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ABSTRACT

Let A be a finite dimensional Hopf algebra over a field k. In this dissertation, we study the

Tate cohomology Ĥ
∗
(A,k) and Tate-Hochschild cohomology ĤH

∗
(A,A) of A, and their properties.

We introduce cup products that make them become graded-commutative rings and establish the

relationship between these rings. In particular, we show Ĥ
∗
(A,k) is an algebra direct summand of

ĤH
∗
(A,A) as a module over Ĥ

∗
(A,k).

When A is a finite group algebra RG over a commutative ring R, we show that the Tate-Hochschild

cohomology ring ĤH
∗
(RG,RG) of RG is isomorphic to a direct sum of the Tate cohomology rings

of the centralizers of conjugacy class representatives of G. Moreover, our main result provides an

explicit formula for the cup product in ĤH
∗
(RG,RG) with respect to this decomposition.

When A is symmetric, we show that there are finitely generated A-modules whose Tate cohomology

is not finitely generated over the Tate cohomology ring Ĥ
∗
(A,k) of A. It turns out that if a module in

a connected component of the stable Auslander-Reiten quiver associated to A has finitely generated

Tate cohomology, then so does every module in that component.
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CHAPTER I

INTRODUCTION

Homological algebra has a large number of applications in differential geometry, algebraic topol-

ogy, algebraic geometry, and commutative algebra. One of its major operations is cohomology,

which can be viewed as a method of assigning invariant algebraic properties to an algebra. In most

cases, homology and cohomology groups satisfy similar axioms. However, cohomology groups are

contravariant functors while homology groups are covariant. This contravariant property can gener-

ate a multiplicative structure making cohomology into a ring. Because of this feature, cohomology

provides strong invariant properties which can be used to differentiate between certain algebraic

objects.

A Hopf algebra is an object whose rich structure makes it amenable to treatment by homological

methods. Hopf algebras were originally observed in algebraic topology by Hopf in 1941. Many

important examples of Hopf algebras appear in different fields of mathematics such as: algebraic

geometry (affine group schemes), representation theory (group algebra, tensor algebra), Lie theory

(universal enveloping algebra of a Lie algebra), quantum mechanics (quantum groups), graded

ring theory, and combinatorics. We focus on the representations and cohomology of any finite

dimensional Hopf algebra, denoted A, over a field k. Being finite dimensional, A has additional

features which are beneficial to understanding its modules and cohomology.

While the usual cohomology only involves positive degrees, the Tate cohomology (see Chap-

ter III), however, is defined in both positive and negative degrees via a special construction. Tate

cohomology was introduced by John Tate in 1952 for group cohomology arising from class field

theory [38]. Others then generalized his theory to the group ring RG where R is a commutative

ring and G is a finite group. Unlike the usual cohomology, this theory is based on complete res-

olutions, and hence, yields cohomology groups in both positive and negative degrees. Over the

past several decades, a great deal of effort has gone into the study of this new cohomology. A

summary may be found in [9, Ch. VI] or [14, Ch. XII]. In the early 1980’s, through an unpublished
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work, Pierre Vogel extended Tate cohomology to any group and even to any ring using unbounded

chain complexes. For finite groups, the Tate-Vogel cohomology coincides with the Tate cohomol-

ogy. Accounts of Vogel’s construction appeared, for examples, in a paper by Goichot [23] and in

another paper by Benson and Carlson [6] in 1992. In the 1980’s, Buchweitz introduced another

construction of Tate cohomology of a two-sided Noetherian and Gorenstein ring, using the stable

module category influenced by the work of Auslander and Bridger [10, §6]. Many authors have

also considered the Hochschild analogue of Tate cohomology for Frobenius algebras. For instance,

one of the first attempts was given in Nakayama’s paper in 1957 on the complete cohomology of

Frobenius algebras, using the complete standard complex (or complete bar resolution) [30]. The

stable Hochschild cohomology of a Frobenius algebra, using the stable module category, was stud-

ied in various papers, e.g. [17]. More recently, using complete resolutions, Bergh and Jorgensen

defined the Tate-Hochschild cohomology of an algebra A whose enveloping algebra Ae is two-sided

Noetherian and Gorenstein over a field k [7]. If the Gorenstein dimension of Ae is 0, then this

cohomology agrees with the usual Hochschild cohomology in positive degrees. It is noted in [7] that

this Tate-Hochschild definition is equivalent to that using the stable module category in [17], at

least in the finite dimensional case.

In this dissertation, we study the Tate and Tate-Hochschild cohomology for finite dimensional Hopf

algebras A over a field k. Since any finite dimensional Hopf algebra is a Frobenius algebra [29,

Theorem 2.1.3], results from [7], [17], and [30] apply. The dissertation is organized as follows.

In Chapter II, we give the definition, examples, and properties of a (finite dimensional) Hopf algebra

A over a field k. We also recall basic concepts from homological algebra and define the cohomology

ring of A. At the end of this chapter, we set general notation and conventions to be used through

the rest of the dissertation.

In Chapter III, we introduce and construct the main objects of our study, the Tate cohomology

Ĥ
∗
(A,k) and Tate-Hochschild cohomology ĤH

∗
(A,A) of A, using both the complete resolutions

and the appropriate stable module categories. We then describe the product structures which turn

Ĥ
∗
(A,k) and ĤH

∗
(A,A) into graded-commutative rings. The next chapters display our efforts in

studying properties of these two objects, inspired by the known results in the usual cohomology

rings.
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In Chapter IV, we establish the relationship between the two Tate cohomology rings. In particular,

we show that for a finite dimensional Hopf algebra A over a field k, Ĥ
∗
(A,k) is a direct summand

of ĤH
∗
(A,A) as a module over Ĥ

∗
(A,k). Hence, Tate cohomology shares the same relation as that

of the usual cohomology. This similarity opens up many research questions in which one asks if

it is possible to generalize results from the usual (Hochschild) cohomology to their Tate versions.

This is still an ongoing project. However, we anticipate that some obstructions will occur in the

Tate cohomology case. The construction of Tate cohomology is more complex, hence, some nice

properties from the usual cohomology may not carry over to the Tate cohomology. To demonstrate

this complexity, in this chapter, we explicitly compute the Tate and Tate-Hochschild cohomology

for Taft algebras, in particular, for the Sweedler algebra H4.

Chapter V focuses on the decomposition of the Tate-Hochschild cohomology ring of a finite group

algebra RG, where R is the ring of integers Z or a field whose characteristic divides the order of the

group G. Let G act on itself by conjugation. We show that ĤH
∗
(RG,RG) is a direct sum of the

Tate cohomology rings of the centralizers of conjugacy representatives of G. Moreover, we establish

a product formula with respect to this additive decomposition. This product structure implies that

ĤH
∗
(RG,RG) decomposes not just as an R-module but as an Ĥ

∗
(G,R)-module. The products

in negative degrees of the Tate-Hochschild cohomology are also observed. By using the product

formula and results from products in negative cohomology by [6], we can determine quickly when

the products in ĤH
∗
(RG,RG) are 0 and obtain some information about the depth of the usual

Hochschild cohomology ring HH∗(RG,RG). Finally, we use the results in this chapter to compute

the Tate-Hochschild cohomology of the dihedral group of order 8 and of the symmetric group on

three elements.

Many people have been interested in the finite generation question of the cohomology of a finite

dimensional Hopf algebra A. If such property holds, one can apply algebraic geometry and com-

mutative algebra in the study of A. One can also apply the theory of support varieties to the

study of A-modules. Chapter VI addresses the finite generation question for the Tate cohomology

of A when A is symmetric. We generalize some group cohomology results from [12] to show that

there are finitely generated A-modules whose Tate cohomology is not finitely generated over the

Tate cohomology ring Ĥ
∗
(A,k) of A. To show this, we employ the boundedness conditions on
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finitely generated modules over Tate cohomology and the property that products in negative Tate

cohomology of symmetric algebras are often zero [26, §8]. We also construct A-modules which have

finitely generated Tate cohomology. It turns out that if a module in a connected component of

the stable Auslander-Reiten quiver associated to A has finitely generated Tate cohomology, then so

does every module in that component. In particular, all modules in the connected component of the

quiver which contains k have finitely generated Tate cohomology. As applications, we show that an

algebra defined by Radford [33] and the restricted universal enveloping algebra of the p-Lie algebra

sl2 have finitely generated usual cohomology rings but fail to do so for their Tate cohomology. These

examples show that finite generation behaves differently in negative cohomology.
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CHAPTER II

PRELIMINARIES

II.1 Hopf algebras

In this section, we define a Hopf algebra, our main object of study, and look at several examples of

Hopf algebras that will occur throughout the dissertation. More information on Hopf algebras can

be obtained, e.g. in [29]. We note that Hopf algebras can be defined over any commutative ring in

general. However, for simplicity and for later use, we mainly consider our Hopf algebras to be over

a field k. Tensor products are assumed to be over k unless stated otherwise.

We say a k-vector space A is an associative k-algebra if A has two k-linear maps, the multiplication

map m : A⊗A→ A and the unit map u : k→ A, satisfying:

m ◦ (m⊗ idA) = m ◦ (idA⊗m),

m ◦ (u⊗ idA) = 1k. idA,

m ◦ (idA⊗u) = idA .1k,

where idA is the identity map of A and 1k is the identity element of k. The first condition is

associativity and the last two conditions imply m is surjective. An algebra (A,m, u) is said to be

commutative if ab = ba, for all a, b ∈ A.

We say a k-vector space C is a coassociative coalgebra if it has two k-linear maps, the comultipli-

cation (coproduct) map ∆ : C → C ⊗ C and the counit map ε : C → k, satisfying:

(idC ⊗∆) ◦∆ = (∆⊗ idC) ◦∆,

(idC ⊗ε) ◦∆ = idC ⊗1k,

(ε⊗ idC) ◦∆ = 1k ⊗ idC .

The first condition is coassociativity and the last two conditions imply ∆ is injective. We adopt
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Sweedler’s sigma notation for the coproduct: ∆(c) =
∑
c1 ⊗ c2, for all c ∈ C. A coalgebra

(C,∆, ε) is called cocommutative if it is commutative with respect to the comultiplication, that

is,
∑
c1 ⊗ c2 =

∑
c2 ⊗ c1.

Definition II.1. A bialgebra over a field k is a k-vector space A endowed with an associative

algebra structure (A,m, u) and a coassociative coalgebra structure (A,∆, ε) such that it satisfies

one of the following equivalent conditions:

1. ∆ and ε are algebra morphisms

2. m and u are coalgebra morphisms.

A bialgebra is commutative (resp. cocommutative) if its underlying algebra (resp. coalgebra) is

commutative (resp. cocommutative).

Let (A,m, u) be an algebra and (C,∆, ε) be a coalgebra. Then Homk(C,A) becomes an algebra

under the convolution product:

(f ? g)(c) = m ◦ (f ⊗ g) ◦∆(c)

for all f, g ∈ Homk(C,A) and c ∈ C. The unit element in Homk(C,A) is u ◦ ε. In sigma notation,

(f ? g)(c) =
∑
f(c1)g(c2).

Definition II.2. A Hopf algebra is a bialgebra A together with a linear map S : A → A, such

that for all a ∈ A, S satisfies:

∑
S(a1) a2 = ε(a)1A =

∑
a1 S(a2)

that is, S is a two-sided inverse of idA under convolution product ?. The map S is called the

antipode map of A.

We list here some examples of (finite dimensional) Hopf algebras. These examples will be reoccurring

throughout the dissertation.

Example II.3. [Group algebra]
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Let G be a (finite) multiplicative group. Let

kG =

∑
g∈G

agg | ag ∈ k


be the associated group algebra over k. It is a free k-module with basis G. kG is a Hopf algebra

with structure:

m(g ⊗ h) = gh, u(1k) = 1G,

∆(g) = g ⊗ g, ε(g) = 1k, S(g) = g−1

for all g, h ∈ G. The Hopf algebra kG is commutative if and only if the group G is abelian; it is

always co-commutative by the above definition.

Example II.4. [Tensor algebra and its induced Hopf algebras]

Suppose V is a (finite dimensional) vector space over k and T (V ) :=
⊕

i≥0 V
⊗ki is its tensor

algebra, then T (V ) becomes a Hopf algebra with:

∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x,

for all x ∈ V . Since all x in V generates T (V ) as an algebra, ∆ is extended to the rest of T (V ) as an

algebra homomorphism, not just as a k-linear map. The tensor algebra gives rise to the following

Hopf algebras (which are quotients of the tensor algebra) via the induced comultiplication, counit,

and antipode:

(a) The symmetric algebra

Sym(V ) := T (V )/(v ⊗ w − w ⊗ v, for all v, w ∈ V )

is a commutative, cocommutative Hopf algebra. If V is free over k of finite rank n, then the

underlying k-algebra of Sym(V ) is isomorphic to the polynomial ring k[x1, x2, . . . , xn].

(b) The exterior algebra

Λ(V ) := T (V )/(v ⊗ v, for all v ∈ V )

7



is a cocommutative Hopf algebra. Denote v1∧. . .∧vn to be the equivalence class of v1⊗. . .⊗vn

under the quotient. Λ(V ) is strictly graded-commutative in the sense that v ∧ w = −(w ∧ v)

and v ∧ v = 0, for all v, w ∈ V .

(c) Let g be a Lie algebra over k whose underlying k-vector space is V . The universal enveloping

algebra of g

U(g) := T (V )/(v ⊗ w − w ⊗ v − [v, w], for all v, w ∈ V )

is a cocommutative Hopf algebra.

Example II.5. [Sweedler’s 4-dimensional Hopf algebra]

Suppose k is a field of characteristic 6= 2. Sweedler defined H4 to be the k-algebra generated by g

and x satisfying the relations : g2 = 1, x2 = 0, and xg = −gx. It is a Hopf algebra by defining:

∆(g) = g ⊗ g, ∆(x) = 1⊗ x+ x⊗ g,

ε(g) = 1, ε(x) = 0,

S(g) = g−1 = g, S(x) = −xg.

The underlying vector space is generated by {1, g, x, gx} and thus H4 has dimension 4. This is the

smallest example of a Hopf algebra that is both non-commutative and non-cocommutative.

Example II.6. [Taft algebra]

More generally, let N ≥ 2 be a positive integer. Assume the field k contains a primitive N -th root

of unity ω. Let A be the algebra, called Taft algebra, generated over k by two elements g and x,

subject to the relations: gN = 1, xN = 0, and xg = ωgx. A is a Hopf algebra with structure given

by:

∆(g) = g ⊗ g, ∆(x) = 1⊗ x+ x⊗ g,

ε(g) = 1, ε(x) = 0,

S(g) = g−1, S(x) = −xg−1.

8



A is of dimension N2. It is non-semisimple, non-commutative, and non-cocommutative.

Example II.7. [Localized quantum plane]

Let q be a nonzero element in k. The quantum plane is defined as:

Oq(k2) = k〈x, y | xy = qyx〉.

We localize the quantum plane to obtain a Hopf algebra A := Oq(k2)[x−1] with structure:

∆(x) = x⊗ x, ∆(y) = y ⊗ 1 + x⊗ y,

ε(x) = 1, ε(y) = 0,

S(x) = x−1, S(y) = −x−1y.

We note that in this example, the antipode map S has infinite order.

Example II.8. [NOT a Hopf algebra]

Let B = O(Mn(k)) = k[xij | 1 ≤ i, j ≤ n], the polynomial functions on n × n matrices. As

an algebra, B is simply the commutative polynomial ring in the n2 indeterminates xij . For the

coalgebra structure, think of xij as the coordinate function on the ij-th entry of the ring Mn(k) of

n× n matrices. Then ∆ is the dual of matrix multiplication; that is, ∆(xij) =
∑n
k=1 xik ⊗ xkj . By

setting ε(xij) = δij , where δij is the Kronecker delta, B becomes a bialgebra.

If we let X = [xij ] be the n× n matrix with ij-th entry xij , then one may check that det(X) is a

group-like element (that is, ∆(det(X)) = det(X)⊗ det(X) and ε(det(X)) = 1). We see that B

is not a Hopf algebra because det(X) is not invertible in B.

However, there are several Hopf algebras closely related to B:

O(SLn(k)) = O(Mn(k))/(det(X)− 1)

O(GLn(k)) = O(Mn(k))[det(X)−1]

9



by defining S(X) = X−1 on these bialgebras.

II.2 Homological algebra

Let R be a ring and M be a left R-module.

Definition II.9. A projective resolution of M , denoted by P• = {Pn, dn}n≥0, is an exact

sequence of projective R-modules:

· · · d3−→ P2
d2−→ P1

d1−→ P0
ε=d0−−−→M → 0,

that is, each Pn is a projective R-module, and Ker(dn) = Im(dn+1), for all n ≥ 0.

The length of a finite projective resolution is the first n ≥ 0 such that Pn 6= 0 and Pi = 0 for all

i > n. If M admits a finite projective resolution, the minimal length among all finite projective

resolutions of M is called the projective dimension of M and denoted pd(M). If M does not

admit a finite projective resolution, then by convention we say pd(M) = ∞. We note that if

pd(M) = 0, then M has a projective resolution of the form 0 → P0
d0−→ M → 0. By exactness of

the sequence, this implies that d0 is an isomorphism; and hence, M is itself projective. Conversely,

if M is a projective module, then it is clear that pd(M) = 0.

Definition II.10. An injective resolution of M , denoted by I• = {In, dn}n≥0, is an exact

sequence of injective R-modules:

0→M
d0−→ I0 d1−→ I1 d2−→ I2 d3−→ · · · ,

that is, each In is an injective R-module, and Ker(dn+1) = Im(dn), for all n ≥ 0.

The length of a finite injective resolution is the first n ≥ 0 such that In 6= 0 and Ii = 0 for all

i > n. If a module M admits a finite injective resolution, the minimal length among all finite

injective resolutions of M is called the injective dimension of M and denoted id(M). If M does

not admit a finite injective resolution, then id(M) = ∞. Similar observation as before, M has

injective dimension 0 if and only if it is an injective module.
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Projective and injective resolutions can be used to define derived functors such as the Ext functor.

For consistency, we use projective resolutions throughout this dissertation.

Theorem II.11 (Comparison Theorem). Let M and M ′ be left R-modules. Let P• be a projective

resolution of M and f : M →M ′ be any map of modules. Then for every projective resolution Q•

of M ′, there is a chain map f• = {fn}n≥0 : P• → Q• lifting f in the sense that ε′ ◦ f0 = f ◦ ε.

· · · // Pn

fn

��

dn // Pn−1

fn−1

��

dn−1 // · · · d1 // P0

f0

��

ε // M

f

��

// 0

· · · // Qn
d′n // Qn−1

d′n−1 // · · ·
d′1 // Q0

ε′ // M ′ // 0

The chain map f• is unique up to chain homotopy equivalence. That is, given any two such maps

f• and f ′•, there is a chain homotopy h• : P• → Q•+1 such that fn − f ′n = d′n+1 ◦ hn + hn−1 ◦ dn.

The proof of this theorem can be obtained in any homological algebra book, for example, see [6,

Theorem 2.4.2] or [39, Theorem 2.2.6].

Definition II.12 (Ext∗R). Let M,N be left R-modules, apply HomR(−, N) to a projective resolu-

tion P• of M and drop the last term HomR(M,N), we get:

0
0−→ HomR(P0, N)

d∗1−→ HomR(P1, N)→ · · · → HomR(Pn, N)
d∗n−→ · · ·

where d∗n(f) = f ◦ dn, for all n > 0. The n-th homology of this (cochain) complex is

ExtnR(M,N) := Hn(HomR(P•, N)) = Ker(d∗n+1)/ Im(d∗n),

and Ext0
R(M,N) := Ker(d∗1).

By the Comparison Theorem, ExtnR(M,N) is independent of the choice of projective resolution of

M .

Example II.13. [Cohomology of a cyclic group]

Let G = 〈g〉 be a cyclic group generated by g of order m and M be a kG-module. The cohomology
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of G with coefficients in M is denoted as

H∗(G,M) := H∗(kG,M) :=
⊕
n≥0

ExtnkG(k,M).

When M = k, we will compute Hn(G,k) = ExtnkG(k,k). Let

· · · ·T−→ kG
·(g−1)−−−−→ kG

·T−→ kG
·(g−1)−−−−→ kG

ε−→ k→ 0

be a kG-projective resolution of k, where T = 1 + g + g2 + g3 + ... + gm−1 and ε(gi) = 1, for all

gi ∈ G. Apply HomkG(−,k) and take the homology of the new complex, we get:

Case 1: When k is a field, char(k) | m

Hn(G,k) ∼= k, for all n ≥ 0

Case 2: When k is a field, char(k) - m

Hn(G,k) =


k n = 0

0 n > 0

Case 3: When k = Z

Hn(G,Z) =


Z n = 0

Z/(mZ) n > 0, n is even

0 n > 0, n is odd.

II.3 Products in cohomology

Let M,N,L be left R-modules. Let M• and N• be projective resolutions of M and N , respec-

tively. We can give Ext∗R(M,M) the structure of a graded ring, as a special case of the natural

multiplication:

ExtjR(N,L)× ExtiR(M,N)→ Exti+jR (M,L),

12



which can be described in several equivalent forms as follows:

II.3.1 Yoneda product

An i-fold extension of M by N is an exact sequence of R-modules

0→ N →Mi−1 → · · · →M0 →M → 0,

beginning with N and ending with M , and with i intermediate terms. Two i-fold extensions are

equivalent if there is a map of i-fold extensions such that the following diagram commutes:

0 // N // Mi−1

��

// · · · // M0

��

// M // 0

0 // N // M ′i−1
// · · · // M ′0 // M // 0.

We can show this defines an equivalence relation by checking symmetry and transitivity in the usual

way.

An i-fold extension of M by N determines an element of ExtiR(M,N) by completing the diagram

· · · // Pi

��

// Pi−1

��

// · · · // P0

��

// M // 0

0 // N // Mi−1
// · · · // M0

// M // 0

where the top row is a projective resolution of M .

From the discussion in [3, §2.6], we may interpret ExtiR(M,N) as the set of equivalence classes of

i-fold extensions of M by N . Let

α : 0→ N
φ2−→Mi−1 → · · · →M0 →M → 0,

represent an element [α] ∈ ExtiR(M,N), and let

β : 0→ L→ Nj−1 → · · · → N0
φ1−→ N → 0

13



represent [β] ∈ ExtjR(N,L). Then the Yoneda product (or Yoneda composition) [β][α] ∈

Exti+jR (M,L) is defined as the equivalence class of the exact sequence β ◦ α formed by splicing α

and β together at N :

0 - L - · · · - N0
φ=φ2◦φ1- Mi−1

- · · · - M - 0

N
φ2

-
φ
1
-

0

-

0
-

By this way, we obtain a bilinear map:

ExtjR(N,L)× ExtiR(M,N)→ Exti+jR (M,L).

II.3.2 Cup product

Suppose [α] ∈ ExtiR(M,N), so it can be represented by a homomorphism α : Mi → N such that

(dMi+1)∗α = α ◦ dMi+1 = 0, that is, α ∈ Ker(dMi+1)∗. There exists a chain map α : M• → N• of degree

−i induced by α. We can see that ExtiR(M,N) is isomorphic as an abelian group to the group of

homotopy equivalence classes of chain maps of degree −i from M• to N•.

Let [α] ∈ ExtiR(M,N) and [β] ∈ ExtjR(N,L). By above observation, let α = {αs : Mi+s → Ns}s≥0

and β = {βs : Nj+s → Ls}s≥0 be the induced chain maps of degrees −i and −j, respectively.

Define

[β][α] = {βsαj+s : Mi+j+s → Ls}s≥0 ∈ Exti+jR (M,L)

Equivalently, we define β ^ α = β ◦ αj up to chain homotopy. This operation ^ induces a well-

defined operation on Ext, called cup product. It can be shown that the Yoneda product agrees

with this cup product. Hence, when N = L = M ,

Ext∗R(M,M) =
⊕
n≥0

ExtnR(M,M)

is a graded ring.
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II.3.3 Tensor product of projective resolutions

Let R be a Hopf algebra and M,M ′, N,N ′ be left R-modules. M ′ ⊗M becomes a left R-module

via ∆. Let M ′•,M• be projective resolutions of M ′,M , respectively. By the Künneth Theorem [39,

Theorem 3.6.3], the total complex of M ′•⊗M• is a projective resolution of M ′⊗M , with differential

maps δ.

Let α ∈ HomR(Mi, N) and β ∈ HomR(M ′j , N
′) represent elements of ExtiR(M,N) and ExtjR(M ′, N ′),

respectively, then

β ⊗ α ∈ HomR(M ′j ⊗Mi, N
′ ⊗N)

may be extended to an element of HomR

 ⊕
r+s=i+j

(M ′r ⊗Ms), N
′ ⊗N

 by defining it to be the 0

map on all components other than M ′j ⊗Mi. One can check that

δ(β ⊗ α) = δ(β)⊗ α+ (−1)jβ ⊗ δ(α).

So product of two cocycles is a cocycle, and the product of a cocycle with a coboundary is a

coboundary. This induces a well-defined product on cohomology

^: ExtjR(M ′, N ′)× ExtiR(M,N)→ Exti+jR (M ′ ⊗M,N ′ ⊗N).

One may check that for a Hopf algebra R, these definitions of products are equivalent, e.g. [3,

Prop. 3.2.1].

Example II.14. [Cohomology rings of a cyclic group and of an elementary abelian group]

Let G be a finite group and k be a field. By Maschke’s Theorem, if the characteristic of k does not

divide the order of G, then the group algebra kG is semisimple [29, §2.2] and its cohomology is then

trivial except in the degree 0. We will only be interested in the case when the cohomology of kG

is nontrivial; hence, throughout the discussion of group cohomology, we assume the characteristic

of k divides the order of G. In this example, we assume the characteristic of k is p > 0 and let G

be a cyclic group of order m such that pc is the exact power of p dividing m. As computed before,
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we have

Hn(G,k) ∼= k, for all n ≥ 0.

A tedious calculation [18, §3.2] shows that:

H∗(G,k) := Ext∗kG(k,k) = k[x, y | deg x = 1,deg y = 2, x2 = 0]

if p is odd, or if p = 2 and c > 1; and

H∗(G,k) ∼= k[x | deg x = 1]

if p = 2 and c = 1.

More generally, let G be an elementary abelian group G = (Z/pZ)d, for some integer d ≥ 1, and let

k be a field of characteristic p > 0. If p is odd, we have:

H∗(G,k) ∼= Λ(x1, . . . , xd)⊗ k[y1, . . . , yd],

where the first term on the right is an exterior algebra over k generated by xi of degree 1, and the

second term is a polynomial algebra generated by yi of degree 2. If p = 2,

H∗(G,k) ∼= k[x1, . . . , xd]

a polynomial algebra generated by elements of degree 1 [18, §3.5].

Example II.15. [Cohomology ring of a polynomial ring]

Let A = k[x1, x2, . . . , xt], where k is a field. A is an augmented algebra by defining ε(xi) = 0 and

ε(r) = r, for all r ∈ k. Moreover, A is also a Hopf algebra with the coproduct ∆(xi) = xi⊗1+1⊗xi

and antipode S(xi) = −xi, for all i = 1, 2, . . . , t.
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Let M be a left A-module. The cohomology of A with coefficients in M is:

H∗(A,M) =
⊕
n≥0

Hn(A,M) =
⊕
n≥0

ExtnA(k,M)

When M = k, H∗(A,k) turns out to be a graded algebra under the cup product.

In particular, let A = k[x]. Consider a projective resolution of k:

0→ A
·x−→ A

ε−→ k→ 0.

Apply HomA(−,k) to this resolution and delete the term HomA(k,k), we get:

0→ HomA(A,k)
(·x)∗−−−→ HomA(A,k)→ 0,

which is equivalent to

0→ k
0−→ k→ 0,

since HomA(A,k) ∼= k. Thus:

ExtnA(k,k) =


k n = 0, 1

0 n ≥ 2.

Now let A = k[x, y]. Note that k ∼= A/(x, y). Consider a projective resolution of k:

0→ A
α−→ A⊕A β−→ A

ε−→ k→ 0,

where α =

 y

−x

 and β =

(
x y

)
. Apply HomA(−,k) and take the cohomology of the new

complex, we get:

ExtnA(k,k) =


k⊕ k n = 1

k n = 0, 2

0 n > 2.

One can compute that H∗(A,k) := Ext∗A(k,k) =
⊕

n≥0 ExtnA(k,k) is isomorphic to the exterior

algebra Λ∗(V ), where V is a k-vector space of dimension 2.
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In general, let A = k[x1, x2, . . . , xt], we get:

ExtnA(k,k) ∼= k(tn), for all n ≥ 0,

and,

H∗(A,k) ∼=
⊕
n≥0

k(tn) ∼= Λ∗(V ),

where V is a k-vector space of dimension t.

II.4 Notation and conventions

For the rest of this dissertation, unless specified otherwise, we let G be a group of finite order and

k be a field. Tensor products ⊗ will be over k. All modules are assumed to be finitely generated

left modules. Let A be a finite dimensional Hopf algebra over k. In this case, the antipode S of A

is bijective [29, Theorem 2.1.3], and its inverse is denoted by S. The k-dual Homk(−,k) is denoted

by D(−) and the ring-dual HomA(−, A) is denoted by (−)∗. This notation is unfortunate, because

to a Hopf algebraist, D(A) usually stands for the “Drinfeld double” of A. However, we adopt this

notation to agree with our reference [7]. We observe that D(A) is also a finite dimensional Hopf

algebra, where the algebra structure of A becomes the coalgebra structure of D(A), the antipode

of A translates into an antipode D(S) of D(A) in a canonical fashion, and so on.

Let M,N be A-modules. The Hopf structure of A becomes advantageous in studying its homological

properties. For instance, k is a trivial A-module with the action via the counit map ε, a · r = ε(a)r,

for all a ∈ A and r ∈ k. Tensor product of A modules M ⊗ N is again an A-module via the

coproduct map ∆, a · (m ⊗ n) =
∑

(a1 · m) ⊗ (a2 · n), for all a ∈ A,m ∈ M , and n ∈ N . The

group Homk(M,N) is also an A-module via the antipode map S, (a · f)(m) = f(S(a) ·m), for all

a ∈ A,m ∈ M and f ∈ Homk(M,N). In particular, the k-dual D(M) is a left A-module. Since

A is a finite dimensional Hopf algebra, it is Frobenius, that is A ∼= D(A) as left A-modules [29,

Theorem 2.1.3]. Since D(A) is an injective module over A, this implies that any Frobenius algebra

is self-injective (injective as a module over itself). Therefore, projective A-modules coincide with

injective A-modules.
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The opposite algebra Aop has the same underlying set and linear operation as A but with mul-

tiplication performed in the reverse order: a ·op b = ba, for all a, b ∈ A. Let Ae := A⊗ Aop denote

the enveloping algebra of A and define σ : A→ Ae by σ(a) =
∑
a1 ⊗ S(a2). Checking that σ is

an injective algebra homomorphism, we may identify A with the subalgebra σ(A) of Ae. Moreover,

we can induce Ae-modules from A-modules as follows. Let M be a left A-module and consider Ae

as a right A-module via right multiplication by σ(A). Then Ae ⊗A M is a left Ae-module, with

Ae-action given by a · (b⊗A m) = ab⊗A m, for all a, b ∈ Ae, and m ∈M .

We use the following notation for the usual cohomology and Hochschild cohomology of A, respec-

tively:

H∗(A,M) := Ext∗A(k,M) =
⊕
n≥0

ExtnA(k,M),

HH∗(A,M) := Ext∗Ae(A,M) =
⊕
n≥0

ExtnAe(A,M),

where M denotes a left A-module in the former case and an A-bimodule in the latter case. From the

discussion in [37], since A is a finite dimensional Hopf algebra, H∗(A,k) is a graded-commutative

ring, that is, for α ∈ Hi(A,k) and β ∈ Hj(A,k), αβ = (−1)ijβα. For any associative algebra A,

HH∗(A,A) is always graded-commutative as a result by Gerstenhaber [21].

19



CHAPTER III

TATE AND TATE-HOCHSCHILD COHOMOLOGY *

As seen in the previous chapter, projective resolutions are used to compute the cohomology of an

algebra. To define the Tate cohomology, we apply a more general resolution, which involves both

positive and negative degrees.

First, we recall that a (not necessarily commutative) ring R is Gorenstein if R has finite injective

dimensions both as a left R-module and as a right R-module. The readers may refer to, for example,

[2, §2, 3] for a definition of Gorenstein dimension (or G-dimension) that was first introduced

by Auslander and Bridger. For a two-sided Noetherian ring R, we say that R is Gorenstein of

Gorenstein dimension d if the injective dimensions of R, both as a left and as a right module over

itself, are equal to d.

Definition III.1. Let R be a ring. A complete resolution of a finitely generated R-module M

is an exact complex P = {Pi, di : Pi → Pi−1}i∈Z of finitely generated projective R-modules such

that:

1. There exists a projective resolution Q•
ε→ M of M and a chain map P ϕ→ Q• where ϕn is

bijective for n� 0.

2. The dual complex HomR(P, R) is also exact.

The first condition says that for a sufficiently large degree, P coincides with a projective resolution

of M . A resolution that satisfies the second condition is called totally acyclic. Unlike projective

resolutions, complete resolutions, in general, do not always exist. However, if R is a two-sided

Noetherian Gorenstein ring of Gorenstein dimension d, Theorems 3.1 and 3.2 in [2] guarantee the

existence of such complete resolutions. In this case, the chain map ϕn is bijective for n ≥ d.

In [38], Tate introduced a cohomology theory that can be defined by using complete resolutions as

follows [4, §5.15]. Let G be a finite group and R be a commutative ring with G acting trivially on

*Reprinted from Journal of Pure and Applied Algebra, Vol 217, Van C. Nguyen, Tate and Tate-Hochschild
cohomology for finite dimensional Hopf algebras, pp. 1967-1979. Copyright 2013, with permission from Elsevier.
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R. If

· · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→ R→ 0

is an RG-projective resolution of R, then apply HomR(−, R) to get a dual sequence:

0→ R→ HomR(P0, R)→ HomR(P1, R)→ HomR(P2, R)→ · · ·

This is again an exact sequence of projective RG-modules. Splicing these two sequences together,

one forms a doubly infinite sequence:

· · · d3−→ P2
d2−→ P1

d1−→ P0 → HomR(P0, R)→ HomR(P1, R)→ · · ·

Introducing the notation P−(n+1) := HomR(Pn, R), we arrive at a complete resolution of R:

P : · · · d3−→ P2
d2−→ P1

d1−→ P0 → P−1 → P−2 → · · ·

Fix a (left) RG-module M . Applying HomRG(−,M) to P produces a new complex. The n-th

homology of this new complex is the n-th Tate cohomology of RG:

Ĥ
n
(G,M) := Êxt

n

RG(R,M) = Hn(HomRG(P,M)),

for all n ∈ Z. We use the hat notation for Tate cohomology Ĥ
n
(−) to distinguish from the usual

cohomology Hn(−).

We note that Tate cohomology and its Hochschild version were later generalized by others and can

be defined in a more general setting for Frobenius algebras e.g. [17, 30] or for two-sided Noetherian

Gorenstein rings e.g. [2, 10]. The goal of this chapter is to specialize this cohomology theory for

finite dimensional Hopf algebras A over a field k. We recall the fact that a finite dimensional

Hopf algebra A is a Frobenius algebra [29, Theorem 2.1.3], which is self-injective. Lemmas 3.1

and 3.2 in [7] show that Aop, Ae are also Frobenius, hence self-injective. In the context of the

Definition III.1 and by the definition of Gorenstein rings, we observe that A,Aop, and Ae are

Gorenstein of Gorenstein dimension d = 0. Using complete resolutions, we will introduce the Tate

cohomology and Tate-Hochschild cohomology for A, their properties and product structures.
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III.1 Tate cohomology for finite dimensional Hopf algebras

III.1.1 Definition of Tate cohomology

Generalizing the construction in [4, §5.15] and using the Hopf structure of A, we can explicitly form

an A-complete resolution P of k from an A-projective resolution P• of k:

P• : · · · → P2
d2−→ P1

d1−→ P0
ε=d0−−−→ k→ 0.

This can be done by splicing P• with its dual complex D(P•) := Homk(P•,k), which is also an

exact sequence of finitely generated projective A-modules, since a dual D(Pi) of an A-module Pi

is again an A-module and injective modules coincide with projective modules over a self-injective

algebra. One can check that the resulting complex P is exact and satisfies the definition of a

complete resolution of k. The construction is described in the following diagram:

P : · · · - P2
- P1

- P0
D(ε)◦ε - P−1

- P−2
- P−3

- · · ·

k D
(ε

)
-

ε -

0

-

0
-

where we denote P−1 := D(P0), P−2 := D(P1), and so on.

Definition III.2. We define the n-th Tate cohomology group of A with coefficients in a left

A-module M as:

Ĥ
n
(A,M) := Êxt

n

A(k,M) = Hn(HomA(P,M)), for all n ∈ Z.

The Tate homology groups Ĥn(A,M) := T̂or
A

n (k,M) are defined analogously by applying −⊗AM

to P and taking the n-th homology of the new complex. Here, we are only interested in the Tate

cohomology. Observe that in our context, naturally, the Tate (co)homology does not depend on

the choice of the projective resolution of k (by the ordinary Comparison Theorem), and hence, is

independent of the complete resolution of k [2, Theorem 5.2 and Lemma 5.3]. Moreover, from our

construction of P described above, we see that the Tate cohomology groups agree with the usual
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cohomology groups in positive degrees:

Ĥ
n
(A,M) ∼= Hn(A,M), for all n > 0.

Remark III.3. Instead of using complete resolutions, there is another formulation of the Tate

cohomology for A via the stable module category [10, Lemma 6.1.2]. If M and N are finitely gen-

erated A-modules, we define HomA(N,M) to be the quotient of HomA(N,M) by homomorphisms

that factor through a projective module. Then for any integer n:

Êxt
n

A(k,M) ∼= HomA(Ωnk,M) ∼= HomA(k,Ω−nM),

or equivalently [10, Prop. 6.5.1],

Êxt
n

A(k,M) ∼= lim
−→

k, k+n≥0

HomA(Ωk+nk,ΩkM),

where Ω is the Heller operator, sending an A-module to the kernel of a projective cover of that

module. This definition, which is equivalent to that using complete resolutions, is useful especially

when proving some results on the cochain level. We will use these equivalent definitions of Tate

cohomology interchangeably when it is convenient.

III.1.2 Properties of Tate cohomology

We compare the Tate cohomology and the usual cohomology of A. We note some important

properties:

(a) For all n > 0, Ĥ
n
(A,M) ∼= Hn(A,M).

(b) The group Ĥ
0
(A,M) is a quotient of H0(A,M).

These follow from the construction of complete resolutions.

(c) For all n < −1, we have isomorphisms: Ĥ
n
(A,M) ∼= H−(n+1)(A,M), by applying a similar

argument as in [9, Prop. I.8.3c] to A.

(d) If 0 → M → M ′ → M ′′ → 0 is a short exact sequence of (left) A-modules, then there is

a doubly infinite long exact sequence of Tate cohomology groups, [2, Prop. 5.4] or see [30,
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Theorem 1] for the Tate-Hochschild version:

· · · → Ĥ
n
(A,M)→ Ĥ

n
(A,M ′)→ Ĥ

n
(A,M ′′)→ Ĥ

n+1
(A,M)→ · · ·

(e) If (Nj)j∈J is a finite family of (left) A-modules and (Mi)i∈I is any family of A-modules, then

there are natural isomorphisms, for all n ∈ Z [2, Prop. 5.7]:

Êxt
n

A(
⊕
j∈J

Nj ,M) ∼=
∏
j∈J

Êxt
n

A(Nj ,M),

Êxt
n

A(N,
∏
i∈I

Mi) ∼=
∏
i∈I

Êxt
n

A(N,Mi).

III.2 Tate-Hochschild cohomology for finite dimensional Hopf algebras

Let A be a finite dimensional Hopf algebra over a field k and Ae be its enveloping algebra. Any

bimodule M of A can be viewed as a left Ae-module by setting (a⊗b) ·m = amb, for a⊗b ∈ Ae and

m ∈ M . In particular, A is a left Ae-module. By [2, Theorems 3.1, 3.2], every finitely generated

Ae-module admits a complete resolution. Hence, we obtain an Ae-complete resolution X for A.

Definition III.4. Let M be an A-bimodule. For any integer n ∈ Z, the n-th Tate-Hochschild

cohomology group of A is defined as:

ĤH
n
(A,M) := Êxt

n

Ae(A,M) = Hn(HomAe(X,M)), for all n ∈ Z.

Again, as Ae is Gorenstein of Gorenstein dimension 0, from the discussions in [2, 7], we see that

the Tate-Hochschild cohomology groups of A agree with the usual Hochschild cohomology groups

in all positive degrees:

ĤH
n
(A,M) ∼= HHn(A,M), for all n > 0.

Remark III.5. The Tate analog of the Hochschild cohomology (of a Frobenius algebra) is also

considered in [30, §3] using a complete standard complex, or in [17, 2.1.11] as the stable Hochschild

cohomology HomAe(Ω
nA,M) using the stable module category of Ae. Eu and Schedler also showed
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that cup product and contraction structures extend to the stable Z-graded setting for the Tate-

Hochschild cohomology ring of A [17, Theorem 2.1.15].

In the next section, we observe that these two Tate-cohomology types obtain ring structures which

can help us to develop a deeper understanding of their relation as algebras.

III.3 Multiplicative structures

III.3.1 Cup product on Tate cohomology

Suppose P is an A-complete resolution of k. Based on the discussion in [9, §VI.5], we also note the

following difficulties in constructing the cup product on Tate cohomology:

First of all, P ⊗ P is not a complete resolution of k ⊗ k ∼= k, as (P ⊗ P)+ is not the same as

the tensor product of resolutions P+ ⊗ P+, where P+ = {Pn}n≥0. Consequently, using the map

HomA(P,M) ⊗ HomA(P, N) → HomA(P ⊗ P,M ⊗ N) would not obviously induce a cohomology

product in Tate cohomology as it does in the usual non-Tate cohomology. Secondly, when applying

the diagonal approximation (a chain map that preserves augmentation) Γ : P → P ⊗ P, for any

n ∈ Z, there are infinitely many (i, j) such that i + j = n, and the dimension-shifting property

in Section III.1.2(d) suggests that the corresponding cup products should all be non-trivial. So Γ

should have a non-trivial component Γij , for all (i, j). Hence, the range of Γ should be the graded

module which is
∏
i+j=n Pi ⊗ Pj in the dimension n, rather than

⊕
i+j=n Pi ⊗ Pj . This discussion

motivates us to the following definitions:

Let ε : P → k be an A-complete resolution of k and let d be the differentials in P. We form the

complete tensor product P⊗̂P by defining:

(P⊗̂P)n =
∏

i+j=n

Pi ⊗ Pj , for all n ∈ Z,

with the “total differential” ∂i,j = dvi,j + dhi,j , where dhi,j = di⊗̂1P and dvi,j = (−1)i1P⊗̂dj . It can

be easily seen that P⊗̂P is an acyclic complex of A-modules. However, we note that P⊗̂P is not a

complete resolution.
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On the other hand, given graded modules B,B′, C, C ′ and module homomorphisms u : C → B of

degree r and v : C ′ → B′ of degree s, there is a map u⊗̂v : C⊗̂C ′ → B⊗̂B′ of degree r + s defined

by:

(u⊗̂v)n =
∏

i+j=n

(−1)isui ⊗ vj :
∏

i+j=n

Ci ⊗ C ′j →
∏

i+j=n

Bi+r ⊗B′j+s.

Definition III.6. A complete diagonal approximation map is a chain map Γ : P → P⊗̂P

such that (ε⊗̂ε) ◦ Γ0 = ε, that is, Γ is an augmentation-preserving chain map.

A similar argument to the proof given in [9, §VI.5] shows the existence of such a complete diagonal

approximation map Γ : P → P⊗̂P. Let M and N be left A-modules. Then M ⊗ N is also a left

A-module via the coproduct: a · (m ⊗ n) =
∑
a1m⊗ a2n, for all a ∈ A,m ∈ M , and n ∈ N . We

define a cochain cup product:

^: HomA(Pi,M)⊗HomA(Pj , N)→ HomA(Pi+j ,M ⊗N)

given by

f ^ g = (f⊗̂g) ◦ Γ,

where f ∈ HomA(Pi,M) and g ∈ HomA(Pj , N). One verifies that by the definition of differentials

on the total complex, the usual coboundary formula holds:

δ(f ^ g) = (δf) ^ g + (−1)if ^ (δg).

It follows from the formula that the product of two cocycles is again a cocycle and the product of

a cocycle with a coboundary is a coboundary. Thus, this induces a well-defined product on Tate

cohomology Ĥ
i
(A,M) ⊗ Ĥ

j
(A,N) → Ĥ

i+j
(A,M ⊗ N). Moreover, this cup product is unique, in

the sense that: it is independent of the choice of P and Γ, it is associative at the chain level, that

is,

(f ^ g) ^ h = f ^ (g ^ h),

and 1 ∈ Ĥ
0
(A,k) is an identity. One proves this using the dimension-shifting property in Sec-

tion III.1.2 and exactness of tensor products over k, similarly as in [9, §V.3.3 and Lemma VI.5.8]

for group cohomology. It is immediate from the definitions that this product is natural with respect
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to coefficient homomorphisms. For example, an A-module homomorphism M ⊗ N → Q yields

products

Ĥ
i
(A,M)⊗ Ĥ

j
(A,N)→ Ĥ

i+j
(A,Q)

by composing the cup product and the induced map Ĥ
i+j

(A,M ⊗N)→ Ĥ
i+j

(A,Q). In particular,

when M = N = Q = k, Ĥ
∗
(A,k) is a graded ring. Moreover, by the construction of cup product,

for f and g representing elements of Ĥ
i
(A,k) and Ĥ

j
(A,k), respectively:

f ^ g = (f⊗̂g) ◦ Γ = (−1)ij(g⊗̂f) ◦ Γ = (−1)ij(g ^ f),

proving Ĥ
∗
(A,k) is graded-commutative. When N = k and Q ∼= M , Ĥ

∗
(A,M) is a graded module

over Ĥ
∗
(A,k).

III.3.2 Cup product on Tate-Hochschild cohomology

Let M and N be A-bimodules (which can be viewed as (left) Ae-modules). There is also a cup

product on the Tate-Hochschild cohomology:

ĤH
i
(A,M)⊗ ĤH

j
(A,N)→ ĤH

i+j
(A,M ⊗A N).

Before describing this cup product, let us recall some useful lemmas whose proofs can be found

in [32]. We provide sketches of the proofs for completeness. Let σ : A → Ae be defined by

σ(a) =
∑
a1⊗S(a2). Recall from Section II.4 that Ae may be viewed as a right A-module via right

multiplication by elements of σ(A).

Lemma III.7. A ∼= Ae ⊗A k as left Ae-modules, where Ae ⊗A k is the induced Ae-module.

Proof. Let f : A→ Ae ⊗A k be the function defined by:

f(a) = a⊗ 1⊗A 1,
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and let g : Ae ⊗A k→ A be the function defined by:

g(a⊗ b⊗A 1) = ab,

for all a, b ∈ A. One can easily check that f and g are both Ae-module homomorphisms, and that

they are inverses of each other.

Lemma III.8. Ae is a (right) projective A-module.

Proof. Since A is finite dimensional, its antipode map S is bijective. Moreover, S is an A-module

map: for all a, b ∈ A, we have S(ab) = S(b)S(a) = S(a) ∗ S(b) in Aop. This implies S : A→ Aop is

an isomorphism of right A-modules, where A acts on A by right by multiplication and on Aop by

multiplication by S(A). This yields an isomorphism of right A-modules: A⊗ A → A⊗ Aop = Ae.

Since A is projective over itself and free over k, A ⊗ A is a projective right A-module by [3,

Prop. 3.1.5]. Therefore, Ae is a projective right A-module, where A acts on Ae by multiplying

σ(A).

Let X be any Ae-complete resolution of A. By the same argument as in Section III.3.1, X⊗̂AX is

an acyclic chain complex of Ae-modules. Since ⊗A is not an exact functor in general, the existence

of a complete diagonal approximation map Γ does not follow trivially from [9] as before. We show

it here in detail.

Lemma III.9. There exists a complete diagonal approximation map Γ : X→ X⊗̂AX.

Proof. Observe that Ae ⊗A Ae = (A ⊗ Aop) ⊗A (A ⊗ Aop) ∼= A ⊗ Aop ⊗ Aop ∼= Ae ⊗k A. Since

Ae acts only on the outermost two factors of A, dropping A in the third step does not change the

Ae-module structure. Therefore, Ae ⊗A Ae ∼= Ae ⊗k A is an Ae-module isomorphism, not just a

k-module isomorphism.

As A is a free (hence projective) k-module, Ae ⊗k A is also free as an Ae-module. Consequently,

Ae ⊗A Ae is a free Ae-module. In general, tensor product over A of free Ae-modules is free. Since

any projective module is a direct summand of a free module, this implies that for all i, j ∈ Z,
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Xi⊗AXj is projective as an Ae-module. Again, because Ae is self-injective, projective Ae-modules

are also injective. Therefore, Xi ⊗A Xj is injective, implying the direct product (X⊗̂AX)n is an

injective Ae-module for all n ∈ Z.

As remarked in [3, Theorem 2.4.2], to form the chain map Γ+ : X+ → (X⊗̂AX)+ in non-negative

degrees, it suffices for the complex X+ to consist of projective modules but it need not be exact, and

for the complex (X⊗̂AX)+ to be exact but not necessarily to consist of projective modules. Since X+

is a projective resolution of A, we can apply the ordinary Comparison Theorem to obtain a chain

map Γ+ that is augmentation-preserving. We then consider the projective Ae-modules in negative

degrees of these complexes, which are (relatively) injective as discussed above. By a generalization

of [9, Prop. VI.2.4], the family of maps Γ+ extends to a complete chain map Γ : X → X⊗̂AX in

both positive and negative degrees.

We may define a cup product on Tate-Hochschild cohomology as follows. Let M and N be A-

bimodules, then M ⊗A N is also an A-bimodule which can be considered as a left Ae-module via

(a⊗ b) · (m⊗A n) = am⊗A nb, for a⊗ b ∈ Ae,m ∈M and n ∈ N . Let f ∈ HomAe(Xi,M) represent

an element of ĤH
i
(A,M) and let g ∈ HomAe(Xj , N) represent an element of ĤH

j
(A,N). Then:

f ^ g = (f⊗̂g) ◦ Γ ∈ HomAe(Xi+j ,M ⊗A N)

represents an element of ĤH
i+j

(A,M ⊗A N). One can check that this product is independent of

X and Γ and satisfies certain properties as in Section III.3.1. In particular, if M = N = A, then

ĤH
∗
(A,A) is a graded-commutative ring. If N = A, then ĤH

∗
(A,M) is a graded ĤH

∗
(A,A)-

module.
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CHAPTER IV

TATE COHOMOLOGY RELATION *

For a finite dimensional Hopf algebra A over a field k, it is known that the usual cohomology

H∗(A,k) of A is a direct summand of its Hochschild cohomology HH∗(A,A) [22, Prop. 5.6 and

Cor. 5.6]. This motivates us to ask if the same assertion holds for the Tate cohomology version. We

made an attempt to compare the Tate and the Tate-Hochschild cohomology groups of A in Sec-

tion III.2. We approach a broader setting by establishing cup products for the two Tate cohomology

types in Section III.3. These multiplication structures turn Ĥ
∗
(A,k) and ĤH

∗
(A,A) into graded-

commutative rings. Using the ring structures, we will show that the Tate and Tate-Hochschild

cohomology share the same relation as that of the usual cohomology. In this chapter, we also

compute the Tate and Tate-Hochschild cohomology for the Taft algebra, in particular, the Sweedler

algebra H4, as seen in Examples II.6 and II.5. These examples demonstrate explicit computations

using complete resolutions and help us to understand the above relation better.

IV.1 Relationship between the Tate and Tate-Hochschild cohomology rings of A

We begin with a lemma based on the original Eckmann-Shapiro Lemma but generalized to a com-

plete resolution:

Lemma IV.1 (Eckmann-Shapiro). Let B be a ring, let C ⊆ B be a subring for which B is flat

as a right C-module. Let M be a left C-module and let N be a left B-module. Consider N to be a

left C-module via restriction of the action, and let B ⊗C M denote the induced B-module where B

acts on the leftmost factor by multiplication. Then for all i ∈ Z, there is an isomorphism of abelian

groups:

Êxt
i

C(M,N) ∼= Êxt
i

B(B ⊗C M,N).

If B and C are k-algebras, then this is an isomorphism of vector spaces over k.

*Reprinted from Journal of Pure and Applied Algebra, Vol 217, Van C. Nguyen, Tate and Tate-Hochschild
cohomology for finite dimensional Hopf algebras, pp. 1967-1979. Copyright 2013, with permission from Elsevier.
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Proof. Let ε : P→M be a C-complete resolution of M . Since B⊗C C ∼= B as a left B-module, the

induced modules B ⊗C Pi are projective B-modules, for all i ∈ Z. The induced complex B ⊗C P is

exact as B is flat over C, with the “augmentation map” 1B ⊗C ε : B ⊗C P → B ⊗C M . So it is a

complete resolution of B ⊗C M as a B-module.

It suffices to show that for all i ∈ Z, HomC(Pi, N) ∼= HomB(B ⊗C Pi, N) as abelian groups. This

follows from the Nakayama relations [3, Prop. 2.8.3]. One can also check that these isomorphisms

commute with the differentials. By the definition of Tate cohomology, these isomorphisms will

comprise a chain map that induces an isomorphism on cohomology and give us the desired result.

We consider A to be an A-module by the left adjoint action: for a, b ∈ A, a · b =
∑
a1bS(a2),

and denote this A-module by Aad. More generally, if M is an A-bimodule, denote by Mad the left

A-module with action given by a ·m =
∑
a1mS(a2), for all a ∈ A and m ∈M . We now prove our

main result:

Theorem IV.2. ([31, Theorem 7.2]) Let A be a finite dimensional Hopf algebra over a field k.

Then there exists an isomorphism of algebras:

ĤH
∗
(A,A) ∼= Ĥ

∗
(A,Aad).

Proof. By Lemma III.8, Ae is a projective, hence, flat A-module. We then apply Lemmas III.7

and IV.1 with B = Ae, C = A is identified as a subalgebra of Ae, M = k is a left A-module, and

N = A ∼= Ae ⊗A k is an induced left Ae-module. We get Êxt
∗
A(k, Aad) ∼= Êxt

∗
Ae(A

e ⊗A k, A) as

k-modules, i.e. Ĥ
∗
(A,Aad) ∼= ĤH

∗
(A,A) as k-modules.

To show this is an algebra isomorphism, it remains to prove that cup products are preserved by

this isomorphism. Let P denote an A-complete resolution of k. Since Ae is a (right) projective

A-module by Lemma III.8, X := Ae ⊗A P is an Ae-complete resolution of Ae ⊗A k ∼= A.

Recall that A is acting on Ae on the left as well as on the right via σ. We define an A-chain

map ι : P → X by ι(p) = (1 ⊗ 1) ⊗A p, for all p ∈ Pi, i ∈ Z. Let f ∈ HomAe(Xi, A) be a

cocycle representing a cohomology class in Êxt
i

Ae(A,A). The corresponding cohomology class in
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Êxt
i

A(k, Aad) is represented by f ◦ ι.

Let Γ : P → P⊗̂P be a complete diagonal approximation map. Γ induces a cup product on

cohomology as discussed in Section III.3.1. Γ also induces a chain map Γ′ : X→ X⊗̂AX as follows.

There is a map of Ae-chain complexes φ : Ae ⊗A (P⊗̂P)→ X⊗̂AX given by:

φ((a⊗ b)⊗A (p⊗ q)) = ((a⊗ 1)⊗A p)⊗A ((1⊗ b)⊗A q).

Γ induces a map from Ae ⊗A P to Ae ⊗A (P⊗̂P). Let Γ′ be the composition of this map with φ.

Let f ∈ HomAe(Xi, A) and g ∈ HomAe(Xj , A) be cocycles. The above discussions imply the

following diagram commutes:

X Γ′ // X⊗̂AX
f⊗̂g // A⊗A A

∼ // A

P Γ //

ι

OO

P⊗̂P
(fι)⊗̂(gι)// A⊗A m // A

where m denotes the multiplication a⊗ b m7−→ ab, for all a, b ∈ A.

As described in Section III.3, the top row yields a product in Êxt
∗
Ae(A,A) and the bottom row

yields a product in Êxt
∗
A(k, Aad). Thus, cup products are preserved and ĤH

∗
(A,A) is isomorphic

to Ĥ
∗
(A,Aad) as algebras.

As a consequence of Theorem IV.2, to determine the Tate-Hochschild cohomology of a finite dimen-

sional Hopf algebra A, it suffices to compute its Tate cohomology with coefficients in the adjoint

A-module. One may, therefore, apply known examples of Tate cohomology groups (such as, [14,

§XII.7]) to compute the corresponding Tate-Hochschild cohomology. Furthermore, we arrive at the

desired relation between the Tate and Tate-Hochschild cohomology rings of A:

Corollary IV.3. ([31, Cor. 7.3]) If A is a finite dimensional Hopf algebra over a field k, then

Ĥ
∗
(A,k) is a direct summand of ĤH

∗
(A,A) as a module over Ĥ

∗
(A,k).

Proof. Under the left adjoint action of A on itself, the trivial module k is isomorphic to the sub-
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module of Aad given by all scalar multiples of the identity 1. In fact, k is a direct summand of Aad

with complement the augmentation ideal Ker(ε), where ε : A→ k is the counit map.

From the property (e) in Section III.1.2, Êxt
∗
A(k,−) is additive. By Theorem IV.2, we have:

ĤH
∗
(A,A) ∼= Ĥ

∗
(A,Aad) = Êxt

∗
A(k, Aad)

∼= Êxt
∗
A(k,k)⊕ Êxt

∗
A(k,Ker(ε))

∼= Ĥ
∗
(A,k)⊕ Êxt

∗
A(k,Ker(ε)).

Both k and Ker(ε) are closed under multiplication, and this multiplication induces multiplications

on Êxt
∗
A(k,−) which is also compatible with the ring structure on Êxt

∗
A(k, Aad). Hence, this is

in fact a direct summand, where ĤH
∗
(A,A) ∼= Ĥ

∗
(A,Aad) is considered as a (left) module over

Ĥ
∗
(A,k) with action via (left) multiplication.

In the next section, we will compute the Tate and Tate-Hochschild cohomology for the Taft algebra,

in particular, the Sweedler algebra. These simple examples should give us a rough procedure to

produce other examples.

IV.2 Example: Taft algebra

IV.2.1 Tate cohomology of Taft algebra

Let N ≥ 2 be an integer and k be a field containing a primitive N -th root of unity ω. We recall

the Taft algebra A, which is a Hopf algebra of dimension N2:

A = k〈g, x | gN = 1, xN = 0, xg = ωgx〉

as described in Example II.6. It is known that as an algebra, Taft algebra is a smash product

A = B#kG (or a skew group algebra), with B = k[x]/(xN ), and G is a finite cyclic group generated

by g of order N acting on B. Let χ : G → k× be the character, that is, a group homomorphism
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from G to the multiplicative group of k, defined by χ(g) = ω. G acts by automorphisms on B via:

gx = χ(g)x = ωx.

Note that since G is generated by g, all G-actions are determined by the action of the generator g.

By the definition of smash product, A is B ⊗ kG as a vector space, with the multiplication:

(b1 ⊗ g1)(b2 ⊗ g2) = b1(g1b2)⊗ g1g2,

for all b1, b2 ∈ B and g1, g2 ∈ G. We abbreviate bi ⊗ gi by bigi. Moreover, as the characteristic of

k does not divide |G| = N , kG is semisimple and so all the cohomology of kG is trivial except in

the degree 0. From [36, Cor. 3.4], the Taft algebra’s usual cohomology is known as:

H∗(A,k) ∼= (Ext∗B(k,k))G,

where the superscript G denotes the invariants under the action of G. Again, as the characteristic of

k is relatively prime to |G|, G-invariants may be taken in a complex prior to taking the cohomology.

We consider the following B-free resolution of k:

· · · ·x−→ B
·xN−1

−−−−→ B
·x−→ B

·xN−1

−−−−→ B
·x−→ B

ε−→ k→ 0, (IV.1)

with ε(x) = 0 is the augmentation map. This resolution could be extended to a projective A-

resolution of k by giving B the following actions of G, for all b ∈ B and i > 0:

• In degree 0, g · b := gb.

• In degree 2i, g · b := χ(g)iN (gb) = gb, since χ(g)iN = ωiN = 1i = 1.

• In degree 2i+ 1, g · b := χ(g)iN+1(gb) = ω(gb).

We check that this group action commutes with the differentials in (IV.1) in each degree. Thus,

we may extend the differentials ·xN−1 and ·x in (IV.1) to be A-module maps. Moreover, since the

characteristic of k does not divide |G|, an A-module is projective if and only if its restriction to B

is projective. With these actions, (IV.1) is indeed an A-projective resolution of k.
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Take the k-dual Homk(−,k) =: D(−) of (IV.1), we have:

0→ k
D(ε)−−−→ D(B)

D(·x)−−−→ D(B)
D(·xN−1)−−−−−−→ D(B)

D(·x)−−−→ D(B)
D(·xN−1)−−−−−−→ · · · (IV.2)

which is an exact sequence of projective A-modules. Splicing (IV.1) and (IV.2) together at k, we

obtain an A-complete resolution of k:

P : · · · ·x−→ B
·xN−1

−−−−→ B
·x−→ B

ξ−→ D(B)
D(·x)−−−→ D(B)

D(·xN−1)−−−−−−→ D(B)
D(·x)−−−→ · · · (IV.3)

where ξ = D(ε)◦ε. To compute the Tate cohomology ofA with coefficients in k, apply HomA(−,k) =

(−) to (IV.3):

· · · D(·x)−−−→ D(B)
D(·xN−1)−−−−−−→ D(B)

D(·x)−−−→ D(B)
ξ−→ B

(·x)−−→ B
(·xN−1)−−−−−→ B

(·x)−−→ · · · (IV.4)

which is a complex of A-modules. Take the homology of this new complex, we will obtain the Tate

cohomology of the Taft algebra A.

Let us compute explicitly for the case N = 2. Here, G ∼= Z2, B = k[x]/(x2), and A = B#kG is the

Sweedler algebra H4 that we have seen in Example II.5. B has a basis {1, x} and D(B) has a dual

basis {f1, fx}. By previously defined actions of G, B is an H4-module with:

g · x = −x, g · 1 = 1, in even degrees

g · x = x, g · 1 = −1, in odd degrees

such that this action commutes with the differential maps in (IV.1). We denote (−)ev for objects

in even degrees and (−)odd for objects in odd degrees, given the corresponding actions of G as

H4-modules; hence, (IV.3) becomes:

P : · · · ·x−→ Bev
·x−→ Bodd

·x−→ B0
ξ−→ D(B)odd

D(·x)−−−→ D(B)ev
D(·x)−−−→ D(B)odd

D(·x)−−−→ · · ·

as an H4-complete resolution of k. D(B) is an H4-module via the action: (g · f)(b) = f(S(g) · b) =

f(g · b), for f ∈ D(B), b ∈ B, g ∈ G and S(g) = g−1 = g in H4. Checking on the basis elements, we
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see that the G-actions on D(B) can be carried along:

g · f1 = f1, g · fx = −fx, in even degrees

g · f1 = −f1, g · fx = fx, in odd degrees.

By identifying f1 ↔ x and fx ↔ 1, we have D(B)ev ∼= Bodd and D(B)odd ∼= Bev as H4-modules.

As a result, P can be written as:

P : · · · ·x−→ Bev
·x−→ Bodd

·x−→ B0
ξ−→ Bev

D(·x)−−−→ Bodd
D(·x)−−−→ Bev

D(·x)−−−→ · · ·

Apply HomH4(−,k) = (−) to P, we get the complex of H4-modules:

· · · D(·x)−−−→ Bev
D(·x)−−−→ Bodd

D(·x)−−−→ Bev
ξ−→ B0

(·x)−−→ Bodd
(·x)−−→ Bev

(·x)−−→ · · ·

For all f ∈ HomB(B,k) and b ∈ B, 1 = f(b) = b · f(1) = ε(b)f(1). We may identify f with a

map in Homk(k,k) and obtain an isomorphism HomB(B,k) ∼= Homk(k,k) which is isomorphic to

k. We then observe that B = HomH4(B,k) is contained in HomB(B,k) ∼= k. One can check that

under the corresponding group actions:

B =


k in 0 and even degrees

0 in odd degrees.

This simplifies the above complex to:

· · · D(·x)−−−→ k
D(·x)−−−→ 0

D(·x)−−−→ k
ξ−→ k

(·x)−−→ 0
(·x)−−→ k

(·x)−−→ · · ·

To compute the homology of this complex, we need to see what ξ looks like. ξ : D(B) → B is

defined as ξ(h)(b) = h(ξ(b)) for h ∈ D(B), b ∈ B. By exactness of P, Im(ξ) = Ker(D(·x)) = 〈f1〉.

As an H4-module map, h sends f1 7→ 0, and fx 7→ 1. Therefore, ξ(h)(b) = h(ξ(b)) = h(f1) = 0 and

ξ is a 0-map.
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Putting these together, we have computed the Tate cohomology for Sweedler algebra H4:

Ĥ
n
(H4,k) =



k n < −1, n is odd

0 n < −1, n is even

k n = −1, 0

0 n > 0, n is odd

k n > 0, n is even.

It follows that Ĥ
n
(H4,k) ∼= Ĥ

−(n+1)
(H4,k), for all n ∈ Z.

IV.2.2 Tate-Hochschild cohomology of Taft algebra

In order to compute the Tate-Hochschild cohomology of a general Taft algebra A, we use the

following subalgebra of Ae = A⊗Aop as in [11]:

D := Be#kG ∼=
⊕
g∈G

(Bg ⊗Bg−1) ⊂ Ae,

where the action of G on Be is diagonal, that is, g(a⊗ b) = (ga)⊗ (gb). This isomorphism is given

by (a ⊗ b)g 7→ ag ⊗ (g
−1

b)g−1, for all a, b ∈ B, and g ∈ G. Note that B is a D-module under left

and right multiplications. Since the characteristic of k does not divide |G| = N , the Hochschild

cohomology HH∗(A) := Ext∗Ae(A,A) is known to satisfy:

HH∗(A) ∼= Ext∗D(B,A) ∼= Ext∗Be(B,A)G

as graded algebras. Ext∗Be(B,A)G consists of invariants under the action induced from the action

of G on a D-module, see [11, (4.9)] or [36, Cor. 3.4] for more details. Observe the following Be-free

resolution of B, [39, Exercise 9.1.4]:

· · · → Be
·v−→ Be

·u−→ Be
·v−→ Be

·u−→ Be
m−→ B → 0, (IV.5)
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where m is the multiplication map a⊗ b 7→ ab,

u = x⊗ 1− 1⊗ x, and v = xN−1 ⊗ 1 + xN−2 ⊗ x+ · · ·+ 1⊗ xN−1.

Using this resolution, one computes HHn(B) ∼= B/(xN−1) and (HHn(B))G ∼= k for all n > 0. This

resolution also becomes a D-projective resolution of B by giving the following actions of G on Be,

for all a⊗ b ∈ Be, g ∈ G, and integers i > 0:

• In degree 0, g · (a⊗ b) = (ga)⊗ (gb).

• In degree 2i, g · (a⊗ b) = χ(g)iN (ga)⊗ (gb) = (ga)⊗ (gb), since χ(g)iN = ωiN = 1i = 1.

• In degree 2i+ 1, g · (a⊗ b) = χ(g)iN+1(ga)⊗ (gb) = ω(ga)⊗ (gb).

The differentials ·u and ·v commute with the group actions and turn out to be maps of D-modules.

Since char(k) does not divide |G|, a D-module is projective if and only if its restriction to Be is

projective. With these actions, (IV.5) becomes a D-projective resolution of B.

Because Be is a left B-module by multiplying by the leftmost factor in Be, we can take the dual

(−)∗ := HomB(−, B) of (IV.5). Since B ∼= HomB(B,B), we have:

0→ B
m∗−−→ (Be)∗

(·u)∗−−−→ (Be)∗
(·v)∗−−−→ (Be)∗

(·u)∗−−−→ (Be)∗
(·v)∗−−−→ · · · (IV.6)

One can show that this is an exact sequence of projective D-modules. The dual (Be)∗ is a left

Be-module via the action:

((a⊗ b) · f)(c⊗ d) = f((a⊗ b)(c⊗ d)) = f(ac⊗ db),

for all f ∈ HomB(Be, B), and a, b, c, d ∈ B. The differentials (·u)∗, (·v)∗,m∗ are Be-module homo-

morphisms, since they are just the compositions of maps, d∗(f) = f ◦ d.

For any a ∈ B and b ∈ Bop, we may identify them with a ⊗ 1 and 1 ⊗ b in Be, respectively. We

observe that (Be)∗ = HomB(Be, B) ∼= Homk(Bop, B), since for all f ∈ (Be)∗, we have f(a ⊗ b) =

f(a(1⊗ b)) = af(1⊗ b). As f is determined by what it does on a⊗ b, we may identify (Be)∗ with

Be under the correspondence fa⊗b 7→ a⊗ b, where fa⊗b(1⊗ 1) = af(1⊗ b). Hence, the maps (·u)∗

and (·v)∗ can be considered as the maps ·u and ·v, respectively. Moreover, Be is free over itself,
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so (Be)∗ ∼= Be is a projective Be-module. This implies (IV.6) is an exact sequence of projective

Be-modules; hence, an exact sequence of projective D-modules.

Splicing (IV.5) and (IV.6) together at B, we form a D-complete resolution of B:

X : · · · ·u−→ Be
·v−→ Be

·u−→ Be
ξ−→ Be

·u−→ Be
·v−→ Be

·u−→ · · · , (IV.7)

where ξ = m∗ ◦m. Due to the isomorphism HH∗(A) ∼= Ext∗D(B,A), we apply HomD(−, A) = (̂−)

to (IV.7):

· · · ·̂u−→ B̂e
·̂v−→ B̂e

·̂u−→ B̂e
ξ̂−→ B̂e

·̂u−→ B̂e
·̂v−→ B̂e

·̂u−→ · · · , (IV.8)

where B̂e denotes HomD(Be, A), and d̂(f) = f ◦ d. It is easy to check that the composition of any

two consecutive maps d̂ ◦ d̂ is equal to 0, making (IV.8) a complex.

For all f ∈ HomBe(B
e, A), g ∈ G, and a⊗ b ∈ Be, we have HomD(Be, A) ∼= HomBe(B

e, A)G, where

G acts on HomBe(B
e, A) by (g ·f)(a⊗ b) = g ·f(g−1 · (a⊗ b)). Note that as a Be-homomorphism, f

is completely determined by its value on 1⊗ 1. We identify A with Homk(k, A) ∼= HomBe(B
e, A),

under the correspondence a 7→ fa, where fa(1⊗1) = a, for all a ∈ A. The complex (IV.8) becomes:

· · · ·̂u−→ AG
·̂v−→ AG

·̂u−→ AG
ξ̂−→ AG

·̂u−→ AG
·̂v−→ AG

·̂u−→ · · ·

with the actions of G on A depending on the degrees as stated above. The maps ·̂u and ·̂v are:

(·̂u)(a) = (·̂u)fa(1⊗ 1) = fa(·u(1⊗ 1)) = xa− ax,

(·̂v)(a) = xN−1a + xN−2ax+ xN−3ax2 + · · ·+ axN−1,

for all a ∈ AG. We use an analogous argument as in [11, proof of Theorem 2.4] and apply the

group actions on HomBe(B
e, A) to take the invariants AG. Since χiN = 1, we find that in 0 and

even degrees, AG = Z(kG), the center of the group algebra kG, which is kG itself because G is

cyclic. Similarly, in odd degrees, the invariants are spanned by elements of the form Nxt, for t ∈ G.

However, as G is cyclic generated by g, t = gj for some j = 0, 1, . . . , N − 1, we have AG is spanned

over k by {x, xg, xg2, . . . , xgN−1} in odd degrees. Thus, ·̂v is the 0-map: (·̂v)(xgj) = 0, as xN = 0

in A = B#kG. We then have Ker(·̂v) = AG in odd degrees, and Im(·̂v) = 0. Similarly, in even
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degrees, Ker(·̂u) = k. In odd degrees, Im(·̂u) is spanned over k by {xg, xg2, . . . , xgN−1}.

We observe that:

ξ̂ : AG = Spank{x, xg, xg2, . . . , xgN−1} → AG = kG

maps from degree −1 to degree 0. However, as there is no group element or field element in degree

−1, x and its powers must be sent to 0. It follows that ξ̂ must be a 0-map. Putting these together,

we obtain the Tate-Hochschild cohomology for the Taft algebra A, for any integer n:

ĤH
n
(A,A) =


Ker(·̂u)/ Im(ξ̂) = k/0 = k, n = 0

Ker(·̂u)/ Im(·̂v) = k/0 = k, n is even

Ker(·̂v)/ Im(·̂u) = Spank{x}, n is odd.

In particular, since any two finite dimensional vector spaces over k having the same dimension

are isomorphic, we have k ∼= Spank{x}. We get a symmetric property for the Tate-Hochschild

cohomology of Taft algebra:

ĤH
n
(A,A) ∼= ĤH

−(n+1)
(A,A), for all n ∈ Z.

For the Sweedler algebra H4, these isomorphisms can also be obtained without explicitly computing,

as follows. Any Frobenius k-algebra F is associated with a non-degenerate associative bilinear

Frobenius form B(−,−) : F × F → k. The Nakayama automorphism ν : F → F satisfies

B(x, y) = B(y, ν(x)), for all x, y ∈ F . Replacing B with a new Frobenius form B′ defined by a unit

element u ∈ F gives us a new automorphism ν′ = Iu ◦ ν, where Iu is the inner automorphism r 7→

uru−1. The Nakayama automorphism ν is unique up to composition with an inner automorphism.

Equivalently, it is a well-defined element of the group of outer automorphisms of F .

By [7, Cor. 3.8], if ν is the Nakayama automorphism of a Frobenius algebra F such that ν2 = 1,

the identity map, then there is an isomorphism:

ĤH
n
(F, F ) ∼= ĤH

−(n+1)
(F, F ), for all n ∈ Z.
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Since H4 is a Frobenius algebra, we can calculate the Nakayama automorphism ν of H4 by applying

the formula for ν given in [19, Lemma 1.5], we obtain ν2 = 1 on H4. It follows that the Tate-

Hochschild cohomology of H4 has the property:

ĤH
n
(H4, H4) ∼= ĤH

−(n+1)
(H4, H4), for all n ∈ Z.
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CHAPTER V

TATE-HOCHSCHILD COHOMOLOGY OF A GROUP ALGEBRA

The theory of group cohomology is a well-studied yet ongoing research area. It has many applica-

tions to other areas such as representation theory, algebraic geometry, and commutative algebra.

For an arbitrary commutative ring R and a group G, it is well-known that the Hochschild co-

homology HH∗(RG,M) :=
⊕

n≥0 ExtnRG⊗RRGop(RG,M) with coefficients in an RG-bimodule M ,

is the same as the usual group cohomology ring, H∗(G,M) :=
⊕

n≥0 ExtnRG(R,M) with coeffi-

cients in M under the diagonal action [16]. In particular, by considering RG as its own bimodule,

HH∗(RG,RG) is isomorphic to H∗(G,RG), where RG is a left RG-module via conjugation. From

this identification and the Eckmann-Shapiro Lemma, one can prove that HH∗(RG,RG) may be

decomposed as a direct sum of the cohomology of the centralizers of conjugacy class representatives

of G [4, Theorem 2.11.2]. In 1999, Siegel and Witherspoon described a formula for the products

in HH∗(RG,RG) in terms of this additive decomposition [35]. When G is abelian, Holm [24] and

Cibils and Solotar [15] proved that the Hochschild cohomology ring of G is (isomorphic to) the

tensor product over R of RG and its usual cohomology ring.

As seen in Example II.3, a finite group algebra is a finite dimensional Hopf algebra. So our previous

constructions and results hold for its Tate and Tate-Hochschild cohomology rings. In this chapter,

we explore the structure of its Tate-Hochschild cohomology and generalize some known results in

group cohomology to negative degrees.

V.1 Tate-Hochschild cohomology of a group algebra

Let G be a finite group. By Maschke’s Theorem, if k is a field whose characteristic does not divide

the order of G, then the group algebra kG is semisimple. So the cohomology of kG is trivial except

in the degree 0 and nothing is interesting in such case (see also [14, Cor. XII.2.7]). Therefore,

throughout this chapter, we let R be the ring of integers Z or a field k of prime characteristic

p > 0 dividing the order of G (Tate group cohomology results over Z such as those in [14, Ch. XII]
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can also be proved for such a choice of field k; hence, still hold for the group algebra RG). All

rings and algebras are assumed to possess a unit; all modules are assumed to be left modules;

and tensor products will be over R, unless stated otherwise. Consider the group algebra RG. Let

RGe := RG⊗RGop be its enveloping algebra. If G is acting on a set X, we denote the action gx,

for all g ∈ G and x ∈ X.

Using complete resolutions, the Tate cohomology Ĥ
∗
(G,M) and the Tate-Hochschild cohomology

ĤH
∗
(RG,M) of RG, are the extensions of the usual cohomology and Hochschild cohomology, re-

spectively, to negative degrees. There are also multiplicative structures making Ĥ
∗
(G) := Ĥ

∗
(G,R)

and ĤH
∗
(RG,RG) become graded-commutative rings, as seen in Section III.3 ([31, §3, 4, and

6]). Equivalently, using the stable module categories, one can also define the Tate cohomology,

Tate-Hochschild cohomology, and their product structures, for example, see [17].

Ĥ
∗
(G,M) :=

⊕
n∈Z

Êxt
n

RG(R,M) ∼=
⊕
n∈Z

HomRG(ΩnR,M),

ĤH
∗
(RG,M) :=

⊕
n∈Z

Êxt
n

RGe(RG,M) ∼=
⊕
n∈Z

HomRGe(Ω
nRG,M),

where M is a finitely generated RG-module in the former case and a finitely generated RG-bimodule

in the latter case.

V.1.1 Agreement of products

Cup products (outer products, constructed via the tensor product of complexes, as seen in Sec-

tion III.3 ([31, §6])) agree with the Yoneda products (compositions of maps, [17, §2]) in the fol-

lowing sense. Let M and N be RG-bimodules. For [f ] ∈ ĤH
i
(RG,M) and [g] ∈ ĤH

j
(RG,N), we

can write [f ]⊗̂[g] as the composition of ([f ]⊗̂1N ) ∈ ĤH
i
(RG ⊗RG N,M ⊗RG N) and (1RG⊗̂[g]) ∈

ĤH
j
(RG ⊗RG RG,RG ⊗RG N). In this way, the cup product agrees with the Yoneda product:

The case when i, j ≥ 0 is well-known and, for example, can be proved using a similar argument as

in [3, Prop. 3.2.1]. For arbitrary integers i and j, we can take f ′ ∈ HomRGe(Ω
i+aRG,ΩaM) and

g′ ∈ HomRGe(Ω
j+bRG,ΩbN), such that a, b, i+ a, j+ b ≥ 0, and apply a similar argument for Ωbf ′

and Ωag′. The desired agreement follows, using the following isomorphisms in the stable module
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category of RG (which can be generalized to those of RGe):

Ωn(ΩmN)
∼−→ Ωn+mN ⊕ (projective),

Ωn(N)⊗ ΩmM
∼−→ Ωn+m(N ⊗M)⊕ (projective),

HomRG(N,M)
∼−→ HomRG(ΩnN,ΩnM).

To the author’s knowledge, this agreement of products has not been done explicitly for the Tate-

Hochschild cohomology.

V.1.2 Reduction to Tate cohomology and relations with subgroups

By Theorem IV.2 ([31, Theorem 7.2]), we have an algebra isomorphism:

ĤH
∗
(RG,RG) ∼= Ĥ

∗
(G,RG), (V.1)

where RG is considered as a module over itself via conjugation. Therefore, all properties of

Ĥ
∗
(G,RG), as seen in Section III.1.2, transfer to those for the Tate-Hochschild cohomology.

Let H be a subgroup of G. By restricting the action, any RG-module N may be regarded as an

RH-module and any RG-complete resolution P of R may also be considered as an RH-complete

resolution of R. Sections XII.8 and XII.9 in [14] show that there are maps in the Tate cohomology

with properties analogous to those in the usual group cohomology:

• The restriction map:

resGH : Ĥ
∗
(G,N)→ Ĥ

∗
(H,N),

which is induced from the inclusion HomRG(P, N) ⊂ HomRH(P, N).

• The corestriction map (or transfer):

corGH : Ĥ
∗
(H,N)→ Ĥ

∗
(G,N),
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which is given on the cochain level by defining:

(corGH f)(p) =
∑
g∈G

gf(g−1p),

where G denotes a set of left coset representatives of H in G, f ∈ HomRH(Pi, N), and p ∈ Pi.

One can check that this definition is independent of the choice of the representatives g ∈ G.

• Moreover, for any g ∈ G, there is an isomorphism:

g∗ : Ĥ
∗
(H,N)→ Ĥ

∗
(gHg−1, N) = Ĥ

∗
(gH,N)

defined on the cochain level as (g∗f)(p) = g(f(g−1p).

These maps and their algebraic relations will be the keys to our main results. We shall recall some

properties of these maps without proving them. The proof goes through for our RG using similar

arguments as in [14]. The readers can refer to [14] for more details.

Proposition V.1. [14, §XII.8 (4)-(14) and §XII.9 (4)] Let K ⊆ H ⊆ G be subgroups, and N1, N2

be RG-modules which may be regarded as RH-modules. Let αi ∈ Ĥ
∗
(G,Ni), βi ∈ Ĥ

∗
(H,Ni), and

gi ∈ G, for i = 1, 2. Then the maps defined above satisfy:

1. g∗1g
∗
2 = (g1g2)∗

2. If g ∈ H, then g∗ = 1, where 1 is the identity map on Tate cohomology

3. corGH ◦ resGH = (G : H)1

4. resHK ◦ resGH = resGK

5. corGH ◦ corHK = corGK

6. g∗ ◦ resHK = res
gH
gK ◦g∗

7. g∗ ◦ corHK = cor
gH
gK ◦g∗

8. resGH(α1 ^ α2) = (resGH α1) ^ (resGH α2)

9. corGH(β1 ^ resGH α2) = (corGH β1) ^ α2

10. corGH(resGH α1 ^ β2) = α1 ^ (corGH β2)

11. g∗(β1 ^ β2) = (g∗β1) ^ (g∗β2)

12. Let H,K ⊆ G be subgroups and N be an RG-module which may be regarded as an RH (or
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RK)-module. The map resGK ◦ corGH : Ĥ
∗
(H,N)→ Ĥ

∗
(K,N) is given by:

resGK(corGH(β)) =
∑
x∈D

corKK∩ xH(res
xH
K∩ xH(x∗β)),

where β ∈ Ĥ
∗
(H,N) and D is a set of double coset representatives such that G =

⋃
x∈D

KxH

is a disjoint union.

V.2 Generalized additive decomposition

For the rest of this chapter, we work on a more general setting by letting H be another finite

group which acts as automorphisms on G. Via this action, RG becomes an RH-module. The

multiplication map RG⊗RG→ RG is an RH-module homomorphism. Hence, it induces the ring

structure on cohomology Ĥ
∗
(H,RG) := Êxt

∗
RH(R,RG) by composing with the cup product. We

will study the additive decomposition of this ring Ĥ
∗
(H,RG). The Tate-Hochschild cohomology

ring ĤH
∗
(RG,RG) ∼= Ĥ

∗
(G,RG) is a special case of Ĥ

∗
(H,RG) by letting H = G act on itself by

conjugation.

V.2.1 Decomposition of the Tate-Hochschild cohomology

We begin by generalizing Holm’s [24] and Cibils and Solotar’s result [15] to its Tate version.

Proposition V.2. If H acts trivially on G, then Ĥ
∗
(H,RG) ∼= RG ⊗R Ĥ

∗
(H,R) as graded R-

algebras. In particular, if G is abelian, then

ĤH
∗
(RG,RG) ∼= RG⊗R Ĥ

∗
(G,R).

Proof. If G is abelian, H = G acting on itself by conjugation yields the trivial action. Hence, the

second statement follows from the first statement and the isomorphism (V.1):

ĤH
∗
(RG,RG) ∼= Ĥ

∗
(G,RG) ∼= RG⊗R Ĥ

∗
(G,R).

To prove the first statement, let ε : P → R be an RH-complete resolution of R. Since H acts
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trivially on G, RG is a trivial RH-module and is free as an R-module. We define the map γ :

RG ⊗ HomRH(P, R) → HomRH(P, RG) by sending g ⊗ f 7→ γ(g ⊗ f) = F , where F (p) = f(p)g,

for f ∈ HomRH(Pi, R), p ∈ Pi, and g ∈ G. It can be checked that F ∈ HomRH(P, RG) and γ is an

isomorphism. Moreover, F is a cocycle when f is. Hence, passing to the homology, γ induces an

isomorphism of graded R-modules:

γ∗ : RG⊗R Ĥ
∗
(H,R)→ Ĥ

∗
(H,RG).

The definition of cup product corresponds to this map, making γ∗ a ring homomorphism.

Remark V.3. The proposition’s statement for an abelian group G was observed in the proof of

[25, Prop. 5.2 ] without an explicit verification. This proposition helps us to study the structure of

the Tate-Hochschild cohomology ring of a finite abelian group algebra, given its Tate cohomology

ring. For example, knowing the Tate cohomology of a cyclic group G, see [14, §XII.7], one can

easily compute its Tate-Hochschild cohomology by applying Proposition V.2.

Now we return to the general case where H acts on G non-trivially and G is not necessarily

abelian. Let g1 = 1, g2, . . . , gt ∈ G be representatives of the orbits of the action of H on G. Let

Hi := StabH(gi) = {h ∈ H | hgi = gi} be the stabilizer of gi. For any g ∈ G, there are two

R(StabH(g))-module homomorphisms:

θg : R→ RG via r 7→ rg,

πg : RG→ R via
∑
a∈G

raa 7→ rg.

If V is any subgroup of StabH(g), then these maps induce maps on cohomology:

θ∗g : Ĥ
∗
(V,R)→ Ĥ

∗
(V,RG),

π∗g : Ĥ
∗
(V,RG)→ Ĥ

∗
(V,R),

since Êxt is covariant in the second argument. The following properties of θ∗g and π∗g will help us

in proving the main result.

47



Lemma V.4. Let h ∈ H and a, b ∈ G.

(a) If V is a subgroup of StabH(a), then h∗ ◦ θ∗a = θ∗ha ◦ h
∗ as maps from Ĥ

∗
(V ) to Ĥ

∗
(hV,RG).

(b) Suppose V ⊆ StabH(a) ∩ StabH(b) and α, β ∈ Ĥ
∗
(V ). Then:

θ∗a(α) ^ θ∗b (β) = θ∗ab(α ^ β).

(c) Suppose V ′ ⊆ V ⊆ StabH(a). Then θ∗a and π∗a commute with resVV ′ and corVV ′ .

(d) If V ⊆ StabH(a) ∩ StabH(b), then π∗a ◦ θ∗b = δa,b1, where 1 is the identity map on Ĥ
∗
(V ) and

δa,b is the Kronecker delta.

Proof. Lemma 5.2 in [35] showed these in positive degrees. We extend the proof to negative degrees

and present it on the cochain level. The desired results are induced on cohomology.

(a) Let P be an RV -complete resolution of R, f ∈ HomV (Pi, R) be a cocycle representing an

element of Ĥ
i
(V ), and p ∈ Pi. Then

h∗(θaf)(p) = f(h−1p)(ha) = θha(h∗(f))(p).

(b) Let m : RG⊗RG→ RG be the multiplication map and Γ : P→ P⊗̂P be a complete diagonal

approximation map. Let f, q ∈ HomV (P, R) represent α, β ∈ Ĥ
∗
(V ), respectively. Then on

the cochain level:

m ◦ ((θa ◦ f)⊗̂(θb ◦ q)) ◦ Γ = m ◦ (θa ⊗ θb) ◦ (f⊗̂q) ◦ Γ = θab ◦ (f⊗̂q) ◦ Γ,

where the left side represents θ∗a(α) ^ θ∗b (β) and the right side represents θ∗ab(α ^ β).

(c) Let P be an RV -complete resolution of R which can also be regarded as an RV ′-complete res-

olution by restricting the action. Let f ∈ HomV ′(Pi, RG) represent an element of Ĥ
i
(V ′, RG),

q ∈ HomV ′(Pi, R) represent an element of Ĥ
i
(V ′), and p ∈ Pi.

(π∗a corVV ′)(f)(p) = πa

 ∑
v∈V/V ′

(vf(v−1p))

 =
∑
v

πv−1a(f(v−1p))

=
∑
v

(πa ◦ f)(v−1p) = (corVV ′ π
∗
a)(f)(p),
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since v ∈ V ⊆ StabH(a), we have v−1

a = a, and V acts trivially on R. Similarly,

(θ∗a corVV ′)(q)(p) = θa

 ∑
v∈V/V ′

q(v−1p)

 =
∑
v

θv−1a(q(v−1p))

=
∑
v

(θa ◦ q)(v−1p) = (corVV ′ θ
∗
a)(q)(p).

The other cases follow similarly by commutativity between πa, θa and the inclusion map

ι : HomV (P, N) ↪→ HomV ′(P, N), where N = RG or R.

(d) Let r ∈ R.

πa(θb(r)) = πa(rb) =


r, if a = b

0, else.

For i = 1, 2, . . . , t, let ψi : Ĥ
∗
(Hi, R)→ Ĥ

∗
(H,RG) be defined as ψi = corHHi ◦θ

∗
gi . We describe the

additive decomposition of Ĥ
∗
(H,RG), generalizing from the usual cohomology [4, Theorem 2.11.2]:

Lemma V.5. The map Ĥ
∗
(H,RG) →

⊕t
i=1 Ĥ

∗
(Hi, R), sending ζ 7→ (π∗gi ◦ resHHi(ζ))i, is an

isomorphism of graded R-modules. Its inverse sends α ∈ Ĥ
∗
(Hi, R) to ψi(α) ∈ Ĥ

∗
(H,RG).

Proof. For i = 1, 2, . . . , t, let Mi be the free R-module generated by elements of the orbit containing

gi. Then we have RG =
⊕t

i=1Mi. Let R ↑HHi := RH⊗RHiR. There is an isomorphism Mi → R ↑HHi
given by r(hgi) 7→ h⊗ r. It induces an isomorphism in cohomology Ĥ

∗
(H,Mi) ∼= Ĥ

∗
(H,R ↑HHi).

Since Êxt is additive, Ĥ
∗
(H,RG) ∼=

⊕
i Ĥ
∗
(H,Mi). Apply the generalized Eckmann-Shapiro

Lemma IV.1 ([31, Lemma 7.1]), we have Ĥ
∗
(H,RG) ∼=

⊕
i Ĥ
∗
(Hi, R). One can also check di-

rectly that the maps given in the statement of the lemma are inverses of each other by applying

Proposition V.1 and Lemma V.4 to show that their compositions are the identity maps.

Remark V.6. If H = G acts on itself by conjugation, then Mi is the free R-module generated

by the conjugacy class of gi. Mi is isomorphic to R ↑GCG(gi)
, where CG(gi) is the centralizer of gi.

Therefore, the isomorphism in Lemma V.5 gives an additive decomposition of the Tate-Hochschild

cohomology of G as a direct sum of the Tate cohomology of the centralizers of conjugacy class
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representatives of G with coefficients in R:

ĤH
∗
(RG,RG) ∼=

⊕
i

Ĥ
∗
(CG(gi), R).

In 1999, Siegel and Witherspoon showed that there is a product formula for the usual Hochschild

cohomology of G in terms of a similar additive decomposition [35, Theorem 5.1]. We will describe

products in Ĥ
∗
(H,RG) with respect to the isomorphism in Lemma V.5. Motivated by the methods

in [35], our work is a straightforward generalization of the usual group cohomology results.

Fix i, j ∈ {1, 2, . . . , t}. Let D be a set of double coset representatives for Hi\H/Hj . For each x ∈ D,

there is a unique k = k(x) such that

gk = ygi
yxgj (V.2)

for some y ∈ H. One can rewrite the action on the right hand side and get gk = y(gi
xgj)

showing that k is independent of the choice of double coset representative x. Moreover, the set

of all y satisfying (V.2) is also a double coset. To see this, let us fix y = y(x) for which (V.2)

holds. Let y′ ∈ H be another element such that gk = y′gi
y′xgj . Then y′gi

y′xgj = gk = ygi
yxgj

implies y′(gi
xgj) = y(gi

xgj). Let h = y′y−1. We have hgk = h(y(gi
xgj)) = y′(gi

xgj) = gk

showing h ∈ Hk = StabH(gk). On the other hand, if h ∈ Hk, then let y′ = hy ∈ H, we have

hygi
hyxgj = h(ygi

yxgj) = hgk = gk. Putting together, we have shown:

{y′ ∈ H|gk = y′gi
y′xgj} = Hky = Hky(xHj ∩Hi) ∈ Hk\H/(xHj ∩Hi),

where the last equality follows from (V.2) and (yxHj ∩ yHi) ⊆ Hk. We can now prove our main

result which provides a formula for products in Ĥ
∗
(H,RG) with respect to Lemma V.5.

Theorem V.7. Let α ∈ Ĥ
∗
(Hi) and β ∈ Ĥ

∗
(Hj). Then

ψi(α) ^ ψj(β) =
∑
x∈D

ψk(corHkV (res
yHi
V y∗α ^ res

yxHj
V (yx)∗β)),

where D is a set of double coset representatives for Hi\H/Hj, k = k(x) and y = y(x) are chosen

to satisfy (V.2), and V = V (x) = yxHj ∩ yHi ⊆ Hk.
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Proof. By Lemma V.5,

ψi(α) ^ ψj(β) = corHHi(θ
∗
giα) ^ corHHj (θ

∗
gjβ), by definition of ψi, ψj

= corHHi(θ
∗
giα ^ resHHi corHHj θ

∗
gjβ), by Prop. V.1 (9)

=
∑
x∈D

corHHi(θ
∗
giα ^ corHixHj∩Hi res

xHj
xHj∩Hi x

∗θ∗gjβ), by Prop. V.1 (12)

=
∑
x∈D

corHHi(corHixHj∩Hi(resHixHj∩Hi θ
∗
giα ^ res

xHj
xHj∩Hi x

∗θ∗gjβ)), by Prop. V.1 (10)

=
∑
x∈D

corHxHj∩Hi(resHixHj∩Hi θ
∗
giα ^ res

xHj
xHj∩Hi x

∗θ∗gjβ), by Prop. V.1 (5)

=
∑
x∈D

corHxHj∩Hi θ
∗
gi xgj (resHixHj∩Hi α ^ res

xHj
xHj∩Hi x

∗β), by Lemma V.4 (a)-(c)

=
∑
k

∑
x

ψkπ
∗
gk

resHHk(corHxHj∩Hi θ
∗
gi xgj (resHixHj∩Hi α ^ res

xHj
xHj∩Hi x

∗β)),

by the isomorphism in Lemma V.5

=
∑
k

∑
x,y

ψkπ
∗
gk

corHkV ′ res
yxHj∩ yHi
V ′ y∗θ∗gi xgj (resHixHj∩Hi α ^ res

xHj
xHj∩Hi x

∗β),

by Prop. V.1 (12), where y runs over a set of representatives for Hk\H/xHj ∩Hi

and V ′ = Hk ∩ yxHj ∩ yHi,

=
∑
k

∑
x,y

ψk corHkV ′ π
∗
gk
θ∗ygi yxgj res

yxHj∩ yHi
V ′ y∗(resHixHj∩Hi α ^ res

xHj
xHj∩Hi x

∗β),

by Lemma V.4 (a),(c)

=
∑
x∈D

ψk corHkV ′ (res
yHi
V ′ y

∗α ^ res
yxHj
V ′ (yx)∗β),

by Prop. V.1 (1), (4), (6) and Lemma V.4 (d).

By Lemma V.4 (d), the only terms that can be non-zero in the next to last step are those for

which gk = ygi
yxgj . We have seen in the discussion prior to this theorem that each x determines

a unique k and double coset Hky(xHj ∩Hi) for which this holds. Therefore, we may take y = y(x)

and yxHj ∩ yHi ⊆ Hk. Hence, V ′ = V = yxHj ∩ yHi.

Remark V.8. Since the cup product is well-defined and unique [14, Theorem XII.5.1], the sum

in the statement of the theorem is independent of the choice of x and y. One can see this directly

by replacing y with hy, for some h ∈ Hk. By Proposition V.1 (6), (7), and (11), h∗ respects the
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cup product and commutes with the restriction and corestriction maps. Moreover, since Hk acts

trivially on its own cohomology, any term of the sum in the theorem is unchanged by replacing y

with hy. If x is multiplied on the right by an element of Hj , the terms are unchanged for similar

reasons. If x is replaced by hx, for some h ∈ Hi, then we must replace y with yh−1 so that (V.2)

holds:

(yh−1)gi
(yh−1)(hx)gj = ygi

yxgj = gk,

and the terms remain unchanged.

We observe that when i = 1, ψ1 : Ĥ
∗
(H,R) → Ĥ

∗
(H,RG) is an algebra monomorphism that

is induced by the algebra homomorphism R → RG mapping r 7→ r1. Alternatively, by letting

i = j = 1 in Theorem V.7, we see that ψ1 respects the cup product:

ψ1(α) ^ ψ1(β) = ψ1(α ^ β),

where α, β ∈ Ĥ
∗
(H). Hence, via ψ1, we may view Ĥ

∗
(H,RG) as a (left) Ĥ

∗
(H)-module with action

via multiplying (on the left) by ψ1(Ĥ
∗
(H)). Each Ĥ

∗
(Hi) may also be regarded as an Ĥ

∗
(H)-module

via restriction. As a consequence, we obtain:

Corollary V.9. The isomorphism in Lemma V.5 is an isomorphism of graded Ĥ
∗
(H)-modules:

Ĥ
∗
(H,RG) ∼=

t⊕
i=1

Ĥ
∗
(Hi).

Proof. For i = 1, let α ∈ Ĥ
∗
(H) and β ∈ Ĥ

∗
(Hj). Theorem V.7 reduces to:

ψ1(α) ^ ψj(β) = ψj(resHHj (α) ^ β).

where the left hand side is considered as action of Ĥ
∗
(H) on Ĥ

∗
(H,RG) that corresponds to the

action of Ĥ
∗
(H) on each Ĥ

∗
(Hj) on the right hand side, via the isomorphism in Lemma V.5.

As noted in the remark following Lemma V.5, when H = G acts on itself by conjugation, Theo-

rem V.7 gives a formula for the multiplicative structure of ĤH
∗
(RG,RG) ∼=

⊕
i Ĥ
∗
(CG(gi), R) in
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terms of this decomposition. It reduces the computation of products in ĤH
∗
(RG,RG) to products

within the Tate cohomology rings of certain subgroups of G.

V.2.2 Products in negative Tate-Hochschild cohomology

The (Tate) cohomology and (Tate) Hochschild cohomology rings of a finite group algebra kG, over

a field k of positive characteristic dividing the order of G, are graded-commutative. In fact, this

is true for general finite dimensional Hopf algebras over k, e.g. Section III.3 ([31, §6]). Hence, the

usual concepts from commutative algebra apply. For example, one can talk about Krull dimension,

depth, Gorenstein, and Cohen-Macaulay conditions. In this context, since H∗(G,k) is a finitely

generated [5, Theorem 4.1.1] graded-commutative k-algebra, we say H∗(G,k) is Cohen-Macaulay

if there exist homogeneous elements of positive degree x1, . . . , xr forming a regular sequence, and

H∗(G,k)/(x1, . . . , xr) has finite rank as a k-vector space [5, Prop. 2.5.1]. There are classes of groups

for which H∗(G,k) is known to be Cohen-Macaulay [5, §6.1].

In 1992, D. J. Benson and J. F. Carlson [6] investigated the product structure of the Tate cohomology

Ĥ
∗
(G,k). They showed that very often all products between elements of negative degrees vanish.

In particular, this happens when the depth of the usual cohomology ring H∗(G,k) is greater than

one [6, Theorem 3.1]. The existence of non-zero products in negative cohomology is also equivalent

to the existence of non-zero products in mixed positive-negative degrees [6, Lemma 2.1]. We will

analyze how cup products behave in the Tate-Hochschild cohomology, taking advantage of the

product formula in Theorem V.7.

Assume the same setting as in Theorem V.7, with a finite group H acting non-trivially on G and

Hi as before. To employ the results in [6], for the rest of this section, we will work over a field

k of characteristic p > 0, where p divides the order of H. Let α ∈ Ĥ
∗
(Hi) := Ĥ

∗
(Hi,k) and

β ∈ Ĥ
∗
(Hj). Observe that when H = G acts on itself by conjugation, from the product formula in

Theorem V.7, multiplying two elements of nonnegative degrees is the same as before for the usual

Hochschild cohomology. We are interested in the products of negative degree elements, or products

of a negative degree element and a positive degree element.

Case 1: Assume α and β are both of negative degrees.
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Proposition V.10. Assume the same setting as in Theorem V.7. Let α ∈ Ĥ
∗
(Hi) and β ∈ Ĥ

∗
(Hj)

both be of negative degrees. If for all x ∈ D, V = V (x) = yxHj ∩ yHi has p-rank at least 2 and

H∗(V,k) is Cohen-Macaulay, then ψi(α) ^ ψj(β) = 0.

Proof. From Theorem V.7, we have:

ψi(α) ^ ψj(β) =
∑
x∈D

ψk(corHkV (res
yHi
V y∗α ^ res

yxHj
V (yx)∗β)).

It can be checked (on the cochain levels) that the maps res, cor, y∗, (yx)∗ preserve degrees. Since α

and β are both of negative degrees, res
yHi
V y∗α ^ res

yxHj
V (yx)∗β is a product between two negative

degree elements in V . It follows from the hypothesis and [6, Theorem 3.1] that this product is 0.

Hence, ψk(corHkV (0)) = 0. This holds for all x ∈ D, so the sum is 0, proving the statement.

We note that if V has p-rank at least 2, then H also has p-rank at least 2, since V ⊆ H. Furthermore,

if i = j and assume that Hi has p-rank at least 2 and H∗(Hi,k) is Cohen-Macaulay, then α ^ β = 0.

As a consequence, their product in Ĥ
∗
(H,kG) is:

ψi(α) ^ ψi(β) =
∑

x∈H\Hi

ψk(corHkHi (α ^ β)) = 0,

where k = k(x) such that gk = gi
xgi. Hence, by letting H = G act on itself by conjugation and

observing whether each CG(gi) satisfies the above hypothesis, one may conclude that some products

in the Tate-Hochschild cohomology ĤH
∗
(kG,kG) will always be 0. Knowing this will speed up the

computation. For the remaining products that could be nonzero, we have the product formula

which generalizes what was known in nonnegative degrees.

Case 2: Assume α is in negative degree and β is in positive degree.

Let α ∈ Ĥ
m

(Hi) and β ∈ Ĥ
n
(Hj), where m < 0 < n. Suppose n + m ≥ 0. Let V = V (x) =

yxHj ∩ yHi. Then

res
yHi
V y∗α ^ res

yxHj
V (yx)∗β 6= 0

in Ĥ
∗
(V ) if and only if there exists a pair of negative integers s, t < 0 such that Ĥ

s
(V ) ^ Ĥ

t
(V ) 6= 0,
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by [6, Lemma 2.1]. It follows from [6, Theorem 3.3] that if there exists such a pair α and β, then

H∗(V,k) has depth one, and the center of any Sylow p-subgroup of V has p-rank one. Similarly, for

i = j, the same assertion holds for H∗(Hi,k) and the center of any Sylow p-subgroup of Hi.

Recently, Linckelmann studied the Tate duality and transfer maps in the Hochschild cohomology

of symmetric algebras [26]. For the Tate and Tate-Hochschild cohomology rings (assuming they are

graded-commutative) of such algebras, he also observed this behavior of the products in negative

cohomology (detailed will the discussed in the next chapter). In particular, for a finite group G, as

kG is symmetric and its Tate-Hochschild cohomology ring is graded-commutative, we obtain the

following result from [26, §8]:

Proposition V.11. Suppose there are negative integers s, t < 0 such that ĤH
s
(kG) ^ ĤH

t
(kG) 6=

0, then the usual Hochschild cohomology HH∗(kG,kG) has depth at most one.

Hence, without computing HH∗(kG,kG), we can find certain information about its depth. Using

the product formula to compute the products in ĤH
∗
(kG,kG), if we know there is a non-zero

product in negative degrees, then by Proposition V.11, we can conclude the depth of HH∗(kG,kG)

is at most one.

V.3 Examples

In this section, we study the Tate-Hochschild cohomology of two non-abelian groups. In one ex-

ample, by observing the p-rank of the Sylow p-subgroups, we can take advantage of the results in

Section V.2.2 to simplify the calculations. In the other example, as the p-rank is at most one, we

instead directly utilize the formula in Theorem V.7 to compute the products.

V.3.1 The dihedral group of order 8

Let k be a field of characteristic 2. Let G = D8 = 〈a, b | a4 = 1 = b2, aba = b〉 denote the dihedral

group of order 8. D8 is defined as the group of all symmetries of the square, where a is a rotation

and b is a reflection. Treating {1, 2, 3, 4} as the vertices of the square, this group can be regarded

as the subgroup of the symmetric group S4 (up to isomorphism) via setting a = (1 2 3 4) and
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b = (1 3). Let G act on itself by conjugation. There are five conjugacy classes in G:

{1} = {e} ←→ identity

{a2} = {(1 3)(2 4)} ←→ 180 degree rotation

{b, a2b} = {(1 3), (2 4)} ←→ vertex reflections

{ab, a3b} = {(1 4)(2 3), (1 2)(3 4)} ←→ edge reflections

{a, a3} = {(1 2 3 4), (4 3 2 1)} ←→ 90 degree rotations,

and the corresponding centralizers of conjugacy representatives:

H1 = CG(1) = G

H2 = CG((1 3)(2 4)) = G

H3 = CG((1 3)) = 〈(1 3), (2 4)〉 ∼= V4, Klein-four group

H4 = CG((1 2)(3 4)) = 〈(1 2), (3 4)〉 ∼= V4

H5 = CG((1 2 3 4)) = 〈(1 2 3 4)〉 ∼= Z4,

with H3, H4, H5 are all of order 4 and normal subgroups of G.

For all i = 1, 2, . . . , 5, we note that H∗(Hi,k) is Cohen-Macaulay by [5, (6.1.1) and (6.1.3)]. For

i 6= 5, the 2-rank ofHi is at least 2. Therefore, by Proposition V.10, we see that the products in Tate-

Hochschild cohomology arising from the elements of negative degrees in those Ĥ
∗
(Hi), i 6= 5, are

all 0. That is, let α ∈ Ĥ
∗
(Hi) and β ∈ Ĥ

∗
(Hj) be of negative degrees, we have ψi(α) ^ ψj(β) = 0:

• for i = j and i 6= 5, and

• for i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.

Since H5 is cyclic, by [14, Theorem XII.11.6] and [5, (4.1.3)], its cohomology ring Ĥ
∗
(H5) is periodic

and is of the form Λ(x)⊗k k[y, y−1], where Λ(x) is the exterior k-algebra on the element x of degree

1 and y, y−1 are of degrees 2,−2, respectively, subject to the graded-commutative relations. Hence,

when i ∈ {1, 2} and j = 5,

ψi(α) ^ ψ5(β) = ψ5(resGH5
(α) ^ β)

will depend on the product resGH5
(α) ^ β in Ĥ

∗
(H5), for example, see [14, §XII.7].
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The dihedral 2-groups. The same analysis applies for more general groups. Let n ≥ 2 be a

power of 2 and G = D4n = 〈a, b | a2n = 1 = b2, aba = b〉. The n+ 3 conjugacy classes of G and the

centralizers of their representatives are:

{1} −→ H1 = CG(1) = G

{an} −→ H2 = CG(an) = G

{aqb | q is even} −→ H3 = CG(b) = 〈an, b〉 ∼= V4

{aqb | q is odd} −→ H4 = CG(ab) = 〈an, ab〉 ∼= V4

for 1 ≤ s ≤ n− 1, {as, a−s} −→ Hs+4 = CG(as) = 〈a〉 ∼= Z2n

For i ∈ {1, 2} and j ∈ {1, 2, 3, 4}, let α ∈ Ĥ
∗
(Hi) and β ∈ Ĥ

∗
(Hj) be of negative degrees. Under

similar reasons and by Proposition V.10, we have ψi(α) ^ ψj(β) = ψj(resGHj (α) ^ β) = 0.

This example demonstrates that one can compute products in the Tate-Hochschild cohomology of

a finite group G by observing the centralizers of its conjugacy representatives CG(gi) and applying

Theorem V.7 and Proposition V.10. Knowing certain properties of CG(gi) and Ĥ
∗
(CG(gi)), one

can quickly deduce that some products in ĤH
∗
(kG,kG) will always be 0.

V.3.2 The symmetric group on three elements

Let k be a field of characteristic 3. Let G = S3 =
〈
a, b | a3 = 1 = b2, ab = ba2

〉
act on itself by

conjugation. Without loss of generality, we choose conjugacy class representatives g1 = 1, g2 = a,

and g3 = b whose centralizers are H1 = G, H2 = 〈a〉 =: N , and H3 = 〈b〉, respectively. Observe

that the 3-rank of all Hi is at most one. We will find the Tate-Hochschild cohomology ring of kG

using elements of Ĥ
∗
(Hi) and the product formula given in Theorem V.7.

Let us examine each ring Ĥ
∗
(Hi). Since the characteristic of k is 3 and N is cyclic of order 3,

the cohomology ring Ĥ
∗
(N) is periodic by [14, Theorem XII.11.6], and [5, (4.1.3)]. By direct

computation from [14, §XII.7], Ĥ
∗
(N) is of the form Λ(w1) ⊗k k[w2, w

−1
2 ], where Λ(w1) is the

exterior k-algebra on the element w1 of degree 1 and k[w2, w
−1
2 ] is generated by the elements w2 of

degree 2 and w−1
2 of degree −2, subject to the graded-commutative relations and w2w

−1
2 = 1. By
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[14, XII.2.7], because the characteristic of k does not divide the order of H3, we have Ĥ
∗
(H3) = 0.

We now compute Ĥ
∗
(G). It is easy to check that G is isomorphic to a semidirect product N o Z2

and every abelian subgroup of G is cyclic. It follows from [14, Theorem XII.11.6] and [5, (4.1.3)]

that the Tate cohomology ring Ĥ
∗
(G) is periodic and Noetherian. One can directly compute Ĥ

∗
(G)

by using an kN -complete resolution of k, imposing on it an action of Z2 to make it become a

kG-complete resolution of k, computing the Tate cohomology groups from that resolution, and

studying their products. Alternatively, following the discussion in [14, §XII.10], we see that for

any G-module M , Ĥ
∗
(G,M) is a direct sum of Ĥ

∗
(G,M, p), where Ĥ

∗
(G,M, p) is the p-primary

component of Ĥ
∗
(G,M) and p runs through all the prime divisors of |G| = 6. Here, M = k is a

field of characteristic 3, so only the 3-primary component is non-zero. By [14, Theorem XII.10.1],

G/N operates on Ĥ
∗
(N) and so Ĥ

∗
(G) = Ĥ

∗
(G,k, 3) ∼=

[
Ĥ
∗
(N)

]G/N ∼= Λ(w1w2) ⊗k k[w2
2, w

−2
2 ].

Therefore, Ĥ
∗
(G) is of the form Λ(x)⊗kk[z, z−1], where x and z are of degrees 3 and 4, respectively,

subject to the graded-commutative relations and zz−1 = 1.

By the decomposition Lemma V.5, Ĥ
∗
(G,kG) ∼= Ĥ

∗
(G) ⊕ Ĥ

∗
(N) as graded k-modules. We then

can define elements of the Tate-Hochschild cohomology ring of kG as follows. Since ψ1 is an algebra

monomorphism, we may identify any element of Ĥ
∗
(G) with its image under ψ1. Let Ei = ψi(1),

Wi = ψ2(wi), for i = 1, 2, and W−1
2 = ψ2(w−1

2 ). For simplification, we will use C := E2 + 1 in the

following theorem.

Theorem V.12. Let k be a field of characteristic 3 and S3 be the symmetric group on three

elements. Then the Tate-Hochschild cohomology ĤH
∗
(kS3,kS3) of S3 is generated as an algebra by

elements x, z, z−1, C,W1,W2, and W−1
2 of degrees 3, 4,−4, 0, 1, 2, and −2, respectively, subject to

the following relations:

xW1 = 0, xW2 = zW1, z−1W1 = (xz−1)W−1
2 ,

C2 = CW−1
2 = CWi = 0 (i = 1, 2),

W 2
2 = zC, W−2

2 = z−1C, W1W2 = xC, W1W
−1
2 = xz−1C,

together with the graded-commutative relations. In particular, the algebra monomorphism ψ1 :
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Ĥ
∗
(S3,k)→ ĤH

∗
(kS3,kS3) induces an isomorphism modulo radicals.

Proof. ĤH
∗
(kG,kG) ∼= Ĥ

∗
(G,kG) is a graded-commutative k-algebra whose underlying k-module

is isomorphic to Ĥ
∗
(G)⊕ Ĥ

∗
(N). Here, Ĥ

∗
(G) is a graded subalgebra of ĤH

∗
(kG,kG) generated by

x, z and z−1. Additionally, ψ2(Ĥ
∗
(N)) is a graded Ĥ

∗
(G)-submodule of ĤH

∗
(kG,kG) generated by

E2, W1, W2 and W−1
2 . This follows from the discussion after the proof of Theorem V.7. Moreover,

we will check that these generators satisfy the following conditions:

1. action on ψ2(Ĥ
∗
(N)) as an Ĥ

∗
(G)-module, and

2. every product in ψ2(Ĥ
∗
(N)) can be expressed as the sum of an element of Ĥ

∗
(G) and a

Ĥ
∗
(G)-linear combination of the images under ψ2 of the generators of Ĥ

∗
(N).

Therefore, it is clear that ĤH
∗
(kG,kG) is generated as a k-algebra by x, z, z−1, E2,W1,W2, and

W−1
2 , subject to these conditions. The first line of the relations in the statement of the theorem

satisfies the first condition. The second and third lines satisfy the second condition. We will check

each of them in detail.

The restriction resGN : Ĥ
∗
(G) → Ĥ

∗
(N), which sends x 7→ w1w2, z 7→ w2

2, and z−1 7→ w−2
2 ,

is injective. We also observe that by graded-commutativity of the Tate cohomology ring, every

element of odd degree has square 0. In particular, w1w1 = −w1w1 implies w2
1 = 0. One can check

that Ĥ
∗
(N) is an Ĥ

∗
(G)-module with action via resGN :

x · w1 = w1w2w1 = w2
1w2 = 0,

x · w2 = w1w2w2 = (−1)2w2w1w2 = (−1)2w2w2w1 = z · w1,

x · w−1
2 = w1w2w

−1
2 = w1,

z · w2 = w2
2w2 = w3

2,

z · w−1
2 = w2

2w
−1
2 = w2,

z−1 · w1 = w−1
2 w−1

2 w1 = (−1)−2w−1
2 w1w

−1
2 = (−1)−2w1w

−1
2 w−1

2 = (xz−1) · w−1
2 ,

z−1 · w2 = w−1
2 w−1

2 w2 = w−1
2 ,

z−1 · w−1
2 = (w−1

2 )3.

Therefore, as an Ĥ
∗
(G)-module, Ĥ

∗
(N) is generated by 1, w1, w2 and w−1

2 , subject to the relation
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x · w1 = 0, x · w2 = z · w1, and z−1 · w1 = (xz−1) · w−1
2 . By the isomorphism in Lemma V.5 and

mapping through ψ2, we obtain the first line of the relations.

To check the second and third lines of the relations, we recall the fact that the submodule of the

invariants (kG)G is the center Z(kG) of the group algebra kG, which is generated by conjugacy

class representatives of G. Therefore, we may identify the degree-0 Tate-Hochschild cohomology

with a quotient of Z(kG), as ĤH
0
(kG,kG) ∼= Ĥ

0
(G,kG) is a quotient of H0(G,kG). Under this

identification, Ei corresponds to (a quotient of) the sum of the group elements conjugate to gi. In

particular,

E2
2 = (a+ a−1)2 = a2 + 2 + a−2 = a−1 − 1 + a = E2 − 1

in characteristic 3, which implies

C2 = (E2 + 1)2 = E2
2 + 2E2 + 1 = 3E2 = 0.

For the rest of the relations, we utilize the product formula in Theorem V.7. Let α and β be

elements of Ĥ
∗
(N), we have:

ψ2(α) ^ ψ2(β) = ψ2(b∗(αβ)) + ψ1(corGN (αb∗(β))).

Recall that b∗ : Ĥ
∗
(N)→ Ĥ

∗
(bN) = Ĥ

∗
(N). By checking on the definition of b∗ and the degrees of

wi, we see that b∗(w−1
2 ) = −w−1

2 and b∗(wi) = −wi, for i = 1, 2. Moreover, as there are no degree

1, 2 and −2 elements in Ĥ
∗
(G), we have corGN (w1) = corGN (w2) = corGN (w−1

2 ) = 0. Similarly, by

checking on the cochain level and using Lemma V.1 (10), for all n ∈ Z, we obtain:

corGN (wn2 ) =


0, n is odd

−zn/2, n is even.

Hence, using Lemma V.1 (10) again,

corGN (w1w
n
2 ) =


−xz(n−1)/2, n is odd

0, n is even.
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Let α = 1 and β = w1, using the product formula in Theorem V.7, we obtain:

E2W1 = ψ2(1) ^ ψ2(w1) = ψ2(b∗(w1)) + ψ1(corGN (b∗(w1))) = ψ2(−w1) + 0 = −W1.

So CW1 = (E2 + 1)W1 = E2W1 +W1 = −W1 +W1 = 0. Similarly, let α = 1 and β = w2 or w−1
2 ,

we show that CW2 = 0 = CW−1
2 . This proves the second line of the relations.

Let α = β = w2, we have:

W 2
2 = ψ2(w2) ^ ψ2(w2) = ψ2(b∗(w2

2)) + ψ1(corGN (w2b
∗(w2)))

= ψ2(resGN z ^ 1) + ψ1(z)

= z ^ ψ2(1) + z

= zE2 + z = zC.

Similarly, for α = β = w−1
2 , we acquire that W−2

2 = z−1C.

Let α = w1 and β = w−1
2 :

W1W
−1
2 = ψ2(w1) ^ ψ2(w−1

2 ) = ψ2(b∗(w1w
−1
2 )) + ψ1(corGN (w1b

∗(w−1
2 )))

= ψ2(resGN xz
−1 ^ 1) + ψ1(xz−1)

= xz−1 ^ ψ2(1) + xz−1

= xz−1E2 + xz−1 = xz−1C.

Using the same argument, for α = w1 and β = w2, we obtain W1W2 = xC. Thus, we have found

all necessary relations for the generators of the Tate-Hochschild cohomology ring ĤH
∗
(kG,kG).

Furthermore, because it is a graded-commutative ring, its nilpotent elements all lie in its radical. We

observe that C2 = 0 = W 2
1 , W 3

2 = W 2
2W2 = zCW2 = 0, and (W−1

2 )3 = W−2
2 W−1

2 = z−1CW−1
2 = 0.

This implies that C,W1,W2, and W−1
2 are contained in the radical of ĤH

∗
(kG,kG). Consequently,

modulo radicals, the algebra monomorphism ψ1 : Ĥ
∗
(G)→ ĤH

∗
(kG,kG) induces an isomorphism.
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CHAPTER VI

FINITE GENERATION OF TATE COHOMOLOGY

Many people have been interested in the finite generation of the cohomology of a finite dimensional

Hopf algebra A. If such property holds, one can apply the theory of support varieties to the study of

A-modules. It is known that there are several finite dimensional Hopf algebras whose cohomology

over their base field k is finitely generated, among them are: group algebras of finite groups, finite

group schemes or equivalently finite dimensional co-commutative Hopf algebras, small quantum

groups, and certain pointed Hopf algebras (see, for example, [28, Introduction] for references).

While the usual cohomology rings of such algebras are finitely generated, the same may not be true

for their Tate cohomology rings. For example, it is shown in [12] that the only finite groups G having

the property that every finitely generated kG-module has finitely generated Tate cohomology have

p-rank one or zero, where p is the characteristic of the field k. The purpose of this chapter is to

investigate the finite generation property for Tate cohomology of a finite dimensional symmetric

Hopf algebra A. If M is a finitely generated A-module, we want to know whether Ĥ
∗
(A,M) is

finitely generated as a graded module over Ĥ
∗
(A,k). While the methods we use here are mostly

straightforward generalizations of those in [12], some additional assumption is needed to fit in

the context. For instance, in Proposition VI.7, we need A to be a Hopf algebra so that tensor

products of modules are again A-modules. Nonetheless, the author believes some of the results in

this chapter hold for finite dimensional symmetric k-algebras in general, not necessarily restricted

to Hopf algebras.

Throughout this chapter, let A be a finite dimensional symmetric Hopf algebra over a field k

with antipode S, coproduct ∆, and augmentation ε. Here, A is symmetric in the sense that A is

isomorphic to its k-dual D(A) := Homk(A,k) as A-bimodules (equivalently, from the discussion at

the end of Chapter IV, the bilinear form B(−,−) is symmetric, or the Nakayama automorphism

ν = 1). All modules are finitely generated left modules and tensor product is over k unless stated

otherwise.
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By Theorem IV.2 ([31, Theorem 7.2]), ĤH
∗
(A,A) is isomorphic to Ĥ

∗
(A,Aad), where Aad is the

left adjoint module of A. Using this relation, if the module Aad has the required hypotheses as in

the following Sections VI.1 and VI.2, then the corresponding finite generation results also hold for

Tate-Hochschild cohomology of A.

Since A ∼= D(A) as A-bimodules, we obtain the Tate duality for symmetric algebras as a special

case of Auslander-Reiten duality. Briefly stated, for any finitely generated left A-modules M and

N , Tate duality for symmetric algebras says that for any integer n, there is an isomorphism:

Êxt
n−1

A (M,N) ∼= D(Êxt
−n
A (N,M)),

which is natural in M and N . Equivalently, there is a natural nondegenerate bilinear form

〈−,−〉 : Êxt
n−1

A (M,N)× Êxt
−n
A (N,M)→ k.

The readers may refer to [26, §2] for more details. We will use this Tate duality throughout this

chapter. There are many finite dimensional symmetric Hopf algebras that are of interest, such

as, group algebras of finite groups, commutative Hopf algebras (this includes the k-duals of co-

commutative Hopf algebras), semisimple algebras, the Drinfield double of any Hopf algebra, the

restricted universal enveloping algebra V (g) of a finite dimensional restricted p-Lie algebra g when

g is nilpotent or semisimple, and an algebra defined by Radford in [33]. Therefore, our finite

generation of Tate cohomology results will add to the study of these algebras.

VI.1 Modules with bounds in finitely generated submodules

In this section, we show that there are A-modules whose Tate cohomology is not finitely generated.

The key ingredients in this section are the boundedness conditions on finitely generated modules

over Tate cohomology and the property that products in negative Tate cohomology of symmetric

algebras are often zero [26, §8]. We recall some definitions and properties that were proved in

[12] for group algebras. The same proofs go through for any finite dimensional symmetric (Hopf)

algebra A over a field k. We present them here for completeness.
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Definition VI.1. A graded module C =
⊕

n∈Z C
n over Ĥ

∗
(A,k) has bounded finitely gener-

ated submodules if for any m, there exists a number N = N(m) such that the submodule D of

C generated by
⊕

n>m C
n is contained in

⊕
n>N C

n.

Lemma VI.2. If a graded module C =
⊕

n∈Z C
n over Ĥ

∗
(A,k) has bounded finitely generated

submodules and if Cn 6= 0 for arbitrary small values of n, then C is not a finitely generated module

over Ĥ
∗
(A,k).

Proof. This follows from the definition of bounded finitely generated submodules property. Any

finitely generated submodule of C is contained in
⊕

n>N C
n for some N , and hence, cannot generate

all of C.

For a graded module C =
⊕

n∈Z C
n, C[s] =

⊕
n∈Z C

n+s denotes a shift in C by a degree s, for

some integer s.

Lemma VI.3. Suppose we have an exact sequence of A-modules:

0→ L→M → N → 0

which represents an element ξ ∈ Ext1
A(N,L). Multiplication by ξ induces a homomorphism mξ :

Ĥ
∗
(A,N) → Ĥ

∗
(A,L)[1]. Let K∗ be the kernel of this map and I∗ be the cokernel. Then we have

an exact sequence of Ĥ
∗
(A,k)-modules:

0→ I∗ → Ĥ
∗
(A,M)→ K∗ → 0.

Moreover, if K∗ is not finitely generated over Ĥ
∗
(A,k), then neither is Ĥ

∗
(A,M).

Proof. By the naturality of the long exact sequence on Tate cohomology (III.1.2 (d), or [31, §3.2]),

we have:

· · · mξ−−→ Ĥ
n
(A,L)→ Ĥ

n
(A,M)→ Ĥ

n
(A,N)

mξ−−→ Ĥ
n+1

(A,L)→ · · ·
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The collection of the maps mξ in the long exact sequence is a map of degree 1 of Ĥ
∗
(A,k)-modules

mξ : Ĥ
∗
(A,N)→ Ĥ

∗
(A,L)[1].

The last statement is a consequence of the fact that quotient modules of finitely generated modules

are finitely generated.

Now for d > 0, let ξ be a non-zero element in Ĥ
d
(A, k). Then ξ is represented by a homomorphism

ξ : Ωdk → k. Let Lξ be the kernel of that map. If ξ = 0, we define Lξ := Ωdk ⊕ Ωk. We have an

exact sequence:

0→ Lξ → Ωdk
ξ−→ k→ 0.

In the corresponding long exact sequence on Tate cohomology

· · · → Ĥ
n−1

(A,k)→ Ĥ
n
(A,Lξ)→ Ĥ

n
(A,Ωdk)

mξ−−→ Ĥ
n
(A,k)→ · · ·

mξ is the multiplication map by ξ. It is the degree d map

mξ : Ĥ
∗
(A,k)[−d]→ Ĥ

∗
(A,k).

Let K∗ and I∗ be the kernel and cokernel of mξ, respectively. As a result, as in Lemma VI.3, we

have an exact sequence of Ĥ
∗
(A,k)-modules:

0→ I∗[−1]→ Ĥ
∗
(A,Lξ)→ K∗[−d]→ 0.

Lemma VI.4. Suppose that ξ ∈ Ĥ
∗
(A,k), d > 0, is a regular element on the usual cohomology

ring H∗(A,k). Then

1. Kt = 0, for all t ≥ 0, and

2. It = 0, for all t < 0.

Proof. Since ξ is regular on H∗(A,k), it is clear that Kt = 0 for all t ≥ 0. It remains to prove

the second part of the lemma. We recall the Tate duality for symmetric algebras, see [26, §2 and
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Lemmas 8.1, 8.2], equivalently, there is a natural nondegenerate bilinear form

〈−,−〉 : Ĥ
n−1

(A,k)× Ĥ
−n

(A,k)→ k

such that 〈ζη, τ〉 = 〈ζ, ητ〉. For t < 0, let α1, . . . , αr be a k-basis for Ĥ
−t−1

(A,k). Because

multiplication by ξ : Ĥ
−t−1

(A,k) → Ĥ
−t+d−1

(A,k) is a monomorphism by part (1), the elements

ξα1, . . . , ξαr are linearly independent. So there must exist elements β1, . . . , βr in Ĥ
t−d

(A,k) such

that for all i and j, we have:

〈βi, ξαj〉 = 〈βiξ, αj〉 = δij

where δij is the usual Kronecker delta. Thus, the elements β1ξ, . . . , βrξ must be linearly independent

and hence must form a basis for Ĥ
t
(A,k). This implies that multiplication by ξ : Ĥ

t−d
(A,k) →

Ĥ
t
(A,k) is a surjective map, for all t < 0. Hence, its cokernel It = 0.

There are examples of algebras for which products between two elements in negative cohomology

are zero. In particular, this holds for finite dimensional symmetric algebras whose usual cohomology

has depth greater than or equal to 2. Recall that the Tate cohomology of a Hopf algebra is always

graded-commutative. Hence, a homogeneous regular sequence must automatically be central and

when the characteristic of k is not two, it must consist of elements in even degrees. Theorems 3.5 in

[8] and 8.3 in [26] — both are generalizations of the group cohomology result in [6] — independently

prove the following:

Theorem VI.5. Let A be a finite dimensional symmetric algebra over a field k. Let M be a

finitely generated A-module. Assume Ext∗A(M,M) is graded-commutative. If the depth of the usual

cohomology (resp. Hochschild cohomology) of M is two or more, then the Tate cohomology (resp.

Tate-Hochschild cohomology) of M has zero products in negative cohomology.

We show that using this property, for some A-module M , Ĥ
∗
(A,M) is not finitely generated.

Proposition VI.6. Suppose A is a finite dimensional symmetric Hopf algebra over a field k and

Ĥ
∗
(A,k) has the property that the products in negative cohomology are zero. If ξ ∈ Hd(A,k), d > 0,

is a regular element for H∗(A,k), then Ĥ
∗
(A,Lξ) is not a finitely generated Ĥ

∗
(A,k)-module.
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Proof. Let K∗ be the kernel of the multiplication by ξ on Ĥ
∗
(A,k). By Lemma VI.4, we have shown

that K∗ has elements only in negative degrees. Moreover, products of elements in negative degrees

are zero by assumption. By [26, Lemma 8.2] or a direct generalization of [6, Lemma 2.1] and by

the fact that there is no bound on the dimensions of the spaces Ĥ
n
(A,k) for negative values of n,

it follows that K∗ is not zero in infinitely many negative degrees. Thus, K∗ has bounded finitely

generated submodules and is not finitely generated over Ĥ
∗
(A,k) by Lemma VI.2. It follows from

Lemma VI.3 that Ĥ
∗
(A,Lξ) is not finitely generated over Ĥ

∗
(A,k).

We say that a cohomology element ξ ∈ Ĥ
d
(A,k) annihilates the Tate cohomology of a module

M if the cup product with ξ is the zero operator on Êxt
∗
A(M,M). We generalize the proof of [4,

Prop. 5.9.5] to a finite dimensional (symmetric) Hopf algebra A.

Proposition VI.7. Let A be a finite dimensional Hopf algebra over a field k. Suppose M is a

finitely generated A-module and ξ ∈ Ĥ
d
(A,k), for some d ∈ Z. Then ξ annihilates Êxt

∗
A(M,M) if

and only if

Lξ ⊗M ∼= Ω(M)⊕ Ωd(M)⊕ (proj),

where (proj) denotes some projective A-module.

Proof. We note here that it is necessary for A to be a Hopf algebra so that a tensor product of

A-modules is again an A-module with action via the coproduct of A. By abuse of notation, let

ξ : Ωdk→ k be a cocycle representing the cohomology element ξ ∈ Ĥ
d
(A,k). Let Lξ be its kernel.

The proposition is obvious for ξ = 0, as in this case, Lξ = Ωdk⊕Ωk, and Ωi(M) ∼= Ωik⊗M⊕(proj)

for any i.

Assume ξ 6= 0. As before, we have an exact sequence:

0→ Lξ → Ωdk
ξ−→ k→ 0.

By translating, we get the exact sequence:

0→ k→ Ω−1(Lξ)→ Ωd−1k→ 0
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representing ξ in Êxt
1

A(Ωd−1k,k) ∼= Ĥ
d
(A,k). Let IdM represent the identity homomorphism on

M . Then ξ · IdM in Êxt
d

A(M,M) ∼= Êxt
1

A(Ωd−1(M),M) is represented by the sequence:

0→M → Ω−1(Lξ)⊗M → Ωd−1k⊗M → 0.

Now suppose ξ annihilates Êxt
∗
A(M,M), then ξ · IdM = 0 and the above sequence splits. Hence,

Ω−1(Lξ)⊗M ∼= M ⊕ (Ωd−1k⊗M),

the middle term is the direct sum of the two end terms. Equivalently,

Ω−1(Lξ ⊗M) ∼= M ⊕ Ωd−1(M)⊕ (proj).

Now translate everything by Ω, we have:

Lξ ⊗M ∼= Ω(M)⊕ Ωd(M)⊕ (proj).

Conversely, if Lξ ⊗M ∼= Ω(M)⊕ Ωd(M)⊕ (proj), then the sequence

0→ Ω(M)→ Lξ ⊗M → Ωd(M)→ 0

splits. Translate everything by Ω−1, we get the sequence that represents ξ · IdM also splits. Hence

ξ · IdM = 0 and ξ annihilates the Tate cohomology of M .

We are now ready to prove the main theorem of this section.

Theorem VI.8. Suppose A is a finite dimensional symmetric Hopf algebra over a field k and

Ĥ
∗
(A,k) has the property that the products in negative cohomology are zero. Let ξ ∈ Hd(A,k),

d > 0, be a regular element and M be a finitely generated A-module such that Ĥ
∗
(A,M) 6= 0. If

for some t > 0, ξt annihilates the Tate cohomology of M and of Lξt , then Ĥ
∗
(A,M) is not finitely

generated as a module over Ĥ
∗
(A,k).

Proof. By assumption, Ĥ
∗
(A,M) 6= 0, so by Lemma VI.2, it is enough to show that Ĥ

∗
(A,M) has

68



bounded finitely generated submodules.

Now since ξt annihilates the Tate cohomology of M for some t > 0, it follows from Proposition VI.7

that

Lξt ⊗M ∼= Ω(M)⊕ Ωdt(M)⊕ (proj).

Thus, Ĥ
∗
(A,M) has bounded finitely generated submodules if and only if Ĥ

∗
(A,Lξt ⊗M) also has

this property.

We first recall that for left A-modules M and N , Homk(M,N) is a left A-module via the action:

(a · f)(m) =
∑
a1f(S(a2)m), for a ∈ A,m ∈M , and f ∈ Homk(M,N). When N = k is the trivial

A-module, the above action simplifies to the action of A on D(M) := Homk(M,k): (a · f)(m) =

f(S(a)m). Moreover, when M and N are finite dimensional as k-vector spaces, Homk(M,N) ∼=

N ⊗ D(M) as left A-modules, [27, §2.1]. We let Ĥ
∗
(A,k) ∼= Êxt

∗
A(k,k) act on Êxt

∗
A(M,M) via

− ⊗ M . By [3, Cor. 3.1.6], Proposition VI.7, and the hypothesis that ξt annihilates the Tate

cohomology of Lξt , we have:

Êxt
∗
A(Lξt , Lξt) ∼=

⊕
n∈Z

HomA(Ωn(Lξt), Lξt)

∼=
⊕
n∈Z

HomA(Ωnk⊗ Lξt , Lξt)

∼=
⊕
n∈Z

HomA(Ωnk,Homk(Lξt , Lξt))

∼=
⊕
n∈Z

HomA(Ωnk, Lξt ⊗D(Lξt))

∼=
⊕
n∈Z

HomA(Ωnk, Lξt ⊗ Ω−dt−1Lξt)

∼=
⊕
n∈Z

HomA(Ωnk,Ω−dt−1(Lξt ⊗ Lξt))

∼=
⊕
n∈Z

HomA(Ωnk,Ω−dt−1(ΩLξt ⊕ ΩdtLξt ⊕ (proj)))

∼=
⊕
n∈Z

HomA(Ωnk,Ω−dtLξt ⊕ Ω−1Lξt)

∼= Ĥ
∗
(A,Ω−dtLξt ⊕ Ω−1Lξt)

where D(Lξt) = Homk(Lξt ,k) ∼= Ω−dt−1Lξt by a generalization of [13, Prop. 11.3.3].
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As ξ is a regular element, it is not hard to see that ξt is also a regular element. By a similar argument

as in Proposition VI.6, we have that Êxt
∗
A(Lξt , Lξt) has bounded finitely generated submodules.

By definition, there exists a number N such that

Ĥ
∗
(A,k) ·

⊕
n≥m

Êxt
n

A(Lξt , Lξt) ⊆
⊕
n≥N

Êxt
n

A(Lξt , Lξt).

Now let m be any integer. Let

N :=
⊕
n≥m

Ĥ
n
(A,Lξt ⊗M).

We observe that the action of Ĥ
∗
(A,k) on Ĥ

∗
(A,Lξt⊗M) via −⊗Lξt⊗M factors through the map

Ĥ
∗
(A,k)→ Êxt

∗
A(Lξt , Lξt), and the target of that map has bounded finitely generated submodules.

Thus, we have:

Ĥ
∗
(A,k) · N ⊆ Ĥ

∗
(A,k) ·

⊕
n≥m

Êxt
n

A(Lξt , Lξt)

⊕
n≥m

Ĥ
n
(A,Lξt ⊗M)


⊆

⊕
n≥N

Êxt
n

A(Lξt , Lξt)

⊕
n≥m

Ĥ
n
(A,Lξt ⊗M)


⊆

⊕
n≥m+N

Ĥ
n
(A,Lξt ⊗M).

Therefore, Ĥ
∗
(A,Lξt ⊗M) has bounded finitely generated submodules, and so does Ĥ

∗
(A,M). If

follows from Lemma VI.2 that Ĥ
∗
(A,M) is not finitely generated over Ĥ

∗
(A,k).

Remark VI.9. Suppose that the cohomology in even degrees Hev(A,k) is finitely generated (so

it is a finitely generated commutative algebra, since H∗(A,k) is graded-commutative) and for any

finite dimensional A-module M , the Hev(A,k)-module Ext∗A(M,M) is finitely generated. Then

under this assumption, one can define the support varieties for modules as follows:

Let IA(M,M) be the annihilator of the action of Hev(A,k) on Ext∗A(M,M), a homogeneous ideal of

Hev(A,k), and let VA(M) := VA(M,M) denote the maximal ideal spectrum of the finitely generated

commutative k-algebra Hev(A,k)/IA(M,M). As the ideal IA(M,M) is homogeneous, the variety

VA(M) is conical and is called the support variety of M .
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Then the hypothesis “for some power ξt of ξ, ξt annihilates the Tate cohomology of M and of Lξt”

in Theorem VI.8 can be translated as VA(M) ⊆ VA 〈ξ〉 and VA(Lξt) ⊆ VA 〈ξ〉, where VA 〈ξ〉 is the

support variety of the ideal generated by ξ.

VI.2 Modules with finitely generated Tate cohomology

In this section, we study A-modules whose Tate cohomology is finitely generated. In particular,

we will see that all modules in the connected component of the stable Auslander-Reiten quiver

associated to A which contains k have this property.

It is obvious that any module M which is a direct sum of Heller translates Ωik has finitely generated

Tate cohomology, as in this case, its Tate cohomology is a direct sum of copies of Ĥ
∗
(A,k):

Ĥ
∗
(A,M) ∼=

⊕
n∈Z

HomA(Ωnk,M) ∼=
⊕
n∈Z

HomA(Ωnk,
⊕
i

Ωik)

∼=
⊕
i

⊕
n∈Z

HomA(Ωnk,Ωik)

∼=
⊕
i

⊕
n∈Z

HomA(Ωn−ik,k) ∼=
⊕
i

Ĥ
∗
(A,k).

We will show that in general, there are more modules with this property. First, we consider the

Tate cohomology of a module M which can occur as the middle term of an exact sequence of the

form:

0→ Ωmk→M → Ωnk→ 0

for some m,n ∈ Z. Such a sequence represents an element ξ in

Êxt
1

A(Ωnk,Ωmk) ∼= Êxt
n+1−m
A (k,k) ∼= Ĥ

n+1−m
(A,k).

Without loss of generality, we can apply the shift operator Ω−m and assume that the sequence has

the form

0→ k→M → Ωnk→ 0

for some n, and that ξ ∈ Ĥ
n+1

(A,k).
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Theorem VI.10. Suppose that for the module M and cohomology element ξ as above, the map

ξ : Ĥ
∗
(A,k)→ Ĥ

∗
(A,k) given by multiplication by ξ has a finite dimensional image. Suppose that

the usual cohomology ring H∗(A,k) is Noetherian. Then the Tate cohomology Ĥ
∗
(A,M) is finitely

generated as a module over Ĥ
∗
(A,k).

Proof. As in Lemma VI.3, we have an exact sequence of Ĥ
∗
(A,k)-modules:

0→ I∗ → Ĥ
∗
(A,M)→ K∗[−n]→ 0

for ξ ∈ Ĥ
n+1

(A,k), K∗ is the kernel of multiplication by ξ on Ĥ
∗
(A,k), and I∗ is its cokernel. By

hypothesis, the image of multiplication by ξ has finite total dimension. Hence, in all but a finite

number of degrees i, multiplication by ξ is the zero map. Clearly, I∗ is finitely generated over

Ĥ
∗
(A,k). So, Ĥ

∗
(A,M) is finitely generated over Ĥ

∗
(A,k) if and only if K∗ has the same property.

View K∗ as a module over the usual cohomology ring H∗(A,k). The elements of K∗ in non-negative

degrees form a submodule L∗ =
∑
m≥0Km, which is finitely generated over H∗(A,k), since H∗(A,k)

is Noetherian by assumption.

Let M∗ be the Ĥ
∗
(A,k)-submodule of K∗ generated by L∗. We want to show that M∗ = K∗

therefore proving the finite generation of K∗. For all m ≥ 0, Km ⊆M∗ by construction. It remains

to show Km ⊆M∗ for all m < 0.

Because the quotient of Ĥ
∗
(A,k) by K∗ is finite dimensional, we must have that Ĥ

j
(A,k) = Kj for

sufficiently large j. For some sufficiently large j, we can find an element 0 6= γ ∈ Kj which is a

regular element for the usual cohomology ring H∗(A,k). By a generalized version of Lemma 3.5 in

[6], we know that multiplication by γ is a surjective map:

γ : Ĥ
m−j

(A,k)→ Ĥ
m

(A,k)

whenever m < 0. Hence, for all m < 0, we must have Ĥ
m−j

(A,k)γ = Km. Since γ ∈ M∗, we get

that Km ⊆M∗ for all m < 0. Therefore, K∗ =M∗ is finitely generated as a module over Ĥ
∗
(A,k).

This proves the theorem.
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Recall that a sequence 0 → P → Q → R → 0 of finitely generated left A-modules is called an

almost-split sequence (or Auslander-Reiten sequence) if it has the following properties:

1. The sequence does not split.

2. R is indecomposable and any homomorphism from an indecomposable module to R that is

not an isomorphism factors through Q.

3. P is indecomposable and any homomorphism from P to an indecomposable module that is

not an isomorphism factors through Q.

Almost-split sequences were first introduced by Auslander and Reiten for an Artin algebra, see [1] for

more details. From a result by Auslander and Reiten, for any finitely generated left module R that

is indecomposable but not projective, there is an almost-split sequence 0→ DTr(R)→ Q→ R→ 0,

which is unique up to isomorphism, where D is the dual and Tr is the transpose. Similarly for any

finitely generated left module P that is indecomposable but not injective, there is an almost-split

sequence 0 → P → Q → TrD(P ) → 0, which is unique up to isomorphism. The Auslander-

Reiten quiver associated to A has a vertex for each finitely generated indecomposable A-module

(up to isomorphism) and an arrow between vertices if there is an irreducible morphism between the

corresponding A-modules. The map DTr is the translation from the non-projective vertices to the

non-injective vertices.

Remark VI.11. There are many examples of sequences satisfying the condition in Theorem VI.10.

In particular, it is often the case that multiplication by an element ξ in negative degree has a finite

dimensional image. An example is the element in degree −1 which represents the almost-split

sequence for the module k. In addition, if the depth of H∗(A,k) is two or more, then all products

in negative cohomology are zero; and the principal ideal generated by any element in negative

cohomology contains no non-zero elements in positive degrees, for example, by [26, Lemma 8.2]

or a direct generalization of [6, Lemma 2.1]. Hence, multiplication by any element ξ in negative

cohomology has a finite dimensional image.

Corollary VI.12. The middle term of the almost-split sequence

0→ Ω2k→M → k→ 0

ending with k has finitely generated Tate cohomology.
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Proof. The almost-split sequence in the statement corresponds to an element ξ ∈ Ĥ
−1

(A,k). One

of the defining properties of the almost-split sequence is that for any module N , the connecting

homomorphism δ in the corresponding sequence

· · · → HomA(N,M)→ HomA(N,k)
δ−→ Êxt

1

A(N,Ω2k)→ · · ·

is non-zero if and only if N ∼= k [1, Prop. V.2.2]. This connecting homomorphism is multiplication

by ξ. Now any element η ∈ Ĥ
d
(A,k) is represented by a map η : Ωdk → k. Therefore, we have

ξη = 0 whenever d 6= 0. This implies that multiplication by ξ on Ĥ
∗
(A,k) has a finite dimensional

image, and it follows from the above theorem that Ĥ
∗
(A,M) is finitely generated as a module over

Ĥ
∗
(A,k).

Remark VI.13. For an almost-split sequence 0 → P → Q → R → 0, we have R ∼= TrD(P ),

equivalently P ∼= DTr(R), see [1, Prop. V.1.14]. But for symmetric algebras, TrD ∼= Ω−2 and

DTr ∼= Ω2. So for any indecomposable non-projective module N over a symmetric algebra, [1,

Theorem V.1.15] shows the existence of an almost-split sequence

0→ Ω2N →M → N → 0.

Proposition VI.14. Let N be a finitely generated indecomposable non-projective A-module that is

not isomorphic to Ωik for any i. Consider the almost-split sequence

0→ Ω2N →M → N → 0.

If N has finitely generated Tate cohomology, then so does the middle term M .

Proof. For any i ∈ Z, the connecting homomorphism δ in the corresponding sequence

· · · → HomA(Ωik,M)→ HomA(Ωik, N)
δ−→ Êxt

1

A(Ωik,Ω2N)→ · · ·

is zero because Ωik � N . Hence, δ induces the zero map on Tate cohomology. So the long exact
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sequence in Tate cohomology breaks into short exact sequences:

0→ Ĥ
∗
(A,Ω2N)→ Ĥ

∗
(A,M)→ Ĥ

∗
(A,N)→ 0.

It follows that if Ĥ
∗
(A,N) is finitely generated, then Ĥ

∗
(A,M) is also finitely generated.

Combining the last two results, we have the following theorem:

Theorem VI.15. If a module in a connected component of the stable Auslander-Reiten quiver

associated to A has finitely generated Tate cohomology, then so does every module in that component.

In particular, all modules in the connected component of the quiver which contains k have finitely

generated Tate cohomology.

VI.3 Finite generation examples

In this section, we apply some results from Section VI.1 on an algebra constructed by Radford in

[33] and on the restricted universal enveloping algebra of sl2(k). By showing that these algebras

have finitely generated usual cohomology but fail to do so for the Tate cohomology, these examples

demonstrate that finite generation behaves differently in negative cohomology.

VI.3.1 Radford’s algebra

The following Hopf algebra A is taken from [33, Example 1]. Let N > 1 and k be a field that

contains a primitive N -th root of unity ω. Let A be an algebra generated over k by elements x, y,

and g subject to the relations:

gN = 1, xN = yN = 0, xg = ωgx, gy = ωyg, xy = ωyx.

A is a symmetric algebra of dimension N3 and has the Hopf structure:

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1,

∆(x) = x⊗ g + 1⊗ x, ε(x) = 0, S(x) = −xg−1,
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∆(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1.

Let Y = yg−1. Using the above relations, one can check that x and Y commute. Consider a

subalgebra B of A generated by x and Y subject to the following relations:

xN = Y N = 0, xY = Y x.

In particular, B is the truncated polynomial algebra which can be considered as the complete

intersection k[x, Y ]/(xN , Y N , xY − Y x) ∼= k[x]/(xN ) ⊗ k[Y ]/(Y N ). Using the Künneth Theorem,

the cohomology of B can be obtained by tensoring together the cohomology of k[x]/(xN ) and the

cohomology of k[Y ]/(Y N ). One can also construct a B-projective resolution of k by taking the

tensor product of the following periodic resolutions:

· · · ·x−→ k[x]/(xN )
·xN−1

−−−−→ k[x]/(xN )
·x−→ k[x]/(xN )

εx−→ k→ 0,

and

· · · ·Y−→ k[Y ]/(Y N )
·Y N−1

−−−−→ k[Y ]/(Y N )
·Y−→ k[Y ]/(Y N )

εY−−→ k→ 0,

where εx(x) = 0 and εY (Y ) = 0. This construction has been done in the literature, for example, in

[28, §4]. Using the relations xg = ωgx and gy = ωyg, we can see that Radford’s algebra A = B#kG,

where G = 〈g〉 acts on B by automorphisms for which x, Y are eigenvectors:

gxg−1 = gx = ω−1x, gY = ωY.

Given basis elements {1x, x} of k[x]/(xN ) and {1Y , Y } of k[Y ]/(Y N ), for b = 1x, 1Y , x, or Y , we

define the action of g on the above resolutions as:

• In degree 2i, g · b := gb.

• In degree 2i+ 1, g · b :=


ω−1(gb), b = 1x, x

ω(gb), b = 1Y , Y.

One checks that this group action commutes with the differentials in each degree.
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The cohomology ring H∗(B,k) is generated by ξj , ηi, for i, j ∈ {1, 2}, where deg(ξj) = 2 and

deg(ηi) = 1, subject to the following relations:

ξ1ξ2 = ξ2ξ1, η1η2 = −η2η1, ηiξj = ξjηi, (ηi)
2 = 0,

(see, for example, [28, Theorem 4.1]). We note that H∗(k[x]/(xN ),k) is generated by ξ1, η1 and

H∗(k[Y ]/(Y N ),k) is generated by ξ2, η2. If N = 2, ξi is a scalar multiple of η2
i . As A = B#kG

and the characteristic of k does not divide the order of G, we have:

H∗(A,k) ∼= H∗(B,k)G,

the invariant ring under the above G-action defined at the chain level. By (4.2.1) in [28], the induced

action of G on generators ξj , ηi is given by:

g · ξj = ξj , g · η1 = ωη1, g · η2 = ω−1η2.

Thus, H∗(A,k) ∼= k[ξ1, ξ2], where deg(ξj) = 2.

The elements ξ1, ξ2 form a regular sequence on H∗(A,k). In fact, the depth of H∗(A,k) is 2.

By Theorem VI.5, the Tate cohomology Ĥ
∗
(A,k) of A has zero products in negative cohomology.

Therefore, since each ξj is a regular element on H∗(A,k), it follows from Proposition VI.6 that

Ĥ
∗
(A,Lξj ) is not finitely generated as a module over Ĥ

∗
(A,k), for j = 1, 2.

VI.3.2 The restricted enveloping algebra of sl2(k)

Let k be an algebraically closed field of characteristic p > 3. Let g := sl2(k) be the restricted p-Lie

algebra of 2× 2 trace-zero matrices over k. It is generated over k by:

e =

0 1

0 0

 , f =

0 0

1 0

 , h =

1 0

0 −1

 ,
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with the Lie algebra structure:

[h, f ] = −2f, [h, e] = 2e, [e, f ] = h,

and the map [p] : g→ g is given by:

e[p] = f [p] = 0, h[p] = h.

Let V (g) be the restricted enveloping algebra of g. It is defined as the quotient algebra:

V (g) := T (g)/
〈
X ⊗ Y − Y ⊗X − [X,Y ], X⊗p −X [p] | X,Y ∈ g

〉
,

equivalently,

V (g) = U(g)/
〈
X⊗p −X [p] | X ∈ g

〉
,

where T (g) is the tensor algebra and U(g) is the universal enveloping algebra of g. V (g) is a finite

dimensional, co-commutative Hopf algebra over k with the Hopf structure:

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X,

for all X ∈ g. A restricted g-module is a module M of g on which X [p] acts as the p-th

iterate of X, for any X ∈ g. The category of restricted g-modules is equivalent to the category of

V (g)-modules. From here, all g-modules are assumed to be restricted and will be referred to as

V (g)-modules.

To a restricted Lie algebra g, we associate the nullcone N = N (g) of g, which is the closed

subvariety of g consisting of all nilpotent elements. We also define the restricted nullcone of g

to be the subvariety

N1(g) =
{
X ∈ g | X [p] = 0

}
of [p]-nilpotent elements in g.

The cohomology H∗(V (g),M) of V (g) with coefficients in a restricted g-module M is defined as

the cohomology of the augmented algebra V (g) over k. There is a close relationship between the

78



nullcone N (g) and the cohomology H∗(V (g),k) as described by Friedlander and Parshall in the

following theorem:

Theorem VI.16 ([20]). Let G be a simple, simply connected algebraic group over an algebraically

closed field k of characteristic p > 0. Assume that G is defined and split over the prime field

Fp. Let g be the Lie algebra of G. If p is greater than the Coxeter number of G, then there is a

G-equivariant isomorphism of algebras:

H∗(V (g),k) ∼= k[N ](1),

where k[N ] is the coordinate ring of the nullcone N of g, and k[N ](1) means k[N ] to be regarded as

a G-module by composing the usual conjugation action of G on k[N ] with the Frobenius morphism

f : G→ G.

Recall that a basis for sl2(k) is {e, f, h}. Let {x, y, z} be its k-dual basis. As an affine space, sl2(k)

can be identified with A3 and has coordinate ring k[x, y, z]. Since every 2 × 2 nilpotent matrix

squares to 0, we have z x

y −z


2

= (xy + z2)

1 0

0 1


is zero whenever xy + z2 is zero. Hence, independent of p, the nullcone N (sl2) is a quadric in A3

defined by the equation xy + z2 = 0. By the above theorem, the usual cohomology ring of V (sl2)

is finitely generated:

H∗(V (sl2),k) ∼= k[N (sl2)](1) ∼= k[x, y, z]/(xy + z2)

and is concentrated in even degrees as a graded ring. One can observe that H∗(V (sl2),k) has depth

2. Moreover, by [34], V (sl2) is symmetric. Therefore, we can apply Theorem VI.5 to conclude

that the Tate cohomology Ĥ
∗
(V (sl2),k) has zero products in negative cohomology. It then fol-

lows from Proposition VI.6 that for each regular element ξ of H∗(V (sl2),k), the Tate cohomology

Ĥ
∗
(V (sl2), Lξ) is not finitely generated as a module over Ĥ

∗
(V (sl2),k).
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CHAPTER VII

SUMMARY

We have seen several successful attempts in studying the Tate (Hochschild) cohomology, specified

for finite dimensional Hopf algebras over a field. However, there are more open questions in this

topic that are worth pursuing. Let us summarize some of what has been done in this work and

point out problems that are still under investigation.

Known results for a finite dimensional Hopf algebra A over a field k:

• Ĥ
∗
(A,k) and ĤH

∗
(A,A) are graded-commutative rings.

• ĤH
∗
(A,A) ∼= Ĥ

∗
(A,Aad) as algebras, where Aad is the adjoint module of A.

• Ĥ
∗
(A,k) is a direct summand of ĤH

∗
(A,A) as a module over Ĥ

∗
(A,k).

• Let A = RG, a finite group algebra over R, where R is the ring of integers Z or a field k whose

characteristic divides the order of G. Let G act on itself via conjugation and let CG(gi) be the

centralizer of the conjugacy representative gi of G. Then ĤH
∗
(RG,RG) ∼=

⊕
i Ĥ
∗
(CG(gi), R).

There is a product formula with respect to this decomposition, making it become a decompo-

sition as Ĥ
∗
(G,R)-modules. Products in negative cohomology of ĤH

∗
(RG,RG) also depend

on the CG(gi)’s and their cohomology rings.

• Let A be symmetric, that is, A ∼= D(A) as A-bimodules. Finite generation of Tate cohomology

fails for some finitely generated modules of A. In particular, all modules in the connected

component of the quiver which contains k have finitely generated Tate cohomology.

One can see the relations and results that we have established and studied in this dissertation are

interesting in and of themselves, with potential applications in other subjects that remain to be

seen. We close this dissertation with questions that are yet to be answered. We hope to consider

them in our future work.

Open questions to consider in future research include the following:

1. Can Evens’ norm map be defined for Tate cohomology of a finite group algebra RG? If so,

what are the properties of the Tate-Evens norm map?

80



2. Let G be a finite group. Suppose the characteristic of k is p > 0 which divides the order of

G. Let E be a (maximal) elementary abelian p-subgroup of G. What is the relation between

Ĥ
∗
(E,k) and Ĥ

∗
(G,k)?

3. Describe the construction and properties of Tate (Hochschild) cohomology for other classes

of (more general, not necessarily Hopf) algebras.

4. Assume Tate cohomology can be defined for other algebras (not necessarily Hopf, not nec-

essarily symmetric). What can one say about the products in negative cohomology of these

algebras? What can one say about the finite generation of their Tate cohomology?

5. Working with complete resolutions: Can we reconstruct a spectral sequence of a double

complex, for example, as those in [4] and [14]? A spectral sequence of a group extension?

6. What can one say about the vanishing of Tate (co)homology?

These questions may not have affirmative answers; however, they stimulate us to keep thinking in

this direction. As there are more unknowns in this universe than we can discover, we can only look

deeper and further, try to connect the dots, and enjoy the process in between.

“Some mathematician, I believe, has said that true pleasure lies not in the discovery of truth, but

in the search for it.” – Leo Tolstoy
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