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ABSTRACT

This document contains three sections. The first two present new methods for two-

sample testing where there are many variables of interest and the third presents a new

methodology for time series bootstrapping.

In the first section we develop a test statistic for testing the equality of two pop-

ulation mean vectors in the “large-p-small-n” setting. Such a test must surmount the

rank-deficiency of the sample covariance matrix, which breaks down the classic Hotelling

T 2 test. The proposed procedure, called the generalized component test, avoids full es-

timation of the covariance matrix by assuming that the p components admit a logical

ordering such that the dependence between components is related to their displacement.

The test is shown to be competitive with other recently developed methods under ARMA

and long-range dependence structures and to achieve superior power for heavy-tailed

data. The test does not assume equality of covariance matrices between the two pop-

ulations, is robust to heteroscedasticity in the component variances, and requires very

little computation time, which allows its use in settings with very large p. An analysis

of mitochondrial calcium concentration in mouse cardiac muscles over time and of copy

number variations in a glioblastoma multiforme data set from The Cancer Genome Atlas

are carried out to illustrate the test.

In the second section we present a theorem establishing a power improvement to the

Benjamini–Hochberg procedure for controlling the false discovery rate when it is applied

to test statistics which have been adjusted for the effects of latent factors. We extend

recently published methodology to the context of serially dependent test statistics by

presenting a frequency-domain adaptation of their procedure. We show that our harmonic

factor adjustment to the test statistics improves the power of the Benjamini–Hochberg

procedure without compromising its control of the false discovery rate when the test

statistics are affected by latent periodic components. An illustration of our methodology
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is given in an analysis of copy number variations, which are measured along a chromosome

and tend to exhibit serial dependence; power gains from our harmonic factor adjustment

are demonstrated.

In the third section we present a smoothed bootstrap procedure for time series data.

Unlike with independent data, smoothed boostraps have received little consideration for

time series. However, as evidenced in the iid smooth bootstrap, additional data smooth-

ing steps within resampling can improve bootstrap approximations of the distributions

of statistics, especially when such sampling distributions depend critically on unknown

and smooth (e.g., infinite-dimensional) population quantities, such as marginal densities.

To broaden the effectiveness of the bootstrap for time series, we propose a smooth boot-

strap based on modifying a state-of-the-art block resampling approach for dependent

data based on tapering windows. The resulting smooth (extended) tapered block boot-

strap (TBB) is shown to provide valid variance and distributional approximations over a

broad class of parameters and statistics for stationary time series, formulated in terms of

statistical functionals (e.g., smooth function model statistics, L- and M-estimators, rank

statistics). Our treatment goes beyond statistics as smooth functions of sample averages,

showing that the smooth TBB has applicability in inference cases which have not been

formally established for other TBB versions. Some finite-sample simulations also pro-

vide evidence that smoothing steps enhance the performance of the block bootstrap for

various statistical functionals.
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NOMENCLATURE

Ch-Q Refers to the test from Chen & Qin (2010)

CLX Refers to the test from Cai et al. (2014)

SK Refers to the test from Srivastava & Kubokawa (2013)

GCT Generalized Component Test

ARMA Autoregressive Moving Average

IND Independence

LR Long-range dependence

CBS Circular Binary Segmentation

FDR False Discovery Rate

BH Refers to the procedure from Benjamini & Hochberg (1995)

FHG Refers to the procedure from Fan et al. (2012)

MSE Mean Squared Error

MBB Moving Blocks Bootstrap

SMBB Smooth Moving Blocks Bootstrap

ETBB Extended Tapered Blocks Bootstrap

SEBB Smooth Extended Tapered Blocks Bootstrap

HHJ Refers to the block size selection method in Hall et al. (1995)
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1. INTRODUCTION

This dissertation is composed of three projects. The first two address two-sample

testing problems when large numbers of variables are concerned and the third presents

a smooth block bootstrap method for time series.

In Section 2 a test statistic for testing equality of mean vectors between two popu-

lations is proposed and its null distribution is derived. The test is developed under the

setting in which the variables of interest admit an ordering in some index such as time or

space from which the test statistics inherit a serial dependence structure. The proposed

test demonstrates superior power over competitors in the literature in some simulation

studies and in an analysis of copy number data from two groups of cancer patients.

Section 3 develops a dependence-adjusted multiple testing procedure for differences

in means for a large number of variables, continuing under the assumption of serial

dependence. Power gains from the dependence adjustment are established theoretically

and demonstrated in simulations as well as on real data.

Section 4 develops a time-series bootstrap methodology involving block resampling

with tapered block weights and smoothing by adding normal perturbations to the data

values. The gains from smoothing in time series bootstrap methods have not been well

explored in the literature, and this work demonstrates that estimates of the sampling

distributions of some statistics such as the quantile and the trimmed mean can be sub-

stantially improved by smoothing. We prove the consistency of the recently introduced

extended tapered block bootstrap and our smoothed version of it under a broader class

of statistics than that originally considered.

Appendices for the three sections appear at the end of this document which contain

most of the proofs and some supplementary material.
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2. A TWO-SAMPLE TEST FOR EQUALITY OF MEANS IN HIGH DIMENSION

2.1 Introduction

In many applications it is desirable to test whether the means of high-dimensional

random vectors are the same in two populations. Often, the number of components in the

random vectors exceeds the number of sampled observations, the so-called “large-p-small-

n” problem, and conventional test statistics become unviable. Given the steadily growing

availability and interest in high-dimensional data, particularly in biological applications,

test statistics that are viable for high-dimensional data are in increasing demand.

The challenge when p � n is to model the structure of dependence among the p

components without estimating each of the p(p+1)/2 unique entries in the full covariance

matrix. The classical test for equal mean vectors between two populations is Hotelling’s

T 2 test, but the test statistic is undefined when p is larger than the sum of the sample

sizes (minus 2), because it involves inverting the p× p sample covariance matrix. Several

procedures are available which circumvent full covariance matrix estimation. We acheive

this in the important case in which the p components admit an ordering in time, space,

or in another index, such that the dependence between two components is related to

their displacement. When measurements are taken along a chromosome, for example,

the location of each measurement is recorded, providing an index over which dependence

may be modeled, affording gains in power. For concreteness, it is here assumed that the

components admit a unidirectional ordering.

To fix notation, let X1, X2, . . . , Xn ∈ Rp and Y1, Y2, . . . , Ym ∈ Rp be independent

identically distributed random samples from two populations having p× 1 mean vectors

µ1 and µ2 and p × p covariance matrices Σ1 and Σ2, respectively. The hypotheses of

interest become H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

There are some methods available for testing H0 : µ1 = µ2 versus H1 : µ1 6= µ2 in the

2



“large-p-small-n” setting. Srivastava (2007) presented a modification of Hotelling’s T 2

statistic which handles the singularity of the sample covariance matrix by replacing its

inverse with the Moore-Penrose inverse. Wu et al. (2006) proposed the pooled component

test, for which the test statistic is the sum of the squared univariate pooled two-sample

t-statistics for all p vector components, which they assumed to follow a scaled chi-square

distribution. Bai & Saranadasa (1996) presented a test statistic which uses only the

trace of the sample covariance matrix and performs well when the random vectors of

each population can be expressed as linear transformations of zero-mean i.i.d. random

vectors with identity covariance matrices. Each of these methods assumes a common

covariance matrix between the two populations, that is that Σ1 = Σ2.

More recently, under a setup similar to that of Bai & Saranadasa (1996), but which

accommodates unequal covariances, Chen & Qin (2010) introduced a method (hereafter

called the Ch-Q test), which allows Σ1 6= Σ2 and sidesteps covariance matrix estimation

altogether. Srivastava & Kubokawa (2013) proposed a method (hereafter called the SK

test) for multivariate analysis of variance in the large-p-small-n setting, of which the

high-dimensional two-sample problem is an instance. Cai et al. (2014) presented a test

(hereafter called the CLX test) based upon the supremum of standardized differences

between the observed mean vectors, and offer an illuminating discussion about the con-

ditions under which supremum-based tests are likely to outperform sum-of-squares-based

tests, which include the Ch-Q and SK tests as well as the test we introduce in this paper.

If the differences between µ1 and µ2 are rare, but large where they occur, i.e. the signals

are sparse but strong, a supremum-based test should have greater power than a sum-

of-squares-based test. The reason is that tests which sum the differences across a large

number of indices will not be greatly influenced by a very small number of large differ-

ences. If, however, there are many differences between µ1 and µ2, but these differences

are small, i.e. the signals are dense but weak, the supremum of the differences across all

the indices will not likely be extreme enough to arouse suspicion of the null. A sum-of-

3



squares based test statistic, however, will represent an accumulation of the large number

of weak signals, and will have more power. Dense-but-weak signal settings do exist, for

example in the analysis of copy number variations, where mildly elevated or reduced

numbers of DNA segment copies in cancer patients are believed to occur over regions of

the chromosome rather than at isolated points (Olshen et al. (2004), Baladandayuthapani

et al. (2010)). It is for such cases that our test is designed.

Section 2.2 describes the GCT test statistic and Section 2.3 gives its asymptotic distri-

bution. Section 2.4 presents a simulation study of the GCT, comparing its performance

with that of the Ch-Q, SK, and CLX tests in terms of power and maintenance of nominal

size. Section 2.5 implements the GCT as well as the Ch-Q, SK, and CLX tests on a copy

number data set and a time series data set. Concluding remarks appear in Section 2.7

and Appendix A provides proofs of the main results. Full details for the proofs may be

found in Appendix A.

2.2 Test Statistic

The GCT statistic is computed as follows. Let Tn = p−1(t2n1 + t2n2 + · · ·+ t2np), where

t2nj = (Xnj − Y mj)
2(s2

nj/n+ ϑ2
mj/m)−1 (2.1)

for j = 1, . . . , p, where Xnj and Y mj are the sample means of the jth vector component

and s2
nj and ϑ2

mj are the sample variances of the jth vector component for the X and Y

samples, respectively. Thus Tn is the mean of the squared unpooled univariate two-sample

t-statistics t2nj over all components j = 1, . . . , p.

The GCT statistic is a centered and scaled version of Tn defined as Gn ≡ p1/2(Tn −

ξ̂n)/ζ̂n, where ξ̂n and p1/2/ζ̂n are described below. The equal means hypothesis is rejected

at level α when |Gn|> Φ−1(1 − α/2), where Φ(·) is the standard normal cumulative

distribution function.

In what shall be called the moderate-p version of the test, ξ̂n ≡ 1, so that G
(M)
n ≡

4



p1/2(Tn − 1)/ζ̂n. For the large-p version, higher-order expansions suggest a centering of

the form ξ̂n ≡ 1 + n−1ân + n−2b̂n, so that

G(L)
n ≡ p1/2{Tn − (1 + n−1ân + n−2b̂n)}/ζ̂n. (2.2)

The quantities ân and b̂n are defined as ân ≡ (ĉn1+· · ·+ĉnp)/p and b̂n ≡ (d̂n1+· · ·+d̂np)/p,

where ĉnj and d̂nj are obtained by plugging sample moments into the expressions given

in Lemma 1 for cnj and dnj for each of the components j = 1, . . . , p.

Though Tn is a mean of squared marginal two-sample t-statistics, the construction

of the scaling will account for the dependence among them. In both the moderate- and

large-p versions of the test statistic, the scaling p1/2/ζ̂n is the same. Let

γ̂(k) = (p− k)−1
∑p−k

j=1(t2nj − Tn)(t2n(j+k) − Tn), (2.3)

which is the sample autocovariance function of the squared t-statistics. Then the scaling

ζ̂n is defined such that

ζ̂2
n ≡

∑
|k|<Lw(k/L)γ̂(k), (2.4)

where w(x) is an even, piecewise function of x such that w(0) = 1, |w(x)|≤ 1 for all x,

and w(x) = 0 for |x|> 1, and L is a user-selected lag window size.

The choices of the lag window w(·) considered here are the Parzen window

wp(x) =


1− 6|x|2+6|x|3, |x|< 1/2

2(1− |x|)3, 1/2 ≤ x ≤ 1

0, |x|> 1
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found in Brockwell & Davis (2009) and the trapezoid window

wT (k/r) =


1, |k|< [L/2]

1−
(
k−[L/2]
r−[L/2]

)
, [L/2] ≤ k ≤ L

0, |k|> L

from Politis & Romano (1995), where [x] denotes the largest integer not exceeding x.

2.3 Main Results

Let α(r) = sup{α(Fk1 ,F
p
k+r) : 1 ≤ k ≤ p−r}, where F ba ≡ F ba,n = σ〈{tnj : a ≤ j ≤ b}〉

and where for any σ-fields, F and G,

α(F ,G) = sup{|P (A ∩B)− P (A)P (B)|: A ∈ F , B ∈ G}

denotes the strong mixing coefficient between F and G. Then the following conditions

are assumed in deriving the asymptotic distribution of the test statistic Tn.

(C.1) For some δ ∈ (0,∞), (i)
∑∞

r=1 α(r)δ/(2+δ) < ∞, and (ii) E|t2nj|2r+δ< c < ∞ for all

j = 1, . . . , p for some integer r ≥ 1.

(C.2) The limit limn→∞
1

p−k
∑p−k

j=1 Cov(t2nj, t
2
n(j+k)) = γ(k) exists for all k > 0.

(C.3) (i) max{E|X1j|16, E|Y1j|16, j = 1, . . . , p} = O(1).

(ii) min{Var(X1j),Var(Y1j)} > c > 0.

The following theorem establishes the asymptotic normality of the test statistic under

the appropriate centering and scaling.

Theorem 1 Suppose that p ≡ pn = o(n6) and (C.1)–(C.3) hold with r = 1 in (C.1).

Then

sup
x∈R
|P (Tn − 1 < x)− Φ{√p(x− n−1an − n−2bn)/τ∞}|= o(1),
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where τ 2
∞ = γ(0) + 2

∑∞
k=1 γ(k) and an = (cn1 + · · ·+ cnp)/p and bn = (dn1 + · · ·+ dnp)/p,

where cnj and dnj for j = 1, . . . , p are as in Lemma 1 in Appendix A.

Remark 1 Theorem 1 shows that Gn ≡ p1/2(Tn − ξ̂n)/ζ̂n →d Normal(0, 1) as n→∞.

2.3.1 Technical Details

The choice of the centering quantity ξ̂n comes from noting that ETn = 1 + O(n−1)

as n → ∞. This follows from the fact that tnj converges in distribution to Z, where

Z ∼ Normal(0, 1), for all j = 1, . . . , p, and EZ2 = 1. Thus E{√p(Tn− 1)} =
√
pO(n−1),

so that when ξ̂n ≡ 1, the expectation of the test statistic differs from zero by
√
pO(n−1),

restricting p to grow at a rate such that p = o(n2). When ξ̂n ≡ 1 + n−1ân + n−2b̂n, the

expectation of the test statistic is
√
pO(n−3), allowing p = o(n6). Hence the “moderate-”

and “large-p” designations. One may also consider an intermediate-p version of the test

which uses only n−1ân in the centering correction, allowing p = o(n4), but its performance

is not investigated here.

While the large-p test allows for p = o(n6), an advantage of the moderate-p test

is its robustness to outliers. The centering correction in the large-p test involves high-

order sample moments which are volatile when the data come from a very heavy-tailed

distribution, in which case the centering value of 1 is preferable.

The formulation of ζ̂n rests on the assumption that the p components admit a logical

ordering such that their dependence is autocovarying and diminishing as components

are further removed—that is, that the covariance between components may be described

with an autocovariance function that decays sufficiently fast. In the proof of Theo-

rem 1, the asymptotic variance of p1/2Tn under some regularity conditions is shown to

be
∑∞

h=−∞ γ(h), which is equal to 2π times the spectral density f(·) of the sequence

(t2n1, t
2
n2, . . . ) evaluated at 0. Thus f̂(0) = (2π)−1

∑
|k|<Lw(k/L)γ̂(k) provides the scaling

in (2.4).
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2.3.2 Power of the Generalized Component Test

In order to compute the asymptotic power of the GCT, the expected value of Tn =

p−1(t2n1, . . . , t
2
np) must be computed under the alternative H1 : µ1j − µ2j = δj for j =

1, . . . , p when δj 6= 0 for at least one j. Let ξ
(1)
n denote E(Tn|H1 true). Then the power

of the GCT, which is P (|p1/2(Tn − ξ̂n)/ζ̂n)|> zα/2|H1 true), is equal to

1−P (−zα/2−p1/2(ξ(1)
n − ξ̂n)/ζ̂n < p1/2(Tn− ξ(1)

n )/ζ̂n) < zα/2−p1/2(ξ(1)
n − ξ̂n)/ζ̂n|H1 true).

Under conditions (C.1)–(C.3) we can invoke the asymptotic normality of p1/2(Tn−ξ(1)
n )/ζ̂n

and the consistency of ζ̂n for ζ and approximate the power with

1− {Φ(zα/2 − p1/2(ξ(1)
n − ξ̂n)/ζ)− Φ(−zα/2 − p1/2(ξ(1)

n − ξ̂n)/ζ)}

so that it is a function of p1/2(ξ
(1)
n − ξ̂n)/ζ.

Given the tedium of computing ξ
(1)
n = E{p−1

∑p
j=1 t

2
nj|H1 true} = np−1

∑p
j=1E[(Xnj−

Y mj)
2/{s2

nj + (n/m)ϑ2
mj}|H1 true] to within O(n−3) of its true value as was done for ξ̂n

under the null hypothesis (cf. Lemma 1), we replace s2
nj and ϑ2

mj with their population

values σ2
1j and σ2

2j and get ξ
(1)
n ≈ 1 + n(µ1j − µ2j)

2/{σ2
1j + (n/m)σ2

2j}.

If we may replace n, p1/2(ξ
(1)
n − ξ̂n)/ζ with np−1/2

∑p
j=1δ

2
j /{σ2

1j + (n/m)σ2
2j}/ζ, then

the power may be expressed

1− (Φ[zα/2 − np−1/2
∑p

j=1δ
2
j /{σ2

1j + (n/m)σ2
2j}/ζ]

− Φ[−zα/2 − np−1/2
∑p

j=1δ
2
j /{σ2

1j + (n/m)σ2
2j}/ζ]).

From this expression we note that under p = o(n2)

Power →

 1, p1/2n−1 = o(
∑p

j=1δ
2
j/{σ2

1j + (n/m)σ2
2j})

α,
∑p

j=1δ
2
j /{σ2

1j + (n/m)σ2
2j}) = o(p1/2n−1)
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For example, if δj = δp−1/2 for j = 1, . . . , p for some δ > 0 then the power will converge

to 1, but if δj = δp−(1/2+ε) for j = 1, . . . , p the test will have “nonpower” above the

significance level as n, p→∞.

2.4 Simulation Studies

The performances of the GCT, Ch-Q, SK, and CLX tests were compared in terms

of size control and power under various settings. For the sample sizes (n,m) = (45, 60)

and (n,m) = (90, 120) with p = 300, two-sample data were generated such that for

each subject the p components were (i) independent (IND), (ii) ARMA dependent, or

(iii) long-range (LR) dependent. For each dependence structure, the innovations used to

generate each subject series were (a) Normal(0,1), (b) skewed innovations, coming from a

gamma(4, 2) distribution centered at zero, thus having mean zero and variance 4(2)2 = 16,

and (c) heavy-tailed innovations from a Pareto(a, b) distibution with distribution function

F (x) = 1 − (1 + x/b)−1/a where the density was shifted to the origin and reflected

across the vertical axis to form a “double” Pareto distribution. Under this double Pareto

distribution,

E|X|r =

 ∞, r ≥ a

brΓ(a− r)Γ(1 + r)/Γ(a), r < a.

Once a zero-mean series was generated for each subject, it was added to the p × 1

mean vector µ1 or µ2, depending on the population to which the subject belonged. Un-

der IND, the zero-mean series consisted of p independent identically distributed inno-

vations from the chosen innovation distribution. For the ARMA dependence structure,

p-length series from an ARMA process with AR parameters φ1 = {0.4,−0.1} and MA

parameters θ1 = {0.2, 0.3} were used for both populations. Under the LR structure,

realizations of zero-mean, long-range-dependent processes with self-similarity parameter

H1 = (1/2)(2 − 0.75) = 0.625 were used. The algorithm used for generating vectors of
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long-range dependent random variables is found in Hall et al. (1998).

At each sample size, dependence structure, and innovation distribution combination,

a simulation was run in which Σ1 = Σ2 and in which Σ2 = 2Σ1, where the unequal

covariance setting was imposed by scaling the zero-mean series for the population 2

subjects by
√

2.

For the CLX test, which features an equal-covariances and an unequal-covariances

version, Cai et al. (2014) suggest first testing H0 : Σ1 = Σ2 using a test from Cai

et al. (2013a) and then choosing the version of the CLX test accordingly. Since in

practice it is generally not known whether Σ1 = Σ2 holds, the test of H0 : Σ1 = Σ2

was performed in each simulation run to determine which version of the CLX test would

be used. The CLX test requires an estimate for the precision matrix Ω = Σ−1
1 (= Σ−1

2 )

or Ω = {Σ1 + (n/m)Σ2}−1 for the unequal-covariances version. Of the two methods

the authors suggest for estimating Ω, that which is presented in Cai et al. (2011) and

provided in the R package fastclime (Pang et al. (2013)) was chosen and implemented

under default settings.

For power simulations, the alternate hypotheses were that µ1 = 0 and µ2 = [δ1′βp,

(0)1′(1−β)p]
′, where 1k was a k × 1 vector of ones, p was the number of components, and

β ∈ [0, 1] was the proportion of the p components for which the difference in means was

nonzero. The number of components p was fixed at 300 and the power was simulated for

β ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1}. The difference or signal δ was chosen such that the

signal to noise ratio δ/σ was equal to 1/8, where σ was the standard deviation of the

innovations used to construct each series (each p-variate observation); thus δ = σ/8 was

used.

Full factorial simulation results for {(45, 60), (90, 120)}×{IND, ARMA, LR}×{Normal,

Skewed, Heavy-tailed} × { Σ1 = Σ2 , Σ2 = 2Σ1 } were run, but only selected results are

highlighted here. In addition to the factorial simulation, the tests were evaluated under

heteroscedastic component variances and ultra-heavy tailed (infinite-variance) innova-
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tions.

2.4.1 Performance Under Normality

Table 2.1 displays the simulated Type I error rates of the four tests under the

sample sizes (n,m) = (45, 60), (90, 120) across the three dependence structures under

Normal(0, 1) innovations and for Σ1 = Σ2. For the GCT, results are given for the Parzen

and trapezoid lag windows at lag window sizes L = 10, 15, 20 for the moderate-p (upper

panel) and the large-p (lower panel) choice of the centering. The Ch-Q, SK, and CLX

Type I error rates are duplicated in the upper and lower panels as the moderate- and

large-p versions of the GCT were applied to the same 500 simulated data sets.

p = 300, Σ1 = Σ2 Normal(0, 1) Innovations

ξ̂n ≡ 1 Parzen Window Trapezoid Window
n m Cov Ch-Q SK CLX L = 10 L = 15 L = 20 L = 10 L = 15 L = 20
45 60 IND 0.07 0.04 0.09 0.06 0.07 0.07 0.06 0.08 0.07

ARMA 0.06 0.04 0.08 0.06 0.07 0.07 0.07 0.08 0.07
LR 0.05 0.04 0.10 0.06 0.06 0.07 0.08 0.09 0.07

90 120 IND 0.05 0.04 0.07 0.06 0.06 0.06 0.07 0.08 0.06
ARMA 0.05 0.04 0.06 0.07 0.07 0.08 0.08 0.09 0.08
LR 0.03 0.03 0.07 0.05 0.05 0.07 0.06 0.08 0.07

ξ̂n ≡ 1 + an/n+ bn/n
2 Parzen Window Trapezoid Window

n m Cov Ch-Q SK CLX L = 10 L = 15 L = 20 L = 10 L = 15 L = 20
45 60 IND 0.07 0.04 0.09 0.07 0.07 0.07 0.07 0.08 0.07

ARMA 0.06 0.04 0.08 0.07 0.07 0.07 0.07 0.08 0.07
LR 0.05 0.04 0.10 0.07 0.07 0.08 0.08 0.09 0.08

90 120 IND 0.05 0.04 0.07 0.06 0.06 0.07 0.07 0.08 0.07
ARMA 0.05 0.04 0.06 0.08 0.08 0.08 0.08 0.09 0.08
LR 0.03 0.03 0.07 0.06 0.06 0.06 0.07 0.09 0.06

Table 2.1: Type I error rates over S = 500 simulations with nominal size α = .05 for
the moderate- and large-p GCT under the Parzen and trapezoid lag windows at lengths
L = 10, 15, 20 and for the Ch-Q, SK, CLX tests under Normal(0, 1) innovations with
Σ1 = Σ2.

The Ch-Q and SK tests maintained very close-to-nominal Type I error rates. The
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CLX test exhibited slightly inflated Type I error rates under the IND and LR dependence

structures for the smaller sample sizes (n,m) = (45, 60), but maintained close-to-nominal

rates for (n,m) = (90, 120). For the GCT, the Parzen window appeared to control the

Type I error rate slightly better than the trapezoid window, and the Type I error rates

were similar for the three choices of the lag window size.

2.4.2 Effect of Skewness

The results of the Type I error simulation with skewed innovations were similar to

those in the Normal(0, 1) case. For the power simulation, Figure 2.1 plots the proportion

of rejections across 500 simulation runs against the proportion β of the p = 300 compo-

nents in which µ1 and µ2 differed, where β ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1}. The three

panels show the power curves of the four tests under the IND, ARMA, and LR depen-

dence structures, respectively, when the innovations came from the centered gamma(4, 2)

distribution and when the sample sizes were (n,m) = (90, 120). The four tests exhibited

similar performance under these settings, though under independence the size of the CLX

test was somewhat inflated, yet its power increased more rapidly in β than that of the

other tests under ARMA dependence.

2.4.3 Effect of Heavy-Tailedness

The results for the heavy-tailed simulation with innovations coming from the double

Pareto(16.5, 8) distribution did not differ greatly from those of the normal- and skewed-

innovations simulations. In order to assess the robustness of the GCT to violations of

its moment conditions, ultra-heavy tailed data were simulated using innovations from a

double Pareto(1.5, 1) distribution, which has infinite variance. Since the centering cor-

rections ân and b̂n in the large-p GCT are computed using higher order sample moments,

only the moderate-p GCT was here considered, as its centering of 1 gives it stability.

Under these settings, the signal, which was set to δ = .5, is very weak relative to the

noise, such that as the proportion β of non-null mean differences goes to 1, a dense-but-
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Figure 2.1: Power curves at sample sizes (n,m) = (90, 120) for the moderate- and large-
p GCT, Ch-Q, SK, and CLX tests against the proportion of nonzero mean differences
β under IND, ARMA, and LR dependence (left to right) with centered gamma(4, 2)
innovations and Σ1 = Σ2. Based on S = 500 simulations.

weak signal structure is simulated. The resulting power curves are shown in Figure 2.2,

in which the Ch-Q test is seen to have much less power than the others; the CLX also

suffers a reduction in power under ARMA and LR dependence. Under LR dependence,

the size of the GCT was somwhat inflated, but it was very close to nominal for the IND

and ARMA cases. In the ARMA case, the GCT exhibited greater power than the other

tests across the range of alternatives.

2.4.4 Effect of Heteroscedasticity

The effect of heteroscedasticity on the GCT may be anticipated by noting that t2nj

from (2.1) can be expressed

t2nj =

√n{(Xnj − µ1j)− (Y mj − µ2j)}√
s2
nj + (n/m)ϑ2

mj

+

√
nδj√

s2
nj + (n/m)ϑ2

mj

2

(2.5)

where δj = µ1j−µ2j, for j = 1, . . . , p. The second term is equal to zero under H0. Under

H1, for a fixed difference δj, the variances σ2
1j and σ2

2j affect the magnitude of t2nj such
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Figure 2.2: Power curves at sample sizes (n,m) = (90, 120) for the large-p GCT, Ch-Q,
SK, and CLX tests against the proportion of nonzero mean differences β under IND,
ARMA, and LR dependence (left to right) with double Pareto(1.5,1) innovations and
Σ1 = Σ2. Based on S = 500 simulations.

that very small values for σ2
1j and σ2

2j promote very large values of t2nj. Since the scaling

ζ̂n for Tn is a function of γ̂(·), the estimated autocovariance function of t2n1, t
2
n2, . . . , t

2
np, as

seen from (2.3) and (2.4), extreme values of t2nj will pull ζ̂n upward, shrinking Tn toward

zero. Extreme values of t2nj will tend to occur if σ2
1j and σ2

2j are very small when δj 6= 0.

Although smaller variances ought to ensure a greater likelihood of rejecting H0, if ζ̂n is

inflated by extreme values of t2nj, the GCT statistic will be close to zero, and the test

will fail to reject, hence condition (C.3) (ii). Large values of σ2
1j and σ2

2j when δj 6= 0 will

tend to reduce t2nj, but since it is bounded below by zero, extreme values will not occur.

The size of the test should be robust to any scaling of the variances, as the second term

in (2.5) will be zero when H0 is true.

To investigate the impact of heterscedasticity on the performance of the four tests,

the standard deviations of the components were each scaled by a realization from the

exponential distribution with mean 1/2 shifted to the right by 1/2 such that the average

scaling was 1 and so that the scaled variances were bounded away from 0. The power

simulation with centered gamma(4, 2) innovations was repeated under these heterosce-
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Figure 2.3: Power curves at sample sizes (n,m) = (45, 60) for the moderate- and large-
p GCT, Ch-Q, SK, and CLX tests against the proportion of nonzero mean differences
β under IND, ARMA, and LR dependence (left to right) with heteroscedastic centered
gamma(4, 2) innovations and Σ1 = Σ2. Based on S = 500 simulations.

castic conditions with (n,m) = (45, 60). Figure 2.3 exhibits a dramatic reduction in the

power of the Ch-Q test due to heteroscedasticity. The CLX test exhibited somewhat

inflated size under the IND and LR dependence structures, while the SK test and the

GCT demonstrated robustness to the heteroscedstic variance scalings.

2.4.5 Effect of Unequal Covariance Matrices

Of the four tests, the SK test is the only one which assumes a common covariance

matrix for the two populations. Cai et al. (2014) suggest first testing H0 : Σ1 = Σ2 with

a test from Cai et al. (2013a) and implementing the equal or unequal covariances version

of the CLX test accordingly. The Ch-Q and the GCT do not require any assumption

or testing of equality between the covariance matrices. The SK is thus anticipated to

perform more poorly than the others when the covariance matrices are unequal.

To impose inequality between Σ1 and Σ2, the zero-mean sequences for each subject

from population two were scaled by
√

2 before the signal µ2 was added. This imposed

the condition that Σ2 = 2Σ1.
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Figure 2.4: Power curves at sample sizes (n,m) = (45, 60) for the moderate- and large-
p GCT, Ch-Q, SK, and CLX tests against the proportion of nonzero mean differences
β under IND, ARMA, and LR dependence (left to right) with heteroscedastic centered
gamma(4, 2) innovations and Σ2 = 2Σ1. Based on S = 500 simulations.

Figure 2.4 displays results for a simulation in which the variances of the second

population were scaled by two and in which the variances in both populations were

heteroscedastic. The SK lost much of its power under these settings, which was expected

given its assumption of a common covariance matrix in the two populations. The Ch-Q

test exhibited low power as before owing to the heteroscedasticity, but performed none

the worse for the unequally scaled variances. The GCT achieved the greatest power

under the LR dependence structure, having less power than the CLX test in the ARMA

case.

Lastly, under the ultra heavy-tailed innovation distribution with unequally scaled

covariances between the two populations, the GCT exhibited superior power to the Ch-Q,

SK, and CLX tests under all three dependence stuctures at the (n,m) = (90, 120) sample

sizes. Although the size of the GCT was somewhat inflated under the LR dependence

structure, it maintained the nominal Type I error rate in the ARMA case, under which

it achieved roughly 60% power when β = 0.4 while the CLX test achieved only about

10% power.
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Figure 2.5: Power curves at sample sizes (n,m) = (90, 120) for the moderate-p GCT,
Ch-Q, SK, and CLX tests against the proportion of nonzero mean differences β under
IND, ARMA, and LR dependence (left to right) with double Pareto(1.5,1) innovations
and Σ2 = 2Σ1. Based on S = 500 simulations.

2.5 Copy Number Variation Example

The GCT, Ch-Q, SK, and CLX tests were each applied to a data set from The Can-

cer Genome Atlas containing copy number measurements at chromosomal copy number

locations in 92 long-term-surviving patients, who survived for more than two years af-

ter their initial diagnosis and 138 short-term-surviving patients, who survived for fewer

than 2 years after their initial diagnosis of a brain cancer called glioblastoma multiforme.

Pinkel & Albertson (2005) suggest that the numbers of copies of certain DNA segments

within a cell may be associated with cancer development and spread. It is thus of interest

to identify regions along the genome in which high numbers of copies are associated with

the incidence or severity of cancer, as such regions may harbor cancer-causing or tumor-

suppressor genes. In studies having relatively few patients, several thousand copy number

measurements are taken along each arm of each chromosome, which makes identifying

regions for which two patient groups have different mean copy number profiles a high-

dimensional problem. Additionally, it is believed that copy number variations between
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patient groups will occur over stretches of the chromosome (spanning multiple probes)

rather than at isolated points (singleton probe locations) (Olshen et al. (2004), Baladan-

dayuthapani et al. (2010)), suggesting a serial dependence over the chromosome as well

as the presence of a dense-but-weak rather than a sparse-but-strong signal structure.

We restricted our analysis to the q arm of chromosome 1, the longest chromosome,

on which there are 8,895 copy number measurements. Each measurement is a log-ratio

of the number of copies at each location over 2, where 2 is the number of copies found

in normal DNA. Positive measurements thus indicate duplications and negative mea-

surements indicate deletions. The measurements, in conformity with the assumption of

the GCT that the components of interest admit a logical ordering, are recorded along

with their locations given in the number of base pairs from the end of the DNA strand.

For many of the 8,895 components, there are a few missing values in either or both of

the samples such that the average proportion of missing values per component is 0.0276

for the long-term survivors and 0.0273 for the short-term survivors. Prior to analysis,

each missing value was replaced with the mean of the non-missing values for the same

component in the same sample.

Although a test may reject H0 : µ1 = µ2 when µj is the 8895×1 vector of copy number

means for j = 1, 2, a wholesale conclusion for the entire arm of the chromosome is of

little use if it is desired to identify particular regions in which copy number differences

lie. In order to break the chromosome arm into meaningful regions in which the equal

means hypothesis is of interest, we performed a method of segmentation called circular

binary segmentation (CBS) from Olshen et al. (2004). This procedure locates change

points in the copy number sequence for a single sequence of copy number values, and is

implemented in the R package DNAcopy (Seshan & Olshen (2013)). In order to segment

the q arm of chromosome 1 for equal means hypothesis testing when multiple patients

are observed, the CBS procedure was applied to the 8895 × 1 vector of differences in

means X̄ − Ȳ using weights equal to s2
j/n+ ϑ2

j/m for j = 1, . . . , 8895. Before computing
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X̄, Ȳ , and s2
j and ϑ2

j for j = 1, . . . , p, each series was smoothed using the function

smooth.CNA() from the DNAcopy package. The CBS procedure provided 26 segments

of varying lengths at the edges of which change points were detected in the vector of

differences in means. As a set of 7 contiguous segments contained small numbers of

markers (44, 14, 26, 39, 26, 21, 27) they were collapsed into a single segment having 197

markers, which left 20 regions within which the number of probes p ranged from 73 to

1811. Such splitting of the chromosome into windows or segments has been widely used

in genome-wide association studies in searching for chromosomal regions in which genetic

variants are associated with a continuous or dichotomous clinical outcome, as in Wu et al.

(2011).

The large- and moderate-p GCT with lag window size L = (2/3)p1/2 and the Ch-Q,

SK, and CLX tests were applied to each of the twenty segments identified by the CBS

procedure to test H0k : µ1k = µ2k for k = 1, . . . , 20 (Though smoothing was used in

identifying the segments, the analysis was carried out on the raw, unsmoothed data).

Since the equal-means hypothesis was tested for twenty different regions simultaneously,

the sets of p-values which each of the four tests generated were compared with the

Benjamini & Hochberg (1995) discovery rate (FDR) threshold. For m tests of hypotheses,

the m p-values are ordered p(1) ≤ p(2) ≤ . . . ≤ p(m) and then the hypothesis to which

p(i) corresponds is rejected if i ≤ k, where k = max{j : p(j) ≤ (j/m)q}. This procedure

was originally shown to control the FDR at q for m independent hypothesis tests, though

Benjamini & Yekutieli (2001) showed that for many common types of positive dependence

among the m test statistics, the same procedure still adequately controls the FDR. The

procedure was therefore applied to the twenty p-values computed from each test.

Figure 2.6 summarizes the analysis. The left panel displays the univariate two-sample

t-statistics, which are the tnj values for j = 1, . . . , 8895, against their locations in base

pairs along the q arm of chromosome 1. The vertical line at zero marks the value around

which the t-statistics would be centered under the null hypotheses, and the horizontal
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dotted lines delineate the CBS-selected segments of the chromosome arm. The numbers

of copy number markers p within each segment appear on the right. Rejections acheived

by the tests are marked with symbols appearing on the left, where rejections for each

test are determined by the Benjamini & Hochberg (1995) FDR procedure.

The upper right panel of Figure 2.6 displays the estimated autocorrelation function

of the squared two-sample univariate t-statistics, the t2nj values for j = 1, . . . , 8895, along

the q arm of chromosome 1. The 95% confidence bounds using the large-lag standard

error described in Anderson (1977) are shown, which suggest that dependence decays in

conformity with (C.1) (i).

The lower right panel of Figure 2.6 shows the results of the FDR procedure. The

upward sloping line is given by y = (x/m)q, which is the Benjamini & Hochberg (1995)

FDR rejection threshold. The p-values for all four tests are shown, but are ordered

according to the ranking of the large-p GCT p-values (The rejection decisions were the

same for the moderate- and large-p versions of the GCT). The SK and CLX tests did

not achieve any rejections; the Ch-Q test achieved one rejection, and the GCT rejected

equal means for fifteen of the twenty regions.

Figure 2.7 offers an explanation of the additional power demonstrated by the GCT.

The upper and lower panels show the estimated standard deviation at each of the 8,895

copy number locations across the q arm of chromosome 1 for the 92 long-term and 138

short-term survivors, respectively. Both panels exhibit spikes at shared locations as

well as prominent humps around 2.0 × 108 Mbps, suggesting that the variances are not

constant across the chromosome; nor are the humps at equal heights for the two groups of

patients. The boxplots of the 8,895 standard deviations for each group reveal significant

right skewness, suggesting heavy-tailedness of some of the component distributions. The

minimum estimated standard deviations for the long- and short-term survivors were

0.1314 and 0.1123, respectively, indicating that the component variances are bounded

sufficiently away from zero. The severe heteroscedasticity as well as the inequality of
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Figure 2.7: Sample standard deviations of copy number at all 8,894 copy number locations
for long- and short-term survivors with boxplots at right. Gaps occur at chromosomal
locations where no copy number measurements were taken. Vertical dashed lines delineate
the twenty CBS-selected regions in which the equal means hypothesis was tested.

variances between the two samples appear to have attenuated the power of the Ch-Q and

SK tests just as in the simulation.

None of the univariate two-sample t-statistics in the lefthand panel of Figure 2.6

are very extreme, the largest of their magnitudes being 3.607. This suggests that the

difference between the copy number profiles of short- and long-term survivors consists

of smaller differences distributed over a larger number of components rather than larger

differences over a smaller number of components. That is, the signals appear to be dense

but weak rather than sparse but strong. In such a setting the CLX test will likely have

low power.

It is worth discussing the computation time of the four tests. For this analysis,

in which each test was implemented twenty times at various values of the dimension

p, the moderate-p GCT finished in 1.75 seconds and the large-p GCT finished in 6.60

seconds. The Ch-Q and SK tests finished in 2.32 and 2.68 minutes, respectively, and
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the CLX took 2.79 hours to run on a MacBook Air with a 1.86 GHz Intel Core 2 Duo

processor with 4 GB of memory. The SK procedure involves matrix operations which

can be quite slow for large p, and the Ch-Q test involves a cross-validation type sum

of inner products which becomes slow for large sample sizes. The CLX method must

first test whether Σ1 = Σ2 and then directly estimate Σ−1 or {Σ1 + (n/m)Σ2}−1 under

sparsity assumptions. Estimating these large matrices quickly becomes computationally

burdensome. The GCT requires only a summation over p components and computation

of the sample autocovariance function of a p-length series, making it very fast to compute.

2.6 Mitochondrial Calcium Concentration

Ruiz-Meana et al. (2003) subjected cells from cardiac muscles in mice to conditions

which simulated reduced blood flow for a period of one hour. To a treatment group,

a dose of cariporide was administered, which is believed to inhibit cell death due to

oxidative stress. The investigators measured the mitochondrial concentration of Ca2+

every ten seconds during the hour. The experiment was run twice, once on intact cells

and once on cells with permeabilized membranes. The data have been made available by

Febrero-Bande & Oviedo de la Fuente (2012) in the R package fda.usc.

The mean percent increase of the calcium concentration over its initial value for the

treatment and control in both the experiments is plotted against time in Figure 2.8,

where the sample sizes for each curve are shown. The first 180 seconds of the data are

removed, given the erratic behavior of the curves, leaving p = 342 time points. The four

tests were applied to both the intact and permeabilized data to test for equality between

the true treatment and control mean curves. The p-values for the four tests are given in

Table 2.2.

For the intact cells, the Ch-Q test and the GCT strongly rejected the null, while the

CLX test, after failing to reject equality of the covariance matrices, produced a p-value

of 0.086 under the equal covariances assumption, and the SK test failed to reject. For

the permeabilized experiment the Ch-Q test and the GCT again strongly rejected the
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Figure 2.9: Ratios of the variances of the proportional increase in calcium concentration
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lized data sets.

Ch-Q SK CLX mod-p GCT lg-p GCT
Intact 0.000 0.118 0.086 0.000 0.000

Permeabilized 0.001 0.358 0.817 0.000 0.000

Table 2.2: The p-values produced by the four tests for equality between the treatment
and control calcium concentration curves in the intact and permeabilized experiments.
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null. The CLX test again failed to reject equality of the covariance matrices, which is

a dubious assumption for either the intact or permeabilized experiments given the plot

in Figure 2.9 of s2
j/ϑ

2
j for j = 1, . . . , 342 for each set of data. In this plot the variance

of the treatment group measurements for the intact cells is well over twice as high as in

the control group for the first ten minutes (fluctuating wildly), and for the permeabilized

cells the variance of the treatment group measurements remains at roughly twice that of

the control group measurements after half an hour has elapsed. The low power of the

SK test apparently owes to the variance inequality depicted here.

The inability of the CLX test to reject what appears to be an implausible null hy-

pothesis likely owes to a difference in mean functions which is characterized by gradual

separation rather than by spikes in one function or the other. The large number of

small differences are unable to produce a maximum which will exceed the CLX rejection

threshold. However, the Ch-Q test and the GCT are able to register the large number of

small differences cumulatively and reject the equal means hypothesis.

This example illustrates the applicability of our test in functional data contexts, in

which each observation consists of a function observed at points over some domain. When

it is of interest to compare the mean functions in two populations, the assumptions of

the GCT are likely to apply.

2.7 Conclusions

The test we present for H0 : µ1 = µ2 versus H1 : µ1 6= µ2, called the generalized

component test, was shown to be competitive in the p� n setting when the p components

admit an ordering allowing the dependence between two components to be modeled

according to their displacement. Moderate- and large-p versions of the test were given

for p = o(n2) and p = o(n6), respectively. The test requires very little computation time

and is easily scalable to very-large p settings.

The moderate-p version of our test is robust to ultra heavy-tailedness, and both

the moderate- and large-p versions are robust to heteroscedasticity and highly unequal
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covariance matrices. The Chen and Qin (Ch-Q) test lost most of its power in the presence

of heavy-tailedness or heteroscedasticity; the Srivastava and Kubokawa (SK) test lost

much of its power when the covariance matrices were unequally scaled. The Cai, Liu,

and Xia (CLX) test performed well under a variety of settings, proving to be robust to

heteroscedasticity and to unequally scaled covariance matrices; however, when the data

were very heavy-tailed, which rendered the signals very weak, the CLX lost considerable

power. Also, since the CLX test requires estimating the p × p precision matrix, it is

computationally much slower than the other tests, requiring over 2.5 hours to complete

the copy number data analysis which the SK and Ch-Q tests completed in under 3

minutes and the GCT in under 10 seconds.

For the copy number analysis, the GCT exhibited superior power over the other three

tests. This was likely due to heteroscedasticity in the component variances, under which

the Ch-Q would lose power, unequally scaled variances between the two populations,

under which the SK test would lose power, and likely to the presence of a dense-but-

weak rather than a sparse-but-strong signal structure, under which the CLX test would

have low power.

For the mitochondrial calcium concentration data set, only the Ch-Q test and the

GCT were able to reject the equal means hypothesis. The SK test appears to have lost

power due to unequal variances and the CLX supremum-based test was unable to detect

the smooth separation of the two mean functions over time, which was characterized by

small differences in many components rather than by large differences in a few.

2.7.1 Software

We created the R package highD2pop for implementing the GCT as well as the Ch-

Q, SK, and CLX tests. A source version, http://www.stat.tamu.edu/~kbgregory/

Research/highD2pop/highD2pop.zip, is available for download. The package includes

copy number data for the CBS-selected segment of the q arm of chromosome 1 having

p = 400 copy number probes. See package documentation in http://www.stat.tamu.
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edu/~kbgregory/Research/highD2pop/highD2pop-manual.pdf.
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3. FALSE DISCOVERY RATE CONTROL FOR SERIALLY DEPENDENT TEST

STATISTICS

3.1 Introduction

Suppose it is of interest to test each of the hypotheses H1, . . . , HN with the test statis-

tics Z1, . . . , ZN . Let “null” refer to the state in which a hypothesis is true and “non-null”

to the state in which it is false, and let the distribution of Zi when Hi is null be known.

Then if Z1, . . . , ZN are independent, the false discovery rate (FDR), the rate at which

null hypotheses are rejected, can be controlled by choosing the critical region with the

Benjamini & Hochberg (1995) procedure, hereafter called the BH procedure. The BH

procedure was quickly adopted because of its simplicity and the cogency of its authors’

arguments for controlling the FDR rather than the familywise error rate—the probability

that any null hypotheses will be rejected—in large multiple testing scenarios. Reserva-

tions arose, however, around the independence assumption under which the BH procedure

was developed. Benjamini & Yekutieli (2001) allayed some of this concern by showing

that the BH procedure still controlled the FDR if the dependence among Z1, . . . , ZN sat-

isfied the conditions of positive regression dependence, which they argued would be true

in many settings. Nevertheless, the problem of accounting for dependence in multiple

testing has received unwavering attention between then and now. Dependence among

Z1, . . . , ZN , it is reasoned, may have such an effect that the extremity of a test statistic

will be significantly different when viewed conditionally rather than marginally. These

effects may substantially reduce power, even in cases where the dependence structure

does not threaten FDR control.

In this paper we shall be concerned with accounting for dependence among a set of

test statistics Z1, . . . , ZN when they admit an ordering in some index such as time, from

which they inherit a serial dependence structure. For the setting in which the sequence
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{Zt}t≥1 is influenced by latent periodic components, we propose a procedure adapted

from the Fan et al. (2012) method (FHG method) for removing the periodic components

from Z1, . . . , ZN prior to carrying out the BH procedure. We also further develop the

theory for the FHG dependence-adjusted procedure, proving that it increases the power

of the BH procedure under some conditions. This result applies readily to the time series

context with which we are concerned.

Section 3.2 introduces the FHG method and our frequency domain adaptation for

the time series context. Section 3.3 offers a characterization of power for multiple tests

of hypotheses and a reformulation of the BH critical region which is useful for power

calculations. A heuristic explanation for the increased power of the BH procedure under

factor-adjusted test statistics is also given as a prelude to the main result. Section

3.4 gives a theoretical result relating the gains in power from factor adjustment to the

variances of the latent factors and the loadings of non-null test statistics upon them.

Section 3.5 describes two simulation studies which support the main result of improved

power from factor adjustment. Section 3.6 applies our adaptation of the FHG method to

an analysis of differences in mean copy numbers along a chromosome between two groups

of patients. Section 3.7 offers concluding remarks.

3.2 Methods

As in the introduction, suppose we are interested in testing each of the hypotheses

H1, . . . , HN , for which we observe the test statistics Z1, . . . , ZN , and let “null” refer to

the state in which a hypothesis is true and “non-null” to the state in which it is false. In

many settings it may be reasonable to assume that

Zi =

 ei Hi null

δi + ei Hi non-null
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for i = 1, . . . , N , where e = (e1, . . . , eN)′ is multivariate normal with mean 0 and covari-

ance matrix Σe with unit diagonal entries. If Σe is not a diagonal matrix, i.e. if e1, . . . , eN

are correlated, a large value of Zi may result from a dependence-induced larger-than-usual

value of ei rather than from a nonzero value of δi (non-nullity of Hi). A small value of Zi

may likewise result from the dependence among e1, . . . , eN rather than from the nullity

of Hi.

However, if new test statistics Z̃i, i = 1, . . . , N could be defined such that

Z̃i =

 Ki Hi null

δi +Ki Hi non-null,

where (K1, . . . , KN)′ ∼ Normal(0,D), where D is a diagonal matrix, standard FDR

procedures (for independent tests of hypotheses) could be carried out on Z̃1, . . . , Z̃N , the

magnitudes of which would carry direct information concerning H1, . . . , HN .

3.2.1 The Fan et al. (2012) Factor Model Approach

Fan et al. (2012) assumed a known covariance matrix for e = (e1, . . . , eN)′ with unit

diagonals. If a decomposition Σe = L∆mL′ + D exists for which the matrix L has

dimension N ×m with m� N , ∆m is a m×m diagonal matrix, and D is diagonal, then

each error term ei can be expressed in the form of the factor model

ei = `i1f1 + · · ·+ `imfm +Ki = `′if +Ki, (3.1)

where `′i is the ith row of the matrix L, and f = (f1, . . . , fm)′ ∼ Normal(0,∆m) inde-

pendently of (K1, . . . , Kn)′ ∼ Normal(0,D). Then the test statistics Z1, . . . , ZN can be

written as

Zi =

 `′if +Ki Hi null

δi + `′if +Ki Hi non-null.
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Suppose we can identify a subset I0 ⊂ {1, . . . , N} of indices such that we are rea-

sonably confident that Hi is null for i ∈ I0 (One choice of I0 could be the set of indices

corresponding to the smallest 80%, say, of Z1, . . . , ZN). Then it may be assumed that

Zi = `′if +Ki for i ∈ I0. (3.2)

The supposition that we observe Zi = `′if + Ki for i ∈ I0 allows us to estimate the

realized values of the latent factors f1, . . . , fm which have given rise to Z1, . . . , ZN . Fan

et al. (2012) obtain `1, . . . , `N through spectral decomposition of the (assumed-to-be)

known covariance matrix Σe and f̂ = (f̂1, . . . , f̂m)′ with regression, recommending a

robust method of regression which will be less sensitive to a poor choice of I0. Then the

new uncorrelated test statistics are defined as

Z̃i = (Zi − `′if̂)(1− `′i∆m`i)
−1/2, (3.3)

where the rescaling comes from the fact that Var(Zi) = Var(`′if + Ki) = 1, so that

Var(Ki) = 1− `′i∆m`i.

3.2.2 A Remark on Strategy

In order to replace the dependent e1, . . . , eN random variables with uncorrelated ran-

dom variables K1, . . . , KN , we must remove from each ei the parts which it has in common

with the others, leaving only the innovative component. The principal obstacle to parsing

each ei into an innovation and a non-innovation is that we only observe ei directly where

Hi is null. For Hi non-null, we observe Zi = δi + ei. If e = (e′0, e
′
1)′, where e0 contains

ei for Hi null and e1 contains ei for Hi non-null, we must estimate the non-innovative

component of each entry in e1 using only the entries in e0, which we can only observe

inasmuch as we can identify a set of indices I0 such that Zi = ei for i ∈ I0.
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3.2.3 Decomposition of Serially Dependent Errors

If the test statistics Z1, . . . , ZN are serially observed, as along a chromosome or in

a time series, the error terms e1, . . . , eN may admit of a decomposition into sums of

sinusoids such that for some choice of m� N ,

et =
∑m

j=1{aj cos(ωjt) + bj sin(ωjt)}+Kt,

where aj and bj are independent Normal(0, σ2
j ) random variables for j = 1, . . . ,m, inde-

pendent of (K1, . . . , KN) ∼ Normal(0,D), where D is a diagonal matrix, as before. If

the error terms e1, . . . , eN possess such a structure, the test statistics will rise and fall

artificially according to the activity of these latent periodic components, and the signals

δt will be harder to detect with accuracy.

Assuming that the spectral density of {et}t≥1 is known and that dominant frequencies

ω1, . . . , ωm are readily identified, we may write

Zt =


∑m

j=1{aj cos(ωjt) + bj sin(ωjt)}+Kt Ht null

δt +
∑m

j=1{aj cos(ωjt) + bj sin(ωjt)}+Kt Ht non-null.

Then the realized values of the random coefficients a1, . . . , am and b1, . . . , bm may be

estimated through fitting the regression

Zt = x′tβ +Kt for t ∈ I0, (3.4)

where xt = {cos(ω1t), . . . , cos(ωmt), sin(ω1t), . . . , sin(ωmt)}′, β = (a1, . . . , am, b1, . . . , bm)′.

In agreement with Fan et al. (2012), an robust regression method is preferred for esti-

mating the components of β, as it will be less sensitive to poor choices of I0.
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Having obtained β̂ = (â1, . . . , âm, b̂1, . . . , b̂m)′, new test statistics can be defined as

Z̃t = (Zt − x′tβ̂)(1−
∑m

j=1 σ
2
j )
−1/2, (3.5)

where σ2
j , j = 1, . . . ,m are the variances of the random coefficients of the m harmonic

components retained. This scaling results from the fact that the variance of Zt is equal

to 1 for t = 1, . . . , N , so that

1 = Var(x′tβ +Kt)

= x′tdiag(σ2
1, . . . σ

2
m, σ

2
1, . . . , σ

2
m)xt + Var(Kt)

=
∑m

j=1 σ
2
j + Var(Kt).

3.2.4 Defining Factors from Data

In practice the covariance matrix or the spectral density of the test statistics will not

be known, and must be estimated from data. How Z1, . . . , ZN inherit dependence from

the data will depend on the context.

Fan et al. (2012) originally considered a regression setting in which H1, . . . , HN were

zero-slope hypotheses for N candidate predictors. If X1, . . . , XN are the predictors and

Y the response, then fitting N simple linear regression models according to Y = βiXi+εi

results in the fitted values β̂1, . . . , β̂N . A z-score for each β̂i is Zi = β̂i{σ/(
√
nsii)}−1,

where n is the sample size, sii is the sample standard deviation ofXi, and σ is the standard

deviation of εi. For N simple linear regressions, the covariance matrix of (Z1, . . . , ZN)′ is

equal to the correlation matrix of (X1, . . . , XN)′.

Here we are interested in the two-sample problem in which H1, . . . , HN are equal-

means hypotheses for N variables and Z1, . . . , ZN are two-sample t statistics (we assume

that sample sizes are large enough to treat the two-sample t statistics as normal) where

ti = (X̄i. − Ȳi.)(s2
i /n1 + ϑ2

i /n2)−1/2 for i = 1, . . . , N . If ΣX and ΣY are the covariance
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matrices for the two populations, then

ΣZ ≡ Cov{(Z1, . . . , ZN)′} = D−1/2(ΣX/n1 + ΣY /n2)D−1/2,

where D = diag(ΣX/n1 + ΣY /n2).

When the structure of ΣX and ΣY is not known and N � n1, n2, estimates of ΣX

and ΣY are likely to be poor. However, in the context of serially dependent data, it

may be reasonable to assume a Toeplitz structure for ΣX and ΣY . In this case, an

unbiased estimator Σ̂
(T )

X of ΣX may be obtained by averaging the diagonals of each

order of the sample covariance matrix SX such that entry (i, j) of Σ̂
(T )

X is given by

Σ̂
(T )

X (i, j) = (N − |i− j|)−1
∑
|l−k|=|i−j|SX(l, k), as in Cai et al. (2013b).

A factor-adjustment of the test statistics Z1, . . . , ZN may now be carried out in two

ways: By defining factors from the principal components of Σ̂
(T )

Z and proceeding as in

Fan et al. (2012), or by using γ̂Z(k) ≡ Σ̂
(T )

Z (1, 1 + k), k = 0, 1, . . . , N − 1, to estimate

the spectral density of {Zt}t≥1 and then performing the harmonic factor adjustment

described in Section 3.2.3.

3.2.5 Choosing the Number of Factors

Choosing the number of factors in a factor model or the number of frequencies in a

harmonic decomposition of a time series are long-standing questions with which we are

not primarily concerned here, though we give some guidelines. If using factors defined

by the spectral decomposition of Σ̂Z , the appropriate number of factors to retain may

be discerned from a plot of the eigenvalues ordered from largest to smallest. If using

harmonic factors, the number of factors and the frequencies to which they correspond

may be discerned from the periodogram or from a smoothed estimate of the spectral

density. Factors corresponding to frequencies at which spikes occur in the spectral density

should be retained.

If it is desired to retain a certain proportion ξ of the “total variability”, one may
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choose the number of factors m such that

m = min{k : (λ̂2
1 + · · ·+ λ̂2

k)/
∑N

j=1λ̂
2
j ≥ ξ}, (3.6)

where λ̂1, . . . , λ̂N are the eigenvalues of the sample-covariance or Toeplitz estimate of ΣZ

ordered from largest to smallest, or in the harmonic case,

m = min[k : {f̂ 2(ω(1)) + · · ·+ f̂ 2(ω(k))}/
∑N

j=1f̂(ω(j)) ≥ ξ], (3.7)

where f̂(·) is the estimated spectral density of {Zt}t≥1 and ω(j) is the frequency at which

f̂(·) is the jth largest.

3.3 Power Gains from Removing Factor Effects

Removing factor effects from the test statistics in the manner described can result in

increased power when the BH procedure is applied to the adjusted test statistics. This

section introduces a characterization of power for multiple testing procedures and then

presents a heuristic explanation for why it increases when factor effects are removed.

A theorem appears in Section 3.4 which relates the power gains to the loadings of the

non-null test statistics upon the factors and to the factor variances.

3.3.1 A Characterization of Power over Multiple Tests

Of the hypotheses H1, . . . , HN , let I0 ⊂ {1, . . . , N} be the set of indices corresponding

to null hypotheses and I1 = {1, . . . , N}\ I0 be the set of indices correponding to non-null

hypotheses. When considering the power of a multiple testing procedure for H1, . . . , HN ,

we may characterize it as the expected proportion of non-nulls rejected as a function of

some rejection threshold and the overall non-null state.

If a multiple testing procedure rejects Hi when the corresponding test statistic Zi falls

into a critical region Cz for i = 1, . . . , N , then letting N1 be the total number of non-null
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hypotheses, we can express the power of the procedure as

P (Cz) = E{
∑

i∈I1 I(Zi ∈ Cz)}/N1, (3.8)

where I(·) is the indicator function and the expectation is taken with respect to the non-

null distributions of the Zi for i ∈ I1. The critical region Cz is typically of one of the

forms Cz = (−∞, z], Cz = [z,∞) and Cz = {(∞,−|z|] ∪ [|z|,∞)}. Power increases as the

rejection region Cz is made larger.

The BH procedure chooses the rejection region as a function of a user-specified q, the

level at which it is desired to control the FDR, and the observed Z1, . . . , ZN , such that

Cz(q, Z1, . . . , ZN) = sup{Cz : NΦ(Cz)/
∑N

i=1 I(Zi ∈ Cz) ≤ q}, (3.9)

where Φ(Cz) is the probability mass conferred to Cz by the null distribution Φ(·) of the

test statistics, which is assumed to be common to all Zi, i ∈ I0.

Without loss of generality, assume that Cz is of the form Cz = [z,∞), corresponding to

one-sided hypotheses against which there is greater evidence as Z1, . . . , ZN assume greater

positive values. When Cz is of this form, Zi ∈ Cz ⇐⇒ Zi ≥ z. If zα = Φ−1(1 − α),

where Φ−1(·) is the inverse cumulative distribution function for Zi, i ∈ I0, then the BH

choice of Cz becomes Cz = [zα(q,Z1,...,Zn),∞), where

α(q, Z1, . . . , ZN) = sup{α : Nα/
∑N

i=1 I(Zi ≥ zα) ≤ q}. (3.10)

The power of the BH procedure may then be expressed (combining (3.8), (3.9), and

(3.10)) as

P (q) = E{
∑

i∈I1 I(Zi ≥ Zα(q,Z1,...,ZN ))}/N1, (3.11)

where the power P (·) is now a function of the choice of FDR bound q.
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3.3.2 Power of the BH Procedure Under Factor Model Assumptions

Suppose that the test statistics Z1, . . . , ZN are such that

Zi =

 `′if +Ki i ∈ I0

δi + `′if +Ki i ∈ I1,

where `1, . . . , `N are known m × 1 vectors and f = (f1, . . . , fm)′ ∼ Normal(0,∆m)

independently of (K1, . . . , KN)′ ∼ Normal(0,D), where ∆m and D are diagonal matrices.

Letting ei = `′if + Ki for i = 1, . . . , N , the power of the BH procedure can be

expressed as

P (q) = E{
∑

i∈I1 I(δi + ei ≥ zα(q,Z1,...,ZN ))}/N1, (3.12)

where

α(q, Z1, . . . , ZN) = sup
[
α : Nα/{

∑
i∈I0 I(ei ≥ zα) +

∑
i∈I1 I(δi + ei ≥ zα)} ≤ q

]
. (3.13)

Now suppose new test statistics Z̃1, . . . , Z̃N are defined as in (3.3). Then

Zi =

 K̃i i ∈ I0

δ̃i + K̃i i ∈ I1,

where δ̃i = δi(1− `′i∆m`i)
−1/2 and K̃i = Ki(1− `′i∆m`i)

−1/2 with Var(K̃i) = 1. Now the

power of the BH procedure on the new test statistics Z̃1, . . . , Z̃N can be expressed as

PFHG(q) = E{
∑

i∈I1 I(δ̃i + K̃i ≥ zα(q,Z̃1,...,Z̃N ))}/N1, (3.14)
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where

α̃(q, Z̃1, . . . , Z̃N) = sup
[
α : Nα/{

∑
i∈I0 I(K̃i ≥ zα) +

∑
i∈I1 I(δ̃i + K̃i ≥ zα)} ≤ q

]
.

(3.15)

3.3.3 Effect of Factor Adjustment on Power

In order to compare P (q) and PFHG(q), we first observe that since (1− `′i∆m`i) ≤ 1,

the effect size component of Z̃i will be δ̃i = δi(1− `′i∆m`i)
−1/2 ≥ δi, so that the signal in

PFHG(q) will be boosted by the removal of factor effects and subsequent rescaling. Be-

cause of the increased signal size and since Var(ei) = Var(K̃i), the adjusted test statistic

Z̃i = δ̃i + K̃i will more often exceed a fixed threshold than its unadjusted counterpart

Zi = δi+ei. Secondly, α(q, Z1, . . . , ZN) will tend to be smaller than α̃(q, Z̃1, . . . , Z̃N), also

owing to the rescaling of the signal, as the denominator inside the supremum of (3.15)

will tend to be larger than that of (3.13). Thus zα̃(q,Z̃1,...,Z̃N ) will tend to be smaller than

zα(q,Z1,...,ZN ), producing a more liberal rejection region. This is made rigorous in the next

section.

3.4 Main Results

The BH critical region is found by choosing an FDR bound q and then finding the

largest critical region of which q will admit according to expression (3.9). To estab-

lish power results, it will be more convenient to consider the smallest value of q which

will admit of a given critical region: Fix a size α of the critical region and define the

corresponding BH false discovery rate bound as

q(α,Z1, . . . , ZN) = NΦ(Czα)/
∑N

i=1I(Zi ∈ Czα). (3.16)

which is the same as the q value introduced by Storey (2002). This is the lowest FDR

bound for which the BH procedure would reject a hypothesis with a test statistic equal

to zα. If for a fixed size α of the critical region, the BH procedure produces a smaller
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value of q on the factor-adjusted test statistics Z̃1, . . . , Z̃N than on the unadjusted test

statistics Z1, . . . , ZN , then it follows that at a fixed level of q, the BH critical region

defined for Z̃1, . . . , Z̃N will be larger than that defined for Z1, . . . , ZN . Thus the factor-

adjusted test statistics will lead to a more liberal choice of critical region by the BH

procedure. Theorem 2 shows that this will occur under the following conditions:

(C.1) Let H1, . . . , HN be two-sided hypotheses and let I0 ⊂ {1, . . . , N} be the set

of indices for which Hi is null if i ∈ I0. Let the number of null hypotheses be N0.

Then if I1 = {1, . . . , N} \ I0 has N1 = N − N0 elements, let N0/N → π0 > 0 and

N1/N → π1 = 1− π0 as N →∞.

(C.2) Let

Zi|δi =

 `′if +Ki i ∈ I0

δi + `′if +Ki i ∈ I1,

where f = (f1, . . . , fm)′ ∼ Normal(0,∆m) independently of (K1, . . . , KN)′ ∼

Normal(0,D), where ∆m and D = diag(d11, . . . , dNN) are diagonal matrices such

that `′i∆m`i + dii = 1 for i = 1, . . . , N .

(C.3) Let δ1, . . . , δN1 ∼ Normal(0, σ2
δ ).

Theorem 2 Under conditions (C.1), (C.2), and (C.3), if new test statistics Z̃i = (Zi −

`′if)(1 − `′i∆m`i)
−1/2 are defined for i = 1, . . . , N , then the BH false discovery rate

bound corresponding to the critical region Czα∗ = {(−∞,−|zα∗ |] ∪ [|zα∗|,∞)} defined by

Z̃1, . . . , Z̃N , denoted by q̃(α∗, Z̃1, . . . , Z̃N), will, as N → ∞, be less than or equal to that

defined by Z1, . . . , ZN , denoted by q(α∗, Z1, . . . , ZN), such that

lim
N→∞

q̃(α∗, Z̃1, . . . , Z̃N)

q(α∗, Z1, . . . , ZN)
=
q̃(α∗)

q(α∗)
≤ Q(α∗, ∆̄

(∞)
1 ),
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where

Q(α∗, ∆̄
(∞)
1 ) = A(α∗, σ2

δ )/{A(α∗, σ2
δ ) + π1B(α∗, σ2

δ )∆̄
(∞)
1 } ≤ 1, (3.17)

with

A(α, σ2
δ ) = απ0 + π1[1− Φ{zα(σ2

δ + 1)−1/2}] (3.18)

B(α, σ2
δ ) = (1/2)(σ2

δ + 1)−1/2φ{zα(σ2
δ + 1)−1/2}zα{σ2

δ/(σ
2
δ + 1)} (3.19)

∆̄
(∞)
1 = limN→∞N

−1
1

∑
i∈I1`

′
i∆m`i. (3.20)

Remark 2 The fact that limN→∞ q̃(α
∗, Z̃1, . . . , Z̃N)/q(α∗, Z1, . . . , ZN) ≤ Q(α∗, ∆̄

(∞)
1 ) ≤

1 implies that for a fixed false discovery rate bound, the BH procedure on the factor-

adjusted test statistics Z̃1, . . . , Z̃N will choose a critical region of the same size or larger

than when carried out on the original test statistics Z1, . . . , ZN . Furthermore, the differ-

ence is a function of the loadings `i, i ∈ I1, of the non-null test statistics upon the factors

f1, . . . , fm and of the factor variances contained in ∆m.

Proof 1 Under the conditions of the theorem, the BH false discovery rate bound at size

α of the critical region for the unadjusted test statistics is given by

q(α,Z1, . . . , ZN) = 2αN{
∑N

i=1I(|Zi|≥ zα)}−1 (from (3.16))

= 2αN{
∑

i∈I0I(|`
′
if +Ki|≥ zα) +

∑
i∈I1I(|δi + `′if +Ki|≥ zα)}−1

→p q(α) ≡ α(απ0 + π1[1− Φ{zα(σ2
δ + 1)−1/2}])−1 (3.21)

as N →∞ since `′if+Ki ∼ Normal(0, 1) and δi+`
′
if+Ki ∼ Normal(0, σ2

δ+1) and by the

weak law of large numbers. The adjusted test statistics Z̃i = (Zi − `′if)(1− `′i∆m`i)
−1/2
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are such that

Z̃i =

 K̃i i ∈ I0

δ̃i + K̃i i ∈ I1,

where K̃i = Ki(1 − `′i∆m`i)
−1/2 =⇒ (K̃i, . . . , KN)′ ∼ Normal(0, I) and δ̃i = δi(1 −

`′i∆m`i)
−1/2 =⇒ δi ∼ Normal{0, σ2

δ (1− `
′
i∆m`i)

−1} for i = 1, . . . , N .

The BH false discovery rate bound at size α of the critical region for the factor-adjusted

test statistics becomes

q̃(α, Z̃1, . . . , Z̃N) = 2αN{
∑N

i=1I(|Z̃i|≥ zα)}−1

= 2αN{
∑

i∈I0I(|K̃i|≥ zα) +
∑

i∈I1I(|δ̃i + K̃i|≥ zα)}−1

→p q̃(α) ≡ α{απ0

+π1limN→∞N
−1
1

∑
i∈I1(1− Φ[zα{σ2

δ (1− `′i∆m`i)
−1 + 1}−1/2])}−1,

(3.22)

since δ̃i + K̃i ∼ Normal{0, σ2
δ (1− `

′
i∆m`i)

−1 + 1} for i ∈ I1.

By the mean value theorem we can write

Φ[zα{σ2
δ (1− `′i∆m`i)

−1 + 1}−1/2] = Φ{zα(σ2
δ + 1)−1/2}

+(1/2)(σ2
δ/ci + 1)−1/2φ{zα(σ2

δ/ci + 1)}zα{σ2
δ/(σ

2
δ + ci)}(1/ci)(`′i∆m`i)

for some ci such that 1−`′i∆m`i ≤ ci ≤ 1. Since the right hand side of the above equation

is increasing in ci, setting ci = 1 and subtracting both sides from 1 yields the inequality

1− Φ[zα{σ2
δ (1− `′i∆m`i)

−1 + 1}−1/2] ≥ 1− Φ{zα(σ2
δ + 1)−1/2}+B(α, σ2

δ )(`
′
i∆m`i),
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where B(α, σ2
δ ) is as in (3.19). We may now write that

limN→∞N
−1
1

∑
i∈I11− Φ[zα{σ2

δ (1− `′i∆m`i)
−1 + 1}−1/2]

≥ 1− Φ{zα(σ2
δ + 1)−1/2}+B(α, σ2

δ )∆̄
(∞)
1 ,

where ∆̄
(∞)
1 is as in (3.20). Applying this inequality to (3.22), we write

q̃(α) ≤ α{απ0 + π1[1− Φ{zα(σ2
δ + 1)−1}] + π1B(α, σ2

δ )∆̄
(∞)
m }−1

= α{A(α, σ2
δ ) +B(α, σ2

δ )∆̄
(∞)
m }−1

= αA(α, σ2
δ )
−1A(α, σ2

δ ){A(α, σ2
δ ) +B(α, σ2

δ )∆̄
(∞)
m }−1

= q(α)Q(α, ∆̄(∞)
m ),

where A(α, σ2
δ ) is as in (3.18), q(α) is as in (3.21) and Q(α, ∆̄

(∞)
m ) is as in (3.17). This

completes the proof.

3.5 Simulation Studies

3.5.1 Effects of Factor Adjustment on The BH Critical Region

This section describes a simulation study of the effect of factor adjustment on the

BH critical region, comparing the effect at N = 5000 hypotheses with the limiting effect

as N → ∞ given in Theorem 2. Three single-factor models were used to generate sets

of test statistics Z1, . . . , ZN . The first had compound symmetry dependence among all

the test statistics, the second had compound symmetry among only the non-null test

statistics, and the third had a single factor upon which the test statistics had sinusoidal

loadings.

From each model, 5000 sets of Z1, . . . , ZN were generated with N = 5000. The

BH two-sided thresholds zα(q,Z1,...,ZN ) and zα̃(q,Z̃1,...,Z̃N ) for critical regions of the form

Cz = {(−∞,−|z|] ∪ [|z|,∞)}, were found across a range of FDR thresholds q for the

original and factor-adjusted test statistics. The average over the 5000 simulated values
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Figure 3.1: Limiting BH-selected two-sided critical values as N → ∞ (in black) as well
as when N = 5000 (in gray) against the chosen FDR bound q when the BH procedure is
carried out on the original and factor-adjusted test statistics.

of the BH two-sided rejection thresholds for the adjusted and unadjusted Z values are

plotted as gray lines in Figure 3.1. The black lines are not computed from simulated data

but are the limiting values as N →∞ as derived in Theorem 2. The relationship between

the solid (for unadjusted) and dashed (for factor-adjusted) curves for the simulated data

mimics that between the solid and dashed curves for the theoretical limit, indicating that

the factor adjustment affords gains in power for finite N .

For all three models, the total number of hypotheses was N = 5000, the number

of non-nulls was N1 = 250, and the signals were generated such that δ1, . . . , δN1 ∼

Normal(0, 4). The three models were

(i) Zi = δiI(i ≤ 250) + (.25)1/2f + (.75)1/2Ki

(ii) Zi = δiI(i ≤ 250) + (.25)1/2fI(i ≤ 250) + (.75)1/2KiI(i ≤ 250) +KiI(i > 250)

(iii) Zi = δiI(i ≤ 250) + (.25)1/2{U1 cos(πi/24) + U2 sin(πi/24)}+ (.75)1/2Ki,

where δi ∼ Normal(0, 4), f, U1, U2, Ki ∼ Normal(0, 1), all independently of each other for

i = 1, . . . , 5000. Note that the variance of Ki is scaled such that the variance of Zi is

equal to 1 for all i = 1, . . . , N .
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For model (i), ∆̄
(∞)
1 = .25, since the covariance matrix of (Z1, . . . , ZN)′ has a single

nonzero eigenvalue equal to (.25)N and the eigenvector is 1NN
−1/2, soN−1

1

∑
i∈I1 `

′
i∆m`i =

N−1/2{(.25)N}N−1/2 = .25. The covariance matrix induced by model (ii) also gives

∆̄
(∞)
1 = .25, since it has a single nonzero eigenvalue of (.25)N1 and the single eigen-

vector has elements equal to N
−1/2
1 for non-null i and equal to 0 for null i. Thus

N−1
1

∑
i∈I1 `

′
i∆m`i = N

−1/2
1 {(.25)N1}N−1/2

1 = .25. Model (iii) also has ∆̄
(∞)
1 = .25 since

N−1
1

∑
i∈I1 `

′
i∆m`i = N−1

1

∑
i∈I1{cos2(πi/24)(.25) + sin2(πi/24)(.25)} = .25.

Models (i) and (ii) differed only in the loadings of the null test statistics on the factors,

and in agreement with Theorem 1, the power gains from factor adjustment were very

similar across the choices of q for the two models; nor were the power gains from factor

adjustment significantly different for model (iii), since it induced the same value of ∆̄
(∞)
1

as the first two models.

3.5.2 Power and FDR Control on Simulated Data Sets

The simulations in this section assess the performance of the factor adjustment for

serially dependent test statistics in the two-sample setting where the Z values are the

two-sample t-statistics Zt ≡ (X̄t.− Ȳt.)(s2
t/n1 +ϑ2

t/n2)−1/2, t = 1, . . . , N . We compare the

power and the false discovery rate control achieved when the factors are defined by (i)

the spectral decomposition of Σ̂Z when Σ̂X = SX and Σ̂Y = SY , where SX and SY are

the sample covariance matrices for the two samples, by (ii) the spectral decomposition

of Σ̂
(T )

Z , the Toeplitz estimate of ΣZ described in Section 3.2.4, and by (iii), a harmonic

decomposition as described in Section 3.2.3, where the spectral density of {Zt}t≥1 is

estimated from γ̂Z(·).

Let Xit denote measurement t on subject i of the first sample and Yjt denote mea-

surement t on subject j of the second sample. Then the two-sample data were generated

according to

Xit =
∑m

k=1{U1ik cos(ωkt) + U2ik sin(ωkt)}+ eit
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Yjt = δt +
∑m

k=1{V1jk cos(ωkt) + V2jk sin(ωkt)}+ hjt

for i = 1, . . . , n1, j = 1, . . . , n2, and t = 1, . . . , N . The signals δt were generated such that

δt = utI(|ut|> cu)(0.5/cu), where ut ∼ AR(1), with AR parameter φ = .8 and innovations

from a t distribution with 10 degrees of freedom, and cu is the bπ0Ncth largest absolute

value of u1, . . . , uN . Thus in each simulated data set there is a fixed proportion π1 = 1−π0

of non-nulls, and the magnitude of each non-null signal is at least 0.5. The parameter

settings for the two simulations were:

Model 1: n1 = 45, n2 = 60, N = 1000; m = 3 with (ω1, ω2, ω3) = (π/2, π/3, π/12);

U1ik, U2ik, V1jk, V2jk ∼ Uniform(−1, 1) for i = 1, . . . , n1, j = 1, . . . , n2, k = 1, 2, 3;

{ejt}Nt=1, {hjt}Nt=1 ∼ ARMA(1, 1), with AR parameter φ = 0.4 and MA parameter

θ = 0.3 and Normal(0, 1) innovations; π1 = 0.10.

Model 2: n1 = 45, n2 = 60, N = 1000; m = 2 with (ω1, ω2) = (π/2, π/3);

U1ik, U2ik, V1jk, V2jk ∼ Uniform(−1, 1) for i = 1, . . . , n1, j = 1, . . . , n2, k = 1, 2;

{ejt}Nt=1, {hjt}Nt=1 ∼ AR(1), with AR parameter φ = −0.5 and Normal(0, 1) innova-

tions; π1 = 0.10.

The number of factors to retain was chosen by setting ξ = 0.80 in (3.6) for the

sample covariance and Toeplitz methods and in (3.7) for the harmonic method. Thus

80% of the variability or spectral mass was retained across the three methods to ensure

comparability.

After determining the number of factors and the frequencies or eigenvalues to which

they corresponded, the realized values of the factors were fitted with robust regression

using the function rlm() from the R package MASS (Venables & Ripley (2002)) under

default settings on the middle 80% of Z1, . . . , ZN , and the factor adjustments in (3.3)

and (3.5) were carried out. The BH procedure is applied to the three sets of adjusted

Z values (corresponding to the sample-covariance estimate of ΣZ , the Toeplitz estimate
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of ΣZ , and the harmonic decomposition method using the estimated spectral density of

{Zt}Nt=1) as well as on the unadjusted Z values.
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Figure 3.2: Left: Proportion of non-nulls rejected against chosen FDR bound averaged
over 500 simulation runs for BH procedure on original Z values and adjusted Z values
from the sample covariance, Toeplitz, and harmonic factor adjustments. Right: Simu-
lated FDR against chosen FDR bound.

Power and FDR control results across 500 simulated data sets for Model 1 appear in

Figure 3.2. The left hand panel plots the power—the proportion of non-nulls rejected—

against the user-specified FDR bound q. The sample covariance, Toeplitz, and harmonic

adjustments to the test statistics all result in a substantial increase in power over the BH

procedure applied to the unadjusted test statistics—the sample covariance method re-

jecting by far the most non-nulls as q is increased. In the right-hand panel, the simulated

or empirical FDR is plotted against the chosen FDR bound q, and the sample covariance

method results in false discovery rates which are far above the chosen bound, its curve

lying far above the 45% line. The other three methods keep the FDR below the chosen

threshold q, the Toeplitz method doing so most convervatively. Thus the Toeplitz and

harmonic methods of test-statistic adjustment increase the power of the BH procedure
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substantially without compromising FDR control.

Figure 3.3 exhibits similar behavior for the sample covariance adjustment versus the

Toeplitz and harmonic factor adjustments of the test statistics. Much power is gained by

the latter two procedures, under which the FDR is still well controlled. In this simulation,

the Toeplitz factor adjustment achieved somewhat greater power across the choices of q

than the harmonic factor adjustment.

Since the simulated data do not come from a strict factor model—meaning that

the harmonic factors do not account for all of the dependence—the harmonic factor

adjustment may be disadvantaged by the rigidity of its sinusoidal factor definitions. The

Toeplitz factors are more flexible and thus are probably able to capture some of the

dependence of the autoregressive errors in the model.
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Figure 3.3: Left: Proportion of non-nulls rejected against chosen FDR bound averaged
over 500 simulation runs for BH procedure on original Z values and adjusted Z values
from the sample covariance, Toeplitz, and harmonic factor adjustments. Right: Simu-
lated FDR against chosen FDR bound.
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3.6 Two-Sample Testing for Copy Number Variations

An application in which the test statistics Z1, . . . , ZN can be regarded as a time

series is in the analysis of copy number variations. Copy numbers are measured along

a chromosome and measure the number of duplications or deletions of DNA sequences

in small regions. Deletions or excessive numbers of duplications of DNA sequences at

certain chromosomal locations have been linked to disease (Pinkel & Albertson (2005)).

Often it is of interest to compare the copy number profiles between two groups of patients

in order to identify locations at which the group means differ.

The data we analyze are taken from the Cancer Genome Atlas and consist of copy

number measurements taken along each of the 23 chromosomes of 230 patients diagnosed

with a type of brain cancer called glioblastoma multiforme. Each chromosome has a p

arm and a q arm, and on each arm there are several thousands of measurements. Here

we investigate whether the survival times of the patients can be linked to copy number

variations at certain chromosomal locations by dividing the 230 patients into a group of

92 long-term survivors (surviving for more than two years after initial diagnosis) and 138

short-term survivors (surviving for less than two years after initial diagnosis), and testing

for differences in copy number means at many chromosomal locations. We present an

analysis of differences in mean copy numbers for the two patient groups along the p arm

of chromosome 3, on which copy numbers are measured at 7531 locations.

Some data pre-processing steps such as double-standardization and the removal of

batch effects have been relegated to the Appendix. After these steps were carried out,

two-sample t-statistics ti = (X̄i. − Ȳi.)(s2
i /n1 + ϑ2

i /n2)−1/2, hereafter denoted by Zi, were

computed for each of the 7531 copy number locations. A histogram of Z1, . . . , ZN with

the standard normal density overlaid appears in the left hand panel of Figure 3.4. The

empirical variance of Z1, . . . , ZN is 0.8591, as shown, which is less than the unit variance

we would expect under complete nullity of H1, . . . , H7531. Moreover, we would expect the

empirical variance to exceed 1 if some of the hypotheses were false. More will be said
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Figure 3.4: Left: A histogram of the 7531 Z values with Normal(0, 1) density over-
laid. Right: Estimated spectral density of {Zt}t≥1 and plot of eigenvalues from Toeplitz
estimate of ΣZ . Triangles mark retained frequencies/factors.

about this underdispersion later.

The method of Toeplitz covariance matrix estimation described in Section 3.2.4 was

carried out to obtain Σ̂
(T )

Z and γ̂Z(·), and from γ̂Z(·) an estimate of the spectral density

was obtained. Figure 3.4 displays the estimated spectral density in the upper right

hand panel and a plot of the eigenvalues of Σ̂
(T )

Z in descending order in the lower right

hand panel with triangles marking frequencies and eigenvalues corresponding to retained

factors. It was chosen to retain m = 20 harmonic factors and m = 12 Toeplitz factors.

These choices of m satisfied expressions (3.6) and (3.7) at ξ = 0.58, so that retained

factors accounted for the same proportion of the total variability for both methods.

The middle 80% of Z1, . . . , Z7531 are used for fitting β in (3.4) and f in (3.2). The

rlm() function from the R package MASS under default settings was used to obtain the

fitted values. Figure 3.5 shows 1000 of the 7531 Z values along a stretch of the p arm

of chromosome 3 with the estimated total contribution of the 20 harmonic components

overlaid as well as that of the 12 factors defined by spectral decomposition of the Toeplitz

covariance matrix.

A normal quantile plot of the adjusted Z values is shown in Figure 3.6 in which the
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Figure 3.5: Stretch of 1000 Z values along the p arm of chromosome 3 with estimated
contribution of harmonic factors and that of factors defined by principal components on
the Toeplitz estimate of the covariance matrix.
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Figure 3.6: Left: Normal quantile plot of raw Z values as well as those FHG-adjusted with
harmonic and Toeplitz factors. Right: The numbers of rejections achieved at increasing
values of the FDR bound q for the three sets of Z values.
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quantiles of the unadjusted Z values appear as well as those adjusted by the Toeplitz

and harmonic factors. The right hand panel of Figure 3.6 plots the number of rejec-

tions achieved by the three sets of Z values against the FDR threshold q. The curves

for the factor-adjusted test statistics rise more quickly than that for the unadjusted test

statistics, indicating greater numbers of rejections for smaller values of q. The curve for

the harmonic procedure initially climbs more quickly than that for the Toeplitz proce-

dure, yet the curves cross and re-cross each other, leaving it unclear which procedure is

preferable for these data.

We also note that the method proposed in Efron (2010a) for rescaling the null dis-

tribution of the test statistics with estimates of the null mean and variance was used

in the BH step on the three sets of Z values, which all exhibited underdispersion by

their less-than-unit slope in the normal quantile plot of Figure 3.6. The locfdr function

from Efron (2010b) was used to obtain maximum likelihood estimates of the mean and

variance of the empirical null distributions.

3.7 Conclusions

An adaptation of the Fan et al. (2012) dependence-adjusted procedure for the case

of serially dependent test statistics was developed. Gains in power were demonstrated

from removing the effects of harmonic or Toeplitz factors from the test statistics prior to

carrying out the Benjamini & Hochberg (1995) procedure. A theoretical result was given

showing that the factor-adjusted test statistics lead to a larger choice of critical region by

the BH procedure; further, the effect of factor adjustment on the choice of critical region

was shown to depend on the loadings of the non-null test statistics upon the factors and

on the factor variances. These results were born out in simulation studies. The proposed

methodology was shown to be practicable in a real data setting as well as more powerful

than the BH procedure on the unadjusted test statistics.
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4. A SMOOTH BLOCK BOOTSTRAP FOR STATISTICAL FUNCTIONALS AND

TIME SERIES

4.1 Introduction

Many properties of smooth bootstraps have been explored for independent data. To

smooth Efron’s (1979) iid bootstrap, for example, bootstrap samples are drawn from a

kernel density estimate of the population distribution, which is equivalent to resampling

observed values X1, . . . , Xn after these have each been additively augmented with inde-

pendent random errors from the underlying kernel density. That is, an iid smooth boot-

strap sample X∗1 , . . . , X
∗
n drawn from a kernel density f̂n(x) = (nh)−1

∑n
i=1 k((x−Xi)/h)

estimator (with bandwidth h > 0) can be equivalently obtained as X̃∗i + hZ∗i from a

sample X̃∗1 , . . . , X̃
∗
n drawn with replacement from the observed data values X1, . . . , Xn

and an (independent) iid sample Z∗1 , . . . , Z
∗
n from a kernel density k(·). Just as kernel

density estimators can exhibit advantages over histograms in some inference problems,

one might expect a smooth bootstrap to enjoy similar advantages over its unsmooth

bootstrap counterpart. This can be particularly true in attempting to approximate the

sampling distribution of a statistical functional which depends intricately on unknown

“smooth” population quantities. As an illustration, compared to the unsmooth iid boot-

strap, Falk & Reiss (1989) and Hall et al. (1989) showed a significant advantage to the

smooth iid bootstrap for estimating the distribution of sample quantiles. This is because

the asymptotic variance of the pth sample quantile depends crucially on the population

density evaluated at the pth population quantile—an unknown quantity which is often

difficult to estimate without data smoothing steps. It is in such cases that a smooth

bootstrap may be particularly beneficial.

However, unlike the independent data case, smooth bootstrap methods for dependent

data have received little attention. Our goal is to extend a smooth bootstrap for time se-
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ries based on smoothing modifications to the extended tapered block bootstrap (ETBB).

That is, because block bootstraps provide a generally applicable and basic approach for

resampling time series (i.e., by resampling blocks of data), it is natural to consider en-

hancing this time series bootstrap through smoothing steps. While many variants of

the block bootstrap have been proposed, including the moving block bootstrap (Künsch

(1989); Liu & Singh (1992)), the circular block bootstrap from Politis & Romano (1992)

and the stationary bootstrap from Politis & Romano (1994), we focus our development

on a smoothed version of the ETBB method. One reason is that the tapered block

bootstrap (TBB), introduced by Paparoditis & Politis (2001) and Paparoditis & Politis

(2002), offers improvements to the other block bootstraps above by re-weighting ob-

servations within data blocks with a taper function (e.g., thereby producing MSE-better

variance estimators for approximately linear statistics). In this sense, the TBB represents

a state-of-the-art block bootstrap to consider. Furthermore, because of a generalization

of the TBB due to Shao (2010), the resulting ETBB can be applied to estimating the

distribution of quite general statistical functionals. Examples of such statistics include

classes of L-, R-, and M-estimators, which are not necessarily or easily smooth functions

of sample averages (as considered originally for the TBB by Paparoditis & Politis (2001)

and Paparoditis & Politis (2002)). For such functionals, a smooth ETBB can potentially

provide improved inference for time series just as the smoothed iid bootstrap might for

independent data.

To frame the results of the paper, suppose that X1, . . . , Xn represents an observed

stretch from a real-valued stationary time series with marginal distribution F . Denote

the target parameter of interest as θ = T (F ) based on some statistical functional T (·),

allowing a wide class of parameters to be considered. A natural estimator of θ is then

given by

θ̂n = T (Fn), (4.1)
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based on the empirical distribution

Fn =
1

n

n∑
i=1

δXi

of the data, where δx denotes a probability measure with point mass at x ∈ R. To

develop bootstrap versions of Fn and θ̂n = T (Fn) for inference, we propose a smooth

ETBB empirical distribution F ∗n created as follows: for iid random variables Z∗1 , . . . , Z
∗
n

drawn from a kernel density k(·) and using a bandwidth parameter h > 0, let F ∗n represent

the ETBB empirical distribution (cf. Shao (2010)) constructed by block resampling the

augmented dataX1+hZ∗1 , . . . , Xn+hZ∗n. By this formulation, the smooth ETBB naturally

mimics the smoothing mechanics of the iid smooth bootstrap but, in the time series case,

the resampling of individual observations is crucially replaced by resampling of data

blocks to capture the underling time dependence. A smooth ETBB statistic is then

defined as θ̂∗n = T (F ∗n) in analogy to θ̂n = T (Fn). Under fairly general conditions that

allow for a variety of statistical functionals, we show that the smooth ETBB consistently

estimates the variance of θ̂n and validly approximates the distribution of
√
n(θ̂n − θ).

Our results expand beyond the smooth function model for time series statistics (i.e.,

smooth functions of sample averages), representing the formal conditions in previous

establishments of both the TBB and the ETBB (Paparoditis & Politis (2001), Paparoditis

& Politis (2002), Shao (2010)). In this sense, the smoothed ETBB considered here

broadens the scope and applicability of block bootstraps for dependent data.

The rest of the manuscript is organized as follows. Section 4.2 describes the proposed

smoothed ETBB procedure. Section 4.3 provides assumptions and examples for statistical

functionals, and Section 4.4 gives the main distributional results on the smooth ETBB.

Simulation studies of the procedure appear in Section 4.5, where the proposed smooth

bootstrap is compared with other block bootstraps. Section 4.6 provides some concluding

remarks and proofs of the main results appear in Appendix C.
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4.2 The Smooth Extended Tapered Block Bootstrap

Based on some smooth functional T (·) : P → R, where P denotes the space of prob-

ability measures on R, recall that the target parameter and its natural estimator are

formulated as θ = T (F ) and θ̂n = T (Fn), as in (4.1), based on data X1, . . . , Xn from

a real-valued stationary time series {Xt}t∈Z with the marginal probability distribution

F . From X1, . . . , Xn, we wish to create smooth ETBB versions θ̃n and θ̂∗n that ade-

quately mimic both θ and θ̂n. In which case (and as shown later), the resulting smooth

ETBB method (hereafter SETBB) can be applied to estimate the variance nvar(θ̂) of the

statistic θ̂n or approximate the distribution of
√
n(θ̂n − θ) (e.g., for nonparametrically

calibrating confidence intervals for θ).

To describe the SETBB method, we first state the ETBB procedure of Shao (2010)

for approximating the empirical distribution Fn = n−1
∑n

i=1 δXi from (4.1) with a ETBB

version F̃ ∗n,ETBB. This ETBB rendition is defined as

F̃ ∗n,ETBB =
n∑
i=1

π∗i δXi ,
n∑
i=1

π∗i = 1, (4.2)

based on bootstrap empirical weights π∗1, . . . , π
∗
n on X1, . . . , Xn that are constructed from

a process of data block resampling and data tapering as follows. Let 1 ≤ ` < n denote an

integer block length and In ≡ {0, 1, . . . , n− `} denote an index set for overlapping data

blocks (Xi+1, . . . , Xi+`), i ∈ In, from (X1, . . . , Xn). To resample b = bn/`c data blocks

of length `, let I∗1 , . . . , I
∗
b be iid with a uniform distribution over In. Additionally, define

a sequence of weights w`(1), . . . , w`(`) in [0, 1] with a tapering window

w`(t) ≡ w

(
t− 0.5

`

)
, ` = 1, 2, . . . , (4.3)

based on a function w : R → [0, 1]. Following Künsch (1989), Paparoditis & Politis

(2001), Paparoditis & Politis (2002) and Shao (2010), we suppose that w(t) is symmetric
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about t = 1/2, positive in a neighborhood of t = 1/2, nondecreasing for t ∈ [0, 1/2],

and that w(t) = 0 if t 6∈ [0, 1]. Then, the empirical weights defining ETBB empirical

distribution F̃ ∗n,ETBB (4.2) are defined as

π∗t =
1

b‖w`‖1

∑̀
k=1

w`(k)
b∑

j=1

I(t = I∗j + k), t = 1, . . . , n,

where I(·) denotes the indicator function and ‖w`‖1=
∑`

k=1w`(k). In defining a bootstrap

empirical weight π∗t , note that b−1
∑b

j=1 I(t = I∗j + k) represents the proportion of times

that observation Xt falls into a resampled data block in the kth position, k = 1, . . . , `,

where a taper-based weight w`(k)/‖w`‖1 is further attributed to the kth position of any

data block. See Remark 1 below for more details about tapering.

As described in Section 1, the intended SETBB method is then defined by additional

data smoothing steps which imitate the smooth bootstrap for iid data. For a choice

of kernel density k(·), let Z∗1 , . . . , Z
∗
n be iid random variables from k(·), which are in-

dependent of any block resampling, and let h > 0 denote a bandwidth parameter (i.e.,

h → 0 as n → ∞). Then, the SETBB empirical distribution F ∗n results from applying

the construction of the ETBB empirical distribution F̃ ∗n,ETBB (4.2) to the augmented data

X1 + hZ∗1 , . . . , Xn + hZ∗n. That is, SETBB empirical distribution can be expressed as

F ∗n =
n∑
i=1

π∗i δXi+hZ∗i ,
n∑
i=1

π∗i = 1,

with the same bootstrap empirical weights π∗1, . . . , π
∗
n as in (4.2). A natural choice of ker-

nel density k(·) is the standard normal density φ(·) and, for concreteness and simplicity,

we assume that k(·) = φ(·) throughout the remainder.

From the bootstrap empirical distribution F ∗n , SETBB versions of θ̂n = T (Fn) and

θ = T (F ) = T (E(Fn)) are defined as

θ̂∗n = T (F ∗n), θ̃n = T (E∗(F ∗n)),
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where E∗ denotes bootstrap expectation (i.e., relative to the distributions of {I∗j }bj=1 and

{Z∗i }ni=1) conditional on the data X1, . . . , Xn. In Section 4.4, we establish that, for a large

variety of statistical functionals, the SETBB method validly approximates the variance

and sampling distribution of
√
n(θ̂n − θ). To state the main distributional results, we

provide some assumptions on the functional T (·) in the next section, along with some

examples.

Remark 1: The tapering of data blocks intends to give reduced weight to observations

near the endpoints of a block, which can improve the performance of the block bootstrap

(e.g., minimizing bias and MSE in variance estimation; Künsch (1989); Paparoditis &

Politis (2001);Paparoditis & Politis (2002). Note that untapered blocks correspond to

w(t) = I(t ∈ [0, 1]) as the indicator function of the interval [0, 1], in which case the TBB

reduces to the original moving block bootstrap (Künsch (1989); Liu & Singh (1992)).

In contrast, Paparoditis & Politis (2001) describe advantages of a ‘smooth’ data taper

(4.3), characterized by a self-convolution (w ∗ w)(t) ≡
∫ 1

−1
w(x)w(x + |t|)dx being twice

continuously differentiable at t = 0. One such example is the trapezoidal taper

wtrap
c (u) =


u/c, if u ∈ [0, c]

1, if u ∈ [c, 1− c]

(1− u)/c if u ∈ [1− c, 1]

where the choice of c = .43 has been proposed/used by Paparoditis & Politis (2001),

Paparoditis & Politis (2002) and Shao (2010). Conditions on other tuning parameters in

the STBB method, such as block length ` and bandwidth h, are described in Section 4.4.

4.3 Statistical Functionals: Conditions and Examples

We wish to establish the SETBB method in a general manner for parameters θ = T (F )

and estimators θ̂n = T (Fn) as statistical functionals T (·). For illustration, we provide
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some brief examples of such functionals in the following. Letting P denote the space

of all probability distributions on R, we denote the distribution function of F ∈ P as

F (x) ≡ F ((−∞, x]), for x ∈ R.

Example 1 (Smooth Functions of Means): For a function g : R → R, consider a func-

tional defined as θ = T (F ) = g(
∫
xdF (x)) based on the mean EX1 =

∫
xdF (x) <

∞. Another simple example is the variance functional var(X1) = T (F ) =
∫

(x −∫
xdF (x))2dF (X). See ch. 4 of Lahiri (2003b) for details of other time series statis-

tics falling into this smooth function model (Hall (1992)) of parameters.

Example 2 (L-estimators): For a function L : [0, 1] → R, an L-functional is defined

as θ = T (F ) =
∫
xL(F (x))dF (x), and θ̂n = T (Fn) is an L-estimator. Examples of L-

estimators include the sample mean (L(x) = 1), a Gini’s mean difference (L(x) = 4t−2),

and trimmed sample means (L(x) = I(α < x < β)/(β−α) for some α < β). See Serfling

(1980) and Shao (2003) for further L-estimators.

Example 3 (Rank statistics): Define F̄ (x) = F (x)−limy↑−x F (y) for x > 0 and F̄ (x) = 0

otherwise, and let R : [0, 1]→ R with a bounded derivative R′. Then define a functional

T (F ) =
∫∞

0
R(F̄ (x))dF (x) (e.g., T (F ) = 0 when F is symmetric, F (x) = 1 − F (x))

so the corresponding estimator T (Fn) is a signed rank statistic. For example, the case

R(t) = t corresponds to the Wilcoxon signed rank statistic (cf. Shao (2003)) as a robust

assessment of location. See Tran (1988), Hallin & Puri (1991) and Andrews (2008), and

references therein, for other rank-based estimation with time series.

Example 4 (M-estimators): For a function Ψ(x, t), an M-estimator T (Fn) can be de-

fined as the solution to
∫

Ψ(x, t)dFn(x) = 0, estimating a parameter T (F ) for which∫
Ψ(x, T (F ))dF (x) = 0 holds. This class of estimators can contain maximum likelihood

estimators and various robust estimators for time series models. See Bustos (1982), Mar-

tin & Yohai (1986) and Bustos & Yohai (1986) and the references therein.

Example 5 (Sample Quantiles): For a p ∈ (0, 1), define θ ≡ T (F ) = inf{x ∈ R : F (x) ≥
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p} as the pth quantile of F and denote θ̂n = T (Fn) as the pth sample quantile, where the

choice p = 0.5 corresponds to the sample median.

In establishing bootstrap methods for statistics as statistical functionals, a compound-

ing factor is formulating a suitable, but general, notion of Taylor expansions of T (·)

around F involving an appropriate derivative (or differential) T
(1)
F (·). We next state dif-

ferentiability conditions on the functional T : P → R and assumptions on the marginal

distribution function F of {Xt}.

For this, we require some notation. Let D denote the space of all real-valued functions

on [−∞,∞] that are right continuous with left limits, which we equip with the Skorohod

metric (cf. Billingsley (1968)), denoted as dS(H1, H2) for H1, H2 ∈ D. Additionally, for

H1, H2 ∈ D, define the Kolmogorov norm ‖H1‖∞= supx∈R|H1(x)|, the L1 norm ‖H1‖1=∫∞
−∞|H1(x)|dx and L1 distance d1(H1, H2) = ‖H1 − H2‖1. Let D0 ≡ {a1(G1 − G2) :

G1, G2 ∈ P, a ∈ R} ⊂ D.

Conditions:

(C.1) F (x) = P (X1 ≤ x), x ∈ R, is continuous and satisfies ‖F (x)− F (x+ a)‖∞≤ C|a|,

for any a ∈ R and some C > 0.

(C.2) T (·) is differentiable at F in the sense that

(i) there exists a linear functional T
(1)
F : D0 → R such that

T (G)− T (F ) = T
(1)
F (G− F ) +R(G− F )

holds for any G ∈ P with a remainder term satisfying |R(G−F )|≤ C[ρ‖G−F‖λ+1
∞ +(1−

ρ)‖G − F‖1}1+λ] for some C > 0, λ > 0 and ρ ∈ [0, 1]; when ρ < 1, assume E|X1|=∫
|x|dF (x) <∞.

(ii) T
(1)
F (·) is continuous, in dS,1-distance, at the zero function 0 (i.e., 0(x) = 0, x ∈ R)

and |T (1)
F (H)|≤ A1 exp[A2dS,1(0, H)] holds for some A1, A2 > 0, where dS,1 is defined as
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either dS or d1.

Remark 2: The expansion in C.2(i) does not have to hold for any G ∈ P; it suffices if

this condition holds (w.p.1) for G supported on the data X1, . . . , Xn.

To motivate the differential T
(1)
F (·), note that under condition C.2(i) the influence

function (Hampel (1974)) is given as

T
(1)
F (δx − F ) ≡ lim

ε→0

1

ε
[T ((1− ε)F + εδx)− T (F )], x ∈ R. (4.4)

The conditions above are meant to be compatible with forms of differentiability for statis-

tical functionals, such as Hadamard or Fréchet differentiability, which have been studied

for a variety of statistical functionals (cf. Serfling (1980); Huber (1981); Fernholz (1983);

Ren & Sen (1991), Ren & Sen (1995); van der Vaart & Wellner (1996); Shao (1993);

Shao (2003)). A major complication in formulating differentiability assumptions on sta-

tistical functionals is that this aspect can depend intricately on metric used (e.g., ‖·‖1 or

‖·‖∞ based) for probability measures (cf. Shao (1993)). For this reason, the conditions

above allow for both ‖·‖1 or ‖·‖∞-based distances in describing remainder terms. Where

allowable, we have also attempted to relax assumptions by using Skorohod distance in

place of Kolmogorov distance (i.e., dS(H1, H2) ≤ ‖H1 − H2‖∞). Additionally, while

the differential T
(1)
F in (C.2)(i) is assumed to have the typical linearity property (i.e.,

T
(1)
F (a1G1 + a2G2) = a1T

(1)
F (G1) + a2T

(1)
F (G2), G1, G2 ∈ D0), we need not assume that

this functional be generally continuous. Condition (C.2)(i) is also perhaps weaker than

strong Fréchet differentiability used in other studies of early block bootstraps (cf. Liu &

Singh (1992)).

We next briefly return to the previous examples to illustrate how different statistical

functions fit into the assumptions above and, thus, can be validly approximated by the

SETBB method.
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Example 1 (Smooth Functions of Means): If g has a derivative g′ : R → R satisfying

a Lipschitz condition |g′(x) − g′(y)|≤ C|x − y|δ for some δ > 0, then Condition C.2

holds (using d1 distance) with a remainder bounded by C‖F − G‖1+δ
1 and differential

T
(1)
F (∆) = g′(

∫
xdF (x))

∫
xd∆(x)], ∆ ∈ D0. Likewise, the variance functional satisfies

Condition C.2 with T
(1)
F (∆) =

∫
[x2 − 2

∫
xdF (x)]d∆(x)] with a remainder bounded by

C‖F −G‖2
1.

Example 2 (L-estimators): If the function L : [0, 1]→ R satisfies |L(x)−L(y)|≤ C|x−y|δ

for some δ > 0, for example, then Condition C.2 holds (with a remainder bounded by

C‖F −G‖δ∞‖F −G‖1) with T
(1)
F (∆) = −

∫
∆(x)J(F (x))dx, ∆ ∈ D0.

Example 3 (Rank statistics): Considering signed rank statistic R(t) = t, for exam-

ple, Condition C.2 holds (with remainder bounded by C‖F − G‖2
∞) with a differential

T
(1)
F (∆) =

∫∞
0

∆̄(x)dF (x) +
∫∞

0
∆̄(x)dF (x).

Example 4 (M-estimators): For simplicity, if one assumes Ψ(x, t) is bounded, Lipschitz

of order δ > 0 in t (for any x), and that ψ(t) ≡
∫

Ψ(x, t)dF (x) is differentiable in t and

with ψ′(t) bounded away from 0, then Condition C.2 holds (with remainder bounded by

C‖F −G‖1+δ
∞ ) for T

(1)
F (∆) = −[ψ′(T (F ))]−1

∫∞
0

Ψ(x, T (F ))d∆(x), ∆ ∈ D0.

Example 5 (Sample Quantiles): Assuming F has a positive derivative/density f around

the pth quantile θ ≡ T (F ) = inf{x ∈ R : F (x) ≥ p}, the corresponding differential

T
(1)
F (∆) = −[f(θ)]−1

∫ θ
−∞∆(x)dx, ∆ ∈ D0 depends intricately on the density f at θ.

Sample quantiles are difficult to place into the conditions above, but these could also be

validated for the SETBB method through alternative techniques, such as Bahadur-Kiefer

representations of sample quantiles and order statistics (cf. Serfling (1980)).

While we have reviewed some examples and conditions in this section, it is important

to iterate that implementation of the SETBB method (with results described next) does

not require a differential T
(1)
F to be explicitly determined or applied in practice. In this,

SETBB differs from other block bootstrap approaches which do require and use a direct
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form for T
(1)
F in each inference instance (cf. Paparoditis & Politis (2002)). As noted by

Shao (2010), observing that the process density f(·) appears in the differential for sam-

ple quantiles (e.g., T
(1)
F (∆) = −[f(θ)]−1

∫ θ
−∞∆(x)dx above), such bootstrap approaches

directly requiring T
(1)
F break down when T

(1)
F depends on smooth or infinite dimensional

process parameters. It is not hard to find other statistical functionals with this behavior,

where for example an M-estimator T (Fn) producing a trimmed sample mean (cf. Huber

(1964); Shao (2003)) based on Φ(x, t) = (t − x)I(|t − x|≤ α), α > 0, has an associated

differential T
(1)
F (∆) = −β−1

θ,α

∫
Ψ(x, θ)d∆(x), with θ = T (F ) and

βθ,α = F (θ + α)− F (θ − α)− α[f(θ + α)− f(θ − α)],

that depends intricately on a smooth density F ′ = f . Other examples given above also

indicate statistical functionals with complicated differential forms. It is in these cases

where the additional smoothing steps associated with the SETBB method are potentially

beneficial for improved inference.

4.4 Main Results

To state the main bootstrap approximation results, recall θ̂∗n ≡ T (F̃ ∗n) and θ̃n ≡

T (E∗F̃ ∗n) as defined in Section 4.2 (i.e., based on the SETBB empirical distribution) are

the SETBB versions of θ̂n = T (Fn) and θ = T (F ). We estimate the distribution of

√
n(θ̂n − θ) =

√
n[T (Fn)− T (F )] with the following bootstrap analog

m
1/2
`

√
n(θ̂∗n − θ̃n)

where m` = ‖w`‖2
1/[`‖w`‖2

2] represents a scalar depending on norms ‖w`‖1=
∑`

k=1 w`(k)

and ‖w`‖2= {
∑`

k=1w
2
` (k)}1/2 of the taper weights from (4.3). The factor m` adjusts for

the effect of the data taper based on length ` data blocks, and similar adjustments appear

for the TBB/ETBB applied to sample mean inference (or smooth functions of sample
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means); see Paparoditis & Politis (2001), Paparoditis & Politis (2002) and Shao (2010).

However, unlike in some applications of the block bootstrap (e.g., long-memory series,

Lahiri (1993); Kim & Nordman (2011)), this correction should not be interpreted as an

order adjustment, because m` → [
∫ 1

0
w(t)dt]2/[

∫ 1

0
w2(t)dt] > 0 converges to a constant

as n → ∞. Additionally, we may define a SETBB estimator of the variance nvar(θ̂n)

as m`nvar∗(θ̂
∗
n), where var∗ denotes variance with respect to the SETBB resampling

mechanism.

Theorem 1 next shows that the SETBB provides consistent estimators of both vari-

ances and sampling distributions over a large class of statistical functions for time se-

ries (i.e., as prescribed by the conditions in Section 4.3). Recall that we assume a

kernel density for data smoothing as standard normal (cf. Section 4.2). We prescribe

weak dependence of the process {Xt} in terms of strong mixing coefficients defined as

α(k) = sup{|P (A ∩ B) − P (A)P (B)|: A ∈ F0
−∞, B ∈ F∞k }, where F0

−∞,F∞k are the

σ-algebras generated by {Xt : t ≤ 0} and {Xt : t ≥ k}, respectively; see Doukhan (1994).

In the following, let Yt = T
(1)
F (δXt − F ), t ∈ Z, denoting the evaluation of observations

in the influence function (4.4), and let σ2
∞ ≡

∑∞
k=−∞ cov(Y0, Yk).

Theorem 1 In addition to Conditions C.1-C.2 (with λ > 0 from C.2), suppose the

data taper satisfies (4.3) and that the SETBB block length ` and smoothing bandwidth h

satisfy `−1 + nh2(1+λ) = o(1) and `2/n = O(1) as n → ∞. Suppose also that σ2
∞ > 0

and, for some γ > 0, it holds that E|Y1|2+γ< ∞ and
∑∞

k=1 k
c−2α(k)γ/(c+γ) < ∞ for

c = 2 max{dλe, 4dγ/2e}+ 4. Then, the following hold as n→∞.

(i) For the estimator θ̂n of θ,

√
n(θ̂ − θ) d−→ Normal(0, σ2

∞) and nvar(θ̂n)→ σ∞.
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(ii) For the SETBB variance estimator,

m`nvar∗(θ̂
∗
n)− nvar(θ̂n)

p−→ 0.

(iii) For the SETBB version m
1/2
`

√
n(θ̂∗n − θ̃n) of

√
n(θ̂n − θ),

sup
x∈R

∣∣∣P∗ (m1/2
`

√
n(θ̂∗n − θ̃n) ≤ x

)
− P

(√
n(θ̂n − θ) ≤ x

)∣∣∣ p−→ 0,

where P∗ denotes bootstrap probability.

Theorem 1 shows that, under mild mixing and moment conditions on the time process

(i.e., consistent with other mixing assumptions for the block bootstrap, cf. Künsch (1989);

Paparoditis & Politis (2001)), the SETBB method is valid for a variety of statistical

functionals. The conditions on the block length ` are quite general and allow a range

of block sizes that include the MSE-optimal block lengths known for block bootstraps

in problems of variance and distributional estimation (e.g., ` = n1/4 or n1/5 ); see Hall

et al. (1995), Paparoditis & Politis (2001) and Lahiri (2003b) for these details. In data

smoothing, the bandwidth h condition is tied to the order of the remainder error in the

generalized expansion of the functional T (·) under Condition C.2(i), Section 4.3. Larger

bandwidths to induce more data smoothing are helpful in reducing estimation errors

when the statistical functional exhibits an adequate degree of smoothness. The next

section examines the performance of the SETBB method, and the selection of its tuning

parameters (e.g., block length), through numerical studies.

Remark 3: Although the expansions of the bias and variance of SETBB variance es-

timators in Theorem 1(ii) are beyond the scope of this work, we anticipate that the

SETBB method continues to enjoy the same improvements offered by the TBB and

ETBB (Paparoditis & Politis (2001); Shao (2010)) over other block boostraps in terms

of reduced bias and MSE in variance estimation. For this a smooth data taper is required

as described in Remark 1, Section 4.2.
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Remark 4: To facilitate the development and proofs for the SETBB, we have assumed

the stationary time series process {Xt} to be real-valued. Extensions of the SETBB

method to time series of Rd-valued random vectors and associated statistical functions

are possible for implementations and inference scenarios with time series as described by

ch. 4 of Lahiri (2003b) and Shao (2010).

4.5 Simulation Studies

Here we examine the performances of the SETBB and (unsmoothed) ETBB methods

as well as the (extended) moving block bootstrap (MBB) and its smooth version (SMBB).

The SETBB/ETBB methods use a trapezoidal window as a smooth data taper while the

MBB/SMBB approaches use untapered data blocks (i.e., a window w(t) = I(t ∈ [0, 1]))

as described in Remark 1, Section 4.2. In particular, we compare these block bootstrap

approaches applied to variance estimation for sample quantiles and trimmed means. In

a variety of settings, the smoothing of the ETBB and the MBB significantly reduce

MSEs in variance estimation over wide ranges of block sizes. For each bootstrap, we

also consider an empirical method for block size selection based on the cross-validation

approach of Hall et al. (1995), referred to as the HHJ method in the following. When

the block size is chosen by the HHJ method, the MSEs of the smooth block bootstraps

are less than those of their unsmooth counterparts in most cases. As the data smoothing

steps involve the standard normal kernel, for simplicity, we typically choose a bandwidth

h by a selection method of Sheather & Jones (1991), giving h ∝ n−1/5.

4.5.1 Sample Quantiles

The MSEs of the MBB, SMBB, ETBB, and SETBB estimators of the quantile vari-

ances for the 0.2, 0.5, and 0.8 sample quantiles were compared for time series of lengths

n = 50, 200, and 1000 for four models crossed with three innovation distributions. The

four models were: (i) ARMA(1, 1) with φ = .4 and θ = .3, (ii) AR(1) with φ = .9,

(iii) AR(1) with φ = −.5, and (iv) MA(1000) with θj = (j + 1)−2.5 for j = 1, . . . , 1000.
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Figure 4.1: Mean squared error achieved for various block sizes by the MBB, SMBB,
ETBB, and SETBB estimators of the quantile variance for the 0.2, 0.5, and 0.8 quantiles
of a length n = 200 realization of an ARMA(1, 1) process with φ = 0.4, θ = 0.3 and
Normal(0, 1) innovations. There were 500 simulation runs and the number of bootstrap
resamples was set to 500.

The three innovation distributions were: (a) Normal(0, 1), (b) Chi-square(1) − 1, and

(c), the double exponential with variance equal to 1. Full factorial results for all settings

{(i),(ii),(iii),(iv)}×{(a),(b),(c)} are provided in the Supplementary Material, and certain

cases are highlighted here.

Figure 4.1 depicts the MSE of the MBB, SMBB, ETBB, and SETBB estimators of

the quantile variance of the 0.2, 0.5, and 0.8 quantiles as a function of the block size for

model (i) with Normal(0, 1) innovations for n = 200. Smoothing greatly reduced the

mean squared error of the MBB and the ETBB estimators across all block sizes. At the

optimal block size, the MSEs for the SMBB and SETBB were nearly equal.

To assess the performance of the four bootstrap methods when the block size is chosen

using the HHJ empirical method, the block size selection procedure was implemented on

each simulated data set and the selected block size was recorded. The resulting MSE

in estimating the variance of the sample median with the HHJ-selected block size, as
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Figure 4.2: Mean squared error achieved by the MBB, SMBB, ETBB, and SETBB
estimators of the variance of the median of a length n = 200 realization of an ARMA(1, 1)
process with parameters φ = .4 and θ = .3 with Normal(0, 1) innovations. The mean
squared error at the optimal block size and when the HHJ-selected block size is used are
shown as well as the selection frequency of each block size.
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well as the frequency with which each block size was selected, is depicted in Figure

4.2. The minimum MSE achieved by each method across all choices of the block size is

also indicated. The results shown are for model (i) under Normal(0, 1) innovations for

a sample size of n = 200. In this case, data smoothing greatly reduced the MSEs of

the MBB and ETBB methods, and even appeared to aid the HHJ algorithm in block

selection.

Table 4.1 displays the root MSEs of the MBB, SMBB, ETBB, and SETBB estimators

of the quantile variance when the block size is chosen by the HHJ empirical method for

all combinations of models and innovation distributions {(i),(ii),(iii),(iv)}×{(a),(b),(c)}

for the 0.5 and 0.8 quantiles when n = 200. For the double exponential innovations,

the smoothing bandwidth was set to h = 2n−1/3 as this innovation distribution lacks the

smoothness of others considered. Except for the case of model (iii), in which the AR(1)

parameter was negative, and for the median when double exponential innovations were

paired with the MA(1000) model, smoothing again reduced the root MSEs of the MBB

and ETBB estimators under the HHJ block selection method.

n = 200 0.5 quantile 0.8 quantile

Model Innov MBB SMBB ETBB SETBB MBB SMBB ETBB SETBB

ARMA(1,1) norm 2.54 1.59 2.50 1.71 3.25 2.19 3.19 2.15
φ = .4, θ = .3 chisq 3.47 2.75 3.50 2.83 13.34 11.95 12.89 11.67

dblexp 1.93 1.23 1.91 1.30 3.25 2.29 3.18 2.31
AR(1) norm 83.85 79.29 82.44 77.92 99.62 92.75 95.24 88.57
φ = .9 chisq 148.86 144.55 147.90 142.49 259.23 251.18 254.41 247.99

dblexp 78.53 77.54 78.43 76.92 97.76 95.90 95.05 92.88
AR(1) norm 0.81 1.18 0.72 0.94 1.17 1.54 1.10 1.28
φ = −.5 chisq 0.51 0.66 0.45 0.53 4.32 3.49 3.95 3.35

dblexp 0.47 0.84 0.44 0.71 1.20 1.11 1.09 0.97
MA(∞) norm 0.92 0.63 0.87 0.65 1.30 0.86 1.21 0.82
θj = (j + 1)−2.5 chisq 0.92 0.69 0.89 0.66 5.87 5.50 5.62 5.15

dblexp 0.52 0.56 0.50 0.54 1.37 0.89 1.30 0.84

Table 4.1: Root mean squared error of the MBB, SMBB, ETBB, and SETBB estimators
for the quantile variance when the block size is chosen by the HHJ empirical method for
models (i)–(iv) under innovation distributions (a), (b), and (c) for n = 200.
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4.5.2 The Trimmed Mean

The α-trimmed mean, which is the mean of the middle (1 − 2α)100% of the data

values, corresponds to an L-functional (cf. Example 2, Section 4.3) given by

T (F ) = (1− 2α)−1

∫ F−1(1−α)

F−1(α)

xdF (x) = (1− 2α)−1

∫ 1−α

α

F−1(u)du

with a corresponding L-estimator T (Fn) = (n−2[αn])−1
∑n−[αn]

i=[αn]+1 X(i), where [x] denotes

the integer part of x and X(i) is the ith order statistic of the observed data. Intuitively,

since the α-trimmed mean approaches the median as α approaches 0.5, the bootstrap

estimator of its variance should benefit from smoothing as in the quantile case. A simu-

lation study by Künsch (1989), under settings from Carlstein (1986), of the performance

of the jackknife for estimating the variance of the 20%-trimmed mean is replicated and

expanded upon here, and the SETBB again demonstrates a marked improvement over

the ETBB.

The observations were generated from an AR(1) model with φ = 0.8, with in-

novations from a mixture of normal distributions such that et ∼ (.7)Normal(0, 1) +

(.3)Normal(0, 10). The MSEs of the variance estimators for the α-trimmed means for

α = 0.1, 0.2, and 0.3 were computed for the MBB, SMBB, ETBB, and SETBB methods.

The three panels of Figure 4.3 display the MSEs achieved by the four bootstrap meth-

ods across the block sizes ` = 1, . . . , 23 for the three choices of α. Each panel shows a

reduction in MSE across all block sizes due to smoothing.

Figure 4.4 depicts the performance of the four block bootstrap methods for the α = 0.2

case when the block size was chosen according to the HHJ empirical method. As in

the case of the sample quantiles, the MSE achieved when using the HHJ-selected block

size is seen to be much lower for the smoothed block bootstrap methods than for their

unsmoothed counterparts.
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Figure 4.3: MSE achieved by the MBB, SMBB, ETBB, and SETBB estimators of the
variance of the α-trimmed mean for α = 0.1, 0.2, 0.3 of a length n = 100 realization of
an AR(1) process with φ = 0.8 and et ∼ (.7)Normal(0, 1) + (.3)Normal(0, 10).

4.6 Conclusions

We have attempted to address a methodological gap where smoothing to improve

bootstraps for time series has received little consideration, which contrasts largely to

the independent data case. To this end, we proposed a smooth extended tapered block

bootstrap (SETBB) based on data smoothing modifications to the (extended) tapered

block bootstrap (a general bootstrap for time series that has advantages over other first

generation block bootstrap variants). The SETBB method mimics the iid smooth boot-

strap by smoothing/augmenting a time series data set with independent random variables

drawn from a kernel density (e.g., standard normal) with a bandwidth parameter, prior

to applying (block) resampling steps. The purpose of such smoothing within resampling

mechanics is to provide improvements to bootstrap distributional approximations, par-

ticularly for statistics (e.g., sample quantiles) with distributions depending on unknown,

smooth process quantities such as marginal densities.

The SETBB was shown to provide valid inference in estimating the sampling distri-
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Figure 4.4: MSE achieved by the MBB, SMBB, ETBB, and SETBB estimators of the
variance of the 20%-trimmed mean of a length n = 100 realization of an AR(1) process
with φ = 0.8 and et ∼ (.7)Normal(0, 1) + (.3)Normal(0, 10). The MSE at the optimal
block size and when the HHJ-selected block size is used are shown as well as the selection
frequency of each block size.
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bution of a large class of time series statistics framed in terms of statistical functions.

Hence, the formal validity of the SETBB method has been established in a context be-

yond previous treatments of the tapered block bootstrap, expanding the applicability of

the bootstrap for time series inference. The improved performance of the SETBB over

unsmooth bootstrap counterparts was also supported by several numerical studies.

Open questions remain concerning the best selection of block lengths, bandwidths

and kernel densities for the SETBB approach to achieve optimal convergence rates and

coverage accuracy. For concreteness, we have focused on real-valued time series in our

development. We anticipate that the SETBB method applies equally to multivariate time

series with similar improvements, but the vector-valued case requires further technical

work and investigation.
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5. SUMMARY

In this work, a novel method for testing equality of mean vectors from two populations

in the large-p-small-n setting was introduced. It performed well under the assumption

of a serial dependence structure, of which two examples—copy number data from two

patient groups and a time series of mitochondrial concentration of Ca2+ gathered through

the course of an hour from cardiac tissue in mice—were given.

A power-increasing multiple testing procedure for a large number of two-sample uni-

variate equal-means hypotheses was also presented. This was an adaptation of the pro-

cedure introduced by Fan et al. (2012), which suggested estimating and removing the

effects of latent factors from the test statistics. The serial structure of the dependence

in our setting allowed reliable estimation of the covariance matrix of the test statistics,

given that a Toeplitz structure could be assumed. The effects of harmonic factors or

factors defined via eigendecomposition of the Toeplitz covariance matrix could then be

estimated and removed from the test statistics. Gains in power from the procedure were

established theoretically as well as demonstrated in simulation.

Lastly, a smooth version of the extended tapered blocks bootstrap from Shao (2010)

was introduced and its consistency was proven for a broader class of statistics than

originally considered. Simulation studies showed that our smoothing step substantially

improves estimation of the sampling variance of quantiles and the trimmed mean.
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APPENDIX A

PROOFS FOR THE TWO-SAMPLE TEST FOR EQUALITY OF MEANS IN HIGH

DIMENSION

A.1 Proofs of Main Results

Proof of Theorem 1: By an adaptation of the big-block-little-block argument to the

triangular array it can be shown that p−1/2
∑p

j=1[t2nj − Et2nj]→ Normal(0, τ 2
∞), where

τ 2
∞ = lim

n→∞
Var(p−1/2

∑p
j=1t

2
nj) = lim

n→∞
p−1
∑p−1

k=0

∑
|j1−j2|=kCov(t2nj1 , t

2
nj2

)

= γ(0) + 2
∑∞

k=1γ(k), (A.1)

where γ(k) = limn→∞(p − k)−1
∑p−k

j=1 Cov(t2nj, t
2
n(j+k)), k ≥ 0. To prove (A.1), use the

moment and α-mixing conditions to show that for any M ≥ 1,

p−1

p−1∑
k=M+1

∑
|j1−j2|=k

|Cov(tnj1 , tnj2)| ≤ 2
∑
k>M

p−1(p− k){α(k)δ/(2+δ)

p∨
j=1

(E|tnj|2+δ)
2

2+δ }

≤ C
∞∑

k=M+1

α(k)δ/(2+δ) → 0

as M →∞. Thus,

sup
x∈R
|P (
√
p[Tn − p−1

∑p
j=1E(t2nj)] ≤ x)− Φ(x/τ∞)|= o(1)

=⇒ sup
x∈R
|P (Tn − p−1

∑p
j=1E(t2nj) ≤ x)− Φ(

√
px/τ∞)|= o(1)

=⇒ sup
x∈R
|P (Tn − 1 ≤ x)− Φ(

√
p[x− n−1an − n−2bn]/τ∞)|= o(1),

where an and bn are bounded sequences such that

p−1
∑p

j=1E(t2nj) = 1 + n−1an + n−2bn +O(n−3). (A.2)
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Lemma 1 provides cnj and dnj for j = 1, . . . , p such that an = (cn1 + · · · + cnp)/p and

bn = (dn1 + · · ·+ dnp)/p satisfy (A.2).

Lemma 1 Let X1j, . . . , Xnj and Y1j, . . . , Ymj be independent identically distributed ran-

dom samples with V ar(X1j) = σ2
1j and V ar(Y1j) = σ2

2j and EX1j = EY1j for all

j = 1, . . . , p. Assume that max{E|X1j|16, E|Y1j|16, j = 1, . . . , p} = O(1) and that

min{σ2
1j, σ

2
2j} > c > 0 (The first moment condition may be reduced further by means of

truncation, but this would considerably lengthen the proof. The discussion of heterosceda-

sitiy in Section 2.4.4 illustrates the importance of bounding the component variances away

from zero). Let t2nj = n(Xnj − Y mj)
2{s2

nj + (n/m)ϑ2
mj}−1, where s2

n and ϑ2
m are the two

sample variances and let m ∼ n as n→∞. Then E(t2nj) = 1 +n−1cnj +n−2dnj +O(n−3)

for

cnj = τ−2
nj {σ2

1j + (n/m)2σ2
2j}+ 2τ−6

nj {µ′3j + (n/m)2η′3j}2 (A.3)

and

dnj = τ−4
nj [{σ2

1j + (n/m)2σ2
2j} − {(µ′4j − 3σ4

1j) + (n/m)4(η′4j − 3σ4
2j)}]

+ τ−6
nj {σ2

1j + (n/m)2σ2
2j}{(µ′4j − σ4

1j) + (n/m)3(η′4j − σ4
2j)}

− 4τ−6
nj {µ′3j + (n/m)2η′3j}{µ′3j + (n/m)3η′3j}

− 2τ−6
nj {(µ′3j)2 + (n/m)5(η′3j)

2}

− 6τ−8
nj {µ′3j + (n/m)2η′3j}{µ′5j − 2µ′3jσ

2
1j + (n/m)4(η′5j − 2η′3jσ

2
2j)}

− 3τ−8
nj {(µ′4j − σ4

1j) + (n/m)3(η′4j − σ4
2j)}2

+ 6τ−8
nj {σ2

1j + (n/m)2σ2
2j}{µ′3j + (n/m)2η′3j}2

+ 3τ−10
nj {σ2

1j + (n/m)σ2
2j}{(µ′4j − σ4

1j) + (n/m)3(η′4j − σ4
2j)}2

+ 12τ−10
nj {µ′3j + (n/m)2η′3j}2{(µ′4j − σ4

1j) + (n/m)3(η′4j − σ4
2j)}, (A.4)

where τ 2
nj = {σ2

1j + (n/m)σ2
2j} and µ′kj and η′kj are the kth central moments of X1j and
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Y1j, respectively.

Proof of Lemma 1: For ease of syntax, ignore the subscript j, and, without loss of

generality, assume that EX1j = EY1j = 0. Let ∆n = s2
n − σ2

1 + (n/m)(ϑ2
m − σ2

2) and let

t2n be approximated by the expansion

t̃2n = n(Xn − Y m)2(τ−2
n − τ−4

n ∆n + τ−6
n ∆2

n − τ−8
n ∆3

n + τ−10
n ∆4

n), (A.5)

so that t2n = t̃2n + Op(n
−3). An expression for the expected value E(t̃2nj) would thus

involve the quantities nτ−2k
n E(Xn−Y m)2∆k−1

n for k = 1, . . . , 5. These expectations must

be computed such that they retain terms out to the order of O(n−3).

Let χ|B|({Xj : j ∈ B}) represent the joint cumulant of the random variables in the

set {Xj : j ∈ B}, where |B| is the cardinality of B. Then the formula

E(X1 . . . Xk) = ΣπΠB∈πχ|B|({Xj : j ∈ B}) (A.6)

from Leonov & Shiryaev (1959) gives the expected value of a product of random variables

in terms of joint cumulants, where Σπ denotes summation over all possible partitions

of {X1, . . . , Xk}, and ΠB∈π denotes the product over all cells of the partition π. Using

(A.6) to compute E(Xn−Y m)2∆k−1
n to within O(n−4)of their true values for k = 1, . . . , 5

involves the joint cumulants tabulated below, where ∆ ≡ ∆n, X ≡ Xn, and Y ≡ Y m.

0 1 2

0 χ1(X − Y ) χ2(X − Y ,X − Y )

1 χ1(∆) χ2(∆, X − Y ) χ3(∆, X − Y ,X − Y )

2 χ2(∆,∆) χ3(∆,∆, X − Y ) χ4(∆,∆, X − Y ,X − Y )

3 χ3(∆,∆,∆) χ4(∆,∆,∆, X − Y ) χ5(∆,∆,∆, X − Y ,X − Y )

If κ(i, j) denotes the ijth member of the table of joint cumulants, then (A.6) gives

E(X − Y )2 = κ(0, 2) +O(n−4) (A.7)
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E(X − Y )2∆ = κ(1, 2) + κ(0, 2)κ(1, 0) +O(n−4) (A.8)

E(X − Y )2∆2 = κ(2, 2) + 2κ(1, 0)κ(1, 2) + κ(0, 2)κ(2, 0)

+ 2κ2(1, 1) + κ(0, 2)κ2(1, 0) +O(n−4) (A.9)

E(X − Y )2∆3 = κ(0, 2)κ(3, 0) + 6κ(1, 1)κ(2, 1)

+ 3κ(2, 0)κ(1, 2) + 3κ(1, 0)κ(2, 0)κ(0, 2)

+ 6κ(1, 0)κ2(1, 1) +O(n−4) (A.10)

E(X − Y )2∆4 = 3κ(0, 2)κ2(2, 0) + 12κ2(1, 1)κ(2, 0) +O(n−4),

after removing cumulant products of order smaller than O(n−4) and noting that κ(0, 1) =

0.

Each cumulant is simplified using rules found in Brillinger (1981), and the formula

χk(X1, . . . , Xk) = Σπ(−1)(|π|−1)(|π|−1)! ΠB∈πE(Πi∈BXi) (A.11)

from Leonov & Shiryaev (1959) provides expressions for the simplified cumulants in terms

of moments. The cumulants are computed below, where each cumulant is either given

exactly, or is approximated to the order necessary for the cumulant products in (A.7)–

(A.11) to lie within O(n−4) of their true values.

κ(0, 1) = χ1(X − Y ) = E(X − Y ) = 0

κ(0, 2) = χ2(X − Y ,X − Y ) = E(X − Y )2 − {E(X − Y )}2

= n−1{σ2
1 + (n/m)σ2

2}

κ(1, 0) = χ1(∆) = E{(s2 − σ2
1) + (n/m)(ϑ2 − σ2

2)} = −{σ2
1/n− (n/m)σ2

2/m}

= −n−1{σ2
1 + (n/m)2σ2

2}

κ(1, 1) = χ2(∆, X − Y ) = χ2(X2 −X2
, X) + (n/m)χ2(Y 2 − Y 2

, Y )

= χ2(X2, X)− χ2(X
2
, X) + (n/m)χ2(Y 2 − Y 2

, Y )
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= n−1χ2(X2
1 , X1)− n−3χ2(ΣiX

2
i + Σi 6=jXiXj,ΣiXi) + (n/m)χ2(Y 2 − Y 2

, Y )

= n−1µ′3 − n−2χ2(X2
1 +X1Σn

j=2Xj, X1) + (n/m)χ2(Y 2 − Y 2
, Y )

= (n−1 − n−2)µ′3 + n−2(n− 1)χ2(X1X2, X1) + (n/m)χ2(Y 2 − Y 2
, Y )

= (n−1 − n−2)µ′3 + (n/m)(m−1 −m−2)η′3

κ(1, 2) = χ3(∆, X − Y ,X − Y ) = χ3(X2 −X2
, X,X) + (n/m)χ3(Y 2 − Y 2

, Y , Y )

= n−2χ3(X2
1 , X1, X1)− n−3χ3(X2

1 , X1, X1)− n−4χ3(ΣiXiXj,ΣiXi,ΣiXi)

+ (n/m)χ3(Y 2 − Y 2
, Y , Y )

= (n−2 − n−3)(µ′4 − σ4
1) + (n/m)(m−2 −m−3)(η′4 − σ4

2)

κ(2, 0) = χ2(∆,∆) = χ2(X2 −X2
, X2 −X2

) + (n/m)2χ2(Y 2 − Y 2
, Y 2 − Y 2

)

= χ2(X2, X2)− 2χ2(X2, X
2
) + (X

2
, X

2
) + (n/m)2χ2(Y 2 − Y 2

, Y 2 − Y 2
)

= n−1χ2(X2
1 , X

2
1 )− 2n−3{χ2(ΣiX

2
i ,ΣiX

2
i ) + χ2(Σi 6=jXiXj,ΣiX

2
i )}

+ n−4{χ2(ΣiX
2
i ,ΣiX

2
i )− 2χ2(Σi 6=jXiXj,ΣiX

2
i )

+ χ2(Σi 6=jXiXj,Σi 6=jXiXj)}+ (n/m)2χ2(Y 2 − Y 2
, Y 2 − Y 2

)

= (n−1 − 2n−2 + n−3)(µ′4 − σ4
1) + n−4χ2(Σi 6=jXiXj,Σi 6=jXiXj)

+ (n/m)2χ2(Y 2 − Y 2
, Y 2 − Y 2

)

= (n−1 − 2n−2 + n−3)(µ′4 − σ4
1) +

2(n− 1)

n3
σ4

1 + (n/m)2χ2(Y 2 − Y 2
, Y 2 − Y 2

)

= n−3(n− 1)2µ′4 − n−3(n− 1)(n− 3)σ4
1

+ (n/m)2{m−3(m− 1)2η′4 −m−3(m− 1)(m− 3)σ4
2}

= (n−1 − 2n−2)µ′4 − (n−1 − 4n−2)σ4
1

+ (n/m)2{(m−1 − 2m−2)η′4 − (m−1 − 4m−2)σ4
2}+O(n−3)

κ(2, 1) = χ3(∆,∆, X − Y )

= χ3(X2 −X2
, X2 −X2

, X) + (n/m)2χ3(Y 2 − Y 2
, Y 2 − Y 2

, Y )

= χ3(X2, X2, X) + (n/m)2χ3(Y 2, Y 2, Y ) +O(n−3)

= n−2χ3(X2
1 , X

2
1 , X1) + (n/m)2m−2χ3(Y 2

1 , Y
2

1 , Y1) +O(n−3)
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= n−2(µ′5 − 2µ′3σ
2
1) + (n/m)2m−2(η′5 − 2η′3σ

2
2) +O(n−3)

= n−2{(µ′5 − 2µ′3σ
2
1) + (n/m)4(η′5 − 2η′3σ

2
2)}+O(n−3)

κ(2, 2) = χ4(∆,∆, X − Y ,X − Y )

= χ4(X2 −X2
, X2 −X2

, X,X) + (n/m)2χ4(Y 2 − Y 2
, Y 2 − Y 2

, Y , Y )

= n−3χ4(X2
1 , X

2
1 , X1, X1) + (n/m)2m−3χ4(Y 2

1 , Y
2

1 , Y1, Y1) +O(n−4)

= n−3[µ′6 − 3σ2
1µ
′
4 − 2(µ′3)2 + 2σ6

1 + (n/m)5{η′6 − 3σ2
2η
′
4 − 2(η′3)2 + 2σ6

2}]

+O(n−3)

κ(3, 0) = χ3(∆,∆,∆) = χ3(X2 −X2
, X2 −X2

, X2 −X2
)

+ (n/m)3χ3(Y 2 − Y 2
, Y 2 − Y 2

, Y 2 − Y 2
)

= χ3(X2, X2, X2)− 3χ3(X2, X2, X
2
)

+ 3χ3(X2, X
2
, X

2
) + χ3(X

2
, X

2
, X

2
)

+ (n/m)3χ3(Y 2 − Y 2
, Y 2 − Y 2

, Y 2 − Y 2
)

= n−2χ3(X2
1 , X

2
1 , X

2
1 )

+ (n/m)3χ3(Y 2 − Y 2
, Y 2 − Y 2

, Y 2 − Y 2
) +O(n−3)

= n−2{(µ′6 − 3σ2
1µ
′
4 + 2σ6

1) + (n/m)5(η′6 − 3σ2
2η
′
4 + 2σ6

2)}+O(n−3)

κ(3, 2) = χ5(∆,∆,∆, X − Y ,X − Y ) = O(n−4)

Plugging the above expressions into (A.7)–(A.11) and dropping terms of smaller order

than O(n−3) yields

nτ−2
n E(Xn − Y m)2 = 1

nτ−4
n E(Xn − Y m)2∆n = n−1τ−4

n [(µ′4 − σ4
1) + (n/m)3(η′4 − σ4

2)]

− n−1τ−2
n [σ2

1 + (n/m)2σ2
2]

− n−2τ−4
n [(µ′4 − σ4

1) + (n/m)4(η′4 − σ4
2)]

nτ−6
m,nE(Xn − Y m)2∆2

n = n−1τ−4
n [(µ′4 − σ4

1) + (n/m)3(η′4 − σ4
2)]
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+ n−2τ−4
n [σ2

1 + (n/m)2σ2
2]2

− n−2τ−4
n [(2µ′4 − 4σ4

1) + (n/m)4(2η′4 − 4σ4
1)]

+ 2n−1τ−6
n [µ′3 + (n/m)2η′3]2

− 4n−2τ−6
n [µ′3 + (n/m)2η′3][µ′3 + (n/m)3η′3]

− 2n−2τ−6[σ2
1 + (n/m)2σ2

2][(µ′4 − σ4
1) + (n/m)3(η′4 − σ4

2)]

+ n−2τ−6
n [µ′6 − 3σ2

1µ
′
4 − 2(µ′3)2 + 2σ6

1]

+ n−2τ−6
n (n/m)5[η′6 − 3σ2

2η
′
4 − 2(η′3)2 + 2σ6

2]

+O(n−3)

nτ−8
n E(Xn − Y m)2∆3

n = n−2τ−6
n [µ′6 − 3σ2

1µ
′
4 + 2σ6

1 + (n/m)5(η′6 − 3σ2
2η
′
4 + 2σ6

2)]

− 3n−2τ−6
n [σ2

1 + (n/m)2σ2
2][(µ′4 − σ4

1) + (n/m)3(η′4 − σ4
2)]

+ 6n−2τ−8
n [µ′3 + (n/m)2η′3]

× [(µ′5 − 2µ′3σ
2
1) + (n/m)4(η′5 − 2η′3σ

2
2)]

+ 3n−2τ−8
n [(µ′4 − σ4

1) + (n/m)3(η′4 − σ4
2)]2

− 6n−2τ−8
n [σ2

1 + (n/m)2σ2
2][µ′3 + (n/m)2η′3]2

+O(n−3)

nτ−10
n E(Xn − Y m)2∆4

n = 3n−2τ−10
n [σ2

1 + (n/m)σ2
2][(µ′4 − σ4

1) + (n/m)3(η′4 − σ4
2)]2

+ 12n−2τ−10
n [µ′3 + (n/m)2η′3]2[(µ′4 − σ4

1) + (n/m)3(η′4 − σ4
2)]

+O(n−3).

Adding and subtracting these quantities according to the expansion in (A.5) and gath-

ering terms out of which n−1 and n−2 can be factored yields cn from (A.3) and dn from

(A.4), respectively, thus completing the proof.

A.2 A Central Limit Theorem for Strongly Mixing Bounded Random Variables

We here establish a central limit theorem for a triangular array of strongly mixing

random variables which are bounded, which is simpler than in the unbounded case. This
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illustrates the steps of the proof for the unbounded case. We shall need the following

corollary as found in Athreya & Lahiri (2006), as well as Lemma 2 which follows.

Corollary 1 Let Xand Y be two random variables with α(σ〈X〉, σ〈Y 〉) = α ∈ [0, 1].

(i) (Davydov’s inequality). Suppose that E|X|p<∞, E|Y |<∞ for some p, q ∈ (0,∞)

with 1
p

+ 1
q
< 1. Then E|XY |<∞ and

|Cov(X, Y )|≤ 2r(2α)1/r(E|X|p)1/p(E|Y |q)1/q, (A.12)

where 1
r

= 1− (1
p

+ 1
q
).

(ii) If P (|X|≤ c1) = 1 = P (|Y |≤ c2) for some constants c1, c2 ∈ (0,∞), then

|Cov(X, Y )|≤ 4c1c2α. (A.13)

Lemma 2 Suppose that the conditions of Theorem 3 hold. Then

sup

E
(
m+pn−1∑
i=m

Xni

)4

: 1 ≤ m ≤ rn − pn + 1

 = o(p3
n) (A.14)

for pn ∈ [
√
rn, rn] as n→∞ (which means rn →∞ and thus also pn →∞).

Proof of Lemma 2:

E

[
m+pn−1∑
i=m

Xni

]4

=
∑
i,j,k,l

EXniXnjXnkXnl

=

(
4

4

)∑
i

EX4
ni +

(
4

3

)∑
i 6=j

EX3
niXnj +

(
4

2

)
1

2

∑
i 6=j

EX2
niX

2
nj

+

(
4

2

) ∑
i 6=j 6=k

EX2
niXnjXnk +

(
4

0

) ∑
i 6=j 6=k 6=l

EXniXnjXnkXnl

≡ I1pn + I2pn + I3pn + I4pn + I5pn ,
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where 1 ≤ i, j, k, l ≤ m − pn + 1. Note that since P (Xni < c) = 1 for all 1 ≤ i ≤ rn,

n ≥ 1,

|I1pn|+|I2pn|+|I3pn|≤ pnc
4 + 4pn(pn − 1)c4 + 3pn(pn − 1)c4 = 7p2

nc
4. (A.15)

By Corollary 1 (ii),

|I4pn| = 2(6)
∑
i<j<k

[
EX2

niXnjXnk + EXniX
2
njXnk + EXniXnjX

2
nk

]
= 12

∑
i<j<k

[∣∣Cov
(
X2
niXnj, Xnk

)∣∣+
∣∣Cov

(
XniX

2
nj, Xnk

)∣∣+
∣∣Cov

(
Xni, XnjX

2
nk

)∣∣]
≤ 12

∑
i<j<k

[
4c4α(k − j) + 4c4α(k − j) + 4c4α(j − i)

]
= 48c4

pn−2∑
i=1

pn−1∑
j=i+1

pn∑
k=j+1

[2α(k − j) + α(j − i)]

= 48c4

pn−2∑
i=1

pn−1−i∑
s=1

pn−s−i∑
r=1

[2α(r) + α(s)]

≤ 48c4pn

(
pn

pn−1∑
r=1

2α(r) + pn

pn−1∑
s=1

α(s)

)

= 144c4p2
n

pn−1∑
r=1

α(r). (A.16)

Similarly, and by the monoticity of α(·),

|I5pn| ≤
∑

i 6=j 6=k 6=l

|EXniXnjXnkXnl|

= 4!
∑

i<j<k<l

|EXniXnjXnkXnl|

= 24
∑

i<j<k<l

|Cov (Xni, XnjXnkXnl) ∧ Cov (XniXnjXnk, Xnl)|

≤ 24(4)c4
∑

i<j<k<l

α(j − i) ∧ α(l − k)

= 96c4

pn−3∑
i=1

pn−2∑
j=i+1

pn−1∑
k=j+1

pn∑
l=k+1

α(j − i) ∧ α(l − k)
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= 96c4

pn−3∑
i=1

pn−2−i∑
s=1

pn−1∑
k=s+i+1

pn−k∑
r=1

α(s) ∧ α(r)

≤ 96c4p2
n

pn−1∑
s=1

pn−1∑
r=1

α(s) ∧ α(r)

≤ 192c4p2
n

pn−1∑
r=1

rα(r)

= 192c4p2
n

b√pnc∑
r=1

rα(r) +

pn−1∑
r=b√pnc+1

rα(r)


= 192c4p2

n

p1/2
n

∞∑
r=1

α(r) + pn
∑

r≥bp1/2n c+1

α(r)


= o(p3

n), (A.17)

since
∑∞

r=1 α(r) = O(1) and
∑

r≥bp1/2n c+1
α(r) = o(1). Thus by (A.15)-(A.17), (A.14)

holds.

Theorem 3 Let {Xn1, . . . , Xnrn}n≥1 be a triangular array of random variables on

(Ωn,Fn, Pn) such that EXni = 0 and 0 < EX2
ni < ∞ for 1 ≤ i ≤ rn, n ≥ 1. Let

Sn = Xn1 + · · ·+Xnrn and s2
n = Var(Sn). Let

αn(k) = sup
{
|P (A ∩B)− P (A)P (B)|: A ∈ F (n)

1,m, B ∈ F
(n)
m+k,rn

, 1 ≤ m ≤ rn − k
}
,

where F (n)
i,j = σ〈{Xni, . . . , Xnj}〉. Suppose that there exists some c ∈ (0,∞) such that

P (|Xni|≤ c) = 1 for all 1 ≤ i ≤ rn, n ≥ 1 and some σ2
∞ ∈ (0,∞) such that

γpn ≡ sup

{∣∣∣∣∣p−1
n Var

(
j+pn−1∑
i=j

Xni

)
− σ2

∞

∣∣∣∣∣ : 1 ≤ j ≤ rn − pn + 1

}
→ 0 (A.18)

for any pn ∈ [
√
rn, rn] as n → ∞. Suppose also that there exists a function α(·) : N →
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[0, 1] such that |αn(k)|< α(k) for all n ≥ 1, k ≥ 1, and that

∞∑
k=1

α(k) <∞. (A.19)

Then

Sn√
rn
→d N(0, σ2

∞). (A.20)

Proof of Theorem 3: Let p ≡ pn, q ≡ qn = br1/2
n c, n ≥ 1 be integers such that

q/p+ p/rn = o(1) (A.21)

as n→∞. Let mn ≡ m = p+ q and K ≡ Kn = brn/mc. Then, for j = 1, . . . , K, let

Bnj =

(j−1)m+p∑
i=(j−1)m+1

Xni

Lnj =

jm∑
i=(j−1)m+p+1

Xni

Rnrn =
rn∑

i=mK+1

Xni.

Since q/p = o(1), the above provides a decomposition of the row sums Sn of the triangular

array into sums of big blocks Bnj, little blocks Lnj, and a remainder term Rnrn such that

1
√
rn
Sn =

1
√
rn

K∑
j=1

Bnj +
1
√
rn

K∑
j=1

Lnj +
1
√
rn
Rnrn . (A.22)

It is first shown that the last two terms converge in probability to zero as n → ∞. By

Corollary 1 (ii),

E (Rnrn/
√
rn)

2 ≤ r−1
n

(
rn∑

i=mK+1

EX2
ni +

∑
i 6=j

|EXniXnj|

)
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= r−1
n

(
rn∑

i=mK+1

|Cov(Xni, Xni)|+
∑
i 6=j

|Cov(Xni, Xnj)|

)

≤ r−1
n

(
(rn −mK)4c2α(0) + 2

rn−1∑
i=mK+1

rn∑
j=i+1

|Cov(Xni, Xnj)|

)

≤ r−1
n

(
(rn −mK)4c2 + 2

rn−1∑
i=mK+1

rn−i∑
l=1

|Cov(Xni, Xn(i+l))|

)

≤ r−1
n

(
(rn −mK)4c2 + 2(rn −mK)4c2

∞∑
l=1

α(l)

)

≤ r−1
n (rn −mK)8c2

(
1 +

∞∑
l=1

α(l)

)

= O

(
m

rn

)
→ 0. (A.23)

Note that between any random variables Xni and Xnl involved in Lnj and Ln(j+k), re-

spectively, there are at least (k − 1)m + p ≥ kp intermediate random variables, so that

the maximum strong mixing coefficient between Xni and Xnl cannot exceed αn(kp), by

the monotonicity of αn(·). Hence

E

(
K∑
j=1

Lnj/
√
rn

)2

≤ r−1
n

(
K∑
j=1

EL2
nj +

∑
i 6=j

|ELniLnj|

)

= r−1
n

(
K∑
j=1

EL2
nj + 2

K−1∑
l=1

K−l∑
j=1

|Cov(Lnj, Ln(j+l))|

)

≤ r−1
n

q K∑
j=1

1

q
Var

 jm∑
i=(j−1)m+p+1

Xni

+ 2
K−1∑
l=1

(K − l)4c2q2α(lp)


≤ r−1

n

(
Kq(σ2

∞ + γq) + 8Kc2q2

K−1∑
l=1

p∑
j=1

α(lp− j)/p

)

= r−1
n

(
Kq(σ2

∞ + γq) +Kq2p−18c2

∞∑
l=1

α(l)

)

= O

(
q

p

)
+O

(
q2

p2

)
→ 0 (A.24)

as n→∞, since pK/rn → 1 as n→∞.
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Now, as q increases, the big blocks grow further apart, and eventually the triangu-

lar array
{
Bn1/

√
rn, . . . , BnK/

√
rn
}
n≥1

can be replaced with a triangular array of inde-

pendent random variables {B̃n1/
√
rn, . . . , B̃nK/

√
rn}n≥1, such that B̃nj =d Bnj for all

1 ≤ j ≤ K,n ≥ 1. Note that α(σ〈Bnj〉, σ〈{Bnl : l ≥ j + 1}〉) ≤ α(q), since the big

blocks are separated from one another by no fewer than q random variables. Letting

Ynj = exp
(
ιtBnj/

√
rn
)

for any t ∈ R and applying Corollary 1 (ii), it is seen that

∣∣∣∣∣E
K∏
j=1

Ynj −
K∏
j=1

EYnj

∣∣∣∣∣ ≤
∣∣∣∣∣E

K∏
j=1

Ynj − EYn1E

K∏
j=2

Ynj

∣∣∣∣∣
+

∣∣∣∣∣EYn1E
K∏
j=2

Ynj − EYn1EYn2E
K∏
j=3

Ynj

∣∣∣∣∣
+

∣∣∣∣∣EYn1EYn2E
K∏
j=3

Ynj −
3∏
j=1

EYnjE
K∏
j=4

Ynj

∣∣∣∣∣
+ · · ·+

∣∣∣∣∣
K−2∏
j=1

EYnjE
K∏

j=K−1

Ynj −
K∏
j=1

EYnj

∣∣∣∣∣
=

∣∣∣∣∣Cov

(
Yn1,

K∏
j=2

Ynj

)∣∣∣∣∣+
K∑
j=2

∣∣∣∣∣
j−1∏
i=1

EYni

∣∣∣∣∣
∣∣∣∣∣Cov

(
Ynj,

K∏
i=j+1

Yni

)∣∣∣∣∣
≤ 4

K∑
j=1

∣∣∣∣∣Cov

(
Ynj,

K∏
i=j+1

Yni

)∣∣∣∣∣
≤ 16Kα(q)

= O

(
qα(q)

rn
pq

)
→ 0,

where the last step follows from noting that
∑∞

q=1 α(q) <∞ =⇒ qα(q)→ 0 as q →∞.

Thus

φ( 1√
rn

∑K
j=1Bnj

)(t)→
K∏
j=1

φ(B̃nj/
√
rn)(t) = φ( 1√

rn

∑K
j=1 B̃nj

)(t)
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for all t ∈ R, where φX(t) is the characteristic function of X evaluated at t. Hence

1
√
rn

K∑
j=1

Bnj →d S̃n ≡
1
√
rn

K∑
j=1

B̃nj. (A.25)

It is now shown that s̃2
n ≡ Var

(∑K
j=1 B̃nj/

√
rn

)
→ σ2

∞.

∣∣∣∣∣ 1

rn
Var

(
K∑
j=1

B̃nj

)
− σ2

∞

∣∣∣∣∣ =

∣∣∣∣∣ 1

rn

K∑
j=1

EB̃2
nj − σ2

∞

∣∣∣∣∣
=

∣∣∣∣∣ 1

rn

K∑
j=1

EB2
nj − σ2

∞

∣∣∣∣∣
≤ 1

rn

K∑
j=1

∣∣∣EB2
nj −

rn
K
σ2
∞

∣∣∣
≤ 1

rn

K∑
j=1

∣∣EB2
nj − pσ2

∞
∣∣+ σ2

∞

∣∣∣∣Kprn − 1

∣∣∣∣
=

p

rn

K∑
j=1

∣∣∣∣∣∣1pVar

 (j−1)m+p∑
i=(j−1)m+1

Xni

− σ2
∞

∣∣∣∣∣∣+ σ2
∞

∣∣∣∣Kprn − 1

∣∣∣∣
≤ Kp

rn
γp + σ2

∞

∣∣∣∣Kprn − 1

∣∣∣∣→ 0

as n → ∞. It is now shown that the triangular array of independent random variables

{B̃n1/
√
rn, . . . , B̃nKn/

√
rn}n≥1 satisfies the Lyapounov condition

lim
n→∞

s̃−(2+δ)
n

Kn∑
j=1

E

∣∣∣∣∣ B̃nj√
rn

∣∣∣∣∣
(2+δ)

= 0.

for δ = 2. Let

Γ(k) = sup

E
(
l+k−1∑
i=l

Xni

)4

k−3 : 1 ≤ l ≤ rn − k + 1

 (A.26)
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for k = 1, . . . , rn and Γ∗(k) = sup{Γ(j) : k ≤ j ≤ rn} for k = 1, . . . , rn. Then

K∑
j=1

E
(
B̃nj/

√
rn

)4

= r−2
n

K∑
j=1

EB4
nj

= r−2
n

K∑
i=1

E

 (j−1)m+pn∑
i=(j−1)m+1

Xni

4

≤ r−2
n Kp3

nΓ∗(pn)

≤ r−2
n

rn
pn + qn

p3
nΓ∗(pn)

≤ r−1
n p2

nΓ∗(pn).

Now choose pn = b√rn{Γ∗(qn)−1/3 ∧ logrn}c. Then by Lemma 2,

r−1
n p2

nΓ∗(pn) ≤ r−1
n (r1/2

n Γ∗(qn)−1/3)2Γ∗(qn) = Γ∗(qn)1/3 → 0 (A.27)

as n → ∞. It is easily verified that (A.21) holds for this choice of p. By (A.27) the

Lyapounov condition holds for δ = 2 and Lyapounov’s CLT gives that

S̃n →d N(0, σ2
∞), (A.28)

Which implies that 1√
rn

∑K
j=1 Bnj →d N(0, σ2

∞). Thus by (A.23) and (A.24),

Sn/
√
rn →d N(0, σ2

∞).
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APPENDIX B

PRE-PROCESSING STEPS FOR COPY NUMBER DATA AS ANALYZED IN

SECTION 3

Prior to the analysis of the copy number data, the 230 × 7531 data matrix Y , of

which the first n1 = 92 rows correspond to long-term survivors and the last n2 = 138

rows correspond to short-term survivors, was doubly standardized so that each row and

column had zero mean and unit variance. This has become a common practice in the

analysis of microarray data, (Efron (2010b)).

Each patient was labeled with an identifier of the form

TCGA-11-2222-01A-01D-3333-01,

where the set of digits in the position of 3333 in this string correspond to the plate or

batch in which the subject’s DNA was analyzed. Batch effects in copy number data are

a common occurence, and we find that they are markedly present here. The 230 × 230

subject covariance matrix ∆ = Y Y ′/N is depicted in the upper left hand panel of Figure

B.1, in which there appears strong evidence of block correlations. Directly beneath is

a depiction of the subject covariance matrix after removing the batch effects with the

function ber() from the R package ber from Giordan (2014). The right hand panels of

Figure B.1 display histograms of 5000 permutation test statistics, where each test statistic

is a measurement of block correlation for the subject covariance matrix after a random

permutation of its rows. A dark vertical line marks the position of the test statistic

under the original subject ordering—by plate/batch. For the unadjusted data, there is

extreme evidence of block correlations, whereas after adjusting for the plate effect using

the ber() function, the block correlation test statistic for the original subject ordering
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230 x 230 matrix of subject correlations
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Figure B.1: Left column: Top and bottom panels depict the subject covariance matrix
before and after removing the plate (batch) effect in the copy number data. Right column:
Top and bottom panels display histograms of the permutation test statistics for block
correlation with vertical lines positioned at the observed value of the test statistic.
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falls near the center of the histogram of permutation values. For a detailed explanation

of the permutation test for block correlations/batch effects, see Efron (2009).
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APPENDIX C

PROOFS OF MAIN RESULTS FOR THE SMOOTH BLOCK BOOTSTRAP FOR

TIME SERIES

C.1 An Auxiliary Result for The TBB/ETBB

To prove Theorem 1, we require a preliminary result, given in Lemma 1 next. Re-

call Yt = T
(1)
F (δXt − F ), t ∈ Z, denotes the influence function (4.4) evaluated at Xt,

which satisfies EYt = T
(1)
F (EδXt − F ) = T

(1)
F (F − F ) = 0 by linearity of T

(1)
F . Let

Ȳ ∗n,ETBB =
∑n

i=1 π
∗
i Yi =

∑b
j=1

∑`
k=1 w`(k)YI∗j +k/[b‖w`‖] denote the ETBB/TBB version

of the sample mean Ȳn =
∑n

i=1 Yi/n, based on length ` blocks and where {I∗j }bj=1 are

iid uniform over {0, . . . , n − `}; for the sample mean, the ETBB and TBB methods are

known to match (Shao (2010)).

The next result establishes the validity of the TBB/ETBB approximation of the

distribution of Ȳn, under slightly weaker mixing/moment conditions than those consid-

ered originally by Paparoditis & Politis (2001) and Paparoditis & Politis (2002) or Shao

(2010).

Lemma 1 Suppose (4.3), the block length ` satisfies `−1 + `/n = o(1) as n → ∞, and

that σ2
∞ ≡

∑∞
k=−∞ cov(Y0, Yk) > 0. Suppose also that, for some γ > 0, E|Y1|2+γ<∞ and∑∞

k=1 α(k)γ/(2+γ) <∞. Then, as n→∞,

(i)
√
nȲn

d−→ Normal(0, σ2
∞) and nvar(Ȳn) −→ σ2

∞;

(ii) mnnvar∗(Ȳ
∗
n,ETBB)

p−→ σ2
∞;

(iii) supx∈R|P∗[m
1/2
`

√
n(Ȳ ∗n,ETBB − E∗Ȳ ∗n,ETBB) ≤ x]− P (

√
nȲn ≤ x)| p−→ 0.

Proof of Lemma 1. Part(i) follows by the central limit theorem for mixing sequences

(cf. Athreya & Lahiri (2006), Ch. 16.3). For part (ii), writem`b`var∗(Ȳ
∗
n,ETBB) =

∑n−`
i=0 (Ui−

µ̂n)2/(n− `+ 1), where Ui =
∑i+`

j=i+1 Yi/‖w`‖2, i ≥ 0, and µ̂n =
∑n−`

i=0 Ui/(n− `+ 1); this
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is the expression of the TBB variance as a block sum sample variance (cf. Paparoditis &

Politis (2001)). By writing Vi = U2
i I(|Ui|< (n/`)1/8), one can show m`b`var∗(Ȳ

∗
n,ETBB)−∑n−`

i=0 Vi/(n− `+ 1)
p−→ 0 and

∑n−`
i=0 (Vi−EV0)/(n− `+ 1)

p−→ 0 as in p. 51-53 of Lahiri

(2003b). Then, U0/‖w`‖2
d−→Normal(0, σ2

∞) holds by a weighted central limit theorem,

Theorem 4.3 from Lahiri (2003a), and EV0 → σ2
∞ follows by the dominated convergence

theorem. Part(ii) now follows since `b/n → 1. To show part(iii), one may use that

m
1/2
`

√
b`(Ȳ ∗n,ETBB − E∗Ȳ ∗n,ETBB) = b−1/2

∑b
j=1(UI∗j − µ̂n) is a sum of conditionally iid vari-

ables which, in probability, have a convergent variance by part(ii) and satisfy Lindeberg’s

condition (i.e., b−1
∑b

j=1 E∗(UI∗j − µ̂n)2I(|UI∗j − µ̂n|> 2[n/`]1/4)
p−→ 0) as in p. 56-57 of

Lahiri (2003b). �

C.2 Proof of Theorem 1

Theorem 1(i). We first show nvar(θ̂n)→ σ∞. By Condition C.2(i), write

√
n(θ̂ − θ) =

√
n[T (Fn)− T (F )] =

√
nT

(1)
F (Fn − F ) +

√
nR(Fn − F )

=
√
nȲn +

√
nR(Fn − F ) (C.1)

using, by linearity, T
(1)
F (Fn − F ) = Ȳn = n−1

∑n
i=1 Yi for Yi = T

(1)
F (δXi − F ), i ≥ 1. We

assume that the remainder |R(Fn−F )|≤ C‖Fn−F‖1+λ
∞ and later describe the treatment

of the (simpler) case |R(Fn − F )|≤ C‖Fn − F‖1+λ
1 .

By (C.1), Lemma 1(i) and the Cauchy-Schwarz inequality, nvar(θ̂n)→ σ∞ will follow

by showing

nE‖Fn − F‖2(1+λ)
∞ = o(1), (C.2)

so that nE [R(Fn − F )]2 = o(1). Because F is continuous, we may assume without

loss of generality that each Xi is uniformly distributed on [0, 1] and F (t) = t, t ∈

[0, 1], is the corresponding distribution function. (That is, if F̃n(x), x ∈ R, denotes the

empirical distribution function of F (X1), . . . , F (Xn), which are uniformly distributed,
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then F̃n(F (x))−F (x) = Fn(x)−F (x) for all x ∈ R with probability 1.). Define integers

τ = max{dλe, 4dγ/2e} + 2 and κ = 1 + dγ/2e, and set Dn(t) =
√
n[Fn(t) − F (t)], for

t ∈ [0, 1] and n ≥ 1. Under the mixing moment assumptions, by Theorem 1.4.1 of

Doukhan (1994) and Jensen’s inequality, it follows that

E |Dn(t)−Dn(s)|2τ ≤ C{E |D1(t)−D1(s)|2+γ}τ/(2+γ) ≤ C{E |D1(t)−D1(s)|2κ}τ/(2κ)

(C.3)

for any s, t ∈ [0, 1] with a constant C > 0 (not depending on n or s, t ∈ [0, 1]). Using

moments of the uniform[0, 1] distribution, E |D1(t)−D1(s)|2κ ≤ C1|t− s| holds for some

C1 > 0 not depending on s, t ∈ [0, 1] and, by construction, τ/(2κ) > 1. By this and

(C.3), Theorem 12.2 of Billingsley (1968) yields that, for any integer m ≥ 1 and y > 0,

there then exists a constant K > 0 such that

P

(
max

1≤i≤m
|Dn(i/m)| ≥ y

)
≤ K

y2τ
.

Letting m→∞, this implies that

P (
√
n‖Fn − F‖∞≥ y) ≤ K

y2τ

for any y > 0. Then, (as E|V |r= r
∫∞

0
tr−1P (|V |≥ t)dt for a generic variable V and

r > 0), it holds that

n1+λE‖Fn − F‖2(1+λ)
∞ =

∫ ∞
0

2(1 + λ)y2λ+1P (
√
n‖Fn − F‖∞≥ y)dy

≤ C + C

∫ ∞
1

y2λ+1−2τdy <∞ (C.4)

using that 2λ+ 1−2τ < −1. Now (C.2) follows from nE‖Fn−F‖2(1+λ)
∞ = O(n−λ) = o(1).

Next (C.2) implies that
√
nR(Fn − F ) = op(1), so that the asymptotic normality of

√
n(θ̂n − θ) follows from (C.3), Lemma 1(i) and Slutsky’s theorem.
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Finally, a version of (C.2) can also be shown in the L1 norm when the remainder

|R(Fn − F )|≤ ‖Fn − F‖1+λ
1 . In this case, define an even integer m = 2(dλe+ 1), so that

by Jensen’s inequality, the Cauchy-Schwarz inequality and Fubini’s theorem,

E‖Fn − F‖2+2λ
1 ≤

[∫
{E [Fn(x)− F (x)]m}1/mdx

]2+2λ

.

By the mixing/moment assumptions and using that |I(Xi ≤ x)−F (x)|≤ max{F (x), 1−

F (x)} for each x ∈ R, it holds that E [Fn(x)−F (x)]m ≤ Cn−m/2[max{F (x), 1−F (x)}]m

(for C > 0 not depending on n or x) using a standard covariance bound based on α-

mixing and bounded random variables (cf. p. 10 of Doukhan (1994);p. 510 of Athreya

& Lahiri (2006)) and arguments as in Theorem 1.4.1 of Doukhan (1994) . Hence,

nE‖Fn − F‖2+2λ
1 ≤ Cn−λ = o(1) follows from E|X1|<∞. �

Theorem 1(ii). Under Condition C.2 and recalling Yi = T
(1)
F (δXi − F ), write

θ̂∗n − θ̃n = T [F ∗n ]− T [F ]− {T [E∗F ∗n ]− T [F ]}

=
n∑
i=1

π∗i Yi + L∗n +R(F ∗n − F ) +R(E∗F ∗n − F ) (C.5)

where

L∗n ≡
n∑
i=1

π∗i T
(1)
F (δXi+Z∗i,n − δXi)− E∗

n∑
i=1

π∗i T
(1)
F (δXi+Z∗i,n − F )

by linearity of T
(1)
F and using

∑n
i=1 π

∗
i = 1. By Lemma 1(ii), m`nvar∗(Ȳ

∗
n,ETBB)

p−→ σ2
∞

where Ȳ ∗n,ETBB =
∑n

i=1 π
∗
i Yi. Hence, by the Cauchy-Schwarz inequality and Condition

C.2 (note m` = O(1)), Theorem 1(ii) will follow by showing

nvar∗(L
∗
n) + nE∗‖F ∗n − E∗F ∗n‖2(1+λ)

∞ +n‖E∗F ∗n − F‖2(1+λ)
∞

p−→ 0; (C.6)

above we are assuming a remainder |R(·)|≤ C‖·‖1+λ
∞ bounded in the Kolmogorov metric
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and later describe the L1-metric case |R(·)|≤ C‖·‖1+λ
1 .

To handle n‖E∗F ∗n − F‖2(1+λ)
∞ in (C.6), we require some notation. Let Φµ,σ denote

the distribution for a normal with mean µ ∈ R and standard deviation σ > 0, and

let φ denote the standard normal density function. By independence of {Ij}bj=1 and

iid standard normal {Z∗i }ni=1, it holds for a given i = 1, . . . , n and k = 1, . . . , `, that

E∗I(I∗j = i− k)δXi+hZ∗i = E∗I(I∗j = i− k)E∗δXi+hZ∗i and E∗δXi+hZ∗i = ΦXi,h. Hence,

E∗F ∗n =
b

‖w`‖1

b∑
j=1

∑̀
k=1

w`(k)E∗
n∑
i=1

I(I∗j = i− k)ΦXi,h =
b

‖w`‖1

b∑
j=1

∑̀
k=1

w`(k)E∗ΦXk+I∗
j
,h

=
∑̀
k=1

w`(k)

‖w`‖1

n−∑̀
m=0

1

n− `+ 1
ΦXk+m,h

= Φ0,h ∗ F1n,

where the last line denotes the distributional convolution (cf. Sec. 5.4 of Athreya & Lahiri

(2006)) between Φ0,h and the distribution F1n =
∑`

k=1
w`(k)
‖w`‖1

∑n−`
m=0

1
n−`+1

δXk+m (i.e., for a

Borel set A, Φ0,h ∗ F1n(A) =
∫∞
−∞

∫∞
−∞ I(x+ y ∈ A)dΦ0,h(x)dF1n(y)). Write

A1n = ‖Φ0,h ∗F1n−Φ0,h ∗Fn‖∞, A2n = ‖Φ0,h ∗Fn−Φ0,h ∗F‖∞, A3n = ‖Φ0,h ∗F −F‖∞.

Then, A1n ≤ ‖n−1(n−`+1)F1n−Fn‖∞+‖n−1(n−`+1)F1n−F1n‖∞≤ 3`/n holds; A2n ≤

‖Fn−F‖∞= Op(n
−1/2) by (C.4); and A3n ≤ supx∈R

∫∞
−∞|F (x+ hz)−F (x)|φ(z)dz ≤ Ch

by Condition C.1. It now follows in (C.6) that

n‖E∗F ∗n − F‖2(1+λ)
∞ ≤ n

3∑
j=1

A
2(1+λ)
jn ≤ O(`2(1+λ)/n1+2λ) +Op(n

−λ) +O(nh2(1+λ)) = op(1)

by the growth assumptions `2/n = O(1) and nh2(1+λ) = o(1).

Consider next nE∗‖F ∗n−E∗F ∗n‖
2(1+λ)
∞ in (C.6). For k = 1, . . . , `, define the distribution

F ∗k,`,n = b−1
∑b

j=1 δXI∗
j
+k+hZ∗

I∗
j
+k

. Then, F ∗n − E∗F ∗n = ‖w`‖−1
1

∑`
k=1w`(k)[F ∗k,`,n − E∗F ∗k,`,n],
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so that it follows that (because ‖·‖∞ is a norm), for any t > 0,

P∗ (‖F ∗n − E∗F ∗n‖∞> t) ≤ P∗

(⋃̀
k=1

{
‖F ∗k,`,n − E∗Fk,`,n‖∞>

t‖w`‖1

w`(k)

})

≤
∑̀
k=1

P∗

(
‖F ∗k,`,n − E∗Fk,`,n‖∞≥

t‖w`‖1

w`(k)

)
.

Because each F ∗k,`,n−E∗Fk,`,n (k = 1, . . . , `) is the centered empirical distribution of b iid

random variables {XI∗j +k + hZ∗I∗j +k}bj=1 (under P∗), by the Dvoretzky-Kiefer-Wolfowitz

inequality theorem we have that

P∗

(
‖F ∗k,`,n − E∗Fk,`,n‖∞≥

t‖w`‖1

w`(k)

)
≤ 2 exp{−2b[‖w`‖1/w`(k)]2t2}

for any t > 0. Hence,

nE∗‖F ∗n − E∗F ∗n‖2(1+λ)
∞ ≤ n

∫ ∞
0

t2λ+1P∗ (‖F ∗n − E∗F ∗n‖∞> t) dt

≤ 2n
∑̀
k=1

∫ ∞
0

t2λ+1 exp{−2b[‖w`‖1/w`(k)]2t2}dt

≤ Cn
∑̀
k=1

[
[w`(k)]2

‖w`‖2
1

1

b

]1+λ

= O((`n)−λ) = o(1)

using that
∑`

k=1[w`(k)]2(1+λ) = O(`), b`/n→ 1 and ‖w`‖1∝ ` as n→∞.

Finally, consider nvar∗(L
∗
n) in (C.6). Letting E|I∗ and var|I∗ denote bootstrap ex-

pectation and variance conditional on variables {I∗j }bj=1 (recall {I∗j }bj=1 and {Z∗i }ni=1 are

independent), we have

nvar∗(L
∗
n) = nE∗[var|I∗(L

∗
n)] + nvar∗[E|I∗(L∗n)]
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and we next show

nE∗[var|I∗(L
∗
n)]

p→ 0, nvar∗[E|I∗(L∗n)]
p→ 0. (C.7)

to establish nvar∗(L
∗
n)

p→ 0 in (C.6). We may write

nE∗[var|I∗(L
∗
n)] = nE∗

[
n∑
i=1

[π∗i ]
2var|I∗T

(1)
F (δXi+hZ∗i − δXi)

]
= nE∗

[
n∑
i=1

[π∗i ]
2

]
· Vn

for Vn = var∗[T
(1)
F (δhZ∗1 − δ0)]; the above follows using that {π∗i }ni=1 are determined by

{I∗j }bj=1 and that T
(1)
F (δXi+hZ∗i − δXi) = T

(1)
F (δhZ∗i − δ0)] (as the distributions are location

shifts) along with {Z∗i }ni=1 are iid [standard normal] and independent of {I∗j }bj=1 under

P∗. We will show Vn = op(1) and nE∗ [
∑n

i=1[π∗i ]
2] = Op(1) to obtain nE∗[var|I∗(L

∗
n)]

p→ 0

in (C.7). As π∗i = [b‖w`‖1]−1
∑b

j=1

∑`
k=1w`(k)I(I∗j = i + k) and {I∗j }bj=1 are iid uniform

on {0, . . . , n− `},

nE∗

[
n∑
i=1

[π∗i ]
2

]
≤ n[b‖w`‖1]−2

n∑
i=1

[ b∑
j=1

∑̀
k=1

w`(k)P∗(I
∗
j = i+ k)

+2
∑

1≤j<m≤b

∑̀
k=1

∑̀
z=1

w`(k)w`(z)P∗(I
∗
j = i+ k)P∗(I

∗
m = i+ z)

]
≤ n2

(n− `+ 1)b‖w`‖1]
+

n2

(n− `+ 1)2
= O(1).

Next note that w.p.1 (P ), hZ∗1
P∗→ 0 (converges in distribution to zero in P∗) because h→ 0

and that (for 0(x) = x, x ∈ R, in Condition C.2(ii)) in terms of the Skorohod metric

dS(0, δZ∗1,n − δ0) = dS(δZ∗1,n , δ0) ≤ h|Z∗1 | while in terms of the L1 metric d1(0, δhZ∗1 − δ0) ≤

hE∗|Z∗1 |≤ h. Hence, w.p.1 (P ), dS,1(0, δhZ∗1 − δ0)
P∗→ 0 so that

T
(1)
F δhZ∗1 − δ0)

P∗→ 0 (w.p.1 (P )) (C.8)

by continuity at 0 under Condition C.2(ii). Also, by Condition C.2(ii), it holds w.p.1
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(P ) that

sup
n≥1
E∗[T (1)

F (δhZ∗1 − δ0)]3 ≤ A sup
n≥1
E∗ exp[3adS,1(0, δhZ∗1 − δ0)]

≤ A sup
n≥1
E∗ (exp[3ah|Z∗1 |] + exp[3ah]) <∞,

(as Z∗1 is normal), implying {[T (1)
F (δhZ∗1 − δ0)]2}∞n=1 is uniformly integrable in P∗. This

and (C.8) yield Vn → 0 w.p.1 (P ) so that Vn
p→ 0. Lastly, we consider showing

nvar∗[E|I∗(L∗n)]
p→ 0 in (C.7). Again because T

(1)
F (δXi+hZ∗i − δXi) = T

(1)
F (δhZ∗i − δ0)]

and {Z∗i }ni=1 are iid normal,

E|I∗(L∗n) =
n∑
i=1

π∗i T
(1)
F (δΦ0,h

− δ0)− E∗
n∑
i=1

π∗i T
(1)
F (δXi+hZ∗i − F )

= T
(1)
F (δΦ0,h

− δ0)− E∗
n∑
i=1

π∗i T
(1)
F (δXi+hZ∗i − F )

using
∑n

i=1 π
∗
i = 1. Because E|I∗(L∗n) is non-stochastic under P∗, nvar∗[E|I∗(L∗n)] = 0 for

all n ≥ 1 w.p.1 (P ) and consequently nvar∗[E|I∗(L∗n)]
p→ 0.

This concludes the proof of Theorem 1(ii). In the case of remainders |R(·)|≤ C‖·‖1+λ
1

bounded in the L1 metric, one needs to show an analog of (C.6):

nE∗‖F ∗n − E∗F ∗n‖
2(1+λ)
1 +n‖E∗F ∗n − F‖

2(1+λ)
1

p−→ 0.

Using the Mallow/Wasserstein representation of the L1 metric (cf. Bickel & Freedman

(1981)), it is straightforward to show that n‖E∗F ∗n−F‖
2(1+λ)
1 = op(1) (with the same order

bounds as n‖E∗F ∗n − F‖
2(1+λ)
∞ ) and nE∗‖F ∗n − E∗F ∗n‖

2(1+λ)
1 ≤ n(2h)2(1+λ)) = op(1). �

Theorem 1(iii) Re-writing the expansion in (C.5) gives

m
1/2
`

√
n(θ̂∗n − θ̃n) = m

1/2
`

√
n

(
n∑
i=1

π∗i Yi + E∗L∗n

)
+R∗n
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with a remainder R∗n ≡ m
1/2
`

√
n[L∗n − E∗L∗n + R(F ∗n − F ) + R(E∗F ∗n − F )] and where∑n

i=1 π
∗
i Yi + E∗L∗n = Ȳ ∗n,ETBB − E∗Ȳ ∗n,ETBB. By Lemma 1(i),(iii) and (C.6), for any sub-

sequence {nj} of {n}∞n=1, one may extract a further subsequence {nk} ⊂ {nj} such

that, w.p.1 (P ), m`k

√
nk(Ȳ

∗
nk,ETBB

− E∗Ȳ ∗nk,ETBB)
d−→Normal(0, σ2

∞) and Rnk

p−→ 0 in

P∗-probability, implying m
1/2
`k

√
nk(θ̂

∗ − θ̃n)
d−→Normal(0, σ2

∞) in P∗-probability (w.p.1

(P )). Hence, letting Φ(·) denote the standard normal distribution function, this last fact

implies that

sup
x∈R

∣∣∣P∗ (m1/2
`

√
n(θ̂∗n − θ̃n)

)
− Φ(x/σ∞)

∣∣∣ p−→ 0

and Theorem 1(iii) now follows from Theorem 1(i). �
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