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ABSTRACT 

The present journal article formatted dissertation assessed the extent of meta-

analytic thinking currently used educational technology research. In the first study, the 

author examined the journals, Computers & Education, International Journal of 

Computer-Supported Collaborative Learning, British Journal of Educational 

Technology, Australasian Journal of Educational Technology, and Educational 

Technology Research and Development, between 2012 and 2013 to offer empirical 

evidence of the field’s current status with regard to reporting results using meta-analytic 

thinking. These articles represented a total of 32,131 research methods and statistical 

techniques recorded from 1,171 articles. Findings point to little change in how 

educational technology researchers conduct investigations. Quantitative methods 

continue to dominate the field as a whole. Most authors reported the type of sampling 

procedure used in their investigations. Few researchers reported score reliability 

estimates using their own data. Findings also suggest few authors report informationally-

adequate statistics. One area of concern is the tendency to report a mean without the SD 

about the mean. Another area of concern is the lack of reporting correlation matrices 

with accompanying means and standard deviations or covariance matrices. 

In the second study, the author conducted a meta-analysis to offer a glimpse of 

where the field could go once researchers begin to think meta-analytically. The author 

cumulated findings from nine studies which used the Technology Acceptance Model 

(TAM) to explain undergraduate students’ acceptance of online learning. The author 

used meta-analytic structural equation modeling and multiple-group analysis to test four 



 

iii 

 

path models. The meta-analytic findings suggest the TAM is not a valid theoretical 

model to explain undergraduates’ acceptance of college online courses. The multiple 

group analysis emphasized that the parameter estimates between studies resulted in 

statistically different findings, suggesting the findings across studies are not replicable.  
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1. INTRODUCTION  
 
For over half a century, various scholars have called attention to the problems 

within educational technology research (Clark, 1983; Hoban, 1958; Mielke, 1968). More 

recently, researchers have urged the field to reconsider how research is conducted (Bell, 

Schrum, & Thompson, 2008; Haertel & Means, 2003; Means & Haertel, 2004). Reeves 

(2000) suggested that the quality of published educational technology research is 

generally poor. Moreover, Mitchell (1997) described educational technology research as 

pseudo-scientific, lending itself to unsupported conclusions based on poor measurement 

practices and statistical blunders. So, where are we now?  

One way to assess whether or not the call has been heard is to systematically 

evaluate the present state of educational technology research practice. As Skidmore 

(2009) stated, “Indeed, it is only when we hold the mirror up to ourselves and purposely 

reflect on where we are at the present time that we can begin to consider where we 

would like to be. To nonsensically consider where we would like to be without 

considering where we are now, would be like asking for directions without knowing our 

present location!” (p. 4).  

Meta-Analytic Thinking 

Educational technology research is plagued with isolated researchers who rarely 

associate with a greater research agenda (Reeves, 2000). As a result, meta-analysts are 

challenged to synthesize and interpret the field’s findings. Challenges in synthesizing 

and interpreting findings arise when researchers do not think meta-analytically.  
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Meta-analytic thinking moves researchers beyond their own study and views 

their study in the light of the greater body of literature. Thompson (2002) described 

meta-analytic thinking as “both (a) prospective formulation of study expectations and 

design by explicitly invoking prior effect sizes and (b) the retrospective interpretation of 

new results, once they are in hand, via explicit, direct comparison with the prior effect 

sizes in the related literature” (p. 28). In other words, when researchers conduct studies 

using meta-analytic thinking, researchers establish study expectations and design before 

the study takes place and is built upon previous studies. Once the study is conducted, 

then results are interpreted in the context of the greater body of literature. In a field as 

scattered as educational technology, meta-analytic thinking is crucial to make better 

sense of the field’s findings and for the field to advance efficiently. 

One way to integrate quantitative original research is to conduct meta-analyses. 

The purpose of meta-analyses is to cumulate findings of studies on a particular topic and 

estimate effects across an entire body of research. Meta-analyses serve as an example of 

meta-analytic thinking. 

Organization of Document 

The current document is divided into four distinct sections. With the exceptions 

of the first and last sections, the sections are written as individual manuscripts with the 

intention to submit for publication. A description of each section is provided below:  

1) The first section is an introductory section which presents an overview of the 

topics to be investigated. 
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2) The second section offers a synthesis of statistical techniques used in the field 

of educational technology in the past two years. This section presents the 

introduction, literature review, and methods section of the first journal article. 

3) The third section reports a meta-analysis to demonstrate an example of meta-

analytic thinking. This section presents the introduction, literature review, 

and methods section of the second journal article. 

The fourth and final section is the concluding section that connects the findings from the 

two manuscript sections into a coherent, succinct conclusion for the entire thesis. 
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2. STATISTICAL METHODS USED IN EDUCATIONAL TECHNOLOGY 

JOURNALS 2012-2013 

 Research syntheses of statistical techniques are published commonly in various 

fields, including education. Methodological reviews come in multiple forms, such as 

investigations of specific techniques published within a single journal or across multiple 

journals. For example, Willson (1980) reviewed articles published in American 

Educational Research Journal (AERJ) between 1969 and 1978 with respect to statistical 

methodology. More recently, disciplines within education have also begun to evaluate 

studies across multiple journals. For example, Warne, Lazo, Ramos, and Ritter (2012) 

reported the statistical techniques in five gifted education journals. Essentially, the 

present review models Warne et al. (2012), who reviewed articles across multiple 

journals 

 Educational technology researchers have also conducted methodological reviews. 

Most researchers identified the types of research methods (e.g., quantitative, qualitative, 

or mixed methods) used in educational technology literature (e.g., Koble & Bunker, 

1997; Rourke & Szabo, 2002; Wang & Lockee, 2010). Other researchers extended their 

investigations beyond identifying research methods to synthesize the types of 

experimental designs (e.g., Cheung & Hew, 2009; Peterson-Karlan, 2011; Randolph, 

Julnes, Sutinen, & Lehman, 2008; Shih, Feng, & Tsai, 2008; Şİmşek, Özdamar, Uysal, 

Kobak, Berk, Kiliçer, & Çİğdem, 2009). Likewise reviews may investigate other 

methodological issues such as sampling method, reliability, and statistical techniques 
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(e.g., Alper & Gülbahar, 2009; Edyburn, 2000; Karataş, 2008; Lee, Driscoll, & Nelson, 

2004, 2007; Randolph, 2008; Randolph et al., 2008).  

Literature Review 

 Previous reviews adequately investigated the empirical nature, research methods, 

and experimental designs used in educational technology. Educational technology 

researchers captured information about the literature’s empirical and non-empirical 

nature (e.g., Chen & Hirschheim, 2004; Farhoomand & Drury, 1999; Hrastinski & 

Keller, 2007). Empirical articles are favored over non-empirical articles and the ratio 

between the two has remained constant over the past decade. Similarly, many 

researchers identified the research methods used in educational technology. Historically, 

quantitative methods dominated the field, yet today the field has seen a more balanced 

use of quantitative, qualitative, and mixed methodologies. Lastly, researchers identified 

the experimental designs used, despite the lack of explicit reporting in the original 

article. Identifying trends in experimental designs are particularly difficult given the 

variation in classification schemes. Specifically, a synthesis among five reviews resulted 

in 14 different experimental design categories, with some overlapping others. 

Despite the variety of previous reviews in educational technology, few 

researchers have reviewed sampling methods, score reliability, or statistical techniques. 

Researchers found convenience samples to plague the field, yet the actual sampling 

methods are often not directly reported (Alper & Gülbahar, 2009; Edyburn, 2000; 

Randolph et al., 2008). Likewise, the few researchers who reviewed score reliability 

information found poor reporting practices (Lee et al., 2004, 2007; Randolph, 2008). 
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Finally, researchers who evaluated statistical methods simply reported a brief list of 

statistical techniques (e.g., Karataş, 2008; Lee et al., 2004, 2007; Randolph et al., 2008). 

Appendix A offers more details on previous findings.  

Researchers have a clear picture of the empirical nature, research methods, and 

experimental designs used in educational technology. Nevertheless, more information is 

needed about sampling methods, score reliability, and statistical techniques used in the 

field. In brief, some researchers examined trends over time and across journals, while 

others did not observe trends. Although these topics are explored to some extent, little is 

known about the statistical trends in educational technology. Moreover, few reviewed 

the field of educational technology as a whole. For these reasons, a thorough synthesis of 

the field regarding the use of statistical techniques is needed.  

Purpose 

The purpose of the current study was to provide a synthesis of statistical 

techniques used in the field of educational technology in the past two years. The present 

article undertook a similar review of published journal articles in educational technology 

to determine which statistical techniques are used, and whether discernible trends 

emerged within journals and across the discipline. In essence, this review models Warne 

et al., (2012), who reviewed articles across multiple journals. Where other 

methodological reviews of educational technology are limited to specific areas, the 

current study reviews the field as a whole.  Moreover, the current study moved beyond 

classifying research methods, and examined the statistical techniques used in the 

educational technology literature to better understand the current state of the field’s use 
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of statistics. The present study aimed to answer two research questions: 1) Which 

statistical techniques are used in educational technology research? and 2) How have the 

proportion of statistical techniques varied across the top five educational technology 

journals?  

Methods 

Inclusion Criteria 

 The present methodological review examined five influential research journals 

over a two year period, from 2012 to 2013. The educational technology journals selected 

for review were based on the journals’ impact factors using the 2011 Journal Citation 

Reports
® (JCR®) Social Science Edition. An impact factor is the average number of 

citations for articles published in social science journals to quantify the relative 

importance of a journal within its field. Given the 2011 JCR® database did not have an 

education technology sub-category, I compared the listed JCR® journals with the 

Educational Technology of Library Science directory from the 2012 Cabell’s Directories 

of Publishing Opportunities (Cabell’s).  

Exclusions 

The current study reviewed only papers that were identified as empirical articles. 

Non-empirical papers, such as editorials and book reviews, were excluded from the 

current study. In addition, the journal, Educational Research Review, was excluded, 

despite being ranked in the top five journals between the JCR®  database and Cabell’s 

directory. The journal was excluded because of the lack of emphasis on educational 

technology. 
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Sample 

The journals with the highest impact rating in rank order were: Computers & 

Education, International Journal of Computer-Supported Collaborative Learning, 

British Journal of Educational Technology, Australasian Journal of Educational 

Technology, and Educational Technology Research and Development. Note the top five 

journals are not representative of the diverse topics discussed within educational 

technology nor representative of the variety of contexts in which educational technology 

is applied (e.g., K-12, higher education, or industry). 

Elsevier (2012) publishes the top ranked journal, Computers & Education 

(C&E). According to Elsevier’s (2012) website, the journal’s scope is an 

“interdisciplinary forum for communication in the use of all forms of computing” 

(“Aims and Scope,” para. 1), including open and distance learning environments and 

spans across primary to tertiary levels in education. The top ranking journal has a 2.62 

impact factor. 

Springer publishes the second ranked journal, International Journal of 

Computer-Supported Collaborative Learning (ijCSCL), quarterly on behalf of the 

International Society of the Learning Science. The journal promotes a deeper 

understanding of computer-supported collaborative learning with emphasis on how 

people learn and how to design in this context. The journal has a 2.24 impact factor. 

Wiley-Blackwell publishes the British Journal of Educational Technology 

(BJET) bi-monthly on behalf of the British Educational Research Association (BERA). 

According to the publisher’s website (John Wiley & Sons, 2012), the BJET (2012) 
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provides the “widest possible coverage of developments in international educational and 

training technology” (Aims and Scope, para. 1). The third ranked journal has a 1.54 

impact factor. 

Australasian Society for Computers in Learning in Tertiary Education 

(ASCILITE; 2012) publishes the fourth ranked journal, Australasian Journal of 

Educational Technology (AJET). According to ASCILATE (2012), the journal’s scope 

entails “research and review articles in educational technology, information and 

communications technologies for education, online and e-learning, educational design, 

multimedia, computer assisted learning, and related areas” (AJET in brief, para. 1). The 

journal has a 1.52 impact factor. 

Springer (2012) publishes the fifth ranked journal, Educational Technology 

Research and Development (ETR&D) bi-monthly on behalf of the Association for 

Educational Communications & Technology (AECT). The journal’s scope promotes 

dual emphasis in research and development in educational technology.  According to 

Springer (2012), the research section emphasizes “applications of technology or 

instructional design in educational settings” (“Aims and Scope,” para. 1), while the 

development section emphasizes “planning, implementation, evaluation and 

management of a variety of instructional technologies and learning environments” 

(“Aims and Scope,” para. 2). The journal has a 1.09 impact factor. 

Coding 

 I developed a coding scheme based on three sources: previous reviews, 

publication standards, and meta-analytic coding suggestions. First, I consulted previous 
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reviews (Chen & Hirschheim, 2004; Skidmore & Thompson, 2010; Warne et al., 2012), 

which led to an initial coding scheme. Based on the previous reviews, I observed the 

original articles under review did not follow publication standards. As a result, next, I 

appraised the statistical reporting standards from the American Psychological 

Association (2010), APA Publications and Communications Board Working Group on 

Journal Article Reporting Standards (2008), and Wilkinson and the Task Force on 

Statistical Inference (1999). Lastly, I reviewed works on meta-analytic coding, which 

identified the type of information to report in original articles to best synthesize 

information for future use (Cooper, 2010; Lipsey & Wilson, 2001). The coding sheet and 

definitions are located in Appendix B.  

Procedures 

 First, each article was classified as empirical or non-empirical. Next, the 

empirical articles were further classified as applying qualitative, quantitative, or mixed 

methodology. Lastly, statistical techniques were identified for all articles using 

quantitative or mixed methods. For example, while all 1,171 articles were screened, only 

720 articles using quantitative or mixed research methods were further reviewed for 

statistical techniques. Qualitative research articles and non-empirical articles were 

classified accordingly and not reviewed further. 

The author and one graduate assistant coded articles using the coding sheet. The 

author recorded a total of 32,131 items from all 1171 articles. The author trained one 

graduate student to independently code 35.44% (n = 415) of a random sample of all 

articles using the coding sheet. Each coder used a Microsoft Excel spreadsheet to the 
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indicate presence of the particular methodological technique. The two coders compared 

items recorded and resolved discrepancies. Inter-rater reliability was computed using 

Cohen’s kappa (κ). Cohen’s kappa is a coefficient of agreement for nominal scales, 

which was the measurement scale used in the coding sheet. Cohen’s kappa was 0.99. 

Cohen’s kappa measures the agreement between two raters, taking into account the 

number of cases, categories, and raters. Values range between +1, indicating complete 

agreement, and -1, indicating complete disagreement. Cohen’s kappa was 0.99. 

Results 

The current study found empirical articles are favored over non-empirical articles, which 

mirror the findings of previous methodological reviews in educational technology (e.g., 

Chen & Hirschheim, 2004; Farhoomand & Drury, 1999; Hrastinski & Keller, 2007). 

Among the 1,171 articles reviewed, 509 (43.47%) were quantitative, 216 articles 

(18.45%) were qualitative, and 211 (18.02%) were reports from mixed methods research 

projects — a proportion similar to the findings from Hrastinski and Keller’s (2007) 

review of educational technology articles from 2000 to 2004. The remaining 235 articles 

(20.07%) were non-empirical reports, such as editorials, book reviews, and other non-

research articles. Figure 1 presents the type of research methods used across the five 

journals reviewed. Given the scope of the current study, only quantitative and mixed 

methods research reports were analyzed further. 
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Figure 1  Type of Research Method Used by Journal. 
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convenience samples (Alper & Gülbahar, 2009; Edyburn, 2000; Randolph et al., 2008). 
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most authors did not report the type of sampling procedure used. Specifically, authors of 

617 articles (85.69%) did not report the type of sampling procedure used. Among the 

100 articles that included the type of sampling procedure, 22 articles (3.06%) indicated 
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Table 1.  
Sampling Procedure Reported in Education Technology Journals Organized by Journal 

 
Journal 

 Sampling Procedure C&E ijSCL BJET AJET ETR&D Total 
No sampling procedure 
reported 374 (87.79%) 15 (93.75%) 108 (82.44%) 62 (81.58%) 58 (81.69%) 617 (85.69%) 

Convenience sampling 11 (2.58%) 0 4 (3.05%) 5 (6.58%) 2 (2.82%) 22 (3.06%) 
Simple random sampling 14 (3.29%) 0 6 (4.58%) 7 (9.21%) 3 (4.23%) 30 (4.17%) 
Database 12 (2.82%) 0 7 (5.34%) 1 (1.32%) 3 (4.23%) 23 (3.19%) 
Purposive sampling 6 (1.41%) 1(6.25%) 2 (1.53%) 1 (1.32%) 1 (1.41%) 11 (1.53%) 
Stratified random sampling 4 (0.94%) 0 1 (0.76%) 0 1 (1.41%) 6 (0.83%) 
Cluster sampling 3 (0.70%) 0 1 (0.76%) 1 (1.32%) 1 (1.41%) 6 (0.83%) 
Unspecified non-random 
sampling 1 (0.23%) 0 1 (0.76%) 0 0 2 (0.28%) 

Note. The following sampling procedures were only used once: chain-referral sampling (C&E), stratified multi-stage cluster sampling (C&E), cluster-randomized 
sampling (ETR&D), probability proportional to size (PPS) in a multistage cluster sampling design (ETR&D). 

Table 1      Sampling Procedure Reported in Education Technology Journals Organized by Journal 
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articles reported samples from databases (23 articles; 3.19%), purposive sampling (11 

articles; 1.53%), stratified random sampling (6 articles; 0.83%), and cluster sampling (6  

articles; 0.83%). Authors of two articles (0.28%) reported they used a non-random 

sampling method, yet did not specify the type used.  

Table 1 presents sampling procedures used across the five journals. Overall, the 

authors across all five journals rarely reported the type of sampling procedure used. In 

fact, less than 20% of the quantitative or mixed methods research articles published in 

each journal reported the type of sampling procedure used. In ijSCL, the authors of 

quantitative and mixed method research reported the type of sampling procedure in only 

one article. 

  Based on the current study, random assignment was rarely used in educational 

technology research, a finding similar to Lee et al. (2007). Authors of 146 articles 

(20.28%) randomly assigned participants to treatment groups. Random assignment 

appeared in 93 articles published in C&E, 8 articles published in ijSCL, 18 articles 

published in BJET, 7 articles published in AJET, and 20 articles published in ETR&D. 

Score Reliability 

Scholars argued that researchers should report the reliability statistics from the 

data at hand because of the possible impact reliability has on the interpretation of 

research results (American Education Research Association, 2006; Wilkinson et al., 

1999).  Thompson (1994) forewarned, 
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The failure to consider score reliability in substantive research may exact 

a toll on the interpretations within research studies. For example, we may 

conduct studies that could not possibly yield noteworthy effect sizes 

given that score reliability inherently attenuates effects sizes. Or we may 

not accurately interpret the effect sizes in our studies if we do not 

consider the reliability of the scores we are actually analyzing. (p. 840) 

 

Despite these warnings, authors of approximately half (420 articles) of the quantitative 

and mixed method articles reported reliability data from their own sample. The findings 

of the current study mirror findings of Willson (1980) seen 34 years ago. Authors of 16 

articles (2.22%) invoked a reliability coefficient from a previous study or test manual. 

In addition, authors of 105 articles (14.58%) referred to reliability as an attribute 

of the test, instead of data at hand, by using phrases such as "reliability of the test" 

suggesting there may be misconceptions about reliability (Vacha-Haase, 1998). As 

Thompson (1992) noted,  

 

This is not just an issue of sloppy speaking – the problem is that 

sometimes we unconsciously come to think what we say or what we hear, 

so that sloppy speaking does sometimes lead to a more pernicious 

outcome, sloppy thinking and sloppy practice. (p. 436) 
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This is not good practice because tests are not reliable! Gronlund and Linn (1990) 

explained,  

 

Reliability refers to the results obtained with an evaluation instrument and 

not to the instrument itself… Thus, it is more appropriate to speak of the 

reliability of the ‘test scores’ or the ‘measurement’ than of the ‘test’ or the 

‘instrument’. (p. 78). 

 

The following sections and Table 2 presents the type of reliability methods that were 

found across all five journals. 

Internal consistency. By far the most common type of reliability measure 

reported was internal consistency coefficients. The most common reliability coefficient 

among all reliability measures was Cronbach’s alpha, appearing in 313 articles, almost 

half of all quantitative and mixed method studies. The widespread use of Cronbach’s 

alpha in educational technology research is also found in the general psychological 

literature (Hogan, Benjamin, & Brezinski, 2000), and gifted education (Warne et al., 

2012). Composite reliability and the Kuder-Richardson formula, and standardized 

Cronbach’s alpha were found in 36 articles (5.00%) and 22 articles (3.06%), and 2 

articles (2.82%), respectively. While other internal consistency coefficients, such as 

McDonald’s Omega, and person separation coefficients were reported only once. 

Authors of four articles (0.56%) computed some type of internal consistency coefficient 

but did not specify which type of internal consistency coefficient was calculated! This is  
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Table 2      Reliability Methods Used in Educational Technology Journals, 2012-2013, Organized by Journal 
Table 2.  
Reliability Methods Used in Educational Technology Journals, 2012-2013, Organized by Journal 

 
Journal 

 Method C&E ijSCL BJET AJET ETR&D Total 
Reliability induction 8 (1.88%) 0 3 (2.29%) 3 (3.95%) 2 (2.82%) 16 (2.22%) 
Reported reliability for 
own data 256 (60.09%) 14 (87.50%) 74 (56.49%) 38 (50.00%) 38 (53.52%) 420 (58.33%) 

"Reliability of the test" 
(not scores) 71 (16.67%) 0 12 (9.16%) 12 (15.79%) 10 (14.08%) 105 (14.58%) 

Cronbach's alpha 201 (47.18%) 4 (25.00%) 54 (41.22%) 32 (42.11%) 22 (30.99%) 313 (43.47%) 
Composite reliability 25 (5.87%) 0 6 (4.58%) 4 (5.26%) 1 (1.41%) 36 (5.00%) 
Kuder-Richardson formula 13 (3.05%) 1 (6.25%) 2 (1.53%) 2 (2.63 %%) 4 (5.63%) 22 (3.06%) 
Standardized Cronbach's 
alpha 2 (2.82%) 0 0 0 0 2 (0.28%) 

Unspecified internal 
consistency 1 (0.23%) 0 3 (2.29%) 0 0 4 (0.56%) 

Test-retest 6 (1.41%) 0 1 (0.76%) 0 1 (1.41%) 8 (1.11%) 
Cohen's kappa 27 (6.34%) 6 (37.50%) 5 (3.82%) 4 (5.26%) 7 (9.86%) 49 (6.81%) 
percent agreement 25 (5.87%) 4 (25.00%) 7 (5.34%) 1 (1.32%) 5 (7.04%) 42 (5.83%) 
Krippendorf’s alpha 4 (0.94%) 4 (25.00%) 0 0 1 (1.41%) 9 (1.25%) 
Correlation between 
ratings 9 (2.11%) 1 (6.25%) 5 (3.82%) 1 (1.32%) 6 (8.45%) 22 (3.06%) 

Free-Marginal Multirater 
Kappa 0 0 2 (1.53%) 0 0 2 (0.28%) 

Intraclass correction 
coefficient 9 (2.11%) 1 (6.25%) 1 (0.76%) 1 (1.32%) 3 (4.23%) 14 (1.94%) 

Unspecified inter-rater 
method 4 (0.94%) 0 0 1 (1.32%) 1 (1.41%) 6 (0.83%) 



 

18 

 

Table 2. Continued 

 
Journal 

 Method C&E ijSCL BJET AJET ETR&D Total 
Alternate/ Parallel forms 6 (1.41%) 0 0 0 0 6 (0.83%) 
Spearman-Brown 3 (0.70%) 1 (6.25%) 0 1 (1.32%) 0 5 (0.69%) 
Guttmann split-half 4 (0.94%) 0 0 0 0 4 (0.56%) 
IRT-based reliability 
measure 9 (2.11%) 0 0 0 1 (1.41%) 10 (1.39%) 

Note. IRT = item response theory; ICC = intraclass correlation coefficient; ROC = receiver operating characteristic curve; 
Little's MCAR test = Little's Missing Completely at Random test; Q-Q plot = Quantile-quantile plot. The following reliability 
statistics were used only once: Bland-Altman plot (C&E), Bayesian-based reliability measure (C&E), fidelity measures (C&E), 
H coefficient (C&E), McDonald's Omega (C&E), person separation reliability (C&E), Raykov’s (2001) CFA-based method 
(C&E), squared multiple correlation (C&E), an unspecified reliability coefficient (C&E), rwg analysis (BJET), and Fleiss’s 
kappa (ETR&D).  
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troubling, because different estimates have different properties and may not be directly 

comparable across types. 

Interrater reliability. Interrater reliability measures were the next most common 

type of reliability measure reported. Cohen’s kappa and percent agreement between 

raters were the most common types of interrater reliability measure – reported in 49 

articles (6.81%) and 42 articles (5.83%), respectively. Correlations between ratings were 

the next most common (22 articles; 3.06%), with intraclass correction coefficients (14 

articles; 1.94%), Krippendorf’s alpha (9 articles; 1.25%), Free-Marginal Multirater 

Kappa (2 articles; 0.28%) also appearing in the literature. Other less commonly reported 

inter-rater reliability coefficients were a Fleiss’s kappa, a Bland-Altman plot, and a rwg 

analysis (e.g., James, Demaree & Wolf, 1993), each appearing in one article. As seen 

with internal consistency coefficients, authors of 6 articles (0.83%) calculated some type 

of inter-rater coefficient, yet did not specify which type was computed. 

Other types of reliability measures were less commonly reported. Authors of 10 articles 

(1.39 %%) reported item response theory (IRT) based reliability measures. Split-half 

correlations were reported for nine articles (1.25%), with five of those correlations being 

corrected by the Spearman–Brown prophecy formula and four of those using the 

Guttmann split-half formula. Test–retest reliability coefficients appeared in 8 articles 

(1.11%), while alternate/parallel forms reliability coefficients appeared in 6 articles 

(0.83%). Bayesian-based reliability measures, Raykov’s (2001) CFA-based method, 

fidelity measures, squared multiple correlations, and H coefficients were each found in 
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one article. Authors of one article (0.14%) reported an interrater reliability coefficient, 

yet did not specify which type of reliability coefficient was reported. 

Statistical Techniques 

Table 3 presents the statistical techniques used across the journals reviewed. The 

following sections report on multiple methods used in educational technology research 

over the past two years. Authors of articles often used more than one statistical 

technique. 

Descriptive Statistics 

Most authors of quantitative and mixed methods articles reported descriptive 

statistics. Means were reported for 78.61% of articles and standard deviations for 

69.17% of articles. At times, means were reported without accompanying standard 

deviations or other variance-based statistics. The lack of reporting accompanying means 

and standard deviations is largely recognized as poor practice (Thompson, 2006) and 

makes articles harder to include in meta-analyses (Cooper, 2010). Standard deviations 

quantify how well central tendency statistics do at representing the data set as a whole. 

Effect Sizes 

Recent publications stressed the importance of effect size reporting. Wilkinson et 

al. (1999) recommended that researchers should “always present effect sizes for primary 

outcomes” (p. 599, emphasis added). Moreover, the APA Task Force on Statistical 

Inference (Wilkinson et al., 1999), stated, "reporting and interpreting effect sizes in the 

context of previously reported effects is essential to good research" (p. 599, emphasis 

added). Likewise, the fifth edition of the APA manual emphasized, “For the reader to  
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Table 3      Statistical Methods Used in Educational Technology Journals, 2012-2013, Organized by Journal 
Table 3.  
Statistical Methods Used in Educational Technology Journals, 2012-2013, Organized by Journal 

 
Journal 

 Method C&E ijSCL BJET AJET ETR&D Total 
Descriptive statistics 

           Means 343 (80.52%) 14 (87.50%) 86 (65.65%) 61 (80.26%) 62 (87.32%) 566 (78.61%) 
     SDs 298 (69.95%) 13 (81.25%) 76 (58.02%) 52 (68.42%) 59 (83.10%) 498 (69.17%) 
Basic inferential statistics       
t tests 165 (38.73%) 5 (31.25%) 36 (27.48%) 32 (42.11%) 23 (32.39%) 261 (36.25%) 
ANOVA 134 (31.46%) 10 (62.50%) 27 (20.61%) 16 (21.05%) 34 (47.89%) 221 (30.69%) 
ANCOVA 40 (9.39%) 1 (6.25%) 10 (7.63%) 3 (3.95%) 7 (9.86%) 61 (8.47%) 
MANOVA 19 (4.46%) 2 (12.50%) 7 (5.34%) 4 (5.26%) 7 (9.86%) 39 (5.42%) 
MANCOVA 9 (2.11%) 1 (6.25%) 1 (0.76%) 0 0 11 (1.53%) 
Correlation / regression       
     Pearson's r 151 (35.45%) 6 (37.50%) 40 (30.53%) 15 (19.74%) 23 (32.39%) 235 (32.64%) 
     Spearman's rho 17 (3.99%) 1 (6.25%) 3 (2.29%) 3 (3.95%) 2 (2.82%) 26 (3.61%) 
     Point-biserial correlation 2 (0. 47%) 0 0 0 1 (1.41%) 3 (0.42%) 
     Phi coefficient 2 (0. 47%) 1 (6.25%) 0 0 0 3 (0.42%) 
     Kendall's tau 1 (0.23%) 0 0 0 1 (1.41%) 2 (0.28%) 
     Canonical correlation 0 0 0 1 (1.32%) 0 1 (0.14%) 
     Point-measure correlation 1 (0.23%) 0 0 0 0 1 (0.14%) 
     Multiple regression 48 (11.27%) 3 (18.75%) 12 (9.16%) 4 (5.26%) 7 (9.86%) 74 (10.28%) 
     Stepwise 12 (2.82%) 1 (6.25%) 5 (3.82%) 1 (1.32%) 0 (0.00%) 19 (2.64%) 
     Logistic 8 (1.88%) 0 2 (1.53%) 0 (0.00%) 1 (1.41%) 11 (1.53%) 
     Hierarchical linear 15 (3.52%) 0 4 (3.05%) 1 (1.32%) 3 (4.23%) 23 (3.19%) 
     HLM 9 (2.11%) 0 0 0 8 (11.27%) 17 (2.36%) 
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Table 3. Continued 
 Journal  
Method C&E ijSCL BJET AJET ETR&D Total 
Data reduction       
     EFA 23 (5.40%) 0 9 (6.87%) 4 (5.26%) 0 36 (5.00%) 
     PCA 31 (7.28%) 0 6 (4.58%) 6 (7.89%) 1 (1.41%) 44 (6.11%) 
     Unspecified 2 (0.47%) 0 1 (0.76%) 2 (1.32%) 0 5 (0.69%) 
Structural Equation Modeling       
     Path analysis 19 (4.46%) 0 6 (4.58%) 8 (10.53%) 0 33 (4.58%) 
     CFA / measurement model 52 (12.21%) 0 11 (8.40%) 7 (9.21%) 4 (5.63%) 74 (10.28%) 
     Structural model 32 (7.51%) 0 7 (5.34%) 2 (2.63%) 0 41 (5.69%) 
Nonparametric statistics       
     Pearson's Χ² 46 (10.80%) 6 (37.50%) 12 (9.16%) 9 (11.84%) 7 (9.86%) 80 (11.11%) 
     Mann-Whitney U 28 (6.57%) 0 7 (5.34%) 1 (1.32%) 0 36 (5.00%) 
     Cluster analysis 15 (3.52%) 1 (6.25%) 4 (3.05%) 1 (1.32%) 3 (4.23%) 24 (3.33%) 
     Wilcoxon signed ranks 18 (4.23%) 1 (6.25%) 4 (3.05%) 0 0 23 (3.19%) 
     Kolmogorov-Smirnoz test  10 (2.35%) 0 1 (0.76%) 1 (1.32%) 1 (1.41%) 13 (1.81%) 
     Kruskal-Wallis test 8 (1.88%) 0 2 (1.53%) 1 (1.32%) 0 11 (1.53%) 
     Fisher's exact test 4 (0.94%) 0 0 0 0 4 (0.56%) 
     Anderson-Darling test 2 (0.47%) 0 2 (1.53%) 0 0 4 (0.56%) 
     Friendman’s Χ² 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Kendall's W 0 0 0 2 (2.63%) 0 2 (0.28%) 
     McNemar's test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Sign test 1 (0.23%) 0 0 0 0 1 (0.14%) 
     Density Kernel estimation 1 (0.23%) 0 0 0 0 1 (0.14%) 
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Table 3. Continued 
 Journal  
Method C&E ijSCL BJET AJET ETR&D Total 
     Unspecified non-parametric 

test 1 (0.23%) 0 0 0 0 1 (0.14%) 

Miscellaneous procedures       
     Frequencies 259 (60.80%) 14 (87.50%) 79 (60.31%) 55 (72.37%) 42 (59.15%) 449 (62.36%) 
     Average variance extracted 

(AVE) 30 (7.04%) 0 7 (5.34%) 0 1 (1.41%) 38 (5.28%) 

     Levene’s test 24 (5.63%) 0 2 (1.53%) 2 (2.63%) 5 (7.04%) 33 (4.58%) 
     Shapiro–Wilk test 7 (1.64%) 0 3 (2.29%) 1 (1.32%) 1 (1.41%) 12 (1.67%) 
     Power analysis 4 (0.94%) 0 1 (0.76%) 2 (2.63%) 5 (7.04%) 12 (1.67%) 
     Multicollinearity test 5 (1.17%) 0 2 (1.53%) 0 1 (1.41%) 8 (1.11%) 
     Social network analysis 4 (0.94%) 0 3 (2.29%) 0 1 (1.41%) 8 (1.11%) 
     Homogeneity-of-regression 

test 6 (1.41%) 0 1 (0.76%) 1 (1.32%) 0 8 (1.11%) 

     Mediation analyses 5 (1.17%) 2 (12.50%) 0 0 0 7 (0.97%) 
     Unspecified homogeneity of 

variance 5 (1.17%) 0 0 2 (2.63%) 0 7 (0.97%) 

     Bayesian statistics 4 (0.94%) 1 (6.25%) 0 0 1 (1.41%) 6 (0.83%) 
     Sequential analysis 3 (0.70%) 0 2 (1.53%) 0 0 5 (0.69%) 
     Wald test 3 (0.70%) 0 1 (0.76%) 0 1 (1.41%) 5 (0.69%) 
     Box's test 2 (0.47%) 0 1 (0.76%) 0 1 (1.41%) 4 (0.56%) 
     Item difficulty 3 (0.70%) 0 1 (0.76%) 0 0 4 (0.56%) 
     Item discrimination 2 (0.47%) 0 1 (0.76%) 0 0 3 (0.42%) 
     Square root of AVE 2 (0.47%) 0 0 1 (1.32%) 0 3 (0.42%) 
     Pillai’s Trace 2 (0.47%) 0 0 0 1 (1.41%) 3 (0.42%) 
     Little's MCAR test 1 (0.23%) 0 0 1 (1.32%) 0 2 (0.28%) 
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Table 3. Continued 
 Journal  
Method C&E ijSCL BJET AJET ETR&D Total 
     Sobel test 1 (0.23%) 0 0 0 1 (1.41%) 2 (0.28%) 
     ROC curves 1 (0.23%) 0 1 (0.76%) 0 0 2 (0.28%) 
     Fisher’s Z-transformation 

analyses 1 (0.23%) 0 1 (0.76%) 0 0 2 (0.28%) 

     Q-Q plot 1 (0.23%) 0 0 0 1 (1.41%) 2 (0.28%) 
     Analytic Hierarchy Process 1 (0.23%) 0 0 0 1 (1.41%) 2 (0.28%) 
     Generalized Estimating 

Equation 1 (0.23%) 0 0 0 1 (1.41%) 2 (0.28%) 

     F-test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Lawshe’s content validity 

ratio 2 (0.47%) 0 0 0 0 2 (0.28%) 

     Welch’s t-test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Mauchly’s test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Mardia test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Bartlett's sphericity Χ² test 2 (0.47%) 0 0 0 0 2 (0.28%) 
     Unspecified linearity test 2 (0.47%) 0 0 0 0 2 (0.28%) 
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Note. ANOVA = analysis of variance; ANCOVA = analysis of covariance; MANOVA = multivariate analysis of variance; 
MANCOVA = multivariate analysis of covariance; HLM = hierarchical linear modeling; EFA = exploratory factor analysis; 
PCA = principal components analysis; CFA = confirmatory factor analysis. The following miscellaneous statistical methods 
were used only once:  adjusted residuals tables (Z-score) (C&E), Box-Cox transformation (C&E), Carte & Russell’s F-statistic 
(C&E), Cox–Stuart test (C&E), Curve estimation (C&E), Durbin–Watson-coefficient (C&E), Fuzzy Set Analysis (C&E), 
Harman’s single factor test (C&E), Heterogeneity test: I² statistic (C&E), Holm-Bonferroni correction (C&E), Homogeneity 
test: Q statistic (C&E), Hosmer and Lemenshow Test of Reliability (C&E), Hotellings T² statistic (C&E), IRT-based estimate 
(C&E), Johnson–Neyman method (C&E), Kruskal–Wallis test with post hoc, Mann–Whitney U-test (C&E), Lagrange 
multiplier test (C&E), Likelihood ratio test (C&E), Mahalanobis distance (C&E), Mathieu's significance test (C&E), 
Multidimensional scaling (C&E), Multivariate normality (C&E), Ordinal logistic regression (C&E), Prediction interval (C&E), 
Prediction relevance (C&E), Propensity (C&E), Sensitivity analysis (C&E), Stochastic Frontier Regression (C&E), 
Unspecified normality test (C&E), Gini coefficient (ijSCL), log-likelihood ratios (G-tests) with post hoc H tests (BJET), 
Parallel analysis (BJET), post-hoc General Linear Hypothesis (BJET), Somer's d test (BJET), Tabachnick and Fidell’s ratio 
validation (BJET), Unspecified heteroscedasticity test (BJET), Variance-stabilizing transformation (BJET), Jonckheere's test 
(AJET), Replication procedures (AJET), Bass modeling (ETR&D), Constant growth rate modeling (ETR&D), Factor score 
(ETR&D), F- test with Bonferroni correction (ETR&D), Ordinal Consistency (ETR&D), Proportional growth rate modeling 
(ETR&D), Stratified growth rate modeling (ETR&D), and Tversky’s formula (ETR&D). 
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fully understand the importance of your findings, it is almost always necessary to 

include some index of effect size” (p. 25, emphasis added). More recently, the current 

APA manual (2010) embraces similar language encouraging researchers to report effect 

sizes and their accompanying confidence intervals.  

Despite scholars stressing the importance of reporting effect sizes, only 49.58% 

of the articles (357 articles) using quantitative or mixed methods included at least one 

effect size.  The current finding is lower than the findings from Randolph et al.’s, (2008) 

review, where they found that effect sizes were reported in 97.6% (120 articles) of 

computer science education research. In the current study, effect sizes appeared in 

38.17% of the quantitative or mixed methods articles published in BJET (50 articles), 

39.47% of the quantitative or mixed methods articles published in AJET (30 articles), 

52.11% of the quantitative or mixed methods articles published in C&E (222 articles), 

61.97% of the quantitative or mixed methods articles published in ETR&D (44 articles), 

and 68.75% of the quantitative or mixed methods articles published in ijSCL (11 

articles),. Table 4 presents the types of effect sizes appearing in educational technology 

research between 2012 and 2013. The most commonly reported effect size in the 

literature reviewed was R2, which was found in 128 articles (17.78%) followed by 

Cohen’s d (97 articles; 13.47%). Other popular effect sizes included: η² (60 articles; 

8.33%), partial η² (53 articles; 7.36%), variance explained (48 articles; 6.67%), adjusted 

R² (31 articles; 4.31%), unspecified effect size (24 articles; 3.33%), r² (14 articles; 

1.94%), Cramer's phi (13 articles; 1.81%), and Cohen’s f² (8 articles; 1.11%). Other 

effect sizes were found in less than one percent of the articles and are listed in Table 4. 
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Occasionally, authors used Cohen’s (1992) benchmarks to interpret their effect 

size. However, this is not good practice. As Cohen (1988) himself noted,  

 

These proposed conventions were set forth throughout with much 

diffidence, qualifications, and invitations not to employ them if possible… 

They were offered as conventions because they were needed in a research 

climate characterized by a neglect of attention to issues of [effect size] 

magnitude. (p. 532) 

 

Cohen suggested that a Cohen’s d less than .2 are small, a Cohen’s d greater than 

.5 are medium, and a Cohen’s d greater than .8 are large. Among the quantitative and 

mixed method articles reviewed, authors of 72 articles (10.00%) used Cohen’s 

benchmarks to interpret effect sizes. Of these, 39 articles were found in C&E, 3 were 

found in ijSCL, 9 were found in BJET, 14 were found in AJET, and 7 were found in 

ETR&D. 

t Tests and -OVA Methods 

The t test examines whether the means of two groups are statistically different. 

T-tests were the most common statistical method found in the educational technology 

literature, after means and standard deviations. T-tests appeared in 36.25% of all 

quantitative or mixed methods articles. Moreover, ANOVA, which compares multiple 

group means to determine if one or more are statistically significantly different from the 

other(s), was the second most common inferential statistic among educational 
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Table 4.  
Effect Sizes Reported in Education Technology Journals Organized by Journal 

 
Journal 

 Effect Size C&E ijSCL BJET AJET ETR&D Total 
R² 89 1 20 9 9 128 
Cohen's d 54 6 12 9 16 97 
η² 30 3 9 8 10 60 
partial η²  33 2 5 2 11 53 
Variance explained 37 0 5 4 2 48 
adjusted R² 19 0 6 2 4 31 
Unspecified effect size 16 0 2 3 3 24 
r²  10 0 1 1 2 14 
Cramer's phi 8 2 1 1 1 13 
Cohen’s f² 5 0 1 0 2 8 
Pseudo-R² 4 0 0 0 0 4 
ω²  2 0 0 0 0 2 
Odds ratio 1 0 1 0 0 2 
Hedges’s g 1 0 0 0 1 2 
Generalized Eta-squared (η²G) 1 0 0 0 0 1 
Squared semi-partial correlations (sR²) 1 0 0 0 0 1 
Canonical R²/ R 0 0 2 0 0 2 
κ² 0 1 0 0 0 1 
partial R² 0 0 1 0 0 1 
Table 4      Effect Sizes Reported in Education Technology Journals Organized by Journal 

 

technology researchers, with 30.00% of articles using ANOVA. Analysis of covariance 

(ANCOVA), which is the same as an ANOVA, except with a covariate included in the 

statistical model, was found in 61 articles (8.47%) and was therefore not commonly 

used. The multivariate extensions of ANOVA and ANCOVA, respectively, multivariate 

analysis of variance (MANOVA) and multivariate analysis of covariance (MANCOVA), 

were less common than their univariate counterparts. MANOVA was used in 5.42% 

articles, while MANCOVA was found in only 11 articles (1.53%). 
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Post hoc tests. When an OVA method results in a statistically significant 

outcome, and there are three or more groups, researchers often follow with post hoc tests 

to determine exactly where the difference(s) in groups exist. For ANOVA, the most 

common post hoc tests were the Tukey’s Honestly Significant Difference test (HSD) (28 

articles), Scheffé post hoc  (19 articles), post hoc t tests (13 articles), Bonferroni post hoc 

analysis (11 articles), and Fisher's least significant differences (LSD; 11 articles). Paired-

sample t-tests with Bonferroni correction, Dunnett’s t, Tamhane’s multiple comparison 

tests, Games-Howell post hoc tests, and Welch’s t-test were each found in a single 

article. Authors of 16 articles indicated they conducted post hoc tests after their 

ANOVA, yet did not specify which post hoc test(s) were performed. The most common 

post hoc tests for ANCOVA were the Bonferroni post hoc analysis, Fisher's LSD, and 

unspecified post hoc tests, with each of these found in 4 articles. Sidaks post-hoc test, 

Tukey’s HSD test, and Dunn’s procedure with Bonferroni adjustment were each found 

in one article. A series of conventional post hoc t-tests were found in 2 articles. 

Considerably the most common post hoc statistical test for MANOVA was a 

series of ANOVAs, which occurred in 13 articles – one-third of all articles where at least 

one MANOVA was performed. This is unacceptable practice, because MANOVA and 

ANOVA test completely different hypotheses. As Tatsuoka (1971) noted, “one would 

usually be well advised to follow up a significant multivariate test with a [descriptive] 

discriminant function analysis in order to study the nature of the group differences more 

closely” (p. 50). 
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The other specified post hoc tests after MANOVA were Tukey’s HSD test (3 

articles), Fisher's LSD (2 articles), t-test (1 articles), Post-hoc Bonferroni corrected 

comparisons, (1 articles), ANOVA with post hoc Scheffé (1 article), and discriminant 

analysis (1 article). Authors of three articles who conducted multivariate null hypothesis 

statistical significance testing did not specify which post hoc test(s) they conducted. The 

most common post hoc test for MANCOVA included a series of ANCOVAs (2 articles) 

or a series of ANOVAs (2 articles). Authors of one article conducted a post hoc test after 

the MANCOVA, yet did not specify which post hoc test was performed.  

Correlational and Regression Procedures 

The most commonly used correlational procedure is Pearson’s r, which examines 

the statistical relationship between two interval or ratio scaled variables – appearing in 

235 articles (32.64%). Other correlational techniques were rare: Spearman's ρ was found 

in 26 articles (3.61%), point–biserial and phi correlations were each found in three 

articles (0.42%), Kendall’s tau was found in two articles (0.28%), and canonical and 

point-measure correlations were each found in a single article (0.14%). Multiple 

regression was the most commonly found regression procedure and appeared in 74 

articles (10.28%). As with the correlational procedures, other regression procedures were 

much less common: hierarchical linear regression was found in 23 articles (3.19%), 

stepwise regression was used in 19 articles (2.64%), and logistic regression was found in 

11 articles (1.53%).  
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Complex Statistical Methods 

Complex statistical methods are more accessible to researchers than ever before. 

Closed- and open-source statistical programs offer researchers statistical tools to test 

more complex models. This section reports on the impact complex statistical methods 

have had on educational technology research.  

Hierarchical linear modeling. HLM allows researchers to analyze nested data 

such as data represented by three nesting levels (e.g., student, college, and university). 

HLM is rarely found in educational technology literature. The method was used in 17 

articles (2.36%), which were all published in C&E or ETR&D. 

Data reduction methods. Data reduction methods create latent variables, which 

summarize a set of observed variables in a more parsimonious manner (Thompson, 

2004). There are two types of data reduction, exploratory factor analysis (EFA) and 

principal components analysis (PCA). I found that educational technology researchers 

favor both methods similarly well: EFA was used in 36 articles (5.00%), and PCA was 

used in 44 articles (6.11%). Authors of five articles (0.69%) used some type of data 

reduction method but did not specify which type of data reduction method was used. 

A variety of subjective decisions come into play when conducting a data 

reduction method (Thompson, 2004). One of the first decisions is selecting an extraction 

method to obtain a factor structure based on assumptions made about the data. Principal 

axis factoring was the most common method used in educational technology research, 

with 11 articles found. Other extraction methods found were maximum likelihood (ML; 

4 articles), and unweighted least square (1 article).  
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Another decision when conducting an EFA or PCA is to determine the number of 

factors to retain. Often authors use more than one factor retention method when making 

their decision and I found educational technology researchers often used more than one 

factor retention method when they reported the factor retention method used. The most 

commonly specified method for determining the number of factors was the Guttman rule 

(also called the K1 rule, or eigenvalues-greater-than-one rule), appearing in 35 articles. 

The other factor retention methods used were the Kaiser–Meyer–Olkin test of sampling 

adequacy (29 articles), visual inspection of the pattern coefficients (22 articles), 

Bartlett’s test of sphericity (22 articles), the variance accounted by the factors (11 

articles), scree test (8 articles), parallel analysis (5 articles), and communality 

coefficients (3 articles). Moreover, researchers used reliability coefficients, component 

matrices, homogeneity of proportions test, critical ratios, and their own ability to 

interpret different factor solutions to determine the number of factors to retain, with each 

found once in the educational technology literature.  

A third decision is to choose a rotation method to produce more interpretable 

results. Varimax rotation was the most common method used – appearing in 31 articles. 

The next most common methods specified were varimax with Kaiser normalization (7 

articles), oblimin (4 articles), promax (5 articles), direct oblimin (2 articles), quartimin (1 

article). In six articles, the author(s) did not specify the rotation method performed. 

After an EFA or PCA is performed the results are outputted in the form of a 

factor pattern matrix if an orthogonal rotation is used or a structure matrix if a non-

orthogonal rotation is used. Among the 85 articles that used a data reduction method, 
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authors of 39 articles reported a factor pattern matrix, while only authors of 5 articles 

reported structure matrices. Of course, factor pattern coefficients equal the factor 

structure coefficients if the factors are rotated orthogonally (Thompson, 2004). 

Structural equation modeling. Structural equation modeling (SEM) is a family 

of statistical methods which extend beyond the constraints of the statistical methods 

underlying the general linear model (Kline, 2011). Note that researchers could use more 

than one SEM method: path analysis, CFA/measurement model, or structural model.  

Among the quantitative and mixed method articles reviewed, 101 articles 

(14.03%) utilized at least one SEM method. Path analysis compares measured variables 

to other measured variables. Path analysis was seldom used in the recent educational 

technology literature. Only 33 articles (4.58%) from the last two years used path 

analysis. While path analysis compares measured variables, structural models compare 

latent variables. Structural models were more common than path analysis, appearing in 

41 articles (5.69%) from the past two years. Confirmatory factor analysis (CFA) and 

measurement models compare measured variables to latent variables. CFA is the most 

common advanced statistical method used in educational technology with 

CFA/measurement models appearing in 74 articles (10.28%). Tests of invariance or 

result replicability that are often used SEM and CFA were performed in only 1 article 

(0.14%). 

 As with data reduction methods, SEM requires researchers to report a substantial 

amount of details so that their procedures can be properly evaluated. One reporting 

requirement is for researchers to report a covariance matrix or a correlation matrix with 
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accompanying means and standard deviations of all observed variables in a model 

(Kline, 2011). Among the 101 articles utilizing SEM, authors of merely 27 articles 

reported a correlation matrix with accompanying means and standard deviations, while 

authors of only two articles reported a covariance matrix. Furthermore, authors of 28 

articles reported a correlation matrix without accompanying means and standard 

deviations. By only reporting a correlation matrix, researchers cannot properly evaluate 

SEM procedures. 

Kline (2011) also recommended that researchers report the estimation method 

used by their statistical software package when conducting SEM. The most common 

estimation method was maximum likelihood (21 articles), followed by partial least 

squares (15 articles), weighted least squares with missing variables (WLSMV; 3 articles) 

and robust ML (2 articles). Standardized robust ML, full information maximum 

likelihood (FIML), maximum likelihood with robust standard errors (MLR), ordinary 

least squares, and weighted least squares were each found in one article. Furthermore, 

multivariate normality is assumed when using ML estimation in SEM (Kline, 2011). 

Therefore, researchers who use ML estimation should either check their data for 

violations of the normality assumption or use methods that compensate for a lack of 

normality. Authors of only 15 out of 101 articles using SEM reported that they examined 

the normality of their data.  

Another reporting requirement of SEM, is for researchers to report parameter 

estimates. Of the 101 articles that used SEM, parameter estimates were reported for 80 
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articles. Of these, 72 were standardized estimates and 8 included unstandardized 

estimates. 

Lastly, researchers who use SEM have a wide variety of fit statistics with which 

they can evaluate how closely their observed data fit their SEM. The most common fit 

statistic reported was the root mean square error of approximation (RMSEA; 66 articles) 

followed  by the comparative fit index (CFI; 61 articles), χ²/df (44 articles),  χ² (36 

articles), standardized root mean square residual (SRMR; 30 articles), goodness-of-fit 

index  (GFI; 29 articles), normed fit index (NFI; 28 articles), adjusted goodness-of-fit 

index (AGFI; 23 articles), Tucker–Lewis index (TLI; 21 articles), nonnormed fit index 

(NNFI; 16 articles), incremental fit index (IFI; 10 articles), root mean residual (RMR; 8 

articles). The Akaike’s information criterion (AIC), expected cross-validation index 

(ECVI), global goodness-of-fit index (GoF), parsimony goodness of fit index (PGFI), 

and parsimony normed fit index (PNFI) were reported in few articles, each appearing in 

2 articles. Other reported fit statistics, which were reported only once, were the Bayesian 

information criterion (BIC), normal theory weighted least squares χ², parsimonious 

comparative fit index (PCFI), relative fit index (RFI), and the Satorra–Bentler χ². 

Nonparametric Statistics 

Nonparametric statistics do not require assumptions of normality and associated 

probability distributions, which the aforementioned parametric methods do require. 

Nonparametric methods are more appropriate than parametric when assumptions are not 

met. The most common nonparametric null hypothesis statistical significance testing 

method was the Pearson's Χ², which was found in 80 articles (11.11%), followed by the 
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Mann–Whitney U test (36 articles; 5.00%), cluster analysis (24 articles; 3.33%), 

Wilcoxon signed ranks (23 articles; 3.19%), Kolmogorov-Smirnoz test (13 articles; 

1.81%), and Kruskal-Wallis test (11 articles; 1.53%). Moreover, Fisher's exact test and 

Anderson-Darling test were each found 4 articles (0.56%). Friendman’s Χ², Kendall's W, 

and McNemar's test were each found 2 articles (0.28%). Density Kernel estimation, sign 

test, and an unspecified non-parametric test were each found in 1 article (0.14%) and all 

were published in C&E. 

Miscellaneous Statistical Procedures 

There were a variety of other statistical procedures, which did not easily fit into 

other sections of the current article. Note that some of these miscellaneous statistics are 

used in conjunction with other statistical methods described elsewhere in the present 

article. For example, the most common miscellaneous statistics reported were 

frequencies, which were found in 449 articles (62.36%). The second most common 

miscellaneous statistics reported were average variance extracted (AVE), which were 

found in 38 articles (5.28%) and mostly in the context of validity. Moreover, the 

Levene’s test (33 articles, 4.58%) was the second most common and was often used 

apriori to parametric statistical methods to examine the homogeneity of variances 

assumption in an ANOVA or a t test. Shapiro–Wilk tests and power analyses each 

occurred in 12 articles (1.67%), while multicollinearity tests, social network analyses, 

and homogeneity-of-regression tests each appeared in 8 articles (1.11%). Other 

miscellaneous statistics reported were mediation analyses (7 articles; 0.97%), 

unspecified types of homogeneity of variance tests (7 articles; 0.97%), Bayesian 



 

37 

 

statistics (6 articles; 0.83%), sequential analysis (5 articles; 0.69%), Wald test (5 articles; 

0.69%), Box's test (4 articles; 0.56%), Item difficulty (4 articles; 0.56%), Pillai’s Trace 

(3 articles; 0.42%), square root of AVE (3 articles; 0.42%), and item discrimination (3 

articles; 0.42%). The following miscellaneous statistics were each found in two articles 

(0.28%): Little's MCAR test, Sobel test, ROC curves, Fisher’s Z-transformation 

analyses, Q-Q plot, analytic hierarchy process, and generalized estimating equation 

(GEE). Welch’s t-test, Lawshe’s content validity ratio, Mauchly’s test, Mardia test, 

Bartlett's sphericity Χ² test, F-test, and an unspecified linearity test also appeared in two 

articles (0.28%); however these statistics were only reported in C&E. Miscellaneous 

statistical methods that were used in only one article are listed in the footnotes of Table 

3. 

P values. Another miscellaneous reporting standard examined was how often 

researchers reported at least one exact p value and/or inexact p value. According to APA 

guidelines (2010), “exact p values” are defined as p values that are equal to a specific 

number and not a range (e.g., p < .01 is defined as an inexact p). The exceptions to this 

guideline were p values permitted in the APA manual (e.g., if p is less than .001, or if p 

is in a table). Overall 72.22% of articles reported at least one exact p value, whereas 

46.94% of articles reported at least one inexact p value. There were many authors who 

reported a both exact and inexact p values. At times, authors noted that p was equal or 

less than zero. Reported values of p = .000 or p < .000 are impossible. However, 160 

articles (22.2%) reported a p value equal to or less than zero.  
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Confidence intervals. Researchers also recommended that authors report 

confidence intervals (CI). Few authors reported CIs, which appeared in only 69 articles 

(9.58%). All five journals published articles with CIs  with 46 articles (10.80%) 

published in C&E 3 articles (18.75%) published in ijSCL, 8 articles (6.11%) published in 

BJET, 7 articles (9.21%) published in AJET, and 5 articles (7.04%) published in 

ETR&D. 

Discussion 

The current study found that quantitative methods continue to dominate the field 

as a whole, yet journals appear to favor certain research methods over others.  As 

demonstrated in Figure 1, C&E and ETR&D favor quantitative methods more than other 

journals, while ijSCL favors qualitative methods. AJET has the most balanced 

representation of research methodologies than any other journal, by only slightly 

favoring qualitative methods. BJET has more non-empirical articles than any other 

journal – mostly due to numerous book reviews in each issue.  

The choice of research method should be based on the researcher’s questions. For 

example, the International Journal of Computer-Supported Collaborative Learning 

(ijSCL) focuses on in-depth collaboration within educational technology. Because of 

this, one would expect ijSCL to utilize more qualitative methods compared to general 

educational journals such as BJET or AJET. Additionally, researchers recently discussed 

the commonalities between quantitative and qualitative research, and advocated for 

mixed method research (e.g., Johnson & Onwuegbuzie, 2004). As reported in Figure 1, 
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the current study suggests educational technology researchers are utilizing mixed 

methods approaches. 

Previous publications suggested that convenience samples plague the field, yet 

note that sampling methods are often not directly reported (Alper & Gülbahar, 2009; 

Edyburn, 2000; Randolph et al., 2008).  As with previous reviews of educational 

technology literature and as reported in Table 1, most authors did not report the type of 

sampling procedure used in their investigations. However, in most cases the descriptions 

of their participants suggested the sample was collected out of convenience. 

Nevertheless, convenience samples should not be considered poor research practice. 

Convenience samples are as helpful as other sampling methods. However, when 

convenience samples are used, authors should adequately describe the sample for the 

reader to contextualize findings appropriately. In brief, authors should provide enough 

information about participants so that readers can determine generalization parameters.  

As reported in Table 2, the current study found poor reporting practices just as 

Lee et al., (2004), Lee et al., (2007) and Randolph (2008) found. The lack of reporting 

reliability estimates continues to degrade educational research. Over 30 years ago, 

Willson (1980) observed,  

 

Only 37% of the AERJ studies explicitly reported reliability coefficients 

for the data analyzed. Another 18% reported only indirectly through 

reference to earlier research… [and] unreported [reliability coefficients] 
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in almost half the published research is… inexcusable at this late date. (p. 

8-9)  

 

In the current study, approximately half of the authors reported reliability of the scores 

produced by their instrument, while fewer authors invoked a reliability coefficient from 

a previous study or test manual. Surely by now, the lack of reporting reliability 

coefficients for the data at hand is inexcusable. Accordingly, Wilkinson et al. (1999) 

stated, “if a questionnaire is used to collect data, [a researcher should] summarize the 

psychometric properties of its scores with specific regard to the way the instrument is 

used in a population” (p. 596). Authors should report evidence that the scores they are 

analyzing are reliable. I emphasize scores in the previous sentence because authors 

sometimes referred to reliability as an attribute of the test, instead of data at hand, by 

using phrases such as "reliability of the test." Verbiage relating reliability to a test 

instead of scores, suggests there may be misconceptions about reliability (Ritter, 2010). 

For a more thorough explanation about the importance of score reliability see Thompson 

(1992, 2003). Nevertheless, the lack of reliability information is a clear weakness in the 

body of educational technology research. 

 The results of the current review suggest few authors report informationally-

adequate statistics. Certain statistics should be reported to effectively evaluate findings 

and to allow meta-analysts to conduct secondary research studies. Although the current 

study identifies all statistical techniques used in educational technology between 2012 

and 2013, two specific areas of concern are emphasized. 
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One area of concern is the tendency to report a mean without the SD about the 

mean. As reported in Table 3, among the authors of 566 articles reporting means, SDs 

were not reported for 68 of the articles. In a similar vein, authors tended to report means 

of the instrument’s items instead of variables used when performing SEM. The lack of 

reporting means and SDs of the variables used in the SEM hinders the ability of 

researchers in secondary studies to synthesize results from SEM analysis appropriately. 

Authors should always report means with their accompanying SDs and report means and 

SDs of the variables used when performing SEM. 

Another area of concern is the lack of reporting correlation matrices with 

accompanying means and standard deviations or covariance matrices. Few authors 

reported matrices and often only provided a correlation matrix. Correlation matrices with 

accompanying means and SDs or covariance matrices should always be reported when 

conducting data reduction methods or SEM. These matrices of associations are used to 

analyze data and can be used to replicate or expand analyses (Zientek & Thompson, 

2009). For an example on how to report a correlation matrix with accompanying means 

and SDs in a research study using SEM, see Merchant, Goetz, Keeney-Kennicutt, Kwok, 

Cifuentes and Davis (2012). 

Limitations 

As with any study, there are some limitations to the present study. First, while 

previous methodological reviews of educational technology are limited to specific areas, 

the current study aimed to review the field as a whole by examining the top five 

educational journals between 2012 and 2013. Given there are at least 423 educational 
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technology journals (cf., 2012 Cabell’s Directories of Publishing Opportunities) and 

only five, high-impact journals were selected, the current study is limited in representing 

the entire field.  By selecting the top five educational technology journals, the most 

impactful literature to the field was reviewed. Moreover, the top five journals ensure the 

level of quality research under review in a field with numerous publication outlets. 

Nevertheless, given that educational technology is a global issue, future studies should 

examine other publications as well as publications in languages other than English.  

Despite efforts to ensure the quality of the coding procedures, at times subjective 

judgment in classifying articles and interpreting authors’ descriptions of their 

methodological and statistical procedures was required. Thus, if other researchers 

conducted a similar review, they would likely produce somewhat different results. In 

fact, Skidmore and Thompson (2010) found that occasionally in other reviews when the 

same journal volumes of journals were analyzed by different authors different results 

were produced.  Nevertheless, by having two coders and demonstrating sufficient inter-

rater agreement (kappa = 0.99), suggests that such problems were minimal in the present 

study. 

Implications 

Although the nature of the current study is descriptive, the results can provide 

authors, editors, and reviewers with some insightful ideas about the publishing trends in 

high impact educational technology journals. The results presented here can also help 

identify some of the strengths and weaknesses of the current methods used in 

educational technology research. Additionally, decision-makers in educational 
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technology doctoral programs can use this information to determine the types of 

statistical techniques their graduate students need to interpret and conduct research in the 

field. 

The discussion section reported on what I consider to be the most important 

evidence-based recommendations for improving the current state of the educational 

technology literature. Educational technology researchers should report the type of 

sampling procedure they used and provide adequate description of their samples so that 

readers can determine generalizability. Moreover, educational technology researchers 

should report evidence that the scores they are analyzing are reliable because of the 

possible impact reliability has on the interpretation of research results. Lastly, 

researchers should report informationally-adequate statistics so that readers can evaluate 

findings appropriately. 
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3. TECHNOLOGY ACCEPTANCE MODEL OF ONLINE LEARNING 

MANAGEMENT SYSTEMS IN HIGHER EDUCATION: A META-ANALYTIC 

STRUCTURAL EQUATION MODEL  

 Technology adoption practices have received considerable attention in the last 

five years. With more funding offered for technology integration and implementation i

n a time when other funding is cut, universities are looking to online learning as a cost-

effective option to deliver instruction. However, little is known about whether 

undergraduate learners will readily accept an online learning environment. In this 

technology age, many practitioners consider students proficient in technology. This 

assumption often stems from students’ fluency with social media and entertainment 

media. However, researchers previously demonstrated that proficiently using 

technologies in personal and social settings does not necessarily transfer to the 

technology skills needed in an academic setting (Goode, 2010; Lloyd, Dean, & Cooper 

2007; Presley & Presley, 2009; Teclehaimanot & Hickman, 2011).   

Practitioners need to gain an understanding of students’ acceptance of the online

 learning environment, in addition to the instructor’s preferences in delivering instruction.  

Instructors’ preferences are often taken into consideration before implementing online 

learning. However, students’ preferences are often explored only after adoption or whe

n issues emerge during the course. Both parties’ acceptance of the online learning 

environment is crucial to the success of online learning programs and for funds to be 

wisely invested. Before investing in online learning technologies, practitioners should 
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determine whether the online learning environment will be accepted by all the parties 

involved.  

The Technology Acceptance Model 

The Technology Acceptance Model (TAM; Davis, Bagozzi, & Warshaw, 1989) 

is one of many underlying theories used in technology adoption. The TAM is one of the 

most commonly used models to explain user’s technology acceptance behavior. The 

TAM is rooted in Social Psychology Theory and the Theory of Reasoned Action. The 

core constructs in the original TAM include perceived ease of use (EU), perceived 

usefulness (PU), and behavioral intention to use (BI).  Over time, the model has been 

modified by adding constructs such as attitude toward using (A) and actual system use 

(U), as noted in Figure 2. Note, the TAM also specifies relationships between numerous 

endogenous variables (i.e., predictor variables) and other variables within the model.  

The TAM posits perceived ease of use and perceived usefulness of the 

technology will individually predict user’s behavioral intention to use the technology. In 

other words, the easier the technology is to use or the more useful a particular 

technology is found to be, the more likely the user intends to use the technology again. 

The TAM also proposes that perceived usefulness mediates the relationship between 

perceived ease of use and behavioral intention to use the technology. This mediation 

effect may be observed when a technology is easy to use, but the technology is not 

useful to a person. If the technology is not perceived as useful, then it does not matter 

how easy the technology is to use; the end user will not continue to use the technology.  
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Study Model 

Davis (1986) 

 
 

Davis et al. (1989) 

 
 

Venkatesh & Davis 
(1996) 

 
 

Figure 2      Evolution of Core Constructs in the Technology Acceptance Model 
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Literature Review 

Meta-analysts have faced numerous challenges in validating the TAM. One 

challenge meta-analysts face is the inability to conduct moderator analyses relating to a 

specific type of technology used. For example, Schepers and Wetzels (2007) reviewed 

all empirical studies assessing the TAM. The authors had sufficient information to code 

for four types of technologies. However, there were not enough studies to a conduct 

moderator analysis based on a single technology. Instead, the meta-analysts converted 

the previous four categories into two categories to conduct a less informative moderator 

analysis.  

Another challenge meta-analysts face is the inability to validate the TAM with a 

specific population. For example, King and He (2006) conducted a meta-analysis on the 

TAM using different users (e.g., students, professionals, and general users) and found 

differences between types of users. More specifically, King and He (2006) concluded 

that, although students were similar to professionals, students were “not exactly like 

either of the other two groups” (p. 751) (i.e., professionals and general users). 

The failure to explore technology adoption with a specific type of technology in a 

single population limits the meta-analyst’s ability to explore subjective norms, such as 

culture. Previous meta-analysts (Schepers & Wetzels 2007; Straub, Keil, & Brenner, 

1997) have demonstrated the impact of subjective norms, and that the type of technology 

influences adoption practices using the TAM.  Schepers and Wetzels (2007) findings 

confirmed Straub et al., (1997) who found that the TAM did not fit equally well across 

cultures. 
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Previous studies have used meta-analytic techniques to validate the TAM; 

however, researchers failed to explore the TAM with a single type of technology or 

among a specific population using the TAM (King & He, 2006; Ma & Liu, 2004). The 

results from prior meta-analyses suggest a lack of understanding of a specific 

population’s ability to accept a specific type of technology.  

Purpose 

Before investing in online learning technologies, decision-makers should 

determine whether online learning environment will be accepted by all the parties 

involved.  Most studies have focused on multiple parties and their relationship to 

technology. The present study, however, and in contrast to previous meta-analyses, 

isolated one population and one technology. For this reason, the purpose of the current 

study was to determine whether the core variables of the TAM explains undergraduates’ 

acceptance of online learning.  

Methods 

Eligibility Criteria 

Articles included in the current meta-analysis met a set of certain criteria. The 

article must have been published after Davis (1986) proposed the TAM. Any type of 

article was open for inclusion to avoid publication bias, including book chapters and 

papers presented at conferences. Articles included in the research synthesis had to meet 

eight criteria; the study had to: 1) be written in English, 2) report quantitative results, 3) 

test the TAM, 4) include samples which came from an undergraduate student population, 

5) use the technology in an online learning context, 6) report adequate statistics to 
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calculate covariances, 7) measure variables in the TAM, and 8) measure variables at one 

time point (e.g., longitudinal studies were excluded). Note, mobile learning devices were 

excluded from the current study. Online learning included fully online courses or 

blended courses (e.g., partially face-to-face and partially online). 

Search Procedures 

First, I found articles using three academic databases: 1) ERIC database via 

EBSCO Host, 2) Educational Full Text via Wilson Web, and 3) Proquest Dissertations & 

Theses database via ProQuest. I used similar thesaurus terms and keywords across all 

three databases to minimize search error. The database searched for the following words: 

“Technology Acceptance Model,” AND "e-learning" OR "distance education" OR 

"online learning" AND "undergraduate" OR "college" The database search retrieved a 

total of 38 articles. After I removed external duplicates, 34 articles remained for 

screening. Table 5 presents the total number of articles retrieved from each database.  

Second, I found articles while hand-searching articles from Manuscript #1. The 

hand-search retrieved 4 articles. Lastly, I searched the reference section of the articles 

found in the database search and hand-search. The reference list search retrieved 39 

articles.  

Screening 

The screening process occurred in two phases: a primary screening and 

secondary screening (Moher, Liberati, Tetzlaff, Altman, & The PRISMA Group, 2009), 

using an online reference management system, RefWorks. During the primary screening, 

I reviewed each article’s title and abstract to determine if the article was written in 
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Table 5 
Articles Retrieved 

Search Database Vendor Number 
retrieved 

External 
dups 

New 
articles 
added 

1 ERIC EBSCO 16 0 16 

 Education Full Text EBSCO 19 4 15 

 
ProQuest Dissertations & 
Theses ProQuest 3 0 3 

2 Hand-searching - 4 0 4 
3 Reference lists - 39 0 39 

Total 81 4 77 
Note. External dups = External duplicates between databases. 

Table 5      Articles Retrieved 
 

 

English, was quantitative in nature, and tested the TAM. The articles which met the first 

screening’s criteria progressed to the second screening phase. During the secondary 

screening, I reviewed the entire article to determine if the article included samples which 

came from an undergraduate student population, used the technology in an online 

learning context, reported adequate statistics to calculate covariances, measured 

variables in the TAM, and measured variables at one time point. Interested readers may 

access the screened articles using the following permalink: http://goo.gl/5NYDKV. 

Among the 77 studies in the primary screening, I removed one article, which was 

qualitative in nature, and two articles, which did not test the TAM. Among the remaining 

74 articles, I excluded 61 articles during the secondary screening. Among the 61 

excluded articles, six articles did not include an undergraduate student sample, two 

articles were not in an online learning context, 49 articles did not include statistics to  
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calculate a covariance matrix, two articles did not measure variables in the TAM, and 

two articles measured variables at more than one time point. Figure 3 presents the 

screening process, which includes the number of articles excluded and the reason for 

exclusion.  

Most of the articles did not report sufficient statistics to synthesize results. Given 

that 49 articles would be excluded due to lack of statistics reported, I sent two emails to 

the authors whose articles did not contain statistics to compute a covariance. The first 

email requested missing information (e.g., means and SDs and/or correlations), and a 

second email followed two weeks later with a reminder of the initial request. Appendix 

C presents a sample of the initial email and the second email. 

Few authors responded and even fewer shared the requested missing information. 

Of the 49 articles with missing information, 13 authors responded, with one author 

providing me with the information requested. The most common response was to refer 

me to a co-author or suggest the data was lost. For example, one author noted both 

situations, 

  

“I do not have the data set or the cov[arinace] matrix any longer – I lost 

quite a number of files due to hard drive crash a couple of years ago. You 

might contact [co-author’s name], my co-author. She ran the analyses so 

maybe she would still have those files.”  
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Appendix D presents other responses from authors. I had little success in retaining 

articles with missing information, given authors’ responses. 

All 13 articles meeting inclusion criteria were published in seven peer-reviewed 

journals. Among the 13 articles, most came from a single journal, C&E. Table 6 presents 

the distribution of the articles meeting the inclusion criteria. 

 

 

 

Table 6 
Journals Represented in Meta-Analysis 

Rank Journal   Count % 
1 Computers & Education 6 46.15 
2 Educational Technology & Society 2 15.38 
3 International Review of Research in Open and Distance Learning 1 7.69 
4 Turkish Online Journal of Educational Technology - TOJET 1 7.69 
5 British Journal of Educational Technology 1 7.69 
6 Behaviour & Information Technology 1 7.69 
7 Journal of Educational Computing Research 1 7.69 

Note. n  = 13. 

Table 6      Journals Represented in Meta-Analysis 
 

 

Coding Procedures 

I created a coding scheme for the attributes of interest for the current study. 

Appendix E presents the different attributes coded in each category. I coded all 13 

articles using an Excel spreadsheet. 
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Appendix G presents the 13 studies measured different combinations of the 

variables in the TAM. Thus, I grouped the studies based on the common variables 

measured. Table 7 presents the four groups tested. Each group included a different 

number of studies. Once the studies were grouped, I conducted a meta-analysis within 

each group and then compared the studies within each group using multiple-group 

analysis. Given the number of parameters estimated in Groups 2 and 4, the SEM could 

not be identified. Hence, only the multiple-group analysis is reported for Groups 2 and 4. 

Note, by grouping the studies based on the common variables measured, some of the 13 

articles were not included in a given analysis (e.g., Davis & Wong, 2007; Lee & Lee, 

2008; Saadé, 2007; and Pituch & Lee, 2006). Furthermore, some studies were analyzed 

in more than one group (e.g., Martins & Kellermanns, 2004; Ramayah, 2006; Saadé et 

al., 2007; and Yi & Hwang, 2003).  

Meta-analysis. The current meta-analysis used MASEM. MASEM combines 

meta-analysis and structural equation modeling by pooling covariance matrices and 

testing structural equation models using the pooled covariance matrix. The current study 

used Cheung and Chan’s (2005) proposed two-stage structural equation modeling 

(TSSEM) approach to fit MASEM using covariance matrices. In stage one, the 

homogeneity of the covariance matrices was tested and covariance matrices were pooled 
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Table 7 
 Groups of Studies Tested 

Groups Studies Model 
Group 1 

 
 

 
Saadé & Galloway (2005) 

 
Saadé et al. (2007) 

  
  
      
Group 2 

 

 
Almrashdah et al. (2010) 

 

Martins & Kellermanns 
(2004) 

 
Saadé & Bahli (2005) 

 
Saadé et al. (2007) 

 
Yi & Hwang (2003) 

      
Group 3 

 
 

 
Liao & Lu (2008) 

 

Martins & Kellermanns 
(2004) 

 
Yi & Hwang (2003) 

    
Group 4 

 
 

 
Brown (2002) 

 

Martins & Kellermanns 
(2004) 

 
Ramayah (2006) 

 
Yi & Hwang (2003) 

  
      
Table 7      Groups of Studies Tested 
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together. In stage two, the pooled covariance matrix was used to fit the structural 

equation model specified using the reticular action model (RAM) formulation (McArdle 

& McDonald 1984) and estimated using weighted least squares (WLS). 

The current study utilized both fixed- and random-effects models. By definition, 

a fixed-effects MASEM was selected because the fixed-effects model assumes all 

population covariance matrices are the same. However, when researchers expect a large 

variance across the effect sizes of the studies due to differences in situational factors 

(e.g., setting), the studies are considered heterogeneous. When studies are 

heterogeneous, a random-effects MASEM is more appropriate. In a similar vein, a 

random-effect model assumes the population covariance matrices may vary across 

studies because the selected studies are random samples of the population. The random-

effects model uses the weighted average of the effect sizes to reduce the possible bias 

introduced by a large variance of the effect size across studies. For a more exhaustive 

explanation of the TSSEM approach to a MASEM, see Appendix H. 

The MASEM using the TSSEM approach was conducted using the metaSEM 

package version 0.8-4 (Cheung, 2013), the OpenMx package version 1.3.1-2301, and R 

version 2.15.3. The metaSEM package is a particularly useful package because 

metaSEM automatically takes the stage one model into account when estimating 

parameters, standard errors, and goodness-of-fit indices. Appendix I presents the syntax 

ran in R to conduct the meta-analysis for each group.  

Multiple group analysis. By definition, multiple group analysis tests whether 

there are differences in the structural parameters across studies. For the present study, a 



 

57 

 

path analysis using maximum likelihood estimation was used to estimate the structural 

parameters of the variables measured in each of the studies. To test the invariance across 

studies, I conducted a multi-group analysis of structural invariance for each group of 

studies. The first step established a baseline model, labeled as Model 1 in each group. 

Secondly, a constrained model was established and labeled as Model 2 in each group. In 

the constrained model, each parameter was forced to be equal across all studies in the 

group. Thirdly, a chi-square difference test between Model 2 and Model 1 was 

conducted. If the chi-square difference test resulted in a non-statistically significant 

difference across the studies, I concluded that the studies found similar results. If the chi-

square difference test resulted in a statistically significant difference across the studies, I 

determined where the differences were by reviewing the critical ratios (e.g., z- statistics) 

of the parameter estimates in each study. The AMOS software was utilized to conduct 

the multiple-group analysis. 

Multiple fit indices were reported and used to interpret model fit. While the chi-

square test measures the model’s ability to reproduce the sample covariance matrix; the 

chi-square test is sensitive to sample size and non-normality. Thus, several fit indices 

were considered to assess model fit, including root mean square error of approximation 

(RMSEA), root mean square residual  (RMR), normed fit index, (NFI), goodness of fit 

index (GFI), and comparative fit index (CFI). RMSEA below .06 indicate a reasonable 

fit. An RMR of zero indicates a perfect fit; thus, the closer RMR is to zero, the better 

model fit. NFI, GFI and CFI values greater than 0.95 suggest reasonable model fit 

(Thompson, 2004). 
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Results 

Meta-Analyses 

Group 1. A fixed-effects MASEM combines two studies from Group 1. Figure 4 

presents the model tested in the two studies. 

 

 

 

 

Figure 4      Group 1 Model 
 

 

 

In Stage 1, homogeneity of the covariance matrices was met based on the 

goodness-of-fit indices: Χ² (df = 6, N = 490) = 12.78; p = .05, CFI = 0.99, TLI = 0.98, 

SRMR = 0.06, and RMSEA = 0.07. Given that the covariance matrices were 

homogeneous, the analysis continues to Stage 2 to fit structural model using RAM 

specification. In Stage 2, the fit indices of the structural model indicate good fit, Χ² (df = 

2, N = 490) = 12.77; p = .0017, CFI = 0.99, TLI = 0.96, SRMR = 0.04, and RMSEA = 

0.10. These indicators were consistent in indicating a generally acceptable fit of the 
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hypothesized model to the data. Table 8 presents the standardized parameter estimates of 

the model. 

 

 

 

Table 8 
Group 1 Synthesis 

  
95% CI 

Parameter Stand. Lower Upper 
PU -> EU 0.51 0.44 0.57 
PU -> A 0.52 0.45 0.60 
EU -> A 0.16 0.08 0.24 
A -> BI 0.61 0.55 0.67 
Note. CI = confidence interval; Stand. = standardized 
estimate. 

Table 8      Group 1 Synthesis 

 

 

Group 3. A random-effects MASEM combines three studies from Group 3. 

Figure 5 presents the model tested in the three studies.  
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Figure 5      Group 3 Model 
 

 

 

In Stage 1, homogeneity of the covariance matrices was not met based on the goodness-

of-fit indices: Χ² (df = 6, N = 489) = 34.03; p = 0.98, CFI = 0.81, TLI = 0.71, SRMR = 

0.16, and RMSEA = 0.17. Given that the covariance matrices were heterogeneous, a 

random-effects model is appropriate. In Stage 1, heterogeneity was confirmed Q (6) = 

27.93, p < .001. The heterogeneity of EU, BI, and U were 97.30%, 96.64%, and 96.52%, 

respectively. In Stage 2, the fit indices on structural model indicates a perfect fit, Χ² (df 

= 1, N = 489) = 0.00, p < .001, CFI = 1.00, TLI = 1.00, SRMR = 0.00 and RMSEA = 

0.00. Table 9 presents the standardized parameter estimates of the model. 

Multi-group Analyses 

Group 1. Group 1 compared two studies. Figure 4 presents the model tested in the two 

studies. Table 10 presents the model fit statistics and the invariance test between the 

constrained and unconstrained model. Recall, the constrained model assumes the 

parameters from each study are equal to each other. The chi-square difference test was 

not statistically significant; thus, the parameter estimates across the two studies were 

statistically the similar or invariant. Table 11 presents the standardized and  
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Table 9 
Group 3 Synthesis 

  
95% CI 

Parameter Stand. Lower Upper 
EU -> BI 0.55 0.38 0.68 
BI -> U 0.36 0.23 0.50 
Note. CI = confidence interval; Stand. = standardized 
estimate. 

Table 9      Group 3 Synthesis 

 

 

unstandardized parameter estimates. 

Group 2. Group 2 compared five studies. Figure 6 presents the model tested in 

the five studies. Table 12 presents the model fit statistics and the invariance test between 

the constrained and unconstrained model. The chi-square difference test was statistically 

significant; thus, there is a lack of model invariance across the five studies in this group. 

In other words, the parameter estimates across the five studies were statistically 

different. Table 13 presents the standardized and unstandardized parameter estimates. 
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Figure 6      Group 2 Model 
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Table 10 
Model Fit Statistics and Invariance Analysis of Group 1 

No. Model Χ² df 
p-

value RMSEA RMR NFI GFI CFI ΔΧ² 
Δ 
df 

p-
value 

1 unconstrained model 16.5 4 .002 .080 .060 .972 .984 .979 
   2 constrained model 23.2 8 .003 .062 .078 .961 .976 .974 6.7 4 .153 

Note. n = 490. 
Table 10      Model Fit Statistics and Invariance Analysis of Group 1 
 

 

Table 11 
Parameter Estimates of Group 1 

Study 
 

EU -> PU 
 

PU -> A 
 

EU -> A 
 

A -> BI 

 
  Stan. Unst.   Stan. Unst.   Stan. Unst.   Stan. Unst. 

Saadé & Galloway (2005)a 
 

0.47 0.41 
 

0.47 0.46 
 

0.03 0.02 
 

0.55 0.63 

Saadé et al. (2007)b   0.51 0.47   0.51 0.51   0.21 0.19   0.60 0.61 

Note. an1 = 128. bn2 = 36. Stan = Standardized estimate, Unst. = Unstandardized estimate. 
Table 11      Parameter Estimates of Group 1 
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Table 12 
Model Fit Statistics and Invariance Analysis of Group 2   

No. Model Χ² df 
p-

value RMSEA RMR NFI GFI CFI ΔΧ² 
Δ 
df p-value 

1 unconstrained model 0.0 0 - .256 0.000 1.000 1.000 1.000 
   

2 constrained model 143.4 12 
p < 
.001 .094 .453 .883 .931 .892 143.4 12 

p < 
0.0001 

Note. n = 1267. 
Table 12      Model Fit Statistics and Invariance Analysis of Group 2 

 

 

Table 13 

Parameter Estimates of Group 2 

  
EU -> PU 

 
PU -> BI 

 
EU -> BI 

 Study   Stan. Unst.   Stan. Unst.   Stan. Unst. 

Saadé & Bahli (2005)a 
 

0.26 0.23 
 

0.36 0.47 
 

0.06 0.07 

Saadé et al. (2007)b 
 

0.51 0.47 
 

0.42 0.42 
 

0.05 0.05 

Almrashdah et al. (2010)c 
 

0.79 0.83 
 

0.62 0.69 
 

0.19 0.23 

Martins & Kellermanns (2004)d 
 

0.49 0.72 
 

0.37 0.45 
 

0.25 0.44 

Yi & Hwang (2003)e   0.29 0.29   0.46 0.50   0.22 0.24 
Note. an1 = 128. bn2 = 362. cn3 = 425. dn4 = 243. en5 = 109. Stan. = Standardized estimate, Unst. = Unstandardized 
estimate. 

Table 13      Parameter Estimates of Group 2 
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Given that the five studies had different parameter estimates, a post-hoc analysis 

was conducted to determine which studies had similar or different parameter estimates. 

To identify differences, I compared the critical ratios of the parameters estimates 

between each study. Table 14 presents the critical ratios. A statistically significant 

critical ratio suggests that the parameter estimate in one study is statistically different 

than the parameter estimate in another study. For example, the critical ratio of EU -> PU 

in Almrashdah et al. (2010) and Yi and Hwang (2003) is z = -5.54 and is statistically 

significant at z = 1.96 (p = .05). Thus, the parameter estimates of the EU -> PU in 

Almrashdah et al. (2010) and Yi and Hwang (2003) were statistically different from one 

another. Conversely, the critical ratio of EU -> PU in Almrashdah et al. (2010) and 

Martins and Kellermanns (2004) is z = -1.328 and is not statistically significant at z = 

1.96 (p = .05). Thus, the parameter estimates of EU -> PU in Almrashdah et al. (2010) 

and Martins and Kellermanns (2004) were similar to each other. The results of the post  

hoc analysis across the five studies suggest that their parameter estimates may be 

different for EU -> PU and PU -> BI, but similar for EU -> BI. While the post hoc 

analysis provides potential insight to the nature of the differences in parameter estimates 

among the five studies, these results should be interpreted with caution. The post hoc 

analysis is exploratory in nature. 

Group 3. Group 3 compared three studies. Figure 5 presents the model tested in 

the three studies. Table 15 presents the model fit statistics and the invariance test 

between the constrained and unconstrained model. The chi-square difference test was
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Table 14      Critical Ratios of Parameter Estimates of Group 2 
Table 14 

                        Critical Ratios of Parameter Estimates of Group 2 

Study 
 

Almrashdah et al. (2010) 
 

Martins & Kellermann (2004) 
 

Saadé & Bahli (2005) 
 

Saadé et al. (2007) 

  

EU - 
PU 

 

PU - 
BI 

 
EU - BI 

 

EU - 
PU 

 
PU - BI 

 
EU - BI 

 

EU - 
PU 

 

PU - 
BI 

 
EU - BI 

 

EU - 
PU 

 

PU - 
BI 

 
EU - BI 

Almrashdah et al. 
(2010)a 

                        Martins & 
Kellermann (2004)b 

 
-1.328 

 

-
2.564* 

 
1.748 

                  Saadé & Bahli 
(2005)c 

 
-6.501* 

 
-1.629 

 
-1.222 

 
-4.048* 

 
0.153 

 
-2.370* 

            
Saadé et al. (2007)d 

 
-7.012* 

 

-
3.414* 

 
-2.3* 

 
-2.705* 

 
-0.264 

 
-3.244* 

 
2.438* 

 
-0.349 

 
-0.197 

      Yi & Hwang 
(2003)e   -5.54*   -1.761   0.123   -3.435*   .446   -1.427   0.461   0.203   1.154   -1.736   0.730   1.814 

Note. an1 = 425. bn2 = 243. cn3 = 102. dn4 = 362. en5 = 109. * |z-value| statistically significant at z ≥ 1.96. 
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Table 15      Model Fit Statistics and Invariance Analysis of Group 3 
Table 15 
Model Fit Statistics and Invariance Analysis of Group 3   

No. Model Χ² df 
p-

value RMSEA RMR NFI GFI CFI ΔΧ² 
Δ 
df p-value 

1 
unconstrained 

model 23.5 3 
p < 
.001 .118 7.526 .848 .971 .859 

   
2 constrained model 38.7 7 

p < 
.001 .097 21.762 .750 .952 .782 15.2 12 

p = 
0.0043 

Note. n = 489. 
 

 

 

 

 
 

 

Table 16 
Parameter Estimates of Group 3 

  
EU -> BI 

 
BI -> U 

  Study   Stand. Unstand.   Stand. Unstand.   
Martins & Kellermanns 
(2004)a 

 
0.43 0.76 

 
0.30 0.31 

 Yi & Hwang (2003)b 
 

0.35 0.38 
 

0.26 18.74 
 Liao & Lu (2008)c   0.47 0.47   0.17 0.33   

Note. an1 = 243. bn2 = 109. cn3 = 137. 
Table 16      Parameter Estimates of Group 3 
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statistically significant; thus, there was a lack of model invariance across the three 

studies in this group. Table 16 presents the standardized and unstandardized parameter 

estimates. 

Given that the three studies had different parameter estimates, a post-hoc analysis 

was conducted to determine which studies had similar or different parameter estimates. 

To identify differences, the critical ratios of the parameters estimates between each study 

were compared. Table 17 presents the critical ratios between the three studies. The 

results of the post hoc analysis across the three studies suggest that the parameter 

estimates were statistically different for both EU -> BI and BI -> U. 

Group 4. Group 4 compared four studies. Figure 7 presents the model tested in 

the four studies. Table 18 presents the model fit statistics and the invariance test between 

the constrained and unconstrained model. The chi-square difference test was statistically 

significant; thus, there was a lack of model invariance across the four studies in this 

group. Table 19 presents the standardized and unstandardized parameter estimates. 

Given that the four studies had different parameter estimates, a post-hoc analysis 

was conducted to determine which studies had different parameter estimates. To identify 

differences, the critical ratios of the parameters estimates between each study were 

compared. Table 20 presents the critical ratios. The results of the post hoc analysis 

across the four studies suggested that the parameter estimates were invariant for both EU 

-> PU, PU -> U, but non-invariant for the path, EU -> U. 
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Table 17 

Critical Ratios of Parameter Estimates of Group 3 

Study 
 

Liao & Lu (2008)   
Martins & Kellermanns 

(2004)   

  
EU -> BI 

 
BI -> U 

 
EU -> BI 

 
BI -> U 

 
Liao & Lu (2008)a 

         
Martins & Kellermanns (2004)b 

 
2.330* 

 
-0.114 

     
Yi & Hwang (2003)c   -0.643   2.752*   -2.649*   2.756*   

Note. an1 = 137 . bn2 = 243. cn3 = 109. * |z-value| statistically significant at z ≥ 1.96. 
Table 17      Critical Ratios of Parameter Estimates of Group 3 
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Table 18 

Model Fit Statistics and Invariance Analysis of Group 4   

No. Model Χ² df p-value RMSEA RMR NFI GFI CFI ΔΧ² 
Δ 
df p-value 

1 unconstrained model 0 0 - .213 0.000 1.000 1.000 1.000 
   2 constrained model 37.9 9 p < .001 .068 14.509 .903 .965 .924 37.9 9 p < 0.0001 

Note. n = 700. 
Table 18      Model Fit Statistics and Invariance Analysis of Group 4 
 

 

Table 19 
Parameter Estimates of Group 4 

  
EU -> PU 

 
PU -> U 

 
EU -> U 

 Study   Stand. Unstand.   Stand. Unstand.   Stand. Unstand. 

Brown (2002)a 
 

0.39 0.40 
 

0.04 0.05 
 

0.32 0.37 

Martins & Kellermanns (2004)b 
 

0.49 0.72 
 

0.23 0.28 
 

0.07 0.13 

Ramayah (2006)c 
 

0.55 0.46 
 

0.32 0.41 
 

0.45 0.48 

Yi & Hwang (2003)d 
 

0.29 0.29 
 

-0.04 -3.16 
 

0.24 19.15 

Note. an1 = 73. bn2 = 243. cn3 = 275. dn4 = 109. 
Table 19      Parameter Estimates of Group 4 
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Discussion 

The purpose of the current study was to determine whether the TAM explains 

undergraduates’ acceptance of online learning. In contrast to previous meta-analyses, 

which focused on a variety of populations and an array of technologies, the current study 

isolated both only one population and only one technology. Specifically, the present 

study investigated undergraduate students and online learning management systems. 

Furthermore, the present study utilized multiple group analysis to identify similarities 

and differences between studies. First, I tested the relative fit of four groups of studies 

using multiple group analysis. In Group 1, the studies were replicable, as assessed by the 

ΔΧ² test and fit indices seen in Table 10. In the remaining three groups, the studies had 

statistically different results (e.g., Tables 12, 15 and 18). Second, I examined the critical 

ratios for each path in the proposed model. The results suggest that the parameter 

estimates were different across certain paths and similar across other paths. These 

differences may be due to cultural differences (Schepers & Wetzels, 2007; Straub et al., 

1997) or gender differences (Gefen & Straub, 1997) across studies. The following 

section expounds on the results from each group of studies. 

Group 1 Studies 

 The results from the meta-analysis of Group 1 suggested that the fixed-effects 

model was an acceptable fit. The present study confirmed that perceived ease of use has 
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Table 20 
Critical Ratios of Parameter Estimates of Group 4 

Study 
 

Brown (2002) 
 

Martins & Kellermann (2004) 
 

Ramayah (2006) 

  

EU -> 
PU 

 

PU -> 
U 

 

EU -> 
U 

 

EU -> 
PU 

 

PU -> 
U 

 

EU -> 
U 

 

EU -> 
PU 

 

PU -> 
U 

 

EU -> 
U 

Brown 
(2002)a 

                  Martins & 
Kellermanns 
(2004)b 

 
-0.196 

 
1.472 

 
-1.283 

            Ramayah 
(2006)c 

 
0.454 

 
2.410* 

 
0.741 

 
-2.795* 

 
1.098 

 
2.486* 

      Yi & 
Hwang 
(2003)d   -0.774   -0.417   2.427*   -3.433*   -0.447   2.459*   -1.640   -0.463   2.414* 
Note. an1 = 73. bn2 = 243. cn3 = 275. dn4 = 109. * |z-value| statistically significant at z ≥ 1.96. 

 Table 20      Critical Ratios of Parameter Estimates of Group 4 
 

Group 4
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a strong effect on perceived usefulness as demonstrated in previous studies. Both 

perceived usefulness and perceived ease of use influence individual attitudes.  However, 

the relationship between perceived usefulness and attitude is stronger, r = .52, 95% CI 

[0.45, 0.60], than the relationship between perceived ease of use and attitude, r = .16, 

95% CI [0.08, 0.24]. The influence of attitude to behavioral intention is also profound. 

Likewise, the multiple group analysis echoed the findings of Saadé et al. (2007), 

suggesting that the parameter estimates were the similar across studies. In fact, Group 1 

was the only group of studies that were statistically similar. The results were reasonable 

given the studies’ sample, learning management system, and instrumentation. The two 

studies were similar in that the two studies both draw on a sample from the same 

population. For example, Saadé and Galloway (2005) described their sample as students 

taking a “core management information systems course at Concordia University in 

Montreal, Canada” (p. 291). Moreover, both studies used the same in-house-developed, 

learning management system, in which Saadé et al. (2007) referred to as a “multimedia 

learning system (MMLS)” (p. 175). Additionally, Saadé et al. (2007) noted, that both 

studies used the same “methodology” and instruments (p. 178). Given the similarities 

between the two studies, one would expect the results to be replicable, which the studies 

were.  

The current study offers further insight into the primary findings of Saadé et al. 

(2007). While Saadé et al. (2007) used visual inspection of the parameter estimates 

across both studies, the present multiple group analysis utilized statistical-based 

invariance testing. The multiple group analysis strengthens the previous findings of 
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Saadé et al. (2007) and offers a clearer conclusion regarding the equality between each 

parameter estimate in the path model. Moreover, the relationship between attitude and 

behavioral intention echoes the findings of Ursavaş (2013). 

Group 2 Studies  

The multiple group analysis results suggested that the parameter estimates were 

different across the five studies. First, the current study found the EU -> PU path was 

statistically different between 7 of the 10 pairs of studies. For example, Almrashdah et 

al. (2010) and Saadé et al. (2007) were statistically different from each other. Unlike Tai, 

Zhang, Chang, Chen, and Chen (2012), the present results suggest mixed findings across 

the five studies regarding the relationship between ease of use and perceived ease of use. 

Second, the current study found the relationship between perceived usefulness and 

behavioral intention was relatively consistent across studies, with only 2 of the 10 pairs 

of studies diverging from each other. The results mirror Saadé et al.’s (2007) meta-

analysis, which suggested a consistent and slight relationship between perceived 

usefulness and behavioral intention. Lastly, the relationship between ease of use and 

behavioral intention was statistically different between only 3 of the 10 pairs of studies, 

a result emulating King and He’s (2006) findings. Given the differences across studies, 

researchers should be cautious when forming conclusions regarding the relationships 

between the three variables: perceived usefulness, ease of use, and behavioral intention. 

Group 3 Studies 

 The results from the meta-analysis suggest that the random-effects model 

represented in Group 3 was an acceptable fit. Despite the adequate model fit, researchers 
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should be cautious when forming conclusions regarding the relationships between the 

three variables: ease of use, behavioral intention, and actual use, because the model 

tested only two relationships within the TAM. For example, the relationship between 

ease of use and behavioral intention was relatively strong, while the relationship between 

behavioral intention and use was moderate. 

Furthermore, the multiple group analysis suggests that the parameter estimates 

were different across the four studies. First, the current study found the EU -> BI path 

was statistically different between 2 of the 3 pairs of studies. Second, the relationship 

between behavioral intention and actual use was statistically different across 2 of the 3 

pairs of studies. The results suggest that the parameters estimates were different across 

studies, which also maintains the idea that findings were not replicable across studies.  

Group 4 Studies 

As seen in the multiple group analysis, results suggest that the parameter 

estimates were different across the four studies. First, the current study found the EU -> 

PU path was statistically different between only 2 of the 6 pairs of studies, suggesting 

Group 4 studies relatively reproduce a similar relationship between ease of use and 

perceived ease of use. Second, the relationship between perceived usefulness and actual 

use was relatively consistent across studies, because only 1 of the 6 pairs of studies were 

different from each other. Lastly, the relationship between ease of use and actual use was 

statistically different between 4 of the 6 pairs of studies. The results suggest mixed 

findings across the four studies regarding the relationship between ease of use and actual 

use, a finding which resonates with Ma and Liu (2004). 
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Although primary studies have validated the TAM with undergraduate students 

in an online learning context, I caution practitioners in the field when making decisions 

about undergraduate online learning based on the TAM. Moreover, most of the prior 

meta-analyses have only looked at the bivariate relationships represented in the TAM, 

instead of the model as a whole, with one exception: Tai et al. (2012) meta-analytically 

tested the model as a whole using correlation matrices. Tai et al.’s (2012) attempt was a 

progressive step and should be commended. However, the study was limited by only 

using a pooled correlation matrix. The current study attempted to use a pooled 

covariance matrix, which provides more information for the path analysis. However, I 

faced many challenges in attempting to meta-analyze studies. Perhaps, Tai et al. (2012) 

encountered similar challenges, and therefore chose to utilize a more accessible 

correlation matrix to synthesize findings. 

Limitations  

The present study faced many challenges in attempt to meta-analyze studies. 

First, the current study was limited by the range of variables included in past research, a 

limitation that Fried, Shirom, Gilboa, and Cooper (2008) also found in their meta-

analysis using structural equation modeling. Second, the present meta-analysis was 

limited to the statistics provided by the authors. The following two paragraphs expound 

on these limitations. 

More specifically, the current study was limited by the range of variables 

included in past research. For example, studies that used the TAM tested different 

combinations of the variables within the multiple iterations of the TAM. By testing 
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different combinations of variables, all 13 studies could not be synthesized together due 

to missing variables. Although the TSSM approach handles missing covariances, there is 

currently no MASEM approach to handle missing variables. Hence, in the current 

MASEM, the studies were grouped based on the common variables measured. Given 

this restriction, some of the 13 articles were not included in the analysis, (e.g., Davis & 

Wong, 2007; Lee & Lee, 2008; Saadé, 2007; and Pituch & Lee, 2006), and some studies 

were analyzed in more than one group (e.g., Martins & Kellermanns, 2004; Ramayah, 

2006; Saadé, Nebebe, & Tan, 2007; and Yi & Hwang, 2003). Meta-analysts are limited 

by the extent to which articles can be meta-analyzed, when authors report modified 

versions of a theoretical model.  

Another glaring challenge was the inadequate reporting of statistics to conduct 

the meta-analysis. Among the 77 articles identified, authors of 49 articles did not report 

the appropriate statistics to compute a covariance matrix. This denotes authors did not 

report either the means and/or standard deviations and/or correlations of the variables. 

Despite multiple attempts to request missing statistics from the authors and co-authors, 

only one author responded with the missing information. When authors do not report 

adequate statistics in primary studies, meta-analysts cannot include these studies in a 

meta-analysis; thus, the information from those primary studies was essentially lost. 

Future Meta-Analysis Research 

For future research, researchers may test the aforementioned models without 

using some of the studies in the current study. For example, results from Yi and Hwang 

(2003) study appeared dissimilar to the results from the other studies in the present 
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study. The dissimilarity noted may be the result of different measurement scales for the 

variable, actual use. Consequently, without the results from Yi and Hwang (2003) study, 

researchers may reveal a stronger parameter estimate for the model described in the 

current study. 

Additionally, future studies could compare meta-analysis results to longitudinal 

results. The current study found three articles that measured variables within the TAM at 

multiple time points. These studies measured students’ perspectives before taking an 

online course and after taking the online course. Future meta-analyses could investigate 

variables based on novice and proficient users and then compare whether the meta-

analysis results correspond to the longitudinal results. 

Summary 

The advancement of online learning technologies has provided unmatched 

accessibility for colleges to meet the educational needs of students than ever before. As 

Bennett and Green (2001) noted, “There is little doubt that more and more college 

classes will be placed online in the future, and we are fast approaching the point when it 

will be the norm to have several courses online at the universities throughout the nation” 

(p. 495). Although prophetic in its time, today this statement seems commonplace. 

While college administrators advocate for online courses, the current study suggests 

practitioners are making decisions based on non-replicable results. 

The TAM is a popular model for explaining and predicting undergraduates’ 

learning management system use. To date, researchers have conducted numerous studies 

on the TAM and obtained numerous confirmatory results through primary studies. 
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Researchers have selected a variety of ways to validate or extend the TAM. For 

example, some researchers conducted replication studies, such as Adams, Nelson, and 

Todd (1992), while other researchers rely on meta-analyses (e.g., Šumak, Heričko, & 

Pušnik, 2011). Moreover, some researchers look to longitudinal studies (e.g., Venkatesh 

& Davis, 2000), while other researchers relied on a series of single primary studies to 

validate or extend the TAM. The current study attempted to use meta-analytic structural 

equation modeling to validate or extend the TAM. Unfortunately, there were too many 

obstacles to definitively confirm any version of the TAM meta-analytically. 

However, researchers should heed the concerns expressed here regarding the 

application and accuracy of the model in an undergraduate online learning context. As 

demonstrated in the current study, some researchers may have formed erroneous 

conclusions regarding the relationships between the variables in the TAM. Moreover, the 

multiple group analysis suggests that the studies included here resulted in statistically 

different findings. Hence, the findings across studies were not replicable.  

Consequently, researchers have spent over a decade modifying a theoretical 

model based on primary studies that has demonstrated little explanatory or predictive 

power. Hence, future research should be careful not to develop new models which would 

exploit the strengths of the TAM while ignoring the model’s weaknesses. In sum, 

decision-makers should carefully consider students’ preferences before investing in 

online learning technologies; however, decision-makers should base their decisions on 

the findings from theoretical models validated in an online learning context. 
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4. SUMMARY AND CONCLUSIONS  

Today’s educational technology researchers tend to conduct research in isolation 

or with a narrow view of the field. Further, educational technology research is limited by 

inadequate reporting practices. For example, Study 1 found researchers rarely report the 

type of sample, score reliability, or informationally-adequate statistics. Likewise, as 

observed in the screening phase of Study 2, educational technology researchers’ lack of 

response to requests for missing information suggests that researchers lack of awareness, 

or regard for, meta-analytic research practices. With over 400 educational technology 

journals currently published (cf. 2012 Cabell’s Directories of Publishing Opportunities), 

researchers are encouraged to stop conducting research in isolation. 

Furthermore, meta-analysts are challenged to synthesize and interpret the field’s 

findings given researchers’ current reporting practices. Challenges in synthesizing and 

interpreting findings arise when researchers do not think meta-analytically. Meta-

analytic techniques, such as meta-analyses, offer stronger evidence for researchers to 

form conclusions and make critical decisions in both current practice and future research 

efforts in educational technology.  

Study One 

The first study offered empirical evidence of the field’s current status with regard 

to reporting results using meta-analytic thinking. The current study found that 

quantitative methods continue to dominate the field as a whole, yet journals appear to 

favor certain research methods over others. Additionally, the present study found overall 

poor reporting practices - approximately only half of the authors reported reliability of 
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the scores produced by their instrument. Moreover, findings suggest few authors report 

informationally-adequate statistics. For example, sometimes means were reported 

without the accompanying standard deviations. The lack of reporting accompanying 

means and standard deviations is largely recognized as poor practice (Thompson, 2006), 

while this type of practice limits the number of articles included in meta-analyses 

(Cooper, 2010). 

Although the nature of the current study was descriptive, the results identified 

some of the strengths and weaknesses of the current research methods used in 

educational technology research. Moreover, meta-analysts rely on the quality of primary 

studies to conduct secondary research studies. Accordingly, educational technology 

researchers should report evidence that the scores they are analyzing are reliable because 

of the possible impact reliability has on the interpretation of research results. Moreover, 

researchers should report informationally-adequate statistics so that readers can evaluate 

findings appropriately.  

Study Two 

The preliminary aim of the second study was to offer a glimpse of where the field 

could go once researchers begin to think meta-analytically. However, the current meta-

analysis revealed numerous challenges that impeded the synthesis of primary studies. 

Authors rarely reported adequate statistics to synthesize studies. In fact, among the 

possible 77 articles which met inclusion criteria, 49 studies were removed from the 

synthesis due to insufficient statistics. Additionally, despite multiple attempts to contact 

authors for missing information, few responded with the requested information and were 
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unconcerned with having their article excluded from the meta-analysis. Once the number 

of articles was finalized, I found that researchers reported different combinations of 

variables within the TAM. As a result, the 13 studies included were forced into smaller 

groups to analyze the data without missing variables. 

The second study attempted to combine meta-analysis and structural equation 

modeling to extend and refine theoretical models. Unfortunately, there were too many 

obstacles to confirm any version of the TAM meta-analytically. Instead, the second 

study investigated different combinations of variables and formed conclusions about the 

relationships between the variables that were available.  

Although the TAM is a popular model for explaining and predicting 

undergraduates’ learning management system use, the results of the current meta-

analysis suggested that educational technology researchers should be cautious when 

forming conclusions about undergraduate online learning based on the TAM model. As 

demonstrated through meta-analysis, researchers may have formed erroneous 

conclusions regarding the relationships between the variables in the TAM. More 

specifically, the studies included in the meta-analysis resulted in statistically different 

findings across multiple parameter estimates. Therefore, the findings across studies are 

not replicable. Perhaps researchers have spent over a decade modifying a theoretical 

model based on primary studies, which has demonstrated little explanation or 

predictability. 

In closing, the current thesis does not intend to vilify educational technology 

research. Instead, the current work attempts to reflect on the field of educational 
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technology research by offering empirical evidence of issues expressed over a decade 

ago and pleading for reform in the field. The current thesis encourages authors to think 

meta-analytically when conducting primary studies. Instead, our research must be 

thoughtful and extend the knowledge of the field systematically. 

We must acknowledge and connect our own research to the greater body of 

literature. We should no longer only form conclusions from a single study. Instead, we 

should view the findings as one more piece of the greater picture. But behind the 

winsome primary studies lies an uncompromising conviction: secondary studies propel 

the field forward in a unified direction. Therefore, as researchers investigate topics 

further, someone must come through to synthesize findings across studies. Educational 

technology researchers should engage in more secondary studies so that the field can 

move at more reasonable pace in relation to the quickly-changing pace of technology in 

education. Once meta-analyses are used for the purpose they serve in the social sciences, 

the educational technology field can move forward empirically, rather than jumping to 

the next novel technology. 



 

83 

 

REFERENCES 

Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, 

and usage of information technology: A replication, MIS Quarterly, 16, 227-247.  

Alper, A. & Gülbahar, Y. (2009). Trends and issues in educational technologies: A 

review of recent research in TOJET. The Turkish Online Journal of Educational 

Technology, 8(2), 124-135. 

*Almrashdah, I. A., Sahari, N., Mat Zin, N. A. H., Alsmadi, M. (2010, November). 

Distance learners acceptance of learning management system. Paper presented at 

the meeting of Advanced Information Management and Service (IMS), 

International Conference Seoul, 304 – 309. 

American Educational Research Association. (2006). Standards for reporting on 

empirical social science research in AERA publications. Educational 

Researcher, 35, 33-40. doi:10.3102/0013189x035006033 

American Psychological Association (2010). Publication manual of the American 

Psychological Association (6th ed.). Washington, DC: Author. 

APA Publications & Communications Board Working Group on Journal Article 

Reporting Standards. (2008). Reporting standards for research in psychology 

Why do we need them? what might they be? American Psychologist, 63, 839-

851. doi: http://dx.doi.org.lib-ezproxy.tamu.edu:2048/10.1037/0003-

066X.63.9.839 



 

84 

 

 Australasian Society for Computers in Learning in Tertiary Education (ASCILITE). 

(2012). Australasian Journal of Educational Technology. Retrieved from 

http://www.ascilite.org.au/ajet/about/about.html 

Bell, L., Schrum, L., & Thompson, A. D. (2008). Framing research on technology and 

student learning in the content areas: Implications for educators. Charlotte, NC: 

Information Age Publishing. 

Bennett, G. & Green, F. P. (2001). Promoting service learning via online instruction. 

College Student Journal, 35, 491-497. 

*Brown, I. T. J. (2002). Individual and technological factors affecting perceived ease of 

use of web-based learning technologies in a developing country. The Electronic 

Journal on Information Systems in Developing Countries, 9(5), 1-15. 

Chen, W. & Hirschheim, R. (2004). A paradigmatic and methodological examination of 

information systems research from 1991 to 2001. Information Systems Journal, 

14, 197-235. doi: 10.1111/j.1365-2575.2004.00173. 

Cheung, M. W.-L. (2013). Meta-analysis using structural equation modeling (Version 

0.8-4) [Computer Software]. Retrieved from 

http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/ 

Cheung, M.W.-L. & Chan, W. (2005). Meta-analytic Structural Equation Modeling: A 

two-stage approach. Psychological Methods, 10, 40-64. doi: 10.1037/1082-

989X.10.1.40 



 

85 

 

Cheung, W. S. & Hew, K. F. (2009). A review of research methodologies used in studies 

on mobile handheld devices in K-12 and higher education settings. Australasian 

Journal of Educational Technology, 25, 153-183. 

Clark, R.E. (1983). Reconsidering research on learning with media. Review of 

Educational Research, 53(4), 445-459.  

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ: Erlbaum. 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. 

Cooper, H. (2010). Research synthesis and meta-analysis: A step-by-step approach (4th 

ed.). Thousand Oaks, CA: Sage.   

Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five 

approaches (2nd ed.). Thousand Oaks, CA: Sage. 

Davis, F. D. (1986). A technology acceptance model for empirically testing new end-

user information systems: Theory and results. (Doctoral dissertation). Retrieved 

from DSpace@MIT. (http://hdl.handle.net/1721.1/15192) 

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer 

technology: A comparison of two theoretical models. Management Science, 35, 

982–1003. 

*Davis, R. & Wong, D. (2007). Conceptualizing and measuring the optimal experience 

of the elearning environment. Decision Sciences Journal of Innovative 

Education, 5, 97-126. doi: 10.1111/j.1540-4609.2007.00129.x 

 



 

86 

 

Edyburn, D. L. (2000). 1999 in review: A synthesis of the special education technology 

literature. Journal of Special Education Technology, 15, 7-30.  

Elsevier B. V.  (2012). Computers & Education. Retrieved from 

http://www.journals.elsevier.com/computers-and-education/ 

Farhoomand, A. & Drury, D.H. (1999). A historiographical examination of information 

systems. Communications of the Association for Information Systems, 1(5es), 1-

27.  

Fried, Y., Shirom, A., Gilboa, S., & Cooper, C. L. (2008). The mediating effects of job 

satisfaction and propensity to leave on role stress-job performance relationships: 

Combining meta-analysis and structural equation modeling. International 

Journal of Stress Management, 15, 305-328. doi: 10.1037/a0013932 

Gall, M. D., Gall, J. P., & Brog, W. R. (2007). Educational research an introduction 

(8th ed.). Boston, MA: Pearson Education. 

Gefen, D. & Straub, D. W. (1997). Gender Differences in the Perception and Use of E-

Mail: An Extension to the Technology Acceptance Model. MIS Quarterly, 21, 

389-400. 

Goode, J. (2010). Mind the gap: The digital dimension of college access. Journal of 

Higher Education, 81, 583-618. 

Gronlund, N. E., & Linn, R. L. (1990). Measurement and evaluation in teaching (6th 

ed.). New York: Macmillan. 



 

87 

 

Haertel, G. D. & Means, B. (2003). Evaluating educational technology: Effective 

research designs for improving learning. New York, NY: Teachers College 

Press. 

Higgins, J. P. & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. 

Statistics in Medicine, 21, 1539–1558. doi: 10.1002/sim.1186 

Higgins, J. P. , Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring 

inconsistency in meta-analyses. British Medical Journal, 327, 557-560. 

doi:  10.1136/bmj.327.7414.557 

Hoban, C. F. (1958). Research on media. AV Communication Review, 6, 169-178. 

Hogan, T. P., Benjamin, A., & Brezinski, K. L. (2000). Reliability methods: A note on 

the frequency of use of various types. Educational and Psychological 

Measurement, 60, 523-531. doi:10.1177/00131640021970691 

Hrastinski, S. & Keller, C. (2007). An examination of research approaches that underlie 

research on educational technology: A review from 2000 to 2004. Journal of 

Educational Computing Research, 36, 175-190. 

James, L. R., Demaree, R. G. & Wolf, G. (1993). rwg: An assessment of within group 

interrater agreement. Journal of Applied Psychology, 78, 306-309. 

Johnson, R. B., & Onwuegbuzie. A. J. (2004). Mixed methods research: A research 

paradigm whose time has come. Educational Researcher, 33, 14-26. 

John Wiley & Sons. (2012). British Journal of Educational Technology. Retrieved from 

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-

8535/homepage/ProductInformation.html 



 

88 

 

Karataş, S. (2008). Interaction in the internet-based distance learning researches: Results 

of a trend analysis. The Turkish Online Journal of Educational Technology, 7(2), 

11-19. 

Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). 

New York, NY: Guilford Press. 

Koble, M. A & Bunker, E. L. (1997). Trends in research and practice: An examination of 

The American Journal of Distance Education 1987 to 1995. American Journal of 

Distance Education, 11, 19-38. doi: 

http://dx.doi.org/10.1080/08923649709526959 

King, W. R. & He, J. (2006). A meta-analysis of the TAM. Information & Management 

43, 740-755. 

Lee, Y., Driscoll, M. P., & Nelson, D. W. (2004). The past, present, and future of 

research in distance education: Results of a content analysis. American Journal 

of Distance Education, 18, 225-241. doi: 

http://dx.doi.org/10.1207/s15389286ajde1804_4 

Lee, Y., Driscoll, M. P., & Nelson, D. W. (2007). Trends in research: A content analysis 

of major journals. In M. G. Moore (Ed.), Handbook of Distance Education (2nd 

ed., pp. 31-41). Mahwah, NJ: Lawrence Erlbaum Associates. 

*Lee, J. K. & Lee, W. K. (2008). The relationship of e-Learner’s self-regulatory efficacy 

and perception of e-Learning environmental quality. Computers in Human 

Behavior, 24, 32-47 . doi: 10.1016/j.chb.2006.12.001 



 

89 

 

*Liao, H. & Lu, H. (2008). The role of experience and innovation characteristics in the 

adoption and continued use of e-learning websites. Computers & Education, 51, 

1405-1416. doi:10.1016/j.compedu.2007.11.006 

Lipsey, M. W.  & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: 

Sage. 

Lloyd, J. M., Dean, L. A., & Cooper, D. L. (2007). Students' technology use and its 

effects on peer relationships, academic involvement, and healthy lifestyles. 

NASPA Journal, 44, 481-495. 

Ma, Q., & Liu, L. (2004). The TAM: A meta-analysis of empirical findings. Journal of 

Organization and End User Computing, 16(1), 59-72. 

*Martins, L. L. & Kellermanns, F. W. (2004). A model of business school students’ 

acceptance of a web-based course management system. Academy of Management 

Learning and Education, 3, 7-26. 

McArdle J.J. & McDonald R.P. (1984). Some algebraic properties of the reticular action 

model for moment structures. British Journal of Mathematical and Statistical 

Psychology, 37, 234-251. doi:10.1111/j.2044-8317.1984.tb00802.x. 

Means, B. & Haertel, G. D. (2004). Using technology evaluation to enhance student 

learning. New York, NY: Teachers College Press. 

Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O., Cifuentes, L., and Davis, 

T. J. (2012). The learning characteristics, features of desktop 3D virtual reality 

environments, and college chemistry instruction: A structural equation modeling 



 

90 

 

analysis. Computers & Education, 59, 551-568. doi: 

http://dx.doi.org/10.1016/j.compedu.2012.02.004 

Mielke, K.W. (1968). Questioning the question of ETV research. Educational 

Broadcasting, 2, 6-15. 

Mitchell, P. D. (1997). The impact of educational technology: A radical reappraisal of 

research methods. Association for Learning Technology Journal, 5(1), 48-54. 

doi:10.1080/0968776970050108 

Moher, D. Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 

PRISMA Statement PLoS Med 6(6): e1000097. doi: 

10.1371/journal.prned1000097 

Peterson-Karlan, G. P. (2011). Technology to support writing by students with learning 

and academic disabilities: Recent research trends and findings. Assistive 

Technology Outcomes and Benefits, 7, 39-62. 

*Pituch, K. A., & Lee,Y. (2006). The influence of system characteristics on e-learning 

use. Computers & Education, 47, 222-244. doi:10.1016/j.compedu.2004.10.007 

Presley, A., & Presley, T. (2009). Factors influencing student acceptance and use of 

academic portals. Journal of Computing in Higher Education, 21, 167-182. doi: 

10.1007/s12528-009-9022-7 

*Ramayah, T. (2006). Course website usage: Does prior experience matter?. WSEAS 

TRANS. on Information Science & Applications, 2, 299-306. 



 

91 

 

Randolph, J. J. (2008). A methodological review of the program evaluations in K-12 

computer science education. Informatics in Education, 7, 237-258. 

Randolph, J., Julnes, G., Sutinen, E., & Lehman, S. (2008). A methodological review of 

computer science education research. Journal of Information Technology 

Education, 7, 135-162.  

Raykov, T. (2001). Estimation of congeneric scale reliability via covariance structure 

analysis with nonlinear constraints. British Journal of Mathematical and 

Statistical Psychology, 54, 315–323. 

Reeves, T.C. (2000, April). Enhancing the worth of instructional technology research 

through “design experiments” and other development research strategies. In 

Session 41.29, International perspectives on instructional technology research 

for the 21st century. Symposium conducted at the annual meeting of the 

American Educational Research Association, New Orleans, LA. 

Ritter, N. L. (2010, February). Understanding a widely misunderstood statistic: 

Cronbach's alpha. Paper presented at the meeting of Southwestern Educational 

Research Association Conference 2010, New Orleans, LA (ED526237). 

Rourke, L., & Szabo, M. A. (2002). A content analysis of the Journal of Distance 

Education 1986–2001. Journal of Distance Education, 17(1), 63-74. 

*Saadé, R. G. (2007). Exploring dimensions to perceived usefulness: Towards an 

enhanced assessment. Decision Sciences Journal of Innovative Education, 5, 

289-310. 



 

92 

 

*Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived 

usefulness and perceived ease of use in on-line learning: an extension of the 

technology acceptance model. WSEAS TRANS. on Information Science & 

Applications, 42, 317-327. doi:10.1016/j.im.2003.12.013 

*Saadé, R. G. & Galloway, I. (2005). Understanding intention to use multimedia 

information systems for learning. Issues in Informing Science and Information 

Technology, 2, 287-296. 

*Saadé, R., Nebebe, F., & Tan, W. (2007). Viability of the “Technology Acceptance 

Model” in multimedia learning environments: A comparative study. 

Interdisciplinary Journal of Knowledge and Learning Objects, 3, 175-184. 

Schepers, J. & Wetzels, M. (2007). Meta-analysis of the technology acceptance model: 

Investigating subjective norm and moderation effects. Information & 

Management, 44, 90-103. 

Shih, M., Feng, J. & Tsai, C. C. (2008). Research and trends in the field of e-learning 

from 2001 to 2005: A content analysis of cognitive studies in selected journals. 

Computers & Education, 51, 955-967. 

Şİmşek, A., Özdamar, N., Uysal, O., Kobak, K. Berk, C., Kiliçer, T., & Çİğdem, H. 

(2009). Current trends in educational technology research in Turkey in the new 

millennium. Educational Sciences: Theory and Practice, 9, 961-966. 

Skidmore, S. T. (2009). Effect size matters: Empirical investigations to help researchers 

make informed decisions on commonly used statistical techniques. Retrieved 

from ProQuest Digital Dissertations. (UMI 3399894) 



 

93 

 

Skidmore, S. T.  & Thompson, B. (2010). Statistical techniques used in published 

articles: A historical review of reviews. Educational and Psychological 

Measurement, 70, 777-795. doi: 10.1177/0013164410379320 

Springer. (2012). Educational Technology Research and Development. Retrieved from 

http://www.springer.com/education+%26+language/learning+%26+instruction/jo

urnal/11423 

Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model 

across cultures: A three country study. Information & Management, 33, 1–11. 

Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology 

acceptance: The role of user types and e-learning technology types. Computers in 

Human Behavior, 27, 2067, 2077. doi:10.1016/j.chb.2011.08.005 

Tai, D. W. S., Zhang, R., Chang, S., Chen, C., & Chen, J. (2012). A Meta-Analytic Path 

Analysis of e-Learning Acceptance Model. World Academy of Science, 

Engineering and Technology, 65, 104-107. 

Tatsuoka, M. M. (1971). Significance tests: Univariate and multivariate. Champaign, 

IL: Institute for Personality and Ability Testing. 

Teclehaimanot, B., & Hickman, T. (2011). Student-teacher interaction on facebook: 

What students find appropriate. TechTrends: Linking Research and Practice to 

Improve Learning, 55(3), 19-30.  

Thompson, B. (1992). Two and one-half decades of leadership in measurement and 

evaluation. Journal of Counseling and Development, 70, 434-438. 



 

94 

 

Thompson, B. (1994). Guidelines for authors. Educational and Psychological 

Measurement, 54, 837-847. 

Thompson, B. (2002). What future quantitative social science research could look like: 

Confidence intervals for effect sizes. Educational Researcher, 31(3), 25-32. 

doi: 10.3102/0013189X031003025 

Thompson, B. (Ed.) (2003). Score reliability: Contemporary thinking on reliability 

issues. Newbury Park, CA: Sage. 

 Thompson, B. (2004). Exploratory and confirmatory factor analysis. Washington, DC: 

American Psychological Association. 

Thompson, B. (2006). Foundations of behavioral statistics. New York, NY: Guilford 

Press. 

Ursavaş, Ö. F. (2013). Reconsidering the role of attitude in the TAM: An answer to Teo 

(2009) and Nistor and Heymann (2010), and Lopez-Bonilla and Lopez-Bonilla 

(2011). British Journal of Educational Technology, 44, E22–E25. 

doi:10.1111/j.1467-8535.2012.01327.x 

Vacha-Haase, T. (1998). Reliability generalization: Exploring variance in measurement 

error affecting score reliability across studies. Educational and Psychological 

Measurement, 58, 6-20. 

Venkatesh, V. & Davis, F. D.  (1996). A model of the antecedents of perceived ease of 

use: Development and test. Decision Sciences, 27, 451-481. doi: 10.1111/j.1540-

5915.1996.tb00860.x 



 

95 

 

Venkatesh, V. & Davis, F. D.  (2000). A theoretical extension of the technology 

acceptance model: Four longitudinal field studies. Management Science, 46, 186-

204. doi: http://www.jstor.org/stable/2634758 

Wang, F. & Lockee, B. B. (2010). Virtual worlds in distance education a content 

analysis study. Quarterly Review of Distance Education, 11, 183-186. 

Warne, R.T. Lazo, M., Ramos, T., & Ritter, N. (2012). Statistical methods used in gifted 

education journals, 2006-2010. Gifted Child Quarterly, 56, 134-149. doi: 

10.1177/0016986212444122 

Willson, V. L.  (1980). Research techniques in AERJ articles: 1969 to 1978. Educational 

Researcher, 9(5), 5-10. doi: 10.3102/0013189X009006005 

Wilkinson & the Task Force on Statistical Inference. (1999). Statistical methods in 

psychology journals: Guidelines and explanations. American Psychologist, 54, 

594-604. doi: 10.1037/0003-066X.54.8.594 

*Yi, M. Y. & Hwang, Y. (2003). Predicting the use of web-based information systems: 

self-efficacy, enjoyment, learning goal orientation, and the technology 

acceptance model. International Journal of Human-Computer Studies, 59, 431-

448. doi:10.1016/S1071-5819(03)00114-9 

Zientek, L. R. & Thompson, B. (2009). Matrix summaries improve research reports: 

Secondary analyses using published literature. Educational Researcher, 38(5), 

343-353. doi: 10.3102/0013189X09339056 

References marked with an asterisk indicate studies included in the meta-analysis.  

 



 

96 

 

APPENDICES 

Appendix A. Expanded Literature Review 

Previous reviews have appropriately investigated the empirical nature, research 

methods, and experimental designs used in educational technology. Educational 

technology researchers captured information about the literature’s empirical and non-

empirical nature. Chen and Hirschheim (2004) reviewed eight major information 

systems journals between 1991 and 2001. Among the 1893 articles, 60% (n = 1131) 

were empirical and 40% (n = 762) were non-empirical studies. Chen and Hirschheim 

(2004) echo findings from Farhoomand and Drury (1999) who examined 2098 articles 

published between 1985 and 1996 with 61% empirical and 39% non-empirical studies. 

Likewise, more recent findings from Hrastinski and Keller (2007) supported this ratio. 

Among the 660 articles examined, 68% were empirical studies, while the remaining 32% 

were non-empirical studies. Overall, the balance between empirical and non-empirical 

articles remains steady over the past decade. 

Many researchers have identified the research methods used in educational 

technology. Koble and Bunker (1997) reviewed the research methods used in The 

American Journal of Distance Education between 1987 and 1995.  Among the 129 

articles, 28.7% were classified as quantitative studies, 4.7% were qualitative studies, 

4.7%, were literature reviews, and 1.5% used mixed methods. Rourke and Szabo (2002) 

reviewed the Journal of Distance Education from 1986 to 2000. Among the 49 empirical 

studies, 25% used quantitative methods, 31% used qualitative methods, and 31% use 

mixed methods. Hrastinski and Keller (2007) reviewed 660 educational technology 
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articles between 2000 and 2004 and found 51% used quantitative methods, 25% used 

qualitative methods and 24% used mixed methods. Randolph et al. (2008) reviewed 352 

articles from eight major peer-reviewed computer science education publications 

published between 2000 and 2005. Among the 144 reviewed articles, 74.3%, 95% CI 

[68.1, 80.2] were quantitative, 15.3%, CI [10.4, 20.8] were qualitative, and 10.4%, CI 

[6.3, 14.6] were mixed methods. Alper and Gülbahar (2009) found between 2004 and 

2006 in the Turkish Online Journal of Educational Technology (TOJET) a shift to more 

qualitative methods, with only 40% using quantitative methods. Although, most studies 

in TOJET during 2007 were quantitative. Şİmşek et al. (2009) reviewed master’s theses 

in educational technology completed in Turkey between 2000 and 2007. Among the 259 

theses, 204 (79%) used quantitative methods, 21 (8%) used qualitative methods and 34 

(13%) used mixed methods. More recently, Wang and Lockee (2010) conducted a 

content analysis on four studies on virtual worlds in distance education. All studies used 

qualitative research methods. As demonstrated here, there is no lack of empirical 

information on the research methods used in educational technology. Research methods 

appear to fluctuate over time and varies based on review’s literature specificity.  

Researchers have also identified the experimental designs used, despite the lack 

of explicit reporting in the original article (Cheung & Hew, 2009; Koble & Bunker, 

1997; Peterson-Karlan, 2011; Randolph et al., 2008; Shih et al., 2008; Şİmşek et al., 

2009). Identifying trends of experimental designs is particularly difficult given the 

variation in researcher’s classification schemes. Specifically, a synthesis among five 

reviews resulted in 14 different experimental designs, with some categories overlapping 



 

98 

 

one another based on the original review’s classification scheme. Additionally, 

reviewers blurred the lines between types of experimental designs and types of research 

studies by grouping the two together. For example, Cheung and Hew (2009) calculated 

the frequency of both from 44 articles on mobile handheld devices used in educational 

settings. Among the experimental designs classified, 11.4% used one group pretest-

posttest design, 6.8% used more than one design, 4.5% used quasi-experimental design, 

4.5% used experimental design, and 2.3% single subject design. Among the types of 

studies categorized, 65.9% were descriptive, 2.3% ex-post facto design, and 2.3% 

design-based research. Moreover, researchers often encounter articles using more than 

one experimental design. For example, Randolph and colleagues (2008) classified 183 

designs from 144 computer science articles. Among the 144 articles, 93 (64.6%), 95% 

CI [58.3, 70.8] articles used experimental or quasi-experimental designs, 38 (26.4%), 

95% CI [20.8, 31.3] used qualitative designs, 26 (18.1%), 95% CI [13.2, 22.9] used 

causal comparative designs, 15 (10.4%) 95% CI [7.0, 14.6] used correlational design, 

and 11 (7.6%), 95% CI [4.2, 11.1] used surveys. Şİmşek et al. (2009) reviewed 204 

quantitative articles and found 55% (n = 160) used surveys while only 27% (n = 79) 

used experimental designs. More recently, Peterson-Karlan (2011) reviewed 85 studies, 

21% (n = 18) were experimental, 20% (n = 17) were case studies, 14% (n = 12) were 

quasi-experimental, and 15% (n = 13) single-subject designs, and 29% (n = 25) did not 

report the experimental design used. Conversely, Koble and Bunker (1997) listed the 

types of studies and experimental designs. Koble and Bunker (1997) found in 37 

quantitative articles, researchers used surveys, quasi-experimental designs, and 
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experimental designs. Table A1 presents experimental designs classified in previous 

reviews. 

Few researchers have reviewed sampling methods, score reliability, or statistical 

techniques. Researchers have estimated the sampling methods used despite the lack of 

reporting.  Edyburn (2000) examined 114 articles from 26 special education technology 

in 1999. Edyburn concluded most articles used convenience samples given the “over-

abundance” in post-secondary samples (p.13).  Randolph et al. (2008) reviewed 144 

reviewed articles and found 124 (86.1%) used convenience sample, 14 (9.7%) articles 

used a purposive sample and only 6 (4.2%) used a random sample. Alper and Gülbahar 

(2009) reviewed The Turkish Online Journal of Educational Technology between 2003 

and 2007. Among the 98 articles Alper and Gülbahar (2009) reviewed which excluded 

literature reviews and discussions, most used a convenience sample (65.3%, n = 64), 22 

(22.4%) used a cluster sample, and 12 (12.2 %) used a random sample.  

Few researchers have captured the extent to which reliability is reported. Overall, 

the few studies which reviewed reliability information found poor reporting practice. For 

example, Randolph (2008) reported on K-12 computer science education programs. 

Among the 29 reports, only one report conveyed reliability or validity estimates. 

Randolph (2008) found among the 107 articles reviewed for reliability, only 13 articles 

(12.1%) reported reliability or validity information about the scores produced by 

instruments. Likewise, although Lee et al. (2004) and (2007) did not report specifically 

on reliability, the authors concluded reliability and validity issues were not reported in 

the sample under review. 
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Table A1        
Frequency   of Experimental Designs Across Studies 

 Experimental Designs 

  Quasi-
experimental Experimental 

Experimental or 
Quasi-

experimental  

One group 
pretest-
posttest 

Single 
subject  

More 
than one 
design 

Unknown 

Koble & Bunker (1997) a x x      
Randolph, et al. (2008) b   64.6     
Cheung & Hew (2009) c 4.5 4.5      
Simsek, et al. (2009) d 27.0   11.4 2.3 6.8  
Peterson-Karlan (2011) e 14.0 21.0     15.0   29.0 
Notes. a n = 129; b n = 352; c n = 44; d n = 259; e n = 249. 
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Finally, there is a dearth of reviews on statistical methods used in educational 

technology literature. Moreover, the few researchers who evaluated the statistical 

methods, reviewed small samples. In addition, some of these reviews have examined 

trends over time and across journals, while other reviewers did not observe trends.  

Despite the limitations, these results offer a glimpse of the field’s statistical 

techniques. For example, Lee et al. (2004) examined 383 articles in four distance 

education journals between 1997 and 2002. Among the 47 experimental studies 

reviewed for statistical techniques, 8 (17.0%) used ANOVA or ANCOVA, 8 used 

regression analysis, 8 used chi-square test, 5 (11%) reported correlations,  8 (17.0%) 

used factor analysis, 4 (8.5%) used t-test, 2 (4.3%)  used path analysis, 1 (2.1%) used 

MANOVA or MANCOVA and 1 used a cluster analysis. Three years later, similar 

results were found when Lee et al. (2007) updated the review to examine 553 articles 

from 1997 to 2005. Among the 86 quantitative studies examined, 14 (16%) articles used 

a t-test; 14 (16%) used ANOVA or ANCOVA; 14 (16%) conducted a factor analysis; 13 

(15%) used a regression analysis; 11 (14%) used a chi-square test; 7 (9%) reported 

correlations; 4 used other methods such as discriminant analysis, Mann-Whitney U-test, 

and structural equation modeling; 3 used MANOVA or MANCOVA; 2 (2%) used path 

analysis; and 1 (1%) used a cluster analysis. 

Karataş (2008) also reviewed statistics used in 25 articles from three distance 

education journals between 2003 and 2005.  Karataş found 5 (20%) articles reported 

percentages, 2 (8%) articles reported frequencies, and 3 (12%) reported correlations. 

Among the statistical analyses conducted, 3 (12%) studies used an ANOVA, 3 (12%) 



 

102 

 

used a t-test, 1 (4%) used a z-test, 4 (16%) used factor analysis, 2 (8%) used a 

MANOVA, 2 (8%) used multiple regression, 1 (4%) used structural equation modeling, 

and 2 (8%) conducted a cross-tabulation. Likewise, Shih et al. (2008) examined 444 

articles intersecting cognition and e-learning found in five educational technology 

journals between 2001 and 2005. Among the 16 articles reviewed for statistical analyses, 

11 (68.75% ) included descriptive statistics, 6 (37.5%) used ANOVA with only 1 

reporting post hoc tests, 4 (25%) used t-tests, 2 (12.5%) included frequencies, 2 (12.5%) 

included ANCOVA, 1 (6.3%) conducted a factor analysis, 1 (6.3%) used a MANCOVA, 

and 1 (6.3%) used a chi-square test.  

Randolph et al. (2008) conducted the most comprehensive review of statistical 

techniques used in computer science education. Among the 123 articles reviewed, 44 

(35.8%) used inferential statistics. Randolph and colleagues (2008) further classified the 

inferential statistics used. Among the 44 articles using inferential statistics, 25 (56.8% ), 

95% CI [47.7, 65.9] used parametric analyses, 13 (29.5% ), 95% CI [23.3, 37.2] used 

correlational analyses, 11 (25.0%), 95% CI [13.2, 31.8] used nonparametric analyses, 2 

(4.5%), 95% CI [0.0, 9.1] used small sample analysis, and 1 (2.3%), 95% CI [0.0, 2.3] 

used a multivariate analysis. In addition, Randolph and colleagues found among the 25 

articles using parametric statistics, 15 (60.0%), 95% CI [48.0, 72.0] reported central 

tendency and dispersion. Moreover, among the 13 articles using correlational analyses, 

10 (76.9%), 95% CI [53.9, 92.3] articles reported sample size, while only 5 (38.5%), 

95% CI [15.4, 61.5] reported correlation or covariance matrices. Additionally, the one 

article using multivariate analysis did not report adequate information to interpret the 
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analysis such as cell means, cell sample size, or a matrix of associations. Furthermore, 

among the 123 quantitative articles reviewed, 97.6% (n = 120) reported an effect size. 

The remaining the three articles reported only probability values or stated whether or not 

the resulting effect was statistically significant or not. More specifically, among the 120 

articles which reported effect sizes, 97.5% (n = 117), 95% CI [95.0, 100.0] were raw 

differences, 6.7% (n = 8), 95% CI [3.3, 6.7] were correlational effect sizes, and 5.0% 

were standardized mean differences (n = 6), 95% CI [1.7, 8.3]. Table A2 and Table A3 

presents a list univariate and multivariate statistical techniques reported here, 

respectively. 
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Table A2 
Frequency of Univariate Statistical Techniques Used 

 

% Frequency Cross 
tab Descriptive 

Central 
tendency 

& 
dispersion 

Correlation χ² 
test 

Z-
test 

T-
test 

Effect 
size 

ANOVA 
or 

ANCOVA 
ANCOVA Regression 

Lee et al. (2004)       11 17  8.5  17  17 
Lee et al. (2007)       9 14  16  16  15 
Karatas (2008)  20 8 8   12  4 12  12  8 
Shih et al. (2008)  12.5  68.75   6.3  25  37.5 12.5  
Randolph et. al (2008)          60         97.6       
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Table A3 
Frequency of Multivariate Statistical Techniques Used 

 

MANOVA 
or 

MANCOVA 
MANCOVA Path 

analysis 
Factor 

analysis 
Cluster 
analysis SEM Other 

methods 

Lee et al. (2004) a 2.1  4.3 17 2.1   Lee et al. (2007) b 2  2 16 1  4.7 
Karatas (2008) c 8   16  4  Shih et al. (2008) d  6.3  6.3    Notes. a n = 383; b n = 553; c n = 25; d n = 16. The category "other methods" included an unspecified 
frequency of the following analyses: discriminant analysis, Mann-Whitney U-test, and structural equation 
modeling. 
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Appendix B. Coding Sheet for Study 1 

Coding Template (adapted from Warne et al. (2012). 
Elements Categories Definition 

Basic Information 

Journal Pulled from RefWorks database. 
Year Pulled from RefWorks database. 

Volume Pulled from RefWorks database. 
Issue Pulled from RefWorks database. 

Author(s) Pulled from RefWorks database. 
Title Pulled from RefWorks database. 

Research Method 

Quantitative 
Quantitative Research "uses numerical analysis to illustrate the 
relationship among factors in the phenomenon studied” (Chen & 
Hirschheim, 2004, p. 205) 

Qualitative 

Qualitative research is "an inquiry process of understanding based 
on a distinct methodological tradition of inquiry that explores a 
social or human problem. The researcher builds a complex, 
holistic picture, analyzes words, reports detailed views of 
informants, and conducts the study in a natural setting." 
(Creswell, 2007, p. 249) 

Mixed Methods 

Mixed methods research is “where the researcher mixes or 
combines quantitative and qualitative research techniques, 
methods, approaches, concepts or language into a single study” 
(Johnson & Onwuegbuzie, 2004, p. 17). 

Non-empirical 

Non-empirical articles are ancillary materials, such as editorials, 
book reviews, methodological papers, discussions, and 
acknowledgements, which support empirical articles included in 
the journal issue.  

Participant 

Characteristics 

Size Total intended sample size. At times, the sample size will differ 
from the analysis. In such cases, note the intended sample size. 

Demo. (list 
race/ethnicity %s) 

Demographic characteristics reported (e.g., ethnicity, gender, age, 
level of education, etc.) 

Sampling 

Procedures 

No sampling 
procedure listed 

 

Convenience sampling 

A convenience sample is a sample selected which "suits the 
purposes of the study and that is convenient" (Gall, Gall, & Borg, 
2007, p. 175). When a convenience sample is used, the reader 
"must infer a population to which the results might generalize" 
(Gall et al., 2007, p. 175). When authors provide a detailed 
description of the sample, the reader can more easily infer the 
population. 

Simple random 
sampling 

"A simple random sample is a group of individuals drawn by a 
procedure in which all the individuals in the defined population 
have an equal and independent chance of being select as a 
member of the sample" (Gall et al., 2007, p. 170). 

Systematic random 
sampling 

Systematic random sampling involves selecting a sample from a 
list and selecting every nth person in the list (Gall et al., 2007). 

Stratified random 
sampling 

"A stratified random sample involves a sample selected so that 
certain subgroups in the population are adequately represented in 
the sample" (Gall et al., 2007, p. 173). Other types of stratified 
random samples include: proportional stratified random sampling 
and nonproportional stratified random sampling. If the author(s) 
list either of these, type "proportional" in the stratified random 
sampling column. 

Cluster sampling 

"In cluster sampling, the unit of sampling is a naturally occurring 
group of individuals. Cluster sampling is used when it is more 
feasible to select groups of individuals rather than individuals 
from a defined population" (Gall et al., 2007, p. 173). Another 
type of cluster sampling is multistage cluster sampling. If the 
author(s) specify multistage sampling, type multistage sampling 
in the cluster sampling column. 

Database (list 
database) 

Select if the data comes from archival data set and type in the 
name of the database or other information provided by the 
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Coding Template (adapted from Warne et al. (2012). 
Elements Categories Definition 

author(s). 

Other sampling 
method (list) 

Select if any other type of sampling method is used that is not 
listed in the sampling procedures category. List the name of the 
sampling method used under the "Other sampling method" 
column. 

Random Assignment 
Select if the sample was randomly assigned to groups. If not 
randomly assigned or the author does not state whether the 
sample was randomly assigned, leave the cell blank. 

Descriptive 

Statistics 

Descriptive Statistics 

Descriptive statistics include: 1) location or central tendency 
(e.g., mean, median, mode); 2) dispersion (e.g., range, sum of 
squares, standard deviation (SD), variance); and 3) shape (e.g., 
skewness, kurtosis). Note. Relationship statistics such as Pearson 
r are listed separately in the coding sheet. These statistics should 
be noted in correlational statistics section instead. 

Effect size reported? List all types of effect sizes reported. 
Effect Size Value  List all effect size values 

Inferential statistics 

t-test 
 paired t-test 
 ANOVA 
 ANCOVA 
 ANOVA/ ANCOVA 

post hoc tests 
(specific) 

Record the name of the post hoc test used followed by page 
number. 

MANOVA 
 MANCOVA 
 MANOVA/MANCOV

A post hoc tests 
(specific) 

Record the name of the post hoc test used followed by page 
number. 

Descriptive 
discriminant analysis 

(DDA) 
 

Exact p-values 

If exact p-values (e.g. p = .01 or p < .001) are reported in the text, 
select the cell. If non-exact p-values (e.g., p < .05) are reported in 
the note section of the table, consider this an exact value. APA 
(2010) allows reporting of non-exact p-values in the notes section 
of the table.  If the only exact p-value reported is p =.000, do not 
select this cell. Instead, select the column, p = .000. 

Non-exact p-values 

If non-exact p-values (e.g., p < .05) are reported in the text, select 
the cell. If non-exact p-values are reported in the table, do not 
select the cell. APA (2010) allows reporting of non-exact p-
values in the notes section of the table. 

p = .000? If the p-value reported is p =.000, select this cell. 
Confidence Intervals 

 

Correlational 

statistics 

Pearson's r 
Also known as  zero-order correlation coefficient. When Pearson 
r is only used for inter-rater reliability. Do not select this cell. 
Instead, select the statistic as inter-rater reliability only. 

Spearman's rho 
 Tetrachoric correlation 
 Biserial correlation 
 Point-biserial 

correlation 
 Phi coefficient 
 

Regression 

Multiple regression 
 Stepwise regression 
 Logistic regression 
 Hierarchical linear 

regression 
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Coding Template (adapted from Warne et al. (2012). 
Elements Categories Definition 

HLM 
 Commonality analysis 
 

Data Reduction 

EFA or PCA? 
 

Extraction method 

e.g., maximum likelihood analysis (or canonical factor analysis), 
alpha factor analysis, image factor analysis, principle axes factor 
analysis, principal axes factor analysis with iterated 
communalities (or least squares). 

Rotation method 
e.g. Orthogonal rotations include varimax, equamax, and 
quartimax; and oblique rotations - promax, Procrustean, oblimin, 
and direct oblimin 

Factor retention 
method (list all used) 

e.g. scree plot, Guttman rule (or the K1 rule, or eigenvalue-
greater-than-one rule), variance accounted by the number of 
factors, Kaiser–Meyer–Olkin test of sampling adequacy, a priori 
theory, parallel analysis, Bartlett’s test of sphericity, visual 
inspection of the item loadings, and inspection of the residual 
correlation matrix 

Loading matrix 
reported? 

When an orthogonal rotation method is used, we expect to see a 
loading matrix reported. If reported, place an x and page number. 
If not reported, leave the cell blank. 

Structure matrix 
reported? (Oblique 

rotation) 

When a nonorthogonal rotation method (oblique rotation method) 
is used, we expect to see a structure matrix reported. If reported, 
place an x and page number. If not reported, leave the cell blank. 

SEM 

Path analysis 

Models specifying relationships between observed variables only. 
The model does not include latent variables. Authors should use 
boxes for observed variables and circles for latent variables; 
however, not all authors follow this rule. 

CFA/ Measurement 
model 

The measurement model is the part which relates measured 
variables to latent variables. Authors should use boxes for 
observed variables and circles for latent variables; however, not 
all authors follow this rule. 

Structural model 

The structural model is the part that relates latent variables to one 
another. Authors should use boxes for observed variables and 
circles for latent variables; however, not all authors follow this 
rule. 

Test of invariance 
 Covariance matrix? 
 Estimation method 

(specific) 
e.g., maximum likelihood, weighted least squares mean/variance 
adjusted, robust ML, etc. 

Examined normality 
of data? 

 Identification method? 
 Standardized or 

unstandardized 
results? 

 

Fit statistics used 

List fit statistics used and separate each by a comma. Record the 
page number each statistic is found. [e.g. (Χ2 , CFI, RMSEA, 
SRMR, goodness-of-fit index (GFI), nonnormed fit index 
(NNFI), expected cross-validation index (ECVI), Tucker–Lewis 
index (TLI), adjusted goodness-of-fit index (AGFI), normed fit 
index (NFI), root mean residual (RMR), the Satorra–Benter 
adjusted Χ2, weighted root mean residual (WRMR), relative fit 
index (RFI), robust CFI, and the robust RMSEA, p. 121)] 

Nonparametric 

statistics 

Frequencies 
 Cross-tabulations 
 

Non-parametric 
NHSST (specific) 

List which specific non-parametric inference tests were  
conducted (e.g.,  Pearson’s χ2, Likelihood  ratio, linear-by-linear 
association, Cochran-Mantel-Haenszel test, and Kruskal-Wallis 
test). 

Reliability 
No mention of 

reliability 
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Coding Template (adapted from Warne et al. (2012). 
Elements Categories Definition 

Reliability induction 
Reliability induction is when the "researcher takes a reliability 
statistic from one sample and applies it to another" (Warne et al., 
2012). For example, from a test manual or previous study. 

Reported reliability for 
own data 

 "Reliability of the test" 
(not scores) 

 Internal Consistency (e.g., Cronbach's alpha, KR20, KR21, or Kuder Richardson 
formula) 

Test-retest 
 Interrater e.g., Cohen's kappa, percent agreement 

Alternate/ Parallel 
forms 

 Split half (with 
correction or not?) Indicate if the split half coefficient has a correction or not. 

Other reliability 
measure (specific) 

List any reliability measure not specified in the coding sheet (e.g., 
IRT-based reliability). 

Miscellaneous 

Replication procedure 
 Power Analysis 
 Other unlisted 

statistical method 
List any miscellaneous statistic reported in the article that is not 
already listed in the coding sheet. 

Notes   Notes to coder or both coders about the article. 
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Appendix C. Emails to Authors 

Initial Email: 

Greetings Dr. ____,  

 

I hope this email reaches you well. I am a PhD candidate in the Educational Technology 

program at Texas A&M University, USA. I am currently collecting data for my 

dissertation.  

 

I recently read your article, ____. I am very interested in the conclusions of the study 

and would like to include your study in my dissertation. I am writing today to ask, would 

you be willing to share with me [the correlation matrix (with means & standard 

deviations) or the covariance matrix] you and your colleagues used to conduct the 

structural equation model? 

If you have any questions regarding my request, please don't hesitate to contact me. I 

appreciate any time and attention you might devote to the above request. 

 

Thank you for your time and consideration, 
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Follow-up Email: 

Greetings Dr. ___ 

I hope this email reaches you well. I previously contacted you regarding your article, 

____. I am very interested in the conclusions of the study and would like to include this 

study in my dissertation.  

Would you be willing to share your [the correlation matrix (with means & standard 

deviations) or the covariance matrix] with me? If not, I understand and will remove your 

article from my study. 

Thank you again for your time and consideration. 

Best regards, 
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Appendix D. Extended discussion on email responses. 

Authors had an array of responses including: referrals to co-authors, traveling 

pretexts, perceptions of old research, or lost data. Authors often referred me to a co-

author. Another author stated, “…My co-author, [name of co-author], completed the 

statistical analysis, so I will forward your email to her for a response.” Unfortunately, 

none of the referrals responded to my request in the forwarded message. Another 

common response from authors was that they were traveling. One author stated, “I am 

travelling abroad now and I am afraid I can not find the data for the student.” In another 

instance, an author suggested the information I requested from an article published in 

2005 was too long ago. The author responded, “…I will try and check my hard disk for 

the data which I am not sure if I have them as it has been quite a while.”  

One surprising response was about an article where the data was collected in 

Chile and Spain during 2009. The author stated prior agreements did not allow them to 

share the information I requested (e.g., means and standard deviations and a covariance 

matrix). The author responded, “I am writing to respond negatively to your email. 

Unfortunately we have a prior agreement on the survey data indicating that we can not 

give other researchers in any form.”  

Lastly, authors stated limitations of the statistical software prevented them from 

providing this information. One author stated,  

 

“I am sorry very much, but I cannot send you the correlation matrix you 

ask me for. When we did that research, we used a software (PLS-Graph) 
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w[h]ich developed internally this matrix and, unfortunately, we don't have 

the licence [license] of this software by the time. It's impossible for us to 

recover those data. We have the initial data (questionnaires) …. We also 

have the final document of the project with similar tables from the paper 

you have read. … If you are interested on them, please, ask me. I will not 

have any problem in sending them to you. If you feel you have to remove 

our article from your study, there is no problem.” 

 

Although I responded to request the information mentioned by the author, I never 

received the information. 
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Appendix E. Coding Sheet for Study 2 

Article Attributes 

Reference Type 
Author 
Publication Year 
Article Title 
Name of Journal 
Volume 
Issue 
Start Page 
Other Pages 
Keywords 
Abstract 
Notes 
Publisher 
ISSN/ISBN 
Availability 
Accession Number 
Links 
Passed Primary 1 Screening 
Passed Secondary2 Screening 
Study ID # 
Sample Attributes 

Type of Sample 
Description 
Location of Study 
Total Sample Size 
# of males 
# of females 
Age 
Research Design 
Major 
Technology Proficiency Index 
Internet experience 
Type of LMS 

Learning Management System 
Instruments 
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Description 
Type of Model 

TAM Model 
Reliability of Variables (Cronbach's 

alpha) 

Perceived Usefulness (PU) 
Ease of Use (EU) 
Attitude (A) 
Behavioral Intention (BI)  
Actual Use (U)  
Means & SDs 

Perceived Usefulness (PU) 
SD 
Ease of Use (EU) 
SD 
Attitude (A) 
SD 
Behavioral Intention (BI) 
SD 
Actual Usage (U) 
SD 
Correlations 

r (PU, BI) 
r (EU, BI) 
r (PU, EU) 
r (BI, U) 
r (EU, A) 
r (PU, A) 
r (EU, U) 
r (PU, U) 
r (A, BI) 
r (A, U) 
Covariances 

COV (PU, BI) 
COV (EU, BI) 
COV (PU, EU) 
COV (BI, U) 
COV (EU, A) 
COV (PU, A) 
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COV (A, BI) 
COV (A, U) 
COV (EU, U) 
COV (PU, U) 
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Appendix F. Covariance Matrices for Studies Included in the Meta-Analysis 

Group 1 

Saadé & Galloway (2005) 
  

 
PU EU A BI 

PU 0.894916 0.487 0.487 0.487 
EU 0.487 1.177225 0.251 0.366 
A 0.487 0.251 0.857476 0.536 
BI 0.487 0.366 0.536 1.089936 

     Saadé, Nebebe, & Tan (2007) 

 
PU EU A BI 

PU 0.7744 0.430848 0.474672 0.34848 
EU 0.430848 0.9216 0.392544 0.228096 
A 0.474672 0.392544 0.7569 0.45936 
BI 0.34848 0.228096 0.45936 0.7744 

 

Group 2 

Almrashdah et al. (2010) 

 
PU EU BI 

PU 0.816601 0.61406 0.69907 
EU 0.61406 0.738001 0.588056 
BI 0.69907 0.588056 1.001541 

    Martins & Kellermann (2004) 

 
PU EU BI 

PU 1.69 0.56693 1.00646 
EU 0.56693 0.7921 0.60467 
BI 1.00646 0.60467 2.4964 

    Saadé & Bahli (2005) 
 

 
PU EU BI 

PU 0.49 0.14 0.24 
EU 0.14 0.6 0.11 
BI 0.24 0.11 0.81 
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Saadé et al. (2007) 

 
PU EU BI 

PU 0.7744 0.430848 0.34848 
EU 0.430848 0.9216 0.228096 
BI 0.34848 0.228096 0.7744 

    Yi & Hwang (2003) 

 
PU EU BI 

PU 2.9584 0.852948 1.681472 
EU 0.852948 2.9241 1.12518 
BI 1.681472 1.12518 3.5344 

 

Group 3 

Liao & Lu (2008) 

 
EU BI U 

EU 1.377806 0.64068 -0.656 
BI 0.64068 1.377806 0.45417 
U -0.656 0.45417 5.24181 

    Martins & Kellermann (2004) 

 
EU BI U 

EU 0.7921 0.60467 0.2611 
BI 0.60467 2.4964 0.77262 
U 0.2611 0.77262 2.6569 

    Yi & Hwang (2003) 

 
EU BI U 

EU 2.9241 1.12518 53.30395 
BI 1.12518 3.5344 66.24706 
U 53.30395 66.24706 18368.38 
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Group 4 

Brown (2002) 
  

 
PU EU U 

PU 1.3225 0.497835 0.248285 
EU 0.497835 1.2321 0.479298 
U 0.248285 0.479298 1.6129 

    Martins & Kellermann (2004) 

 
PU EU U 

PU 1.69 0.56693 0.55094 
EU 0.56693 0.7921 0.2611 
U 0.55094 0.2611 2.6569 

    Ramayah (2006) 
  

 
PU EU U 

PU 0.5625 0.37125 0.406125 
EU 0.37125 0.81 0.53865 
U 0.406125 0.53865 0.9025 

    Yi & Hwang (2003) 

 
PU EU U 

PU 2.9584 0.852948 6.993348 
EU 0.852948 2.9241 53.30395 
U 6.993348 53.30395 18368.38 
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Appendix G. Summary of Studies Using different combinations of the variables from the TAM 

 

Table G1 
         Summary of Studies Using different combinations of the variables from the TAM 

Study PU - EU PU - A EU - A A - BI PU - BI EU - BI BI - U PU - U EU - U 

Almrashdah et al. (2010) x 
   

x x 
   Liao & Lu (2008) 

     
x x 

 
x 

Martins & Kellermanns (2004) x 
   

x x x x x 
Saadé & Bahli (2005) x 

   
x x 

   Saadé & Galloway (2005) x x x x x x 
   Ramayah (2006) x 

      
x x 

Yi & Hwang (2003) x 
   

x x x x x 
Brown (2002) x 

      
x x 

Saadé et al. (2007) x x x x x x 
   Davis & Wong (2007) x 

        Saadé (2007) 
  

x x 
 

x 
   Lee & Lee (2008) x 

        Pituch & Lee (2006) x                 

Note. PU = perceived usefulness; EU = perceived ease of use; A = attitude; BI = behavioral intention to use; U = actual use. 



 

121 

 

Appendix H. Extended Explanation of the TSSEM Approach 

The current study uses a two-stage structural equation modeling (TSSEM) 

approach to fit fixed-effects MASEM using covariance matrices proposed by Cheung 

and Chan (2009). In stage one, the covariance matrices are pooled together. In stage two, 

the pooled covariance matrix is used to fit the structural equation model using with 

weighted least squares (WLS) estimation method. 

Stage 1  

The purpose of the stage 1 is to obtain a pooled covariance matrix. Under the 

fixed-effects model, all population covariance matrices are the same. Under the 

assumption of homogeneity of covariance matrices, a common covariance matrix may 

be obtained by allowing the variance to vary across studies. When there are missing 

covariances, metaSEM filters out the missing data. Since the studies were grouped 

before the meta-analysis, there are no missing data within each group. 

Stage 2 

After the stage 1, a pooled covariance matrix and corresponding asymptotic 

covariance matrix are estimated. A structural model is fitted with weight least squares 

(WLS) estimation method which assumes unequal error variance and as a result gives 

less weight to observations with larger error variance. The likelihood-ratio statistics and 

multiple goodness-of-fit indices are used to judge whether the proposed structural model 

is appropriate. The standard errors may be used to test the significance of individual 

parameter estimates. 
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Appendix I. Syntax from R to Conduct the Meta-Analysis 

Group 1 

##INTALL PACKAGES TO RUN metaSEM  
install.packages('OpenMx', repos='http://openmx.psyc.virginia.edu/packages/') 
install.packages(c('ellipse','MASS')) 
install.packages(pkgs="e:/metaSEM_0.8-4.zip", repos=NULL) 
## LOAD THE metaSEM LIBRARY 
library(metaSEM) 
## LOAD DATA FILE INTO CONSOLE BY CLICKING AND DRAGGING FILE 
INTO CONSOLE 
## READ DATA FILE AT THIS LOCATION 
PUEUABIdata <- readFullMat(file = "C:\\PUEUABIdata.dat") 
## SEE DATA NAMED "PUEUABIdata" 
PUEUABIdata 
##WRITE MATRIX FOR SAMPLE SIZE OF EACH STUDY- Code modified from: 
http://www.r-tutor.com/r-introduction/matrix 
PUEUABIn = matrix (c(128, 362), nrow=1, ncol=2, byrow = TRUE) 
 
## SEE MATRIX FOR SAMPLE SIZE OF EACH STUDY 
PUEUABIn 
##FIXED EFFECTS MASEM USING TSSEM - UNDER THE FIXED EFFECTS 
MODEL, IT IS ASSUMED THAT ALL POPULATION COVARIANCE MATRICES 
ARE THE SAME WHILE THERE ARE STUDY SPECIFIC COVARIANCE 
MATRICES UNDER THE RANDOM-EFFECTS MODEL. 
## STAGE 1 - OBTAINS A POOLED COVARIANCE MATRIX  
## FOR DATA SET PUEUABIdata AND PUEUABIn 
head(PUEUABIdata) 
head (PUEUABIn) 
## TSSEM: STAGE 1 - The tssem1() function is used to pool the correlation matrices 
with a fixed-effects model in the first stage analysis by specifying method="FEM" in the 
argument: 
fixed1 <- tssem1(PUEUABIdata, PUEUABIn, method = "FEM") 
## AFTER TSSEM1 RUNS ANALYSIS OF CORRELATION MATRIX (IN THIS 
CASE THE COVARIANCE MATRIX), OUTPUT RESULTS 
summary(fixed1) 
## OUTPUTS POOLED COVARIANCE MATRIX (THE PARAMETER 
ESTIMATES) EXTRACTED 
coef(fixed1) 
## PREPARE FOR TSSEM: STAGE 2 (RAM) 
## CREATES "A MATRIX" WHICH SPECIFIES THE ASYMMETRIC PATHS 
(ASYMTOTIC MATRIX) 
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A2 <- 
matrix(c(0,"0*x2tox1",0,0,0,0,0,0,"0*x1tox3","0*x2tox3",0,0,0,0,"0*x3tox4",0),nrow=4
, ncol=4, byrow=TRUE) 
dimnames(A2) <- list(c("x1", "x2", "x3", "x4"), c("x1", "x2", "x3", "x4")) 
A2 
A2 <- as.mxMatrix(A2) 
## CREATES "S MATRIX" WHICH SPECIFIES THE SYMMETRIC 
VARIANCE/COVARIANCE MATRIX 
S2 <- Diag(c("0.2*Varx1",1,"0.2*Varx3", "0.2*Varx4")) 
dimnames(S2) <- list(c("x1", "x2", "x3", "x4"), c("x1", "x2", "x3", "x4")) 
S2 
S2 <- as.mxMatrix(S2) 
## TSSEM: STAGE 2  
fixed2 <- tssem2(fixed1, Amatrix = A2, Smatrix = S2, diag.constraint=TRUE, 
intervals.type="LB") 
## AFTER TSSEM2 RUNS ANALYSIS, OUTPUT RESULTS  
summary(fixed2) 
 

Group 3 

##INSTALL PACKAGES TO RUN metaSEM  
install.packages('OpenMx', repos='http://openmx.psyc.virginia.edu/packages/') 
install.packages(c('ellipse','MASS')) 
install.packages(pkgs="e:/metaSEM_0.8-4.zip", repos=NULL) 
## LOAD THE metaSEM LIBRARY 
library(metaSEM) 
## LOAD DATA FILE INTO CONSOLE BY CLICKING AND DRAGGING FILE 
INTO CONSOLE 
## READ DATA FILE AT THIS LOCATION 
PUEUUdata <- readFullMat(file = "C:\\PUEUUdata.dat") 
## SEE DATA NAMED "PUEUAUdata" 
PUEUUdata 
##WRITE MATRIX FOR SAMPLE SIZE OF EACH STUDY- Code modified from: 
http://www.r-tutor.com/r-introduction/matrix 
PUEUUn = matrix (c(73, 243, 275, 109), nrow=1, ncol=4, byrow = TRUE) 
## SEE MATRIX FOR SAMPLE SIZE OF EACH STUDY 
PUEUUn 
##FIXED EFFECTS MASEM USING TSSEM - UNDER THE FIXED EFFECTS 
MODEL, IT IS ASSUMED THAT ALL POPULATION COVARIANCE MATRICES 
ARE THE SAME WHILE THERE ARE STUDY SPECIFIC COVARIANCE 
MATRICES UNDER THE RANDOM-EFFECTS MODEL. 
## STAGE 1 - OBTAINS A POOLED COVARIANCE MATRIX  
## FOR DATA SET PUEUABIdata AND PUEUABIn 
head(PUEUUdata) 
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head (PUEUAUn) 
## TSSEM: STAGE 1 -  The tssem1() function is used to pool the correlation matrices 
with a fixed-effects model in the first stage analysis by specifying method="FEM" in the 
argument: 
fixed1 <- tssem1(PUEUUdata, PUEUUn, method = "FEM") 
## AFTER TSSEM1 RUNS ANALYSIS OF CORRELATION MATRIX (IN THIS 
CASE THE COVARIANCE MATRIX), OUTPUT RESULTS 
summary(fixed1) 
## OUTPUTS POOLED COVARIANCE MATRIX (THE PARAMETER 
ESTIMATES) EXTRACTED 
coef(fixed1) 
##RANDOM EFFECTS MASEM USING TSSEM 
random1 <- tssem1(PUEUUdata, PUEUUn, method = "REM") 
summary(random1) 
##TSSEM - STAGE 2 
## CREATES "A MATRIX" WHICH SPECIFIES THE ASYMMETRIC PATHS 
(ASYMTOTIC MATRIX) 
A2 <- matrix(c(0,"0*x2tox1",0,0,0,0,"0*x1tox3","0*x2tox3",0),nrow=3, ncol=3, 
byrow=TRUE) 
dimnames(A2) <- list(c("x1", "x2", "x3"), c("x1", "x2", "x3")) 
A2 
A2 <- as.mxMatrix(A2) 
## CREATES "S MATRIX" WHICH SPECIFIES THE SYMMETRIC VARIANCE/ 
COVARIANCE MATRIX 
S2 <- Diag(c("0.2*Varx1",1,"0.2*Varx3")) 
dimnames(S2) <- list(c("x1", "x2", "x3"), c("x1", "x2", "x3")) 
S2 
S2 <- as.mxMatrix(S2) 
## TSSEM: STAGE 2 – RANDOM EFFECTS 
random2 <- tssem2(random1, Amatrix = A2, Smatrix = S2, diag.constraint=TRUE, 
intervals.type="LB") 
## AFTER TSSEM2 RUNS ANALYSIS, OUTPUT RESULTS  
summary(random2) 
 




