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ABSTRACT 

 

Effect of Temporal Acquisition Parameters on the Image Quality of Ultrasound Axial 

Strain Time-constant Elastograms. (August 2011) 

Joshua Kavunkal Varghese, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Raffaella Righetti 

 

 

Recent developments in ultrasound elastography have suggested the possibility 

of using elastographic methods to estimate the temporal mechanical properties of 

complex tissues.  In this context, elastographic methods to image the axial strain time 

constant (TC) have been developed.  The axial strain TC is a parameter that is related to 

the viscoelastic and poroelastic behavior of tissues.  Estimation of this parameter can be 

done using curve fitting methods.  However, the effect of temporal ultrasonic acquisition 

parameters, such as window of observation, acquisition rate, and input noise, on the 

image quality of the resultant TC elastograms has not been investigated yet.  Elucidating 

such effects could be useful for diagnostic applications. 

This work explores the effects of varying windows of observation, acquisition 

rate, and input noise on the image quality (accuracy and signal-to-noise ratio (SNR)) of 

axial strain TC estimates and elastograms using a previously developed simulation 

model.  By varying the amount of data collected as a percentage of the expected TC, the 

algorithms were able to compute a minimum threshold collection time for an accurate 

TC estimation as a percentage of the expected TC.  The effect of acquisition parameters 
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such as acquisition rate and input noise on the minimum threshold collection time was 

assessed.  Experimental data, collected for previous experiments, were used as a proof of 

principle to corroborate the simulation findings. 

The results of this work suggest that there is a linear dependence of the total 

acquisition time necessary for accurate TC estimates on the true time constant value.  

The simulation results also indicate that it might be possible to make accurate estimates 

of the axial strain TC using small windows of observation (as small as 20% of the 

expected TC) with fast acquisition rates and high input SNR levels.  Experimental 

results suggest that, in practice, a larger window of observation should be used to 

account for multiple noise sources typically not considered in simulations. This work 

also suggests that the minimum window of observation necessary for an accurate TC 

estimate is highly dependent on the acquisition frame rate and the input SNR level.  

Therefore, use of imaging systems with fast acquisition rates is recommended for studies 

aiming at measuring time-dependent phenomena in tissues. 
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CHAPTER I  

INTRODUCTION 

 

1. Introduction 

 Ultrasound elastography is a well-established non-invasive imaging modality 

which can be used to complement sonography and detect a variety of pathologies in soft 

tissues (Ophir et al. 1999; Itoh et al. 2006; Thomas et al. 2006; Thomas et al. 2007).  

Axial strain elastograms are the most commonly used elastographic images in clinical 

applications.  These images show the strain tensor component along the axis of the 

transducer.  Past work has shown that axial strain elastograms are highly correlated to 

changes in the underlying stiffness distribution of a tissue when a small compression is 

applied and the tissue behaves like a linearly elastic solid (Srinivasan et al. 2004).  In 

certain tissues, elastographic parameters such as the axial strain experience temporal 

changes following application of a force.  These temporal changes may be related to 

underlying pathologies within the tissue (Righetti et al. 2005a; Righetti et al. 2007a; 

Righetti et al. 2007b; Righetti et al. 2007c).  This is the case, for example, in poroelastic 

and viscoelastic tissues.  Poroelastic materials are modeled as consisting of a solid 

skeleton, or matrix, that is sponge-like, porous, permeable, and elastic with a fluid within 

the pores of the matrix (Konofagou et al. 2001).  Viscoelastic materials are modeled as 
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consisting of an elastic spring component and a viscous dashpot component (Zhang 

2005). 

 Application of poroelastography and viscoelasticity studies has led to the 

development of several new types of elastograms related to the poroelastic and 

viscoelastic behavior of tissues.  Among these are the effective Poisson’s ratio (EPR) 

elastogram, EPR time constant (TC) elastogram, and the axial strain TC elastogram, 

which is investigated in this work.  These elastograms may potentially provide new 

information about tissues, which may be clinically useful for detection of pathologies 

and other physical conditions (Ammann et al. 2006; Righetti et al. 2007b; Qiu et al. 

2008). 

 Previous work on axial strain TC elastography performed in our lab has led to the 

development of a real-time TC estimator for elastography applications (Nair et al. 2011).  

However, in TC elastography studies, ultrasonic data needs to be acquired for a certain 

amount of time (which depends on the true underlying tissue properties) before an 

elastogram can be created.  The data acquisition process is the most time consuming 

portion of creating TC elastograms in clinical applications. Minimizing the time spent 

acquiring data would be beneficial for patients.  No systematic study has been done to 

assess the acquisition requirements necessary to make accurate and reliable TC 

estimations.  Since the TC acquisition process is not band-limited, standard sampling 

notions cannot be applied to predict the minimum window of observation (total 

acquisition time) that guarantees a TC estimate with a predefined level of accuracy.  

Therefore, this work aims to explore the effects of window of observation, acquisition 
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rate, and input noise on elastographic TC estimation. While these results specifically 

refer to ultrasound axial strain TC elastography, the findings reported in this thesis may 

be useful for general studies aiming at estimating the temporal mechanical behavior of 

tissues. 

 

2. Objective and hypothesis 

 The objective of this work is to analyze the performance of an axial strain TC 

estimator under different windows of observation, acquisition rates, and noise levels.  

The hypothesis is that the window of observation required to obtain accurate estimates of 

the axial strain TC depends on the underlying tissue TC.  I further hypothesize that it is 

possible to obtain accurate TC estimations even when using windows of observation 

significantly lower than the underlying TC, provided that sufficiently fast acquisition 

rates are used and the input signal-to-noise ratio (SNR) is least 10 dB.  

 

3. Research plan 

Design a simulation model for testing TC estimation with different acquisition 

parameters 

 A simulation model for axial strain and axial strain TC estimation was necessary 

to test how the accuracy of estimation was affected as acquisition parameters changed.  

The model required the ability to manipulate the acquisition rate, input noise, and 

window of observation used for creating axial strain curves, which are then used to 

estimate the axial strain TC.   
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Assess the effects of acquisition parameters on estimation accuracy  

 Analysis of the TC estimation process was performed to observe how the 

window of observation affected accuracy of estimates.  Specifically, a threshold 

minimum window of observation for a given set of acquisition parameters was 

established.  The threshold window of observation was defined as the smallest 

acquisition time necessary to consistently maintain a certain predefined level of accuracy 

in the TC estimates.  Additionally, the effect of windows of observation smaller than this 

threshold on output image quality was studied.  The effects of acquisition rate and input 

noise on the threshold window of observation were then assessed for multiple time 

constants, acquisition rates, and input SNR levels. 

 

Corroborate simulation findings with experimental data 

 A process similar to the one employed for simulations was used to test how TC 

estimation of available experimental data was affected by the window of observation.  

Image quality was assessed statistically using standard evaluation factors. 

 

4. Motivation 

Faster diagnostics 

 A strong motivation at the basis of this work is the desire to shorten the time 

spent collecting ultrasound data for temporal elastographic experiments in clinical 

applications.  Long data acquisition may be subjected to uncontrollable noise sources 

and may be uncomfortable for a patient.  Obtaining information about the temporal 
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behavior of tissues quickly and accurately may allow faster diagnosis of diseases and 

medical conditions in patients.  Maintaining a consistent quality level in the estimates 

while shortening acquisition time is also desirable for clinical applications. 

 

Dependence of TC estimation on acquisition parameters 

 Past work has shown that the accuracy of TC estimates when using curve fitting 

methods depends on the curve fitting method used, the window of observation length, 

the sampling rate at which data are acquired, and the level of noise present in the data 

(Bendat and Piersol 1986; Nair et al. 2011).  However, no study has elucidated the exact 

role of these parameters in TC estimation yet.   

 

Justification for imaging systems with high frame rate 

 If imaging the temporal behavior of time-dependent phenomena in tissues is 

improved by using increased acquisition frame rates, then there may be a need to 

develop imaging systems that are capable of imaging at rates faster than those typically 

found in several clinical diagnostic systems.  Therefore, state-of-the-art systems capable 

of acquiring at very fast frame rates may be useful for studies looking at time-dependent 

phenomena in tissues. 

 

Applications to other types of elastograms and benefits for elastographic methods 

 The results of this work may be important for studies that deal with time-

dependent phenomena in general.  For example, the EPR of a material may also exhibit a 
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temporal change, allowing creation of EPR TC elastograms (Righetti et al. 2005a).  

Furthermore, it may be possible that these results may be applicable to other imaging 

modalities (for example, magnetic resonance imaging (MRI) or optical studies) focused 

on estimation of tissue temporal behaviors. 
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CHAPTER II 

BASIC CONCEPTS 

 

1. Elastography 

 The mechanical properties of tissues are dependent on many factors, including 

physiological and pathological factors (Ophir et al. 1999).  Tissues are often assumed to 

behave as linearly elastic solids when subjected to a quasi-instantaneous compression 

(Ophir et al. 1999).  Elastography techniques typically apply an external quasi-static 

compression to the tissue. The resulting local axial strains are estimated through cross-

correlation analysis of pre- and post-compression echo signals (Ophir et al. 1991; Ophir 

et al. 1999).  More recent developments in the field of elastography aim at imaging the 

temporal mechanical behavior of tissues.  In these experiments, tissues may be subjected 

to a sustained compression by a constant axial compression force/stress (creep test) or by 

a constant axial strain (Chaudhry 2010; Nair 2010; Righetti et al. 2007b). 

 Elastographic techniques may be clinically useful in several types of medical 

applications, such as cancer imaging and the detection and staging of lymphedema 

(Righetti et al. 2007c; Berry et al. 2006; Berry et al. 2008).  A number of studies have 

shown the usefulness of axial strain imaging of soft tissues, specifically of breast tissue, 

for determining the malignancy of potential tumors (Thomas et al. 2006; Thomas et al. 

2007; Zhi et al. 2007; Itoh et al. 2006).  The temporal behavior of tissues can also 

provide insight into underlying pathologies based on fluid content and mobility 

(Folkman 1992; Mridha and Ödman 1986).  For example, Righetti et al. (2007c) have 
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suggested that axial strain elastograms, effective Poisson’s ratio elastograms, and their 

corresponding time constant elastograms may provide valuable diagnostic information 

for distinguishing between normal and lymphedematous tissues.  

 Several elastographic techniques have been developed in recent years to image 

the temporal behavior of materials under mechanical loads or stresses (Konofagou et al. 

2001; Righetti et al. 2005a).  Among these are viscoelasticity imaging and 

poroelastography.  Viscoelasticity imaging uses elastographic methods to observe time-

dependent behavior in materials and tissue that can be modeled as viscoelastic (Sack et 

al. 2008; Liu and Ebbini 2008).  Viscoelastic materials are often modeled as consisting 

of an elastic component and a viscous component.  Following application of a stress, the 

strain experienced by a viscoelastic material depends on both components, which is 

often described by a combination of Hookean deformation and Newtonian flow patterns 

(Zhang 2005).  Viscoelastic properties of tissues have been shown to correlate with 

pathological changes in stroma and connective tissues (Sridhar et al. 2007).  

Poroelastography is the use of elastographic techniques for imaging the temporal 

behavior of materials that can be modeled as poroelastic.  Poroelastic materials are 

modeled as consisting of a solid skeleton, or matrix, that is sponge-like, porous, 

permeable, and elastic.  Within the pores of this matrix is a fluid or gas.  When a load is 

applied to the matrix, the pore fluid, which has a specific viscosity, can flow through the 

pores of the matrix at a rate depending on the permeability of the material (Berry et al. 

2006; Konofagou et al. 2001).  Permeability refers to the ease with which fluid can flow 
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through the pores in the material, and depends on the structure of the material, porosity, 

tortuosity, pore size, and pore interconnections (Collins 1961; Lu et al. 2009).   

 These two novel elastographic methods have led to the creation of several types 

of elastograms that may provide new information about the poroelastic and viscoelastic 

behavior of tissues.  Among these are the effective Poisson’s ratio (EPR) elastogram, the 

poroelastogram, and the axial strain TC elastogram.  EPR is the ratio of lateral strain to 

axial strain, and describes how the volume of the material changes under load (Chaudhry 

2010).  A poroelastogram is defined as a series of EPR elastograms or axial strain 

elastograms, sequenced in time, obtained from a material under sustained axial 

compression.  Poroelastograms have been shown to convey relevant information about 

the effective compressibility of the material being imaged (Righetti et al. 2004; Righetti 

et al. 2007a).  When a poroelastic material is subjected to a constant compressive force 

(creep test), the EPR decays in time in an exponential manner as the fluid exits the 

matrix (Fortin et al. 2003; Righetti et al. 2007b).  From the temporal behavior of the 

EPR, it is possible to create an EPR TC elastogram through curve-fitting.  This 

elastogram may convey information about the permeability distribution of the 

poroelastic material (Righetti et al. 2007c; Righetti et al. 2005a). 

 Similarly, the axial strain and its temporal behavior may provide information 

about the viscoelastic and poroelastic properties of the material being imaged when 

creep or stress relaxation tests are performed (Righetti et al. 2007b; Ammann et al. 2006; 

Nair et al. 2011; Chaudhry 2010).  Righetti et al. (2007b) showed the benefit of using 

axial strain elastography to distinguish differences in homogeneous poroelastic materials 
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with different elastic and permeability properties and for analysis of the time-dependent 

mechanical behavior of the materials.  Qiu et al. (2008) reported the benefit of using 

viscoelastic retardation time constant estimation for discriminating between benign and 

malignant breast tumors, which have time constants smaller than 10 seconds.  The work 

of Righetti et al. (2007c) reported EPR time constants on the order of hundreds of 

seconds and suggests that the temporal poroelastographic behavior of lymphedatous 

tissues may exhibit significant differences from the behavior that characterizes normal 

tissues. 

 

2. Axial strain TC estimation 

 When a viscoelastic or poroelastic tissue is subjected to a constant force (creep), 

the axial strain experienced by the tissue changes with time. Several theoretical models 

can be used to extract relevant tissue time constants from the creep data (Samarin 1974; 

Fung 1981).  The Kuei, Lai, and Mow biphasic theory has been used to predict time-

dependent axial strain (Armstrong et al. 1984) and develop several theoretical models for 

poroelastography simulations (Konofagou et al. 2001; Berry et al. 2006).  However, the 

model has not been applied directly to in vivo data, most likely due to its complexity. 

 Several studies have shown that simple exponential polynomials may serve as a 

suitable alternative for approximating creep data (Berry et al. 2006; Samarin 1974; 

Righetti et al. 2005a; Nair 2010).  Models using a single exponential term have been 

used to study the temporal behavior of tissues (Nair et al. 2011; Righetti et al. 2005a; 

Qiu et al. 2008; Sridhar et al. 2007; Sridhar and Insana 2007).  Analysis of these models 
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may be useful as a foundation for generalized models that use multiple exponential terms 

(Berry et al. 2006; Armstrong et al. 1984; Nair et al. 2011).  A suitable model that has 

been used previously is given by (Nair et al. 2011): 

                 
  

     (2.1) 

where S(t) is the axial strain at time t, η is the equilibrium axial strain at time t = ∞, α is 

the initial strain at time t = 0, and τ is the axial strain time constant.  The two parameters 

of interest from this model that are typically unknown are the time constant τ and the 

equilibrium value η.  These parameters are material-dependent and could be important 

for diagnostic purposes (Nair et al. 2011).  In the absence of noise and if it was possible 

to collect data for an infinite amount of time, estimation of these parameters would be 

relatively simple.   

 In practice, it is only possible to acquire a limited series of noisy samples of the 

axial strain S(t) due to the discrete acquisition nature of the ultrasound system and 

various noise sources.  A more accurate representation of the strain when using this 

model is then given by (Nair et al. 2011): 

                  
   
           (2.2) 

where S(ti) is a strain sample at time ti, and Ni(ti) is a random variable modeled as a zero-

mean Gaussian distribution. 

 In this model, the noise at each sample point Ni(ti) is assumed to come from a 

zero-mean Gaussian noise distribution.  In this work, the axial strain curves from the 

model in (2.2) are assumed to have a constant signal-to-noise ratio (SNR) for the entire 

duration of the signal (Nair et al. 2011).  The SNR is given by: 
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     (2.3) 

For a particular noisy strain sample, μsignal = S(ti) since Ni(ti) is zero-mean.  Furthermore, 

σsignal = σ(Ni(ti)), since Ni(ti) is assumed to be the only source of variation for the signal 

(Nair 2010). 

 In practice, the calculation of a strain at a certain time during tissue compression 

must be done in a cumulative manner to minimize decorrelation noise due to 

uncontrollable physiological and subject motion (Nair et al. 2011; Righetti et al. 2005b).  

At each time, the strain can be computed as (Nair et al. 2011; Righetti et al. 2005b): 

                                (2.4) 

Thus, the standard deviation of each strain is larger than the previous (in time) strain, 

since σ(Ni(ti)) > σ(Ni-1(ti-1))  (Nair 2010).  The assumption of a constant SNR also means 

that smaller values of the signal S(ti) correspond to smaller values of the noise standard 

deviation σ(Ni(ti)), which agrees with the nature of axial strain elastography (Nair 2010).   

 

3. Strain estimation techniques 

 The behavior of the strain in (2.1) is quite similar to the voltage response of an 

RC circuit.  A common approximation used in circuit theory is that the transient 

response of an RC circuit will reach equilibrium at approximately 5 times the time 

constant value (Nilsson and Riedel 2005).  However, collecting correlated ultrasound 

data for a period of this length can be a significant challenge, especially in clinical 

applications. 
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 The Nyquist-Shannon sampling theorem suggests that it is possible to fully 

reconstruct a band-limited signal by sampling at a frequency greater than twice the 

maximum frequency in the signal (Shannon 1949).  However, it is possible to show that 

the temporal axial strain is not band-limited. For example, assume that the strain can be 

represented as: 

                  
  

         (2.5) 

where u(t) is the unit step function, used to ensure that the application of the force occurs 

at time t = 0.  The Fourier Transform of (2.5) is given by: 

          
 

    
           

   
 

 
     

   (2.6) 

 The first and third terms in the resulting transform indicate that the signal is not 

band-limited.  However, (2.6) suggests that it may be possible to improve accuracy of 

TC estimations by using faster acquisition rates.   

 Curve-fitting methods are often used to extract parameters of a model from a 

given set of data, and have been used in multiple elastography studies (Nair et al. 2011; 

Righetti et al. 2005a; Righetti et al. 2007b; Righetti et al. 2007c).  Least-square error 

(LSE) curve fitting is a simple and common curve fitting technique that has been 

successfully used for parameter estimation (Nair et al. 2011; Cantrell 2008).     

 The work reported in this thesis uses the curve-fitting method developed by Nair 

et al. (2011).  This estimator uses the Levenberg-Marquardt (LM) optimization 

algorithm to quickly find equation roots.  The LM optimization algorithm is an iterative 

algorithm that uses gradient descent and the Newton method for finding equation roots, 
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and is useful for LSE minimization (Madsen et al. 2004; Nair et al. 2011).  The 

algorithm has been successfully used in poroelastographic imaging in the past (Berry et 

al. 2006).     

 In the past, estimation of the time constant parameter τ has been done with little 

emphasis on the acquisition time or acquisition rate.  This work looks to explore the 

effects of small windows of observation and fast acquisition rates on the estimation 

process.  Figure 1 illustrates the concept at the basis of this work.  This work looks to 

elucidate the accuracy of TC estimation when using different windows of observation, 

preferably window of observations shorter than the underlying TC.  Three examples of 

data obtained using windows of observation shorter than the true TC are shown in Figure 

1.  Additionally, this work studies the effects of other acquisition parameters, such as 

acquisition rate and input noise, on TC estimation. 
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(a) 

 

(b)  

Figure 1. Simulated axial strain curves.  TC value of 200s, 10dB input SNR, and 1 Hz 

acquisition rate. (a) Black curves show ideal axial strain curves collected for a window 

of observation equal to 400% of TC.  Blue, red, and green curves show noisy strain 

curves for window of observations equal to 25%, 50%, and 100% of the true TC value.  

(b)  Same curves in estimation range of interest. 
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CHAPTER III 

SIMULATION METHODS AND RESULTS 

 

This chapter describes the simulation methods used for analyzing image quality 

parameters and the effect of different temporal acquisition parameters.   

 

1. Simulation methods 

A simulation model using MATLAB was created to assess the effects of the 

temporal acquisition parameters on TC estimation accuracy (Nair et al. 2011).  An 

overview of the simulation study used for TC estimation is described in Figure 2. 

 

 

Figure 2. Simulation and statistical models used for a single TC. 
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The first step in the process is to create an ideal axial strain curve.  The initial 

and equilibrium strain values, as well as the true TC, are assumed to be known.  The 

total acquisition time used for each TC estimation is fixed by the desired window of 

observation, which is varied as a percentage of the underlying TC.  The acquisition rate 

determines the number of samples used in each simulation.  Once an ideal strain curve 

has been created, noise is added to the samples based on the input SNR used for the 

simulation.  An in-house algorithm for least square error curve fitting method using 

Levenberg-Marquardt optimization is then used to estimate the axial strain TC for each  

window of observation.  This process was repeated 50 times for a single TC and window 

of observation, providing 50 estimates of the true TC from noisy curves.  The process of 

creating ideal curves, adding noise, and estimating the TC was repeated for multiple 

windows of observation for each TC.  The threshold window of observation for a single 

TC was then determined by analyzing the accuracy of the TC estimates for all windows 

of observation tested.  The threshold window of observation was defined as the smallest 

window of observation, given as a percentage of the true TC, such that, for all windows 

with a longer acquisition time, the accuracy of the LM estimator is always greater than 

90%.  Finally, output SNR achieved using the threshold window was analyzed to 

observe the expected quality levels.  The entire process was repeated for multiple TC 

values. 

The simulations used followed the creep model for ideal axial strain given by 

equation (2.2).  Simulations assumed that the values for α, and τ are known prior to 

creation of the ideal strain curve.  Additionally, the input SNR and acquisition rate are 
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fixed for each set of simulations.  All simulations in this study used values of α = 0.0001 

and  = 0.25, which were used in previous work (Nair et al. 2011). 

For a single TC, the window of observation for the ideal strain curve is varied in 

increments of 1% of the true TC. For example, for a true TC of 200 seconds and 

acquisition rate of 1 Hz, the first analyzed window of observation is equal to 1% of the 

TC, or 2 seconds total.  The second window of observation is equal to 2% of the TC, or 

4 seconds total, and so forth.  The process is repeated up to a window of observation 

corresponding to 140% or 250% of the TC. 

For a single TC and window of observation, Gaussian noise is added to the ideal 

curve.  The amount of noise added is determined by the input SNR level.  Figure 3 

illustrates the effect of adding noise to an ideal strain curve with a TC of 200 seconds 

and 1 Hz acquisition rate such that the resultant noisy curve has a SNR of 10dB.  Once 

noise has been added to an ideal curve for a specific TC and window of observation, the 

ideal curve is discarded, leaving only the noisy curve for TC estimation using the LM 

TC estimator developed by Nair et al. (2011).  This process is repeated 50 times for each 

TC and window of observation, giving 50 TC estimates to analyze. 
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(a) 

 

(b)  

Figure 3. Example of noisy simulated strain curve.  True TC of 200s and acquisition rate 

of 1 Hz. (a) Ideal curve up to 100 s.  (b)  Noisy curve obtained from a) after adding 

noise. 

 

Once 50 TC estimates have been obtained, the accuracy of the estimator is 

measured.  To assess accuracy, the mean absolute error was measured, computed from 

the absolute error of each of the 50 estimates.  Mean absolute error is defined as: 
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        (3.1) 

 Another measure considered for error analysis is the bias, given by: 

             
              

 
         (3.2) 

The threshold window of observation for a TC is defined as the smallest window 

of observation, such that, for all windows with equal or longer acquisition time, the 

accuracy of the LM estimator is always greater than 90%.  By observing the error 

associated with different windows of observation, a threshold window of observation 

can be determined for a single TC.  This process can then be repeated for multiple time 

constants.  The effect of other acquisition parameters, such as acquisition rate and input 

SNR, can be observed by running multiple simulations (with varying acquisition rates 

and input SNR) over the same range of time constants.   

In addition to the threshold window of observation, two other measures were 

used for analysis.  One of these measures is the total acquisition time necessary for a TC, 

which is found by simply multiplying the threshold window by the TC: 

                               
                

   
     (3.3) 

This value is useful because it gives a simple, and potentially practical, estimate of the 

time necessary to accurately estimate a TC under a specific set of acquisition parameters.  

The other parameter is the output SNR, which can be calculated as: 

                
          

         
     (3.4) 

The simulations in the work tested a range of true time constants from 5 to 300 

seconds, in increments of 5 seconds.  These values are representative of the time 
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constants expected in some tissues (Qui et al. 2008; Righetti et al. 2007c).  Additionally, 

this range covers some of the time constants that can be expected in tissue-mimicking 

phantoms, which were used for the experiments considered in this thesis (Righetti et al. 

2004; Righetti et al. 2005a; Berry et al. 2006; Wu 2001).  Several simulations were done 

to observe the effect of input SNR and acquisition rate on the threshold window of 

observation.  Table 1 summarizes the simulation parameters used for this study.  Note 

that time constants were tested in increments of 5 seconds, and the ideal values of α and 

 used are as previously specified. 

 

Table 1. Simulation parameters. 

Minimum 

TC 

Maximum 

TC 

SNR 

(dB) 

Acquisition rate 

(Hz) 

Largest window of 

observation (% TC) 

5 300 10 100 250 

5 300 15 100 140 

5 300 20 100 140 

5 300 25 100 140 

5 300 30 100 140 

5 300 30 20 140 

5 300 30 2 140 

 

 

These simulations can be used to test the hypothesis of this work, i.e., that the 

window of observation necessary for accurate TC estimation depends on the underlying 

TC.  These simulations can also be used to test the possibility of obtaining accurate TC 

estimates when using acquisition times significantly smaller than the true TC, as well as 

the effects of input SNR and acquisition rate on the accuracy of the estimates. 
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2. Simulation results 

Figure 4 shows the absolute error of a single TC estimate as a function of the 

window of observation for 5 different true time constants.  An input SNR of 20dB and 

an acquisition rate of 100 Hz was assumed for this simulation.  Statistical analysis of the 

simulation data reported in Figure 4 suggests that the threshold window of observation 

for a TC of 300 seconds is close to 15-20% of the TC, whereas the threshold for a TC of 

5 seconds is close to 65-75% of the TC.  This suggests that the threshold window of 

observation is a function of the true TC.  The results in Figure 4 also suggest that for an 

equivalent window of observation length (in terms of the percentage of the true TC), 

smaller time constants generally exhibit higher error than larger time constants.  This 

may be due to the fact that, for these true TC values, there are an insufficient number of 

data points for the estimator to make a reasonable estimate. 
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Figure 4. Absolute error of TC estimation vs. window of observation.  Input SNR of 

20dB and acquisition rate of 100 Hz acquisition rate.  

 

 Figure 5 shows the effect of input SNR on the error of a single TC estimate at 

different acquisition times for a true TC of 150 seconds, an acquisition rate of 100 Hz, 

and 3 different input SNR levels.  The threshold window for 10dB input SNR is close to 

40%, whereas the threshold window for 20dB and 30dB input SNR is much lower, 

around 20% and 10%, respectively.  This suggests that input SNR has a significant 

impact on the threshold window of observation. 
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Figure 5. Absolute error of TC vs. window of observation - effect of input SNR.  Time 

constant of 150s and 100 Hz acquisition rate. 

 

Figure 6 shows the effect of acquisition rate on the error of a single TC estimate 

at different windows of observation for a true TC of 150 seconds, input SNR of 30dB, 

and 3 different acquisition rates.  The threshold window of observation tends to decrease 

as the acquisition rate increases, suggesting that the threshold window of observation 

depends on the acquisition rate. 
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Figure 6. Absolute error of TC vs. window of observation - effect of acquisition rate.  

Time constant of 150s and input SNR of 30dB. 

 

Figures 7-9 show the error obtained using 4 different error measures as a function 

of the threshold window of observation at 3 different input SNR levels.  50 estimates 

were made for the TC at each window of observation.    For each window of 

observation, these figures show the 5
th

 percentile, 95
th

 percentile, median, and mean 

absolute errors.  A TC of 150 seconds was used with an acquisition rate of 100 Hz.  The 

figures show that the mean absolute error and median absolute errors behave similarly at 

longer windows of observation, regardless of input SNR.  Note that windows of 

observation where the mean error is significantly different from the median error 

typically correspond to an absolute error greater than 40%, meaning that any outliers 

from the TC estimation process will not have a significant impact on the calculation of 
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the threshold window of observation.  This justifies the use of the mean absolute error 

for threshold window of observation calculations.  While the mean absolute error is the 

primary measure used in this study, use of the 95
th

 percentile error may provide a more 

conservative estimate for the necessary window of observation, especially at lower 

levels of input SNR, such as the 10dB case.  This may be especially useful for 

experimental work and clinical applications. 

 

 

Figure 7. Error measures – 10dB input SNR.  TC of 150s and acquisition rate of 100 Hz. 
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Figure 8. Error measures – 20dB input SNR.  TC of 150s and acquisition rate of 100 Hz. 

 

 

Figure 9. Error measures – 30dB input SNR.  TC of 150s and acquisition rate of 100 Hz. 
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Bias was also considered as an error measure.  Figure 10 shows the threshold 

window of observation as a function of the true TC when the bias and mean absolute 

error are used.  An acquisition rate of 100 Hz with a 20dB input SNR was used for this 

simulation.  Clearly, both measures result in similar trends; however, the threshold 

determined through the use of the mean absolute error is consistently a more 

conservative measure than the threshold determined through the use of the bias. 

 

 

Figure 10. MAE vs. Bias threshold window of observation.  Input SNR of 20dB and 

acquisition rate of 100 Hz. 

 

 Figure 11 shows the effect of input SNR on the threshold window of observation 
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accurate estimate, especially at small time constant values.  Clearly, input noise plays a 

significant role in the accuracy of the time constant estimator. 

 Figure 12 shows the effect of acquisition rate on the threshold window of 

observation for various time constants at an input SNR of 30dB.  Figure 12 suggests that 

acquisition rate can have a significant impact on the amount of time necessary to make 

an accurate estimate for all TC values used for this study, and especially for short time 

constants.  This is an important observation, which may have implications not only on 

current ultrasound elastographic techniques, but also on other imaging modalities.  For 

example, the development of ultrafast MR elastography systems may prove to be 

beneficial for studies aiming at imaging time-dependent phenomena in tissue. 

 

 

Figure 11. Threshold window of observation vs. TC – effect of input SNR.  Acquisition 

rate of 100 Hz. 
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Figure 12. Threshold window of observation vs. TC – effect of acquisition rate.  Input 

SNR of 30dB. 

 

Figures 13 and 14 summarize the simulation results. These graphs give a direct 

relationship between the total acquisition time necessary for accurate TC estimation and 

the true TC.  Figure 13 shows the total acquisition time from the data in Figure 11, 

detailing the effect of input SNR on the threshold window of observation.  Figure 14 

shows the total acquisition time from the data in Figure 12, illustrating the effect of 

acquisition rate on the threshold window of observation.  These figures suggest that 

there is a linear relationship between the total acquisition time and the underlying TC.  

The slope of the line describing the relationship depends not only on the input SNR, but 

also the acquisition rate used.  A mathematical model representing this relationship 
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could be useful for both elastography experiments and clinical applications and is left for 

future work. 

 

 

Figure 13. Total acquisition time vs. TC – effect of input SNR.  Acquisition rate of 100 

Hz. 
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Figure 14. Total acquisition time vs. TC – effect of acquisition rate.  Input SNR of 30dB. 
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achieve accuracy greater than 90%, we are guaranteed to get a certain level of quality in 

the output estimates. 

 

 

Figure 15. Expected output SNR – 10dB input SNR and 100 Hz acquisition rate. 

 

 

Figure 16. Expected output SNR – 20dB input SNR and 100 Hz acquisition rate. 
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Figure 17. Expected output SNR – 30dB input SNR and 100 Hz acquisition rate. 

 

Note that the expected output SNR obtained when using 100% of the TC 

collection window increases as the magnitude of the time constant increases, while the 

expected output SNR obtained when using the threshold window of observation remains 

practically constant.  This is due to the fact that the threshold window of observation 

length is always the minimum window of observation necessary to achieve accuracy 

greater than 90%, which guarantees a certain level of quality in the output, and this is 

reflected in the expected output SNR. 
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CHAPTER IV 

EXPERIMENTAL METHODS AND RESULTS 

 

The experimental results in this work are used to corroborate selected simulation 

findings and to evaluate the effect of noise sources that are not possible to include in the 

simulation methods on the predicted threshold window of observation. 

 

1. Experimental methods 

The experimental data analyzed in this work was collected in a previous study 

(Nair 2010; Nair et al. 2011).  Briefly, creep tests were performed on three blocks of 

available tofu, each of them 4 cm thick.  Past work has shown that tofu can be used as 

tissue-mimicking phantom for ultrasound experiments (Righetti et al. 2004; Righetti et 

al. 2005a; Berry et al. 2006; Wu 2001).  Data were acquired using a Sonix RP system 

(Ultrasonix).  The ultrasound transducer was equipped with a custom built compressor 

plate. The samples were submerged in water and a constant force was applied to the 

samples using the compressor apparatus (Nair et al. 2011).  The transducer used for 

these experiments was a 38 mm real-time linear array with 128 elements, a bandwidth 

between 5-14 MHz, a center frequency of 6.6 MHz, 50% fractional bandwidth (at -6 

dB), a sampling frequency of 40 MHz, and a 1 mm beamwidth at the focus point. 

Each tofu block was submerged in a water bath so that the transducer would be 

coupled to the tofu.  A constant force, replicating the effects of a creep test, was applied 

to the tofu block through the weight of the transducer, compressor plate, and a sliding 
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plate.  The system collects ultrasound RF frames at specific sample times set by the 

users. As described in Chapter II, the axial strain S(ti) is computed in a cumulative 

manner using consecutive frames to maintain an acceptable correlation level (Nair et al. 

2011).  Temporal changes in the axial strain distribution can be estimated pixel by pixel. 

From the temporal curves of the axial strain, the axial strain time constant for each pixel 

in the elastograms can be computed.  A TC elastogram, or a map of the local time 

constants, can be created for the entire image. 

The experimental data presented in this work was collected using an acquisition 

rate of approximately 1 Hz, which results in a total of 595 frames of RF data. This 

corresponds to approximately 595 seconds of data.  Data could not be collected 

consecutively at the highest frame rate of the ultrasonic system because the system has a 

buffer that limits the total number of frames that can be acquired during a single 

collection.  TC elastograms were computed for each tofu block using all 595 frames 

available.  The resulting elastograms were considered to be representative of the true 

time constants in each block.    

This work aims to show that it might be possible to use smaller windows of 

observation and still estimate the TC with accuracy greater than 90%.  To do so, it is 

necessary to determine the input SNR for each block tested.  Ideally, the tofu blocks 

used in the experiments would be perfectly uniform and the exact time constant of the 

entire material could be easily determined.  Experimental data clearly shows that the tofu 

blocks used in the experiments are not completely uniform, as expected.  Therefore, it is 

necessary to first pick a representative region of the imaged block, and then select a 
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representative TC from that region.  Figure 18 shows an example of a region chosen as 

representative of the tofu block imaged. 

 

 

Figure 18. Example of an axial strain TC elastogram from a tofu block.  Area within the 

square indicates the region used for the analysis. 

 

Once a representative region was selected, the true TC of this region was 

evaluated.  The mean TC and the 95
th

 percentile TC in each representative region (from 

the TC elastograms previously calculated using the entire set of 595 frames) were 

considered for use in determining a threshold window of observation.  The input SNR 

can then be estimated by computing the SNR of the cumulative axial strain from all 595 

frames of data, given by: 
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    (4.1) 

 

With a known true TC, input SNR, and acquisition rate, a threshold window of 

observation could be determined through simulations similar to those seen in Chapter III.  

Therefore, a set of simulations was run to determine the threshold window of 

observation based on the exact acquisition rate (1 Hz), input SNR, and true TC, as 

determined from the experimental data.  These simulation data were needed to find the 

predicted threshold window of observation for each experimental set of data.  To provide 

a more conservative estimate of the SNR for each set of experimental data, simulations 

were run with input SNR levels rounded down to the nearest multiple of 5 dB (10dB and 

15dB).  The threshold windows of observation for the time constants can be found using 

the data shown in Figures 19-20.  A curve fit using a two exponential model was applied 

to both cases.  This curve fit allows estimation of a threshold window of observation for 

all time constants less than 2000 seconds. 
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Figure 19. Threshold window of observation vs. TC – 10dB input SNR and 1 Hz 

acquisition rate. 
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Figure 20. Threshold window of observation vs. TC – 15dB input SNR and 1 Hz 

acquisition rate. 

 

The curve fit equations for the 10dB and 15dB cases are given by equations (4.2) 

and (4.3), respectively.    

                                              (4.2) 

 

                                             (4.3) 

 

 Once a threshold window is found, a new TC elastogram can be created by only 

using the number of frames corresponding to this acquisition time.  The new TC 

elastogram can then be compared with the true TC elastogram in the region of interest, 

both visually and through computation of the mean absolute error in the region.  
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 Three different tofu blocks were tested.  For each region, a threshold window of 

observation (in seconds) was determined both using the mean TC of the region and the 

95
th

 percentile TC of the region.  Threshold windows equal to a multiple of the window 

determined for the mean TC were also tested.  This was done because the threshold 

window determined by simulations should be considered as an optimistic upper bound.  

In fact, a number of other factors and noise sources may play a role in experimental data, 

which are not taken into consideration in the simulation model. 

 

2. Experimental results 

Figure 18 shows the true TC elastogram for the first tofu block.  Table 2 

describes the representative parameters of the block, the four threshold windows of the 

block, and the corresponding errors.  Figure 21 shows the true TC map in the selected 

region and the TC maps obtained when using each of the four threshold windows shown 

in Table 2. 
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Table 2. Tofu block 1 parameters. 

 

Mean 

TC 

95
th

 percentile 

TC 

2x Mean 

Threshold 

3x Mean 

Threshold 

Calculated SNR 

(dB) 
13 

SNR Used (dB) 10 

TC (s) 14 23 --- --- 

Threshold % 638 606 --- --- 

Acquisition Time 

(s) 
89 137 178 267 

Total Frames 90 139 179 267 

MAE (%) 66 60 55 45 

 

 

(a)  

Figure 21. Tofu block 1 region TC maps.  (a) True TC map.  (b) TC map using mean TC 

threshold window.  (c) TC map using 95
th

 percentile TC window.  (d) TC map using 2x 

mean TC threshold window.  (e) TC map using 3x mean TC threshold window. 

A
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(b) (c) 

 

 

(d) (e) 

Figure 21 continued. 

 

Visually, no significant changes appear in the TC maps when using the threshold 

window of observation (with respect to the true TC map); however, the error analysis 

shows a MAE > 50% in all cases.  This may be due to the fact that the time constants in 

this block are very small, leading to very large threshold windows of observation, greater 

than 600% in both cases.  In addition, the non-uniformity of the phantom in the selected 
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area may contribute to the high error.  Larger time constants require longer acquisition 

times, as shown in Chapter III, and may bias the error significantly if present in the 

selected region.  Furthermore, the effect of other sources of noise in experimental data 

can significantly increase the threshold window of observation.  A final factor that 

makes accurate estimates difficult for this block is the slow acquisition rate. Since the 

true TC is small, there may simply be too few points for the LM estimator to make 

accurate estimates of these time constants at smaller windows of observation.  The 

situation may be improved by acquiring frames at a faster rate. 

Figure 22 shows the true TC elastogram for tofu block 2.  Table 3 shows the 

representative parameters, threshold windows, and corresponding errors.  Figure 23 

shows the true TC map in the selected region and the TC maps for the same region when 

using the four threshold windows shown in Table 3.   

The time constants in the second block are larger than those in the previous 

block, as indicated by a mean TC of 52 seconds and 95
th

 percentile TC of 65 seconds.  

Computation of the errors using the corresponding threshold windows gives significantly 

smaller errors (34% and 28%). Larger increases of the window of observation, given by 

the 1.5x and 2x mean threshold window, significantly reduce the computed error while 

still reducing the total acquisition time. This indicates that it might be possible to shorten 

the window of observation and still make accurate estimates of the axial strain TC for 

experimental data. 
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Figure 22. Tofu block 2 true TC map.  Area within the square indicates the region used 

for the analysis. 
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Table 3. Tofu block 2 parameters. 

 

Mean 

TC 

95
th

 percentile 

TC 

1.5x Mean 

Threshold 

2x Mean 

Threshold 

Calculated SNR 

(dB) 
14 

SNR Used (dB) 10 

TC (s) 52 65 --- --- 

Threshold % 513 478 --- --- 

Acquisition Time 

(s) 
264 308 396 528 

Total Frames 265 309 397 529 

MAE (%) 34 28 21 11 

 

 

(a)  

Figure 23. Tofu block 2 region TC maps.  (a) True TC map.  (b) TC map using mean TC 

threshold window.  (c) TC map using 95
th

 percentile TC window.  (d) TC map using 2x 

mean TC threshold window.  (e) TC map using 3x mean TC threshold window. 

A
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(b) (c) 

 

 

(d) (e) 

Figure 23 continued. 

 

Figure 24 shows the true TC elastogram for the third tofu block   Table 4 shows 

the representative parameters, threshold windows, and corresponding errors for tofu 

block 3.  Figure 25 shows the true TC map in the selected region and the TC maps for 

the same region when using the four threshold windows shown in Table 4. 
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This block has larger time constants, in the range of 120-150 seconds.  Repeating 

the procedure from the previous blocks again yields a reduction of the error while 

reducing the total acquisition time.  The results from the data again indicate that it might 

be possible to use relatively short windows of observation and still make accurate 

estimates of the axial strain TC even in experimental data. 

 

 

Figure 24. Tofu block 3 true TC map.  Area within the square indicates the region used 

for the analysis. 
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Table 4. Tofu block 3 parameters. 

 

Mean 

TC 

95
th

 percentile 

TC 

1.5x Mean 

Threshold 

2x Mean 

Threshold 

Calculated SNR 

(dB) 
19 

SNR Used (dB) 15 

TC (s) 130 151 --- --- 

Threshold % 161 146 --- --- 

Acquisition Time 

(s) 
208 219 312 416 

Total Frames 209 221 313 418 

MAE (%) 39 39 36 19 

 

 

(a)  

Figure 25. Tofu block 3 region TC maps.  (a) True TC map.  (b) TC map using mean TC 

threshold window.  (c) TC map using 95
th

 percentile TC window.  (d) TC map using 2x 

mean TC threshold window.  (e) TC map using 3x mean TC threshold window. 

A
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(b) (c) 

 

 

(d) (e) 

Figure 25 continued. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

1. Conclusion 

 The simulation study performed in this work confirmed the original hypothesis 

that the total acquisition time necessary for accurate TC estimates depends on the 

underlying time constant value.  The results of the simulations suggest that there is a 

linear dependence of the total acquisition time for accurate estimates on the true time 

constant value.  Simulations also showed that accurate estimates of the axial strain TC 

could be achieved with windows of observation shorter than the true TC with fast 

acquisition rates.  Experimental data confirmed that it might be possible to shorten the 

window of observation for TC elastography without significantly reducing TC estimate 

accuracy.  These results could have important practical implications in elastographic 

studies that aim at imaging the temporal behavior of tissues. 

 Additionally, the results of this work suggest that the minimum window of 

observation necessary for an accurate TC estimate is highly dependent on the acquisition 

frame rate.  Therefore, the use of imaging systems with fast acquisition rates is strongly 

recommended for studies aiming at measuring tissue time-dependent phenomena. 
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2. Future work 

Estimation of equilibrium strain 

 The TC estimator used in this work estimates both the TC and the equilibrium 

strain value of an axial strain curve, which are unknown from noisy strain samples (Nair 

et al. 2011).  While the scope of this work was limited to the study of the effects of 

acquisition parameters on TC estimation, a similar study of the effect of temporal 

acquisition parameters on equilibrium strain estimation may be useful.  The equilibrium 

point of the strain is highly dependent on tissue fluid content and mobility, and may also 

yield important diagnostic information (Righetti et al. 2007b; Nair et al. 2011).   

 

Experimental validation 

 The experimental data presented in this study is offered as a proof of concept.  

The relationship between the threshold window of observation, the underlying TC of a 

material, and the effects of acquisition parameters needs to be studied and corroborated 

with more experimental data.   

 

Creation of mathematical model for acquisition time 

As discussed in Chapter III, the total acquisition time for an accurate TC estimate 

depends on the acquisition rate and the input SNR.  The creation of a mathematical 

model for the total acquisition time necessary for accurate estimates could be very useful 

to automatically predict the required threshold window of observations while performing 

an experiment. 
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Ideally, the findings of this study could be translated into a simple tool that could 

be used by a physician or ultrasound technician to quickly determine how long 

elastography data should be acquired in a clinical application.  Creation of a database 

with the expected time constants of various materials, such as tumors, soft tissues, and 

muscles, would be the first step toward this goal.  This database could be used in 

conjunction with the mathematical model for total acquisition time to provide practical 

acquisition times for several clinical applications. 

 

Applications to other time-dependent phenomena in tissues 

The temporal behavior of the EPR of a material can contain important 

information about a tissue state.  Under certain assumptions, the strain model used in this 

work may also be used to approximate EPR temporal behavior (Righetti et al. 2007b; 

Nair et al. 2011).  Therefore, the use of smaller windows of observation and faster 

acquisition rates may be beneficial for EPR TC elastograms.  The results of this work 

may also be useful for time-dependent phenomena with modalities other than ultrasound, 

such as MR elastography. 
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