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ABSTRACT

Direct sparse solvers are traditionally known to be robust, yet difficult to par-

allelize. In the context of circuit simulators, they present an important bottleneck

where the key steps of LU factorization and forward-backward substitution are re-

peatedly performed to reach the solution. Limited speedups have been obtained on

multi-core CPUs as well as GPUs owing to the strong data dependency in these steps.

With the advent of many-core coprocessors like the Intel Xeon Phi with fewer yet

powerful cores and wider vector units, sparse LU factorization can be optimized for

higher speedups compared to traditional LU decomposition methods like the Gilbert

Peierl’s algorithm. In this thesis, we first establish Sparse Compressed Row (CSR)

as the preferred data structure amongst other popular sparse matrix representations

for parallelizing sparse circuit solvers, irrespective of the architecture used. Next, we

propose and implement a sparse circuit solver suited for parallelization on both the

Nvidia GPU and Intel Xeon Phi platform, which is amenable to vectorization and

takes advantage of hardware support, if any, for gather-scatter operations. Finally,

we analyze our implementation on multi-core, SIMD and SIMT architectures namely

Intel Xeon CPU, Intel Xeon Phi coprocessor and an Nvidia GPU respectively, each

using different programming models suited for the respective platform to determine

the architecture best suited for parallelizing direct sparse matrix solvers. Our par-

allel sparse LU factorization achieves an average speedup of 7.18x on the Xeon Phi

and 2.75x in case of the GPU implementation on GTX 680 over an Intel 4-core i7

CPU, which is up to 13x faster than a single threaded implementation.
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NOMENCLATURE

CSR Compressed Sparse Row

CSC Compressed Sparse Column

COO Coordinate Format

N,n Order of Matrix

NNZ Number of Non-zeros

SpMV Sparse Matrix Vector Multiplication

BTF Block Triangular Form

AMD Approximate Minimum Degree
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1. INTRODUCTION

Circuit simulators dealing with non-linear equations and models face a fundamen-

tal bottleneck of repeatedly solving Ax = b, a linear system of equations. Modern

circuit simulators carry out more detailed simulation for a circuit than ever before. A

circuit simulator is commonly used for linear and non-linear DC analysis, linear AC

analysis, small signal AC analysis, linear and large signal transient analysis, as also

for other functions like pole/zero analysis and noise analysis. This has resulted in

long simulation time of the order of days or even weeks on modern CPUs, as the size

of circuits continue to increase attempting to keep up with the Moore’s law. While

iterative methods present an interesting approach for circuit simulators since they

can be massively parallelized, however, they suffer from the obvious disadvantages

of non-convergence of solutions often resulting in variable, large number of itera-

tions. Direct methods, in contrast, are stable and remain a popular choice for circuit

simulators today where reasonable precision is expected in the solutions.

Circuit simulators operate by converting non-linear models to linear equations for

a single point, and starting with an initial guess, repeatedly solve the linear models

until convergence is reached. This entire process constitutes a Newton-Raphson loop

[1], which is outlined in figure 1.1.

The nodal equations comprise a linear system of equations of the form -


G11 G12 . . .

G21
. . .

... Gnn



V1

V2
...

 =


I1

I2
...

 (1.1)

where Vi, Ii and Gij denote the node voltage, current and conductance respec-
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Figure 1.1: Basic steps in a circuit simulator

tively. The conductance matrix (G) and the accompanying linear system of equations

is repeatedly solved in the Newton-Raphson loop. The conductance matrix is very

sparse, with typically up to 10 non-zeros per row, corresponding to each node. It is

also very large, with as many rows as the number of nodes in the circuit, which is

of the order of millions for modern VLSI designs. Maximum entries are along the

diagonal of the matrix, or can be permuted to be so using various ordering methods

like AMD [2], COLAMD [3], Reverse Cuthill McKee (RCM) ordering [4] etc.

1.1 Key Steps in Direct Sparse Circuit Solvers

A typical sparse solver involves 4 or more distinct steps -

1. A permutation step that ensures zero-free diagonal and appropriate scaling

2. An ordering step that permutes the rows and columns of the matrix into a form

like the Block Triangular Form (BTF) [5], which helps reduce the fill-in of the

factors.

3. An analysis step called the symbolic analysis or symbolic factorization that

determines the nonzero structures of the factors, and modify the existing data

2



structure in order to accommodate the additional fill-in.

4. Numerical factorization or LU decomposition that computes the L and U fac-

tors using some variant of Gaussian elimination.

5. A forward backward substitution (or block forward backward substitution) step

that substitutes the computed values to solve the equation in a final linear step.

factors.

There are a variety of algorithms for each step, suited for sparse matrices with

different characteristics. For circuit matrices, KLU [5] is a widely used sparse circuit

solver; we have used KLU as the baseline for comparison of our results. The key

steps in KLU are as below -

1. Scaling (RAx = Rb). R is a diagonal matrix with scale factors for each row.

2. Asymmetric permutation to Block Triangular Form (BTF ) [5]:

(a) Asymmetric permutation to get zero-free diagonal using maximum traver-

sal (Duff’s algorithm [6, 7])

(b) Symmetric permutation to BTF by finding strongly connected compo-

nents of the graph. (Duff’s and Reid’s algorithm [8, 9])

3. Symmetric permutation of each block (fill-in reducing ordering) using Approx-

imate Minimum Degree(AMD) [2], or Column AMD (COLAMD) [3]

4. Symbolic analysis - Computing the non-zero pattern of column ‘k’ of the factors.

5. Numerical factorization and Solve:

(a) Sparse LU decomposition (Numerical factorization) of each block using

Gilbert Peierl’s algorithm [10] with partial pivoting (LUx = b)

3



(b) Forward-backward substitution (Solve) to solve the system using block

back substitution and account for the off-diagonal entries.

Scaling, BTF permutation, AMD, Symbolic analysis are static steps and performed

only once for circuit matrices while iterating the Newton-Raphson loop. The last

step, which includes LU factorization and forward-backward substitution are per-

formed repeatedly until convergence is reached. In essence, speeding up these two

steps should form the essential crux when parallelizing and speeding up any modern

circuit simulator. In this thesis, we have attempted to parallelize these two steps

while using the rest of the steps from KLU to speedup the circuit simulator, as a

whole.

1.2 Choice of Sparse Matrix Data Structures for Parallelizing Sparse Circuit Solver

We evaluated three popular formats for parallelizing the two key steps in our

sparse circuit solver, namely LU factorization and forward-backward substitution.

These formats are Sparse Compressed Row (CSR), Sparse Compressed Column

(CSC), and Coordinate format (COO) [11]. CSR consists of three vectors vals, cols,

and row ptr. row ptr consists of row pointers. It is of length n + 1. The start of

row k of the input matrix is given by row ptr[k]. cols consists of column indices of

the elements. This is a zero based data structure with column indices in the interval

[0, n). vals consists of the actual numerical values of the elements. As an example,

the matrix


5 0 0

4 2 0

3 1 8

 (1.2)
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represented in the CSR format will be:

row ptr = [0, 1, 3, 6]

cols = [0, 0, 1, 0, 1, 2]

vals = [5, 4, 2, 3, 1, 8]

The Compressed Sparse Column (CSC) format is analogous to the CSR format, with

col ptr storing the row indices of the elements. The above matrix represented in the

CSC format will be:

col ptr = [0, 3, 5, 6]

rows = [0, 1, 2, 1, 2, 2]

vals = [5, 4, 3, 2, 1, 8]

The Coordinate format has the simplest representation with (row, col, value) tu-

ples listed for each non-zero in the matrix. For our chosen example, the representation

in COO format will be:

rows = [0, 1, 1, 2, 2, 2]

cols = [0, 0, 1, 0, 1, 2]

vals = [5, 4, 2, 3, 1, 8]

The storage requirements for the 3 formats are listed in Table 1.1.

Table 1.1: Storage requirements for CSR, CSC and COO sparse matrix representa-
tions

Format Integers Floating Points

CSR nnz+n nnz
CSC nnz+n nnz
COO 2nnz nnz

We use the Sparse Compressed Row (CSR) format for storing and manipulating

the sparse circuit matrices in our implementation. With regards to either serial or
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parallel implementation of LU factorization, all the 3 formats can be implemented in

a way to yield nearly identical performance. For the Sparse Matrix-Vector Multipli-

cation (SpMV) operation however, which is a key operation in the forward-backward

substitution step when using BTF, we show that the CSR format easily outperforms

the other two formats. The reason behind this, as investigated later, is that the

CSR format does not require any synchronization between threads while adding up

multiplication results from each thread. As a result, we have used the CSR for-

mat as our preferred choice for parallelizing LU factorization and forward-backward

substitution, and not CSC, which is adopted by KLU.

The remainder of this thesis is organized as follows. Section 2 describes the el-

ementary theory used in any sparse matrix solver. Section 3 describes our parallel

Sparse Compressed Row (CSR) based LU factorization, while Section 4 reports ex-

perimental results, including results from comparisons with KLU against our GPU

and multi-core implementations on CPU and Intel Xeon Phi coprocessor. Section 5

surveys the existing work done on sparse linear solvers, particularly for circuit ma-

trices. Finally in Section 6, we make concluding comments and discuss further work

that needs to be done in this area.
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2. COMPONENTS OF A SPARSE MATRIX SOLVER

Any sparse matrix solver invokes a number of steps before performing the actual

Gaussian elimination and solve operations. This section describes in detail the key

operations outlined earlier, like the Block Triangular Form (BTF) permutation and

ordering methods like the Approximate Minimum Degree (AMD) ordering. Specifi-

cally, we here only describe the steps prior to Symbolic analysis in this section, while

the next section describes the remaining steps that we have implemented as part of

our solver.

2.1 Pivoting

In matrix computations, a pivot element is an element in each row of the matrix,

which is most distant from zero. The pivot element is essential for performing varied

computations in matrix algorithms like Gaussian elimination, Simplex algorithm etc.

The process of finding the pivot element is called pivoting. For matrix computations,

there are two important considerations for the pivot element -

(i) The pivot should not be zero, else Gaussian elimination fails.

(ii) The pivot element should generally have a large absolute value, for better

numerical stability.

We illustrate these considerations with two examples. Consider a simple 2*2

matrix,

A =

 0 1

2 3

 (2.1)

When we apply Gaussian elimination to find L and U matrices, we compute the U

term −a21/a11 (2 ÷ 0), multiply it with first row and add to second row, to reduce
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a21 to zero. Clearly, this step fails for the above case since a11 is zero. The same is

equivalently true when any diagonal element aii is zero.

Now consider a case when the pivot is not absolute zero, but very close.

 0.003 59.14

5.291 −6.130

×
 x1

x2

 =

 59.17

46.78

 (2.2)

The system has exact solution of x1 = 10.00 and x2 = 1.000, however, when Gaussian

elimination and forward-backward substitution is performed using a 4-digit decimal

precision, the small value of a11 causes small round-off errors to be propagated. We

obtain an approximate solution of x1 ≈ 9873.3 and x2 ≈ 4, which is way off the

accurate solution. A simple row interchange here between the two rows fixes the

problem. The row interchange makes the original a11 a non-pivot element. a21 is the

new pivot element, which is sufficiently distant from zero. The problem lied with the

multiplier, which earlier obtained from a small pivot element was huge, and when

added to the small element a22, suppressed it completely.

Pivoting can be of two forms -

(i) Partial pivoting

(ii) Complete pivoting

In partial pivoting, the algorithm selects the largest absolute value from each

column as the pivot element. In scaled partial pivoting, the largest element from

each row is selected as the pivot element. Partial pivoting and scaled partial pivoting

both add a time complexity of O(n2) to the Gaussian elimination for dense matrices.

The time cost for sparse matrices cannot be quantified in terms of n as the number

of non-zeros in each row is variable, however, the cost is substantially less for sparse

matrices.
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In complete pivoting, the entire matrix is search (and subsequently permuted) to

allow the largest element from the matrix to be the pivot element for first row, second

largest element to be the pivot for the second row and so on. This is substantially

more expensive than partial pivoting, with a time complexity of O(n3) to calculate

the pivots for a dense matrix. Complete pivoting is usually not necessary to ensure

numerical stability, and due to the additional computations it introduces, we use

partial pivoting with diagonal preference in our our implementation.

2.2 Scaling

Pivoting, partial or complete is often insufficient to prevent small elements in the

matrix from getting obscured during Gaussian Elimination. The numerical addition

between the rows can still assume large differences in the values used for addition,

which partial pivoting is unable to overcome. Let us illustrate this with an example.

Consider the system of equations,

 10 105

1 1

×
 x1

x2

 =

 105

2

 (2.3)

Applying Gaussian elimination with partial pivoting to the above system, we obtain

(after eliminating a21),

 10 105

0 −104

×
 x1

x2

 =

 105

−104

 (2.4)

which yields a solution of x1 = 1, x2 = 0, different from the true solution, x1 = 1, x2 =

1. Suppose now that we scale by dividing the first row by the largest element, 105,

before performing the Gaussian elimination. The system before applying Gaussian

9



elimination is,  10−4 1

1 1

×
 x1

x2

 =

 2

1

 (2.5)

This process of dividing each row or column by the largest element in the respective

row or column is termed scaling. In column scaling, we divide each column by

the largest element in the respective column. After applying partial pivoting, this

becomes,  1 1

10−4 1

×
 x1

x2

 =

 2

1

 (2.6)

Applying Gaussian elimination, we obtain,

 1 1

0 1− 10−4

×
 x1

x2

 =

 2

1− 10−4

 (2.7)

Solving this system yields x1 = 1, x2 = 1, which is the true solution. Scaling is

optional for many problems where the values are already balanced.

2.3 Block Triangular Form (BTF)

Square sparse matrices can often be reduced to a useful form called the Block

Triangular Form (BTF) by simple permutation of rows and columns. BTF allows a

good saving of computation effort for problems in linear algebra like solving linear

systems of equations and eigenvalue problems.

Consider the linear system Ax = b shown in Eq. 2.8, which has been expressed

10



in the BTF form. 

2 9 5 0 0 0

9 5 −3 0 0 0

1 0 4 0 0 0

−9 4 2 1 2 −1

−6 9 1 1 1 3

9 4 3 2 3 −2


×



x1

x2

x3

x4

x5

x6


=



b1

b2

b3

b4

b5

b6


(2.8)

This is a 6*6 linear system with rows and columns permuted to the BTF form.

Notice the top-right 3*3 matrix block which consists of zeros exclusively. The aim

of BTF permutation is to arrange blocks of such zero matrices in either the upper

triangle (U) or the lower triangle (L) of any given matrix. This linear system can be

equivalently written as,


2 9 5

9 5 −3

1 0 4

×

x1

x2

x3

 =


b1

b2

b3

 (2.9)


−9 4 2

−6 9 1

9 4 3

×

x1

x2

x3

+


1 2 −1

1 1 3

2 3 −2

×

x4

x5

x6

 =


b4

b5

b6

 (2.10)

where the matrix and vector terms are defined as follows -

A1x1 = b1 (2.11)

A2x2 = b2 − A21x1 (2.12)
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Solving the original 6*6 system in Eq. 2.8 is now reduced to solving two smaller 3*3

systems in Eqs. 2.11 and 2.12. Assuming a computation cost of N3 for solving the

original system, the cost is now reduced to roughly 2 ∗ (N/2)3, a 4 fold reduction in

efforts.

The variant of BTF permutation used in KLU, and for our solver permutes the

zeros to the lower triangular blocks. The chief advantages of permuting into the BTF

form are -

(i) The part above (or below depending on the type of BTF used) the block diag-

onal does not require factorization.

(ii) Even though the block diagonals can only be factorized in sequence, they are

still independent of each other, meaning each factorization solves only for vari-

ables contained in the particular block.

Permutation to the BTF form can be accomplished using the Duff and Reid’s

algorithm [8] which employs symmetric permutation to a matrix and find the strongly

connected components of the matrix graph. The matrix is first represented in an

equivalent undirected graph notation with the matrix order N denoting the number

vertices and the co-ordinate (u,v) representing an edge from vertex u to v. We

introduce a few formal definitions for a directed graph relevant for finding the BTF

permutation -

• Path - A path from node v1 to vk in the graph is a sequence of edges (v1, v2),

(v2, v3),.. (vk−1, vk)

• Cycle - The path in the graph is cyclic if v1 = vk.

• Subgraph - A subset of nodes and all edges that are pairs of nodes belonging

to a particular subset.
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• Strongly connected - A subgraph is strongly connected if there is a path

from any of its node vi to any other vj.

• Strong component - A subgraph has strong components if it is strongly

connected and cannot be enlarged to another strongly connected subgraph by

adding extra nodes and associated edges.

From the definition of strong component, we can deduce that a node always belongs

to a unique strong component. In essence, strong components define the partition

of a graph. There should be at least one strong component C1 such that there is no

path from any of its node to any node of another strong component. The remaining

strong components C2, C3, . . . Ck may be chosen similarly in a way that there is no

path from any node of one strong component to a node of a strong component later

in the sequence.

Using a depth first search approach from unvisited nodes in the graph, we can

identify these strong components and the corresponding ordering. Using the order-

ing, we may be able to label nodes of C1 before those of C2 and so on; the associated

matrix is essentially lower block triangular with blocks corresponding to the strong

components. The subgraph associated with each sub-matrix on the diagonal of the

block form is strongly connected. The Duff and Reid’s algorithm has a time com-

plexity of O(n + τ), where n is the order of the matrix and τ is the number of off

diagonal non-zeros in the original matrix.

2.4 Approximate Minimum Degree (AMD) Ordering

The fill-in of a matrix is defined as a non-zero position (i, j) in the factorization

of the matrix which was earlier a zero, in the original matrix, i.e. a fill-in occurs if

Lij 6= 0, where Aij = 0. The purpose of a fill reducing ordering, like the approximate

minimum degree ordering (AMD) [2] used in KLU is to generate a permutation P

13



of the symmetric matrix A, such that the fill-in in the factorization of PAP T is

minimal. If the matrix A is unsymmetric, we can use the transformation A + AT

instead for the factorization. Finding the best ordering for a matrix is an NP-

complete problem, with several heuristic methods available. AMD has been known

to yield better ordering for circuit matrices.

The fill-reducing ordering is carried out on each of the block diagonal matrices

generated after the BTF permutation on the original matrix. Any ordering algorithm

like the AMD only takes into account the non-zero positions or the structure of the

matrix, without regard to the actual numerical values present in those positions.

It generates a permutation in a way such that the node with minimum degree is

eliminated in each step of Gaussian elimination. We illustrate this with a small

example.

Figure 2.1 shows the initial configuration of non-zeros in an unordered symmetric

matrix, and the resultant configuration after one step of Gaussian elimination, when

a11 is assumed to be the pivot element. The matrices in this figure can be represented

as undirected graphs G(V,E) shown in figure 2.2 with vertices corresponding to

row/column indices. An edge i→ j exists in G if Aij 6= 0.


∗ ∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗
∗ ∗

→

∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗
∗ ∗ ∗


Figure 2.1: AMD: Non-zero pattern initially and after one step of Gaussian elimina-
tion. Adapted from [2].
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Figure 2.2: AMD: Matrices represented as undirected graphs

In graph representation, the first step of Gaussian elimination using a11 as the

pivot element is equivalent to removing node 1 from the undirected graph and adding

edges to connect all nodes adjacent to 1. Elimination creates a group of nodes

adjacent to the pivot element, with the number of fill-ins in the new matrix equal to

the number of edges added in the group of nodes adjacent to the node eliminated.

Node 1 is not necessarily the best choice of pivot element and might not result in

minimum number of nodes in the group adjacent to eliminated node. The aim of

AMD is to find such node with minimum degree or pivot element in each step, which

results in the node with minimum degree being eliminated.

2.5 Condition Number

Condition number measures the the variation in the output of a function for a

small change in the input argument. Condition number gives an idea of the sensitivity

of a function with regard to the errors in the input. In the context of linear system

of equations Ax = b, the condition number gives a bound on how inaccurate the
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solution x would be after approximating. Condition number is a key factor that

determines the stability of an algorithm.

A problem is ill conditioned if a small relative error in data results in a large

relative error in solution; this is irrespective of the algorithm employed. A problem is

well conditioned if a small relative error in data does not result in a large relative

error in solution. If the problem is ill conditioned, even a very stable algorithm

coupled with tricks like partial pivoting, scaling, fill reducing ordering cannot ensure

a reasonably accurate solution to the problem. We now define ill conditioned and

well conditioned matrix mathematically.

Suppose X(d) is the solution to a problem X for an input d. Suppose now the

problem is subjected to a small perturbation δd in the input d. The relative output

error can be given by,

|X(d+ δd)−X(d)|
|X(d)|

and the relative input error can be given by,

|δd|
|d|

The problem is ill conditioned if |X(d+δd)−X(d)|
|X(d)| > |δd|

|d| , well conditioned otherwise. The

condition number for system of type Ax = b is defined as,

Cond(A) = ‖A‖
∥∥A−1∥∥ (2.13)

The system Ax = b is ill conditioned if Cond(A) is a large number; well condi-

tioned otherwise. A problem with computing Cond(A) is immediately evident from

Eqn. 2.13, as calculating inverse of a matrix is an expensive operation, even more

than solving the system Ax = b itself. We use KLU’s approach for calculating the
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condition number, which is based on Hager’s algorithm [12]. Hager proposed an

optimization approach for estimating 1-norm condition number ‖A−1‖1 given as,

‖A‖1 = max
‖Ax‖1
‖x‖1

The computation of ‖A−1‖1 involves computing A−1x and (A−1)Tx which is equiva-

lent to solving Ax = b and ATx = b; this in turn can be solved using KLU. KLU’s

condition number estimator is based on Higham’s refinement of Hager’s algorithm

[13].
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3. IMPLEMENTING THE SPARSE MATRIX SOLVER

In this section, we present our sparse LU factorization method in detail. LU fac-

torization is preceded by numerous preprocessing steps like scaling, ensuring a zero-

free diagonal, Block Triangular Form (BTF) permutation, Approximate Minimum

Degree (AMD) ordering, which we have used from the KLU. We have implemented

a Sparse Compressed Row (CSR) based symbolic analysis phase which aids repeated

LU factorizations in our sparse circuit matrix solver. Figure 3.1 summarizes the

overall implementation flow for both KLU as well as our solver, using a parallel LU

factorization.

3.1 Preprocessing

The preprocessing consists of 4 steps:

1. Scaling: Scaling is the process of balancing out the numerical enormity or

obscurity on each row or column. For our CSR based implementation, we

divide each row of the matrix by the largest element in that row.

2. Zero free diagonal: Gaussian elimination fails if there are zeros along the

diagonal in the matrix. Hence, we employ KLU’s unsymmetric ordering to

ensure a zero free diagonal, which internally uses Duff’s algorithm [6, 7].

3. Block Triangular Form (BTF) Permutation: By appropriately permuting

the rows and columns of a matrix, it can be converted into a block triangular

form as shown in figure 3.2. BTF restricts factorization to only the diagonal

blocks; the part of the matrix below the block diagonal is zeros and requires no

factorization. The diagonal blocks which are independent of each other require
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Figure 3.1: Implementation flow for KLU as well as our solver, using a parallel LU
factorization

Figure 3.2: Block Triangular Form of a matrix
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factorization. The system can be solved for xi’s as:

A44x4 = b4 (3.1)

A33x3 = b3 − A34x4 (3.2)

and so on. Here, A34x4 is a sparse matrix-vector multiplication (SpMV) opera-

tion, which is invoked multiple times for each row during the forward-backward

substitution step. SpMV represent the dominant cost in the forward-backward

substitutions which are repetitively performed to reach convergence in the

Newton-Raphson iteration in a sparse circuit solver. Parallelizing SpMV is

therefore important for speeding up block forward-backward substitutions.

4. Fill-in reducing ordering (AMD): Of the various ordering schemes for each

block matrix resulting from the BTF permutation, AMD gives best results on

circuit matrices [5]. We use KLU’s Approximate Minimum Degree (AMD) for

reducing the fill-in caused by sparse Gaussian Elimination.

3.2 Parallelizing Sparse Matrix Vector Multiplications

As described previously, SpMV operations form the bottleneck in block forward-

backward substitutions when the matrix is permuted to the BTF form. To parallelize

SpMV, we analyzed three popular formats used for representing sparse matrices -

the coordinate form (COO), sparse compressed column (CSC) and sparse compressed

row (CSR).

For the COO format, there is no obvious rule to divide amongst threads. Consider

a simple example for the COO format where we divide work equally amongst three

threads.
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1 5 0 7

4 9 0 0

0 0 2 3

0 6 0 8


×



1

5

3

6


=⇒



Row Col V al

0 3 7

2 2 2

3 1 6

Thread1

Row Col V al

0 1 5

2 3 3

0 0 1

Thread2

Row Col V al

1 1 9

3 3 8

1 0 4

Thread3

As apparent, each of the 9 individual terms calculated by the 3 threads need to

be reduced to 3 terms by addition. There is a reduction across threads, requiring a

synchronization operation at the end between the threads.

Consider next the CSC format. The natural way to distribute work amongst

threads here is by assigning a column to each thread or a group of threads. Similar

to the COO format, terms belonging to the same row are gathered across threads

for reduction, necessitating an atomic operation as illustrated in the OpenMP pseu-

docode in Algorithm 1. The keyword pragma simd hints the compiler to vectorize

elements from each column array.

Finally, for the CSR format, by assigning a row of the sparse matrix to each thread
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Algorithm 1 Multicore SpMV Multiplication - Sparse Compressed Column

#pragma omp p a r a l l e l f o r
f o r ( i =0; i<l e n g t h c o l s −1; i++)

#pragma simd
f o r ( j=c o l s [ i ] ; j<c o l s [ i +1] ; j++)

#pragma omp atomic
y [ rows [ j ] ] += v a l s [ j ] ∗ x [ i ] ;

or a group of workers, one does not require reduction across threads for adding the

results of multiplication. This is particularly useful for a many-core architecture like

the Xeon Phi, where thread communication cost is higher than a SIMT architecture

like the GPU. An OpenMP pseudocode illustrating CSR based SpMV is shown in

Algorithm 2.

Algorithm 2 Multicore SpMV Multiplication - Sparse Compressed Row

#pragma omp p a r a l l e l f o r
f o r ( i =0; i<n ; i++)

#pragma simd
f o r ( j=rows [ i ] ; j<rows [ i +1] ; j++)

y [ i ] += v a l s [ j ] ∗ x [ c o l s [ j ] ] ;

Therefore, we have chosen a row based format (CSR) for our parallel sparse solver

implementation instead of a column based format like that used in KLU.

3.3 Symbolic Analysis

Following the preprocessing step and prior to the actual LU factorization, we

perform symbolic analysis to determine the existing and future non-zero pattern of

the sparse matrix when the LU decomposition is performed. Symbolic analysis is a
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static static step performed only once and ensures that the new non-zero positions

created as a result of subtracting rows during LU decomposition are accounted for in

the CSR data structure. We conveniently break down symbolic analysis as a series

of steps described in the following sections, which would help speed up the actual

LU factorization.

3.3.1 Column Non-zero Pattern Calculation

This linear operation scans the CSR data structure and records the row position

of each non-zero into a column, i.e. the element positions are recorded columnwise.

Consider a 5× 5 matrix as shown with non-zeros indicated with *:



(∗) (∗) (0) (0) (0)

{∗} ∗ 0 ∗ ∗

{0} ∗ ∗ ∗ 0

{∗} ∗ ∗ ∗ 0

{0} 0 0 ∗ ∗


The pivot row is denoted with round braces while the pivot column is shown with

curly braces. During LU factorization, we seek to avoid redundant row subtractions

between the pivot row and current row, if the pivot element in the current row is a

zero, for example rows 2 and 4 here. However, for a row based format like the CSR

with unsorted column indices, it is difficult to directly index a particular non-zero

from a column for a given row, without traversing the entire row. Hence, storing

all non-zeros in a given column helps directly reference the non-zeros for which the

given row should be subtracted from pivot row during LU factorization. Algorithm

3 illustrates the pseudocode for extracting the non-zeros in a columnwise fashion:
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Algorithm 3 Column non-zero pattern calculation

k = [0] * n
for each row in (0: n) in parallel, do:

for each col in row:
nz cols[ csr column[row ][col ] ][ k[csr column[row ][col ]]++ ] = col

3.3.2 Row Non-zero Pattern Calculation

This step performs an in-place symbolic analysis to determine the row non-zero

pattern of the given sparse matrix. For a given pivot row and current row for which

the additional non-zeros are to be found, we first find the non-zero positions are

unique to the pivot row. We then simply append these blank positions to the end of

the current row, and update the column non-zero pattern calculation done earlier (a

constant time operation). The number of non-zeros unique for the pivot row can be

given by -

current row′ = pivot row − (current row ∩ pivot row) (3.3)

The total number of non-zero positions allocated for any row is simply current row′+

current row. Row non-zero pattern calculation is the most time consuming step in

the symbolic analysis of matrix, requiring O(n) time per row to find the elements

unique to pivot row and an overall time of O(n2).

3.3.3 CSR Indices for Diagonal Elements

This is trivial final step we use in symbolic analysis to get the index from which

subtractions should begin for a given current and pivot row during sparse LU fac-

torization. Since we perform an in-place sparse LU decomposition, it is important

to not subtract elements to the left of diagonal or the pivot element.
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3.4 Parallel Sparse LU Factorization

In this subsection, we discuss the parallel LU factorization employed by our sparse

solver. In this step, we first assign a work group for each row corresponding to a

given pivot row. In case of Nvidia GPU, this is simply a thread block, while for the

Xeon Phi coprocessor, we assign a thread for each row. As an example, consider a

5 × 5 matrix as shown, with its corresponding sparse matrix representation on the

right (after adding zeros in the symbolic analysis step):



[4] 18 0 0 0

{13} 10 0 8 20

0 1 7 17 0

{8} 0 11 3 0

0 0 0 3 19



row[0] = {4, 18}

row[1] = {13, 10, 8, 20}

row[2] = {1, 7, 17, 0}

row[3] = {8, 0, 11, 3, 0}

row[4] = {3, 19}

Consider row[0] for the pivot row. For this pivot, the corresponding ‘current

rows ’ which undergo Gaussian Elimination are row[1] and row[3]. Since we also

maintain a column-wise list of non-zeros, we can access each current row in constant

time which is operated upon by a worker group or threads. Figure 3.3 shows the

sparse Gaussian Elimination between row[0] and row[1] in action. For our Xeon Phi

implementation, the relevant portion of the pivot row (row[0]) is first scattered into

a vector of appropriate length (512-bit for the Xeon Phi), and the vector is divided

by the pivot element. In the second step, all the current rows are simultaneously

scattered into independent vectors by the corresponding threads. In the third step,

the following operation is performed on all the current row vectors, as part of the
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Figure 3.3: Sparse Gaussian Elimination between a pivot row and current row

standard Gaussian Elimination between rows:

Rowcurrent = Rowcurrent −Rowpivot ×Rowcurrent[pivot] (3.4)

The corresponding Lij entry from the lower triangular matrix in LU decomposi-

tion is also calculated and replaced in place of the new zero that is created at the

pivot position for the current row. In the third step, all the current row vectors are

gathered in parallel and committed to the CSR data structure for the matrix.

The GPU implementation is marginally different. Here, each current row is

assigned to a thread block and computations within a thread block are assigned to

individual threads, instead of a vectorized Gaussian Elimination as in the case of

Xeon Phi. Algorithm 4 formally summarizes the parallel sparse LU factorization

described above.
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Algorithm 4 Parallel Sparse LU Factorization

current row [0 : max threads] = [0]*n; //initialize vectors
get pivot index and pivot element
Vec pivot row = scatter(CSR[pivot row]);
Vec pivot row /= pivot element;
for i in range (0, n):

parallel for j in range(0, nz cols [i]):
tid = get thread id();
start col index = nz cols [i][j];
L numerator = CSR[current row ][start col index ];
Vec current row [tid ] = scatter(CSR[current row ]);
Vec current row [tid ] -= Vec pivot row * L numerator ;
CSR[current row ][start col index+1:length row]= gather(Vec current row [tid ]);
CSR[current row ][start col index ] = L numerator / pivot element ; //Storing L

3.5 Block Forward Backward Substitution

As described by Equations (3.1) and (3.2), block forward backward substitution

first serially solves a matrix along the diagonal, then substitutes the values obtained

from its solution into equations involving SpMV operations. These two steps are

repeated for all the block matrices produced as a result of permuting the matrix into

the Block Triangular Form (BTF). With regards to parallelizing the SpMV operations

on the coprocessor Xeon Phi, we assign one thread per row (master thread), which

in turn spawns multiple threads per row. Each of the thread spawned performs a

vectorized multiplication, and finally all the elements are reduced via addition to

a single term per row by the master thread. The 512-bit vector unit is capable of

performing 8 double-precision or 16 single-precision multiplications in a single SIMD

instruction. For the GPU implementation, each CSR row is assigned to a thread

block, and each block invokes length(CSR[i]) number of threads for the ith row, to

perform the multiplications in that row.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experimental Setup

We test the performance of our parallel sparse circuit solver on the following three

computing platforms: Intel Xeon E5-1620 CPU, Intel Xeon Phi 3120A coprocessor,

and NVIDIA GeForce GTX 680 GPU. The specifications of all these platforms are

listed in Table 4.1.

Table 4.1: Specifications of devices used in experiments
Devices Xeon E5-1620 Xeon Phi 3120A GTX 680

# of cores 4 57 1536
(CUDA cores)

Active threads 8 228 16384
Clock Rate 3.8 GHz 1.1 GHz 1.08 GHz
Memory

Total 8 GB 6 GB 4 GB
Bandwidth 51.2 GB/s 240 GB/s 192.2 GB/s

Speed 6 Gbps 6 Gbps 1333 MHz
Cache 10 MB 28.5 MB (total) 512 KB (L2/all)

512 KB (L2/core)
Vector unit width 64 bit 512 bit –

For the CPU implementation, we used Centos 6.5 (64-bit) version with the Intel

icc/icpc compiler and Advanced Vector Extensions (AVX) [14] enabled. For im-

plementation on the Xeon Phi coprocessor, we used the same 64-bit Centos server

with the icc compiler, but with Xeon Phi’s own Vector unit (VPU) enabled. The

VPU supports lane predicated execution, which helps in vectorizing short conditional

branches. The VPU also supports gather and scatter instructions, which are sim-

ply non-unit stride vector memory accesses, directly in hardware. For the the GTX
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680, we used PyOpenCL [15], a Python wrapper for OpenCL implementation on the

GPU. The machine used for the GPU implementation featured a 64-bit Ubuntu 12.04

edition with CUDA 5.5 [16]. To test the performance of our sparse LU factorization

implementations, we used a set of 15 different circuit matrices from the University

of Florida Sparse Matrix Collection [17], which include circuits like cache memory

and voltage regulators. We also evaluate certain random sparse matrices to analyze

sparse matrix-vector multiplications.

4.2 Performance and Speedup

4.2.1 Performance of SpMV Operations

As described previously, sparse matrix vector multiplications are used in the right

hand solving for block forward-backward substitution step of our sparse solver. A

simple analysis showed that a row based format like the Sparse Compressed Row

is suitable for parallelization as it is devoid of thread synchronizations. The results

in Table 4.2 verify this analysis for performance comparison of three formats - Co-

ordinate Format (COO), Sparse Compressed Row (CSR), and Sparse Compressed

Column (CSC). The table shows GFlops numbers for our fastest parallel threaded

and vectorized implementation across the three formats for the circuit matrix IBM

EDA (N=116835, nnz=766396) from the University of Florida Sparse Matrix Col-

lection [17]. Clearly, the CSR format yields more than an order of magnitude better

performance than the COO and CSC formats for all the three architectures.

Next, we analyze the performance of SpMV operations using the CSR format

as a function of the number of threads on different platforms. The aim here is to

find the maximum achievable Flops as a function of number of threads for different

architectures, so we choose a fairly dense random sparse matrix, with a sparsity

of 0.25 and n=30,000 for our tests. Figure 4.1 shows GFlops versus the number
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Table 4.2: Performance of parallel SpMV operations for COO, CSC and CSR sparse
matrix formats

COO (unsorted) CSC CSR

Xeon E5-1620 0.106 GFlops 0.088 GFlops 2.1 GFlops
Xeon Phi 3120A 0.089 GFlops 0.069 GFlops 5.6 GFlops

GTX 680 0.076 GFlops 0.056 GFlops 4.1 GFlops

of threads for Xeon, Xeon Phi and the GTX 680. For the Xeon and Xeon Phi,

performance of the threaded and vectorized versions are shown alongside the purely

threaded versions. As seen for the E5-1620, introducing vectorization for each thread

yields no additional improvement over the purely threaded version. This is mostly

due to small width of the vector unit (64 bits), and as a result, the GFlops peak

at around 55 for both the versions. For Xeon Phi for the purely threaded version,

the performance slowly saturates as the number of threads approach the maximum

number of hardware threads supported by the coprocessor and peak at 84 GFlops

for 228 threads. For the threaded and vectorized version however, we observe a

peak performance of 237 GFlops, which is 2.8x times the performance of the purely

threaded version. This can be attributed to two factors - a very wide 512-bit vector

unit per thread, and hardware support for gather and scatter operations encountered

in the SpMV operations. For the GTX 680, the performance variation is very smooth

and peaks at 54.8 GFlops, which is about the same as the E5-1620. The GPU is

compute starved as opposed to bandwidth starved since the performance increases

no further when the number of CUDA threads are increased beyond what are present

in the GPU.

In order to get an estimate for the performance of our SpMV kernels for very

sparse matrices commonly found in circuit simulations, we also observe the variation

of GFlops as a function of matrix sparsity for different architectures. Sparsity of a
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Figure 4.1: Performance of SpMV for CSR format as a function of threads

matrix is the number of non-zero elements divided by the total number of elements

in the matrix. Figure 4.2 shows the performance (GFlops, logarithmic) of different

architectures for a random sparse matrix with varying sparsity. A sparsity of 1 implies

a dense matrix represented in CSR; a sparsity of 10-4 or less is typical of sparse circuit

matrices. With decreasing matrix sparsity, the SpMV performance asymptotically

approaches 4.5 GFlops, 4.7 GFlops and 6.7 GFlops for the Xeon, Xeon Phi and

the GPU platforms respectively, for a random sparse matrix with sparsity 10-4. Of

course, the performance of SpMV kernels widely vary depending upon the matrix

ordering employed, this analysis gives a useful estimate of the performance of SpMV

kernels for unordered matrices for different platforms.

The reason for this decreasing performance with increasing matrix sparsity can

be attributed to decrease in the Useful Cacheline Density (UCLD) [18] of the vector

which is multiplied during the SpMV operations. Figure 4.3 shows a row of the sparse

matrix fetched as a continuous ‘dense’ line and multiplied with a large vector, by

accessing its elements from discontinuous locations. Since the entire vector cannot
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Figure 4.2: Performance of SpMV for CSR format as function of matrix sparsity

be accommodated in the cache line at the same time, entire cache line is discarded

simply for accessing a single element as the distance between two accessed elements

grows larger.

4.2.2 Performance of Parallel Sparse LU Factorization

Table 4.3 shows the performance of our parallel sparse LU factorization for 15 cir-

cuit matrices from the University of Florida Sparse Matrix Collection [17], evaluated

for the Xeon CPU, Xeon Phi and the GTX 680 GPU. The table shows our imple-

mentation results for - CPU serial, CPU 4-core, GPU, Phi threaded (57-core) and

Phi threaded+vectorized versions, along with comparison with KLU. The matrices

are arranged according to the increasing number of average non-zeros per row.

Consider the GPU implementation; the listed time is only for numeric factor-

ization, excluding preprocessing and forward-backward substitution for right hand

solving. We observe a large variation in the speedups obtained for various matri-
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Figure 4.3: Decreasing useful cacheline density in an SpMV operation

ces. For matrices with less than 200M floating point operations overall, the average

speedup is often less than 1. As explained in [19], this can be attributed to the

inability to explore the high memory bandwidth of GPU when the problem scale

is small. Overheads like data transfer and launching kernels account for most of

the runtime. For certain circuits like majorbasis, ASIC 320k and ASIC 320ks, the

GPU yields unusually high speedups. This is because many denormal floating point

numbers, which are used to represent extremely small real numbers, occur for these

matrices. CPUs perform poorly for denormal numbers [20] compared to GPUs, which

can handle denormal numbers at the same speed as normal numbers. The average

GPU speedup is calculated to be 2.75x, excluding the matrices with fewer floating

point operations and ones with denormal numbers.

The threaded only Xeon Phi implementation is predictably related with the CPU
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implementation, with a consistent speedup of between 3-4x compared to the 4-core

CPU implementation. The threaded+vectorized implementation in Phi reveals an

increasing speedup over the threaded only version, as the average number of non-

zeros/row of the matrix increase. This is illustrated in figure 4.4, where the speedup

of threaded+vectorized implementation in Xeon-Phi over a purely threaded imple-

mentation is plotted against the increasing non-zeros/row of our matrices.

Figure 4.4: Speedup, Xeon Phi (threaded+vectorized, over threaded only) vs. non-
zeros/row

Clearly, the large width of the vector unit in Xeon Phi is at play here. With the

512-bit wide VPU in the Phi, up to 8 double-precision operations can be performed

simultaneously, yielding a maximum speedup of 8x theoretically, compared with

the equivalent version with vectorization turned off. The average speedup with the

threaded and vectorized implementation on Xeon Phi is calculated from the table to

be 7.18x over the 4-core CPU version.
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Table 4.3: Performance of parallel sparse LU factorization on CPU (Xeon E5-1620),
GTX 680 (GPU) and Xeon Phi 3120A (threaded [T], threaded + vectorized [T+V])

Matrix N Non-zeros Avg. # of fl. Time(s), Time(s), Time(s),

(×103) (×103) nnz/row ops. CPU CPU GPU

(×106) Serial 4-core

ASIC 680ks 682.7 2329.2 3.41 436.5 1.194 0.40679 0.120

circuit 4 80.2 307.6 3.83 2.5 0.014 0.00589 0.014

G2 circuit 150.1 726.7 4.84 4780.0 9.475 3.31097 0.966

hcircuit 103.2 513.1 4.97 1.0 0.015 0.00650 0.004

transient 178.9 961.8 5.37 107.8 0.261 0.09901 0.105

bcircuit 67.3 375.6 5.58 5.1 0.025 0.01169 0.007

ASIC 680k 682.9 3871.8 5.66 474.8 1.265 0.45606 0.462

ASIC 320ks 321.7 1827.8 5.68 651.6 24.384 6.60863 0.132

dc1 116.8 766.4 6.56 16.9 0.041 0.01858 0.094

ckt11752 dc 1 49.7 333.0 6.70 114.6 0.249 0.09905 0.044

hvdc2 189.9 1347.3 7.09 19.2 0.059 0.03840 0.012

ASIC 320k 321.8 2635.4 8.18 584.1 21.008 5.60974 0.310

ASIC 100k 99.3 954.2 9.60 529.6 0.923 0.37088 0.213

twotone 120.8 1222.4 10.11 5245.0 10.209 3.26702 0.769

majorbasis 160.0 1750.4 10.94 3933.0 21.390 6.97008 0.893

Matrix Speedup, Time(s), Time(s), Speedup, Speedup, Speedup,

GPU vs. Phi Phi Phi T+V vs. Phi T+V Phi vs.

4-core CPU T T+V 4-core CPU vs. Phi T KLU

ASIC 680ks 3.38 0.1308 0.1327 3.06 0.98 14.96

circuit 4 0.42 0.0020 0.0019 3.10 1.05 13.65

G2 circuit 3.42 0.9197 0.6975 4.74 1.31 15.61

hcircuit 1.62 0.0021 0.0015 4.33 1.40 19.35

transient 0.94 0.0267 0.0182 5.44 1.46 15.12

bcircuit 1.67 0.0032 0.0021 5.56 1.52 7.54

ASIC 680k 0.98 0.1222 0.0783 5.82 1.56 8.69

ASIC 320ks 50.06 1.6929 1.0936 6.04 1.54 8.68

dc1 0.19 0.0057 0.0030 6.19 1.91 9.67

ckt11752 dc 1 2.25 0.0286 0.0146 6.78 1.95 10.87

hvdc2 3.20 0.0106 0.0049 7.83 2.16 25.87

ASIC 320k 18.09 1.1736 0.4205 13.34 2.79 26.45

ASIC 100k 1.74 0.1050 0.0350 10.59 3.01 12.70

twotone 4.23 0.8455 0.2617 12.48 3.23 17.09

majorbasis 7.80 1.9101 0.5593 12.46 3.41 15.76

Average 2.75 7.18 1.95 14.80

35



5. PREVIOUS WORK

Extensive work has been done previously for direct linear solvers and linear solvers

in general. The survey in [21] gives a comprehensive list of algorithms and software

available to solve sparse linear systems using direct methods for serial platforms,

shared memory parallel machines, and distributed memory parallel machines. A

subset of these papers are directed towards sparse circuit matrices, but mostly for

serial implementations [5, 22, 23]. Because of the high data dependency during

the LU factorization, forward-backward substitution and the irregular structure of

circuit matrices, limited work has been done on heterogenous platforms like the GPU.

Previous work on GPU LU factorization has mostly focused on dense matrices, which

cannot be extended for implementation for sparse matrices. Consider the IBM EDA

(116k by 116k) circuit matrix as an example. The LU factorization of this matrix

assuming dense data representation is difficult on a GPU owing to large memory

requirements for even storing the matrix (107 GB).

CPU based approaches like the SuperLU [23], Gilbert Peierl’s algorithm [10] and

PARDISO [24] use supernodes to enhance computing capability with dense blocks.

It is however, difficult to obtain supernodes in extremely sparse matrices like circuit

matrices, making these supernode based algorithms less efficient for circuit matrices,

even for parallel implementations like GPU based PARADISO [24]. UMFPACK [25],

and MUMPS [26] are based on multifrontal algorithm [27]. In PARADISO [24], the

left-right looking algorithm [28] is developed.

KLU [5] implements column based Gilbert Peierl’s algorithm without using su-

pernodes and is specially efficient for circuit matrices. KLU also employs the Ap-

proximate Minimum Degree (AMD) [2] ordering to permute the matrix for reduced
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fill-in as a result of sparse LU factorization, and works particularly well with sparse

circuit matrices. KLU however, is sequential. There have been parallel shared mem-

ory implementations for multi-core CPUs [24, 29], however, the number of CPUs

sharing the same memory is often limited. GPUs provide a possible solution with

large number of SIMT cores and has been explored in [19]. Their implementation in-

volves sorting the non-zeros to improve the data locality for more coalesced accesses

to global memory. The speedup obtained in comparison with an 8-core Intel Xeon

CPU is still limited to an average of 1.49x with this approach.

Our implementation is an extension of KLU with two important differences:

(i) Use of the Sparse Compressed Row (CSR) instead of the Sparse Compressed

Column (CSC) format.

(ii) A multithreaded, vectorized implementation of the sparse LU factorization

phase and parallel sparse matrix-vector multiplication operations in the forward-

backward substitution phase.

To our knowledge, this is the first work on parallel sparse solver for circuit ma-

trices on the many-core Intel Xeon Phi platform. The performance evaluation of

sparse matrix vector multiplications on the Xeon Phi is introduced in [18], however,

the analysis does not extend to sparse solvers used in linear systems of equations.
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6. CONCLUSION

We present a parallel sparse linear circuit matrix solver, which extends KLU for

parallelization on modern heterogenous platforms like the GPU and Intel Xeon Phi

coprocessor. We have shown a row based sparse matrix representation format like

the CSR to be more amenable to parallelization on our architectures. With our row

based CSR representation instead of the typical column based sparse data structures

used in serial sparse solvers, we are able to obtain reasonable speedups with both the

GPU and coprocessor implementation. Our proposed LU factorization algorithm is

particularly suited for vectorization on machines with wider vector units.

One limitation of our parallel sparse LU factorization implementation is the in-

ability to accommodate large upper and lower triangular matrices (L and U) in

GPU/co-processor memory for cases when the fill-in introduced by symbolic anal-

ysis is high. The fill-in, in turn depends on the ordering scheme employed during

the preprocessing step. Hence, for very large matrices, the implementation is influ-

enced by the ordering algorithm used in the preprocessing step, to ensure minimal

fill-in during factorization. As GPUs and co-processors employ higher memories, the

scalability to matrices with more non-zeros and fill-ins can be improved.
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