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ABSTRACT 

 

Quantitative evaluations of early-life connectivity in reef fish populations are 

critical to the effective identification and management of productive nearshore 

nurseries. The present study evaluates the use of natural markers in assessing both 

trophic and population connectivity for three species of snappers (Lutjanidae) 

utilizing back-reef nurseries in southern Belize: dog snapper (Lutjanus jocu), gray 

snapper (L. griseus), and schoolmaster (L. apodus). Juvenile snappers were collected 

from inner- and outer-shelf nurseries across two latitudinal regions in the Belize 

coastal lagoon in order to: (a)  utilize tissue stable isotopes (13C and 15N) as dietary 

tracers to characterize organic matter production across the continental shelf, and (b) 

evaluate the utility of otolith stable isotopes (13C and 18O) as a marker of nursery 

origin. 

Isosource models (based on tissue 13C and 15N) revealed distinct 

differences in food web dynamics between pristine nurseries and those influenced by 

heavily impacted watersheds. Juvenile snappers at pristine sites were supported by 

organic matter derived from both benthic sources (seagrass/benthic diatoms) and the 

water column (phytoplankton), while  sites impacted  by anthropogenic runoff  

displayed significant decreases in water column-based production during the rainy 

season, accompanied by significantly decreased juvenile snapper condition (muscle 

lipid content) for all three species. These results emphasize the high land-sea 



 

iii 

 

connectivity in this system and indicate that runoff from impacted watersheds has the 

potential to disrupt trophic production in nurseries across the continental shelf. 

Otolith stable isotopes (13C and 18O) appeared to be strongly related to 

salinity gradients within the Belize coastal lagoon and, consequently, showed 

considerable promise in identifying juvenile snappers to shelf position. Both isotopes 

were both consistently enriched in snappers from outer-shelf nurseries, where 

freshwater influence was minimal, and 18O was enriched in the northern sampling 

region, which receives lower amounts of freshwater input compared to the south. 

Although individuals of each species were classified to specific study sites with 

varying success (58-81%), discrimination to shelf position was consistently high for 

all species (74-92%), indicating that otolith 13C and 18O may be useful in 

determining relative contribution rates of juvenile snappers produced at inner- and 

outer-shelf nurseries within tropical back-reef systems.   
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CHAPTER I  

INTRODUCTION 

 

Nearshore habitats such as back-reef lagoons and estuaries often represent 

important nurseries for marine fishes and invertebrates, and as human populations 

continue to grow, it is inevitable that these nursery habitats will be increasingly impacted 

by coastal development and anthropogenic effects (Botsford et al. 2003; Able 2005). In 

the tropics, many commercially and ecologically important coral reef fishes require 

multiple back-reef habitats (i.e. mangroves, seagrass beds, patch reefs) to complete 

juvenile development, and for these species, the preservation of productive nurseries 

within back-reef systems is critical to population replenishment (Mumby et al. 2004; 

Adams et al. 2006). Nursery productivity can be attributed to a number of ecological 

factors, including high juvenile densities, increased growth, decreased mortality, and 

enhanced movement of juveniles to adult populations (Beck et al. 2001). Thus, 

production within a given nursery is influenced not only by local habitat quality but also 

ecosystem context - environmental conditions, hydrographic features, trophic 

production, and connectivity with adult habitats (Anderson et al. 1995). Because of this, 

back-reef nurseries that are comparable in habitat attributes (e.g. seagrass beds) may not 

be functionally equivalent in terms of ecological value or nursery production. 

Despite the clear importance of nearshore habitats in sustaining reef fish 

populations, the functional significance of putative nurseries within back-reef systems 

has rarely been quantified (Beck et al. 2001; Able 2005; Adams et al. 2006). It is 
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unlikely that all habitats occupied during early life are equal in nursery value, and 

identifying the most productive nearshore nurseries is becoming increasingly critical as 

coastal ecosystems worldwide are affected by habitat loss, degradation, and over-fishing 

(Ariola 2003; Botsford et al. 2003; Sale et al. 2005). Because resources are limited, it is 

unavoidable that only a subset of nearshore habitats can be selected for intensive 

management and protection (Dahlgren et al. 2006), and determining which nurseries are 

contributing the greatest numbers of individuals to adult populations (i.e. quantifying 

nursery production) will allow management efforts to be focused on those areas that are 

most essential to population replenishment (Beck et al. 2001; Mumby 2006).  

The purpose of this research was to use stable isotopes in tissues and otoliths as 

natural markers to evaluate cross-shelf nursery production for juvenile snappers utilizing 

back-reef habitats in southern Belize. Tissue stable isotopes (13C and 15N) were used 

as dietary markers to identify the source(s) of organic matter supporting juvenile 

snappers across the continental shelf (i.e. characterize trophic production within 

nurseries), while otolith stable isotopes (13C and 18O) were evaluated as a marker of 

nursery origin for juvenile snappers, which could facilitate quantitative contribution 

estimates of nursery-associated juveniles from various back-reef habitats to adult 

populations. 
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CHAPTER II  

TISSUE STABLE ISOTOPES AS A NATURAL MARKER CHARACTERIZING 

FOOD WEB DYNAMICS AND TROPHIC PRODUCTIVITY IN TROPICAL BACK-

REEF NURSERIES 

 

Introduction 

Trophic productivity is an important component of nursery production because 

the availability of organic matter at the base of local food webs can determine the 

density of consumers (i.e. juvenile fishes) that a given nursery can support (Malone et al. 

1988; Polis et al. 1996, 1997), and as well as the relative fitness and survival of nursery 

occupants (Lloret and Planes 2003). Multiple laboratory experiments have demonstrated 

that condition and growth of juvenile reef fishes are strongly influenced by food 

availability (Kerrigan 1994; Booth and Hixon 1999; Booth and Beretta 2004), and in 

field studies, increased nutritional condition and faster somatic growth have been 

observed in nurseries characterized by productive hydrographic features (e.g. upwelling, 

riverine input) and high prey abundance (Anderson et al. 1995; Lloret and Planes 2003). 

Nutritional condition is directly related to competitive ability and survivorship in newly 

settled reef fishes, and individuals in good nutritional condition (exposed to favorable 

feeding regimes) can experience substantially lower predator-induced mortality 

compared to individuals in poor condition (subjected to food limitation) (Booth and 

Hixon 1999; Booth and Beretta 2004; Hoey and McCormick 2004; Figueira et al. 2008). 

Even among surviving fishes, physiological condition during early life larval and 
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juvenile development is known to directly influence individual fitness during later life 

stages (McCormick and Moloney 1992; Booth and Hixon 1999;  Hoey and McCormick 

2004). Consequently, trophic productivity within back-reef nurseries has the potential to 

directly impact subsequent recruitment success of nursery-associated juveniles into adult 

reef fish populations (i.e. nursery production).  

Unlike terrestrial or lacustrine environments where primary productivity is 

isolated and the export of nutrients is constrained over fairly short distances (Tilman 

1982; Persson and Johansson 1992), estuarine and marine ecosystems are hydrologically 

interconnected, allowing organic matter and nutrients to be transported over relatively 

large spatial scales (Chelton et al.1982). Coastal water masses often differ substantially 

in organic content, and the vertical and horizontal transport of allochthonous, or 

externally derived, organic matter within the water column is frequently a key 

determinant of habitat productivity and trophic structure in back-reef systems (Angel 

1984; Barry and Dayton 1991). Subsidies of nutrients derived from the water column 

can benefit nursery-associated consumers indirectly by stimulating in situ production 

from local (autochthonous) sources of organic matter (i.e. bottom-up effects, Menge 

1992; Roesemond et al. 1993; Hillebrand 2002), while allochthonous prey items and 

suspended organic matter delivered through riverine plumes can broaden foraging 

opportunities and increase the pool of terrestrial carbon available to consumers (i.e. top-

down effects, Whitfield 1985; Thresher et al. 1989; Nemerson and Able 2004). 

Consequently, productivity within a given nursery can be strongly influenced by local 

hydrographic features. Riverine input in particular can substantially increase the 
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contribution of terrestrial nutrients to nearshore waters, and the role of riverine organic 

material in subsidizing estuarine food webs has been well documented (Mayer et al. 

1998; Mannino and Harvey 2000; Gordon and Goni 2002).  

Because estuaries are dynamic systems, the relative contribution of 

allochthonous inputs to nursery-associated consumers can be expected to show 

considerable spatiotemporal plasticity in response to variable climatic and hydrological 

conditions (Jennings et al. 1997). This is particularly true in the tropics, where 

pronounced wet-dry seasonality often leads to substantial differences in the volume of 

freshwater runoff and riverine discharge (i.e. terrestrial carbon and nutrients) entering 

back-reef systems (Bouillon et al. 2004). Fluctuations in river flow have been linked to 

seasonal shifts in dietary composition for consumers occupying back-reef nurseries, as 

juvenile fishes and invertebrates opportunistically exploit allochthonous prey items and 

organic material with limited seasonal availability (Connolly et al. 2009; Vinagre et al. 

2011). In some cases, back-reef nurseries that are supported almost exclusively by 

locally produced organic matter during periods of low river discharge (i.e. dry season) 

may receive the majority of production from riverine detritus during periods of flooding 

(i.e. rainy season), potentially leading to seasonal variability in nursery function 

(Chanton and Lewis 2002; Le Pape et al. 2003). Significant increases in the density, 

condition, and survivorship of nursery-associated juveniles during times of high 

freshwater input have been well documented in both tropical and temperate estuaries, 

and these have been widely attributed to increased allochthonous nutrient delivery from 

riverine sources (Grimes 2001; Darnaude et al. 2004; Dolbeth et al. 2008). 
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Although freshwater inflow has the potential to enhance nursery productivity, 

back-reef nurseries that are strongly influenced by coastal runoff (including riverine 

discharge) are inherently vulnerable to anthropogenic disturbance, as trophic production 

within these nurseries will be strongly influenced by land use in adjacent watersheds 

(Douglas et al. 2005; Finlay 2011). Reductions in freshwater discharge due to river 

diversion (e.g. dams, water reclamation) can greatly decrease the allochthonous nutrient 

subsidy supporting consumers and may also create sub-optimal temperature and salinity 

conditions within back-reef systems, resulting in osmoregulatory stress and increased 

energy requirements for nursery occupants (Aleem 1972; Nichols et al. 1986). 

Additionally, trophic production from both allochthonous and local sources within back-

reef nurseries can be negatively impacted by sedimentation and anthropogenic nutrient 

loading in coastal runoff, as elevated nutrient levels and decreased light penetration in 

the water column have the potential to alter the composition and/or productivity of 

primary producers (Loneragan and Bunn 1999; Tewfik et al. 2005). Because of the high 

land-sea connectivity in coastal waters, effective management strategies designed to 

preserve nursery production must keep intact not only the physical range of back-reef 

habitats utilized by juvenile invertebrates and fishes but also the essential nutrient cycles 

and sources of organic matter supporting nursery-associated consumers, and this requires 

a spatiotemporally explicit understanding of food web dynamics within back-reef 

systems. 

The goals of the current study were to a) identify the main source(s) of 

production supporting three species of juvenile snappers at inner-shelf and outer-shelf 
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nurseries throughout the back-reef lagoon of southern Belize using tissue stable isotopes 

(13C and 15N), b) quantify the relative contribution of producers during both dry 

season (i.e. low freshwater input) and rainy season (i.e. high freshwater input) 

conditions, and c) evaluate spatial and seasonal variability in the nutritional condition of 

juvenile snappers based on muscle lipid content. Belize is unique among Central 

American countries in that a large percentage of its coastline and a majority of keys 

throughout its back-reef lagoon still display substantial mangrove and seagrass coverage 

(Murray et al. 2003). This widespread distribution of mangroves and seagrass nursery 

habitat across the continental shelf makes the Belize coastal lagoon an ideal model 

system in which to evaluate the offshore extent of terrestrial nutrient subsidy to nursery-

associated food webs because cross-shelf variability in organic matter contribution can 

be directly assessed. The Belize coastal lagoon also provides an ideal natural set-up to 

evaluate the effects of watershed impacts on food web dynamics within back-reef 

nurseries, as a large portion of the Toledo watershed in southern Belize is managed 

under the Maya Mountain Marine Corridor (MMMC), while land use and coastal 

development in northern watersheds are largely unregulated. 

 

Methods 

Study Site 

The back-reef lagoon enclosed by the Meso-American Barrier Reef (MBR) in 

southern Belize is characterized by a complex reef system and an extensive network of 

small keys, which are arranged in lines along both the inner-shelf (< 10 km from 



 

8 

 

coastline) and outer-shelf (> 40 km from coastline), both running roughly parallel to the 

coast (Figure 1). Study sites were located in two latitudinal regions; North (offshore 

from Placencia) and South (offshore from Punta Gorda, approximately 50 km south of 

Placencia). Each region contained inner and outer study sites spanning the coastal-

marine ecotone, for a total of four sites in the study: north inner, north outer, south inner, 

and south outer. Each of the four study sites was comprised of three replicate mangrove 

cays located within a 5-km radius. The two study regions (north, south) were selected to 

evaluate the effect of watershed characteristics (i.e. land usage, freshwater input) on 

trophic production across the continental shelf. The majority of the Toledo watershed 

(adjacent to the south study region) is managed under the MMMC, a network of 

terrestrial and aquatic reserves designed to mitigate anthropogenic runoff to the Belize 

lagoon. As a result, coastal development within this watershed is minimal and the 

majority of land area consists of natural vegetation. In comparison, land use within the 

Stann Creek watershed (adjacent to the north sampling region) is largely unregulated, 

and riverine systems influenced by this watershed have been increasingly impacted by 

anthropogenic nutrient input (runoff from agriculture and aquaculture, sewage 

discharge), as well as increased sedimentation due to bank reclamation and 

deforestation. The two sampling regions also differ markedly in precipitation; annual 

rainfall averages 370-400 cm in Punta Gorda (south), compared with only 200-300 cm in 

Placencia (north) (Ariola 2003; Thattai et al. 2003).  As a result, the volume of 

freshwater discharge entering the coastal lagoon is substantially higher in the south 

sampling region. 
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Figure 1.  Map of study sites in southern Belize. Latitudinal regions are labeled (north, south) and study 

sites within each region (inner shelf, outer shelf) are indicated by circles. Shaded regions denote terrestrial 
and marine reserves (including the Maya Mountain Marine Corridor [MMMC]), as well as the spatial 

distribution of various habitat types across the continental shelf (see legend). Inset illustrates the regional 
context of the study location in the eastern Caribbean. 

 
 
 
Sample Collections 

Two sampling trips were conducted during March and July of 2009 to coincide 

with the dry season (February-April) and the rainy season (June-September) in the 

region. Four primary producers (phytoplankton, benthic diatoms, mangrove leaves, 

seagrass blades) and three species of juvenile snappers (dog snapper Lutjanus jocu, gray 
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snapper L. griseus, and schoolmaster L. apodus) were collected from four study sites 

(north inner, north outer, south inner, south outer) during each trip. For consistency, all 

samples were taken from keys with fringing mangroves and associated seagrass beds, 

and collections of primary producers and consumers (i.e., snappers) were limited to the 

mangrove prop-roots and the seagrass-mangrove ecotone (typically located within 

several meters of the prop-roots).  

At each of the replicate mangrove keys, three representative samples of seagrass 

blades (turtle grass Thalassia testudinum) and fallen (i.e. detrital) red mangrove leaves 

(Rhizophora mangle) were collected manually, and three sediment collections were 

taken using a grab sampler in order to obtain benthic diatoms. Additionally, three surface 

tows using a plankton net (30-cm frame diameter, 333 m mesh size) were conducted 

around the mangrove perimeter in order to collect samples of suspended particulate 

organic matter (POM). Phytoplankton is typically the major component of POM in many 

offshore marine systems (e.g. Hama 1999; Savoye et al. 2003), and isotopic values from 

POM samples are commonly used in food web studies as a proxy for the phytoplankton 

signature. However, this assumption is not necessarily valid in areas subject to coastal 

runoff, where POM may also contain a large fraction of terrestrial material (e.g. Savoye 

et al. 2003), or in shallow nearshore systems where large amounts of suspended plant or 

algal detritus are consistently present in the water column (Bouillon and Dehairs 2000; 

Bouillon et al. 2000; Miller and Page 2012). Thus, POM in the current study was not 

considered to be a direct proxy for phytoplankton, and isotopic values from samples 
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were later adjusted based on estimated phytoplankton content prior to interpretation of 

food web dynamics (Appendix A). 

The three species of juvenile snappers (Lutjanus jocu, L. griseus, and L. apodus) 

were selected as model organisms for the study based on their ecological and 

commercial importance, as well as their strong association with mangrove-seagrass 

nurseries during the juvenile stage. All juvenile snappers were collected by microspear, 

and 15 individuals of each species were targeted at each study site, although L. griseus 

and L. jocu were less abundant than L. apodus and fewer than 15 juveniles of these two 

species were taken at some sites. To avoid possible discrepancies in isotopic signatures 

caused by ontogenetic shifts in feeding behavior, all juvenile fishes included in analyses 

were 70-130 mm total length (TL), or less than one year of age, as dietary shifts for 

juvenile snappers (Lutjanus spp.) typically occur at larger size classes (Cocheret de 

Moriniere et al. 2003; Faunce and Serafy 2007, Hammerschlag-Peyer and Layman 

2012).  

 

Sample Preparation 

In the laboratory, POM samples were pre-filtered through a 118 m sieve in 

order to minimize contamination from larger suspended particles (i.e. macrodetritus) and 

zooplankton, and then concentrated onto separate precombusted 0.7-micron Whatman 

filters using a vacuum system.  Benthic diatoms were isolated from sediment collections 

using the vertical migration technique adapted from Couch (1989) and Wells et al 

(2008), and these were also stored on precombusted Whatman filters. All filtered 
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samples were immediately frozen and stored prior to stable isotope analysis. Juvenile 

fishes were measured to the nearest millimeter (total length), and two small sections of 

white trunk muscle tissue were removed from each specimen for lipid content and stable 

isotope analysis. 

Although acid washing tissue samples in dilute HCl is commonly used to remove 

inorganic (i.e. non-dietary) carbonates, more recent research has suggested that the 

technique may also remove organic (i.e. dietary) compounds from algal, plant and 

animal tissue, and appears to disproportionately and unpredictably alter 15N values even 

though carbonates do not contain nitrogen (Bunn et al. 1995; Ng et al. 2007; Serrano et 

al. 2008). Consequently, in food web research involving multiple isotopes (i.e. carbon 

and nitrogen), it is widely recommended that acid washing be avoided and that muscle 

and/or plant tissue be isolated by manual dissection whenever possible. Multiple studies 

have demonstrated that after carbonate-rich parts have been removed, the effects of acid 

washing on 13C values in plant and animal tissue are ecologically negligible (e.g. Bunn 

et al. 1995; Serrano et al. 2008).  In the current study, mangrove leaves and seagrass 

blades were carefully scraped with a spatula to remove all encrusting organisms and 

epiphytic algae, while samples of fish tissue were visually confirmed under a dissecting 

microscope to contain only white trunk muscle free of skin, scales, and bony fragments.    

For obvious reasons, manual removal of carbonate components from benthic 

diatom and POM samples was not possible, and several previous studies have noted 

depletions (generally 0-1‰) in 13C for benthic microalgae (including diatoms) and 

phytoplankton-based POM following acidification. However, significant alterations in 
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
15N were also observed in these studies which were similar to or greater than the 

adjustments in 13C, and the magnitude and variability of these effects were increased in 

filtered samples that were frozen prior to analysis (Lorrain et al. 2003; Ng et al. 2007). 

Given the relatively consistent observed effects of HCl treatment on 13C in marine 

primary producers (Ng et al. 2007), we elected not to acid-wash our filtered POM and 

benthic diatom samples to avoid introducing unnecessary (and unpredictable) error to 

our 15N values.  

 

Stable Isotope Analysis 

Tissue samples from all primary producers and juvenile fishes were thawed and 

then dried at 60C for 24h. Dried tissue samples were powdered using a mortar and 

pestle, and packaged in tin capsules. For POM and benthic diatom samples on Whatman 

filters, samples were visually inspected under a dissecting microscope to confirm 

contents before six small (6 mm) hole punches were made from each filter paper and 

placed in a tin capsule. Scrapings from selected filters were also examined under light 

microscopy. Analysis of tissue stable isotopes was conducted at the Texas A & M 

University Stable Isotope Geosciences Facility, where a Finnigan MAT 252 stable 

isotope mass spectrometer attached to CosTech ECS 4010 Elemental Analyzer was used 

to determine the isotopic ratios of carbon (13C) and nitrogen (15N) in each sample 

(Rooker et al. 2006; Wells et al. 2008). Results were compared to a Vienna Pee Dee 

Belemnite (VPDB) standard for carbon and atmospheric N2 for nitrogen. 
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Because 13C in plant and animal tissue can vary with lipid content, physical 

extraction of lipids is sometimes performed in dietary studies prior to stable isotope 

analysis in order to minimize the effects of this variability among samples. However, 

processes used for lipid extraction can also significantly alter 15N values in fish muscle 

(Sotiropoulos et al. 2004; Logan and Lutcavage 2008), and previous studies have found 

the effects of lipid extraction on 13C to be negligible in tissue samples where lipid 

content is low (approximately 5% lipid, corresponding to a carbon content of < 40% for 

plants or a C:N ratio of < 3.5 for animal samples) (Post et al. 2007). All primary 

producers in the current study contained < 40% carbon with the exception of mangroves 

(46%), and while the mean C:N ratio of fish tissues was marginally higher (3.7; 

corresponding to an estimated lipid content of 6.1%) than the recommended 3.5 

minimum for lipid extraction, applying the mathematical normalization recommended in 

Post et al (2007) would have resulted in a mean 13C enrichment of < 0.3‰ per sample 

across all study groups. Thus, similar to other dual-isotope food web studies where 

correction for lipids was considered unlikely to result in ecologically meaningful 

adjustments to 13C (e.g. Wyatt et al. 2012), we elected not to perform lipid extraction or 

mathematical adjustment on samples used in food web models. 

 

Lipid Content Analysis of Fish Tissue 

Small (~ one gram wet weight) samples of white trunk muscle tissue from 

juvenile snappers were also analyzed for lipid content in order to assess fish condition. 

Samples were thawed and dried at 60C for 24h, then weighed to the nearest 0.0001 



 

15 

 

gram using a microbalance. Lipids were extracted from dried muscle tissue with 

petroleum ether using a Dionex ASE300 accelerated solvent extractor, and samples were 

re-weighed on the microbalance following lipid extraction. The lipid content (mg/g wet  

weight) in each tissue sample was calculated using the following equation: 

               
                                                                

                             
   

 

Characterization of Phytoplankton Content in Samples of POM   

Given the high amount of plant-based detritus in samples of particulate organic 

matter (POM) in coastal systems (Miller and Page 2012), 13C and 15N values of POM 

samples were not used as a direct proxy for the phytoplankton signature. Instead, the 

proportion phytoplankton content in POM samples was estimated based on C:N ratio, 

and 13C and 15N  values for phytoplankton were calculated based on methods adapted 

from Bouillon and Dehairs (2000; Appendix A). These estimated values are used 

hereafter to represent the phytoplankton signature (i.e. planktonic microalgae [PMA]). 

 

Spatiotemporal Variability in Isotopic Signatures and Consumer Lipid Content  

Three-way multivariate analysis of variance (MANOVA) was used to evaluate 

spatiotemporal variability in 13C and 15N for each of the four primary producers 

(phytoplankton, benthic diatoms, mangrove, seagrass), with study region (north, south), 

shelf position (inner, outer), and sampling season (dry, rainy) as the main effects. 

Spatiotemporal variability in isotopic signatures (13C and 15N) of juvenile snappers 
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was evaluated using four-way MANOVA, with species, region, shelf position, and 

sampling season as the main effects. To evaluate potential variability in muscle lipid 

content, we used three-way analysis of variance (ANOVA), with species, study site, and 

season as the main effects. Because significant interactions were observed between study 

site and season, independent sample T-tests were used to compare mean lipid content 

between the dry season and rainy season for each species within a given site. 

Since isotopic fractionation of 15N (and to a lesser extent, 13C) in juvenile 

fishes is known to increase with size, linear regressions were used to examine the 

relationship between fish total length and isotopic values of 13C and 15N in tissue 

samples. No significant relationships between total length and isotopic signatures were 

detected for any of the three snapper species (P > 0.05), likely due to the small sizes (and 

narrowly constrained size range) of juvenile fishes included in the study. Simple linear 

regression was also used to test the relationship between muscle lipid content and total 

length, as lipid content will sometimes vary as a function of size in juvenile fishes. 

However, no significant relationships between total length and muscle lipid content were 

detected for any of the three species (P > 0.05) Thus, we determined that no size-

correction factor was necessary. All data analyses were conducted in SPSS v. 19.  

 

Evaluating Contribution from Primary Producers Using Isosource Models 

Relative organic matter contributions from primary producers (phytoplankton, 

benthic diatoms, mangroves, seagrass) to juvenile snappers were estimated using a four-

source dual-isotope 13C/15N model in the Isosource program (methods described in 
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Philips and Greg 2003). Estimates of producer source contribution were calculated 

individually for all three snapper species at each of the four study sites and for each 

species, two separate models were run using dry season and rainy season isotopic values, 

respectively.  In Isosource models, producer signatures for phytoplankton, benthic 

diatoms and seagrass were calculated separately for each of the four study sites, while 

producer signatures for mangroves were pooled across the inner- and outer-shelf sites 

within each region. Source increments for all models were set at 1% and initial tolerance 

levels were set at 0.1‰ and increased incrementally up to a maximum of 0.5‰ if no 

feasible solutions were returned (i.e. consumer isotopic values fell outside the mixture 

polygon). For all but three models, tolerance levels of 0.1‰ returned feasible results. 


15N values in Isosource models were adjusted for isotopic fractionation using a 

trophic enrichment factor of 3.2‰, based on a recent meta-analysis of 15N fractionation 

rates in coastal marine food webs (Michener and Kaufman 2007). 13C values were 

adjusted using a trophic enrichment factor of 0.5‰, which was selected based on the 

average 13C fractionation rate reported in McCutchan et al. 2003, and also because it 

represents an intermediate value in the range of trophic enrichment factors (0-1‰) 

generally applied to carbon in food web models. In order to estimate the number of 

trophic levels separating producers from juvenile snappers (i.e. consumers), baseline 


15N values (using the average 15N of all four primary producers) were calculated for 

each of the four study sites during the dry season and the rainy season, respectively (see 

Zeug and Winemiller 2008). For each study site and season, the differences in trophic 
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position between primary producers and each of the three snapper species were then 

estimated using the following equation adapted from Jepsen and Winemiller (2002): 

                    
                         

   ‰
  

where 15Nbaseline represents the baseline nitrogen value of producers (see above) for a 

given study site and season, 15Nconsumer represents the mean nitrogen value of juvenile 

snapper tissue, and 3.2‰ represents expected the 15N enrichment per trophic level (i.e. 

trophic enrichment factor). 

Due to high overlap in the isotopic signatures of seagrass and benthic diatoms, 

estimated organic matter contributions from these two primary producers were combined 

into a single source contribution using the a posteriori aggregation method described in 

Phillips et al. (2005). Combining these two sources was the most appropriate and 

conservative approach to use in estimating organic matter contribution given the high 

variability (and large associated error) observed in the isotopic signatures of benthic 

diatoms at most study sites. Interpreting data in this way was also reasonable from an 

ecological standpoint, as seagrass and diatoms both represent benthic sources of 

production, and would likely be utilized by consumers practicing a similar feeding 

mode. Thus, final Isosource models provide contribution estimates from three sources: 

phytoplankton, mangroves, and seagrass/benthic diatoms. 
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Results 

Characterization of Phytoplankton Content in Samples of POM 

During the dry season, estimated proportion phytoplankton content in POM 

(Xphyto) was highest at the south inner site (0.64) and lowest at the south outer site (0.05; 

Table 1). POM samples at both sites in the north (inner, outer) were similar in estimated 

phytoplankton content (0.32 and 0.33). In the rainy season, estimated phytoplankton 

content was highest at the north inner (0.47) and south inner (0.70) sites, and 

substantially lower at the north outer (0.17) and south outer (0.14). Estimated 13C 

values for phytoplankton (PMA) ranged from -17.9 to -27.1‰ in the dry season, and -

20.1 to -31.3‰ during the rainy season. Estimated 15N values ranged from 0.9 to 5.2‰ 

during the dry season and 1.5 to 4.5‰ during the rainy season, with higher values 

generally observed at the inner-shelf sites. 

 

Table 1: Estimates of phytoplankton content (XPMA) and isotopic signature (
13

CPMA, 
15

NPMA) in samples 
of suspended particulate organic matter (POM) collected from all four study sites during the dry season 

and rainy season (see APPENDIX A).. These estimated values (in bold) are used in all subsequent 
analyses to represent the isotopic signature of phytoplankton (i.e. planktonic microalgae [PMA]). 

 

  

 

  X
PMA

 
13

C
 POM

  
13

C
 SG

  
13

C
PMA

  
15

N
POM

  
15

N
SG

  
15

N
PMA

  

Dry North Inner 0.33 -13.45 -7.50 -27.07 2.12 2.40 1.48 

   Outer 0.32  -13.21 -8.30 -23.79 2.49 3.30 0.89 

  South Inner 0.64  -14.08 -6.80 -18.33 4.14 2.30 5.23 

   Outer 0.05  -8.64 -8.10 -17.91 1.19 1.20 0.96 
              

Rainy North Inner 0.47  -19.14 -11.70 -30.53 2.46 0.90 4.51 

   Outer 0.17  -11.63 -8.30 -24.32 1.48 1.40 1.66 

  South Inner 0.70  -24.17 -7.60 -31.34 3.98 3.00 4.43 

    Outer 0.14  -9.87 -8.30 -20.09 2.25 2.40 1.51 
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 Isotopic Signatures of Producers 

Of the four primary producers (Table 2), only phytoplankton (PMA) and seagrass 

(SG) displayed significant spatial or seasonal variability in isotopic (13C and 15N) 

signatures. 13C values in PMA were significantly more depleted in the north study 

region (MANOVA; P < 0.05) and inner shelf position (P < 0.05), as well as during the 

rainy sampling season (P < 0.05). There was a significant interaction between shelf 

position and season, and observed dry-to-rainy season depletions in PMA 13C were 

more pronounced at inner-shelf (∆ ≈ 12‰) vs. outer-shelf (∆ ≈ 0-3‰) locations. During 

the dry season, mean 13C values of PMA at most sites (-17.9 to -23.8‰) resembled 

typical marine phytoplankton signatures in the tropics (≈ 20-22‰; Bouillon et al. 2008), 

while PMA at the north inner site was relatively depleted in 13C (-27.1‰) and likely 

influenced by a freshwater phytoplankton signature (≈ 32‰ in riverine systems; France 

1995). During the rainy season, mean 13C values at the north and south inner sites (-

30.5 and -31.3‰) both strongly resembled freshwater phytoplankton signatures, while 

mean 13C values at the north and south outer sites (- 24.3 and -20-9‰) remained similar 

to marine values.  

PMA 15N values displayed significant regional, cross-shelf, and seasonal 

effects, with significant enrichment observed in the south study region (MANOVA; P < 

0.05) and inner shelf position (P < 0.05), as well as during the rainy sampling season (P 

< 0.05). For 15N, there was a significant interaction between season and region, and 

while overall 15N values were more enriched in the south (1.0-5.2‰ and 2.0-4.4‰ 
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during the dry and rainy seasons, respectively), observed seasonal enrichment in 15N 

was most pronounced in the north, with isotopic values increasing from 0.9-1.5‰ during 

the dry season to 1.9- 4.6‰ during the rainy season. Outside of PMA, seagrass was the 

only other primary producer included in the study to show significant variability in 13C 

and 15N. Seagrass 13C signatures displayed both cross-shelf and seasonal effects, with 

significantly depleted values observed at the outer shelf position (MANOVA; P < 0.05) 

and during the rainy sampling season (P < 0.05), Similar to PMA, dry-to-rainy-season 

depletions in 13C were more pronounced at inner-shelf (∆ ≈ 2-4‰) vs. outer-shelf (∆ ≈ 

0-0.2‰) sites. Seagrass 15N signatures varied significantly only by season (MANOVA; 

P < 0.05); however, seasonal effects differed between study regions. In the north, 

seagrass 15N showed significant depletions from the dry season (2.4-3.3‰) to the rainy 

season (0.9- 1.4‰), while seagrass 15N in the south displayed an opposite trend, 

showing dry-to-rainy season enrichment (1.3 - 2.3‰ to 2.4 – 3.0‰). No significant 

regional, cross-shelf, or seasonal differences in 13C or 15N were observed for benthic 

diatoms (BMA) or mangroves (MG). 

 

Isotopic Signatures of Consumers 


13C and 15N signatures of juvenile snappers differed significantly by region 

(MANOVA, P < 0.05), shelf position (P < 0.05), season (P < 0.05), and species (P < 

0.05). However, despite inter-specific variability in 13C and 15N values, observed 

cross-shelf and seasonal trends in both isotopes were consistent among all three juvenile 
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snappers examined, with no significant interactions detected between species and either 

shelf position or season. 


13C values for juvenile snapper tissue throughout the study ranged from -11.4 to 

-16.8‰ (Table 2) and showed significant enrichment in fishes collected from the outer 

shelf position (MANOVA, P < 0.05) and during the rainy sampling season (P < 0.05), 

although no significant differences in 13C were detected between regions (P > 0.05). 

Seasonal effects were greatest at the south outer and north inner study sites, with 

observed dry-to-rainy season enrichments of 1.3-5.1‰ and 0.6-1.7‰ respectively, while 

seasonal enrichments in snapper tissue at the other two sites were less pronounced (0-

0.2%). 13C also differed significantly among species (MANOVA, P < 0.05), with 

Lutjanus jocu displaying significantly depleted values compared to L. apodus, the 

species most enriched in 13C (Tukey HSD, P < 0.05).  


15N values for juvenile snappers in the study ranged from 9.3 to 11.7‰ (Table 

2) and did not differ significantly by species (MANOVA, P > 0.05). However, 15N 

signatures did show regional, cross-shelf, and seasonal effects, with significantly 

enriched values observed in fishes from the south study region (P < 0.05) and inner shelf 

position (P < 0.05) and significant depletions observed in fishes collected during the 

rainy sampling season (P < 0.05). As we observed for 13C, seasonal effects on juvenile 

snapper 15N were greatest at the south outer and north inner study sites, with observed 

dry-to-rainy season depletions of 0.9-1.5‰ and 0.6-1.1‰, respectively. Seasonal 

depletion in 15N was slightly less pronounced in fishes from the south inner site (0.5-
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1.0‰), and juvenile snappers collected from the north outer site showed slight 

enrichment (+ 0.2-1.0‰), rather than depletion, in 15N during the rainy season. 

 
 

 

Figure 2. Mean tissue 13C and 15N values for primary producers (phytoplankton [PMA], benthic 
microalgae [BMA], mangrove [MG], seagrass [SG]) and juvenile snappers (dog snapper Lutjanus jocu [1], 
gray snapper L. griseus [2], schoolmaster L. apodus [3]) collected during the dry season (closed symbols) 

and rainy season (open symbols). Error bars represent one standard deviation from the mean. 
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Table 2: Tissue 13C and 15N values (mean ± SD) for all primary producers (phytoplankton [PMA], 
benthic microalgae [BMA], mangrove [MG], and seagrass [SG]) and juvenile fishes (dog snapper 

Lutjanus jocu, gray snapper L. griseus, and schoolmaster L. apodus). 
 

Region Shelf Sample    
13

C   
15

N 

  DRY RAINY   DRY RAINY 

Producers 
       

  

North Inner PMA 
 

-27.1 ± 4.7 -30.2 ± 4.1 
 

1.5 ± 0.8 4.6 ± 0.6 
  

 
BMA 

 
-15.5 ± 2.9 -15.2 ± 5.7 

 
1.3 ± 0.7 2.1 ± 0.3 

  
MG 

 
-28.4 ± 1.0 -28.5 ± 0.5 

 
0.8 ± 2.0 -0.1 ± 2.5 

  
SG 

 
-7.5 ± 0.5 -11.7 ± 0.4 

 
2.4 ± 0.2 0.9 ± 0.6 

           
  Outer PMA 

 
-23.8 ± 3.3 -23.8 ± 5.6 

 
0.9 ± 0.7 1.9 ± 1.2 

  
 

BMA 
 

  -8.7 ± 3.5 -11.6 ± 7.7 
 

2.4 ± 0.5 2.4 ± 0.2 

  
MG 

 
-28.4 ± 1.0 -28.5 ± 0.5 

 
0.8 ± 2.0 -0.1 ± 2.5 

  
SG 

 
-8.3 ± 0.8 -8.3 ± 0.6 

 
3.3 ± 0.4 1.4 ± 0.2 

           
South Inner PMA 

 
-18.3 ± 1.7 -31.3 ± 2.1 

 
5.2 ± 0.2 4.4 ± 0.8 

  
 

BMA 
 

-12.2 ± 7.0 -11.2 ± 5.3 
 

2.3 ± 0.2 1.5 ± 1.9 

  
MG 

 
-29.6  ± 1.3 -28.5 ± 0.5 

 
2.1 ± 0.5 0.8 ± 0.7 

  
SG 

 
-6.8 ± 0.3 -7.6 ± 0.5 

 
2.3 ± 0.3 3.0 ± 0.3 

           
  Outer PMA 

 
-17.9 ± 3.8 -20.1 ± 7.9 

 
1.0 ± 0.9 2.0 ± 2.1 

  
 

BMA 
 

  -4.5 ± 0.6   -8.8 ± 2.3 
 

0.8 ± 0.6 1.8 ± 1.7 

  

MG 
 

-29.6  ± 1.3 -28.5 ± 0.5 
 

2.1 ± 0.5 0.8 ± 0.7 

  

SG 
 

-8.1 ± 0.1 -8.3 ± 0.7 
 

1.3 ± 0.1 2.4 ± 0.1 
  

       
  

 Juvenile Snappers         

North Inner L. jocu 

 
-16.5 ± 1.3 -15.9 ± 2.6 

 
11.1 ± 0.6 10.0 ± 0.4 

  
 

L. griseus 

 
-16.8 ± 2.6 -15.1 ± 1.0 

 
10.9 ± 1.8 10.2 ± 0.4 

  
 

L. apodus 

 
-14.4 ± 2.0 -14.9 ± 2.3 

 
10.9 ± 0.8 10.3 ± 0.9 

           
  Outer L. jocu 

 
-14.5 ± 0.9 -14.4 ± 1.4 

 
  9.6 ± 0.4 10.6 ± 1.1 

  
 

L. griseus 

 
-15.1 ± 1.0 -15.0 ± 0.8 

 
  9.8 ± 0.5 10.0 ± 0.2 

  
 

L. apodus 

 
-14.3 ± 1.3 -14.9 ± 1.0 

 
  9.4 ± 0.5   9.8 ± 0.5 

           
South Inner L. jocu 

 
-16.8 ± 1.4 -16.8 ± 0.7 

 
11.7 ± 0.4 10.8 ± 0.6 

  
 

L. griseus 

 
-14.8 ± 2.0 -15.3 ± 1.6 

 
11.2 ± 0.2 10.2 ± 0.4 

  
 

L. apodus 

 
-15.1 ± 2.0 -14.9 ± 1.3 

 
10.9 ± 0.4 10.4 ± 0.4 

            
  Outer L. jocu 

 
-16.4 ± 0.1 -13.7 ± 1.7 

 
11.0 ± 0.2   9.5 ± 1.0 

  

 

L. griseus 

 
-16.5 ± 1.1 -11.4 ± 0.9 

 
10.9 ± 0.5 10.0 ± 0.1 

  

 

L. apodus 

 
-14.6 ± 0.7 -13.3 ± 1.7 

 
10.4 ± 0.7   9.3 ± 0.4 
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Organic Matter Contribution from Primary Producers 

Isosource models consisted of two producers with enriched 13C values relative 

to juvenile snappers (i.e. seagrass [SG], benthic diatoms [BMA]) and two producers with 


13C values that were depleted relative to snapper signatures (i.e. phytoplankton [PMA], 

mangroves [MG]; Figure 2). For the most part, Isosource estimates of producer 

contribution were similar for all three snapper species within a given study site and 

season, although observed seasonal variability in production was slightly less 

pronounced for schoolmaster Lutjanus apodus compared to L. griseus and L. jocu. 

During the dry season, results from Isosource models clearly identified seagrass 

and benthic diatoms (SG/BMA) as the most important source of organic matter 

supporting juvenile snappers at three of the four study sites, with estimated minimum-

maximum source contributions to each of the three snapper species ranging from 36 to 

81% (median contribution estimates: 44 to 70%; Table 3). However, model results also 

indicate that fishes at these three sites during the dry season may receive considerable 

organic matter from phytoplankton-based sources in the water column (PMA), 

particularly at the north outer study site, where up to 52% of organic carbon supporting 

juvenile snappers is potentially derived from PMA (median contribution estimate: 31 to 

33%). At the south outer site, Isosource models identified phytoplankton (PMA) as the 

most important source of organic matter supporting two of the three snapper species (L. 

jocu, L. griseus; estimated contribution 19 to 69%, median: 45%). 

For two study sites (north outer, south inner), the primary sources of organic 

matter supporting juvenile snappers did not differ markedly from the dry season to the 
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rainy season (Figure 3b, 4a). In contrast, all three snapper species at the north inner and 

south outer sites (Figure 3a, 4b) displayed distinct seasonal shifts in producer source 

contribution; Isosource models for both of these locations indicated marked reductions in 

PMA production during the rainy season, accompanied by increased contribution from 

SG/BMA. At the north inner site, juvenile snappers received an estimated 48 to 81% 

(median: 52 to 70%) of organic matter from SG/BMA during the dry season and 70-91% 

(median: 78-83%) during the rainy season. Meanwhile, median contribution estimates 

for PMA among the three snapper species decreased by 2 to 20% from the dry to the 

rainy season. Shifts in organic matter production were even more pronounced at the 

south outer site, where contribution estimates for SG/BMA increased from 17 to 54% 

(median: 27 to 43%) during the dry season to 49 to 80% (median: 61 to 75%) during the 

rainy season, and median contribution estimates for PMA displayed a 14 to 33% 

seasonal decrease. Isosource did not identify mangrove detritus as a principle source of 

organic material supporting juvenile snappers at any of the four study sites in either dry 

season or rainy season models. 
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Figure 3. Results of Isosource models showing feasible percent source contributions from each primary 
producer (phytoplankton [PMA], mangrove [MG], seagrass/benthic microalgae [SG/BMA]) to juvenile 
snappers collected from the north inner (A) and north outer (B) study sites during the dry season (black) 

and rainy season (gray). 
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Figure 4. Results of Isosource models showing feasible percent source contributions from each primary 
producer (phytoplankton [PMA], mangrove [MG], seagrass/benthic microalgae [SG/BMA]) to juvenile 
snappers collected from the south inner (A) and south outer (B) study sites during the dry season (black) 

and rainy season (gray). 
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Table 3: Feasible organic matter contributions (range and mean ± SD) of primary producers for each 
species of juvenile snapper by region (north, south), shelf position (inner, outer), and sampling season 

(dry, rainy) based on Isosource models. Phytoplankton (PMA) and mangrove (MG) were considered as 
individual sources, while potential contributions from seagrass (SG) and benthic microalgae (BMA) were 
combined a posteriori into a single source category because of their similar isotopic values (Phillips et al. 

2005; see METHODS). Primary producers likely to contribute a disproportionate amount of organic 
matter (mean > 33%) for a given species within a study site or season are highlighted in bold. 

 
NORTH   INNER               OUTER             

L. jocu 

 
DRY RAINY 

 
DRY RAINY 

PMA 
 

3-47% (28 ± 10) 0-30% (14 ± 8)    4-47% (33 ± 11) 2-55% (31 ± 13) 

MG 
 

0-48% (18 ± 12) 0-16% (8 ± 4)    0-33% (11 ± 8) 0-29% (12 ± 7) 

SG/BMA 
 

48-64% (54 ± 4) 70-86% (78 ± 4)    53-63% (57 ± 3) 45-69% (56 ± 6) 

L. griseus 

   
  

 
  

PMA 
 

7-50% (32 ± 10) 0-25% (12 ± 7)    0-52% (31 ± 14) 0-52% (27 ± 14) 

MG 
 

0-45% (16 ± 11) 0-13% (7 ± 3)    0-39% (15 ± 11) 0-28% (12 ± 8) 

SG/BMA 
 

46-61% (52 ± 3) 74-90% (81 ± 4)    48-61% (54 ± 3) 48-72% (60 ± 6) 

L. apodus 

   
  

 
  

PMA 
 

0-31% (13 ± 8) 0-24% (11 ± 7)    9-46% (33 ± 9) 0-51% (26 ± 14) 

MG 
 

0-40% (17 ± 10) 0-12% (6 ± 3)   0-28% (9 ± 7) 0-28% (12 ± 8) 

SG/BMA  60-81% (70 ± 5) 75-91% (83 ± 4)   54-63% (58 ± 2) 49-73% (62 ± 6) 

SOUTH   INNER     OUTER   

L. jocu 

 
DRY RAINY   DRY RAINY 

PMA 
 

22-28% (25 ± 2) 11-32% (22 ± 5)    19-69% (45 ± 11) 0-47% (18 ± 12) 

MG 
 

24-38% (31 ± 4) 0-36% (18 ± 10)    14-43% (28 ± 6) 4-33% (21 ± 7) 

SG/BMA 
 

36-52% (44 ± 4) 53-68% (61 ± 4)    17-38% (28 ± 5) 49-68% (61 ± 4) 

L. griseus 

   
  

 
  

PMA 
 

22-28% (25 ± 2) 7-28% (18 ± 5)    19-69% (45 ± 11) 0-34% (12 ± 8) 

MG 
 

13-30% (21 ± 4) 0-35% (16 ± 10)    15-43% (28 ± 6) 0-21% (13 ± 5) 

SG/BMA 
 

45-63% (54 ± 4) 58-73% (66 ± 4)    16-38% (27 ± 5) 66-80% (75 ± 3) 

L. apodus 

   
  

 
  

PMA 
 

22-28% (25 ± 2) 6-27% (13 ± 8)    0-59% (31 ± 13) 0-44% (17 ± 11) 

MG 
 

14-31% (23 ± 4) 0-26% (23 ± 8)    10-46% (27 ± 8) 3-30% (19 ± 7) 

SG/BMA   44-62% (53 ± 4) 62-75% (64 ± 1)    31-54% (43 ± 5) 53-71% (64 ± 4) 
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Nutritional Condition of Consumers 

Mean lipid content in juvenile snapper muscle tissue was similar among species 

(ANOVA, P > 0.05) but differed significantly by study site (P < 0.05) and season (P < 

0.05). A significant interaction was also detected between study site and season. For all 

three species during the dry season, mean lipid content was highest at the north inner 

(range: 30.9-41.1 mg/g) and south outer (range: 25.2-42.5 mg/g) sites (Figure 5).  Mean 

lipid content across the three species at the north outer site was slightly lower (range: 

22.0-32.0 mg/g), while snappers collected from the south inner site displayed 

significantly lower lipid content (L. jocu = 16.3 mg/g, L. griseus = 15.2 mg/g, L. apodus 

= 13.7 mg/g) than fishes collected from any of the other three locations (Tukey HSD, P 

< 0.05).  

During the rainy season, mean lipid content of each species was significantly 

higher at the north outer site than at any of the other locations (L. jocu = 34.1 mg/g, L. 

griseus = 22.3 mg/g,  L. apodus = 27.6 mg/g), while mean lipid content across the three 

species at the two inner-shelf sites was similar: north inner (16.6-18.5 mg/g), south inner 

(13.7-18.7 mg/g). Mean lipid content of all three species from the south outer site was 

significantly lower during this season (L. jocu = 3.7 mg/g, L. griseus = 4.0 mg/g ,  L. 

apodus = 6.0 mg/g) than at any of the other sites in the study, which is notable because 

lipid content at this site during the dry season was the second highest among the four 

locations (Tukey HSD, P < 0.05).  

At the two sites where significant seasonal shifts in producer contribution were 

observed in Isosource models (north inner, south outer), all three species of snapper 
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displayed significant decreases in muscle lipid content from the dry season to the rainy 

season (Student’s T-test; P < 0.05). Conversely, at the two sites where Isosource 

producer contribution was relatively consistent between the dry and rainy season (north 

outer, south inner), muscle lipid content did not differ significantly between seasons for 

any of the three species (Student’s T-test; P > 0.05). 

 
 

 
 
Figure 5. Seasonal comparison of muscle lipid content (mean ± SE) at each of the four study sites for dog 

snapper (Lutjanus jocu), gray snapper (L. griseus), and schoolmaster (L. apodus). Within a given site, 
asterisks denote species that displayed significant decreases in mean lipid content from the dry season to 

the rainy season. 
 

 

Discussion 

Similar to other estuarine systems (see Fry 1999), observed spatiotemporal 

variability in producer signatures in the current study appeared to be strongly related to 
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freshwater inflow to the Belize coastal lagoon. Depleted phytoplankton 13C signatures 

observed at inner-shelf study sites indicate that freshwater influence is strongest in back-

reef nurseries directly adjacent to the coast, while depletions in 13C observed during the 

rainy sampling season indicate a shift in dominance from marine to freshwater 

phytoplankton during periods of high freshwater input (France 1995). The concurrent 

enrichments in phytoplankton 15N signatures that were also observed from the inner 

shelf position and rainy sampling season suggest that anthropogenic nutrient loading 

within back-reef food webs may be strongly related to freshwater input to the lagoon 

(McClelland and Valiela 1998). Enriched 15N signatures of aquatic organisms have 

been well established as a reliable biogenic indicator of anthropogenic eutrophication in 

estuarine systems (Hannson et al. 1997; McClelland and Valiela 1998; Fry 2013), and 

previous research characterizing riverine food webs in southern Belize has demonstrated 

that 15N signatures of consumers and producers from  river basins influenced by 

agricultural runoff are significantly enriched relative to individuals collected from 

pristine watersheds (Winemiller et al. 2011). However, assessing anthropogenic 

influence based on variability in the 15N isotope can be complicated because the effects 

of nutrient loading on producer signatures can vary based on the source of nutrients in 

coastal runoff. For example, artificial fertilizers are isotopically light in 15N (≈ 0 ‰) 

relative to most organic nutrients, and thus often cause substantial depletion, rather than 

the expected enrichment, of 15N values in coastal producers (Derse et al. 2007). This 

may explain the opposite seasonal shifts observed for seagrass 15N between study 

regions, with dry-to-rainy season enrichment observed in the south (where sewage 
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discharge and organic fertilizers are the main sources of nutrient runoff), and dry-to-

rainy season depletions observed in the north, where agriculture in adjacent watersheds 

is commercially developed and the use of chemical fertilizers is more widespread 

(Gibson et al. 1998; Winemiller et al. 2011). 

Spatial variability in juvenile snapper 13C and 15N values also appeared to 

reflect gradients in freshwater input throughout the study area, with consistently 

enriched 13C values observed at outer-shelf locations, where marine influence is 

strongest, and consistently enriched 15N values observed at inner-shelf sites, where 

impacts of anthropogenic nutrient runoff are most direct. However, contrary to our initial 

predictions (i.e. that seasonal shifts in consumer signatures would be greatest at inner-

shelf nurseries influenced by extensive coastal runoff), observed seasonal shifts in 

snapper 13C and 15N values did not appear to be directly related to the magnitude of 

freshwater input influencing a given location. For all three species, the largest dry-to-

rainy season shifts in both 13C and 15N were consistently observed at the south outer 

and north inner sites, while minimal seasonal effects were observed at the other two sites 

(including the south inner, which received the largest volume of riverine discharge 

among collection locations). These results were unexpected given that seasonal 

variability in trophic production within coastal waters has been widely linked to 

seasonally pulsed riverine nutrient delivery (Darnaude et al. 2004; Fonseca et al. 2006; 

Dolbeth et al. 2008); however, the observed spatial patterns are likely linked to 

watershed dynamics and directional current flow within the study area (Figure 1). The 

north inner and south outer study sites are hydrologically connected by the prevalent 
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southward flowing current in the Belize lagoon, and perhaps more significantly, were the 

only sites in the study to be directly influenced by coastal runoff from multiple 

watersheds in the north, where urban development, commercial agriculture, and 

aquaculture are most expansive (Gibson et al. 1998; Heyman and Kjferve 1999). In 

contrast, the two sites where snapper isotopic signatures were relatively consistent 

(indicating similar sources of production across seasons) either received limited 

freshwater input (north outer) or received extensive freshwater input from pristine 

watersheds (south inner) managed under the Maya Mountain Marine Corridor. Thus, 

while seasonal food web dynamics in back-reef systems have been largely attributed to 

variable freshwater input, our results indicate that seasonality in producer contribution to 

nursery-associated consumers may be determined primarily by the source and quality of 

freshwater runoff (i.e. watershed impacts) rather than the volume of freshwater discharge 

delivered to a given location. Here, the two sites receiving substantial anthropogenic 

runoff from impacted watersheds represented the only two nurseries to display 

significant rainy season shifts in the dietary signatures of associated consumers. 

The net effects of anthropogenic nutrient loading on coastal food webs are often 

unpredictable and can vary substantially across ecosystems (Loneragan and Bunn 1999; 

Marcarelli et al. 2011). When food is limiting, terrestrial nutrients delivered via coastal 

runoff can increase the pool of organic matter available to consumers by stimulating 

primary and secondary productivity in the water column (Finlay 2011), and in estuaries, 

elevated phytoplankton and zooplankton densities have been widely associated with 

riverine plumes (Grimes 2001). Still, increased nutrient availability will not result in a 



 

35 

 

net increase in nursery production unless organic matter derived from anthropogenic 

sources is efficiently assimilated into upper trophic levels and utilized by nursery-

associated consumers (Grimes 2001; Davis et al. 2010; Finlay 2011). In estuarine 

systems where anthropogenic nutrients do contribute substantially to coastal food webs, 

enriched 15N signatures typically occur throughout all trophic levels (Hannson et al. 

1997), and similar spatiotemporal patterns in both 13C and 15N are generally observed 

between producers and consumers, reflecting seasonal and spatial variability in 

freshwater input (Winemiller et al. 2011). This was not the case in the current study; 

although PMA showed the expected rainy-season enrichment in 15N at the two study 

sites heavily influenced by anthropogenic nutrient runoff (north inner, south outer), all 

three juvenile snapper species at these two sites displayed significant rainy-season 

depletions in 15N, suggesting that anthropogenic nutrients utilized by phytoplankton are 

not being well assimilated into the diets of consumers. Opposite directional shifts were 

also observed for 13C at these sites (rainy-season depletion in PMA but enrichment in 

juvenile snappers), further indicating that observed shifts in snapper dietary signatures in 

nurseries heavily influenced by anthropogenic runoff are driven by a seasonal shift in the 

source of primary production, rather than a case of juvenile snapper signatures simply 

tracking spatiotemporal variability in producer signatures (Melville and Connoly 2003) 

or assimilating terrestrial organic matter depleted in carbon (Bouillon et al. 2004). 

Seasonal shifts in the source of organic matter supporting juvenile snappers at 

heavily impacted nurseries were further substantiated by the results of our Isosource 

models. Given that enhancement of primary and secondary production in the water 
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column is the chief mechanism by which riverine nutrient subsidies are thought to 

enhance trophic production for upper level consumers (Loneragan and Bunn 1999; 

Grimes 2001), we expected that juvenile snappers collected from nurseries influenced by 

high nutrient runoff would receive increased contribution from water-column based 

sources (i.e. PMA) during the rainy sampling season. However, results of Isosource 

models at both study sites where anthropogenic runoff is pronounced (north inner, south 

outer) reveal that observed seasonal shifts in snapper signatures at these two nurseries 

are driven by a seasonal decrease in PMA contribution during periods of high freshwater 

input, with most snapper species during the rainy season receiving a large majority of 

organic matter from benthic sources (SG/BMA). In freshwater systems, similar rainy 

season decreases in water column production have been widely attributed to shifts in 

phytoplankton community composition due to nutrient loading (Wootton and Power 

1993; Davis et al. 2010; Marcarelli et al. 2011). Because elevated nutrient levels 

typically favor fast-growing, opportunistic producers, anthropogenic nutrient input may 

effectively decrease the pool of organic matter available to upper-level consumers by 

replacing producers that contribute to nursery food webs (e.g. diatoms) with high 

densities of undesirable prey species that are unpalatable or low in nutrient value (e.g. 

dinoflagellates, cyanobacteria) (Tewfik et al. 2005; Finlay 2011). While we did not 

directly measure phytoplankton biomass in our samples, estimated phytoplankton 

content (XPMA) in suspended POM showed a 50-300% increase during the rainy season 

at both sites influenced by anthropogenic runoff (north inner, south outer), even though 

percent contribution estimates of phytoplankton-based organic matter to juvenile 
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snappers utilizing these nurseries during the rainy season was markedly reduced (Table 

1). In contrast phytoplankton content at both the north outer and south inner sites, where 

phytoplankton production was relatively consistent across seasons, remained relatively 

constant or decreased during the rainy season. Recent food web research in freshwater 

systems has increasingly recognized the importance of nutrient quality, as well as 

nutrient quantity, in quantifying the net effects of spatial organic matter subsidies on 

ecosystem production (Marcarelli et al. 2011). Our results suggest that this approach 

may also be useful if applied in other estuarine and marine systems. Much of the existing 

research attempting to link riverine discharge to trophic production within back-reef 

nurseries has used phytoplankton content in the water column as an indicator of 

increased primary production within nursery food webs. However, based on our results, 

quantifying net production from allochthonous nutrient input based solely on producer 

abundance may be misleading, as decreased productivity from “less-desirable” producer 

species appears to offset or exceed any ecosystem benefits resulting from increased 

producer biomass in the water column. 

Although increased allochthonous subsidy delivered through riverine input did 

not appear to enhance trophic productivity within nursery food webs at any of our four 

study sites, results from this study indicate that anthropogenic nutrient input from 

impacted watersheds has the potential to substantially decrease trophic productivity, and 

possibly nursery production, by disrupting the sources of organic matter supporting 

nursery-associated consumers. Similar to previous studies in freshwater systems 

demonstrating that even minor (< 5%) reductions in nutrient availability can result in 
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disproportionate decreases in fish growth (31%) and biomass (50%) (Nakano and 

Nakamuri 2001; Baxter et al. 2007), seasonal decreases in PMA contribution at both the 

north inner and south outer sites were accompanied by significant decreases in 

nutritional condition (based on muscle lipid content) for all three species of juvenile 

snappers. During the dry season, mean lipid content in juvenile snapper tissue at both of 

these sites (≈ 30-50 mg/g) was similar to published values for fully fed tropical reef fish 

juveniles in laboratory feeding experiments conducted at similar temperature and salinity 

conditions (Kerrigan 1994), while lipid content during the rainy season (≈ 3-18 mg/g) 

closely resembled the lipid content observed in starved fishes. Decreases in muscle lipid 

content appeared to be directly proportional to the magnitude decrease in estimated 

phytoplankton contribution, and the most pronounced seasonal decreases in juvenile 

snapper condition for all three species were observed at the south outer study site, 

corresponding to the largest seasonal shift in the sources of organic matter supporting 

nursery food webs. It is also notable that the two impacted nurseries (north inner, south 

outer) during the dry season displayed the highest muscle lipid content for most snapper 

species, suggesting that potential high quality nursery habitats in the region may be most 

negatively impacted by anthropogenic pollution. 
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CHAPTER III  

OTOLITH STABLES ISOTOPES AS A NATURAL MARKER OF NURSERY 

ORIGIN FOR JUVENILE SNAPPERS IN BACK-REEF SYSTEMS 

 

Introduction 

Quantitative evaluations of nursery productivity require a reliable method of 

determining the origin of adult fishes. However, identifying suitable natural markers 

with the resolution to discriminate individuals from different nearshore nurseries has 

proved challenging (Gillanders 2005; McMahon et al. 2011). Chemical tags in biogenic 

hard parts such as otoliths (ear stones) have been used successfully to evaluate stock 

structure (e.g. Edmonds et al. 1989; Campana et al. 1994), large-scale movement 

(Rooker et al. 2008), and population connectivity (Yamashita et al. 2000; Rooker et al. 

2010) of marine fishes. However, the spatial resolution at which otolith chemical 

signatures can be used as site-specific markers is limited by the amount of environmental 

variation in water chemistry among locations (Gillanders and Kingsford 1996; Thorrold 

et al. 1998), and the majority of studies that have successfully used chemical tags in 

otoliths to determine nursery origin have done so for nurseries that are separated by 

hundreds to thousands of kilometers (e.g. Leakey et al. 2008; Rooker et al. 2008; 

Ashford et al. 2011).  Few studies have attempted to evaluate these chemical tags as a 

marker of nursery origin for habitats in close proximity (e.g. back-reef habitats in the 

tropics), and the effectiveness of these markers at smaller spatial scales has been variable 

among ecosystems (e.g. Hamer et al. 2003; Chittaro et al. 2005; McMahon et al. 2011). 
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The present study evaluates the utility of stable isotopes in otoliths as natural 

markers of nursery origin for three snappers in the family Lutjanidae (dog snapper 

Lutjanus jocu, gray snapper L. griseus, and schoolmaster L. apodus) that inhabit back-

reef nurseries along the Mesoamerican Barrier Reef (MBR) in southern Belize. These 

three reef fishes were chosen as model species for analysis based on their ecological and 

commercial importance (Polunin and Roberts 1993; Nagelkerken et al. 2000), well-

documented juvenile association with mangrove and seagrass habitat (Nagelkerken et al. 

2001; Mumby et al. 2004), and widespread distribution throughout the Belize coastal 

lagoon, thus accommodating a sampling design that is spatially explicit yet consistent 

among habitat types. In the study, we evaluated the extent of regional (north vs. south) 

and ecotonal (inshore vs. offshore) variability in otolith stable isotope ratios (13C and 


18O) of these juvenile snappers, and examined whether isotopic signatures in otoliths 

can be used to reliably identify juvenile fishes collected from different back-reef 

nurseries within the coastal lagoon. 

 

Methods 

Study Area and Sampling Design 

The study was conducted in the southern portion of the coastal lagoon enclosed 

by the Mesoamerican Barrier Reef    (MBR) in Belize (Figure 1). The lagoon is 

characterized by a complex reef system and an extensive network of small keys, which 

are arranged in lines roughly parallel to the coast along the inner (5-10 km from 

coastline) and outer (> 40 km from coastline) continental shelf. Belize is unique among 
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Central American countries in that a large percentage of its 384 km coastline is still lined 

with fringing mangroves (primarily red mangrove Rhizophora mangle), and 

approximately 60 to 80% of keys throughout the lagoon (including areas of the inner to 

outer shelf) also have substantial mangrove and seagrass coverage (Murray et al. 2003). 

This unique habitat configuration makes the Belize coastal lagoon an ideal model system 

in which to evaluate the utility of otolith stable isotope ratios as a marker of nursery 

origin in reef fishes, as the widespread distribution of back-reef nursery habitats 

(mangroves and seagrass beds) across the continental shelf facilitates the assessment of 

large-scale ecotonal differences in these natural markers. 

  Sampling was conducted across two latitudinal regions in southern Belize. The 

reef system offshore from Port Honduras at the far southern edge of the MBR was 

designated as our south sampling region while the reef system off Placencia 

approximately 50 km to the north represented the north sampling region (Figure 1). Each 

region contained one inner-shelf study site (located within 10 km of the coast) and one 

outer-shelf study site (located at the edge of the MBR, ≈ 40 km offshore) for a total of 

four sites in the study (north inner, north outer, south inner, south outer). Each study site 

was comprised of three replicate mangrove keys situated within a 5-km radius.  

There is a pronounced latitudinal gradient in precipitation in Belize (Heyman and 

Kjerfve 1999), and our two sampling regions were selected to evaluate the effects of 

differential freshwater input on otolith isotopic signatures across the continental shelf. 

Rainfall in Port Honduras (adjacent to the south sampling region) averages 3700-4000 

mm annually (Thattai et al. 2003), compared to only 2000-3000 mm in Placencia 
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(adjacent to the north sampling region; Ariola 2003), and freshwater input resulting from 

terrestrial runoff and riverine discharge strongly influence the temperature, salinity, 

dissolved oxygen (DO), and dissolved inorganic carbon (DIC) content of coastal waters 

in the lagoon (Heyman and Kjerfve 1999; Thattai et al. 2003). 

 

Field Collections 

Juvenile snappers were collected during two sampling trips conducted in March 

and July of 2009, and all four study sites were sampled during each trip. All fishes were 

collected by microspear, and specimens included in the study were generally 60-120 mm 

total length (ca. one year of age or younger; Jones et al. 2010). This size was chosen as 

the experimental cut-off based on previous studies indicating that ontogenetic habitat 

shifts from mangrove and seagrass nurseries for L. apodus (Verweij et al. 2007; 

MacDonald et al. 2009), L. griseus (Faunce and Serafy 2007), and L. jocu (Moura et al. 

2011), typically occur at larger sizes. From each of the four study sites, a subsample of 

10 individuals for each species was targeted for otolith stable isotope analysis, although 

sample sizes were less than 10 for some species in the southern study sites (Table 4). 

During snapper collection trips, three replicate temperature and salinity measurements 

were taken at each study site using a Sonde 6920 Environmental Monitoring System 

(YSI Inc.). 
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Table 4: Summary of juvenile samples collected in 2009 from each study site, with results of otolith stable 
isotope analysis for dog snapper Lutjanus jocu, gray snapper L. griseus, schoolmaster L. apodus, and all 

species pooled (Total). Errors are reported as one standard deviation from the mean. 
 

 
 
 
Otolith Stable Isotope Analysis  

In the laboratory, fishes were measured to the nearest millimeter (total length) 

before sagittal otoliths were extracted. A single otolith (left or right) was selected 

randomly from each snapper and carefully cleaned to remove any residual tissue. In 

order to obtain the isotopic signature of the nursery period without including the 

signature from the pelagic larval phase, the portion of the otolith corresponding to the 

first six months of life following settlement was isolated using a drill path programmed 

into a New Wave MicroMill System (Figure 6). The template for this drill path was 

Site Species   Total length (mm) Mean isotopic ratios (‰) 

    n Mean Range 
3

C 

 

North Inner L. jocu 10 73.1 ± 11.0 58-91 -4.57 ± 0.88 -1.78 ± 0.21 
  L. griseus 10 83.2 ± 14.6 59-105 -5.55 ± 0.95 -1.55 ± 0.23 
  L. apodus 10 74.9 ± 10.6 62-90 -4.30 ± 1.33 -1.90 ± 0.37 
  Total 30 77.1 ± 12.6 58-105 -4.81 ± 1.17 -1.74 ± 0.31 

  

     
  

North Outer L. jocu 10 82.4 ± 14.0 58-104 -4.16 ± 0.98 -1.49 ± 0.25 
  L. griseus 10 82.7 ± 11.1 60-96 -4.79 ± 0.66 -1.27 ± 0.16 
  L. apodus 10 78.0 ± 6.3 70-86 -4.39 ± 0.90 -1.26 ± 0.17 
  Total 30 81.0 ± 10.8 58-104 -4.45 ± 0.87 -1.34 ± 0.22 

  

     
  

South Inner L. jocu 7 101.0 ± 23.0 70-125 -5.96 ± 0.90 -1.93 ± 0.47 
  L. griseus 10 95.9 ± 12.2 75-115 -5.46 ± 0.87 -1.98 ± 0.46 
  L. apodus 7 76.7 ± 8.0 68-87 -6.43 ± 0.89 -2.20 ± 0.57 
  Total 24 90.9 ± 17.3 68-125 -5.89 ± 0.94 -2.03 ± 0.49 

  

     
  

South Outer L. jocu 8 88.5 ± 29.1 53-132 -4.16 ± 1.34 -1.66 ± 0.23 
  L. griseus 5 106.0 ± 10.8 88-116 -2.29 ± 1.40 -1.61 ± 0.35 
  L. apodus 9 72.2 ± 8.5 60-85 -3.08 ± 0.86 -1.42 ± 0.25 
  Total 22 85.8 ± 22.6 53-132 -3.29 ± 1.34 -1.55 ± 0.28 
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based on measurements taken from sectioned otoliths of juvenile snappers ≈ 90 mm TL, 

which were determined to be approximately 210 days of age, and patterns were created 

separately for each of the three snapper species. Powdered otolith material was sent to 

the Stable Isotope Geosciences Facility at Texas A&M University, where 13C and 18O 

were measured using a KIEL-IV automated carbonate preparation device coupled to a 

Thermo Scientific MAT 253 Isotope Ratio Mass Spectrometer (IRMS). Ratios of 13C 

and 18O were reported relative to the Pee Dee Belemnite (PDB) following calibration 

against the international carbonate standard, NBS-19, and analytical uncertainties were 

reported as 0.04 ‰ for 13CPDB and 0.06 ‰ for 18OPDB. 

 

 

 

Figure 6. Cross section of juvenile snapper otolith showing the otolith core (A), settlement mark (B), 
nursery period (C) and Micromill drill pattern (D). Programmed drill pattern (D) was 150 µm in length, 
and samples were milled using a 500-µm diameter carbide drill bit. Dotted lines denote the actual area 
sampled from the milling pattern. Nursery period (C; shaded in gray) represents the area of the otolith 

corresponding to the first 30-210 days of life, or the six-month period immediately following settlement to 
the nursery. 
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Data Analysis 

Spatiotemporal variability in water temperature and salinity was evaluated using 

three-way analysis of variance (ANOVA), with region (north, south), shelf position 

(inner, outer), and season (dry, rainy) as the main effects. 

For each of the three snapper species (dog snapper, gray snapper, schoolmaster), 

two-way ANOVAs were conducted to evaluate regional and cross-shelf differences in 

otolith 13C and 18O. Potential inter-specific differences in otolith signatures (13C, 


18O) were evaluated using multivariate analysis of variance (MANOVA), with species, 

region, and shelf position as the main effects. Quadratic discriminant function analysis 

(QDFA) was then used to determine the percent classification success (cross-validated) 

of juvenile fishes originating from different regions and shelf positions to their 

respective nursery areas. All data analyses were conducted in SPSS v. 19 and SYSTAT 

13.1. 

 

Results 

Physicochemical Characterization of Study Sites 

Seasonality in the climate of Belize is driven primarily by intra-annual variability 

in precipitation, and temperatures in most parts of the country remain relatively constant 

year round (Heyman and Kjferve 1999). This was strongly reflected in the 

environmental measurements taken during field collections (Table 5). Mean water 

temperature showed only minimal variability (~ 1°C) across all four study sites over the 

course of the study, and no significant differences in temperature were detected between 
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regions, seasons, or shelf positions (ANOVA, F = 1.21, P > 0.05). In contrast, salinity 

varied significantly by both region and shelf position, with higher salinity values 

observed at the outer shelf position (ANOVA, F = 75.88, P < 0.001) and in the north 

sampling region (ANOVA, F = 30.01, P < 0.001). Significant differences in salinity 

were also detected between the dry and rainy season, and this seasonal effect was most 

pronounced in the south (ANOVA, F = 5.88, P < 0.05). 

 
 
 

Table 5. Environmental parameters measured at study sites during the dry season (March-April) and rainy 
season (July) field collections. Values are given as the mean (± standard deviation) of all three station 

measurements taken within each study site. 
 
 

 

 

 

 

 

 

 

 

 

  

Temperature (C°) 
   

  

 

Mar-Apr 

(Dry ) 

July 

(Rainy) Overall 

       North Inner 31.3 ± 0.5 30.3 ± 0.4 30.8 ± 0.7 

  North Outer 29.3 ± 0.2 30.4 ± 1.0 29.9 ± 0.9 

  South Inner 30.6 ± 0.8 31.4 ± 0.9 31.0 ± 0.9 

  South Outer 30.1 ± 2.3 30.7 ± 0.6 30.4 ± 1.5 

       
Salinity (ppt) 

   

 

Mar-Apr 

(Dry) 

July 

(Rainy) Overall 

         North Inner 30.7 ± 1.2 30.7 ± 2.3 30.7 ± 1.6 

  North Outer 35.7 ± 0.6 36.0 ± 0.5 35.8 ± 0.5 

  South Inner 30.2 ± 0.3 28.3 ± 0.6 29.3 ± 1.1 

  South Outer 33.7 ± 1.2 30.7 ± 1.2 32.2 ± 1.9 
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Figure 7. Mean otolith isotopic values (pooled across dog snapper Lutjanus jocu, gray snapper L. griseus 
and schoolmaster L. apodus) of C (A) and  (B) in relation to salinity. Error bars represent one 

standard deviation from the mean. Salinity values (solid line) represent the average of all salinity 
measurements taken at each study site during both the dry and rainy seasons. 

 
 

Spatial Variability in Otolith Isotopic Signatures 

For all three snapper species, both otolith isotopes (13C and 18O) showed 

significant enrichment in snappers collected from outer-shelf sites (Figure 8; ANOVA, P 

< 0.05). Otolith 13C signatures at inner-shelf sites ranged from -5.14 to -5.51‰ for each 

species, while values from the outer shelf were consistently higher (-3.77 to -4.04‰). 

Similar cross-shelf effects were observed for 18O, and again, isotopic values at the inner 

shelf position (-1.76 to -2.02‰) showed consistent depletion relative to the outer shelf 

signatures (-1.34 to -1.54 ‰).  
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No significant region effect was detected for otolith 13C in any of the species 

investigated.  However, otolith 18O did appear to be influenced by region, and all three 

species displayed significant enrichment in 18O in the northern sampling region (-1.26 

to -1.90‰) relative to the south (-1.42 to -2.20‰).  In general, spatial variability in 

isotopic signatures was relatively consistent across snapper species, and no significant 

differences in 13C or 18O values were detected (MANOVA; P < 0.05), suggesting that 

all three congeners included in the study reflected ambient water chemistry in a similar 

manner. 

 

Classification of Juvenile Snappers to Nursery of Origin 

Despite the similarities in otolith 13C and 18O values observed for juvenile 

snappers, discrimination among the four study sites based on otolith signatures varied by 

species. Overall cross-validated classification success was highest for schoolmaster 

(81%) followed by gray snapper (69%) and dog snapper (58%). Classification success 

for all three species was highest at the north outer study site: schoolmaster (100%), dog 

snapper (90%), gray snapper (80%) (Table 6). Cross-validated classification success to 

shelf position (i.e. inner vs. outer; pooled across sampling regions) was relatively high 

for both schoolmaster (92%) and gray snapper (89%), and slightly lower for dog snapper 

(74%). For all three species, classification success to shelf position was highest on the 

outer shelf: schoolmaster (100%), gray snapper (93%), dog snapper (83%). 
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Figure 8. Otolith C and for dog snapper Lutjanus jocu (A), gray snapper L. griseus (B), and 
schoolmaster L. apodus (C) by shelf position (Inner, Outer), with samples from the north and south 

sampling regions pooled. Ellipses represent one standard deviation from the mean for each shelf position. 
 
 
 
 

Table 6: Classification success of juvenile snappers to study site and shelf position based on quadratic 
discriminant function analysis (QDFA) of otolith C and . 

 

Classification success by study site     

  Species pooled L. jocu L. griseus L. apodus 

North Inner 43% 55% 60% 60% 
North Outer 70% 90% 80% 100% 
South Inner 58% 57% 60% 86% 
South Outer 55% 25% 80% 78% 
Total 57% 58% 69% 81% 

  

   
  

Classification success by shelf position     

  Species pooled L. jocu L. griseus L. apodus 

Inner 76% 65% 85% 82% 
Outer 90% 83% 93% 100% 
Total 83% 74% 89% 92% 
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Discussion 

Spatial variability in otolith 13C was similar for all three species of juvenile 

snappers examined, and appeared to be related to coastal hydrology and salinity 

gradients within the Belize coastal lagoon. Similar to previous laboratory and field 

experiments that have documented strong positive relationships between salinity and 

otolith 13C (e.g. Dufour et al. 1998; Elsdon and Gillanders 2002; Rooker et al. 2010), 


13C values in the current study were consistently higher (more enriched) in juvenile 

snappers taken from outer-shelf nurseries, where salinity generally resembled marine 

conditions (32-36‰), and more depleted in snappers taken from inner-shelf nurseries, 

where lower salinity values (29-31‰) indicate stronger freshwater influence. Otolith 


13C is determined primarily by dissolved inorganic carbon (DIC) content in the water 

column (Campana 1999), and here, significantly lower 13C signatures observed at 

inner-shelf nurseries likely reflect an influx of terrestrial DIC from riverine input and 

coastal runoff, which is typically depleted in 13C compared to marine sources (Boutton 

1991; Chanton and Lewis 2002). Because a small proportion (~10-30%) of otolith 

carbon is metabolically derived (Campana 1999; Tohse and Mugiya 2008), it is also 

possible that observed variability in 13C may be influenced by dietary differences 

among study sites. However, outer-shelf food webs in back-reef systems are typically 

depleted in 13C due to increased contribution of coral-based organic matter (Verweij et 

al. 2008; Huijbers et al. 2013), and considering that otolith 13C signatures of snappers 

showed significant enrichment (rather than depletion) at the outer shelf position, it 
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appears that cross-shelf differences in otolith 13C were driven primarily by salinity 

gradients as opposed to metabolic (i.e. dietary) effects. 

Similar enrichments in otolith 18O signatures were observed for all three 

juvenile snapper species at the outer shelf position, and it is likely that these were also 

strongly influenced by coastal hydrology and physicochemical water properties (i.e. 

salinity) across the Belize continental shelf. Unlike 13C, 18O in biogenic carbonates 

(e.g. otoliths) is generally accreted at near equilibrium with ambient water conditions 

and is not significantly affected by diet (Thorrold et al. 1997). Temperature and salinity 

are the primary water column parameters influencing otolith 18O signatures in most 

systems (Campana 1999). However, given the low variability in water temperature 

occurring throughout our study area (Heyman and Kjferve 1999; also see Table 5), it is 

likely that, similar to 13C, depleted 18O signatures observed at inner-shelf nurseries are 

driven primarily by offshore gradients in salinity; specifically, increased freshwater 

runoff and input of 18O depleted rainwater closer to the coast (Avery et al. 2006).  

Variable salinity conditions may also explain the significant depletion in otolith 


18O observed in the southern sampling region. Due to the strong latitudinal gradient in 

precipitation in Belize, annual rainfall in the Toledo watershed (south sampling region) 

is markedly higher than in the Stann Creek watershed (north sampling region), resulting 

in increased freshwater input to the lower portion of the lagoon (Heyman and Kjferve 

1999). Over the course of the study, average salinity measurements were ~1.5-3.5‰ 

lower in the southern sampling region, while mean otolith 18O for each species showed 

an average depletion of ~ 0.1-0.4‰ from the north to the south. These results are 
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consistent with previous studies conducted in tropical systems that have reported a 0.11-

0.14‰ enrichment in otolith 18O for each 1‰ increase in salinity (Craig and Gordon 

1965; Dufour et al. 1998), indicating that regional (north to south) variability in otolith 


18O for juvenile snappers in Belize is likely driven largely by a latitudinal gradient in 

salinity. 

Despite the significant regional and cross-shelf differences in otolith 13C and 


18O observed for all three species, the relatively low classification success to study site 

for dog snapper (58%) and gray snapper (69%) indicates that differences in ambient 

water chemistry among collection locations may not be distinct enough for stable 

isotopes to serve as reliable site-specific nursery markers in this system (Gillanders 

2005). Still, consistently high classification success to shelf position for individual 

species (74-92%) suggests that otolith 13C and 18O are effective in discriminating 

between fishes from inner-shelf and outer-shelf nurseries in the Belize coastal lagoon. 

Classification success for all three species was highest to outer-shelf nurseries (83-

100%), and this could reflect the more stable environmental conditions in the outer 

portion of the lagoon. Previous studies conducted in estuarine nurseries have found that 

variability in otolith isotopic signatures tends to be greater at sites where freshwater 

input is highly variable (e.g. Rooker et al. 2010), and in Belize, strong seasonal 

variability in rainfall is reflected by a two- to five-fold increase in riverine discharge 

during the rainy season (June-September) (Heyman and Kjerfve 1999; Cherubin et al. 

2008). Because the milling patterns developed for each species reflect ~ 6 months of life 

following settlement, isotopic signatures are likely to include material accreted during 
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both dry season and rainy season conditions, potentially leading to increased isotopic 

variability and decreased classification success for fishes at inner-shelf sites, where the 

influence of coastal runoff is greatest.  

Classification success also differed among species, with the highest 

discrimination observed for schoolmaster (92%), and this may be related to differences 

in habitat utilization during the juvenile stage. Schoolmaster are highly associated with 

mangroves during the first year of life and generally feed within the prop-roots 

(MacDonald et al. 2009; Hammerschlag-Peyer and Layman 2012), while gray snapper 

and dog snapper within the experimental size range are commonly found in mangroves 

but also frequently utilize and forage in other back-reef habitats (Bartels and Ferguson 

2006; Faunce and Serafy 2007; Moura et al. 2011), which may increase variability in 

isotopic signatures. Regardless, moderate to high classification success for all three 

species suggests that otolith 13C and 18O represent useful markers for in quantifying 

the relative productivity of inner- and outer-shelf back-reef nurseries in Belize. 

To date, few studies have provided empirical evidence linking putative nearshore 

nursery habitats supporting high densities of juvenile fishes to adult populations on the 

fore-reef (Beck et al. 2001; reviewed in McMahon et al. 2011). Given that otolith 13C 

and 18O is useful for distinguishing juvenile fishes originating from inner-shelf and 

outer-shelf nurseries, the technique has promise for evaluating cross-shelf contribution 

rates of different nurseries in the Belize coastal lagoon, and potentially other tropical 

back-reef systems. Most studies attempting to utilize otolith chemistry to determine 

nursery origin for tropical reef fishes have focused primarily on discriminating among 
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different types of nursery habitats (e.g. Gillanders and Kingsford 1996; Chittaro et al. 

2004; McMahon et al. 2011), which has proved useful in reconstructing ontogenetic 

habitat use (e.g. Nakamura et al. 2008; Verweij et al. 2008; McMahon et al. 2011) as 

well as characterizing the aggregate nursery contributions of different habitat types (e.g. 

coral reefs vs. mangroves) on a regional or island-wide scale (Gillanders and Kingsford 

1996; Mateo et al. 2010; Huijbers et al. 2013). However, while the majority of these 

studies identify back-reef habitats as important nurseries for reef fishes, efforts to 

identify the most productive nursery areas within a given habitat type have been largely 

unsuccessful (Chittaro et al. 2005, 2006). In back-reef systems such as Belize, where 

mangroves and seagrass beds are widely distributed across the continental shelf, the 

development of a natural marker with the resolution to quantify relative productivity 

between inner- and outer-shelf nurseries that are similar in habitat could have important 

implications for coastal management. The majority of conservation efforts in the Belize 

coastal lagoon are currently focused on outer-shelf mangrove keys based on their 

proximity to the Mesoamerican Barrier Reef (MBR), while coastal mangroves and inner-

shelf keys have been increasingly threatened by deforestation, sedimentation, and 

anthropogenic runoff (Gibson et al. 1998; Cho 2005). The contribution of juvenile fishes 

from inner-shelf keys to adult reef fish populations on the MBR is poorly understood, 

and in the current study, it is notable that all three sub-adult fishes captured at outer-shelf 

study sites had isotopic nursery signatures (corresponding to the first year of life) that 

grouped strongly with inner-shelf sites, suggesting that movement offshore is likely 

occurring and the importance of inner-shelf nurseries may be overlooked. 
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CHAPTER IV  

CONCLUSIONS 

 

Production within coastal nurseries is determined by the density of juvenile 

fishes that a given habitat can support, the growth and survivorship of individuals within 

the habitat, and the successful movement of individuals from the habitat to adult 

populations. The present study evaluated nursery production for juvenile snappers across 

the Belize back-reef lagoon by (a) utilizing tissue stable isotopes to characterize trophic 

production within nurseries (which can strongly influence the density, growth, and 

survivorship of juvenile fishes) and (b) evaluating the utility of otolith stable isotopes as 

a marker of nursery origin (which can eventually be used to characterize the movement 

of nursery-associated juveniles to adult populations). 

Results from the trophic component of this research revealed that primary 

production and food web dynamics within back-reef nurseries are strongly influenced by 

the hydrology of the Belize coastal lagoon, and particularly by the degree of 

anthropogenic impact in upstream watersheds. In other estuarine systems, allochthonous 

nutrient subsidies from coastal runoff and riverine discharge have been considered to 

increase productivity within back-reef nurseries by stimulating primary and secondary 

production in coastal waters and increasing the biomass of juveniles that can be 

supported in nursery food webs (Darnaude et al. 2004; Dolbeth et al. 2008). However, 

our results indicate that the net effects of freshwater nutrient subsidy may not be 

homogenous across all estuarine systems, and that coastal runoff from impacted 
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watersheds has the potential to significantly decrease production within back-reef 

nurseries by altering community composition of primary producers in the water column, 

resulting in decreased phytoplankton contribution to consumers during periods of high 

freshwater inflow. The pronounced seasonal shift in food web dynamics and juvenile 

snapper condition observed at our offshore (south outer) study site emphasized that the 

spatial extent of anthropogenic nutrient export can be unpredictable, and watershed 

impacts on downstream nursery production in Belize may extend across the continental 

shelf and throughout adjacent watersheds. Thus, effective efforts to conserve coastal 

nursery production in this region must preserve not only the physical nursery habitat but 

also the ecological processes supporting nursery-associated food webs, which may 

require mitigation of anthropogenic runoff to the back-reef lagoon. 

Although the successful movement of nursery-associated individuals into adult 

populations is considered the most important component of nursery production (Beck et 

al. 2001), attempts to quantify nursery contribution within back-reef systems have been 

limited by the resolution of natural markers in discriminating individuals from different 

nearshore nurseries (Gillanders and Kingsford 1996). Results from the current research 

indicate that stable isotopes (13C and 18O) in otoliths of juvenile dog snapper, gray 

snapper, and schoolmaster are useful for quantifying productivity of inner- and outer-

shelf nurseries in the Belize coastal lagoon, and may also be effective in other tropical 

back-reef systems with similar cross-shelf gradients in salinity. Although we found that 

otolith 13C and 18O did not consistently discriminate between our northern and 

southern study sites, using these isotopic signatures in conjunction with a 
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complementary natural markers (e.g. trace elements) in the future may improve the 

resolution at which this approach can be used to distinguish among nurseries (see Mateo 

et al. 2010). Otolith trace elements have shown to be an effective site-specific marker for 

juvenile and sub-adult fishes in Belize (68-85%) (Chittaro et al. 2004), and recent 

research has reported distinct differences in the elemental concentrations of coral cores 

taken from northern and southern portions of the Belize lagoon (Carilli et al. 2009), 

suggesting that elemental concentrations in otoliths may be useful in discriminating 

across latitudinal regions and may warrant future consideration. 

 As coastal development expands, characterizing productive back-reef nurseries 

and developing natural markers with the resolution to identify critical nursery areas is 

becoming increasingly important in Belize, where the commercial fishery is comprised 

primarily of species that utilize back-reef habitats as juveniles. Snappers (and other 

aggregation spawners) are particularly vulnerable to exploitation, and recent assessments 

of Belize fishery stocks have found that even smaller species not generally considered to 

be heavily targeted (e.g., schoolmaster) show indicators of overfishing (Babcock et al. 

2013). If otolith stable isotopes or other natural markers can be used to reliably identify 

juvenile snappers to their nursery of origin, subsequent sampling of adult populations on 

the fore-reef, as well as individuals in spawning aggregations, will allow for the 

identification of nurseries most critical in replenishing adult stocks in Belize, which may 

aid in the management of sustainable fisheries in the region. 
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APPENDIX A  

CHARACTERIZATION OF PHYTOPLANKTON IN SAMPLES OF POM 

 

A.1 Rationale 

The isotopic signature of phytoplankton in field studies has been notoriously 

difficult to constrain, due to the technical difficulty involved with isolating 

phytoplanktonic organisms from other small particles (e.g. plant-based detritus) in 

samples of suspended particulate organic matter (POM) (summarized Miller and Page 

2012). While commonly practiced in other aquatic systems, the direct substitution of 

POM isotope values as a proxy for the phytoplankton signature is not always valid in 

nearshore environments, where samples influenced by riverine input or coastal runoff 

often contain large amounts of terrestrial material (Bouillon and Dehairs 2000; Bouillon 

et al. 2000; Savoye et al. 2003), and samples taken near shallow, vegetated habitats (e.g. 

seagrass beds, mangrove creeks, kelp forests) are unavoidably contaminated with plant 

or algal detritus (Bouillon et al. 2008; Miller and Page 2012). Because reliable estimates 

of source contribution to upper-trophic level consumers are contingent on the availability 

of correct isotopic signatures for producers, the inability to obtain accurate isotopic 

values for coastal phytoplankton is considered to be one of the major barriers in the 

ecological interpretation of food web dynamics, primary production and nutrient cycling 

in mangroves and other nearshore ecosystems (reviewed in Bouillon et al. 2008; Miller 

and Page 2012).  
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The majority of studies using stable isotopes to characterize nearshore food webs 

have used 13C values of offshore phytoplankton (typically -18‰ − -22‰) taken from 

the literature. However, this can result in systematic overestimations of carbon 

contribution from autochthonous producers (e.g. kelp, mangroves) (Bouillon et al. 2008; 

Miller and Page 2012) and may obscure important seasonal and spatial trends in coastal 

productivity (Savoye et al. 2003), as well as potential variability in the importance of 

phytoplankton-based carbon to upper-level consumers (Bouillon et al. 2000, 2004). The 

use of a single 13C value to characterize food web dynamics is particularly problematic 

in estuarine systems (such as the back-reef lagoon in the current study). Because 

freshwater phytoplankton is generally depleted in 13C (≈ -32‰) relative to the marine 

signature (≈ -22‰) (France 1995), inshore-offshore gradients in the isotopic ratios of 

consumers in estuaries may be mistakenly attributed to increased contribution from 


13C-depleted primary producers (e.g. mangroves) at inshore sites, rather than the 

expected gradient in phytoplankton 13C which is usually not measured (see Chong et al. 

2001; Bouillon et al. 2008). Despite this, due to the high (and variable) detrital content in 

collections of suspended POM, most food web studies in estuarine mangrove systems 

continue to use a single tropical offshore 13C  value (-20‰ − -22‰) for the 

phytoplankton signature (Bouillon et al 2008), while others have omitted phytoplankton 

contribution from mixing models altogether (e.g. Melville and Connolly 2005). 

The content of suspended POM samples is often qualitatively assessed using C:N 

molar ratios, which are typically around 6.6  for phytoplankton (i.e. Redfield ratio), but 

consistently higher (mean 20 - 22) for plants and algae (Atkinson and Smith 1983; Eyre 
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and Ferguson 2002). Although C:N values in plant material are variable among taxa, as 

well as by season, region and state of decay, POM samples with C:N values ≥ 12 are 

generally indicative of samples containing mainly terrestrial or plant-based detritus 

(Cifuentes et al 1996), while lower C:N values (≈ 6 - 8) are considered indicative of 

samples containing primarily phytoplankton (Bouillon et al. 2000; Savoye et al. 2003). 

Bouillon and Dehairs (2000) also proposed a quantitative method of estimating 

phytoplankton content in POM based on C:N values, and this was demonstrated to be 

relatively successful in deriving the isotopic signature of phytoplankton from the 13C  

values of bulk POM samples contaminated with variable amounts of 

terrestrial/mangrove detritus. However, because estimates of phytoplankton content and 


13C using this method are subject to uncertainty in the C:N ratio and isotopic signature 

of detritus within a POM sample, the authors of the original paper submitted this 

technique as a tool useful in characterizing seasonal and spatial variability in the 

phytoplankton isotopic signature and “correcting for” the presence of detritus, but did 

not consider the estimated 13C values suitable for use in mixing models attempting to 

determine the exact contributions of phytoplankton-based production to upper-level 

consumers (Bouillon and Dehairs 2000). As a result, this method has been largely 

overlooked in food web research.   

In the current study, mean 13C values of suspended POM samples collected 

during the dry season ranged from -13.5‰ to -14.0‰ at inshore sites and -8.6‰ to -

13.2‰ at offshore sites, while the mean values of samples collected during the rainy 

season ranged from -19.1‰ to -24.1‰ inshore and -9.9‰ to -11.6‰ offshore (Table 
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A1). In general, these values are markedly enriched compared to the mean published 


13C values for both marine (-22‰, range: -16‰ to -32‰) and freshwater (-32‰, range: 

-20‰ to -44‰) phytoplankton in the literature (France 1995), particularly considering 

the substantial riverine (i.e. freshwater) influence at our inshore study sites. Similar to 

studies conducted in other back-reef systems, discrepancies between 13C values in our 

POM samples and the expected phytoplankton 13C signature appear to be driven by 

large amounts of plant-based material in the water column. None of our POM samples 

had C:N ratios < 8, and only seven individual samples had C:N ratios < 10 (all of which 

were collected from inshore locations). Additionally, the highest C:N ratios ( 14 – 18) 

were consistently observed in samples with the most enriched 13C values, and these 

were almost exclusively collections taken at offshore sites where oligotrophic conditions 

would ostensibly result in lower densities of phytoplankton.  

Unlike many other studies where high detritus content in suspended POM results 

in a depletion of 13C (relative to phytoplankton) and can be attributed to a number of 

potential sources (terrestrial, mangrove, algal, etc) (see Bouillon and Dehairs 2000), we 

can be reasonably confident here that the bulk of plant-based material in our samples 

originates from the dominant seagrass (T. testudinium). First, seagrasses are typically 

enriched in 13C (typically 12‰ - 16‰) relative to almost all other primary producers in 

mangrove systems (Bouillon et al. 2008), and in the current study, seagrass blades were 

the only producers with consistently more-enriched 13C values (-7.4‰ to -11.7‰) than 

those found in POM samples. In addition, visual inspection of filtered samples under 

dissecting and light microscopy revealed high densities of green and brown particles 
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which were identified as seagrass fragments, and the exceptionally low 13C values and 

high C:N ratios of POM samples collected at offshore study sites were nearly identical to 

the 13C and C:N of seagrass blades taken from the same locations (Table 1). Thus, 

because much of the potential error in estimated phytoplankton content (and 13C) using 

the conversion equations in Bouillon and Dehairs (2000) stems from uncertainty in the 

origin of plant-based detritus in the water column, we felt that the use of this technique 

(with minor modification) was appropriate in the current study, where we are able to 

identify with relative certainty the primary source of suspended detritus in our samples. 

 

A.2 Calculations 

A.2.1 Estimating proportion phytoplankton content XPhyto in samples of suspended POM 

First, the phytoplankton content of each POM sample was estimated using the 

following nonlinear equation (adapted from Bouillon and Dehairs 2000): 

XPMA  = 
(CSG – C:NPOM * NSG)  

(C:NPOM * NPMA – C:NPOM * NSG + CSG – CPMA) 

(Equation A1) 

 

where C:NPOM represents the observed carbon to nitrogen ratio of the POM sample, CSG 

and NSG represent the carbon and nitrogen content (g / g dry weight) of seagrass blades 

collected from the same study site (and during the same sampling season) as that POM 

sample, and CPMA and NPMA represent the theoretical carbon and nitrogen content (g / g 
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dry weight) of pure phytoplankton. For the sake of simplicity, carbon content (C) for all 

samples was standardized at 0.45 (see Bouillon and Dehairs 2000), and nitrogen content 

(N) was calculated to reflect either the observed (for seagrass) or theoretical (for 

phytoplankton) C: N ratio of each producer. In the current study, seagrass C:N ratios 

ranged from 19.3 – 21.5 (resulting in an NSG of 0.021 - 0.024), while NPMA for all 

calculations was set at 0.068, derived from the typical phytoplanktonic C:N ratio of 6.6 

(i.e. Redfield ratio; see Atkinson and Smith 1983, Eyre and Ferguson 2002 and citations 

therein). XPMA is expressed as the proportion of a POM sample comprised of 

phytoplankton, with a value of 1.0 denoting pure phytoplankton and a value of 0.0 

denoting pure seagrass detritus. 

 

A.2.2 Adjustment of POM 13
C and 15

N values to approximate phytoplankon isotopic 

signature 

Based on estimated phytoplankton content, the isotopic signature (13CPMA and 


15NPMA) of phytoplankton in each POM sample was then calculated using the following 

equation (originally developed for 13C by Bouillon and Dehairs 2000, but adapted here 

to estimate 15N as well): 

 


13CPMA  = 


13CPOM - (1 - XPMA) * 13CSG  

XPMA  

(Equation A2) 
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
15NPMA  = 


15NPOM – (1 – XPMA) * 15NSG  

XPMA 

(Equation A3) 

 

where 13CPOM and 15NPOM represent the actual isotopic values of carbon and nitrogen 

from the POM sample, 13CSG and 15NSG represent the actual isotopic values of carbon 

and nitrogen for seagrass blades collected from the same site/season as that POM 

sample, and XPhyto represents the estimated proportion of the POM sample comprised of 

phytoplankton (calculated in Eq. A1). Input parameters used in all calculations of XPMA, 


13CPMA and 15NPMA are summarized in Table A1. The estimated 13CPMA and 15NPMA 

values reported in Table A1 are used in all food web models to represent the 

phytoplankton isotopic signature (referred to as “phytoplankton” rather than “POM” 

from here on). 

 

A.3 Evaluation of results and validity of estimated phytoplankton signatures 

As emphasized by the original authors, the main drawback in using the above 

method to estimate phytoplankton content and isotopic signature in POM samples is 

uncertainty in assigning the C:N ratio and 13C values (and here, 15N values) of 

suspended detritus. However, we feel that in systems such as ours where the bulk of 

detrital material originates from a single source (i.e. T. testudinium), it is possible to 

remove much of this potential error through seasonally and spatially explicit sampling 

for both suspended POM and the primary detrital source. The sampling regime in the 
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current study allowed us to use season- and site-specific measured values for the C:N, 


13C and 15N of T. testudinium in place of the single, generic estimates for detrital C:N 

and 13C used by Bouillon and Dehairs (2000), which were calculated based on the 

published average values for mangrove and terrestrial detritus in the region. The 

reluctance of the original authors to recommend 13C values calculated from these 

estimates for use in mixing models is understandable; in addition to showing substantial 

variability among taxa, C:N ratios in marine plants are known to show considerable 

intra-specific variability based on nutrient availability and ambient environmental 

conditions (Atkinson and Smith 1983), and even after identifying seagrass as the primary 

source of detritus in the current study, a single collection of T. testudinium would have 

been insufficient to capture spatiotemporal variability in the chemical composition of 

this producer. Consistent with the expectation that high-nutrient regimes should result in 

decreased C:N values in seagrasses (Atkinson and Smith 1983; Fourqurean and Zieman 

2002), we found lower C:N ratios (as well as enriched  15N values) in seagrass samples 

collected from inshore study sites and during the rainy sampling season, and this 

variability was incorporated into our models (Table A1.1).  

We were admittedly fortunate in the chemical properties of T. testudinium, 

which, similar to other seagrasses (see Harrison 1989), has been demonstrated in 

multiple studies to remain relatively unchanged in C:N ratio during the first 30-200 days 

of decay (Knauer and Ayers 1977; Rublee and Roman 1982; Fourqurean and Schrlau 

2003), allowing us to use samples of fresh seagrass material to approximate C and N 

content in suspended detritus. In contrast, C:N ratios for many terrestrial plants are 
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greatly altered during bacterial decomposition, and uncertainty in the elemental C:N for 

suspended mangrove detritus (which commonly ranges from 12 - 100 and may be altered 

by > 50% during the first 45-60 days of decay) (e.g. Cifuentes et al. 1996; Dehairs et al. 

2000;  Fourqurean and Schrlau 2003) was another area of major concern for Bouillon 

and Dehairs (2000).  

With spatiotemporally explicit sampling, C:NPMA is the only remaining input 

parameter used in our calculations that is estimated based on published values, and 

because the range of C:N ratios typically observed in both marine and freshwater 

phytoplankton is relatively small (≈ 6 – 8), the use of the Redfield ratio (6.6) is generally 

accepted in ecological models (Bouillon and Dehairs 2000). In the current data set, 

substituting a “maximum” planktonic C:N ratio of 8 in place of 6.6 would have resulted 

in an enrichment of 2 – 4‰ for estimated phytoplankton 13C and an enrichment of 0 – 

0.7‰ for 15N, but because these effects were relatively uniform among study sites and 

sampling seasons (and because the isotopic signatures of other primary producers in the 

study were so widely separated), the substitution of these isotopic values in mixing 

models did not substantially alter estimates of source contribution to juvenile fishes. 

Thus, we feel confident in our use of 6.6 as an approximation for C:NPMA. Additionally, 

despite the minor assumptions required in assigning C:NPMA, one important advantage of 

using the above method is that because C:N ratios are similar between marine and 

freshwater phytoplankton (see Kendall et al. 2001, Savoye et al. 2003), calculations of 


13CPMA and 15NPMA can be made without any assumption of phytoplankton 

composition or origin, allowing us to use estimated isotopic values to characterize spatial 
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and seasonal variability in riverine (i.e. freshwater) influence. In what is perhaps the 

most important test of model validity, estimated values for both 13CPMA and 15NPMA in 

all POM samples were reasonable from an ecological standpoint, falling well within the 

published ranges for marine and/or freshwater phytoplankton (France 1995, see above) 

and showing the expected depletion in 13C and enrichment in 15N (indicating 

freshwater influence/nutrient runoff) at inshore study sites, particularly during the rainy 

sampling season (Table A1.2).  

After the above modifications in experimental design (reducing the number of 

assumptions required to generate input parameters), we feel that the potential error 

introduced by using estimated phytoplankton 13C and 15N values in our mixing models 

is minimal in comparison to the near-certain error that would have resulted from the 

more-common method of omitting 15N and using a single offshore phytoplankton 

signature for 13C, particularly given the seasonally and spatially dynamic influence of 

riverine input and nutrient runoff within our study system (see Heyman and Kjerfve 

1999; Bouillon et al. 2008). The two alternative approaches frequently taken in food web 

studies (i.e. using raw isotopic values from bulk POM as a proxy for phytoplankton, or 

omitting phytoplankton from mixing models altogether) would also have been highly 

likely to introduce substantial error if applied here, as both methods would leave 

mangroves as the only primary producer with more-depleted 13C values than those 

found in juvenile fish tissue, necessarily resulting in a substantial overestimation of 

mangrove source contribution (see Bouillon et al. 2008; Miller and Page 2012). 

Considering the limitations of the above options, we felt that mathematical correction for 
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detrital content in suspended POM samples, while not without fault, was the best 

available approach for approximating phytoplankton isotopic signature in the current 

study. 

 
 

Table A1. Input parameters used in (1) the estimation of proportion phytoplankton (PMA) content in 
samples of suspended POM and (2) the estimation of phytoplankton (PMA) isotopic signatures. 

 
1.   Estimation of phytoplankton content in POM  

  
 

  C:N
 POM

  C
PMA

  N
PMA

  C
SG

  N
SG

  X
PMA

  

Dry North Inner 12.22 0.45 0.068 0.45 0.022 0.33  

   Outer 12.28 0.45 0.068 0.45 0.022 0.32  

  South Inner 8.80 0.45 0.068 0.45 0.023 0.64  

   Outer 18.52 0.45 0.068 .045 0.022 0.05  

            

Rainy North Inner 10.63 0.45 0.068 0.45 0.024 0.47  

   Outer 14.79 0.45 0.068 0.45 0.023 0.17  

  South Inner 8.26 0.45 0.068 0.45 0.023 0.70  

    Outer 16.71 0.45 0.068 0.45 0.021 0.14  

         2.   Adjustment of phytoplankton isotopic signature from POM 

  

 

  
13

C
 POM

 
13

C
 SG

 
13

C
PMA

 
15

N
POM

 
15

N
SG

 
15

N
PMA

 

Dry North Inner -13.45 -7.50 -27.07 2.12 2.40 1.48 
   Outer -13.21 -8.30 -23.79 2.49 3.30 0.89 
  South Inner -14.08 -6.80 -18.33 4.14 2.30 5.23 
   Outer -8.64 -8.10 -17.91 1.19 1.20 0.96 
            

Rainy North Inner -19.14 -11.70 -30.53 2.46 0.90 4.51 
   Outer -11.63 -8.30 -24.32 1.48 1.40 1.66 
  South Inner -24.17 -7.60 -31.34 3.98 3.00 4.43 
    Outer -9.87 -8.30 -20.09 2.25 2.40 1.51 
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