeback requests
compared with LRU policy. The WADE technique redudés>% writeback requests on
average. This large percent of writeback requests redudeiads to performance im-

provement and energy reduction. It can also improve theramde of the PCM based

107

== WADE with LRU

% 1.2+ — MLP
%3 1.04
-‘go.a—
0.6-
g
= 0.44
B
€ 0.2
o
Z 0.0
7 7 7 - - - - - Ve 7 7 s e e
2, % % R e R R B B B R e R B T
% % v e % %Y % % Y % % % % Y v %
5, c Y B G, &% By % 2,
2% ol Q, 7, 2 > 2o
(A & 0, Oy 2, 7,
% > *

Figure 5.24: The number of writeback requests to PCM forleHegre applications (nor-
malized to LRU)

1stbar: LRU 2nd bar: WADE with LRU 3rd bar: MLP n == Read Energy

y
e
e

=) —= Write Energy
o 1.04n
c
W 0.8 "
Eo.sf
<
e 0.4
5
> 0.2+
0.0
7 7 - - - - e Ve 7 v 7 e e v,
Ooo 6 00,0 ‘%)o) U}e U"?p %o %m %o 6;?4)0'6 %{9 d;)m %Jr L%
. 2 ()
%, % © R Y % % % % 2 B % % %
S 2,), S, “F U %, 2
/)% pe) (5 —yo o) %, (] 602
2 > > %

Figure 5.25: The comparison of energy consumption in PCMifagle-core applications
(normalized to LRU)

main memory. Compared with figure 5.23, we can see for thehrearks that have large

percent of reduced writeback requests also have signifisfirmance improvements.
5.6.1.3 Energy Evaluation

The obvious reduction in the writeback requests can leaeldoaed energy consump-
tion in PCM based main memory. Figure 5.25 shows the energluation results for
various techniques. The figure shows the energy consumptionalized to LRU policy.
It also gives the percentage of read energy and write enengsurnption for each work-

load. In the PCM based main memory, the write energy consomgbminates the main

108

= Size16+Bypass
==Sijzel6

= Sizel2

= Sjze8

== Size4

== Size0

Per centage of LL C accesses

Figure 5.26: Runtime predicted best frequent writebaclslize

memory energy consumption. It accounts for ab@ift of all main memory consump-
tion in the LRU policy. The WADE technique achieves an enaaguction by8.1% on

average. The MLP technique only reduces the energy.(y%s. We can see most of the
energy reduction of our techniques comes from the writeggnexduction. The average

read energy consumption for WADE technique is similar wiRRiLL
5.6.1.4 Dynamic Segment Size

Figure 5.26 shows the runtime predicted best frequent badk list size for each of
the benchmarks. Benchmark83.sphinx3and 483.xalancbmlare thrashing workloads
that benefit from bypassing incoming read blocks. Segmeatlf dominates the running
phase of benchmark3.gc¢ 429.mcf434.zeusmpt35.gromacsand 473.astar. The run-
time predicted best segment size of benchma@a.libquantunand470.lbmis 4. The

running phase of other benchmarks go through various segizes.
5.6.2 Multi-Core Evaluation Results

The write problem is worse in multi-core system since thégoerance of an applica-

tion is affected not only by its own write requests but alsoarite requests from other

applications.

Figure 5.27 shows the speedup achieved by various tectsauigne multi-core work-

109

1.24
== WADE with LRU
—— \LP

_§-1.1—

" “ “ “ “ “

O A 4 % % % % % % % % S
TR R R T e B e e Ry, K A

Figure 5.27: The comparison of IPC for multi-core applioat (normalized to LRU)

== WADE with LRU

Q —— P

% 1.0

E 0.8

= o6l

B

N 0.41

<

€ 0.2

(=]

Sy S Y S S S
N T T T T N

‘90

Figure 5.28: The number of writeback requests to PCM for iwalte applications (nor-
malized to LRU)

124 istbar: LRU 2nd bar: WADE with LRU 3rd bar: MLP e Read Energy
’ ———= Write Energy
=
B 1.0
o
T 0.8
E 0.6
B .44
g 04
(=] u
S o2
R N L Y
7 o 7 o % 7 % 7 % 7 % L
% %s %5 %, N % N %o %o +\,0 +<; 9%,
&
(S

Figure 5.29: The comparison of energy consumption in PCMrfolti-core applications
(normalized to LRU)

110

= WADE with LRU
— |\|LP

e
i

e
2

o
it

Normalized MPK |

o
2
\

-,

% o,
%

5 %

%
o K

% EAE N N S

Figure 5.30: LLC misses per kilo-instruction (MPKI) for nietore applications (normal-
ized to LRU)

loads with an 8MB last-level cache. The speedups are stithatized to a default LRU
cache. The normalized speedup for WADE technique over alidrkloads ranges from
2.2% to 13.1% for the WADE, with a geometric mean speedup7df’%. The technique
significantly improves the system performance for five woakls by more thah0%. The
MLP technique only yields a geometric mean speedup3y.

Figure 5.28 shows the normalized writeback requests etratugesults for multi-core
application. The WADE technique achieves a writeback retpueduction byl0.9% on
average. Figure 5.29 shows the energy evaluation resuitsatiaed to LRU policy. The
WADE technique reduces energy By% on average.

We also evaluate the misses per 1000 instructions (MPKIjrfolti-core workloads.
Figure 5.30 shows the MPKI for various techniques normdlizeLRU policy. The av-
erage normalized MPKIs are 1.00 for WADE, and 0.99 for MLP. ¢da see the WADE
technique does not reduce the miss rate. In WADE technidpgepérformance benefits
actually come from the reduced write requests which geaerérge write-induced inter-

ference.

111

o
©
a

1.08+

Normalized Energy
o o
o [{e)
® i

o
©
"\’

I
©
s

1.05

11522573 35 1152 2573 35

P p
(a) Speedup (b) Energy

Figure 5.31: The impact on performance and energy for paeame

5.6.3 Sensitivity Study
5.6.3.1 Miss Penalty Sensitivity Study

An LLC miss for dirty cache block is more harmful than for aastecache block. Our
technique assigns different miss penalty according to/ghe of data. The miss penalty for
clean data is set to 1 while the miss penalty for dirty data s our experiment setting,
we getp = 2 calculated by equation (2). We also did an experiment tothesthange in
performance and energy whemanges from 1 to 6. Figure 5.31 shows the performance
speedup and energy consumption for various valugsromulti-core workloads in WADE
technique. We can see the performance and energy consumpties significantly with
different values op. The best performance is achieved whpen 2, and the lowest energy
consumption whep = 1.5. Generally, the value that gives better performance is also
the value that yields lower energy, is because the reducel reguests could lead to both

performance improvement and energy reduction. In our éxygert, we choosg = 2.
5.6.3.2 Cache Size Sensitivity Study

Figure 5.32 and 5.33 show the performance and writebackctieduevaluation re-
sults with various cache sizes. We evaluate LRU and WADE Léfacement policies

with cache sizes 2M, 4M and 8M. Compared with the LRU replas&npolicy with the

112

= WADE with LRU(2M)

= LRU(4M) R K U S0
1.0 == WADE with LRU(4M)
18] —= LRU(8M)
1:77 == \WADE with LRU(8M)
2 16
1.5
1.4
& 131
1.2-
ié rl_l_l d] | IJ mm m Mim
0.9
700” 70{6 2 R R %?e R YP@O %O-.p ko %‘/ ’%/ . %@ 7%4- O%
% % % % % %f)} %, %, G‘% ’6(/ 3, ‘9% %, T EN
%, % % & %Y, R TR
S A 0, O % 2,
% I %

Figure 5.32: Performance evaluation with various cache(siarmalized to LRU with 2M
LLC size)

= WADE with LRU(2M)

= LRU(4M)
" 1.2+ === WADE with LRU(4M)
X == LRU(8M)
S 1.0 == \WADE with LRU(8M)
g
‘= 0.8
= 0.6
g
= 0.44
®
€ 0.2
(=]
Z 0.0 d
7 7 7 ¥7- - - - - 3 W 7 ks 'S R ¢
%2 % % R Y e e Y R R R e R
% B T v % Y% Ty T Y G % Y % %
8 O~ Y A %, % R B 2,
% T 0, %, Y,
%) %

Figure 5.33: The number of writeback requests to PCM withouar cache size (normal-
ized to LRU with 2M LLC size)

same capacity 2M, 4M and 8M cache sizes, the WADE technigpeoves the system per-
formance by 5.1%, 5.4% and 6.9% and reduces the writebades¢gjto PCM by 16.5%,

11.4% and 9.9% respectively.
5.6.4 Storage and Power Overhead
5.6.4.1 Storage Overhead

The technique uses a frequent write predictor (FWP) and amajpsegment predictor.

For the FWP, every 16 LLC sets map to 4 FWP sets. Each FWP sé& éiaisies. Each

113

entry in the set has a 16-bit partial tag field, a 3-bit LRU fieldb-bit frequent counter
field, and a 16-bit set flag field. For each cache block in the L€ add one bit to rep-
resent whether it is a frequent writeback block. The FWP gores extra state equivalent
to about0.95% of LLC capacity. We use an out-of-cache segment predictbis 3et as-
sociative structure is added to simulate sampled leadsr #etises four types of leader
sets as shows in figure 5.15. For each type of leader set, bisessampled for every 128
LLC sets. Each leader set has one bit even write counter. &atch in the leader set has
16-bit partial tag field, 1 Fbit field, and 3-bit LRU fields. Thegment predictor uses three
12-bit PSEL counters. Thus, it consumes less thad% of LLC capacity. All together,
The WADE technique takes abollt of LLC capacity.

5.6.4.2 Power Overhead

We use CACTI [51] to measure the potential impact of the segmeedictor and
frequent write predictor on power. The segment predictandgleled as a tag array of
extra LLC sets. We model the LLC both with and without the @xtache sets, and report
the difference of the tag power between the two. We modelrdguent write predictor
as a tag array of a cache, with only the tag power being reghorfe 2MB LLC in a
single-core configuration consume891V power. The segment predictor consumes only
0.0025W dynamic power which is onl9.13% of LLC power consumption. The power
for frequent write predictor i19.024W. The total power for structures required by the
WADE technique is about.3% of LLC power. An 8M LLC in a multi-core configuration
consumes3.73W. The structures needed by the WADE technique t@&ka511 which
is 0.93% of LLC power. Although the segment predictor and frequentempredictor
consume extra power, the WADE technique reduces the exactycles of applications,

thus reducing the leakage energy of LLC.

114

6. CONCLUSIONS

Recall the thesis statement from the introduction:

Programs exhibit significant performance variance in thetess to microarchitectural
structures. To the extent that this variance is predictabtan be exploited to improve
processor design.

In this dissertation, we have analyzed three types of pmdorce variance: perfor-
mance variance caused by microarchitectural structuegfynmance variance caused by
phase change and performance variance caused by opergties tBy exploiting the
three types of performance variance, we propose variousigaes to improve processor

design. In this section, we review the contribution of owht@ques.
6.1 Developing Performance Model by Exploring Performavieéance

In this dissertation, we demonstrate how to develop a padoce model for branch
predictor using real systems. The technique perturbs Imeadhexecutables to yield a
wide variety of performance points without changing progigemantics or other impor-
tant execution characteristics. By observing the behadfitine benchmarks over a range
of branch prediction accuracies, we can estimate the ingdachew branch predictor by
simulating only the predictor and not the rest of the miccbéecture.

Using measurements of the Intel Xeon E5440 Processor, wetifuthe impact of
branch prediction on a set of benchmarks, developing regmnesnodels that estimate the
performance given by changes in the branch predictor. Warpacate these models into
a simulator allowing us to estimate the impact of severatthgredictors.

This study points the way to future work on estimating theaetwf other microarchi-
tectural structures. We demonstrate the potential forfetemetry to estimate the impact

of L1 and L2 caches by perturbing data layouts.

115

6.2 Reducing Write-induced Interference by Exploring Berfance Variance

In memory systems, write requests can cause significaranoeaihce loss by increas-
ing memory access latency for subsequent read requestsitgrthe same device.

In the dissertation, we propose to use a rank idle time pt@dio predict when a
rank will have significant idle time. “Rank idle” means thaete will be no read request
for this rank that will be delayed by scheduling writebaclems. The scheduled write
requests can be written back during this idle rank periodinderporate the rank idle time
predictor into the parallelism-aware LLC scheduling teghe and propose a prediction
driven parallelism-aware LLC writeback technique. Thegased technique applies to the
DRAM system that maps the rank and channel into the higherdyits than the columnin
the physical address. Write-induced interference is Sagmitly reduced by our technique.

We also propose a decoupled last-write predictor guided llrifeback technique.
It uses a last-write predictor to predict last-write blookd.LC. The predicted last-write
blocks are exposed to the memory controller for scheduling.technique can balance the
memory bandwidth and effectively expands the scheduliagespfthe memory controller,
thus significantly reducing write-induced interferenceislcompletely decoupled from
LLC replacement policy. Our techniques are evaluated faooua DRAM configuration
by using MARSSx86 Simulator together with DRAMSIim2. Expeent results show a

significant performance improvement over traditional @lvaick technique.
6.3 Reducing NVM Write Overhead by Exploring Performancearace

Write-induced interference in the memory system can sicanifly degrade perfor-
mance. This large write overhead is a more severe problenyiM{dased memory. We
propose techniques to mitigate the write overhead in NVIgedamemory.

In this dissertation, we propose a new block placement argtation policy for a

hybrid STT-RAM-based LLC. LLC writes are categorized intoete classes: core-write,

116

prefetch-write, and demand-write. We analyze the accedsrpdor each class of LLC
writes and design a block placement policy that adapt to tisess pattern of each class.
A low cost access pattern predictor is proposed for guidimgglilock placement. Ex-
perimental results show our technique can improve perfoomand reduce LLC power
consumption compared with both SRAM LLC and STT-RAM LLC witie same area
configuration.

We also propose a dynamic cache management policy in thextarft PCM- based
main memory. The technique improves system performanceeardyy efficiency by
reducing the writeback requests to PCM. It keeps highly edusirty cache blocks in
the LLC. A frequent write predictor is proposed to prediat trequent writeback cache
blocks. The cache set is partitioned into frequent writklmaa non- frequent writeback
lists. It dynamically determines the optimal size of eashdc- cording to the miss penalty.
Our evaluation shows the proposed techniques reduce tteback requests which could

result in improved performance as well as reduced energswoption.

117

[1]

REFERENCES

Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeevl&abramonian, and
Al Davis. Handling the problems and opportunities posed bitigie on-chip mem-
ory controllers. InProceedings of the 19th international conference on Patalt-
chitectures and compilation techniqu&ACT '10, pages 319-330, New York, NY,
USA, 2010. ACM.

[2] John E. Baldwin and Christopher A. Haniff. The applicatiof interferometry to

[3]

optical astronomical imaging.Philosophical Transactions of The Royal Society

360(1794):969-986, May 2002.

Brad Calder and Dirk Grunwald. Reducing branch costsbranch alignment. In
Proceedings of the Sixth International Conference on Aedhural Support for Pro-
gramming Languages and Operating Syste&SPLOS VI, pages 242-251, New
York, NY, USA, 1994. ACM.

[4] Yu-Ting Chen, Jason Cong, Hui Huang, Bin Liu, Chunyue,lMiodrag Potkonjak,

and Glenn Reinman. Dynamically reconfigurable hybrid caétreenergy-efficient

last-level cache design. DATE’12, pages 45-50, 2012.

[5] Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu, RagtabRakar, and Glenn

Reinman. Static and dynamic co-optimizations for blockgpiag in hybrid caches.
In Proceedings of the 2012 ACM/IEEE international symposiarha~v power elec-

tronics and designiSLPED '12, pages 237-242, New York, NY, USA, 2012. ACM.

[6] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung@ng§hoan Chang,

Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwamg Sunwoo,
Junho Shin, Yoohwan Rho, Changsoo Lee, Min-Gu Kang, Jaeywa) Yongjin

118

Kwon, Soehee Kim, Jaehwan Kim, Yong-Jun Lee, Qi Wang, Sodta Sujin Ahn,
H. Horii, Jaewook Lee, Kisung Kim, Hansung Joo, Kwangjin Léeong-Taek Lee,
Jeihwan Yoo, and G. Jeong. A 20nm 1.8v 8gb pram with 40mb/grpro band-
width. In Solid-State Circuits Conference Digest of Technical PageE8SCC), 2012
IEEE Internationa) pages 46—-48, Feb 2012.

[7] An chow Lai. Dead-block prediction and dead-block ctateg prefetchers. Ihn

[8]

Proceedings of the 28th International Symposium on Comprthitecture pages

144-154, 2001.

Gilberto Contreras and Margaret Martonosi. Power praln for intel xscale pro-
cessors using performance monitoring unit eventsProceedings of the 2005 In-
ternational Symposium on Low Power Electronics and Dedi§hPED '05, pages

221-226, New York, NY, USA, 2005. ACM.

[9] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudd¢igh-performance

[10]

[11]

[12]

drams in workstation environmentdi=EE Trans. Comput50:1133-1153, Novem-

ber 2001.

Rajagopalan Desikan, Doug Burger, and Stephen W. leeckleasuring experimen-
tal error in microprocessor simulation. I8CA '01: Proceedings of the 28th annual
international symposium on Computer architectyrages 266—277, New York, NY,

USA, 2001. ACM.

Rajagopalan Desikan, Doug Burger, Stephen W. Kecklierenc Cruz, Fernando
Latorre, Antonio Gonzalez, and Mateo Valero. Errata ondmeing experimental
error in microprocessor simulation'SIGARCH Comput. Archit. New30(1):2—4,
2002.

Xiangyu Dong, Cong Xu, Yuan Xie, and N.P. Jouppi. Nvsicircuit-level perfor-

mance, energy, and area model for emerging nonvolatile men@mmputer-Aided

119

Design of Integrated Circuits and Systems, IEEE Transastmn 31(7):994-1007,
2012.

[13] Marius Evers, Po-Yung Chang, and Yale N. Patt. Usingrigybranch predictors to
improve branch prediction accuracy in the presence of gbswitches. InProceed-
ings of the 23rd Annual International Symposium on Comp#tehitecture ISCA
'96, pages 3—11, New York, NY, USA, 1996. ACM.

[14] Viacheslav V. Fedorov, Sheng Qiu, A. L. Narasimha Redalyd Paul V. Gratz.
Ari: Adaptive llc-memory traffic managementACM Trans. Archit. Code Optim.
10(4):46:1-46:19, December 2013.

[15] Domenico Ferrari. Improving locality by critical warky sets.Communications of

the ACM 17(11):614-620, November 1974.

[16] Nikolas Gloy and Michael D. Smith. Procedure placemasing Temporal-
Ordering informationACM Transactions on Programming Languages and Systems

21(5):977-1027, September 1999.

[17] Satoru Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matstd. Matsuzaki,
N. Takaura, M. Moniwa, and T. Kawahara. A 512kB Embedded @Rdmnge Mem-
ory with 416kB/s Write Throughput at 1@@ Cell Write Current. InSolid-State
Circuits Conference, 2007. ISSCC 2007. Digest of Techiapkrs. IEEE Interna-
tional, pages 474616, Feb 2007.

[18] D. J. Hatfield and J. Gerald. Program restructuring foual memory.IBM Syst. J.
10(3):168-192, September 1971.

[19] John L. Henning. Spec cpu2006 benchmark descript®SARCH Comput. Archit.
News 34:1-17, September 2006.

120

[20] Chunling Hu, John McCabe, Daniel A. Jiménez, and Widkkremer. The camino
compiler infrastructureSIGARCH Comput. Archit. News Special Issue on the 2005

Workshop on Binary Instrumentation and Applicati8(5):3—-8, 2005.

[21] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonbisnekeeping in the memory
system: predicting and optimizing memory behavior. Pimceedings of the 29th
annual international symposium on Computer architecté&CA '02, pages 209—

220, Washington, DC, USA, 2002. IEEE Computer Society.

[22] lbrahim Hur and Calvin Lin. Adaptive history-based mam schedulers. IfPro-
ceedings of the 37th annual IEEE/ACM International Sympason Microarchi-
tecture MICRO 37, pages 343—-354, Washington, DC, USA, 2004. IEEEBQder

Society.

[23] Intel Corporation. Intel Pentium 4 processor optiniiza. Technical Report Order

Number: 248966, Intel Corporation, 2001.

[24] Engin Ipek, Onur Mutlu, José F. Martinez, and Rich@ara. Self-optimizing mem-
ory controllers: A reinforcement learning approach.Phoceedings of the 35th An-
nual International Symposium on Computer Architectu8CA '08, pages 39-50,
Washington, DC, USA, 2008. IEEE Computer Society.

[25] Bruce Jacob, Spencer Ng, and David Waktgmory Systems: Cache, DRAM, Disk

Morgan Kaufmann Publishers Inc., San Francisco, CA, USRA720

[26] Amin Jadidi, Mohammad Arjomand, and Hamid Sarbazi-dzdigh-endurance and
performance-efficient design of hybrid cache architesttineough adaptive line re-
placement. IrProceedings of the 17th IEEE/ACM International Symposiarhaw-
power Electronics and DesignSLPED ’11, pages 79-84, Piscataway, NJ, USA,
2011. IEEE Press.

121

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Daniel A. Jiménez. Code placement for improving dyi@branch prediction ac-

curacy. InProceedings of the 2005 ACM SIGPLAN Conference on Progragnmi
Language Design and Implementatjd?LDI '05, pages 107-116, New York, NY,

USA, 2005. ACM.

Daniel A. Jiménez, Stephen W. Keckler, and Calvin Liime impact of delay on the
design of branch predictors. Proceedings of the 33rd Annual ACM/IEEE Interna-
tional Symposium on MicroarchitectyrlICRO 33, pages 67—-76, New York, NY,
USA, 2000. ACM.

Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykiman Narayanan, Ravis-
hankar lyer, and Chita R. Das. Cache revive: Architectinigtide stt-ram caches for
enhanced performance in cmps.RAroceedings of the 49th Annual Design Automa-

tion ConferenceDAC '12, pages 243-252, New York, NY, USA, 2012. ACM.

Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Nagtk Chang, and Yuan
Xie. Energy- and endurance-aware design of phase changemeathes. IIDATE,

pages 136-141, 2010.

P. J. Joseph, Kapil Vaswani, and Matthew J. ThazhuttdveA predictive perfor-
mance model for superscalar processors MICRO 39: Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitee, pages 161-170,
Washington, DC, USA, 2006. IEEE Computer Society.

Samira M. Khan, Yingying Tian, and Daniel A. Jiménean%ling dead block pre-
diction for last-level caches. IMICRO, pages 175-186, December 2010.

Samira M. Khan, Zhe Wang, and Daniel A. Jimenez. Decediglynamic cache
segmentation. IfProceedings of the 2012 IEEE 18th International Symposiam o
High-Performance Computer ArchitectiePCA '12, pages 1-12, Washington, DC,
USA, 2012. IEEE Computer Society.

122

[34] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimen&ling dead block
prediction for last-level caches. RProceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on MicroarchitectudICRO '43, pages 175-186, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[35] Mazen Kharbutli and Yan Solihin. Counter-based ca@pacement and bypassing
algorithms.IEEE Trans. Comput57:433-447, April 2008.

[36] C.H. Kim, Jae-Joon Kim, S. Mukhopadhyay, and K. Roy. Award body-biased
low-leakage sram cache: device, circuit and architectansiderationsVery Large

Scale Integration (VLSI) Systems, IEEE Transactiond8(3):349-357, 2005.

[37] Yoongu Kim, Dongsu Han, O. Mutlu, and M. Harchol-Baltétlas: A scalable and
high-performance scheduling algorithm for multiple meynoontrollers. InHigh
Performance Computer Architecture (HPCA), 2010 IEEE 16tkrnational Sympo-

sium on pages 1-12, jan. 2010.

[38] Dan Knights, Todd Mytkowicz, Peter F. Sweeney, Mich@eMozer, and Amer Di-
wan. Blind optimization for exploiting hardware featur&sCC '09: Proceedings of
the 18th International Conference on Compiler Construgtpages 251-265, Berlin,

Heidelberg, 2009. Springer-Verlag.

[39] An-Chow Lai and Babak Falsafi. Selective, accurate,tandly self-invalidation us-
ing last-touch prediction. IRroceedings of the 27th annual international symposium
on Computer architecturdSCA '00, pages 139-148, New York, NY, USA, 2000.
ACM.

[40] Benjamin C. Lee and David M. Brooks. Accurate and effitieegression mod-
eling for microarchitectural performance and power preoic SIGPLAN Not.

41(11):185-194, October 2006.

123

[41]

[42]

[43]

[44]

[45]

[46]

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burgérchitecting phase
change memory as a scalable dram alternativeProteedings of the 36th annual
international symposium on Computer architectuf8CA '09, pages 2-13, New

York, NY, USA, 2009. ACM.

Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. FarreBager writeback - a
technique for improving bandwidth utilization. FProceedings of the 33rd annual
ACM/IEEE international symposium on MicroarchitectuMICRO 33, pages 11—
21, New York, NY, USA, 2000. ACM.

Wei-Fen Lin, Steven K. Reinhardt, and Doug Burger. @asig a modern memory
hierarchy with hardware prefetchintEEE Trans. Comput50:1202—-1218, Novem-
ber 2001.

Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Dougd&ur Cache bursts:
A new approach for eliminating dead blocks and increasirdheeefficiency. In
Proceedings of the 41st annual IEEE/ACM International Sysiygm on Microarchi-
tecture MICRO 41, pages 222-233, Washington, DC, USA, 2008. IEEm@Qder

Society.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Pa#iktur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim HazebtlvoPin: building
customized program analysis tools with dynamic instrumagm. InPLDI '05: Pro-
ceedings of the 2005 ACM SIGPLAN conference on Programraimgubge design
and implementatiorpages 190-200, New York, NY, USA, 2005. ACM.

Mengjie Mao, Hai (Helen) Li, Alex K. Jones, and Yiran Che Coordinating
prefetching and stt-ram based last-level cache managédimentulticore systems.
In Proceedings of the 23rd ACM international conference ora@Glakes symposium

on VLS| GLSVLSI 13, pages 55-60, New York, NY, USA, 2013. ACM.

124

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Scott McFarling. Program optimization for instruaticaches. IProceedings of
the Third International Conference on Architectural Sugggor Programming Lan-

guages and Operating Systemages 183-191. ACM, 1989.

William Mendenhall, Dennis D. Wackerly, and Richrd Lhé&affer. Mathematical
Statistics withh Applications, Fourth EditioPWS Publishers, Boston, MA, 1986.

Pierre Michaud, André Seznec, and Richard Uhlig. Trrgctonflict and capacity
aliasing in conditional branch predictors. Broceedings of the 24th International

Symposium on Computer Architectupages 292-303, June 1997.

Shirley Moore, David Cronk, Felix Wolf, Avi PurkayasthPatricia Teller, Robert
Araiza, Maria Gabriela Aguilera, and Jamie Nava. Perforregorofiling and anal-
ysis of dod applications using papi and tau.0®D_UGC ’'05: Proceedings of the
2005 Users Group Conference on 2005 Users Group Confergrage 394, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

Naveen Muralimanohar, Rajeev Balasubramonian, andnNiouppi. Optimizing
nuca organizations and wiring alternatives for large caetith cacti 6.0. IrProceed-
ings of the 40th Annual IEEE/ACM International SymposiuniMacroarchitecture

MICRO 40, pages 3—14, Washington, DC, USA, 2007. IEEE Coemfbibciety.

Onur Mutlu and Thomas Moscibroda. Stall-time fair megnaccess scheduling
for chip multiprocessors. IProceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitectyr®1ICRO 40, pages 146-160, Washington,
DC, USA, 2007. IEEE Computer Society.

Onur Mutlu and Thomas Moscibroda. Parallelism-awateh scheduling: Enhanc-
ing both performance and fairness of shared dram systemBrokeedings of the
35th Annual International Symposium on Computer ArchiteciSCA '08, pages

63—74, Washington, DC, USA, 2008. IEEE Computer Society.

125

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, andt®eF. Sweeney. Produc-
ing wrong data without doing anything obviously wrong! ASPLOS '09: Proceed-
ing of the 14th international conference on Architecturapport for programming

languages and operating systerpages 265-276, New York, NY, USA, 2009. ACM.

Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, Chang lee, and Yale N. Patt.
Dram-aware last level cache writeback: Reducing writesedunterference in mem-

ory system. IrHPS Technical ReparfR-HPS-2010-002.

Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and JaBeSmith. Fair queuing
memory systems. IRroceedings of the 39th Annual IEEE/ACM International Sym-
posium on MicroarchitecturgICRO 39, pages 208-222, Washington, DC, USA,
2006. IEEE Computer Society.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad GhddARSSx86: A full
system simulator for x86 CPUs. IRAroceedings of the 2011 Design Automation

ConferenceJune 2011.

F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistreti. Scaravaggi, et al. Novel
pTrench Phase-Change Memory Cell for Embedded and StanmieAon-\olatile
Memory Applications. InVLSI Technology, 2004. Digest of Technical Papers. 2004
Symposium grpages 18-19, 2004.

Karl Pettis and Robert C. Hansen. Profile guided codetipaghg. In Proceed-
ings of the ACM SIGPLAN’90 Conference on Programming Lagguaesign and

Implementationpages 16—27, June 1990.

Moinuddin K. Qureshi, Michele M. Franceschini, Ashidagmohan, and Luis A.
Lastras. Preset: improving performance of phase changeonesrby exploiting

asymmetry in write times. IfProceedings of the 39th International Symposium

126

[61]

[62]

[63]

[64]

[65]

[66]

on Computer ArchitecturdSCA '12, pages 380-391, Piscataway, NJ, USA, 2012.
IEEE Press.

Moinuddin K. Qureshi, Michele M. Franceschini, and & #i. Lastras-montao. Im-
proving read performance of phase change memories viaeaiteellation and write
pausing. Ininternational Symposium on High Performance Computer ikecture

HPCA 10, pages 1-11, 2010.

Moinuddin K. Qureshi, John Karidis, Michele FrancesthVijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. Enhancing lifetinnel @ecurity of pcm-
based main memory with start-gap wear levelingPtaceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitectuké!CRO 42, pages 14—
23, New York, NY, USA, 2009. ACM.

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, anchlé N. Patt. A case
for mlp-aware cache replacement. Rnoceedings of the 33rd annual international
symposium on Computer Architectul8CA '06, pages 167-178, Washington, DC,
USA, 2006. IEEE Computer Society.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, andl@ A. Rivers. Scalable high
performance main memory system using phase-change mesuwmdlogy. Inin

International Symposium on Computer Architecture (1S2309.

Luiz E. Ramos, Eugene Gorbatov, and Ricardo Biancltage placement in hybrid
memory systems. IRroceedings of the international conference on Supercoimgu

ICS "11, pages 85-95, New York, NY, USA, 2011. ACM.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,(.-Chen, R. M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lamag¥ichange random
access memory: A scalable technolo3M J. Res. Dey52(4):465-479, July 2008.

127

[67] Scott Rixner. Memory controller optimizations for webrvers. InProceedings of
the 37th annual IEEE/ACM International Symposium on Micchédecture MICRO
37, pages 355-366, Washington, DC, USA, 2004. IEEE Com3deiety.

[68] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peterailson, and John D. Owens.
Memory access scheduling. Rroceedings of the 27th annual international sym-
posium on Computer architectyrSCA '00, pages 128-138, New York, NY, USA,
2000. ACM.

[69] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsin@ycle accurate memory

system simulatorComputer Architecture Letterd0(1):16-19, Jan 2011.

[70] Eric Rotenberg, Steve Bennett, and James E. Smith. eTeache: A low latency
approach to high bandwidth instruction fetching Piroceedings of the 29th Interna-

tional Symposium on Microarchitectymecember 1996.

[71] Shai Rubin, Rastislav Bodik, and Trishul Chilimbi. Asfficient profile-analysis
framework for data-layout optimizations. POPL '02: Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programniiaigguages
pages 140-153, New York, NY, USA, 2002. ACM.

[72] André Seznec. A 256 kbits I-tage branch prediciournal of Instruction-Level Par-
allelism (JILP) Special Issue: The Second Championshimé&rdrediction Compe-
tition (CBP-2) 9, May 2007.

[73] Jun Shao and Brian T. Davis. A burst scheduling accessleging mechanism. In
Proceedings of the 2007 IEEE 13th International SymposiarAligh Performance
Computer Architecturepages 285-294, Washington, DC, USA, 2007. IEEE Com-

puter Society.

128

[74] Timothy Sherwood, Erez Perelman, Greg Hamerly, andlEBalder. Automatically
characterizing large scale program behavioPloceedings of the 10th International
Conference on Architectural Support for Programming Laagges and Operating

SystemgOctober 2002.

[75] James E. Smith. A study of branch prediction strategie?roceedings of the 8th
Annual International Symposium on Computer Architectpages 135-148, May
1981.

[76] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale MitP Feedback di-
rected prefetching: Improving the performance and banthaédficiency of hard-
ware prefetchers. IRroceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architectur#PCA '07, pages 63—74, Washington,
DC, USA, 2007. IEEE Computer Society.

[77] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, lléry C. Hunter, and Lizy K.
John. The virtual write queue: coordinating dram and legéll cache policies. In
Proceedings of the 37th annual international symposium omguter architecture

ISCA 10, pages 72—-82, New York, NY, USA, 2010. ACM.

[78] Kshitij Sudan, Niladrish Chatterjee, David NellansaMi Awasthi, Rajeev Balasub-
ramonian, and Al Davis. Micro-pages: increasing dram efficy with locality-
aware data placement. Rroceedings of the fifteenth edition of ASPLOS on Archi-
tectural support for programming languages and operatiggteams ASPLOS ’10,
pages 219-230, New York, NY, USA, 2010. ACM.

[79] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yirame@. A novel architec-
ture of the 3d stacked mram |2 cache for cmpsHRCA, pages 239-249, 2009.

[80] Shun-Ming Syu, Yu-Hui Shao, and Ing-Chao Lin. High-areghce hybrid cache

design in cmp architecture with cache partitioning and s&@avare policy. liPro-

129

[81]

[82]

[83]

[84]

[85]

[86]

[87]

ceedings of the 23rd ACM international conference on Graké$ symposium on

VLS|, GLSVLSI '13, pages 19-24, New York, NY, USA, 2013. ACM.

Jue Wang, Xiangyu Dong, and Yuan Xie. Oap: An obstruct@are cache man-
agement policy for stt-ram last-level caches.Design, Automation Test in Europe

Conference Exhibition (DATE), 20,18ages 847-852, 2013.

Xiaobin Wang, Yiran Chen, Hai Li, D. Dimitrov, and H. Liu Spin torque ran-
dom access memory down to 22 nm technologgEE Transactions on Magnetics

44(11):2479-2482, 2008.

Zhe Wang and Daniel A. Jiménez. Program interferomeétr Workload Character-

ization (IISWC), 2011 IEEE International Symposium pages 172-175, 2011.

Zhe Wang, Daniel A. Jiménez, Cong Xu, Guangyu Sun, andnYXie. Adaptive
placement and migration policy for an stt-ram-based hybaiche. InProceedings
of the 20th International Symposium on High Performance @der Architecture

(HPCA-20) Orlando, FL, USA, February 2014. IEEE Computer Society.

Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Imprgwriteback efficiency
with decoupled last-write prediction. Proceedings of the 39th International Sym-
posium on Computer ArchitectyrSCA 12, pages 309-320, Piscataway, NJ, USA,
2012. IEEE Press.

Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Ratetiche prediction driven
last-level cache writeback. FRroceedings of the 2012 ACM SIGPLAN Workshop on
Memory Systems Performance and Correctng&&PC '12, pages 21-29, New York,
NY, USA, 2012. ACM.

Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, SiWiaj Yuan Xie, and

Daniel A. Jiménez. Wade: Writeback-aware dynamic cacheagement for nvm-

130

[88]

[89]

[90]

[91]

[92]

[93]

[94]

based main memory systemACM Trans. Archit. Code Optim10(4):51:1-51:21,
December 2013.

Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi,08il@. Steely, Jr., and Joel
Emer. Pacman: prefetch-aware cache management for hifgirrpance caching.
In Proceedings of the 44th Annual IEEE/ACM International Sysmm on Microar-
chitecture MICRO-44 '11, pages 442-453, New York, NY, USA, 2011. ACM.

Yuan Xie. Modeling, architecture, and applicationsémerging memory technolo-

gies.IEEE Computer Design and Te&8:41-51, January 2011.

T.-Y. Yeh and Yale N. Patt. Two-level adaptive trainibganch prediction. In
Proceedings of the 24th ACM/IEEE International SymposianMacroarchitecture
pages 51-61, November 1991.

HanBin Yoon, Justin Meza, Rachata Ausavarungnirurghdal Harding, and Onur
Mutlu. Row buffer locality aware caching policies for hythrmemories. Innterna-

tional Conference on Computer Desjd@CD '12, 2012.

Cliff Young, David S. Johnson, David R. Karger, and Maeh D. Smith. Near-
optimal intraprocedural branch alignment.Rroceedings of the SIGPLAN’97 Con-

ference on Program Language Design and Implementafione 1997.

Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permaabased page inter-
leaving scheme to reduce row-buffer conflicts and expldi dizcality. InProceed-
ings of the 33rd annual ACM/IEEE international symposiumMinroarchitecture

MICRO 33, pages 32-41, New York, NY, USA, 2000. ACM.

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durablktenergy efficient

main memory using phase change memory technologprdceedings of the 36th

131

annual international symposium on Computer architecti8€A '09, pages 14-23,

New York, NY, USA, 2009. ACM.

132

