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ABSTRACT 

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored 

in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) 

connect to external sources to charge the batteries. Moreover, PHEVs can supply stand-

alone loads and inject power to the grid. Such functionalities have been defined as 

Vehicle to House (V2H) and Vehicle to Grid (V2G) and promoted by national and 

international policies such as the Energy Independency and Security Act (EISA) of 

2007, enacted by the United States Congress. Exchanging energy between the vehicle 

and external sources is performed by the vehicular power conditioner (VPC). This 

dissertation proposes a design procedure for VPCs. The research mainly focuses on the 

VPC’s power converter design. 

A conceptual design approach is proposed to select the proper power converter 

topologies according to the determined power conditioning needs. The related standards 

and previous works are reviewed to determine the design guidelines. A set of 

specifications are introduced for a three port onboard VPC. This VPC is a reference for 

designs, simulations and experiments. 

The reference VPC is implemented with a modular three-stage isolated topology 

that utilizes voltage source ac-dc converters as the power conditioning stages. The 

multiport extension of this topology extends the vehicular power conditioning concept 

into a novel vehicular integrated power system. All the vehicle’s electric sources and 

loads can exchange energy in the described multiport integrated power system. 
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Novel design methods are proposed for the power converter, filters, magnetic 

circuit and control of the VPC. The practical challenges of the VPC development are 

analyzed. The major contributions of this dissertation include a pioneer grounding 

scheme for VPC considering the vehicular standards, a novel modeling approach for the 

Snubberless Dual Active Bridge (DAB) commutation, an innovative integrated ac 

inductor, and a new experimental modeling method for multiwinding transformers. The 

contributions are supported by analyses, simulations, and practical experiments. 
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1. INTRODUCTION 

1.1. Background 

This dissertation is dedicated to power conditioning of Plugin Hybrid Electric 

Vehicles (PHEVs). A power conditioner processes power between the vehicle and 

external sources and loads. From the power conditioner standpoint, there is no difference 

in PHEVs and Electric Vehicles (EVs); hence, the term Vehicular Power Conditioner 

(VPC) is dedicated to this apparatus, which is the main subject of this research. 

Power conditioning of the PHEVs is a broad research. This dissertation’s scope is 

focused on the power converter development of VPCs. The dissertation begins with the 

current chapter, introduction. The introduction starts with a brief overview of electric 

powered vehicles and the necessity of the VPC. A survey of relevant standards 

introduces how the VPCs are classified and indicates the design guidelines. A conceptual 

design method is proposed for synthesizing the power converter topologies according to 

the power conditioning needs. The previously used topologies are reviewed and the 

novel topologies are suggested for future works. Finally, the introduction chapter 

presents the dissertation outline. 

1.2. Problem Statement 

1.2.1. Electric Powered Vehicles 

Electric powered vehicles are propelled using electric motors. The EVs’ history 

begins in the 19th century. The early EVs did not last long, and the automotive industry 

evolved depending on Internal Combustion Engines (ICE), which are fueled by gasoline 
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or diesel. The limited capacity of the fossil fuels and the ICE’s pollution suggested 

reconsidering electrical energy for transportation in the 1990’s. The conceptual models 

of EVs have always been around; however, the first modern mass produced electric 

powered vehicle was a Hybrid Electric Vehicle (HEV) that has been produced since 

1997.  In a HEV, an electric motor and an ICE contribute to the vehicle propulsion 

system [1]. The early generation of HEVs consists of vehicles with an electric motor 

smaller than the ICE and a high voltage battery to power the electric motor. This battery 

has a higher voltage compared to the 14V battery, which is a common source for the 

starter and utility services of the vehicle. The propulsion batteries’ voltage may vary 

between 100V to 500V in different vehicles [2]. The HEV’s high voltage battery does 

not connect to the grid and cannot be charged from an external source. This battery is 

charged by regenerative breaking and is discharged contributing the acceleration of the 

vehicle. The battery management of an HEV tries to keep the battery’s state of charge 

(SOC) within the desired range and maximizes the battery life. This technique can 

improve the fuel economy within city driving cycles that include several breakings and 

accelerations. However, it does not contribute as much in the highways.  

In contrast to HEVs, the PHEVs connect to the electric grid. A PHEV has a 

larger battery that can be charged from the outside and can operate in a pure electric 

mode for more than 10 miles [3]. The first production PHEV models have been 

produced since 2011. The connection to the grid enables energy exchange between the 

vehicle and external sources and loads through the power conditioner. The VPC is a 

means of processing power. It includes a power converter circuit, control circuitry, 
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protections, the communication module, user interfaces and the proper enclosure. 

Several functionalities may be integrated into a VPC. The next subsection describes the 

current status and the envisioned roadmap of VPCs. 

1.3. Necessity of Vehicular Power Conditioners (VPCs) 

Primarily, the necessity of VPCs is due to the necessity of PHEVs and EVs. The 

VPCs are essential for charging PHEVs and EVs and engaging them into the smart grid 

functions. Electric powered vehicles can offer a number of benefits such as producing 

less harmful emissions, improving fuel economy, and consuming less fossil fuel. They 

may also offer better performance regarding noise pollution, riding comfort, and 

acceleration [1]. Improving the fuel economy and the vehicle and electric transportation 

technologies are promoted in the Energy Independence and Security Act (EISA) of 2007 

by 110th congress of the United States of America (Title I, subtitle B) [4]. EISA 

promotes energy storage for transportation and electric power in Title VI, subtitle D; 

moreover, Title XIII mentions the devices that allow the vehicle to engage in smart grid 

functions. EVs and HEVs have energy storage elements such as batteries to store energy. 

Such vehicles can connect to the electric grid to charge their batteries. Beyond charging 

the battery from the grid, a bidirectional power conditioner can inject power to the grid. 

This function is called Vehicle to Grid (V2G). Likewise, Vehicle to Home (V2H) is the 

case the battery’s energy supplies the standalone loads. Increasing the prevalence of EVs 

and PHEVs will provide a considerable amount of energy storage capacity that can be 

connected to the distribution grid.  
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The Electric Advisory Committee (EAC) recommends policies to the United 

States Congress and the Department of Energy (DoE). The EAC’s report investigates the 

PHEVs’ potentials as an energy storage for the grid in three phases [5]. In phase 1, 

PHEV owners are encouraged to charge their vehicles off pick during nights. In phase 1, 

the drivers need to park their vehicles in garages with access to electric plugs. PHEVs 

should have smart chargers and no bidirectional power flow is needed. In phase 2, the 

V2H integrates the PHEV battery to the houses or the small business buildings. In this 

case, the battery can provide backup emergency power for the building. The other 

benefit of this concept is optimization of the onsite renewable energy sources by 

introducing the storage. The V2H requires bidirectional power flow between the grid and 

the battery. Phase 3 is dedicated to the full bidirectional power flow between the vehicle 

and the grid. Utilities may control or monitor the power flow of PHEVs to benefit the 

grid for load leveling, regulation, and spinning reserve. Owners receive cash back in 

return of their collaboration with utilities, which can encourage PHEV market 

penetration, as well as enabling the smart grid concepts [6].  

The long term goal to 2020 and beyond is suggested in [5] to achieve full V2G 

implementation. Meanwhile, the short term and mid-term goals are applied research on 

the battery technology, the required hardware, the impact on grid, and developing 

standards and regulations. Establishing research centers and funding research institutes 

and small businesses through DoE, small and large scale demonstration activities, and 

supportive policies such as tax redemption benefits encourage users and big industries to 

move through the V2G envisioned roadmap.  
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Recent policies such as EISA and the related DOE programs endorse the 

importance of this research. As mentioned earlier, the main objective of this dissertation 

is proposing the suitable power converters for the VPCs. The proposed VPC will be able 

to perform charging, V2G, and V2H functions for the connected vehicles. As of today in 

2014, such a solution is not commercialized. A few manufacturers have introduced the 

first generation of PHEVs; however, these vehicles have unidirectional chargers and 

they are not able to demonstrate the V2G concept. 

1.4. PHEV Standards 

Similar to the current status of PHEVs and EVs, the related standards are 

currently in the early stages of the development. The current standards are more focused 

on chargers; however, they can be extended to the bidirectional VPCs. The VPC as a 

distributed generator follows IEEE 1547 standard [7]. The specified vehicular standards 

may focus more on the inverter function of the VPC when this function would be closer 

to commercialization. 

A PHEV needs five major components to exchange energy with the grid: the 

grid, a power converter, the connection between grid and the VPC, and the battery. 

Accordingly, a charging system includes the following components: the charging station, 

charging plug and charging inlet, the battery charger, and the battery. The related 

standards are developed for the mentioned categories by the Society of Automotive 

Engineers (SAE) International, Underwriters Laboratories (UL), and the International 

Electrotechnical Commission (IEC). Fig.  1-1 shows a diagram of a vehicular charging 

system and Table  1-1 includes a list of the available standards from three mentioned 
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institutes [8-12]. This section briefly reviews the related standards developed by SAE. In 

addition to SAE standards, IEEE 1547 [7], Federal Motor Safety Standards (FMVSS) 

[13], UL 2231-2 [14] , and National Electric Code (NEC) [15] are considered through 

this dissertation. 

  

Fig.  1-1- Vehicular charging system 

Table  1-1- PHEV Standards 

 SAE UL IEC 

Grid J2293 2594, 2231-1, 2231-2 61851, 60950

Charging Plug and Charging Inlet J1772 2251 62196 

Battery Charger (On Board) J2894 2251 61851 

Battery J2929, J2464 2202 61982, 62133
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1.4.1. Grid Side Standards 

The electric grid is a well established ac power system. Mature standards such as 

NEC [15] exist for the grid. These standards are continuously modified in order to adopt 

new technologies such as distributed generation. Injecting power as a distributed source 

is investigated in IEEE 1547 standard [7]. Also, standards have been developed 

describing the charging connection scheme or generally exchanging power between the 

grid and the vehicle.  

As an example, SAE J2293 proposes a scheme to interconnect the vehicle’s 

battery to the grid. It has two parts; SAE J2293-1 [16] describes the hardware structure 

and SAE J2293-2 [17] describes the communication protocol. This standard tends to 

describe the fundamentals of the power conversion between the grid and the battery. It 

states the grid has the ac electrical energy and the battery is a dc energy storage element. 

SAE J2293-1 proposes a power conversion scheme through an ac-ac stage and an ac-dc 

stage.  

The ac-ac stage is not a power electronics converter and is described as a control 

and protection module. In the SAE scheme, this stage is the Electric Vehicle Supply 

Equipment (EVSE). The ac-dc stage is the charger. Both the grid and the battery have 

switches (relays) in the described scheme. The second part of the code describes the 

communications protocol in detail. This code may be followed by a compatible product; 

however, the content is not utilized for the dissertation’s research. 

Today, EVSE is considered as the charging station flagship. It is a box installed 

between the outlet and the cable that attached to the vehicle’s inlet. The  details about 
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EVSE have been further described in SAE J1772 [18]. Although details of the EVSE 

operation are not within the scope of this dissertation, the author believes such function 

has to be integrated into the VPC. The benefit of an integrated EVSE is that the vehicle 

is not limited and can access any available outlet.  

1.4.2. Grid and Charger Interface 

The vehicular power system is an isolated hybrid dc and ac system and the grid is 

a distributed grounded ac system. When these two power systems exchange energy, the 

interconnection is the key point to look at for the required regulations. Similarly, SAE 

J1772 [18]  is the key standards for EV and PHEV chargers. This standard concerns the 

conductive charge coupler. 

The conductive chargers are classified into a few categories in SAE J1772. The 

chargers are classified into ac and dc chargers. The ac chargers are ac-dc converters, 

whereas the dc chargers are dc-dc converters. The most accessible points to the grid are 

the residential plugs, which are 110 V or 240 V in the USA; hence, the ac chargers are 

more convenient. In contrast, the stationary chargers are more feasible as dc chargers.   

Both ac and dc chargers are classified into three power levels. Level 1 is the 

lowest power level, under 1.9 kW, which is suitable for the single phase plug. Level 2 

chargers can be up to 19.2 kW that is suitable for the split phase or three phase grid 

connections. Level 3 is the highest power level and can be up to 240 kW. The higher the 

power level, the shorter the charging time is. In contrast, the lower the power level, the 

more accessible and the more convenient it is to charge the vehicle. 
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The chargers are either onboard or stationary. The onboard chargers are installed 

on the vehicle. The onboard chargers power level can be as high as the level 2 charger. 

On the other hand, the stationary chargers are located outside the vehicle. The stationary 

chargers power level can be as high as the level 3 category. Table  1-2 summarizes the 

charger classifications. 

Table  1-2- Charger Classification [18] 

Charging Method Supply voltage Maximum current Rated Power 

Ac Level 1 120 V, 1 Phase 16 A 1.9 kW 

Ac Level 2 208-240 V, Split Phase 80 A 19.2 kW 

Ac Level 3 208-600 V 1 &3 Phase 400 A >20 kW 

Dc Level 1 200-500 V 80 A < 40 kW 

Dc Level 2 200-500 V 200 A < 100 kW 

Dc Level 3 600 V (max) 400 A 240 kW 

 

The latest revision of SAE J1772 concerns ac level 1, ac level 2, and dc chargers. 

The EVSE and the connection plug are described in detail. A connection scheme 

between the grid, the EVSE, and the charger is described. Furthermore, SAE J1772 

proposes a grounding scheme. The grounding scheme is investigated and is compared 

with alternative grounding methods in the second chapter of this dissertation. 

SAE J1772 describes the operating sequence of the EVSE during charging and 

disconnection from the grid and introduces a communication protocol. As mentioned 

earlier, the instrumentation details are not within the scope of this dissertation. 
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1.4.3. The Charger Standards 

SAE J2894-1 is dedicated to the PHEV charger power quality [19]. SAE J2894-1 

refers to IEEE 1547 standard as the major reference and follows a similar format. The 

power quality factors are listed as power factor, efficiency, THD, and inrush current. 

Furthermore, SAE J2894 reviews the ac grid boundaries determining the grid’s normal 

operating window.  

As a summary, the recommended power factor is mentioned as more than 95%, 

the full power efficiency more than 90%, THD less than 10%, and inrush current has to 

be less than 120% of the maximum nominal current. 

1.4.4. Battery Standards 

The SAE battery related standards are SAE J2464 [20] and SAE J2929 [21]. SAE 

J 2464 is about safety and abuse testing of vehicular energy storage elements including 

capacitors and batteries that are above 60 V. This standard proposes routines for abuse 

testing of the batteries and may be considered for the battery manufacturers. SAE J2929 

focuses on integration of the high voltage battery into the vehicle.  

SAEJ2929 proposes test routines similar to the faults the battery may experience 

where located in the vehicle. Drop and mechanical shock tests and simulating vehicle 

fire are among the examples of test routines described by SAE J2929. From the electrical 

point of view, the protection failure of overcharge, over discharge, and thermal control 

system are investigated. In addition, the high voltage exposure protection is 

recommended.  
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SAE J2929 primarily focuses on the battery and its enclosure. A few fault 

scenarios may also be considered during the charger, or generally the power conditioner, 

design. As an example, SAE J2929 indicates the failure of the overcharge protection 

system should not exceed the battery’s voltage. Besides a solution in the battery design, 

this constraint can be considered designing the VPC for more reliability. The need for 

manually disconnecting the high voltage system is another point raised in SAE J2929. 

The manual disconnection needs prompt discharging of passive elements and releasing 

the contactors within five seconds. The finger-proof access to the high voltage 

conductors is also suggested in this regard.   

Noticeably, SAE J1772 refers to FMVSS 305 [13] as a safety standard available 

in the USA. The isolation is defined as “the electrical resistance between the high-

voltage system and any vehicle conductive structure.” These two facts support the 

investigation presented in the second chapter of this dissertation and published in [8] 

prior to the SAE J2929 latest release. 

As the bottom line, the SAE’s battery standards are oriented towards the battery 

manufacturing and its integration in the vehicle. Although reviewing the mentioned 

battery standards provided an insight, the VPC needs to operate within the safe operation 

area of the battery that is published by the battery manufacturer.  

The presented review of the recently published standards validated the current 

status of the PHEVs. Several of the mentioned standards have been published or have 

been revised after the dissertation’s proposal approval in 2010. Thankfully, the standards 

agree with the research performed in the dissertation. The major criticism to the SAE 
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recommended practice for surface vehicles is the presence of EVSE as mandatory off 

board equipment to charge the vehicle. This limits the convenient residential plugs for 

charging the EVs and PHEVs. Alternatively, this dissertation suggests integrating the 

EVSE into the VPC. Indeed, the alternative grounding schemes that are presented in the 

second chapter are within the same scope and try to make the level 1 charger compatible 

to all the residential grids. This attempt contributes to the prevalence of PHEVs. The 

VPC functionalities and classifications were introduced in this section. The introduction 

will present an evolutionary power converter topology review in the next section. 

1.5. Power Converter Topologies 

In this section, the feasible power converter topologies for the VPC are reviewed. 

Conventionally, the surveys read through the earlier related works and summarize and 

classify them. Alternatively, in this section a conceptual design approach will be 

provided to synthesis the power converter topologies according to the power 

conditioning needs of the VPC. The examples of derived topologies will be listed and 

the novel topologies will be highlighted for future investigation. The proposed VPC 

realization method is among the contributions of this dissertation. Furthermore, novel 

contributions are resulted from this approach that will be presented through this seciotn. 

A VPC may be realized by different power converter topologies. A power 

converter is a non-linear time variant circuit that includes the switching networks and 

passive elements (inductors and capacitors). Each switching network is a power 

converter stage and a power conditioner may consist of a few stages.  
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The basic VPC exchanges energy between two major sources, the high voltage 

battery on the vehicle and the ac grid. The VPC is a bidirectional dc-ac converter, upon 

this definition. Fig.  1-2 shows a functional block diagram of a VPC. A VPC is a two-port 

power conditioning system that establishes a bidirectional power flow between a dc 

source and an ac source. In the next sub section the simplest power converter topology 

that enables this functionality is introduced. More complex topologies will be introduced 

through the section by adding more features to the VPC. 

  

Fig.  1-2- VPC as two-port system 

1.5.1. Voltage Source Differential Buck Topology 

The simplest VPC topology, is realizing it with a voltage source inverter. The 

switches have to be two-quadrant positive blocking such as IGBTs and Power 

MOSFETs. This is a well practiced topology in the industries, which enhances the 

product development. The voltage source dc-ac inverter is derived by differentiating 

basic buck converters and promises low cost and high power density. For a single phase 

grid, an h-bridge serves as a single phase two-quadrant inverter. For a three phase, or a 

two phase with neutral ac grid configurations, a three phase bridge can be employed. 
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The voltage source dc-ac converter has a buck nature; it means the ac voltage 

amplitude can be as high as the dc side voltage amplitude. In the described configuration 

the dc side source is the battery. The batteries’ voltage varies from the minimum value to 

the maximum value according to the state of charge and the battery’s technology. This 

configuration may be implemented when the minimum battery voltage, at the minimum 

allowed state of charge, is greater than the maximum possible grid voltage.  

(max)(min) LineBAT AV  ( 1-1)

This is a non-isolated topology and this topology cannot be used if the galvanic 

isolation is required. The single-stage two-quadrant voltage source dc-ac converter is 

previously suggested as onboard charger [22], on board VPC [23-25], and integrated 

charger [11, 26-28]. An integrated-VPC utilizes the propulsion drive while the onboard 

VPC is a power converter separated from the propulsion drive. 

This is a fully coupled power converter topology; the passive elements (filters) 

are located at the terminals. This is a drawback for a single phase application due the 

double frequency ripple. Generally the passive elements may be either placed at the line 

terminal, or the battery terminal. If they are located at the line terminal the switching 

ripple will be added to a low frequency ripple. If they are located at the battery side they 

will have a dc offset. This topology can also condition the dc sources as a dc-dc 

converter when needed. Such operation is not investigated by the literature for this 

particular application. The examples of stationary dc-dc converters are reviewed in [29-

31]. The dual of this topology would be a current source boost inverter in which the 

battery voltage has to be always lower than the grid voltage [32]. 
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Fig.  1-3- Three phase voltage source inverter as a three phase VPC 

 

Fig.  1-4- Single phase voltage source inverter as a single phase VPC 

1.5.2. Two-Stage Cascade Boost-Buck Topology 

If ( 1-1) is not satisfied, then a boost-buck topology is required to enable a 

flexible power conversion between the battery and the line, independent of either side’s 

voltage level. A boost-buck topology may be derived from differential basic buck-boost 

topologies including Cuk and Sepik.  Fundamentally, buck-boost topologies are derived 

from cascading basic buck and boost converters [33, 34], and such converters are all 
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fundamentally two-stage converters. On the contrary, the z-source converters are single-

stage solutions for implementing boost-buck converters with one switching stage [35].  

The z-source converters suggest a reduced switch solution. In the single-stage 

solutions, the passive elements will be placed at the terminals and will have the similar 

drawbacks as described for differential buck topologies. Specifically, for the single 

phase inverters they will induce high reactive power along the converter and the passive 

elements will have high component losses [36, 37]. Fig.  1-5 shows a bidirectional z-

source VPC. Although Z-source topology is called a single-stage approach in the 

literature, the presence of QZ in Fig.  1-5 makes it a two-stage topology according to the 

definition used in this dissertation. 

 

Fig.  1-5- Bidirectional z-source VPC topology  

Instead of single-stage topologies, two-stage topologies can be employed. In two-

stage topologies a passive network can be implemented in between of the switching 

stages. The passive network can be designed in a way that decouples the power 

conditioning of the dc side and the ac side. While in some literature the coupled 
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configurations are counted as innovative, the decoupling comes with advantages. In a 

decoupled power conditioner, the control routines of either side can be isolated from the 

other side; the ripple can be canceled in middle of the power conversion path; also, 

protections and fault isolation are easier. Thus, in a decoupled power conditioner there is 

more design flexibility for designing passive elements. Moreover, the switching 

networks can condition the passive elements. 

The most basic decoupled voltage source two-quadrant power conditioner 

topology can be realized by cascading a synchronous buck converter and an h-bridge 

converter, which was introduced in the previous subsection. A capacitor is placed in 

between the stages as the dc link. This capacitor decouples the dc and ac sides if it is 

large enough. Fig.  1-6 shows the generic decoupled non-isolated power conditioner, and 

Fig.  1-7 shows a realization using two-quadrant cascaded boost-buck converter 

topology. Examples of non-isolated boost-buck topologies are proposed in [25, 31, 32, 

38-51]. 

 

Fig.  1-6- Two-stage dc link decoupled non-isolated VPC 
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Fig.  1-7- Two-stage single phase non isolated VPC, realized with MOSFET switches 

1.5.3. Isolated Topologies 

Today both isolated and non-isolated vehicular chargers are available in the 

market [8, 11]. The isolation regulations are not quite clear as the related standards are 

still under development. The second chapter of this dissertation thoroughly investigates 

this matter in the vehicular power conditioners. 

The isolation transformer provides galvanic isolation in power converters. The 

transformer’s volume is proportional to the inverse square of the switching frequency; 

hence, a higher switching frequency results in a smaller and lighter isolation transformer. 

The onboard VPC is located on the vehicle and the size matters for this application. 

Therefore, the isolation transformer has to operate at a higher frequency compare to the 

line frequency. The battery has limited energy capacity and the power conversion 

efficiency matters for the vehicular applications. It is preferred to condition the magnetic 
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circuit in a way there is not dc offset. This design constraint fully utilizes the B-H curve 

of the magnetic cores.  

 Implementing the high frequency galvanic isolation will introduce a new power 

conversion stage to modulate the battery’s voltage with a high frequency career as 

shown in the Fig.  1-8. The second stage will be an ac-ac converter. The isolation 

transformer is the high frequency ac link. Introducing it to the power conversion path 

will replace the basic converter that used to condition the battery with a differential 

converter. The ac link may be conditioned by a few different approaches that will be 

described in the next subsection. 

 

Fig.  1-8- High frequency isolated two-quadrant VPC 

1.5.3.1. Two-Stage Isolated Approach 

In this approach, a high frequency two-quadrant dc-ac inverter conditions the 

isolation transformer. A four-quadrant ac-ac converter conditions the grid [52, 53]. The 

examples of this approach are practiced in [53-59] for a VPC. A single phase realization 

of this approach is shown in Fig.  1-9. 

In [60] a four-step switching strategy is suggested for four-quadrant two-stage 

ac-ac converters. This modulation technique is employed for a hybrid four-quadrant and 
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two-quadrant ac-dc converter in [61].  A drawback of the four-step modulation for the 

two-stage isolated topology, is that the switching frequency of transformer side bridges 

has to be lower than the switching frequency of the line side bridge. This is the opposite 

of what is desired, as the magnetic circuit needs a high frequency modulated power, 

whereas the line has much lower frequency. In [52], the phase shift modulation is 

employed for a four-quadrant Dual Active Bridge (DAB) ac-ac converter. The DAB 

topology will be introduced in detail in the three-stage isolated VPC subsection. A 

variation of the Fig.  1-9 topology is proposed in [53]. They have used a hybrid 

modulation method combining the phase shift and the frequency modulation methods. 

The line side power conditioning stage is the four-quadrant half bridge, and the battery 

side power conditioning stage is the two-quadrant h-bridge. 

Employing a four-quadrant power conversion stage for a VPC brings a few 

disadvantages. The four-quadrant switches are not popular in the industries and need to 

be implemented with two-quadrant switches; this adds complexity to the circuit. Similar 

to non isolated single-stage solution, there is no place to implement a dc link, and it is a 

directly coupled topology. This is not preferred for single phase applications. It is 

possible to connect a capacitive bank to the transformer [62]. This adds a winding to the 

magnetic circuit and a power conditioning stage. Another variation of an isolated power 

conditioner has been practiced with at least one four-quadrant stage and the dc link in the 

power conditioner such as [61]. These are sub-optimal solutions since adding the 

capacitor to the power conversion path adds one power conditioning stage; whereas, 
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with an additional power conditioning stage the four-quadrant switching network is not 

mandatory.  

 

Fig.  1-9- High frequency isolated two-stage VPC, series ac link 

1.5.3.2. Two-Stage Four-Quadrant Approach 

Unlike the hybrid four-quadrant two quant, two-stage isolated topology, which is 

described in the previous subsection, a four-quadrant two-stage isolated approach is 

proposed in [63] for ac-dc photovoltaic application. This topology has not specifically 

proposed for a VPC, yet. This subsection is a comparison of this power converter family 

and the previous power converter family as two-stage isolated candidates. A basic 

definition to contrast the topologies is presented, and the subsection proceeds to a 

fundamental comparison between the mentioned topologies. 

 A two-quadrant h-bridge is a dc-ac converter. This topology includes two legs. 

Each leg has two switches; the upper sides of high side switches are connected to 

positive dc terminal and the lower sides of the low side switches are connected to the 

negative dc terminal. The common points of the switches, within each leg, are connected 
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to one of the ac terminals. With this definition, the dc side of h-bridge is called the dc 

port of the h-bridge, and the ac terminal of the h-bridge is called the ac port of the h-

bridge. If the ac port of the h-bridge is connected to the ac port and the ac port of the h-

bridge is connected to the dc port, the switching network can still operate; however, the 

switches have to be realized with four-quadrant components. Such a solution is 

suggested in [63] for the photovoltaic application. This topology is called the parallel 

high frequency ac link in this dissertation. Fig.  1-10 shows a fully bi-directional 

derivation of the parallel ac link topology for a two-stage four-quadrant VPC. Similar to 

the previous two-stage isolated approach, this is a coupled solution. 

 

Fig.  1-10- High frequency isolated two-stage VPC, parallel ac link 

Comparing parallel to series ac link topology, on the positive side the parallel ac 

link configuration can easily be expanded to multiphase ac lines by increasing the line 

side bridge legs. This is not the case for the series ac link configuration. On the negative 

side, the parallel ac link topology has a few drawbacks for the onboard vehicular 
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application. The current waveform is triangular, as sketched in Fig.  1-11. As a result of 

triangular link current, there is just one instance that the maximum power can be 

transferred through the power converter. This is the fundamental drawback of this 

solution for any application that demands high power density.  

In order to have a metric compaction between the ac link topologies, the ac link 

Utilization Factor (UF) is defined as ( 1-2) in this dissertation. The ac link UF is the ratio 

of the average power to the maximum power transferred through the ac link. The ac link 

is cascaded with the power path; thus, this definition determines the power utilization of 

VPC; furthermore, evaluates the VPC’s power density. In ( 1-2), ilink is the link current 

and vsec is the transformer’s secondary side voltage, which is the battery side voltage in 

the mentioned VPCs. 
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The ac link UF will be calculated for the discussed topologies considering the ac 

link waveforms. The diagrams of Fig.  1-11 and Fig.  1-12 are the ac link waveforms of 

parallel and series ac link topologies, respectively. In parallel ac link topology, the link is 

parallel with the power conversion path. All the transferred power is charged into the 

link inductor and then discharges to the output port alternatively during each switching 

cycle. In contrast, the series ac link is in series with the power conversion path. With 

phase shift modulation square wave form voltages applies to each side of the link, with a 

phase shift. Only the difference of primary and secondary sides’ voltages will store 
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energy into the link. Thus, the ac link inductance causes less circulating power for the 

series configuration with the phase shift modulation. 

The proposed ac link UF criterion supports the previous statement about the 

series ac link configuration’s excellence. Following ( 1-2), suggests the most UF for a 

square waveform, which is 1. The phase shift modulation with low phase shift is the 

closest to a unity UF. Despite, UF is less than 0.5 for a triangular link current. Since only 

a half of the switching cycle is dedicated to each side in parallel series ac link converter, 

the UF is less than 0.25 for this configuration. The UF for the discussed topologies is 

approximately calculated as follows. The parallel ac link converter’s UF is estimated as 

( 1-3). If the resonating cycles are neglected the UF is 0.25 for this topology. Similarly, 

the series ac link converter’ UF is calculated in ( 1-4). In ( 1-4), PS is the phase shift 

between the bridges in radians. The phase shift is always below 180o; hence, the UF is 

always more than 0.5; even better, avoiding excessive reactive power the phase shift is 

controlled below 90o that results a UF of more than 0.75 for the series ac link topology.   
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Fig.  1-11- Ac link waveforms of parallel ac link converter 

 

Fig.  1-12- Ac link waveforms of DAB as series ac link converter 
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When the galvanic isolation is required, the magnetizing inductance will be the 

ac link. In other words, the energy needs to be stored in the magnetizing inductance, and 

the magnetizing inductance acts as an ac inductor. The magnetizing inductance easily 

saturates, hence an air gap needs to be integrated into the core. This reduces the 

magnetic coupling and increases the leakage flux. The leakage inductance is not utilized 

in this topology and leads to a low efficiency for the magnetic circuits. 

1.5.3.3. Three-Stage Decoupled VPC 

The decoupling is desired between the dc and ac sources that are connected to 

different terminals of the power conditioner. In fact, some regulations need the hold off 

time requirements. The hold off time is defined as the time delay the equipment has to 

remain powered after the source is lost or disconnected. This requirement needs an 

energy buffer within the power converter. The dc link can be employed in the power 

conditioner for satisfying such requirements. Additionally, the dc link reduces the double 

frequency ripple for the single phase grids. In this configuration, the dc link capacitor is 

placed right after the line power conditioning stage. This placement suggests the least 

possible unnecessary circulating power. 

Fig.  1-13 shows the system diagram of an isolated two-quadrant power 

conditioner. This is a three-stage topology and can be realized by three voltage source 

dc-ac converters, as shown in Fig.  1-13. This configuration includes three two-quadrant 

voltage source inverters. The first stage conditions the battery and is called the battery 

side bridge in this dissertation. The second bridge is between the isolation transformer 

magnetic circuit and the dc link capacitive bank. This bridge is called the middle bridge. 
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The third bridge conditions the grid and is called the line side bridge. There is a self 

similarity between the power conditioner and its sub modules. Three dc-ac cascaded 

stages operate as a dc-ac power conditioner. This is desired for a practical solution; 

since, it is easier to educate the industry about this solution. The variations of three-stage 

isolated topology are suggested by [25, 44, 64-71] for the energy storage and vehicular 

applications. 

 

Fig.  1-13- High frequency isolated three-stage decoupled VPC 

 

Fig.  1-14- High frequency isolated three-stage VPC realized with three h-bridges 

As an example, Fig 1-13 shows a realization of three-stage isolated VPC. The 

line side bridge is realized with IGBTs and the middle and the battery side bridges are 

realized with MOSFETs. In the configuration of Fig. 1-13, the line side bridge is an 

inverter similar to a single-stage non-isolated VPC. The middle bridge and the battery 
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side bridge operate as a DAB converter. The switching frequency of the DAB is 

relatively higher than the switching frequency of the line inverter, in order to reduce the 

size and volume of the magnetic circuit.  

The DAB topology was introduced in the early ‘90s [72] and has been attractive 

to various applications dealing with isolated dc sources [52, 53, 64, 72-102]. This 

topology offers promising characteristics for a portable dc-dc power converter system 

such as an onboard automotive power conditioner. The ac inductor L shown in Fig.  1-14 

is the key component to transfer power between the bridges. The power flow is 

controlled by controlling the phase shift between the battery side bridge’s ac voltage and 

the line side bridge’s ac voltage. 

The fundamental difference between the three-stage isolated VPC of Fig.  1-14 

and the two-stage isolated VPC of Fig.  1-9, is in presence of the dc link capacitor. 

Thanks to the engagement of two power conditioning stages; there is more freedom on 

manipulating the phase shift of the ac-link. In the three-stage isolated configuration, the 

phase shift modulates the power that passes through the magnetic circuit. The phase shift 

can be solely designed in favor of the magnetic circuit. In the two-stage isolated 

approach, the phase shift modulates the power that passes through the isolation 

transformer; simultaneously, modulates the power injected to the grid. Thus, there are 

more constraints that can act against the desired design parameters, as described 

previously in the subsections  1.5.3.1 and  1.5.3.2, which were dedicated to two-stage 

isolated topologies. 
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The two-stage isolated ac-dc converter of Fig.  1-10, the two-stage isolated dc-dc 

converter of Fig.  1-14, and the two-stage ac-ac converter of [52] are all the variations of 

the DAB converter topology. In all, there is a series ac link in between of two bridges. 

Each bridge is connected to a source; if the source is dc, the bridge is a two-quadrant 

converter; if the source is ac, the bridge is a four-quadrant converter. The comparison 

described between the series and parallel ac link converter topologies, in  1.5.3.1 

previous subsection is valid for all the DAB variations. 

As mentioned earlier, the link inductance in parallel ac link topology integrates to 

the magnetizing inductance and negatively reflects the isolation transformer design. In 

contrast, the ac link inductance adds to the leakage inductance in the ac link topologies. 

The series ac link inductor may also be either integrated to the transformer’s leakage 

inductance or be placed outside of the transformer. This promises more design 

flexibility, higher magnetic coupling, less possibility for core saturation, better windows 

utilization, and better magnetic circuit utilization for the series ac link topologies such as 

DAB. 

Generally, the series ac link configurations excel to the parallel ac link 

configuration in term of the higher ac link UF. Specifically, the three-stage isolated VPC 

excels in conditioning the ac link magnetic circuit. The DAB is connected to the dc link 

and dc link can be conditioned by the line side bridge. The dc link may be conditioned 

by three different control scenarios. Firstly, the dc link is removed and the line side 

bridge operates at the line frequency. There will be no switching losses for the line side 

bridge. On the negative side, the ac link has to modulate the rectified line voltage. 
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Indeed, this is the two-quadrant variant of coupled isolated series ac link topology of 

Fig.  1-10. This control scenario is investigated in [103].  Secondly, the dc link is 

regulated at a fixed dc voltage and the DAB will not modulate any line frequency power. 

Thirdly, the dc link voltage is controlled to match the battery voltage and the DAB will 

always operate at an optimal condition. The experimental ac link waveforms of two-

quadrant DAB are displayed Fig.  1-15. The dc voltages are equal and the DAB operates 

at an optimal operating point in this figure. The first and the third scenarios were 

suggested in this dissertation’s proposal as variable control of the dc link in three-stage 

VPC. 

 

Fig.  1-15- Experimental waveforms of DAB’s ac link 

Due to the counted benefits, the DAB based isolated three-stage two-quadrant 

topology is selected for the VPC. This topology will be fully analyzed in the third 
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chapter. The magnetic circuit design details will be covered in the fourth chapter. This 

topology is able to perform all the described tasks of a vehicular power conditioner. 

Moreover, it is expandable from the single phase to the multi-phase grids. The two-port 

power conditioner can be easily extended to multiport configuration, as will be described 

in the next section. 

1.5.4. Multiport Power Conditioning Topologies 

As mentioned earlier, the high voltage battery and the grid are the primary 

sources to be conditioned on an electric powered vehicle. There are more sources 

available on an electric vehicle including the low voltage battery. As the technology 

advances, the new sources will be introduced to the vehicles. Photovoltaic panels, fuel 

cells, ultra capacitors, and flywheels are among the new sources that would be integrated 

to a vehicular integrated power system. 

The multiport power converter topologies can extend the power conditioner 

functionality to conditioning additional sources, loads, and energy storage elements. The 

low voltage battery is the next source that may be added to the vehicular power 

conditioner. Due to the safety standards, such as FMVSS 305 [13], the low voltage 

battery has to be isolated from the high voltage battery. Thus, the multiport power 

conditioner has to be an isolated topology. 

In [43], a unidirectional auxiliary power conditioning pass is added to a two-

stage non isolated VPC. The auxiliary pass consists of an isolation transformer and a 

diode rectifier. When the grid is disconnected, the converter can be reconfigured to a dc-

dc isolated full bridge converter. The high voltage battery is the input, the line inverter 
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adds to the transformer and the rectifier to form a full bridge converter. Generally, it is 

not desired to reconfigure a power electronics converter. Reconfiguration needs to add 

relays or solid state switches to the circuit. The converter is a switching circuit and it is 

preferred to design the switching networks and power conditioning stages in a way that 

control and modulation perform all operating modes. The other drawback is that there is 

no pass to transfer energy from the low voltage battery to the high voltage battery. In 

[104], an isolated three-stage charger connects to the high voltage dc bus and segregated 

a dc-dc converter interconnects the low voltage battery bus to the high voltage dc bus. 

In contrast to the previous solutions proposed in [43, 104], the multiport 

converters that are introduced in this section can condition several sources with no 

reconfiguration and with the flexibility of the bidirectional power flow. Both the series 

and parallel ac link topologies can be extended to a multiport configuration. In [105], an 

example of a multiport parallel ac link converter is presented. In [106-118] the examples 

of multi active bridge converters are suggested. Fig.  1-16 shows a triple active bridge 

converter, as an example of a multi active bridge topology. Similarly, Fig.  1-17 shows a 

system based on the three-port parallel high frequency ac link topology.  
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Fig.  1-16- MOSFET realization of dc three-port power conditioner 

 

Fig.  1-17- Three-port parallel high frequency ac link converter 
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The multiport variations of these two topologies inherit the similar characteristics 

that were discussed in the previous section. Additionally, the multi-active bridge is more 

flexible for the power flow control between the ports. All the ports may add or remove 

the magnetic flux to the magnetic circuit simultaneously. Unlike, in the parallel ac link 

multiport converter the link is charged and discharged sequentially by the ports and it is 

not possible that several ports charge or discharge the link at the same time. Thus, the 

UF can potentially approach the unity for the multi active bridge topology and the UF 

will be less than 0.25 for any of the sources that are attached to the parallel ac link 

converter. Indeed, the more sources are added the less UF they share from the ac link.  

This translates to more power density and more flexibility for the series ac link 

configuration that utilizes the phase shift modulation. 

In conclusion, the fundamental comparison between the multiport topologies 

suggested the multi-active bridge topology as the superior topology to interconnect all 

sources within a vehicle. This proposes extending the vehicular power conditioning 

concept to an integrated vehicular power system. In such a system, all the sources, the 

loads, and the energy storage elements are inter-connected. This idea will be presented 

later in this section. 

1.5.5. Series Parallel Hybrid Multiport Topology 

The series and the parallel high frequency ac link topologies were introduced in 

previous subsections. Both of the topologies are rational for a medium power application 

only if the isolation is required. The ac link in the series topology is integrated in the 

leakage and this topology promises a high power density solution. Instead, in the parallel 
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topology the link is integrated into the magnetizing inductance. This topology is based 

on the four-quadrant power conversion stages that suffer from low power density 

however promises low switching losses. 

Consider an application with a primary power conversion requirement that needs 

a high power density solution and an auxiliary power conversion requirement that may 

be served with a low power density solution. This can be integrated into a unified 

transformer design. Thus, a series-parallel high frequency ac link topology is proposed, 

that promises a highly integrated multiport power conversion solution. This idea not 

previously investigated and is suggested for the future work. An example of possible 

power converter circuit is shown in Fig.  1-18. 

 

Fig.  1-18- Four-port hybrid series-parallel high frequency ac link converter 
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1.5.6. Vehicular Integrated Power System 

During this section, the vehicular power conditioning concept is evolved from a 

unidirectional charger to a multi-function multiport power converter system. In each 

step, adding features and functionalities to the VPC employed additional power 

conditioning stages. The multiport power conditioner topologies enable the power flow 

between multiple sources and loads within the vehicular system as well as the outside 

networks. The power conditioning of electric powered vehicles can be further extended 

to an integrated power system. This subsection proposes a modular structure to integrate 

all the sources and loads within an electric powered vehicle into a fully connected 

integrated power system. 

The vehicular power system has all the components of a power system. It 

includes sources, energy storage elements, power storage elements, loads, 

interconnections, communicational modules, control units, and protections. All these 

components are gathered on a vehicle that moves and is isolated from the earth. The 

vehicle can exchange energy with the external power systems with flexible protocols. 

The conductive ac and dc and inductive charging methods that classified in the standard 

review section (section  1.4) are examples of the vehicular integrated power system 

interaction with the terrestrial power system. 

The electric components of the vehicular system are classified to ac and dc 

components. They may have different voltage levels. Unlike the terrestrial power 

system, the voltages can widely vary. As of today, the major dc sources are the batteries. 

The battery voltage may vary around 60% depending on the state of the charge. The low 
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voltage battery supplies the cabin services. The demand for the low voltage battery is 

constantly increasing; in mid size luxury cars, the low voltage power generating is close 

to 4 kW [2]. This is comparable to a class-two charger’s power rating. The traction 

motor rating is more than ten times larger than the services; however the interconnection 

to the other sources does not need to follow the similar power capacity. The power 

transfer capacity through the series ac link can be customized for every power 

conditioning stage. Moreover, the power flow between the windings can be fully 

controlled with the phase shift modulation in between of each power sending stage and 

power receiving stage. 

An example of a notional vehicular integrated power system is illustrated in Fig. 

 1-19. The core of this vehicular integrated power system is the series ac link multi port 

dc-dc converter. Each power conditioning stage is a high frequency dc-ac converter that 

conditions the magnetic circuit. The magnetic circuit includes the windings and the 

series inductances adding up to the leakage inductance. The windings may be wounded 

around the core in series [71] or mesh [102, 117, 119] configurations. Alternatively, the 

coaxial winding configuration may be employed [120, 121]. The dc source may be 

battery packs, capacitive banks, or renewable sources as photovoltaic panels. The 

mentioned dc sources may be regulated at a fixed voltage or have a varying voltage 

level. Each dc voltage level can serve multiple dc sources in parallel [122-127], or ac 

sources through dc-ac power conditioning stages. The grid and the propulsion system are 

the examples of ac sources and loads in Fig.  1-19. The grid is a bidirectional source with 
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the stiff voltage and the fixed frequency, whereas the propulsion system is a 

bidirectional variable ac load, which can return energy during regenerative breaking.  

As described, the extensive VPC can integrate all the electric components of the 

vehicle into the vehicular integrated power system. This integrated power system is a 

hybrid dc and ac system. All the power conditioning system may be implemented on a 

cold plate.  

 

Fig.  1-19- Evolution of VPC to a vehicular integrated power system 

1.6. Dissertation Outline 

The next chapters will explain the contributions that have been made during this 

research. The second chapter will investigate the grounding schemes of the VPCs. The 

galvanic isolation’s role in the VPC design and the safety concerns will be evaluated 

through the developed simulation test bed. 

The third chapter is dedicated to the VPC design. A notional VPC will be 

introduced. This notional system will be the reference for verifying the proposed 
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concepts through the dissertation. The experimental setup design will be summarized in 

the third chapter. The design approach for the DAB converter used in the VPC will be 

proposed in the third chapter. Additionally, the commutation of the Snubberless DAB 

converter will be analyzed in the same chapter. Both, the design procedure and the 

analysis of Snubberless DAB will be among the dissertation’s contributions. 

The contributions regarding the VPC’s magnetic circuit will be presented in the 

fourth chapter. The magnetic circuit includes including the ac inductors and the 

multiwinding transformer. A novel integrated series ac inductor with common mode 

interference rejection capability will be suggested in this chapter. Moreover, a novel 

experimental modeling method for multiwinding transformers will be explained. This 

novel modeling method enables modeling the capacitive elements of each winding. 

The fifth chapter will focus on the control scheme. The developed simulation 

test-bed will be introduced in the fifth chapter. The closed loop control schemes for 

charging, V2G, and V2H functionalities will be employed in this chapter. Various case 

studies will verify the proposed control routines in steady state operating points and 

transient scenarios.  

The developed experimental setup will be overviewed in the sixth chapter. The 

experimental results have been used through the dissertation. In the sixth chapter, a 

summary of the various case studies performed with the experimental setup will be 

reported.  

Finally, the dissertation’s contributions will be highlighted and the future works 

to continue this research will be envisioned in the conclusion chapter. 
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1.7. Conclusion  

The fundamental concepts that have been subject of this dissertation were 

defined in the introduction chapter. The necessity of the VPC was described according to 

the national and international policies that had emphasized on the need for power 

conditioning of EVs and PHEVs. The outline of the research was introduced and the 

dissertation’s focus was emphasized. This dissertation has been dedicated to the power 

conditioning of the EVs and the PHEVs. The main focus of the research would be 

innovative power conditioning solutions for the vehicular application. 

The relevant VPC standards were reviewed. It was described the present 

standards have been mainly focused on the chargers. The design guidelines for the 

notional VPC were sketched in respect to the automotive standards, distributed 

generation standards, reports and the road map of EVs and PHEVs. 

A modular design approach was suggested synthesizing various VPC power 

converter topologies upon the functional description of the VPC. The functional 

evolution of VPCs started from the bidirectional single-stage ac-dc power converter. It 

was described; introducing the passive elements between the switching networks 

introduces additional features to the VPC. Addition of the dc link capacitor, ac link 

filters, and the isolation transformer increase the power conditioning stages of the VPC. 

The examples of synthesized topologies in the earlier works were surveyed. In contrast, 

the novel topologies that have not been investigated were highlighted. 

The ac link converters were categorized to the series and parallel classifications; 

furthermore, the ac link UF was defined to compare these topologies. The ac link UF is 
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the ratio of the average power to the maximum power transferred through the ac link, 

and estimates the power density of a VPC. The two-port VPC can be extended to the 

isolated multiport VPC by extending the power conditioning stages through the ac link. 

The possibility of the accommodating extra sources and loads through the multiport 

VPC suggested extending the power condoner to the vehicular integrated power system 

that connects all the electric components potentially available in a futuristic vehicle.  
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2. HIGH IMPEDANCE GROUNDING FOR ONBOARD PLUGIN HYBRID 

ELECTRIC VEHICLE POWER CONDITIONERS* 

2.1. Background 

The PHEVs and their current status were introduced in the introduction chapter. 

This chapter investigates different grounding schemes that may be practiced when the 

onboard VPC is connected to the grid. Much like the present status of PHEVs, the 

related standards are either in the early stages of practice or under development. 

Reviewing the related standards can define certain guidelines and regulations affecting 

the design and development of power converters used in the vehicular applications. This 

influences the topology, cost and efficiency of VPCs. 

 This chapter will investigate the available VPC standards in respect of the 

grounding requirements when connected to the grid to perform charging, V2H and V2G 

functionalities. The role of galvanic isolation will be evaluated by analyzing the two-

stage non isolated charger and the three-stage isolated charger. The idea of high 

impedance grounding of the onboard VPC to the grid will be suggested, which is among 

the dissertation’s contributions. 

A few case studies will compare fault conditions in all four possible 

configurations, including the isolated and non-isolated topologies for both direct and 

high impedance grounding. The grounding schemes are usually associated with the 

                                                 

* © 2013 IEEE. Reprinted with permission from “High Impedance Grounding for Onboard Plug-in Hybrid 
Electric Vehicle Chargers,” by B. Farhangi, H. A. Toliyat, and A. Balaster, in Proc. of IEEE PowerEng 
2013, pp. 609-613. For more information go to  
http://thesis.tamu.edu /forms/IEEE%20permission%20note.pdf/view. 
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safety concerns. A human body model will be employed to evaluate the human to the 

line fault scenarios. These case studies will evaluate the outcome of the isolation and 

grounding schemes into the human safety.  

2.2. VPC’s Grounding Requirements 

According to the envisioned VPC roadmap, the short term goal of this 

application is to provide a means of charging the vehicle. At the time of writing this 

dissertation, the released standards are about chargers. Chargers may be stationary or 

onboard. The onboard chargers are within this dissertation’s scope. The SAEJ1772 

standard is about the requirements of conductive charging of EVs and PHEVs in North 

America [18]. FMVSS 305 [13] is another related standard. The IEEE 1547 standard [7] 

addresses interconnecting distributed resources with the electric grid. The V2G operation 

of the VPC is the subject of this standard. Both IEEE 1547 and SAEJ1772 refer to the 

National Electric Code (NEC) [15] for grounding requirements in the United States. The 

grounding requirements of the VPC will be investigated in this section. 

Two nodes of an electric circuit are isolated when there is no electrical 

connection between them; such nodes can be separately grounded. The high voltage 

battery in a PHEV should be isolated from the vehicle chassis. In the connection scheme 

illustrated in [18], the ac ground is connected to the vehicle electric ground, which is the 

vehicle chassis. If the charger is a non-isolated converter, the battery terminals are 

connected through the charger circuit ac line terminals to the grid during normal 

converter operation. If there is a connection between neutral and ground, the battery 

terminal is electrically connected to the vehicle ground; this violates FMVSS 305 [13]. 
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Because 240 V lines are never connected to ground, the battery remains isolated from 

the vehicle chassis. In contrast, during 120 V operation an ac neutral line is connected to 

the charger input terminal.  This neutral line is often grounded (bonded) at the ac circuit 

breaker panel thus completing an electrical conduction path from battery terminal to the 

chassis ground. If the charger is isolated, the battery terminals are isolated from the ac 

terminals and are therefore always isolated from the vehicle ground. When the charger is 

not an isolated converter, a high impedance ground may be used as described in this 

chapter. 

 SAE J1772 refers to NEC-article 625 for the onboard ac charging system 

configuration [15]. Article 625 refers to Article 250 for ground pole requirements. In a 

vehicular electric system, it is not possible to provide an effective ground fault path to 

the earth. The vehicle is a mobile system on wheels isolated from the earth. The electric 

system is grounded to the vehicle chassis which complies with NEC-Article 250.4.B. It 

limits the chassis voltage to ground voltage potential. At the point of common coupling, 

an isolated ungrounded dc system is allowed to be grounded to the ac ground through the 

ac neutral conductive ground path or a high impedance ground.  

A high impedance ground limits the ground fault current.  A high impedance 

grounded system needs to be serviced by qualified persons; must have ground-fault 

detectors installed on the system; moreover, should not serve line to neutral loads. 

According to [15], the low voltage electric system of  the vehicles with voltages less 

than 50 V does not need grounding. Due to the fact that the high voltage side of the 

vehicle’s electric system should not be connected to the ac ground through a low 
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impedance path, implementing a high impedance ground before the equipment ground 

pole achieves reference grounding as required by NEC-250.4.B. Hence, a high 

impedance ground can isolate the vehicle electric system from the ac system that 

satisfies all present standards. Fig. 2-1 shows the addition of ZGND to the configuration 

illustrated by [18] in order to implement high impedance grounding. 

 

Fig.  2-1- Redrawing SAEJ1772 system configuration with high impedance grounding through ZGND 

2.3. Case Studies 

This section investigates isolated and non-isolated PHEV chargers both during 

normal operation and when the ground is connected to the neutral. Both conductive and 

high impedance grounding are investigated. First, the investigated topologies are 

introduced; then, the simulation test bed is briefly explained. The case studies are 

reported afterwards. 
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2.3.1. Investigated Topologies 

A VPC employed in PHEV is a two-port power converter. It has an ac port at the 

line side and a dc port at the high voltage battery side. In V2G and V2H applications, 

bidirectional power flow is required; whereas, a charger needs only a unidirectional 

power flow from the line to the battery. This power converter is placed where the 

charger block is located in Fig. 2-1. Fig. 2-2 shows a realization of a non-isolated 

charger using voltage source converters. This topology includes a boost rectifier with 

unity power factor control and a regulated dc link from the ac power. If the minimum 

battery voltage is less than the peak amplitude of the ac line voltage, a buck dc-dc 

converter is required to charge the battery from the dc link. Replacing the dc-dc 

converter with an isolated converter, results in an isolated VPC, as shown in Fig. 2-3. 

Compared to the non-isolated converter, the isolated topology adds complexity, cost, and 

may decrease the conversion efficiency.  

 

Fig.  2-2- Non-isolated charger topology 
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Fig.  2-3- Isolated charger topology 

2.3.2. Simulation Test Bed 

Fig. 2-4 shows the block diagram of the simulation test bed implemented in 

MATLAB SIMULINK. The charger block contains the converters presented in Fig. 2-2 

and Fig. 2-3. The rectifier stage is identical in both converters and it has a closed loop 

controller to deliver unity power factor. The non-isolated charger uses a current 

controlled buck converter and the isolated charger uses a dual active bridge as the dc-dc 

stage. The battery is modeled as a 350 Vdc source and an internal resistance. The 

simulation test bed includes a human body model as shown in Fig. 2-5 [14]. This model 

is used to investigate what happens when a person touches the line. 

The switches marked as 1 to 4 are used to configure different case studies. 

Arranging these switches as shown in Fig. 2-4 makes a vector representing each 

simulation case study. If the switch value is 1 it means the switch is connected. Each 

case study will be described verbally in the text and the readers may refer to Fig. 2-4 

according to the case study vector to determine how the simulation test bed is 

configured. 
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Fig.  2-4- Simulation test bed 

 

Fig.  2-5- Human body model [14] 

2.3.3. Normal Operation 

2.3.3.1. Case Study (0010): Neutral Not Grounded 

In the first case study, both chargers operate at 6 kW 240 V line. The line and 

neutral terminals are connected to the charger; the chassis is grounded while the neutral 

is not bonded to the ground (0010). Both chargers operate properly as the rectifier stage 

waveforms are presented in Fig. 2-6. 
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Fig.  2-6- Rectifier waveforms, a: non-isolated charger, b: isolated charger operating at 6kW, simulation 

case study (0010) 

2.3.3.2. Grounded Neutral: Conductive Ground (1010) versus High 

Impedance Ground (1100) 

In the second case study, the neutral is bonded to ground and ground is connected 

to the chassis, case study (1010). This may be due to a fault or a practice in wiring the 

single-phase 120 V panel. The non-isolated charger cannot operate in this condition 

while the isolated charger works fine as shown in Fig. 2-7. The charger protection 

mechanism will shut down in this case for the non-isolated charger. In contrast, when the 

neutral is connected to the chassis through a 5 MΩ high impedance ground both chargers 

operate well as shown in Fig. 2-8, case study (1100). 
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Fig.  2-7- Case study (1010): The non-isolated charger will not work if the neutral is connected to the 

chassis through the conductive ground connection. 

 

Fig.  2-8- Case study (1100): Both chargers work if high impedance ground connection is employed. 
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2.3.4. Human to Ground Fault 

Human safety is an important concern for the onboard VPC. It is common to 

relate the isolation requirements to the safety issues. The following case studies analyze 

how these facts are related.  The next case studies investigate the outcome of a human 

touching the line while he/she is connected to the chassis ground. As a residential line is 

more accessible, compared to a PHEV battery which is sealed, there is a higher chance 

of occurrence for this fault, as compared to a fault on the battery side. The SAEJ1772 

connection plug prevents such an event when the person does not work with any other ac 

equipment, and the ground fault indicator shuts down the charger before neutral current 

exceeds a safe limit of 5 mA.  

According to simulations, whenever someone touches the line in the case of non-

isolated charger, he/she can get shocked. While for the isolated charger, if there is no 

connection between the neutral and the ground or the chassis has a high impedance 

ground connection, the person is not shocked, even though there is no ground fault 

indicator installed.  The details are provided in the following case studies. 

2.3.4.1. Case Study (1011): Human to Line Fault, Grounded Chassis 

The neutral is bonded to the ground and the chassis is directly grounded. 

Referring to the case study A, only the isolated charger is able to operate in this 

configuration.  If someone touches the line, as can be seen in Fig. 2-9, a high current 

would shock the person. The high frequency isolation of the onboard charger is placed in 

middle of the VPC and does not help in this case. The current IH and the voltage VH can 

be seen in Fig. 2-9. Fig. 2-5 shows where these meters are located. 
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Fig.  2-9 Simulation case study 1011 waveforms, isolated charger, green:VH [v], magenta: IH [mA] 

2.3.4.2. Case Study (1101): Human to Line Fault, High Impedance 

Grounded Chassis 

The same fault is simulated when the chassis is connected to the neutral through 

a 5 MΩ resistor (1101). If the charger is non-isolated the current shocks the person as 

shown in Fig. 2-10, left. In contrast, the current is controlled below 0.1 mA and would 

not shock the person if the charger is isolated, Fig. 2-10, right. 
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Fig.  2-10- Case study 1101 waveforms, left: non-isolated charger, right: isolated charger, 

 green:VH [v], magenta: IH [mA] 

2.4. Conclusion 

The brief introduction to the status of PHEVs and the VPC roadmap described 

the importance of this product. Reviewing the related standards provided guidelines for 

the design procedure of the VPC. Grounding schemes and isolation requirements of 

VPCs were also investigated. 

The main contribution of this study evaluated the novel idea of implementing a 

high impedance reference grounding connection at the point of common coupling 

between the vehicle chassis and the electric network ground, which has not been 

foreseen in the latest edition of the SAEJ1772 standard. This approach lets a non-

isolated converter operate with both 240 V and 120 V plugs whether or not neutral is 

bonded to ground. The provided case studies offered a tool to compromise between 
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protection facilities and selected power converter topologies to achieve a cost effective 

VPC for different applications.  This is important to increase market penetration of 

PHEV and their functionalities.  The suggested grounding scheme needs to be further 

evaluated by different standards before utilization. 
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3. POWER CONVERTER DESIGN 

3.1. Background 

A variety of power converter topologies were introduced in the introduction 

chapter. The most preferred topology was the high frequency isolated three phase VPC 

that can be extended to the multiport configuration through the series ac link. A notional 

onboard VPC needs to be designed as the reference system to conduct the research. 

Furthermore, the notional VPC design needs to be implemented in a simulation test bed 

as well as an experimental setup for validation and demonstration purposes. The notional 

VPC will be introduced in this chapter. The developed experimental setup will be 

presented in this chapter, and the developed simulation test bed will be presented in 

chapter  5 that is dedicated to control schemes.  

This chapter will propose a building block based power converter design 

procedure for developing the experimental setup. An h-bridge converter is selected as 

the building block for different VPC configurations. The high frequency isolated three-

stage VPC and the multiport extension of this topology all can be implemented with h-

bridges. The DAB and the triple active bridge converters are formed by the developed h-

bridges. The operation of the Snubberless DAB converter is analyzed through a novel 

physics based piecewise linear approach. 

The second section of this chapter introduces the notional VPC. The system 

ratings and the sources used in the experimental setup will be explained in this section. 

The third section is dedicated to the building block based power converter design 
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approach. The design considerations will be included in this section to enhance 

reproduction of the ideas investigated through the dissertation. The third section 

investigates the DAB converter. The fundamentals of the operation from the earlier 

works will be presented and the contributions made in design and analyzing this 

topology will be reported. The final section is the conclusion of this chapter. 

3.2. VPC’s Design Specifications 

A level one three-port VPC is considered as the design reference for the 

simulation test bed and the experimental setup. The level one onboard VPC is predicted 

to have the highest prevalence as described in the first chapter. Additionally, this power 

level is more compatible with the laboratory facilities and the university regulations. 

The schematic of the notional VPC is shown in Fig.  3-1. The power topology is 

the isolated three-stage VPC that is extended to the third port through the series high 

frequency ac link. The control and modulation are implemented in a Ti C2000 F2812 

DSP controller board. The h-bridges and the controller board have onboard power 

supplies that are supplied from the laboratory power supplies. The control and power 

supplies are grounded. The power converter grounding schemes may be practiced as 

described in the second chapter. Both the high voltage and low voltage batteries are 

selected under 50 V due to the safety concerns described in the second chapter. 

The nominal voltage levels are listed in Table  3-1. The nominal line voltage in 

the USA is 120 V 60 Hz. Plus and minus 5% deviation is allowed from the nominal 

voltage. Hence, the line voltage can vary between 114 V and 126 V [15, 19]. The 

standard low voltage battery on the vehicle is the 12 V battery. There are different high 
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voltage levels on different vehicles from 100V to 600V [2]. The low voltage high current 

battery systems with a voltage level below 60V are also proposed for supplying the 

propulsion drive [128]. The experimental setup batteries are 12 V and 48 V to avoid 

shocking hazard in the laboratory environment. 

The onboard VPC of Fig.  3-1 is implemented in a simulation test bed that will be 

introduced in the control chapter. The control routines include all the VPC’s 

functionalities including energy exchange with the grid. Due to the laboratory 

restrictions, the energy exchange with the campus grid is avoided. Hence, the 

experimental setup only includes the dc section of the VPC. The experiments are valid 

due to the decoupling of the dc link in this topology. The dc link is replaced with the 

high voltage laboratory dc supplies, and batteries are set up as will be described in the 

next section. 

Table  3-1 Reference VPC Ratings 

 Line (60Hz) Dc Link Battery 1 Battery 2 

Nominal Voltage 120 V 200 V 48 V 12 V 

Minimum 
Voltage 

114 V 161.2 V 38.4 V 9.6 V 

Maximum 
Voltage 

126 V 178.2 V 59.6 V 14.9 V 

Current 15 A 15 A 35 A 35 A 

Power 1650 W 1650 W 1650 W 412.5 W 
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Fig.  3-1- Onboard reference VPC  

3.3. Batteries 

The experimental setup batteries include five UB12350 (12 V, 35 Ah) sealed lead 

acid batteries. These batteries are widely available for lawn mowers. A 12 V battery is 

used as the low voltage battery, and four 12 V batteries are connected in series to form a 

48 V battery as shown in Fig.  3-2. The battery setup is equipped with four 100 A 

automotive fuses (LittleFuze#157.5701.6101) placed at each terminal. These fuses are 

well above the nominal current protecting the catastrophic faults such as the short circuit 

fault. This will prevent blowing up the batteries as well as the potential electric and 

chemical hazards during unforeseen faults. A three phase contactor is utilized as a dc 

switch for the setup. The converters are also equipped with lower current fuses at their 

dc terminals.  
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Fig.  3-2- Experimental setup’s batteries installation 

3.4. Power Converter Stages 

The onboard VPC was synthesized based on the three-level voltage source 

converters to serve all the power conditioning needs. The VPC displayed in Fig.  3-1 is 

realized with the h-bridges and passive components. The VPC is self-similar to its 

building blocks within this modular design. The VPC inherits its properties from its 

building blocks. The modularity of the proposed VPC is utilized in developing the 

experimental setup. 
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Thanks to the modularity of the design, all the power conditioning stages have 

the same power converter topology. A robust and well thought h-bridge design is 

adopted for developing the VPC prototype. The h-bridges share the same onboard power 

supplies, gate drive circuitry, and communication interface with the controller board. 

The design can host TO-247 switches. Both power MOSFET and IGBTs are available in 

the compatible package. This is a discrete design approach that fits the research purposes 

of the dissertation.  

The h-bridges produce three isolated voltages onboard for gate drivers. The gate 

drivers are selected as HCPL-3120. This gate driver includes an optocoupler for isolating 

the gate drive signal and an amplifier output stage that can supply 2.5 A gate current. 

The high Common Mode Rejection (CMR) of 25 kV/µs is necessary for high frequency 

switching frequencies.  

The h-bridge converter design is well practiced in the author’s previous works 

[36, 37, 129]. A summary regarding the vehicular application is included in this section. 

The power conditioning stages between the grid and the 48 V battery have the same 

power ratings of Pnom. The 14 V bridge’s power rating is a quarter of the other bridges 

(0.25 Pnom). The h-bridge converter is shown in Fig.  3-3. This topology is a differential 

buck converter and has a buck nature. In other words, at each instance the voltage at the 

ac port is smaller than or equal to the dc port voltage (Vd). Hence, the highest voltage 

constantly applied to the h-bridge is the dc link voltage. At each instance, in each leg, 

one switch is conducting and the other switch is blocking; hence, the maximum blocking 

voltage of each switch (Vsw) equals to the dc link voltage. During the transients, the 
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switches may be exposed to voltage spikes; therefore, switches need to have higher 

voltage ratings as ( 3-1). The switches’ current (Isw) is selected according to the rated 

power and the rms voltage as formulated in ( 3-2). 

 

Fig.  3-3- H-bridge converter, Vd: dc port voltage, Va: ac port voltage, dϵ[-1,+1]: switching function  

dsw VV  ( 3-1)

d

nom
sw

VD

P
I

max

  ( 3-2)

The dc link voltage is the highest voltage in the system; hence, the line side 

bridge and the middle bridge have to be rated more than the nominal dc link listed in 

Table  3-1. The dc link voltage needs to be higher than the maximum amplitude of the 

line voltage. The higher voltage ratings of the dc link capacitors and the switches will 

result in improved reliability and life cycle. Conservatively, the switches ratings are 

selected more than twice of the nominal bridge voltages. The battery side bridges are 

exposed to the battery voltages and the ratings are selected accordingly. The dc side of 
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VPC is conditioning the high frequency transformer and the switching frequency needs 

to be relatively high. The MOSFET switches promise more efficient operation at higher 

switching frequencies. Considering the price, market availability, and design boundaries 

the switches listed in Table  3-2 are selected for the bridges.  

 Table  3-2- Switches’ Parameters 

Port Switch # VDS [V] ID [A] RDS(on) [mΩ] Td(on) [ns] Td(off) [ns] VSD [V] trr [ns] Rg(int)[Ω] Rg [Ω]

Dc Link IPW60R070C6 600 53 70 16 83 0.9 720 0.85 10 

48 V IRFP4568 150 171 5.9 27 47 1.3 110 1 5.6 

12 V IRFP4004 40 195 1.7 59 160 1.3 130 6.8 3.0 

 

All the parameters listed in Table  3-2 are related to operation at 25oC junction 

temperature. The on resistance at actual junction temperature would be twice of the 

reported value. Similarly, the actual current that the device can deliver continuously is 

about %50 to %60 of the nominal reported rating. Rg(int) is the internal gate resistance 

and Rg is the gate resistance placed externally in the h-bridge PCB. The implemented h-

bridges are displayed in Fig.  3-4 and Fig.  3-5. 
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Fig.  3-4- H-bridges front view 

 

Fig.  3-5- H-bridges behind view 
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3.5. Line Side Bridge 

The power converter topology of the line side bridge was described in the 

previous section. The line side bridge is a hard switching converter. The switching 

frequency can be selected between 10 kHz to 25 kHz in order to compromise between 

the output THD and switching losses. Additionally, the audible switching noise is 

important for the residential applications. The switching frequencies above 16 kHz are 

not audible. 

3.5.1. Line Side Filter 

Both L and LCL filters have been proposed as proper configurations for the line 

side filter [36-38, 129-134]. Design examples will be provided for both configurations in 

this section. 

3.5.1.1. L Configuration 

For the single inductor line filter configuration, the design equations are ( 3-3) to 

( 3-6). The design is inspired from the author’s previous works [36, 37, 129]. The 

desirable THD is designed below 5% according to the standards as was previously 

mentioned in  1.4.1 and  1.4.3. The inductor Lac is designed as 10.5 mH according to the 

equations. 
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  ( 3-6)

mHLmHL acac  5.10  478.10   ( 3-7)

3.5.1.2. LCL Configuration 

The LCL design procedure is adopted from [131]. The LCL filter components are 

name as shown in Fig.  3-6. A per-unit design is provided. The base values are listed 

below: 
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Fig.  3-6- LCL filter for Line Side Bridge 
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The LL2 has to limit the current ripple generated by converter switching. This 

inductor is designed to limit the highest switching harmonic generated by the SPWM 

modulation according to ( 3-10). In ( 3-10), v(k) is the kth generated voltage harmonic. 

)(

)(max
2 kik

kv
L

b
L 
  ( 3-10)

The LL1 is designed to limit the worse current harmonic according to the grid 

standard. In this design, r is assumed as 1.67. 

21 LL rLL   ( 3-11)

Finally, the capacitor is selected according to ( 3-12). It is recommended to 

employ a damper resistor of RL in series with CL. 

2
2

b

L
L

Z

L
C   ( 3-12)

 The summary of line filter design for both the single inductor and the LCL 

solutions is listed in Table  3-3. 

Table  3-3- Line Filter Parameters 

Lac LL1 LL2 CL RL 

10/5 mH 1.5 mH 2.5 mH 2.6 µF 10 Ω 

 

3.5.2. Dc Link Capacitor 

The dc link capacitor (CD) can be selected according to the desired ripple factor 

(RF). The equation is given in ( 3-13), in which S is the apparent power. As calculated in 
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( 3-14), the required dc link capacitance is 1 mF. The voltage rating should be around 450 

V. 

nd
D VRF

S
C

...2 2  ( 3-13)

mFCD  1
12020005.02

1600
2 





 ( 3-14)

3.6. Snubberless Dual Active Bridge Converter 

The DAB is a two-stage power converter topology that is formed by two voltage 

source dc-ac converters connected through an inductive ac link  [72, 102]. The DAB 

topology offers inherent soft switching at certain boundaries and good voltage utilization 

of the switches; such characteristics promise a high power density solution for various 

applications dealing with bidirectional power flow between the isolated dc sources [64, 

71, 73-76, 78]. Fig.  3-7 shows a DAB converter, which is realized by MOSFETs. The 

series ac link is a passive network cascaded to the ac ports of the bridges. The ac link 

includes a magnetic circuit containing an ac inductor of L and an isolation transformer of 

T. The inductor is the key element of exchanging power between the bridges; the 

transformer is needed to provide the galvanic isolation between the dc ports of the DAB 

converter.  

According to the modulation method, the switches’ commutation may occur at 

the Zero Voltage Switching (ZVS) condition during turn on, or the Zero Current 

Switching (ZCS) condition during turn off [80, 135-137]. The basic and the most 

common modulation method is the phase shift modulation. In the phase shift 

modulation, both active bridges generate square waveforms with a certain phase shift 
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over the ac link inductor to control the power flow between the bridges. The phase shift 

modulation method offers the highest power transfer capacity, high efficiency, and low 

Electromagnetic Interference (EMI) while ZVS happens. The alternative modulation 

methods [80, 135-137] try to extend the soft switching region and try to improve the 

efficiency when the converter operates at a lower power level. Both the modulation 

method and the circuit parameters affect the DAB commutation in a desired operating 

point. The commutation cycle analysis provides a valuable insight into the DAB 

operation boundaries.  

In [72, 78], commutation is modeled between snubber capacitors in parallel with 

switches and the ac inductor. The output capacitor of the device is neglected compared 

to the snubber capacitor. The parallel snubber capacitor acts as a turn off snubber, 

assuming the switches have the ZVS condition at the turn on. The snubber capacitor 

works against the turn on commutation when the converter is out of the soft switching 

region; moreover, there is a tendency to reduce the component count in the commercial 

applications. The counted facts suggest that the switches’ output capacitors be utilized 

for the commutations. The modulation methods suggested by [137] considers a 

Snubberless DAB circuit; however, the commutation is not analyzed, and the authors 

suggest an approximated boundary to have ZVS phase shift modulation. In [138], the 

presence of nonlinear switch capacitors in DAB operation is discussed; however, the 

approximated linearization only includes one equivalent capacitor depending in the 

operating mode. The solution when soft switching happens is similar to the case a turn 

off snubber exists in the circuit. 
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 This section provides a novel analytic method to model the commutation of the 

DAB converter, and the effect of nonlinear output capacitors is addressed. The analyses 

are developed for a power MOSFET based DAB prototype suitable for a vehicular 

power conditioner. The analyses are inspired by phenomena realized during experiments 

that were performed on the experimental setup, and the results are verified by the same 

prototype.  

 

Fig.  3-7- DAB Converter 

3.6.1. Dual Active Bridge Fundamentals 

The simplified dual active bridge converter can be modeled when Vac1 and Vac2 

in Fig.  3-7 are replaced with the equivalent sources and the magnetic circuit is replaced 

with the equivalent series inductor as shown in Fig.  3-8. In this model, the circuit is 

transferred to the primary side. Each active bridge can generate an ac waveform in one 
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side of the equivalent series inductor. The power flow is controlled by shaping the 

inductor current.  

 

Fig.  3-8- Equivalent DAB converter model 

In the phase shift modulation, the inductor L is supplied by two ac sources of 

Vac1 and Vac2 where there is a phase shift of ϕ between the ac sources. Both Vac1 and Vac2 

are square waveforms alternating with the switching frequency of fsw. The power flow 

will be towards the ac source that leads in phase. The amplitude of the ac waveforms 

does not affect the power flow’s direction. Fig.  3-9 helps to visualize the phase shift 

modulation.  



 

Fig.  3-9- DAB waveforms during phase shift modulation 
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The average power transferred between two ac sources is determined by ( 3-15) 

[102, 139]. According to ( 3-15), the transferred power P through series ac link is related 

to the frequency of ac sources fsw, the amplitude of the ac source Vac1 and Vac2, the 

inductance L, and the phase shift ϕ between the ac sources.  

Lf

VV
P

sw

acac
2

21

2

)(


 

  ( 3-15)

In ( 3-15), all the values are transferred to transfers primary side. Specifically, 

Vac2 is defined as the transformers primary voltage and includes the transformer’s turn 

ratio of n. The phase shift modulation power equation can be adopted for the dc-dc 

converter of Fig.  3-7 as ( 3-16). V1 and V2 are the dc sources that can be replaced with 

the dc link voltage and the battery’s voltage in the three-stage isolated VPC.   

Lf
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sw
2
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
 

  ( 3-16)

The transferring power equation ( 3-16) is an approximating model that does not 

count several operating details and several second order effects as reported in the 

previous works [102, 137, 140-148] and as investigated in this dissertation. 

Nevertheless, this equation is a strong and insightful tool in analyzing the DAB 

fundamentals. The transferring power equitation is utilized in the design approach 

explained in the next subsection.  
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3.6.1.1. Dual Active Bridge Design Considerations 

In this sub section, a DAB design approach is proposed. The parameters 

determining the power transferred through the series ac link are investigated as potential 

design parameters. 

Assuming V1 is the dc link voltage and V2 is the battery voltage in ( 3-16), these 

two parameters are determined by the system. The battery voltage is determined by the 

vehicle designer and the dc link voltage is limited by the grid. Hence, for a single phase 

line V1 is limited by maximum line amplitude according to ( 3-17). This is not a 

traditional DAB design parameter; however, it is utilized in the variable dc link control 

method of the decoupled three-stage isolated VPC, which is a contribution of this 

dissertation. This method will be described later in this chapter. 

(max)1 2 acVV   ( 3-17)

The link frequency can be varied to control the transferred power. In this 

dissertation, the switching frequency is constant and is not utilized as a control variable. 

The switching frequency is a design variable. The switching frequency affects the size 

and the efficiency of the magnetic circuit as it will be described in chapter  4. The 

switching frequency also affects the converter efficiency although the converter has soft 

switching properties. The switching frequency can be selected during an optimization 

process to meet certain design criteria [149, 150]. The converter optimization is not a 

goal of this dissertation and the switching frequency is selected as 40 KHz due to a few 

practical considerations. 
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The inductance L is the specific parameter that can be designed for the series 

high frequency ac link operation. According to ( 3-18), the maximum power transfer 

through the ac link can happen at π/2 phase shift. Thus, the maximum transferred power 

is formulated as ( 3-19). In ( 3-19), L is the only link parameter that can limit the 

transferred power. This property can be utilized for increasing the reliability of the 

design. The larger series ac link inductance results in the lower sensitivity to phase shift 

perturbations and the lower power limit. In contrast, the larger ac inductor and the lower 

utilization factor is the price paid. 

 
L

k

Lf

VnV
P

sw


 8

21

2
max 

 ( 3-18)

It is preferred to set the maximum transferred power happening at a phase shift 

below π/2 to avoid excessive reactive power and improve the ac link utilization factor. 

As an example, if the maximum phase shift is set at π/6, and the transformer is set at 4, 

the L would be designed as 43 µH for the ratings of ( 3-16).  According to ( 3-18), the 

maximum power is limited by 2.9 kW for this design. 
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L 2
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


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  ( 3-20)

3.6.1.2. Dual Active Bridge Operation Curves 

As described, all the parameters present in ( 3-16) are used in the DAB’s design 

procedure. The reaming parameter is the phase shift between the ac sources that can be 

manipulated as the control variable for determining the power flow during the operation. 
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The DAB converter is implemented in the SIMULINK environment, as shown in Fig. 

 3-10, in order to investigate the behavior of DAB versus phase shift angle. According to 

the component model details an approximate efficiency curve is realized from this study.  

The DAB efficiency and transferred power are plotted versus the phase shift 

delay in Fig.  3-11 and Fig.  3-12, respectively. A per-unit (pu) design is considered for 

this case study. The power base is selected at 1 pu to happen at 30o phase shift. The rated 

voltage is considered as the voltage base. 

)(74.115.35,

25.20

180

6.1

puHL
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VV

kWP
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base

base
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











 ( 3-21)

Simulation shows maximum power can be transferred at 91° and maximum 

efficiency occurs at 14°. In this simulation dead-time is assumed at 1µs and the nominal 

power occurs at a phase shift less than 30°. The phase shift should be limited in order to 

prevent the converter to operate at power above the designed value. 

 

Fig.  3-10- Equivalent circuit of DAB in MATLAB SIMULINK 
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Fig.  3-11- Transferred power curve versus phase shift 

 

Fig.  3-12- Efficiency versus phase shift 
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3.6.1.3. DAB Dc Capacitors 

In the previous subsections, the DAB was always supplied by the ideal dc 

sources at both ends. In the integrated vehicular power system, an active load may be 

placed at the DAB or multi active bridge output. In this case, the output capacitor needs 

to be selected appropriately to maintain the DAB’s dc voltage. Similarly, the capacitors 

are needed when the batteries are conditioned with DAB. The dc capacitors decrease the 

batteries’ ripple. 

In [80], the DAB dc capacitors are designed in a way the time constant of the 

output capacitor and the series inductor are five time slower than the switching 

frequency. Adopting this design consideration, the minim dc capacitor is calculated as 

( 3-23). The frequency according to the series ac link inductance and DAB’s output 

capacitor is defined as fLC. CB is the DAB dc capacitor as shown in Fig.  3-1 (CB1 and 

CB2). The designed DAB dc port capacitors are listed in Table  3-4. Cds is the dc link 

snubber capacitor on the middle bridge. This capacitor is parallel with Cd. The best 

material for these capacitors is Polypropylene that is also known as MKP in industries.  

sw

B

LC f
LC

f 5
2

1



 ( 3-22)

LfLf
C

swLC
B 2222 100

1

4

1


  ( 3-23)

Table  3-4- DAB Output Capacitors 

Middle Bridge 48 V Battery Bridge 12 V Battery Bridge 

Cds = 1 µF, 600 V CB1 = 26 µF, 300 V CB2 = 220 µF, 50 V 
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The experimental waveforms shown in Fig.  3-13 and Fig.  3-14 both belong to the 

DAB operation with 50 µH inductance and 25o phase shift. The primary is supplied with 

30V dc voltage and the secondary supplies a 25.1 Ω resistive load. The ac link 

waveforms and the dc output are shown. In Fig.  3-13, CB1 is 1 µF and the output voltage 

is not dc. The output voltage is pulsed and has also becomes negative. The ripple also 

affects the ac link waveforms specifically the secondary side ac voltage and the ac link 

current. In contrast, CB1 is increased to 26 µF in Fig.  3-14 when all other experiment 

parameters are similar to Fig.  3-13. As can be seen, the output capacitor is able to 

maintain the output dc voltage and the ac link waveforms are as expected for DAB. For 

more information about these two experiments, please refer to the section  6.2. 

 

Fig.  3-13- DAB supply RL=25.1 Ω , Vin=30 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: IL, magenta: VRL 
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Fig.  3-14- DAB supply RL=25.1 Ω , Vin=30 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: IL, magenta: VRL 

3.6.2. Snubberless Commutation of DAB 

The fundamental operation of the DAB was described in the previous section. In 

practice, the second order details affect the DAB operation. The effect of switches output 

capacitances and the deadtime of the bridges are among such details. The Snubberless 

commutation of the DAB is presented in this section to address effects of the dead time 

and the switches’ output capacitors. This is among the contributions of this dissertation. 

 An experiment is presented to emphasize the motivation of this study. In theory, 

the soft switching region is not limited when the dc voltages of DAB are equal [72]. To 

demonstrate this condition, the transformer is removed from the circuit, and the primary 

bridge is supplied through a dc link. The dc link is supplied from an auto transformer 

and a rectifier circuit. The phase shift is set at 15̊ over the series gapped inductor of 42.6 
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µH, and the 48 V battery is charging at 0.76 A. The waveforms look neat in Fig.  3-15; 

however, in the next screenshot, the waveforms become like Fig.  3-16. In Fig.  3-16, the 

input voltage has changed due to the double frequency ripple of dc link. The inductor 

current is not enough to perform the commutation in this instance and undesirable 

resonances happen. The dead time of switches and the minimum current of the ac link 

inductor are the effective parameters to secure a successful commutation in phase shift 

modulation. These quantities will be analyzed in this section. 

 

Fig.  3-15- Charging 48 V battery (V2) from dc link (V1), 15 ̊ phase shift, V1(avg)=48.4 V, I1(avg)=0.80 A, 

V2(avg)=52.9 V, I1(avg)=0.76 A, orange: Vac1, blue: Vac2, green: IL magenta: VGS(21) 
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Fig.  3-16- V1 changes due to dc link ripple versus Fig.  3-15, V1(avg)=48.4 V, I2(avg)=0.80 A, V2(avg)=52.9 V, 

I1(avg)=0.76 A, orange: Vac1, blue: Vac2, green: IL, magenta: VGS(21) 

The DAB’s switching states during the phase shift modulation are partitioned in 

Fig.  3-17. The ac link waveforms are explored through half of the switching period; the 

other half period has a symmetrical behavior. In Fig.  3-18, the sequences are sketched 

for more clarity. The same color codes are selected for both figures. The switching states 

are summarized in Table  3-5.  
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Fig.  3-17- Switching intervals of DAB operation, V1(avg)=48.4 V, I1(avg)=0.80 A, V2(avg)=52.9 V, I2(avg)=0.76 A 

orange: Vac1, blue: Vac2, green: IL magenta: VGS(21) 

 

Fig.  3-18- Exaggerated switching intervals of DAB operation, orange: Vac1, blue: Vac2, green: IL 
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Table  3-5- DAB’s Switching Sates during Phase Shift Modulation 

 Before t0 t0 t1 t2 t3 t4 t5 t6 

Bridge1 

M13 

M12 

ON 

M13

M12

OFF

C11,C14↓0 

C13,C12↑V1

D11

D14

ON

M11

M14

ON

M11 

M14 

ON 

M11 

M14 

ON 

M11 

M14 

OFF 

Bridge2 

D22 

D23 

ON 

D22 

D23 

ON

D22 

D23 

ON 

M23

M22

ON

M23

M22

OFF

C21,C24↓0 

C23,C22↑V2

D21 

D24 

ON 

D21 

D24 

ON 

 

The state space analysis of the commutation period between t0 to t1 leads to: 

Lidt

dq

dt

dq
 1311  ( 3-24)
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  ( 3-25)
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di
L L   ( 3-26)

The component names are in a similar fashion that is shown in Fig.  3-1. The 

boundary conditions are described below:  

at 0tt  : 013 q , 013 v , GSQq 11 , 111 Vv   

( 3-27)
at 1tt  : GSQq 13 GSQv 13 , 011 q , 011 v  

 The critical current boundary condition determines the minimum required 

deadtime:  

deadtimettt  01 ,  (min)0)( LL iti  , 0)( 1 tiL  ( 3-28)

The state variables q11 and q13 can be reduced to:  
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If the switch capacitors, C11 and C13, are to be assumed as equal constant 

capacitors, ( 3-29) will lead to the similar results of [64, 72]. This assumption is not true 

for the Snubberless DAB. The output capacitor of MOSFET is related to its channel 

voltage, as is modeled in ( 3-30), [33].  

11011 vCq   ( 3-30)
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If ( 3-30) is replaced in ( 3-29), this will result in a nonlinear differential equation 

that can be solved by numerical methods. An analytic approach is preferred to the 

numerical solution, because its results can be better utilized in the design process. The 

nonlinear capacitor can be modeled by a number of linear capacitors; then, it is possible 

to solve ( 3-29) for each linear step. Fig.  3-19 shows an example of dividing a switch 

output capacitor into two linear capacitors referring to the device datasheet [151]. 
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Fig.  3-19- Piecewise linear model of switch capacitor according to device datasheet 

The MOSFET output capacitor is modeled by two capacitors, Cosh and Cosl, in 

respect to Q1 and Q2 in Fig.  3-19. This breaks the transient between the upper and lower 

switches (such as M21 and M23) into three steps. The solution to the state space equations 

for the transient phase in between t0 to t1 is : 
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Firstly, the upper switch is on and the lower switch is off: 

oshosl CCCCtt  13110 ,:  

)(2 oshosl
eq CC

L
Z


 ,

)(
2

1
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eq
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
  

( 3-33)

Secondly, both switches are in transient and have Cosl as output capacitors. 

osloslx CCCCtt  1311 ,:  

osl
eq C

L
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4
 ,

osl

eq
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1
  

( 3-34)

Finally, the commutation has happened. The upper switch is off, and the lower 

switch is conducting: 

oslosh CCCCtt  13111 ,: , 

)(2 oshosl
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
 ,
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2

1

oshosl

eq
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L
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( 3-35)

 

3.7. Conclusion 

This chapter introduced a three port onboard VPC as the reference system for the 

dissertation’s research. The ratings of the system and the design considerations were 

reported briefly. A modular building block based design approach was proposed for the 

onboard VPC as a contribution of this dissertation. The design method was practiced for 

developing the experimental setup. 
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The fundamentals of the DAB converter and the phase shift modulation were 

reviewed and the important DAB design considerations for the vehicular application 

were heighted. This chapter emphasized the benefits of the well practiced phase shift 

modulation for the high power DAB converter applications. The Snubberless 

implementation of the DAB converter is preferred for practical applications. The phase 

shift modulation soft switching boundary conditions are an important design criterion. 

An experiment was presented to show the behavior of the converter at the soft switching 

boundary conditions. The main contribution of this chapter is analyzing the commutation 

of the Snubberless DAB. The DAB’s commutation cycles during the phase shift 

modulation were formulated by the state space analysis. The equations are nonlinear due 

to the device capacitors’ presence. A numerical method and a linearization method were 

proposed. The advantage of the proposed piecewise linear modeling method is the 

relation of devices’ data to the analytical model.  
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4. MAGNETIC CIRCUITS* 

4.1. Overview 

The VPC’s magnetic components include the low frequency line side inductors 

and filters, the high frequency ac inductors and the isolation transformer. The low 

frequency filters are investigated in the previous works [36, 37, 129]  and the 

dissertation focuses on the high frequency ac inductors and the isolation transformer. 

These magnetic components form the high frequency ac link of the proposed VPC. This 

chapter is dedicated to the magnetic circuit of the VPC. The design and implementation 

methodology will be summarized and the contributions will be presented. 

The second section of this chapter will introduce an optimized design of the 

three-winding isolation transformer. Integrating the series ac link inductor into the 

transformer’s leakage will be evaluated. The design will be verified analytically and 

experimentally. In the third section, three design approaches will be presented for the ac 

inductors. A novel and innovating design approach that integrates a common mode 

blocking transformer into the coupled ac inductors will be proposed. The transformer’s 

parasitic capacitors effect on the DAB operation will be demonstrated experimentally. In 

the fourth section, a novel experimental modeling method will be introduced for 

modeling multiwinding transformers in detail. The more detailed transformer’s model 

                                                 

* © 2013 IEEE. Reprinted in part with permission from “Modeling Isolation Transformer Capacitive 
Components in a Dual Active Bridge Power Conditioner,” by B. Farhangi and H. A. Toliyat, in Proc. of 
IEEE Energy Conversion Congress & Expo. ECCE 2013, pp. 5476-5480. For more information go to  
http://thesis.tamu.edu /forms/IEEE%20permission%20note.pdf/view. 



 

88 

will be analyzed and verified through simulations and experiments. Finally, the 

conclusion section will highlight the achievements and contributions of this chapter. 

4.2. Quantitative Sweep Design Approach for Isolation Transformer 

The multiwinding transformer design procedure will be presented in this section. 

In the first step, the turn-ratios are selected in order to implement the variable dc link 

control of the three-stage isolated VPC as described in the following subsection. 

4.2.1. Transformer Turn Ratios for Variable Dc Link Control of Three-

stage Isolated VPC 

The reference VPC has three voltage levels that were introduced in Table  3-1. 

The goal of the variable dc link control is to supply the DAB with a voltage that is 

almost equal to the battery voltage at each instance. This rule can be described as ( 4-1). 

In this subsection, n is the turn ratio between primary and secondary. The auxiliary 

winding that supplies the low voltage battery is not discussed. Satisfying ( 4-1), the 

minimum allowed high voltage battery (VBAT1(min)) needs to be smaller than the 

maximum allowed line voltage amplitude according to ( 4-2). 

1BATdc nVV   ( 4-1)

(max)min 2
(min)1 lineVVn

BAT


 ( 4-2)

(min)1

(max)
min

2

BAT

line

V

V
n   ( 4-3)

According to ( 4-3), if the variable control method needs to be applied for all the 

voltage range the minimum turn ratio will be: 
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64.4
4.38

2.178
min n  ( 4-4)

In this case, the maximum dc link voltage from the battery side will be: 

VVnV BATdc  54.2766.5964.4(max)1min(max)   ( 4-5)

This will result in an increased maximum dc link voltage when compared to the 

case the dc link is designed based on maximum allowed line voltage. This will need to 

increase the ratings and also will have more stress and losses on the line side bridge. A 

compromised solution between the mentioned design scenarios is satisfying ( 4-1) for the 

nominal battery voltage. The battery voltage will stay around the nominal voltage in the 

majority of the time during the charge and discharge cycles. Thus, the compromised 

minimum turn ratio is: 

71.3
48

2.178
min n  ( 4-6)

The maximum dc link voltage will be: 

VVnV BATdc   1.2216.5971.3(max)1min(max)   ( 4-7)

The tertiary to secondary winding turn ratio is selected as 0.25 in respect to the 

nominal voltages of the high voltage and low voltage batteries. 

4.2.2. Multiwinding Transformer Design 

The initial step in the transformer design is selecting the maximum magnetic 

field (Bm) to start with. The magnetic field is initially selected as 0.2 T. 

TBm  2.0  ( 4-8)
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The transformer’s area product (AP) is defined as product of the core’s cross-

section area (AC) by the core’s window area (AW). The  area product is calculated as 

( 4-9) [152]. The core size can be estimated by the transformer’s area products. In ( 4-9), 

the nominator is sum of the windings currents multiplied by the voltage. It can be 

approximated as the apparent power for an n-winding transformer. The denominator is 

product of windows utilization factor of ku, the career frequency of passing energy, 

which is equal to the switching frequency of fs, the maximum magnetic field of Bm, and 

the winding’s current density of J. 

JBfk
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mswu

n

i
ii

WCP
.2

1




  

( 4-9)

According to the VPC’s specifications, the AP is calculated as ( 4-10). The 

apparent power with a design overhead is considered as 2 kW for primary and secondary 

windings and 500 W for the tertiary winding.  

4

63
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55.10
1032.010404.02

104500
cmAP 





  ( 4-10)

The minimum Ap is 8.44 cm4. Upon the availability, the ETD59 core is selected. 

The Ap for this core is 18.69 cm4 that provides an extra space to integrate more leakage 

into the transformer’s design. The turn numbers for primary (Np), the secondary (Ns), 

and the tertiary (Nt) are calculated as follows: 

14
102562.010404
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s

p
ps   ( 4-14)

The current density for the windings is designed to be less than 4 A/mm2. 

Accordingly, the conductors’ cross section (Acu) are determined. The primary windings 

are designed with the Litz wires. The Litz wire minimizes the skin effect, which is 0.33 

mm at 40 kHz, and improves the proximity effect. In ( 4-15) to ( 4-20) a design example 

for the primary winding with the Litz wires are presented. Dcu is the required conductor 

diameter, Ds is the strands diameter, δcu is the effective skin depth (at 40 kHz), As is the 

strands cross-section area, and Ns is number of strands in the Litz wire. 

A
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NV

P
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P  89.8
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  ( 4-15)
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mmD cus  35.0   ( 4-18)
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The secondary current is relatively higher when compared to the primary and the 

number of strands will be impractical for the laboratory prototyping. Hence, the primary 

winding is designed with the copper foil. The tertiary has the same current rating and 

shares the same winding design with a quarter of turns. The secondary winding height 

(hfoil) will be the core window’s height minus a clearance according to ( 4-23). The foil 

thickness is selected as 0.1 mm, which is narrower than the skin depth and all the cross 

section can be utilized. The foil thickness (dfoil) is calculated in ( 4-24). Two layers of 

copper foil will be paralleled to achieve the desired cross-section. 

ANII psPs  34.3375.389.8   ( 4-21)

2 33.8
4

34.33
mmA

J

I
A s

cu   ( 4-22)

mmh foil  2.3742.41   ( 4-23)

mm
h

A
d

foil

foil
foil  22.0

2.37

33.8
  ( 4-24)

4.2.3. Design Optimization 

The transformer’s losses can be partitioned into two sections, the core loss and 

the copper losses. The core loss can be calculated from the Steinmetz model [153-155] 

as of ( 4-25). The winding losses are defined as sum of resistive windings as ( 4-26), in 

which k is number of windings. The ac resistance of each winding needs to be 

calculated. The skin and proximity effects [156-159] cause the ac resistance of the 

winding be more than the dc resistance of the windings. 
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cucoretrans PPP   ( 4-27)

The ac resistance is related to the dc resistance of the conductor in the winding 

according to the FR(X) which is the Dowell model. The ac resistance of the windings 

that have used Litz wire as the conductor is described as follows. Initially the dc 

resistance (Rdc) is calculated from ( 4-28). In this equation, lmean is the average length per 

turn of the winding. And N is the number of turns. The parameter klayer, which is used in 

the Dowell’s model, is calculated from ( 4-29), in which NS is the number of strands, ds is 

the diameter of the strand, and DL is the diameter of the Litz wire. X is related to klayer 

based on ( 4-30). Finally, the FR(X) is calculated in ( 4-31). ML is the number of layers to 

the maximum MMF.  
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For the windings with foil conductors, klayer and X will be different. In ( 4-32), 

klayer is formulated for foils. NL is the number of turns in each layer, which is 1 for the 

described design example. The hwindow is the window height and hfoil is the foil ribbon 

height. X and FR(X) are modified for the foil windings as ( 4-33) and ( 4-34). 
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The losses of the transformer can be calculated using ( 4-25) to ( 4-34). If the 

number of turns per each winding is increased, Bm and Pcore will decrease. On the other 

hand, Pcu will increase due to extending the windings length. An optimized design 

compromises between the Pcu and Pcore. The number of turns for each winding is a 

discrete value and the design domain is limited. All the candidate designs can be 

evaluated looking for minimum losses and maximum efficiency using spread sheet 

software. The design is formulated in an Excel file. Firstly, the secondary turns are 

varied around the initial design. This investigation suggests varying Bm by 0.1 T 

provides accurate resolution for the design. Hence, Bm is varied as a design parameter 

from 0.1 T to 0.2 T. The design process is performed both for an interleaved transformer 

layout and a non-interleaved transformer layout. The design results around the optimum 

design are listed in table Table  4-1. By comparing the designs, Bm of 0.14 T turns out as 
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an optimum design. The non-interleaved approach is selected to integrate more leakage 

between the windings.   

Table  4-1- Transformer Designs Varying Bm 

Bm [T] Np Ns Nps Pcup [W] Pcus [W] PCU [W] Pcore [W] Ptrans [W] Eff [%]

Non-Interleaved 

0.1 33 9 3.66667 4.975 2.62913 7.60413 1.05462 8.65876 99.1341

0.12 29 8 3.625 3.73703 2.23969 5.97672 1.69422 7.67094 99.2329

0.13 26 7 3.71429 2.9717 1.8846 4.8563 2.08617 6.94247 99.3058

0.14 22 6 3.66667 2.14161 1.55956 3.70116 2.52948 6.23064 99.3769

0.16 20 5 4 1.84957 1.29963 3.1492 11.4235 14.5727 98.5427

Interleaved 

0.1 33 9 3.66667 2.54816 2.2379 4.78606 1.05462 5.84069 99.4159

0.12 29 8 3.625 2.15993 1.96492 4.12484 1.69422 5.81906 99.4181

0.13 26 7 3.71429 1.80794 1.70052 3.50846 2.08617 5.59464 99.4405

0.14 22 6 3.66667 1.48124 1.44364 2.92488 2.52948 5.45435 99.4546

0.15 22 6 3.66667 1.43657 1.44364 2.88021 3.02646 5.90667 99.4093

 

4.2.4. Multiwinding Transformer Prototype 

The three-winding transformer design was optimized in the previous subsections.  

This subsection describes how the design is implemented. The transformer is 

implemented completely in-house. To control skin and proximity effects, Litz wires are 

wound for the primary, and copper foils are selected for the secondary and tertiary. The 

transformer design summary is presented in Table  4-2. The secondary winding is the 

first winding, which is wound on the bobbin. The winding layers are isolated using 0.064 

mm Polyimide tape with Silicone adhesive, and 0.1 mm Milar film isolates the windings 

from each other. The tertiary winding is the second winding, between the secondary 
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winding and the primary winding. The windings are not interleaved to integrate more 

leakage into the transformer, which contributes to the required ac inductance. When 

primary and secondary are working as a DAB, the tertiary winding can be either 

grounded to act as a shield or left disconnected. Fig.  4-1 shows the windings layout, and 

Fig.  4-2 shows the implemented transformer. The inductive parameters of the 

transformer are listed in  

Table  4-3. The windings are noted as primary, secondary, and tertiary in respect 

to the dc link, the high voltage battery, and the low voltage battery. Llp is the leakage 

inductance measured at the primary side, from short circuit test. Lmp is the magnetizing 

inductance, measured from open circuit test, at the primary side. 

Table  4-2- Transformer Design Optimization Summary 

Bm [mT] N1 [turns] 
N2 

[turns] 
N3 

[turns] 
PCU [W] PCORE [W] η [%] 

Optimal 
Flux 

150 V 
winding 

48 V 
winding 

12 V 
winding 

Calculated 
Copper loss 

Calculated 
core loss 

Calculated 
efficiency 

0.14 22 6 1.5 3.7 3.02 99.33 

Core: ETD 59/31/22, material: mf102 

 

Table  4-3-Transformer’s Measured Inductances 

 Primary Secondary Tertiary 

Leakage inductance Llp = 7.7 µH Lls = 0.46 µH Llt = 1.9 µH 

Magnetizing inductance Lmp = 2.56 mH Lms = 0.175 mH Lmt = 12.66 µH 

Winding Resistance Rp=0.166 Ω Rs=0.0115 Ω Rt=0.0051 Ω 

Parameters measured with Fluke PM6306 LCR meter 
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Fig.  4-1- Transformer’s windings diagram  

 

Fig.  4-2- Implemented transformer 
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4.3. Ac Inductors 

The magnetic component design references usually refer to the procedures 

proposed for the high frequency transformers when they address a design procedure for 

ac inductors [152, 160]. On the other hand, the references have mainly focused on dc 

inductors rather than ac inductors. The main difference between dc inductors and ac 

inductors is how B-H curve is utilized. In the dc inductors, the current has a dc 

component and the flux will have a dc bias. The B-H loop will be unbalanced. In 

contrast, there is no dc component in current and flux of the ac inductors and the 

isolation transformers.  

The major difference between ac inductors and ac transformers is storing energy 

in the core. The energy storage in transformers is limited to the leakage inductance and 

there is high magnetic coupling between the windings. Looking at the model, the leakage 

inductance is relatively small and the magnetizing inductance is relatively large in the 

isolation transformers. In contrast, the ac inductors have to store more energy. Hence, 

the series inductance will be larger, and the magnetizing inductance will be smaller due 

to introducing air gap to the transformer. 

In this section, three design approaches will be presented for the ac inductors that 

act as the series high frequency ac link. These design approaches include the gapped ac 

inductor, the distributed air gap approach and the coupled ac inductors. The gapped ac 

inductor design method is practiced for the onboard VPC as the reference design. The 

distributed air gap method is presented as it may be practiced by industries. Finally, the 

coupled ac inductor is a novel method that is presented as one of the contributions of this 
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dissertation. The proposed design integrates the common blocking inductance to the 

linear coupled ac inductor and can improve the VPC by reducing the common mode 

EMI.  

4.3.1. Gapped Ac Inductor 

The soft magnetic materials such as ferrites are not suitable for storing energy. 

They have nonlinear magnetic properties and easily saturate. Hence, an air gap is 

introduced to the magnetic core and the energy will be stored in the air gap. Introducing 

the air gap to the magnetic path reduces the effective permeability of the core; however, 

the air gap results in a linear ac inductor. The air gap volume can be calculated by 

multiplying the cross-sectional core’s area (AC) by the height of air gap (g). A challenge 

in design of the gapped ac inductors is controlling the fringing effect around the air gap. 

Due to the fringing effect no winding can be wound around 2.5g of the air gap.  

The design of 40 µH 40 kHz inductor using the UR 57/28/16 core is explained in 

this subsection. The core material is 3C8 with permeability of 2700. Firstly, the 

maximum energy stored in the inductor (Wmax) is calculated. 

 mWILW  912.075.61040
2

1

2

1 262
11max    ( 4-35)

The required air gap volume (Vg) is calculated according to ( 4-36). The air 

permeability is indicated with µ0. 
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The air gap height is calculated from the air gap volume in ( 4-37). 
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Finally, the number of turns can be calculated as ( 4-38). 

turns
A

gL
N

C

 10
0

1 


 ( 4-38)

The presented design procedure is repeated for all the gapped inductors used for 

the experimental setup. The winding is implemented with the same Litz wire that was 

designed for the transformer’s primary as was described in  4.2.2.  The implemented 

inductor is shown in Fig.  4-3. The described 43.73 µH inductor is wounded in left leg of 

the core using Litz wire. The blue winding on the right side is another inductor designed 

in a similar fashion for the secondary side with value of 7.45 µH. The LCR meter 

measurements are listed in Table  4-4. The measurements are performed at 40 kHz using 

Fluke PM6306 LCR meter. The gapped ac inductor design is verified by experiments of 

subsections  4.4.1 and  0. 

Table  4-4- Gapped Inductor Parameters 

L1 L2 

Inductance Resistance Inductance Resistance

43.73 µH 0.0416 Ω 7.45 µH 0.0130 Ω 

Measured with Fluke PM6306 LCR meter at 40 kHz 
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Fig.  4-3- Gapped ac inductor 

4.3.2. Distributed Air Gap Approach 

The distributed air gap materials are popular solutions for dc and low frequency 

inductors. Iron powder cores and cool-mu cores are among the materials available 

commercially in a variety of shapes, sizes, and permeabilities. These materials have iron 

which is not a good choice for high frequency ac inductors. In some situations, the 

industries intend to use these cores for high frequency ac inductor design. The main 

reason is that the practitioner may not determine the difference between the ac inductor 

and the dc or low frequency ac inductor. The difference was described previously at the 

beginning of this section. In such cases, it is recommended to utilize multiple cores with 
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relatively low permeability. This solution is not further discussed in the dissertation 

considering the dissertation’s scope. 

4.3.3. Coupled Ac Inductors 

Coupled dc and low frequency ac (50 Hz and 60 Hz) inductors have been 

investigated in the literature [56, 119, 161-165]. The converters using coupled inductors 

are also named as ripple free converters [166-170]. In the mentioned earlier works, the 

coupled high frequency ac inductor is not proposed. In this subsection, a novel coupled 

ac inductor technique is proposed that is a promising candidate for a series high 

frequency ac link inductor. The proposed coupled ac inductor has an integrated common 

mode blocking transformer and contributes to the common mode EMI suppression of the 

isolated VPC. 

The coupled ac inductor is wounded in equal turns in two sides of soft ferrite 

material. A material with relative permeability of 5000, in a UU or UI shape is an ideal 

core for the proposed technique. The same core that was used for the gapped ac inductor 

is used for demonstrating a coupled ac inductor. The core’s geometry is preferable and 

the relative permeability is slightly lower than what is desired. The benefit of square-

shape core is that the fringing effect will be controlled and the adjacent windings will not 

heat up.  

Calculating the number of turns for a desired value is a complicated task that is 

heavily dependent on the geometry. A practical solution is proposed in this regard. 

Initially, one or two turns are wound in each side (n1) and the leakage inductance of L1 



 

103 

is measured. The required number of turns (n2) to have the desired inductance of LD is 

calculated according to ( 4-39). 

1
12 L

L
nn D  ( 4-39)

The proposed coupled ac inductor can be looked at as a zero blocking mesh 

transformer whose leakage inductance acts as the series differential inductance (LD). The 

coupled ac inductor can be modeled as shown in Fig.  4-4. 

 

Fig.  4-4- Coupled ac inductor model 

During the normal operation, the differential current is applied to the coupled 

inductor. To test this situation with the LCR meter, the dotted heads are connected to the 

LCR meter and the other heads are shorted as shown in Fig.  4-5. In this case, the 

equivalent series inductance is approximately equal to the leakage inductance as ( 4-40). 

The actual measurement shows the differential inductance is slightly larger than the 

leakage inductance. 
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Fig.  4-5- Measuring LD 

lD LL   ( 4-40)

The zero sequence inductance of the coupled ac inductor is defined as the 

common mode inductance (LCM) in this dissertation. In order to apply the common mode 

current to the coupled inductor, the test circuit is configured as Fig.  4-6. In this 

configuration, the test current flows in the same direction through both dotted terminals. 

Hence, the zero sequence current is applied to the coupled ac inductor. The test 

condition is compared to the experiment that magnetizing inductance is measured. 

During the magnetizing inductance measurement, the current passes through the primary 

winding while the secondary is open.  In contrast, the test current passes through both 

windings in series during the LCM measurement. Hence, the number of turns is twice of 

the case in which the magnetizing inductance is measured. Therefore, the equivalent 

inductance (LCM) will be four times of the magnetizing inductance when the common 

mode (zero sequence) current is applied to the coupled inductor.  
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Fig.  4-6- Measuring LCM 

mCM LL 4  ( 4-41)

The coupled inductor is implemented with the same Litz wire that was used for 

transformer’s primary and the gapped inductor. The prototype is shown in Fig.  4-7, and 

the measured parameters are listed in Table  4-5. In Table  4-5, the mesh transformer 

parameters are measured as a transformer. Alternatively, the coupled ac inductor 

parameters are measured as described in respect to Fig.  4-5 and Fig.  4-6. Fig.  4-8 shows 

how the coupled ac inductor can be utilized in the DAB converter. The performance of 

the implemented coupled ac inductor is successfully verified in the experimental setup. 

The common mode blocking transformer used in  4.4.1 is the coupled inductor shown in 

Fig.  4-7. Indeed, an ordinary common mode filter will not pass a 40 kHz waveform due 

to the high leakage for this frequency and this novel integrated solution is the only 

practical method for blocking common mode interference at the high frequency ac link. 
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Table  4-5- Coupled Ac Inductor Parameters 

Mesh Transformer Coupled Ac Inductor 

Ll Rl Lm LD RLD LCM 

37.22 µH 0.09 Ω 183.5 µH 41.49 µH 0.0541 731.9 µH 

Measured with Fluke PM6306 LCR meter at 40 kHz 
 

 

Fig.  4-7- Coupled inductor prototype 

 

Fig.  4-8- Coupled ac inductor utilized in DAB converter  



 

107 

4.4. Experimental Modeling of Multiwinding Transformer Using Short Circuit 

Resonance Frequency 

The transformer’s capacitive elements are distributed over the transformer’s 

structure. Analytic methods suggest calculating these parameters in lumped or 

distributed form [171-177]; however, the equations can easily become complicated when 

more details or complicated geometries are introduced. Finite Element Analysis (FEA) 

can model such elements after describing the structure of the transformer in the FEA tool 

[104, 178-181]. FEA solvers promise high accuracy; however, the challenge is to draw 

an accurate geometry. Specifically, manufacturing tolerances are hard to predict and to 

implement in the tool. 

Calculation based methods including FEA analyses are all suitable tools in the 

design phase of a magnetic circuit. Engineers and researchers also need methods to 

evaluate the manufactured prototypes and products. Such methods also include the 

manufacturing tolerances; moreover, the experimental methods are handier for engineers 

who may not be in charge of magnetic design, or may not access to the FEA tools. The 

experimental methods, such as frequency response methods, perturb the transformer 

with a certain set of signals and analyze the observed responses of the circuit [152, 182, 

183]. The frequency response methods include a test procedure that leads to a lumped 

model. A (Line Impedance Stabilization Network) LISN network may or may not be 

required depending on the procedure. In [152, 182-184], the frequency response of the 

transformer is measured while the windings are open circuit. In this section, a novel 

experimental modeling method using the short circuit resonance frequency of the 
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transformer is proposed, which is among the major contributions of this dissertation. 

This method will bypass the effect of magnetizing inductance on the test result and 

estimates the winding capacitors. The inter-winding capacitors are divided into two 

lumped elements for more accuracy. The detailed procedure to measure and calculate all 

the model parameters are provided in the following subsections. 

Emphasizing the transformer’s parasitic capacitances effects, the next subsection 

presents a few experiments. Moreover, these experiments test the multiwinding 

transformer that was designed and prototyped for the experimental setup. The modeling 

procedure will be described afterwards. The more detailed transformer model will be 

simplified to a third order Π circuit analytically. The transient response of the 

transformer will be analyzed mathematically. Finally, the proposed modeling method 

and the analyses will be verified through simulations and experimentally.  

4.4.1. Experiments Demonstrating Effects of Transformer’s Parasitic 

Capacitances 

A few experiments are presented in this subsection to demonstrate the effect of 

the transformer’s parasitic capacitances in DAB operation. The experimental setup is set 

to demonstrate the DAB converter as shown in Fig.  4-9 and Fig.  4-10.  

The first experiment is charging the 12 V battery from the 48 V battery at 6.58 A. 

The 50 µH external ac inductor of L is connected to the high voltage side, and the phase 

shift between bridges is 45°. The waveforms are included in Fig.  4-11. The blue 

waveform is the ac voltage of the primary side inverter. The yellow waveform is the ac 

voltage of the secondary side inverter. The magenta waveform is the gate to source 
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voltage of M21, VGS(M21). The green waveform is the inductor current, IL. There is an 

overshooting spike over the low side ac voltage transients. This overshoot transient 

couples to the gate signal. 

 

Fig.  4-9- DAB Topology 

 

Fig.  4-10- Experimental setup configured for DAB operation 
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To evaluate the solution suggested by [185], a zero sequence blocking 

transformer is added to the circuit. This is the integrated coupled inductor designed in 

subsection  4.3.3. In another experiment, the tertiary winding is grounded to act as a 

shield between the primary and secondary according to the technique proposed by [186].  

None of the mentioned solutions suggested by [185, 186] help in this regard. The 

waveforms are similar to Fig.  4-11 in both experiments. In contrast, the voltage spike 

disappears when the transformer is removed.  

Fig.  4-12 shows an alternative experiment in which the transformer is removed. 

The secondary bridge is connected to a dc link that is supplied from an autotransformer 

and a rectifier circuit. The primary bridge is still connected to the 48 V battery. The 

waveform assignment is similar to Fig.  4-11. The phase shift is 30ᵒ and the 48 V battery 

is charging at 53.4 V 1.95 A.  It is not possible to repeat the exact experiment shown in 

Fig.  4-11 since the transformer turn ratio is removed from the circuit. The waveforms are 

clean in this experiment and the spikes have disappeared. 

As a summary, the DAB waveforms have an overshoot with the 20 MHz 

transient that disappears when the transformer is removed from the circuit. These 

experiments are explained with more detail in section  6.2.3. Such observations suggest 

the capacitive elements of the transformer contribute to this transient. A more detailed 

transformer model is suggested in the following subsection that includes the capacitive 

elements of the transformer. 
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Fig.  4-11- Power flow from 48 V battery (51.4 V 1.98 A) to 12 V battery (13.54V 6.6A), ϕ=45o,   

blue: bridge 1 ac voltage, yellow: bridge 2 ac voltage, green: ac inductor current IL, magenta: VGS(M21) 

 

Fig.  4-12- Chagring 48 V battery (53.4 V 1.95 A), transformer is removed, ϕ=30o, 

blue: bridge 1 ac voltage, yellow: bridge 2 ac voltage, green: ac inductor current IL, magenta: VGS(M21) 
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4.4.2. More Detailed Transformer Model 

The experiments presented in the previous section suggested investigating the 

effect of the transformer capacitive elements as a potential source of resonating 

transients. Parasitic capacitors of a transformer are distributed elements. A novel more 

detailed transformer model is suggested in this dissertation in Fig.  4-13. This novel 

model incorporates distributed capacitive elements as lumped capacitors. The model is 

inspired by [187, 188]. Winding capacitances are placed at the windings’ terminals. 

Distributed inter-winding capacitors are divided into two elements between the 

windings’ corresponding upper terminals and lower terminals. 

 

Fig.  4-13- Three-winding transformer model including capacitive elements.  
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The inductances and inter-winding capacitances can be measured with an LCR 

meter among the parameters of the proposed model. The winding capacitances cannot 

directly be measured. An experimental measurement is preferred to a calculation method 

due to the complicated geometry and the uncertainties of the actual implementation. The 

frequency response of the transformer is evaluated through two sets of experiments. In 

both experiments, one of the transformer windings is supplied with a high frequency 

signal generator through a resistor, Rg.  Voltages of both sides of Rg are monitored on 

an oscilloscope. The voltage amplitude of the transformer terminal shows a peak at any 

of the resonating frequencies during the frequency sweep. In the first set of experiments, 

the windings that are not connected to the signal generator are left open circuit. In the 

second set of experiments, these windings are short circuit. The measured resonance 

frequencies are listed in Table  4-6. The derivation of the required parameters from the 

mentioned experiments is described in the following subsections. 

Table  4-6- Measured Resonance Frequencies 

Other windings are open circuit Other windings are short circuit 

fp fs ft fṕ fś ft́ 

400 kHz 400 kHz 384 kHz 6.9  MHz 24.4 MHz 1.35 MHz 

 
 

4.4.2.1. Open Circuit Test 

This method is suggested in [183] using an impedance analyzer and in [152] 

using an oscilloscope. In [184], both approaches show a similar result. An oscilloscope 

and a signal generator are available in almost any power electronics laboratory; hence, 
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the frequency response tests are performed with an oscilloscope and a signal generator. 

The equivalent circuit of this experiment for the primary winding is driven as Fig.  4-14. 

The equivalent capacitor of Ceqp is calculated in ( 4-42). The same method is applicable 

for the secondary and the tertiary windings. The calculated capacitors are presented in 

Table  4-7.  

 

Fig.  4-14- Equivalent circuit of open circuit frequency response test, while the signal generator Vg is 

connected to the primary winding.   
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m1pp LLL   ( 4-43)

Table  4-7- Results of Open Circuit Test 

Equivalent Capacitors Nps Nst Npt 

Ceqp Ceqs Ceqt |(Ceq) |(Lm) |(Ceq) |(Lm) |(Ceq) |(Lm) 

61.84pF 904.6pF 13.56nF 3.82 3.82 3.87 3.72 14.81 14.22 

 

All the winding capacitances and the miller effect of the inter-winding 

capacitances contribute to the equivalent capacitor, which is measured from the open 
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circuit experiment; thus, this method does not lead to the self capacitances of the 

windings. The inversed square root of equivalent capacitances, from the open circuit test, 

is compared to the turn ratios of the windings. These turn ratios are based on the 

measured value of the magnetizing inductance, at each port of the transformer. As an 

example, under column of Nps, the Lm column is the primary to secondary turn ratio. In 

the same table, the value listed under Ceq is the corresponding ratio of the equivalent 

capacitances. The equivalent capacitances can be transferred between windings with a 

ratio similar to the magnetizing inductances ratio. The ratios are much closer when the 

tertiary winding, which has a large per unit leakage, is out of the equation. Data from 

Table  4-6 indicates that measured resonance frequencies of all the windings are within 

the same range while the primary and the secondary windings have the same resonance 

frequency. Such observations suggest that the magnetizing inductance is the major 

element to determine the resonating frequency in the open circuit test. This component is 

transferred among all the windings; also, the magnetizing inductance is the only 

nonlinear component of the transformer model of Fig.  4-13. The circuit is excited with 

relatively low currents when the frequency response is measured and when the LCR 

meter is applied; hence, the values can relate for ( 4-42). In contrast, the magnetizing 

inductance will be set at a different operating point in the actual operation of the circuit. 

The short circuit frequency response test is performed and analyzed in the next 

subsection. 
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4.4.2.2. Short Circuit Test 

The equivalent circuit of the short circuit frequency response test for the primary 

winding is presented in Fig.  4-15. The magnetizing inductance does not contribute to this 

experiment. Considering the transformer model of Fig.  4-13, the equivalent capacitor of 

C’eqp is derived in ( 4-44) when the secondary and the tertiary windings are short 

circuited. 

4

C

4

C
CC

ptps

peq1   ( 4-44) 

eql1

1
CL2π

1
f


  ( 4-45) 

 

Fig.  4-15- The equivalent circuit of short circuit frequency response test, while the signal generator Vg is 

connected to the primary winding. 

The inter-winding capacitances are measured with LCR meter, and from ( 4-44) 

and ( 4-45) C’eqp is calculated. The mentioned components are listed in Table  4-8. These 

parameters complete the proposed transfer model of Fig.  4-13. The tertiary winding has 

the largest capacitance, which agrees with the geometry of this winding. The tertiary 

winding is one and a half turns of copper foil, which is isolated by very thin Kapton tape. 
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The analyses suggest looking over the design of this winding, in order to improve its 

leakage inductance and its capacitance. The secondary winding utilizes the same type of 

conductor and insulator as the tertiary winding; however, the secondary winding does 

not have similar issues due to its number of layers, and full coupling of the layers. The 

outcome of analyzing the mentioned isolation transformer has been insightful to improve 

the transformer’s design, and promises to overcome its performance flaws.  

Table  4-8- Capacitive Elements of Transformer Model 

Inter-Winding Capacitances* Windings Self Capacitances** 

Cps Cpt Cst Cp Cs Ct 

67pf 100pf 163pf 27.31pF 35.07pF 7.25nF 

*Measured with Fluke PM6306, **Short circuit frequency response test results 
 

4.4.3. Proposed Procedure for Experimental Modeling of Multiwinding 

Transformers 

In the previous subsections, the fundamentals of the proposed experimental 

modeling method were explained. The difference between measuring short circuit 

resonance frequency and open circuit resonance frequency were discussed accordingly. 

In this subsection, the procedure will be summarized in a practical language. 

The modeling procedure is developed utilizing the equipments that are 

commonly available in power electronic laboratories. In the first step, an LCR meter is 

used for measuring the leakage inductance, the winding resistances, the magnetizing 

inductance, and the interwinding capacitances. If the LCR meter can apply a variable 
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measurement frequency, it is recommended to measure the parameters at the nominal 

switching frequency of the circuit.  

The leakage inductance and the windings’ resistances are measured at 

corresponding winding’s terminal when the other windings are short circuit. The 

measured leakage inductance is an equivalent leakage inductance. All the leakage 

inductances contribute to this measured value.  

The equivalent magnetizing inductance at each terminal is measured when other 

windings are open circuit. The result is the equivalent magnetizing inductance 

transferred into the corresponding winding. The actual turn ratios between the windings 

are calculated by the square root of the magnetizing inductances ratios. 

The interwinding capacitors are measured by connecting the LCR meter probes 

to the corresponding transformer winding heads. The author did not notice a difference 

in measurements whether the other windings are short circuit or open circuit. These 

capacitors have a distributed nature. To have a more accurate lumped model, half of the 

measured interwinding capacitance is placed between the positive winding terminals and 

the other half is placed at the negative terminals as shown in Fig.  4-16. 

The proposed method measures the resonance frequency of each winding when 

the other windings are short circuit. This is the major contribution of the proposed 

method when compared to the earlier works [182, 183, 189, 190]. In the earlier works, 

the winding’s resonance frequency is measured when the other windings are open 

circuit. The fundamental advantage of the short circuit resonance frequency 

measurement is that the magnetizing inductance does not contribute to this value. The 
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magnetizing inductance is a non-linear component in the transformer model while the 

leakage inductances and the parasitic capacitances have linear nature. Moreover, the 

magnetizing inductance is a dominant factor when compared to the parasitic capacitive 

elements. Hence, an approximate capacitance can be modeled at each winding thanks to 

the short circuit resonance frequency. 

 

Fig.  4-16-  Three-winding transformer model 

The short circuit resonance frequency of each winding can be measured with an 

impedance analyzer or an oscilloscope and a signal generator that are more accessible. 

The winding is supplied from a high frequency signal generator (Vg) through a resistor 

(Rg) while the other windings are short circuit. Both the signal generator side and the 
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transformer side voltages of the resistor are monitored simultaneously on the 

oscilloscope. Fig.  4-17 shows the equivalent circuit of the primary winding while 

connected to the described setup. The signal generator sweeps from low frequency until 

reaches the resonance frequency. At the resonance frequency, the monitored voltages 

will be in phase and will show a peak.  

 

Fig.  4-17-  Primary windings’ equivalent circuit during short circuit frequency response test 

After measuring the resonance frequency of each winding, when the other 

windings are short circuited, the equivalent short circuit capacitance of each wining are 

calculated as ( 4-46). This will lead to the winding’s capacitance according to ( 4-47). In 

the equations, the suffix p stands for the primary values, s for secondary values, and t for 

tertiary values. In ( 4-46) and ( 4-47) f’1 is the primary side short circuit resonance 

frequency, which is measured as described in this section. Llp is the leakage inductance 

at primary. The interwinding capacitors between primary and secondary and tertiary 

windings are Cps and Cpt, respectively. Cp is the primary capacitance which is calculated 

in ( 4-47) according to the lumped model. The other windings capacitances can be 

calculated similarly.  
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4.4.4. Analyzing Multiwinding Transformer Model 

The experimental modeling method based on short circuit resonance frequency 

was described in the previous section. In this section, the proposed modeling method is 

applied to the three-winding of Fig.  4-2. The described modeling approach is applied to 

this transformer and the model parameters are listed in Table  4-9. 

Table  4-9- Transformer Lumped Model Parameters 

Leakage Inductance Llp=7.7 µH Lls=0.46 µH Llt=1.9 µH 

Winding AC Resistance Rlp=0.166Ω Rls=11.5mΩ Rlt=5.1mΩ 

Magnetizing Inductance Lmp=2.56 mH Lms=0.175 mH Lmt=12.66 µH 

Interwinding Capacitance Cps=67pF Cpt=100pF Cst=163pF 

Winding Capacitance Cp=27.31 pF Cs=35.07pF Ct=7.52nF 

p : primary (150 V), s : secondary (48 V) and t : tertiary winding (12 V) 
 

In Fig.  4-16, all the inductive elements are reflected into the primary side, which 

is corresponding to the measured values of Table  4-9. The winding self capacitances are 

kept at the corresponding winding side where they have been calculated. It is preferred 

to look at the magnetic circuit electric response at a certain transformer port such as the 

primary side. This eases the envisioned study by eliminating turn ratios from the 

equivalent circuit. The self capacitances can easily be transferred to the primary side; 
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however, this is not the case for the interwinding capacitances. The Fig.  4-16 model is a 

linear circuit at the nominal operating point. The interwinding capacitors can be reflected 

to the winding terminals by application of the Miller theorem. The procedure will be 

described as follows. 

The windings are sorted out based on the turn ratios ( 4-48). In the assigned 

nomination system Nps is the turn ratio between the primary and the secondary. Cpsp is 

the effect of Cps to the primary side ( 4-49) and Cpss is the effect of Cps at the secondary 

side ( 4-50). The same procedure is applied to all the interwinding capacitors to derive 

the transformer model that is presented in Fig.  4-16. 
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The resulted capacitors are formulated in ( 4-51) to ( 4-53). These equivalent 

capacitors can be used when the model is transferred to any arbitrary terminal. A 

contribution of the analysis presented in this subsection when compared to earlier works 

originating in [182] is that only one equivalent Miller capacitors contributes to the 

response viewed from a desired terminal. As an example, only Cpsp contributes to the 

forward transfer function of V2(s)/V1(s). V2(s) and V1(s) are the respective secondary 
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and primary voltages in frequency domain when the circuit is transferred to the primary 

side. This fact is verified through simulation and experiments.  
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Fig.  4-18- Equivalent transformer model, Miller theorem applied 

The transformer model of Fig.  4-18 forms a Π circuit at the primary by 

transferring Cs and Ct to the primary side. Fig.  4-19 shows this model when the 

magnetizing inductance is neglected compared to the impedance of Cpo. 
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Fig.  4-19- Π equivalent circuit at primary side 

4.4.5. Transient Analyses Using Equivalent Transformer Model 

The previous subsection leaded to a simplified Π model that reflects all the 

effective capacitances into the model. This model can be used for further analyses as 

shown in Fig.  4-20. The model is excited with the source V1, and the resistor R2 

represents the load of the transformer. The transfer function of V2/V1 is derived as 

( 4-55)-( 4-57). In the equations, s is the Laplace variable. 

 

Fig.  4-20- Examining Π equivalent circuit  
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The f(s) parameters for the transformer are calculated according to ( 4-48)-( 4-57), 

and are listed in Table  4-10. In this case study C1 is much smaller than C2; hence, the 

transfer function will be simplified as ( 4-58). 
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Table  4-10- Π Model Parameters for Fig.  4-2 Transformer  

C1 C2 Ll R1 R2 Nps Nst Npt 

1.70pF 38.25pF 7.7µH 0.40Ω 366.3Ω 3.82 3.87 14.22 

 

The resultant transfer function of ( 4-58) is a second order system with two 

dominant poles due to presence of Ll and C2. R1 and R2 are two parameters that relate to 

the actual power converter. R2 represents the active load of the system at each instance. 

R1 is sum of the source resistance, the input cable resistance, the MOSFET channel 

resistances, and the winding resistance. R2 corresponds to a 108W load that is reflected 

to the primary side. The time domain step response of the system is given in ( 4-59) and 

( 4-60). These equations reveal qualities of the transformer’s response such as rise time, 

overshoot and ringing. ζ is the damping factor of a second order system [191].  
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Table  4-10 parameters result in a damping factor of ζ=0.52. This predicts an 

under-damped response for this condition. When ζ=1, the system will be critically 

damped. If the transformer design can be modified, then C2 needs to be 10.33 pF to 

achieve a critically damped response with R2=366.3 Ω. Alternatively, a 189.6 Ω load 

(12.99 Ω at secondary) will result in a critically damped response, which translates to 

208 W load. Such analyses are insightful from the system design perspective. A larger 

load, lower R2 in the model, or a smaller parasitic capacitance, lower C2 in the model, 

both will conclude lower ringing over the transformer response. 

4.4.6. Model Verification 

To verify the proposed transformer model, the model is implemented in 

SIMULINK environment as shown in Fig.  4-21. The signal generator provides a 40 kHz 

150 V square wave that applies positive and negative steps to the transformer model. 

The resultant V2 voltage is divided by Nps relating to the experimental waveforms. 

The proposed modeling method and simulation results are verified by the 

experimental setup that is shown in Fig.  4-22. V1 is the output of the 40 kHz primary 

side inverter, and R2 is a resistive load connected to the secondary winding. The inverter 

is controlled with the square wave modulation through a C2000 based DSP controller 

board. 
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Fig.  4-21- Model of Fig.  4-20 in MATLAB SIMULINK 

 

Fig.  4-22- Experimental Setup for Fig.  4-20 model 
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A 25.1 Ω load is connected to the secondary, which is equivalent to 366.3Ω at 

primary side. The simulation and the experiment agree as both of the step responses 

show an under-damped response with a low overshoot as illustrated in Fig.  4-23. 

Noticeably, this response completely agrees with the 0.52 damping factor that was 

calculated in the previous section. There is a difference between the sources used in the 

simulation and in the experiment. The inverter provides a smoother transient in 

comparison to the sharp ideal step function that applies to the model in the simulation 

study. Other than this difference, both the simplified model simulation result and the 

actual system in the experiment show an identical dynamic transient behavior. 

The load resistor, which is connected to the secondary winding, is decreased to 5 

Ω (72.96 Ω at primary). As this value is less than 12.99 Ω (189.6 Ω at primary), the 

mathematical analysis predicts an over-damped response for this case study. The power 

supply hits the current limit to supply this load at 150 V; thus, the V1 amplitude is 

decreased to 120 V for this case study. The experimental result agrees with the 

simulation result as shown in Fig.  4-24. Both simulation and experimental results show 

over-damped responses that verify the validity of the proposed model. As can be seen, 

the actual transformer, the simplified model, and the mathematical analysis show similar 

behaviors with excellent accordance. 
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Fig.  4-23- Under-damped step response, Top: simulation, Bottom: experiment 

V1=150 V, 40 kHz, R2=25 Ω @ secondary side, red: V1, blue: V2 
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Fig.  4-24- Over-damped step response, Top: simulation, Bottom: experiment 

V1=120 V, 40 kHz, R2=5 Ω @ Secondary side, Red: V1, Blue: V2 
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4.5. Conclusion 

This chapter presented the proposed design procedures for the high frequency ac 

components of the VPC’s magnetic circuit including the isolation transformer and the ac 

inductors. The three-winding isolation transformer were designed optimizing the area 

product method with help of spread sheet software. The experiments highlighted the 

effect of the transformer’s parasitic capacitances in the VPC’s performance.  

Three design approaches were introduced for implementing the ac inductors. The 

gapped ac inductor and the novel coupled ac inductor design procedures were developed 

for the series high frequency ac link applications. The proposed coupled ac inductor 

integrates a zero blocking transformer into the coupled ac inductor design that can 

mitigate common mode interference in the VPC. The implemented prototypes were 

verified through the experimental setup. 

An experimental modeling procedure was proposed in this chapter that 

incorporates capacitive elements of the multiport transformers, which are used in 

isolated dc-dc converters. The proposed electric model of the magnetic circuit introduces 

capacitive elements of the transformer into the model by measuring the short circuit 

resonance frequency of the transformer’s windings. The winding capacitances are 

measured by the described modeling method. The mathematical procedure presented in 

this chapter simplifies the model into a third order Π equivalent circuit that is 

transferable to any desired winding side. 

The three-winding transformer developed for the multiport VPC was investigated 

as a case study for the proposed modeling and analyzing method. The modeling 
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procedure further simplified the transformer’s model into a second order model. The 

system step response was analyzed in the frequency domain and the time domain. 

According to the mathematical analysis, the transformer’s step response has lower 

ringing and lower overshoot at higher loads and lower parasitic capacitances. 

 The accuracy of the mathematical analysis was verified through simulations and 

experiments observing the step response of the magnetic circuit connected to two 

different loads. The loads were selected to represent under-damped and over-damped 

operating points. The accordance of the results among the mathematical analysis, 

simulations, and experimental results verified the accuracy of the experimental modeling 

method as well as the mathematical analysis. 
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5. CONTROL SCHEMES 

5.1. Overview 

The VPC functions were introduced in the initial section of the introduction 

chapter, and a variety of VPC power converter topologies were evaluated in the same 

chapter. During the topology survey, the modulation methods were introduced. In this 

chapter, the proposed control solutions needed to perform the VPC functionalities will 

be presented. 

 Although the VPC power converter design is the main focus of this dissertation, 

the control routines are needed to evaluate the power converter for the vehicular 

application and developing the case studies. Thus, the control routines are adopted from 

the literature into this new application. This provides more contributions to the research 

developed in this dissertation. As an example, the case studies evaluating grounding 

schemes and fault scenarios in the second chapter all have been developed utilizing a 

simulation test bed that includes closed loop control routines and switching modulation. 

This chapter will describe the employed control routines and will explain the developed 

simulation test bed. 

5.1.1. Embedded Digital Control for VPC 

The control routines developed for this dissertation are implemented in a digital 

embedded DSP controller [109, 129, 192]. F2812, a Ti C2000 DSP controller, is used on 

the experimental setup. The C2000 DSP controllers are developed for the power 

electronics and electric drives applications. They include a fixed point or a floating point 
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digital signal processor and a few peripherals. The processor core is optimized for 

mathematical operations that are used in the control routines. The peripherals are 

different hardware modules needed for embedded digital control. To name a few, the 

ADC module is used for sampling and the PWM module enhances modulation of the 

switches. 

The main advantage of an embedded solution is the flexibility. The control 

circuitry is easily modified by programming the software as the control solutions are 

developed. The included peripherals offer a system on a chip solution and reduce the 

component count. A powerful DSP controller can handle a few control tasks; indeed, all 

the control routines can be implemented in a central embedded controller. Moreover, the 

switches modulation, the communications, the user interface, and the soft protections 

can be implemented into the central embedded controller. 

The control routines are intended for the topology displayed in Fig.  5-1. This is a 

decoupled three-stage isolated VPC. Thanks to presence of the dc link, the control 

routines of the dc side can be decoupled from the ac side’s control.  

 

Fig.  5-1- Embedded DSP controller for single phase three-stage isolated VPC 
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5.1.2. Ac Current Tracking Control Routines 

The two-quadrant line side bridge operates as a synchronous rectifier and charges 

the dc link during the charge mode. In the V2G mode, the line side bridge acts as a grid 

connected inverter. In both cases, the power factor can be controlled and the current 

controller has to follow a sinusoidal reference; thus, the basic PI controller will have a 

steady state error [193, 194].  The sinusoidal waveforms transform to dc waveforms in 

the dq domain. Control of synchronous rectifier is possible with two PI controllers in the 

dq domain [195, 196]. If the PI controllers be transformed back from the dq domain, a 

second order controller is derived in the abc domain that is called a Proportional 

Resonant (PR) controller [196-199]. In fact, according to the linear control theory a 

sinusoidal tracker has to be a second order controller. The selective harmonic 

compensation can be added to PR controller to enhance the current control loop [200-

202]. Alternative current control methods use digital hysteresis [203, 204], dead-beat 

control [129, 205, 206], model predictive control [207, 208], and space vector 

modulation [32]. This dissertation does not intend to investigate all the mentioned 

control routines. The dead-beat controller as a fast and simple solution will be adopted 

for the VPC.   

5.1.3. Dc-Dc Converter Controller 

The batteries are dc sources and a discrete PI controller can regulate the desired 

voltage or current [209, 210]. If the required dynamic of dc side is much slower than the 

time constants of the dc-dc converter, a feed forward control of the converter using 

phase shift can be implemented. 
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5.1.4. Dc Link Controller 

Regulating dc link synchronizes the power flow between the dc-dc converter and 

the line side bridge. A slow PI controller with a low pass filter is adopted as the dc link 

controller as described in [129, 206, 211]. The details will be presented in the next 

section. 

5.2. Charger Control 

In this section, the VPC control solution for charging mode is explained. The 

control routines are implemented and verified in SIMULINK environment. Firstly, the 

simulation model will be presented in the next subsection. 

5.2.1. Simulation Model in Charge Mode 

 

Fig.  5-2- Simulation test bed during charge mode 
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The SIMULINK model of the charger is shown in Fig.  5-2. The grid is modeled 

with 60 Hz ac source and connection impedance. Converter blocks are yellow, passive 

elements are blue, control and measurement blocks are magenta, sources are red and 

interfacing blocks are green in the simulation model. Interfacing blocks include 

parameters that the user sets during case studies and monitoring blocks. Monitoring 

blocks include scopes and data interface blocks to the MATLAB workspace. 

The line side bridge is modeled with the two leg bridge model. The switch 

parameters are Rds(on) and switch output capacitor that have been set according to the 

switches listed in Table  3-2. The passive elements were designed in the section  3.5. 

5.2.2. Line Side Bridge Control 

The line side bridge becomes a boost active Power Factor Correction (PFC) 

rectifier in the adopted control scheme. The lower switches short the line in boosting 

intervals. All the switches are open on other intervals [212]. The controller block 

diagram is shown in Fig.  5-3. Fig.  5-4 shows the SIMULINK implementation of this 

block.  The outer loop is relatively slow and regulates the dc link voltage, the inner loop 

control the current in phase with the line voltage. 

 

Fig.  5-3- Line side bridge controller for charging mode 
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Fig.  5-4- Line side bridge controller for charging mode in SIMULINK 

The analogue PI controller is ( 5-1) and the discrete form is ( 5-2). In the discrete 

form, the sampling time of Ts is a part of integral gain. The sampling time is usually 

greater or equal to the switching period of Tsw. 
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The integral gain is selected according to ( 5-3). It controls the dc link average 

over n line cycles. In the case studies n will be set at 5. 
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One implementation of the digital PI controller loop is [210]: 
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The current controller is designed as follows [210]: 
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( 5-6)

In ( 5-5) and ( 5-6), Mmax is the maximum amplitude of the modulator (such as 3.3 

V or 5 V), Lac is the line filter and Rac is the resistor in series with Lac, ωCL is the closed 

loop bandwidth, and PM is the phase margin, which is selected more than 60o. 

5.2.3. Simulation Case Studies for Charging 

The performance of the employed charge controller is verified through 

simulations.  

5.2.3.1. Charging at Nominal Power 

In the first case study, the charger starts and regulates the dc link at 200 V. The 

DAB is set at 36o phase shift to charge the battery at nominal power. The case studies 

show this control method needs smaller line filter inductance than what is calculated in 

 3.5.1 subsection. This is due to the difference in the modulation method and the presence 

of closed loop controller. The line filter is designed at 1 mH (Lac=1mH). The dc link 

voltage, the input current, and input voltage waveforms are shown in Fig.  5-5. The 

current THD is 3.99% which is below the allowed THD of 10% for chargers. The charge 

current THD is calculated using SIMULINK Power GUI as shown in Fig.  5-6. 
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Fig.  5-5- Charger controller, nominal condition 

Top: blue: line voltage, vgrid, red: input current, iac Bottom: dc link voltage, vd 

 

Fig.  5-6- Input line current THD during charge mode, nominal condition 
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5.2.3.2. Charging at 50% of Nominal Power  

In the second test study the battery is charged at 50% of nominal power. The 

DAB phase shift is set at 15o. The waveforms are shown in Fig.  5-7 and Fig.  5-8 similar 

to the previous case study. The charger drains 6.9 A rms current with THD of 3.82%. 

 

Fig.  5-7- Charging at 50% power 

Top: blue: line voltage, vgrid, red: input current, iac Bottom: dc link voltage, vd 
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Fig.  5-8- Line current THD, charging at 50% power 

5.2.3.3. Dc link Regulator Response versus Charger Step Change 

In this case study, the behavior of dc link regulator is investigated versus a 

disturbance in the battery charger command. The DAB phase shift is initially set at 15o. 

The phase shift is changed to 25o at 0.2 s. The charger’s line current increases from 7.39 

A to 11.47 A. The dc link shows about 12 V (6%) deep and returns to the regulated 

value after about 5 line cycles (0.083 s). The waveforms are shown in Fig.  5-9. The dc 

link regulator was intentionally designed for a similar time constant according to ( 5-3). 

Hence, this behavior is expected from the design perspective. 

The performance of charger controller and the dc link regulator has been verified 

through simulation case studies in this section. The dc link regulator will be replaced 

with an equivalent source for the case studies performed in the next section. The next 

section is dedicated to the V2G controller. 
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Fig.  5-9- Dc link regulator performance versus charger step change 

iac : VPC input current, vd : dc link voltage 

5.3. V2G Control  

During the V2G mode, the line side bridge injects current to the grid. The dc-dc 

converter regulates the dc link. The equivalent circuit of the line side bridge during 

injecting power to the grid is shown in Fig.  5-10. The inverter voltage vinv relates to the 

injected current i, the measured line voltage vgrid, and the impedance between the voltage 

sources according to ( 5-7). The discrete form of this equation is ( 5-8). The impedance 

between line and grid are including the inverter filter and the line connection impedance. 

The line voltage is measured at the inverter terminal. The major component of 

the series impedance between the measured line impedance and the inverter is Lac as Rac 
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is small and negligible in the power transfer equation. In ( 5-8), Rac is neglected and gridv

and invv are the local average of the line and the inverter voltages. The voltage values are 

dependent on the present sample (n) to generate the next instant current sample [n+1]. 

 

Fig.  5-10- Equivalent circuit during V2G mode 

iR
dt

di
Lvv acacgridinv   ( 5-7)

 ][]1[][][ nini
T

L
nVnV

SW

ac
gridinv   ( 5-8)
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Fig.  5-11- Inverter voltage, measured line voltage, and injected current in three consecutive cycles  

dotted lines: local average waveforms, solid lines: instantaneous waveforms 

5.3.1. Dead-Beat Controller Application for VPC 

The dead-beat controller is adopted for the V2G operation. This control method 

was successfully practiced by the author for the photovoltaic application [129]. In this 

section, the application of the control method for VPC is practiced. The dead-beat 

controller intends to calculate the voltage of the next cycle ( ]1[vinv n ) in a way the 

current at the end of that cycle ( ]2[i n ) reaches the reference: 

n n+1 n+2n-1

n n+1 n+2n-1

n n+1 n+2n-1

i

Vgrid

Vinv

[n]vinv

[n]vgrid
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]2[]2[  nini ref ( 5-9)

Therefore, the inverter voltage will be as ( 5-10): 

 ]1[]2[]1[]1[  nini
T

L
nVnV ref

SW

ac
gridinv  ( 5-10)

In ( 5-10), ]1[i n and 1][nVgrid  cannot be measured in the current cycle and need 

to be calculated: 

gridgridgrid VnVnV  ][]1[  ( 5-11)

]1[
2

1
][

2

3
]1[][  nvnvVnVnV gridgridgridgridgrid  ( 5-12)

]1[
2

3
][

2

5
2]1[]1[  nvnvVnVnV gridgridgridgridgrid

 
( 5-13)

From ( 5-8) and ( 5-10) by considering ( 5-12) and ( 5-13), the deadbeat current 

controller equation is calculated as ( 5-14): 

])1[][2]2[(]1[
2

3
][

2

5
]1[  ninini

T

L
nvnvnV ref

SW

ac
gridgridinv

 
( 5-14)

The next cycle’s duty cycle is resulted by dividing 1][nVinv  by the dc link 

voltage during the next cycle. The dc link in the next cycle may be estimated from ( 5-15) 

for three phase systems or the systems that have lower dc link ripple. For single phase 

systems, ( 5-16) may be used. Alternatively, this value may be calculated from the dc link 

control routine. If the current control routine is much faster than the double frequency 

ripple, ( 5-15) is also valid for single phase systems. 

][]1[ nVnV dcdc   ( 5-15)
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]1[
2

3
][

2

5
]1[  nVnVnV dcdcdc

 
( 5-16)

The current reference is related to the VPC power according to ( 5-17). In ( 5-17), 

m is the sampling cycle according to the grid frequency. In other words, the current 

reference will be updated within every line cycle.   

][

][2
][

mV

mP
mI

rms

VPCU

ref 
 

( 5-17)

Calculating the current reference for the switching cycles, the  ]2[iref n  can be 

calculated as follows: 




  , 2
)2(

]2[
ac

sw
S

sw

ac
refref f

f
N

f

fnSin
InI  )

42
(]2[

SS
refref NN

n
SinInI


 ( 5-18)

In ( 5-18), n is the sampling instances by switching period of Tsw and varies from 

1 to NS. 

5.3.2. Simulation Case Studies for V2G Operation 

The simulation test bed of Fig.  5-2 is updated with dead-beat control module 

which was described in the previous subsection. The dead-beat controller’s 

implementation in SIMULINK is shown in Fig.  5-12. The case studies will be presented 

in the following subsections. 
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Fig.  5-12- Deadbeat controller implementation in SIMULINK 

5.3.2.1. V2G Operation at Nominal Power 

The nominal ratings are used for verifying the operation of converter at the 

maximum power. The simulation parameters are summarized in Table  5-1. The key 

waveforms to investigate the performance of the line side bridge are the line voltage 

Vgrid, the injected current Iac and the dc link voltage Vd. These waveforms are shown in 

Fig.  5-13. As can be seen the VPC perfectly injects power to the grid with low THD and 

unity power factor. The line current THD is analyzed in Fig.  5-14. THD is measured as 

1.88%, which is well below the desired ratings.  

The current controller’s details are investigated in Fig.  5-15. This figure includes 

output current waveform, reference current (iref[n+2]), dc link voltage, inverter input 

current iinv(in), inverter switching voltage Vinv, and amplitude modulation index (ma) 

waveforms during one line cycle. Fig.  5-15 shows how the controller tracks the current 

reference. 
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Table  5-1- Simulation Parameters for Nominal Power Operation  

Pout [kW] Iac [A] Vgrid  [V] Vd [V] Lac [mH] fsw [kHz] 

1.599 13.32 120 200±10 10 20 

 

Fig.  5-13- V2G simulation at nominal power 

Top: blue: line voltage, vgrid, red: output current, iac, Bottom: dc link voltage, vd 
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Fig.  5-14- Injected  current THD at nominal V2G operation 

 

Fig.  5-15- Controller performance during nominal operation  

iac: injected current, iref[n+2]: current reference, vd: the dc link voltage ripple, iinv(in): inverter input current, 

vinv inverter switching voltage, ma: amplitude modulation index 
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5.3.2.2. Investigating Lac Variations 

Line inductance variations are investigated from two different points of view, the 

design perspective and the operation perspective. From the design perspective, it is 

preferred to employ a smaller line filter to reduce the cost and improve the converter 

dynamics. As shown in the previous section, THD is well below the required value and 

the line inductance can be further reduced. From the operation perspective, controller 

performance versus unforeseen variations of Lac is important. The inductances can be 

different from the designed value due to the manufacturing tolerances and operating 

conditions. The distributed air gap cores that are usually utilized for 60 Hz filters show a 

variable permeability according to the operating point variations. 

Firstly, the current THD is investigated when the inductor current is reduced 

from the design perspective. In this investigation, the controller parameters are varied in 

respect to the line inductance. The output current THD is listed in Table  5-2. All the 

other simulation parameters are same as Table  5-1 and only L has been changed. As can 

be seen, THD remains within desired limit when the inductance is 50% of the initial 

designed value. The initial design that was performed at  3.5.1.1 was based on an open 

loop steady state operation. In contrast, the closed loop control contributes in improving 

the current THD in this study. Fig.  5-16 shows the operation of VPC with a 5 mH 

inductance and Fig.  5-17 shows the calculated THD. 

Table  5-2- Varying Lac, Design Perspective 

Lac [mH] 10 7.5 5 2.5 1 

THD [%] 1.88 2.49 3.19 6.6 19.9



 

152 

 

Fig.  5-16- V2G simulation at nominal power, Lac = 5 mH 

Top: blue: line voltage, vgrid, red: output current, iac Bottom: dc link voltage, vd 

 

Fig.  5-17-  Output  current THD at nominal V2G operation, L = 5 mH 
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In this set of experiments, the control routine’s sensitivity to the inductance 

parameter is examined. In Table  5-3, the inductance value at the controller is set at the 

designed value of Lac and the actual inductance in the simulation test bed is varied form 

half of the designed value to twice of the designed value. The case studies are repeated 

for 5 mH and 10 mH designs. In each case study, THD is measured and listed in Table 

 5-3. The case studies show the controller remains effective versus larger inductances. In 

contrast, the controller is very sensitive to the inductances smaller than the set value. 

This investigation suggests a design trend that is setting the Lac parameter in the 

controller with a value smaller than the physical inductance. This idea is investigated in 

a set of case studies summarized in Table  5-4. 

Table  5-3- Investigating Controller Performance versus Inductance Tolerances 

 0.5Lac 0.75 Lac 0.9Lac Lac 1.1Lac 1.25Lac 1.5Lac 2Lac 

Lac[mH] 2.5 3.75 4.5 5 5.5 6.25 7.5 10 

THD[%] 17.46 9.91 7.55 3.19 2.19 1.92 1.93 1.57 

Lac[mH] 5 7.5 9 10 11 12.5 15 20 

THD[%] 10.10 5.11 3.17 1.88 1.29 1.23 1.02 2.61 

 

The idea behind the case studies listed in Table  5-4 is to tune the Lac parameter in 

the deadbeat current controller of ( 5-14) with a value smaller than the physical 

inductance. Lcnt is defined in order to contrast between the controller’s parameter and the 

physical line inductance value. In other words, Lcnt is the value set in the controller; Lac 

is the inductance set in the simulation circuit to filter the inverter current. This 

nomination is followed in Table  5-4. 
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The case studies listed in Table  5-4 show tuning Lcnt to a smaller value than Lac 

improves the current controller’s performance. Additionally, this modification improves 

the sensitivity of the controller to the Lac tolerances. According to these case studies, Lcnt 

around 1 mH is close to an optimum value for Lac of 5 mH. This preliminary case study 

suggests adjusting Lac by 20% in the controller as formulated in ( 5-19)-( 5-21). The same 

case study suggests moving to a further smaller inductance for the line filter. This design 

procedure needs to be engaged with an optimization process and verified by 

experimental results in the future works. 

])1[][2]2[(]1[
2

3
][

2

5
]1[  ninini

T

L
nvnvnV ref

SW

cnt
gridgridinv  ( 5-19)

accnt LL   ( 5-20)

accnt LL
5

1
  ( 5-21)

Inspiring from the case studies of Table  5-3 and Table  5-4, the Lac is further 

reduced to 1 mH. The controller value of Lcnt is set to 200 µH. This inductance value is a 

good design if THD at lower powers is less important. A higher inductance value is 

needed to have good power quality in low power operation. The operating waveforms 

are shown in Fig.  5-18. THD is measured 2.34% as shown in Fig.  5-19. THD is 

improved with a smaller inductance when compared to Fig.  5-17 and Fig.  5-15. 

Additionally, the current tracking is improved as it is noticeable in the zero crossings. 

The controller performance can be seen in Fig.  5-20. The modulation index does not go 

to the over modulation regions in this configuration.  
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Table  5-4- Investigating Controller Parameters Adjustment versus Inductance Tolerances 

 0.5Lac 0.75 Lac 0.9Lac Lac 1.1Lac 1.25Lac 1.5Lac 2Lac 

Lac[mH] 2.5 3.75 4.5 5 5.5 6.25 7.5 10 

THD[%] (Lcnt=5mH) 17.46 9.91 7.55 3.19 2.19 1.92 1.93 1.57

THD[%] (Lcnt=4mH) 14.42 8.3 2.70 2.20 2.05 1.77 1.54 2.01

THD[%] (Lcnt=3mH) 11.06 2.94 2.00 1.98 1.10 1.23 1.81 2.16

THD[%] (Lcnt=2mH) 4.38 2.62 1.32 1.43 1.55 1.87 2.19 2.77

THD[%] (Lcnt=1mH) 1.53 1.32 2.09 2.31 2.53 3.14 3.79 5.12

 

 

Fig.  5-18- V2G simulation at nominal power, Lac = 1 mH 

Top: blue: line voltage, vgrid, red: output current, iac, Bottom: dc link voltage, vd 
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Fig.  5-19- Output  current THD at nominal V2G operation, L = 1 mH 

 

Fig.  5-20- Controller performance during nominal operation Lac=1 mH, Lcnt=200 µH 

iac: injected current, iref[n+2]: current reference, vd: the dc link voltage ripple, iinv(in): inverter input current, 

vinv inverter switching voltage, ma: amplitude modulation index 
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5.3.2.3. Varying Current Reference  

In this subsection, the deadbeat controller’s response to the current reference 

changes is investigated. All case studies are performed with the simulation parameters 

listed in Table  5-5. The nominal rms current is 13.32 A (18.84 A amplitude). In Fig. 

 5-21, the current reference is reduced from 100% to 50%. The controller perfectly tracks 

the current step change. In Fig.  5-22, the current reference is changed from 10% to 80% 

and controller tracks perfectly. 

Table  5-5- Simulation Parameters for  5.3.2.3  

Iac(nom) [A] Vgrid  [V] Vd [V] Lac [mH] Lcnt [mH] fsw [kHz] 

13.32 120 200±10 1 0.2 20 

 

 

Fig.  5-21- Current reference step changes from 100% to 50% 

iref[n+2]: current, iac: output current, vgrid : grid voltage 
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Fig.  5-22- Current reference step changes from 30% to 80% 

iref[n+2]: current, iac: output current, vgrid : grid voltage 

The response to a ramp change in current reference is evaluated in this case 

study. The current reference rises from 30% to 120% within 0.016 s to 0.16 s and returns 

to 40% in 0.3 s. The controller is able to track the ramp function as show in Fig.  5-23. 

The behavior of 5 mH design is also evaluated in Fig.  5-24. The simulation 

parameters of Table  5-6 are used for this case study. The current reference is increased 

from 10% at 0.016 s to 120% at 0.3 s. The reference remains at 120% till 0.36 s and is 

decreased to 30% from 0.36 s to 0.53 s. The deadbeat controller is able to track the ramp 

function. The current has relatively lower ripple in lower powers when compared to Fig. 

5-23. 
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Fig.  5-23- Changing current reference with a ramp function 

iref[n+2]: current, iac: output current, vgrid : grid voltage 

 

Fig.  5-24- Changing current reference with a ramp function, Table  5-6 Parameters 

iref[n+2]: reference current, iac: output current, vgrid : grid voltage 
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Table  5-6- Simulation Parameters for Lac = 5mH Design 

Iac(nom) [A] Vgrid  [V] Vd [V] Lac [mH] Lcnt [mH] fsw [kHz] 

13.32 120 200±10 5 1 20 

 

5.3.2.4. Deadbeat Controller Behavior During Grid Voltage 

Perturbations 

The line voltage is allowed to change within 5% of the nominal voltage as 

mentioned in the  1.4 section. The controller’s performance during the grid voltage 

perturbations is investigated in the following case study. The grid voltage is initially at 

its nominal value (120 V). The voltage is increased to the maximum value (126 V) 

suddenly at 0.1 s and stays till 0.2 s that is suddenly reduced to the minimum value 

(114V). The current is set at the nominal value (13.32 A) during this case study. The 

controller and system is set according to Table  5-6 parameters. Fig.  5-25 shows the 

system performance. Despite the voltage changes, the controller is able to maintain the 

current at the reference value.  
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Fig.  5-25- Deadbeat controller performance during grid voltage changes 

iref[n+2]: current, iac: output current, vgrid : grid voltage 

5.3.2.5. Deadbeat Controller During Charge Mode 

If the current reference is set to have 180o phase shift according to the line 

voltage, the deadbeat controller will operate in the charge mode. According to the 

simulations the deadbeat controller is able the track the current; however the controller 

needs to be tuned for an acceptable THD. In Fig.  5-26, the dead-beat controller is 

operating at the charge mode at the nominal conditions. Lcnt is set as 1.2 Lac and the 

measured THD is 4.43% (Fig.  5-27). 
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Fig.  5-26- Deadbeat controller during charge mode 

Top: blue: line voltage, vgrid, red: output current, iac, Bottom: dc link voltage, vd 

 

Fig.  5-27- Input current THD, deadbeat controller during charging 
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5.4. V2H Control 

In V2H mode, the VPC acts as a voltage source or a power panel. In this mode 

the controller regulates the output voltage. This mode is easier than V2G as the load is 

not a stiff voltage source. In V2H the load can be modeled as a resistor or impedance 

with little reactive power. The operation of VPC during the nominal operation is verified 

in a case study. The inverter supplies a 9 Ω load. The voltage THD is 2.22% in this case 

study as shown in Fig.  5-28 and Fig.  5-29. 

 

Fig.  5-28- V2H operation, full load 

Top: blue: generated voltage, vgrid, red: load current, iac, Bottom: dc link voltage, vd 
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Fig.  5-29- Voltage THD during V2H operation, full load 

5.5. Conclusion 

The controller routines for performing major VPC functionalities were 

introduced in this chapter. The dc link is controlled with a slow PI controller. The 

charger mode employed a PFC controller that modifies the line bridge to a hybrid active 

rectifier. The dead-beat controller was investigated for the V2G operation.  

The controllers’ were implemented and verified in the simulation test bed in 

MATLAB SIMULINK environment. The dead beat current controller’s behavior was 

fast with acceptable THD at different operating points. The line filter and the controller 

parameters were tuned according to the case studies. A preliminary design trend 

suggested tuning the dead-beat current controller’s time constant to a value slower than 

the physical time constant. The V2H were employed by engaging a voltage controller 
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with the deadbeat controller. All the controllers were verified through different case 

studies at a variety of operating points. The controllers were evaluated through step 

response and ramp response analyses. The simulations approved the performance of the 

adopted control algorithms. 
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6. EXPERIMENTAL RESULTS 

6.1. Overview 

The VPC components that were developed in the previous chapters are gathered 

into a modular experimental setup. The experimental results are reported through the 

dissertation verifying the novel contributions achieved through the research. This chapter 

includes various case studies performed with the experimental setup to demonstrate the 

performance of the proposed VPC. The experimental results shown in the previous 

chapters were narrowly focused on detailed concepts. In contrast, the experimental 

results reported in this chapter intend to demonstrate the behavior of the proposed VPC. 

The ac link waveforms will be presented through this chapter.  

The experimental setup is developed according to the described specifications of 

section  3.2. The sources include the 200V, 33 A Magna Power and Sorensen 150 V, 7 A, 

1250 VA laboratory supplies and the batteries described in section  3.3. The power 

converters are H-bridge inverters discussed in section  3.4. The magnetic circuit 

components include ac inductors and the multiwinding transformer that were developed 

in chapter  4. The loads include, the 800W programmable load, the laboratory ac load 

module, and costume resistive loads. Fig.  6-1 shows a configuration of the experimental 

setup. The ac link waveforms are key waveforms to analyze DAB operation. The series 

ac link waveforms of the DAB at different operating mode will be presented in this 

chapter. The expected DAB operation as well as bad practices and the problematic 

operating points will be highlighted. 
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Fig.  6-1- Experimental Setup 

6.2. Supplying Resistive Loads 

The setup is configured as the DAB converter. The experiment parameters are 

listed in Table  6-1. The schematic for this set of experiments is shown in Fig.  6-2. The 

primary bridge is supplied with the 200 V source and a 25.1 Ω resistor is the load. The 

gapped ac inductor L is placed at the transformer’s primary. 
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Fig.  6-2- Experimental setup configuration for supplying resistive load 

Table  6-1- Experimental Setup Configuration for Supplying Resistive Loads 

Bridge 1 Bridge 2 T L RL 

600 V 150 V NPS = 3.82 50 µH 25.1 Ω

 

6.2.1. Source: 30 V to 180 V, Load: 25 Ω, Phase Shift 15o 

The input voltage is raised from 20 V to 200 V. The phase shift is always set at 

15o. All the converter components stay below 100o F, which verifies the reliability of the 

developed experimental setup. The key waveforms are monitored on the oscilloscope 

during these experiments. The monitored waveforms include the primary bridge output 

(yellow), the secondary bridge output (blue), the ac link inductor current (green), and the 

switch M11 gate to source voltage (magenta). In Fig.  6-3 to Fig.  6-5, the waveforms are 

shown when the input voltage is 50 V, 100 V,  and 180 V. The inductor current shows a 

curve. This is because the output capacitor of CF2 in Fig.  6-2 is too small for the 
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secondary bridge. This capacitor will be increased in subsection  6.2.3. All the measured 

points are listed in Table  6-2.  

Table  6-2- Case Study Measurements for Supplying RL=25.1 Ω, ϕ=15o 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

52.1 0.38 13.3 1.94 15 19.80 25.80 130.33 

75.4 0.35 19.4 1.39 15 26.39 26.97 102.18 

90.2 0.40 23.2 1.68 15 36.08 38.98 108.03 

100.8 0.46 26.1 1.89 15 46.37 49.33 106.39 

120 0.8 32.2 2.33 15 96.00 75.03 78.15 

136.0 0.9 35.0 2.56 15 122.40 89.60 73.20 

140 0.9 34.8 2.60 15 126.00 90.48 71.81 

150 1.0 23.5 2.87 15 150.00 67.45 44.96 

160 1.1 13.9 3.06 15 176.00 42.53 24.17 

179 1.4 5.8 3.3 15 250.60 19.14 7.64 

 

 

Fig.  6-3-  DAB supplying RL=25.1 Ω , Vin=50.2 V , ϕ=15o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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Fig.  6-4-  DAB supplying RL=25.1 Ω , Vin=100 V , ϕ=15o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 

Fig.  6-5-  DAB supplying RL=25.1 Ω , Vin=180 V , ϕ=15o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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6.2.2. Source: 30 V to 180 V, Load: 25 Ω, Phase Shift 25o 

The previous case study is repeated for 25o phase shift. The captured waveforms 

include the primary bridge output (yellow), the secondary bridge output (blue), the ac 

link inductor current (green), and the load resistor voltage (magenta). The load resistor 

voltage shows how the DAB output voltage is pulsed when the output filter is not chosen 

properly. Noticeably, it causes reactive power through the converter at lower powers as 

shown in Fig.  6-6. The waveforms are displayed in Fig.  6-6 to Fig.  6-8 for the input 

voltage of 40 V, 60 V, and 180 V. The measurements are listed in Table  6-3. 

 

 

Fig.  6-6-  DAB supplying RL=25.1 Ω , Vin=40 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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Fig.  6-7-  DAB supplying RL=25.1 Ω , Vin=60 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 

Fig.  6-8-  DAB supplying RL=25.1 Ω , Vin=178 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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Table  6-3- Case Study Measurements for Supplying RL=25.1 Ω, ϕ=25o 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

30 0.3 7.8 0.55 25 9.00 4.29 47.67 

69 0.5 18.3 1.3 25 34.50 23.79 68.96 

107 0.8 28.3 2.14 25 85.60 60.56 70.75 

160 1.3 42.4 NA 25 208.00 NA NA 

 

6.2.3. Supplying Resistive Load, Increased DAB Capacitors 

The DAB capacitors are increased to the values that were calculated in the 

subsection  3.6.1.3. Fig.  6-9 shows how the experimental setup is configured for this 

experiment. For this load, the current is low and goes negative. The experiments are 

listed in Table  6-4. As can be seen in the experimental results, the output dc voltage will 

be maintained constant and the current is straight. The ac link waveforms and the dc 

output voltage are displayed for two different operating points. Fig.  6-10 belongs to the 

input voltage is 30 V and the phase shift is 25o (the ac current scale is not set correctly in 

this particular oscilloscope snapshot). Fig.  6-11 belongs to the input voltage at 120 V 

and the phase shift of 15o.  

An unforeseen fault happened at the end of this experiment and computer and 

programmer were reset. Fortunately, the circuit was not damaged. The next day the DSP 

programmer frequently halted. These issues were due to the bad power quality of the 

three phase mains at the laboratory’s building. Specifically, when the adjacent power 

electronics laboratories draw or inject unbalanced or polluted current the conductive 

EMI conducts through the three phase panel and causes such problems. Due to these 

issues, the 3-phase Magana power supply was replaced with the single phase Sorensen 
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power supply. Similar issues did not happen with the single phase power supply; 

however, the Sorensen power supply is a low power source and the tests need to be 

conducted at lower voltages. 

 

Fig.  6-9- Experimental setup for supplying resistive load, increased DAB capacitors 

Table  6-4- Case Study Measurements for Supplying RL=25.1 Ω, Increased DAB Capacitors 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] Ŋ [%] 

30 0.9 11.56 0.54 25 27.00 6.24 23.12 

30 0.2 4.5 0.28 15 6.00 1.26 21.00 

52.1 0.3 12.44 0.53 15 15.63 6.59 42.18 

75 0.9 18.2 0.726 15 67.50 13.21 19.58 

90 1.1 19.6 0.973 15 99.00 19.07 19.26 

100.8 1.1 22.61 1.08 15 110.88 24.42 22.02 

120 1.21 28.3 1.19 15 145.20 33.68 23.19 
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Fig.  6-10- DAB supplying RL=25.1 Ω , Vin=30 V , ϕ=25o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 

Fig.  6-11- DAB supplying RL=25.1 Ω , Vin=120 V , ϕ=15o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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6.2.4. Supplying Resistive Load, Investigating Dead Time 

For the following experiments presented in this subsection, the source is changed 

with the 150 V Sorensen power supply. The ac inductor is replaced with the smaller 7.45 

µH gapped ac inductor that was designed in subsection  4.3.1. The dead time (td) was set 

at 1 µs in previous subsections. The dead time is decreased for different operating points 

as listed in Table  6-5. The primary side bridge uses 150 V switches and the secondary 

side bridge uses the 40 V switches. The resistive load and transformer are set similar to 

the previous subsections. 

The experiments have not shown a different ac link signature when the dead time 

modified. An example is shown in Fig.  6-12. The dead time below 0.5 µs looks too 

aggressive for high power DAB operating points according to the observations. 

Concluding the experiments, the phase shift modulation is not a proper modulation for 

supplying resistive loads for such low powers. The experiments suggest designing DAB 

output capacitors at higher values. The main goal of the experiments of supplying the 

resistive loads at low power has been verifying the power conditioning stages prior 

connecting to the batteries. The batteries have very high current capacities and can easily 

destroy the power conditioner if a mistake happens. In the next sections, the VPC 

conditions the batteries. 
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Table  6-5- Case Study Measurements for Supplying RL=25.1 Ω, Different Dead Times 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] td [µs] Pin [W] Pout [W] Ŋ [%] 

30 0.84 8.98 0.44 20 0.6 145.20 33.68 23.19 

30 1.19 9.29 0.46 20 0.3 25.20 3.95 15.68 

30 1.55 9.89 0.47 20 0.15 35.70 4.27 11.97 

30 2.69 10.70 0.5 30 0.3 46.50 4.65 10.00 

 

  

Fig.  6-12- DAB supplying RL=25.1 Ω , Vin=30 V , ϕ=20o, td=0.15 µs 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

6.3. Charging Batteries from Grid 

In this set of experiments, the DAB is supplied from the grid. The grid voltage is 

adjusted through an auto-transformer and rectified through the full-wave rectifier which 

has been replaced the line side bridge. The experimental setup configuration is shown in 

Fig.  6-13. This set of experiments was used for supporting sections  3.6.2 and  4.4. 



 

178 

 

Fig.  6-13- Charging battery from grid 

6.3.1. Charging 12 V Battery from Grid through Dc Link, Transformer 

Exists 

During these experiments the input voltage is varied around 50 V and the phase 

shift is set at 30o. Both the bridges use 300 V switches (IXTQ25N30P), which were used 

in the earlier version of the experimental setup. The dc link is connected to the primary 

winding and the battery bridge is connected to the secondary winding. Lac including the 

leakage is 50 µH at the primary. The measurements are listed in Table  6-6. The 

waveforms shown in Fig.  6-14 are captured in this experiment when the input voltage is 

48.8 V. The secondary waveforms show a large spike as was discussed in the  4.4.1 

section. In Fig.  6-14, the yellow waveform is the gate to source voltage of M22. The blue 

waveform belongs to the channel voltage of M22. The secondary ac voltage and current 

are displayed in magenta and green, respectively. 
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Table  6-6- Charging 12V Battery from Grid 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

48.6 1.08 14.46 3.17 30 52.49 45.84 87.33 

48.8 0.87 14.08 2.78 30 42.46 39.14 92.20 

49.1 0.977 14.10 3.04 30 47.97 42.86 89.35 

 

 

Fig.  6-14- DAB operation during charging low voltage battery form grid 

yellow: Vgs(m22), blue: Vds(m22), green: Iac(sec), magenta: Vac2 

6.3.2. Charging 48 V Battery from Grid through Dc Link, Transformer 

Removed 

In this experiment for charging the high voltage battery, the transformer is 

removed and the 12 V battery is replaced with the 48 V battery. The experimental setup 
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configuration is displayed in Fig.  6-15. The experiments listed in Table  6-7 are 

performed in order to achieve a relating operating point to the previous case studies. In 

contrast to the experiments of the previous subsection, the waveforms are clean in this 

experiment. This effect was analyzed in the subsection  4.4.1. 

 Due to the presence of the double frequency ripple, dc link varies. At each phase 

shift two readings are recorded. The power and efficiency measurements are not 

accurate. They are calculated from the voltage and current meters readings. This power 

converter topology needs a high frequency power analyzer which was not available. It 

does not affect the contributions of this dissertation as the major intention of the 

experimental setup is proving the novel proposed concepts. 

 

Fig.  6-15- Charging high voltage battery from grid, transformer is removed 

The ac link waveforms including Vac1, Vac2, and IL are captured. The M11 gate to 

source voltage is also captured. The oscilloscope snapshots for the 30o phase shift are 

displayed in Fig.  6-16 and Fig.  6-17. Fig.  6-16 is captured at the minimum dc link 
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voltage and the DAB is operating at boost mode. Alternatively, Fig.  6-17 is captured 

when the dc link has its minimum value and the DAB is operating in the buck mode. Fig. 

 6-18 is captured when the dc link voltage is almost identical to the battery voltage.  

Table  6-7- Charging 48V Battery from Grid 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

46.1 1.9 53.1 1.68 30 87.59 89.21 101.85 

53.8 2.05 53.4 1.95 30 110.29 104.13 94.41 

47.4 1.62 53.3 1.28 25 76.79 68.22 88.85 

54.4 1.76 53.4 1.82 25 95.74 97.19 101.51 

48.4 1.22 53.2 1.21 20 59.05 64.37 109.02 

48.4 0.8 52.9 0.76 15 38.72 40.20 103.83 

 

 

Fig.  6-16-  Charging high voltage battery form the grid, transformer is removed, Vin= 46.1 V, ϕ= 30o 

 yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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Fig.  6-17-  Charging high voltage battery form grid, transformer removed Vin= 53.8 V, ϕ= 30o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 

Fig.  6-18- Previous experiment, dc link voltage is almost identical to battery voltage 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 



 

183 

6.4. Charging Batteries from Laboratory Power Supply 

The dc link ripple adds uncertainties for the static measurements. The presence of 

double frequency ripple was demonstrated in the previous section. In this section, the dc 

link has been replaced with the 150 V laboratory power supply as the input of the 

primary bridge. The secondary and tertiary bridges will supply the batteries. 

6.4.1. Charging 12 V Battery 

The experimental setup is configured as described in Table  6-8. The 600 V 

bridge is placed at the transformer’s primary and the 150 V bridge is placed at the 

secondary side winding. In order to control the dc capacitor’s surge current, two start-up 

resistors are foreseen between the batteries and the VPC. The start-up resistors are 

designed as 4 Ω and 16 Ω for 12 V and 48 V batteries respectively. A three phase 

contactor is in parallel with the start-up resistors. The contactor shorts the start-up 

resistors after the initial charge and prior operating the experiment. In the next 

subsections, charging the 12 V battery from the laboratory dc source will be tested. 

Moreover, the gapped ac inductor and the novel coupled ac inductor will be compared. 

Table  6-8- Experimental Setup Charging 12 V Battery from Power Supply 

Bridge 1 Bridge 2 T L Source Load 

600 V 150 V NPS = 3.82 50 µH 150 V Supply 12 V Battery 

 

6.4.1.1. Charging 12 V Battery Using Gapped Ac Inductor 

Initially, the 42 µH gapped ac inductor is placed at transformer’s primary. The 

dead time is set at 0.6 µs. The input voltage is set at 50 V and the phase shift is set at 
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30o. The ac link wave forms are shown in Fig.  6-19 and the measurements are reported 

in the first column of Table  6-9. Similar to the results of the subsection  6.3.1, the 

secondary ac voltage has spikes. 

 

Fig.  6-19- Charging low voltage battery from 50 V dc source, gapped ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 

6.4.1.2. Charging 12 V Battery Using Coupled Ac Inductor 

The coupled ac inductor is replaced with the gapped ac inductor. All other 

experiment settings are identical to the previous experiment. The coupled ac inductor 

was designed in subsection  4.3.3. The experiment configuration is similar to the circuit 

diagram of Fig.  4-8. The ac link waveforms are shown in Fig.  6-20. The results are 

almost identical. The secondary voltage is slightly cleaner in case of the coupled 

inductor when Fig.  6-19 and Fig.  6-20 are compared side by side. However, the voltage 
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spike exists in both figures. This experiment’s measurements are listed in the second row 

of Table  6-9.  

 

Fig.  6-20- Charging low voltage battery from 50 V dc source, coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 

Table  6-9- Charging 12V Battery from Laboratory Supply 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

50 1.35 13.85 3.9 30 67.50 54.02 80.02 

50 1.43 13.83 4.3 30 71.50 59.47 83.17 

59.6 1.67 14.83 5.6 30 99.53 83.05 83.44 

65.4 1.77 15.2 6.4 30 115.76 97.28 84.04 

55.5 1.55 13.85 5.2 30 86.03 72.02 83.72 

55.5 2.19 15.1 6.5 40 121.55 98.15 80.75 

55.5 2.77 15.76 7.6 50 153.74 119.78 77.91 

50 2.57 14.75 6.6 50 128.50 97.35 75.76 

50 3.09 15.41 7.2 60 154.50 110.95 71.81 
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The efficiencies are improved in the charging experiments in respect to the 

resistive load although the efficiencies are still below the expected value. The designed 

inductor is intended for 200 V and 1.5 kW power level. This is a limited test due to the 

laboratory considerations. The secondary voltage spikes and lower utilization factor due 

to the oversized inductor are the reason the efficiencies are around 10% to 15% lower 

than the expected value. All the experiments in this subsection are performed with the 

coupled ac inductor. The input voltage is increased to 65.4 V to achieve the flat ac link 

current as shown in Fig.  6-21. After this test, the voltage is controlled in a way the 

output voltage does not damage the battery. The phase shift is increased with 10o steps to 

60o. The ac link waveforms at 60o phase shift are shown in Fig.  6-22.  

 

Fig.  6-21- Charging low voltage battery from dc source, Vin=59.6 V, ϕ=30o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 
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Fig.  6-22- Charging low voltage battery from dc source, Vin=50 V, ϕ=60o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 

6.4.2. Charging 48 V Battery from Laboratory Supply 

Due to the hesitations explained in subsection  6.2.3, the dc voltage is not raised 

to 180 V in this case study. Instead, the transformer is removed to relate the case study 

explained in the subsection  6.3.2 where the 48 V battery was charged from the grid. The 

coupled ac inductor is between the bridges in this case study. 

Initially, the input voltage is 48 V and the phase shift is 20o. The waveforms are 

clean as shown in Fig.  6-23 similar to the subsections  4.4.1 and  6.3.2. The input voltage 

is increased to 55 V and the waveforms are still clean. The voltage is decreased to 48.3 

V and voltage spike appears in the primary voltage as shown in Fig.  6-24. In Fig.  6-24, 

the current is too low. The phase shift is increased to 60o with 10o steps. At 60o phase 

shift, the input is decreased from 48 V (Fig.  6-25) to 33.3 V (Fig.  6-26). In Fig.  6-26 the 
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waveforms are still clean since the ac link current is high enough to maintain the soft 

switching region. The experiments measurements are listed in Table  6-10. The 

efficiencies approach 94% as the power level is about the 10% of the nominal power. 

Table  6-10- Charging 12V Battery from Laboratory Supply 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

50 1.25 52.4 1.0 20 62.50 52.40 83.84 

55 1.1 54.0 1.2 20 60.50 64.80 107.11 

48.3 1.16 53.1 0.9 20 56.03 47.79 85.30 

52 2.09 55.2 1.7 30 108.68 93.84 86.35 

52 2.73 56.2 2.2 40 141.96 123.64 87.09 

52 3.3 56.7 2.7 50 171.60 153.09 89.21 

48 3.21 55.5 2.5 50 154.08 138.75 90.05 

48 3.61 55.5 2.8 60 173.28 155.40 89.68 

33.3 3.44 53.5 2 60 114.55 107.00 93.41 

 

 

Fig.  6-23- Charging 48 V battery from dc source, Vin=50 V, ϕ=20o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 



 

189 

 

Fig.  6-24- Charging 48 V battery from dc source, Vin=48.3 V, ϕ=20o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 

 

Fig.  6-25- Charging 48 V battery from dc source, Vin=48 V, ϕ=60o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 
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Fig.  6-26- Charging 48 V battery from dc source, Vin=33.3 V, ϕ=60o,  coupled ac inductor,  

yellow: Vac1, blue: Vac2, green: Iac(pri) 

6.5. Energy Exchange Between Batteries  

In this experiment, the high voltage battery is located at the primary side and the 

low voltage battery is located at the secondary side. The gapped inductor L is located at 

the primary side. The total series inductance is 50 µH. The h-bridges are the earlier 

version with 300 V IXYS switches. The phase shift is changed from 10o to 65o and the 

measurements are listed in Table  6-11. The ac link waveforms are captured with the 

oscilloscope. The snapshots for 25o, 35o, 45o, and 65o phase shift are shown in Fig.  6-27 

to Fig.  6-30. The VPC is able to exchange power between batteries. This verifies an 

extensive functionality of the proposed multi port VPC for integrating sources in a 

vehicular integrated power system. 
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Fig.  6-27- Ac link waveforms during power transfer from 12 V battery to 48 V battery,  ϕ= 25o 

 yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

Table  6-11- Power Transfer from Low Voltage Battery to High Voltage Battery 

Vin [V] Iin [A] Vout [V] Iout [A] ϕ [o] Pin [W] Pout [W] ŋ [%] 

12.79 0.12 51.4 0.011 10 1.53 0.57 36.84 

12.65 1.519 51.6 0.345 20 19.22 17.80 92.64 

12.58 3.085 51.9 0.66 25 38.81 34.25 88.26 

12.53 4.84 51.9 0.99 30 60.65 51.38 84.72 

12.47 6.43 52.3 1.26 35 80.18 65.90 82.19 

12.46 7.28 52.6 1.40 40 90.71 73.64 81.18 

12.45 7.99 52.6 1.47 45 99.48 77.32 77.73 

12.43 8.65 53.0 1.53 50 107.52 81.09 75.42 

12.42 9.25 52.9 1.57 55 114.89 83.05 72.29 

12.41 9.8 52.9 1.60 60 121.62 84.64 69.59 

12.39 10.28 53 1.64 65 127.37 86.92 68.24 
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Fig.  6-28- Ac link waveforms during power transfer from 12 V battery to 48 V battery,  ϕ= 35o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

 

Fig.  6-29- Ac link waveforms during power transfer from 12 V battery to 48 V,  ϕ= 45o 

yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 
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Fig.  6-30- Ac link waveforms during power transfer from 12 V battery to 48 V,  ϕ= 65o 

 yellow: Vac1, blue: Vac2, green: ILac, magenta: Vgs(M11) 

6.6. Conclusion 

The experimental setup was configured to evaluate the performance of the 

components designed through the dissertation.  Initially, 600 V, 150 V and 40 V 

developed h-bridges were tested in a DAB configuration. The DAB was operated with 

the variable input from 30 V to 180 V and a 25.1 Ω resistive load at the output. The 

importance of the proper dc capacitor design and proper dead time selection for DAB 

were emphasized by the presented case studies. 

The main functionality of VPCs is charging the batteries. Both 12 V and 48 V 

batteries were charged from the grid through the dc link for proving the capability of the 

proposed VPC topology. The experiments with presence of the double frequency ripple 

verified the dissertation’s contribution on modeling DAB commutations that were 
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presented in the third chapter. These experiments emphasized on the relation of dead 

time and minimum current with the soft switching region of DAB converter when the 

phase shift modulation is employed.  

The batteries were also charged using the high voltage laboratory power supply. 

The results observed during charging the batteries through the grid were verified by 

repeating the results using the laboratory voltage source. Using the laboratory voltage 

source, the measurements are more accurate as the double frequency ripple does not 

exist.  

The effect of the multiwinding capacitive components on DAB commutation was 

discussed in the fourth chapter. This discussion was supported through the experiments 

charging the batteries. Both set of experiments for charging the batteries, using the grid 

and the laboratory power supply, agree with the statements made regarding the parasitic 

capacitors of the multiwinding transformer in series ac link power converters. 

The energy exchange between the batteries is among the functionalities of 

proposed vehicular integrated power system. The experiments demonstrated the energy 

exchange between the batteries in order to approve the validity of the proposed extensive 

VPC for the vehicular integrated power system. 
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7. CONCLUSION AND FUTURE WORK 

This dissertation proposed a design procedure for Vehicular Power Conditioners 

(VPCs). The novel contributions of this dissertation will be summarized in this chapter. 

Suggestions for future research will be included at the end of this chapter. 

A conceptual design approach was explained in the introduction chapter. The 

design approach synthesized the VPC’s power converter topologies according to power 

conditioning needs. Examples of the derived power converter topologies were reviewed. 

Among derived topologies, there were novel topologies that had not previously been 

investigated, including the parallel and the hybrid series parallel ac link multiport VPCs. 

High frequency isolation is a key feature in developing VPCs. The ac link 

utilization factor was defined in this dissertation as the ratio of the average power to the 

maximum power passed through the ac link. The isolated power converter topologies 

were compared according to the calculated ac link utilization factor. It was analytically 

demonstrated that the suggested ratio is an index that reveals the VPC’s relative power 

density. 

A futuristic view of the sources and loads that would be employed in a vehicular 

power system suggested evolving VPC by interconnecting all the vehicle’s sources and 

loads into a vehicular integrated power system. 

In the second chapter, the VPC’s grounding schemes were investigated. The SAE 

standards suggest having an interface between the charger and the grid. This dissertation 

suggested integrating this interface into the onboard VPC. The relation between galvanic 
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isolation and safety concerns were evaluated. A novel high impedance grounding 

scheme was suggested that contributes to the cost reduction of the level-one VPCs and 

the prevalence of PHEVs and EVs. The proposed contributions to the grounding 

schemes and safety concerns were verified through simulations. 

A three-port onboard VPC was introduced in the third chapter as the reference 

design for developing the simulation test bed and the experimental setup. The reference 

VPC was implemented with the three-stage isolated VPC. Additionally, the extension of 

this VPC was investigated employing three-port series ac link topology. The three-stage 

isolated VPC includes three power conditioning stages including the line side bridge, the 

middle bridge, and the battery bridge. The three-port variation was extended through the 

isolation transformer and the low voltage battery bridge was added to the VPC. A design 

procedure was introduced for the ac-dc line side bridge as well as the isolated dc-dc 

converter. The Dual Active Bridge (DAB) and multi active bridge were the adopted 

power converter topologies for the VPC’s dc-dc power converter.  

The Snubberless DAB converter was investigated in the third chapter. The design 

considerations of the Snubberless DAB were highlighted. This dissertation’s 

contribution on the DAB design is the piecewise linear modeling of the Snubberless 

DAB. In earlier works, a turn-off snubber or single capacitor were assumed analyzing 

the DAB commutation. In practice, using turn-off snubbers are not feasible. The 

Snubberless DAB utilizes the nonlinear output capacitors of the switches as the turn off 

snubbers for the commutations. The proposed piecewise linear model of the output 

capacitors related the physical characteristics of the switches to the DAB commutation. 
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The analyses revealed the role of the switching dead time to the DAB commutation. The 

analyses were verified through experiments.  

The optimized design approach for the VPC’s magnetic circuit was presented in 

the fourth chapter. Three design approaches were suggested for implementing ac 

inductors. The gapped ac inductor and the novel coupled ac inductor design procedures 

were developed for the series high frequency ac link converters. The proposed coupled 

ac inductor integrates a zero blocking transformer into the coupled ac inductor design 

that reduces the common mode interference in the VPC. The implemented prototypes 

were verified through the experimental setup. 

Low voltage batteries on vehicular systems demand high frequency and high 

current power conditioning stages. The magnetic circuit needs conductor planes such as 

copper foils or bus bars as windings. These winding types introduce more parasitic 

capacitances to power converters. The implemented multiwinding transformer used 

copper foils for the battery side windings. The experiments demonstrated the effect of 

the transformer’s parasitic capacitors in the DAB operation. An experimental modeling 

procedure was proposed in the fourth chapter that models the capacitive elements of the 

multiwinding transformers. The previous modeling methods had used the resonance 

frequency or the step response of the transformer when the windings were open circuit. 

The earlier methods resulted an approximate stray capacitance, which is an equivalent of 

all the stray capacitances at the measured winding. In contrast, the novel modeling 

method suggested in this dissertation uses the short circuit resonance frequency of the 

transformer’s windings. This method is able to model the stray capacitance of each 
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winding separately. The benefit of the proposed modeling method is mandatory from the 

design perspective for multiwinding transformers. The parasitic capacitor of each 

winding can be modeled separately with this modeling method. The proposed modeling 

approach was applied to the developed three-winding transformer and the winding 

capacitances were measured. The proposed model was further simplified mathematically 

into a third order Π equivalent circuit that was transferable to any desired winding side.  

The system step response was analyzed in the frequency and time domains. According to 

the mathematical analysis, the transformer’s step response has lower ringing and lower 

overshoot at higher loads and lower parasitic capacitances. The accuracy of the 

mathematical analysis was verified through simulations and experiments. The 

accordance of the results among the mathematical analysis, simulations, and 

experimental results verified the accuracy of the experimental modeling method as well 

as the mathematical analysis. 

The validity of closed loop control routines were verified through the simulation 

test bed in the fifth chapter. The dc link was controlled with a slow PI controller. The 

charger mode controller employed a Power Factor Correction (PFC) controller that 

modifies the line bridge to a hybrid active rectifier. The dead-beat controller was 

investigated for the V2G operation. The current controller’s behavior was fast with 

acceptable THD at different operating points. The line filter and the controller 

parameters were tuned according to the case studies. The preliminary investigation 

suggested a design trend for improving the dead-beat controller’s performance by 

adjusting the dead-beat current controller’s time constant to a value slower than the 
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physical time constant. The V2H controller proposed to engage a voltage controller with 

the deadbeat controller. All the controllers were verified through different case studies at 

several operating points. The controllers’ transient behaviors were evaluated with the 

step response and ramp response analyses. The simulations approved the performance of 

the adopted control solutions. 

In the sixth chapter, the experiments performed with the experimental setup were 

reported. The majority of the case studies were already used through the dissertation; 

however, more detailed results were presented in the sixth chapter to enhance following 

the research in future. Different case studies verified the practicality of the proposed 

power conditioning method. The case studies included supplying resistive load, charging 

batteries from the grid and laboratory power supply, and exchanging energy between the 

batteries. The challenges in DAB operation were highlighted and the practicality of the 

proposed hardware validated experimentally in the sixth chapter. 

The suggestions to continue the research include employing the parallel ac link 

converters for VPCs as well as implementing the novel hybrid series parallel multiport 

configuration. These topologies can be approached from design, control, and application 

perspective. 

 The idea of the vehicular integrated power system was introduced and the 

capable hardware was implemented in this dissertation. The energy management using 

the proposed hardware was not discussed in this dissertation. The energy management 

strategies can be investigated from the control perspective and the power system 

automation perspective. Additionally, designing VPC for the vehicular integrated power 
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system from the reliability perspective needs to be researched in future. Fault prognoses 

analyses would potentially help growing the vehicular integrated power system concept 

for fault tolerant applications. 

The proposed integrated ac link converter integrated the common mode blocking 

feature into the series ac inductance. Reducing common mode interference is very 

important for the grid connected applications. Further details need to be investigated 

with a researcher specialized in EMI and EMC for power electronics. The suggested 

research will also need laboratory facilities including spectrum analyzer, EMI probes, 

Line Impedance Stabilization Network (LISN), and impedance analyzer. 

The experimental results emphasized the problematic operating points of the 

DAB. The challenges regarding these operating points are subject of the future research 

for academia and industries who intend to commercialize the high power density series 

ac link converters. 

The proposed transformer experimental modeling approach can be practiced for 

various magnetic circuit geometries including planar and memes magnetism for various 

applications that deal with resonant and soft switching high frequency power converters. 

The adopted control routines can be compared with other available control 

techniques for the VPC application. The researchers will need to fully access the grid. 

Experimental results are needed to verify such comparisons. 
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