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ABSTRACT

This dissertation addresses the problem of stochastic optimal control with imper-

fect measurements. The main application of interest is robot motion planning under

uncertainty. In the presence of process uncertainty and imperfect measurements, the

system’s state is unknown and a state estimation module is required to provide the

information-state (belief), which is the probability distribution function (pdf) over

all possible states. Accordingly, successful robot operation in such a setting requires

reasoning about the evolution of information-state and its quality in future time

steps. In its most general form, this is modeled as a Partially-Observable Markov

Decision Process (POMDP) problem. Unfortunately, however, the exact solution of

this problem over continuous spaces in the presence of constraints is computationally

intractable. Correspondingly, state-of-the-art methods that provide approximate so-

lutions are limited to problems with short horizons and small domains. The main

challenge for these problems is the exponential growth of the search tree in the in-

formation space, as well as the dependency of the entire search tree on the initial

belief.

Inspired by sampling-based (roadmap-based) methods, this dissertation proposes

a method to construct a “graph” in information space, called Feedback-based Infor-

mation RoadMap (FIRM). Each FIRM node is a probability distribution and each

FIRM edge is a local controller. The concept of belief stabilizers is introduced as a

way to steer the current belief toward FIRM nodes and induce belief reachability.

The solution provided by the FIRM framework is a feedback law over the information

space, which is obtained by switching among locally distributed feedback controllers.

Exploiting such a graph in planning, the intractable POMDP problem over con-
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tinuous spaces is reduced to a tractable MDP (Markov Decision Process) problem

over the graph (FIRM) nodes. FIRM is the first graph generated in the information

space that preserves the principle of optimality, i.e., the costs associated with differ-

ent edges of FIRM are independent of each other. Unlike the forward search methods

on tree-structures, the plans produced by FIRM are independent of the initial belief

(i.e., plans are query-independent). As a result, they are robust and reliable. They

are robust in the sense that if the system’s belief deviates from the planned belief,

then replanning is feasible in real-time, as the computed solution is a feedback over

the entire belief graph. Computed plans are reliable in the sense that the probability

of violating constraints (e.g., hitting obstacles) can be seamlessly incorporated into

the planning law. Moreover, FIRM is a scalable framework, as the computational

complexity of its construction is linear in the size of underlying graph as opposed to

state-of-the-art methods whose complexity is exponential in the size of underlying

graph.

In addition to the abstract framework, we present concrete FIRM instantiations

for three main classes of robotic systems: holonomic, nonholonomic, and non-point-

stabilizable. The abstract framework opens new avenues for extending FIRM to a

broader class of systems that are not considered in this dissertation. This includes

systems with discrete dynamics or in general systems that are not well-linearizable,

systems with non-Gaussian distributions, and systems with unobservable modes. In

addition to the abstract framework and concrete instantiations of it, we propose

a formal technique for replanning with FIRM based on a rollout-policy algorithm

to handle changes in the environment as well as discrepancies between actual and

computational models. We demonstrate the performance of the proposed motion

planning method on different robotic systems, both in simulation and on physical

systems. In the problems we consider, the system is subject to motion and sensing
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noise. Our results demonstrate a significant advance over existing approaches for

motion planning in information space. We believe the proposed framework takes an

important step toward making information space planners applicable to real world

robotic applications.
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1. INTRODUCTION

Motion planning under motion and sensing uncertainty is an instance of the

stochastic optimal control problem with imperfect measurements, or in general the

problem of sequential decision making under uncertainty. Many real-world problems

can be modeled this way, ranging from robot motion planning under uncertainty [44],

to medical needle steering for minimally invasive surgery [97], to assistive technolo-

gies for persons with dementia [41], and even to setting rules for conservation of

threatened species [24].

In particular, sequential decision making under uncertainty plays an important

role in robotic systems and it is a crucial capability for performing many tasks. The

main sources of uncertainty in robotic systems arise from uncertainty in determining

the robot’s motion as well as uncertainty in sensory readings. Under these uncer-

tainties, a state estimation module can provide a probability distribution over the

possible states of the system, and therefore decision making is performed in the space

of these distributions, the so called information space or belief space. Planning in the

belief space in its most general form is formulated as a Partially Observable Markov

Decision Process (POMDP) problem [12,44,86].

Due to the complexity of solving POMDP problems [59,74], only a small class of

problems can be solved exactly using a POMDP formulation. In particular, planning

(i.e., solving POMDPs) over continuous state, control, and observation spaces is a

challenge. In the presence of state and control constraints, the problem is even

more difficult. Different approximation schemes have been proposed in the literature

to provide approximate solutions to this problem. State-of-the-art methods mostly

rely on forward search in the belief space [13, 54, 77, 79, 81, 82, 91, 94]. However, at
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every step, each possible action-observation pair leads to a new belief and therefore

the search tree grows exponentially and soon becomes intractable. Moreover, this

search tree is only valid for a given initial belief, and in the case of large deviations

in the belief state, or when starting from a new belief, the entire search tree must

be reconstructed. These two limitations have limited the scalability of the forward

search methods.

In this research, we propose a graph-based framework for handling the “con-

strained POMDP” problem, while preserving the closed-loop (feedback) structure of

the solution. The method generates a representative graph in the belief space, whose

nodes are certain probability distributions and whose edges are feedback controllers

to take the system’s belief form one node to another. The framework is a principled

way of reducing the general “constrained POMDP” problem into a computationally

tractable MDP problem, while preserving important properties of the solution of the

original POMDP, such as robustness (feedback solution) and reliability (ability to in-

corporate accurate failure probabilities). Thus, the obtained policy can be executed

online.

Next, we provide a simple example of such a graph pictorially and compare it

with traditional forward search methods.

Example 1. Figure 1.1 illustrates the main idea of generating the graph in belief

space and coping with exponential growth of the search tree. Figure 1.1(a) depicts

a simple graph in the state space. Figure 1.1(b) shows the evolution of a Gaussian

belief b (with mean x̂+ and covariance P ) on the this graph from the left-most node to

the right-most node. As is seen in this figure, the search tree in the belief space grows

exponentially. For example, although there exists a single edge e(10,11) between nodes

v10 and v11 in the state space graph (Fig. 1.1(a)), the belief evolution along e(10,11)
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is not unique (Fig. 1.1(b-c)) since it depends on (i) the initial belief, (ii) obtained

observations (observation history), and (iii) the taken path (action history) that has

led to v10. Figure 1.1(c) shows the corresponding random search tree in belief space.

In FIRM, however, associated with each PRM node we have a predefined unique belief

that is reachable independent of the initial belief. Such a reachability is ensured by

using appropriate local feedback controllers (Fig. 1.1(d-e)).

FIRM nodes are probability distributions that are reachable independent of the

system’s initial belief. As a result, the edges of the FIRM graph are independent

of each other. This construct breaks the curse of history in POMDPs, allowing us

to construct a graph in the belief space with independent edge costs. Therefore, in

contrast to the main body of the literature in motion planning under uncertainty,

FIRM can be re-used for future queries and does not need to reconstruct the graph

every time a new query is submitted.

From an algorithmic perspective, this edge independence is an example of the

optimal substructure property. A problem has an optimal substructure only if the

optimal solution can be obtained from a combination of optimal solutions to its

subproblems [31]. To solve a problem using Dynamic Programming (DP) or its suc-

cessive approximation schemes such as Dijkstra’s algorithm, the optimal substructure

assumption has to hold [87], i.e., the cost of any sub-path has to be independent of

what precedes it and what succeeds it. As mentioned, the direct transformation

of sampling-based methods to belief space does not satisfy this assumption, while

FIRM preserves it. Furthermore, edge independence allows the challenging task of

computing collision probabilities to be done offline, separately for each edge, without

performing costly computations repeatedly and without any simplifying assumptions.

To demonstrate the practical utility of the FIRM framework, we propose different
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concrete instantiations of the abstract framework and apply them to a variety of

robotic systems such as holonomic robots [2, 8], nonholonomic robots [6], systems

with kinodynamical constraints (e.g., non-point-stabilizable systems), and robotic

manipulators [7,8], in simulation. We apply the method to a physical mobile robotic

system as well and investigate the robustness and performance of the method in a

real-world setting [1]. In these experiments, we show how the method can incorporate

the available information in the environment as well as constraints into the planning

law. Online replanning using traditional forward search methods is a challenging

task due to the expensive computations involved in reproducing the forward search

tree. However, in the experiments with physical robots, we show how the method is

capable of performing online replanning in the case of large deviations or unexpected

changes in the environment such as unknown and changing obstacles.
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Figure 1.1: (a) A simple PRM in state-space. (b) Assuming Gaussian belief space,
belief snapshots along different paths starting from v0 ending at v11 are shown. As
shown here, the obtained belief depends on the path traveled by the robot. For
example P 11(0, 1, 3, 6, 9, 10) denotes the estimation covariance at node v11, when
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1.1 Research Contributions

This dissertation provides a multi-query roadmap-based (graph-based) solution

for the belief space planning problem as the first counterpart to the celebrated Prob-

abilistic Roadmap Methods (PRMs) for the deterministic state space planning prob-

lem. The main application of interest is motion planning for robotic systems. We

refer to the proposed graph-based framework for planning under uncertainty as the

Feedback-based Information RoadMap (FIRM). This dissertation makes theoretical

and practical contributions. The main theoretical highlights are noted below:

• Graph in belief space: We describe how the constrained POMDP problem can

be reduced to a tractable MDP problem on the FIRM graph. FIRM is the

first framework that generates a graph in belief space, or more precisely, a

multi-query graph in belief space. This graph breaks the curse of history in

POMDPs [76] by making the belief evolution along each edge independent of

the belief evolution on the rest of the graph.

• Belief reachability : This research proposes different techniques based on feed-

back controllers to address the task of sampling belief nodes. Under the Gaus-

sian assumption, we characterize the set of beliefs that are reachable under

adopted feedback controllers, independent of the initial belief. We show that

sampling these beliefs (Fig. 1.1), the controller can drive the belief into the

ε-neighborhood of these sampled beliefs in finite time and hence ensure reach-

ability of the FIRM nodes. Accordingly, different instantiations of the FIRM

framework are proposed for three main classes of robotic systems: holonomic,

nonholonomic, and non-point stabilizable systems.

• Performance and completeness guarantees : An important property of the FIRM
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framework is that we can analytically characterize the success probability of

the computed plan using FIRM offline. Therefore, one can increase the number

of nodes to increase the success probability offline. Subsequently, we introduce

the concept of “probabilistic completeness under uncertainty (PCUU)” for be-

lief space planners, provide tools that can be used in analyzing belief space

planners, and show that FIRM is a probabilistically complete algorithm under

uncertainty.

• Scalability (linear construction cost): As mentioned, belief space planners usu-

ally have an exponential planning complexity either in the number of nodes (if

they are sampling-based methods) or in the size of grid (if they rely on dis-

cretizing the state space). However, the complexity of the FIRM construction

is linear in the size of the underlying graph. As a result it can handle planning

problems with much larger domains.

Equally important, this research offers a set of practical contributions, which we

believe provides an important step toward utilizing POMDPs as a practical tool

for robot motion planning under uncertainty. The main practical highlights and

properties of FIRM are summarized below:

• Efficient planning and Reliability (incorporating constraints in planning): The

construction of FIRM is offline and thus online planning (and replanning) is

very efficient. In addition, owing to its offline construction, in FIRM, accurate

collision probabilities can be computed and incorporated in the planning law

offline, which leads to more reliable plans compared to traditional forward

search methods, where simplified collision measures are usually adopted due to

the exponential growth of the search tree.
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• Robustness and online replanning : In FIRM, the computed solution is a feed-

back policy. As a result, in case of large deviations, either no replanning is

needed or just a computationally efficient local online replanning is needed, and

the feedback over the belief space can compensate for the deviations. There-

fore, the method is robust to large deviations. Also, a formal framework based

on a rollout policy [15] is proposed to realize efficient local replanning with

FIRM, which can also cope with changes in the environment.

This research has been reported in a number of publications. The abstract FIRM

framework and a concrete FIRM method for holonomic systems are reported in [2,8].

Probabilistic completeness results are reported in [4, 8]. A concrete FIRM method

for nonholonomic systems is reported in [6] and results on unifying the perfect and

imperfect state information cases are reported in [7, 9]. Also, results on dynamic

online replanning in belief space are reported in [1].

1.2 Dissertation Outline

In Chapter 2, we present the necessary background information on belief space

planning. In Chapter 3, we review the literature related to our research and place

our work in this context. The abstract FIRM framework is introduced in Chapter

4, where we detail the reduction of the POMDP problem to the MDP problem on

the FIRM graph. We also introduce the concept of probabilistic completeness under

uncertainty in this chapter. In Chapters 5, 6, and 7 we propose concrete FIRM

frameworks to respectively handle three main classes of robotic systems: holonomic,

nonholonomic, and non-point-stabilizable systems. We demonstrate the performance

of these methods on a set of robotic systems in simulation. We also provide com-

plexity analyses and comparisons with state-of-the-art methods. In Chapter 8, we

apply the FIRM framework to a physical robotic system, where we propose a formal

8



replanning scheme to cope with large deviations, changes in the environment map,

and discrepancies between computational and physical models. Chapter 9 concludes

the dissertation and discusses future research directions.
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2. PRELIMINARIES: FORMULATING THE PROBLEM OF MOTION

PLANNING UNDER UNCERTAINTY

The problem of motion planning under motion and sensing uncertainty is an

instance of the sequential decision making problem in belief space. In the first part

of this chapter, we present necessary background information on belief space planning

(i.e., the stochastic control problem with imperfect measurements), including (i) a

definition of belief, (ii) a brief overview of recursive state estimation, (iii) a definition

of the problem of planning under uncertainty, (iv) the corresponding formulation of

dynamic programming, and (v) a definition of the constrained POMDP problem. In

the second part of this chapter, we review a few unconstrained POMDP problems

for which the analytical solution exist.

2.1 Problem of Motion Planning Under Uncertainty

The main sources of uncertainty in motion planning are the lack of exact knowl-

edge of the robot’s motion model, of the robot’s sensing model, and of the envi-

ronment model, which are referred to respectively as motion uncertainty, sensing

uncertainty, and map uncertainty. In this research, we focus on motion and sensing

uncertainty, but some of the concepts are extensible to problems with map uncer-

tainty. The problem of motion planning under motion uncertainty is an instance of

the stochastic optimal control problem with perfect state information, which is also

known as the Markov Decision Process (MDP) problem. The problem of motion

planning under both motion and sensing uncertainty is an instance of the stochas-

tic optimal control problem with imperfect state information, which is known as the

Partially-Observable Markov Decision Process (POMDP) problem. Figure 2.1 shows

the different elements in a POMDP problem.
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State Estimator 
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Delay 
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Robot 
(System) 

Sensors 

Figure 2.1: Block diagram corresponding to the problem of planning under motion
and sensing uncertainty; i.e., the POMDP problem.

In the deterministic setting, we seek a path (or the optimal path) as the solution

of motion planning problem. However, in the stochastic setting, we seek a feedback

law (or the optimal feedback law) π as the solution of the motion planning problem.

In the case of an MDP, π is a mapping from the state space to the control space,

while in the case of a POMDP, π is a mapping from the belief space to the control

space (see Fig. 2.1). In the rest of dissertation, we focus on POMDPs.

2.1.1 Stochastic Optimal Control with Imperfect Measurements

As previously mentioned, the POMDP formulation is the most general formu-

lation for the planning problem under process (motion) uncertainty and imperfect

state information (sensing uncertainty). POMDPs were introduced in [12, 44, 86].

In the following, we discuss elements of the POMDP problem, and then present a

POMDP formulation that is known as the belief MDP problem [15,50,90].

The system state describes the system at every time step. Let us denote the

state of the system at the k-th time step by xk. We denote the space of all possible

states by X. It is worth noting that the state space in our problem can be continuous
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(uncountable).

We denote the action (or control) at time step k, by uk. The set U is the control

space (possibly continuous) of the problem, containing all possible control inputs,

u ∈ U. Also, u0:k := {u0, u1, · · · , uk} denotes the control history up to step k.

The motion model f describes how the state of the system evolves over time

based on the applied action and the motion noise. Thus, a generic motion model can

be defined as:

xk+1 = f(xk, uk, wk), wk ∼ p(wk|xk, uk) (2.1)

where wk is the process (motion) noise at time step k, distributed according to a

conditional probability distribution denoted by p(wk|xk, uk). Another conventional

way of representing the motion model is based on a transition pdf (probability dis-

tribution function), where p(x′|x, u) : X × U × X → R≥0 is the state transition pdf

that encodes the probability density of the transition from state x to state x′ under

the control u.

In the presence of imperfect state measurements, we do not have access to the

system state x. Instead, we obtain noisy measurements of the state through sensors.

Let us denote the measurement (or observation) at time step k by zk. Z is the

observation space of the problem, containing all possible observations, z ∈ Z. Also,

z0:k := {z0, z1, · · · , zk} denotes the observation history up to step k.

The observation model h describes how the sensors sense the state by providing

a mapping from the state space to the observation space as:

zk = h(xk, vk), vk ∼ p(vk|xk) (2.2)
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where vk is the observation noise at time step k, which is distributed according to

a conditional probability distribution denoted by p(vk|xk). Another conventional

way of representing the observation model is based on the likelihood pdf, where

p(z|x) : X× Z→ R≥0 is the observation pdf conditioned on the system’s state.

In the absence of exact state, the available data for decision making at time

step k is the observation history z0:k and control history u0:k−1, which is denoted by

Hk = {z0:k, u0:k−1}. Thus, the policy at time step k, is a history dependent policy,

denoted by πhist : Zk+1 × Uk → U that maps the data history Hk to the action uk,

i.e., uk = πhist(Hk). Let us denote the space of all history-dependent policies by

Πhist.

The function c : X×U→ R≥0 models the one-step cost of the problem based on

the application. In other words, c(x, u) denotes the cost of taking action u at state

x. In the motion planning problem, the incurred cost is zero if the system reaches a

stopping region, i.e., reaches the goal region or hits an obstacle. Otherwise, it is a

non-zero value to prevent the system from falling into infinite loops or stopping at

some point before reaching a stopping region.

To choose a policy in Πhist, we define the cost-to-go function Jπ
hist

(x0) : X→ R≥0

that models the cost-to-go from every state x0 under a given policy πhist. Then we

pick the policy πhist
∗

that minimizes the defined cost-to-go for every initial state x0.

Assuming a stage-additive cost structure, starting from x0, the cost-to-go would be:

Jπ
hist

(x0) =
∞∑
k=0

E
[
c(xk, π

hist(Hk))
]

s.t. xk+1 = f(xk, π
hist(Hk), wk), wk ∼ p(wk|xk, uk)

zk = h(xk, vk), vk ∼ p(vk|xk)

Hk = {z0:k, u0:k−1}, uk = πhist(Hk)
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Note that in general πhist can be a time-varying policy, but to simplify the notation

we do not show its dependency on time.

Now, we can define the optimal cost-to-go from every state x0 as the J∗(x0) :

X → R≥0. Accordingly, we can formally define the problem of stochastic control

under process and measurement noise (i.e., the POMDP problem) as the problem of

finding the optimal policy that leads to the optimal cost-to-go, i.e.,

J∗(x0) = min
πhist∈Πhist

Jπ
hist

(x0)

πhist
∗

= arg min
πhist∈Πhist

Jπ
hist

(x0) (2.3)

The history-dependent policy is a complex function as it depends on the data

history which grows over time. So, as the first step toward simplifying the POMDP

problem, we use state estimation techniques to reduce the data history into a more

compressed representation.

2.1.2 Recursive State Estimation

As discussed above, policy πhist(·) is a function that returns an action (control) u

for a given data historyH. However, the data in a given historyH can be compressed

and represented as a probability distribution function (pdf) over all possible states. It

can be shown that such a probability distribution retains all the information needed

for decision making, and hence it is called the information-state or belief of the

system [15,50].

The information-state or belief is defined as the probability distribution over all

possible states conditioned on the available data H, i.e., conditioned on all taken

actions and obtained measurements. bk : X×Zk×Uk−1 → R≥0 denotes the belief at
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the k-th step, which is formally defined as bk := p(xk|Hk) = p(xk|z0:k;u0:k−1). Notice

that to simplify the expressions, we show the belief by bk, but, rigorously speaking,

since it is a function of xk and Hk, it should be written as bk(xk,Hk). The space of

all possible beliefs is called belief space and denoted by B.

In batch estimation, at each step the belief bk is computed as a function of history,

denoted by bk = τ(Hk). In contrast, using recursive state estimation techniques,

belief can be computed recursively at every time step. The dynamics introduced by

this recursion are shown by function τ : B × U × Z → B, that computes the next

belief based on the last action and current observation bk+1 = τ(bk, uk, zk+1). These

dynamics can be derived using Bayes rule and the law of total probability [15], [90]

as follows:

bk+1 = p(xk+1|Hk+1) = p(xk+1|Hk ∪ {zk+1, uk})

=
p(zk+1|xk+1,Hk, uk)p(xk+1|Hk, uk)

p(zk+1|Hk, uk)

=
p(zk+1|xk+1)p(xk+1|Hk, uk)

p(zk+1|Hk, uk)

=
p(zk+1|xk+1)

∫
X p(xk+1|xk, uk)p(xk|Hk, uk)dxk

p(zk+1|Hk, uk)

=
p(zk+1|xk+1)

∫
X p(xk+1|xk, uk)p(xk|Hk)dxk

p(zk+1|Hk, uk)

=
p(zk+1|xk+1)

∫
X p(xk+1|xk, uk)bkdxk

p(zk+1|Hk, uk)

=: τ(bk, uk, zk+1) (2.4)

Usually, the function τ is composed of two functions, a prediction function τpred
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and an update function τup; i.e. τ = τup ◦ τpred:

bk+1 = τ(bk, uk, zk+1) = τup(τpred(bk, uk), zk+1)

where, τpred predicts the next belief based on the taken action:

b−k+1 := τpred(bk, uk) :=

∫
X
p(xk+1|xk, uk)bkdxk (2.5)

and τup updates the predicted belief based on the obtained measurements zk+1:

bk+1 = τup(b
−
k+1, zk+1) :=

p(zk+1|xk+1)b−k+1

p(zk+1|Hk, uk)
(2.6)

b−k is called the prior distribution (or predicted belief) and bk is called the posterior

distribution (or updated) belief, which is also shown by b+
k . In this dissertation, by

belief we mean the posterior belief and we usually do not write the superscript “+”.

Another conventional way of representing a belief dynamics model is based on

the transition pdf, where p(b′|b, u) : B × U × B → R≥0 is the belief transition pdf

that encodes the probability density of a transition from belief b to belief b′ under

the control u, which is an equivalent way of representing bk+1 = τ(bk, uk, zk+1).

Now that the data historyHk is compressed to the distribution bk, we can perform

decision making based on the belief rather than the data history. It is worth noting

that the solution of the POMDP problem is a history-dependent policy πhist. How-

ever, instead, one can separately design a “filter” and a “separated policy”, where

filter returns the belief based on the available data history, and the separated policy
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π returns the action based on the belief [50].

πhist = π ◦ τ ⇒ πhist(Hk) = π(τ(Hk)) (2.7)

Therefore, the separated policy is a mapping from the belief space to the control

space: π : B → U that returns the action based on the belief uk = π(bk). In this

dissertation by “policy” we mean the “separated policy”.

2.1.3 Belief MDP Formulation

Now, we can reformulate the POMDP problem in (2.3) in the belief space by

defining the corresponding costs in the belief space.

We denote the one-step cost in belief space with the same function name c.

Indeed, we overload the function c : X×U→ R≥0 with the function c : B×U→ R≥0,

defined as follows:

c(b, u) = E[c(x, u)|H] =

∫
X
c(x, u)p(x|H)dx (2.8)

which models the one step-cost of the problem in the belief space. In other words,

c(b, u) denotes the cost of taking action u at the belief b.

In partially-observable environments, the goal region is defined in the belief space,

since the state of the system is unknown. Thus, if we denote the goal region by Bgoal,

the incurred cost is zero if the system reaches Bgoal, i.e., c(b, u) = 0 if b ∈ Bgoal. We

discuss the reason for this assignment and discuss other conditions on the one-step

cost shortly.

To choose a policy in Π, we define the cost-to-go from every belief and then pick

the policy π∗ that minimizes the defined cost-to-go. Assuming a stage-additive cost

structure, starting from b0 and using the policy π, the cost-to-go (or value) function
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Jπ(·) : B→ R is formally defined as:

Jπ(b0) =
∞∑
k=0

E [c(bk, π(bk))]

s.t. bk+1 = τ(bk, π(bk), zk), zk ∼ p(zk|xk) (2.9)

Again, note that in general the policy π is a time-varying policy, but to simplify the

notation we do not show its dependency on time.

When a policy is executed, there is a stopping condition that stops the execution.

In the motion planning problem under uncertainty (also known as the stochastic

shortest path problem), the system stops if it reaches the goal region in the belief

space Bgoal. For the system to not fall into an infinite cycle or to not stop before the

termination condition is satisfied, the cost of taking any action before the stopping

condition is satisfied has to be positive. It also has to be zero when the stopping

condition is met: 
c(b, u) = 0 if b ∈ Bgoal

c(b, u) ≥ ε > 0 if b /∈ Bgoal

(2.10)

which results in a zero cost-to-go from the goal region, i.e., Jπ(b) = 0, for all b ∈ Bgoal.

Belief MDP problem is just a reformulation of the original POMDP problem

as an MDP problem defined over the belief space [15, 50, 90]. In the belief MDP

problem we seek for the best separated policy that minimizes the cost-to-go function

from every belief in the belief space. Formally, if we denote the optimal cost-to-go

function by J(·), the belief MDP problem is the problem of finding the optimal policy
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π∗(·) : B→ U, which attains the minimum cost-to-go as follows:

J(·) = min
Π
Jπ(·)

π∗ = arg min
Π
Jπ(·) (2.11)

2.1.4 Dynamic Programming

Dynamic Programming (DP) is a formulation for solving the belief MDP problem

in (2.11). It simplifies the problem by converting the minimization over the func-

tion space (policy space) Π into a minimization problem over the control space U.

Dynamic programming is based on the simple idea of the “principle of optimality”,

mainly introduced by Bellman [14].

A problem is said to satisfy the Principle of Optimality if the sub-solutions of

an optimal solution of the problem are themselves optimal solutions for their sub-

problem. In the present context this can be paraphrased as following: if the policy

π∗(·) is the optimal policy starting from an initial state, it must be optimal from

any other intermediate state that can be reached from the initial state, under π∗.

From an algorithmic point of view, a problem that has this property is said to have

“optimal substructure property” [31].

The intuition behind the Principle of Optimality is simple. If we start from x

(or b in belief space) and reach the state x′ (or belief b′) on the way to goal, we have

the “sub-problem” of reaching the goal from x′ (or b′). Due to the stage-additive

structure of the cost-to-go, the policy has to be optimal from x′ (or b′) to the goal

for it to be optimal from x (or b) to the goal. Dynamic programming is based on

this idea.
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The Dynamic Programming (DP) equation (also known as Bellman’s equation) is

a necessary condition for optimality associated with MDP problems. Relying on the

principle of optimality, DP breaks the optimization problem over the policy spaces

into optimization problems over the control space to choose the immediate control

(next action) separately, setting aside all future decisions. For the belief MDP in

(2.11), the DP formulation would then be:

J(b)= min
u
{c(b, u) +

∫
B
p(b′|b, u)J(b′)db′}, ∀b ∈ B (2.12a)

π∗(b) = arg min
u
{c(b, u) +

∫
B
p(b′|b, u)J(b′)db′}, ∀b ∈ B (2.12b)

2.1.5 Constrained POMDP problem

In many applications, including motion planning, there are constraints that have

to be imposed on the system state.

In the motion planning problem, obstacles are considered to be constraints in

system’s state space. We can partition the state space X into the free space Xfree

and the obstacle space Xobst, such that Xfree ∪ Xobst = X and Xfree ∩ Xobst = ∅. We

also define the set F as the failure set such that if the system state hits the set F ,

then the control policy is considered to fail. In many applications, the obstacle set

is the same as the failure set, i.e., F = Xobst. However, there may be applications

in which the obstacle set is smaller than the failure set. That is, there exist other

causes of failure such as exceeding some maximum operation time, violating actuator

saturation limits, etc.

In general, denoting the constraints on the state space by the failure set F , we
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can formulate the constrained belief MDP problem as follows:

π∗(·) = arg min
π∈Π

∞∑
k=0

E [c(bk, π(bk))]

s.t. bk+1 = τ(bk, π(bk), zk), zk ∼ p(zk|xk)

xk /∈ F, ∀k (2.13)

In the stochastic case, since satisfying xk /∈ F can be difficult (or infeasible), it

is relaxed to the “chance constraint” Pr(xk ∈ F ) ≤ δ, for some small positive real

number δ. Thus, we have:

π∗(·) = arg min
π∈Π

∞∑
k=0

E [c(bk, π(bk))]

s.t. bk+1 = τ(bk, π(bk), zk), zk ∼ p(zk|xk)

Pr(xk ∈ F ) ≤ δ, ∀k (2.14)

In this dissertation, we propose a method to reduce the computationally in-

tractable constrained POMDP in (2.14) to a tractable MDP in belief space. The

method is called Feedback-based Information RoadMap (FIRM), which will be de-

tailed in Chapter 4.

2.2 Linear Quadratic Gaussian (LQG) Controllers

In this section, we restrict our attention to the POMDP problems with quadratic

costs for the class of linear systems with Gaussian noises. For this class of systems,

the unconstrained POMDP problem can be solved analytically and leads to the

celebrated LQG controllers. We will use the results of this section in the following

chapters, when we locally linearize nonlinear systems.
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2.2.1 Time-varying LQG Controller

A time-varying Linear Quadratic Gaussian (LQG) controller is often used to track

a pre-planned trajectory (also called nominal, desired, or open-loop trajectory) in the

presence of process and observation noise. In principal it is designed (and optimal)

for linear systems with Gaussian noise, but it is also can be utilized for stabilizing

nonlinear systems locally around the planned trajectory. An LQG controller is com-

posed of a Kalman Filter (KF) as an estimator and a Linear Quadratic Regulator

(LQR) as a controller. At every time step k, the KF provides the a posteriori dis-

tribution over the system state (belief) bk, and LQR generates control uk based on

bk.

In this section, we first discuss the system linearization and planned nominal

trajectory, and then discuss the KF, LQR and LQG corresponding with this nominal

trajectory. Consider the nonlinear partially-observable state-space equations of the

system as follows:

xk+1 = f(xk, uk, wk), wk ∼ N (0, Qk) (2.15a)

zk = h(xk, vk), vk ∼ N (0, Rk) (2.15b)

A planned nominal trajectory for this system is a sequence of planned states

(xpk)k≥0 and planned controls (upk)k≥0, such that it is consistent with the noiseless

dynamics model, i.e., we have:

xpk+1 = f(xpk, u
p
k, 0) (2.16)

The planned trajectory can be a finite sequence of some length N . The role of

a closed-loop stochastic controller, during the trajectory tracking execution, is to
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compensate for the robot’s deviations from the planned trajectory due to noise and

keeping the robot close to the planned trajectory in the sense of minimizing following

quadratic cost:

J = E

[∑
k≥0

(xk − xpk)
TWx(xk − xpk) + (uk − upk)

TWu(uk − upk)

]
(2.17)

where Wx and Wu are the positive definite weight matrices for state and control cost,

respectively.

Since the state space is not fully observable and it is only partially observable, we

do not have access to the perfect value of the state xk. Thus, we provide the estimate

x+
k of the state xk based on the available observations z0:k from the beginning up

to the current time step. Then, based on separation principle [15], it can be shown

that in linear systems with Gaussian noise, the above minimization in terms of the

error xk − xpk is equivalent to performing two separate minimizations based on the

estimation error xk − x̂+
k and the controller error x̂+

k − x
p
k, whose summation is the

same as the original main error xk − xpk = (xk − x̂+
k ) + (x̂+

k − xpk), where x̂+
k =

Ex[x+
k ] = Ex[xk|z0:k]. As a major consequence, the design of the stochastic controller

with a partially-observable state space (LQG), reduces to designing a controller with

fully-observable state (LQR) and designing an estimator (KF), separately. In the

following, we first discuss the linearization of a nonlinear model and then we discuss

how a KF and an LQR can be designed for this linearized system and finally combine

them to construct a time-varying LQG controller.

Given a nominal trajectory (xpk, u
p
k)k≥0, we linearize the dynamics and observation

model in Eq. (2.15), as follows:

xk+1 = f(xpk, u
p
k, 0) + Ak(xk − xpk) +Bk(uk − upk) +Gkwk, wk ∼ N (0, Qk) (2.18a)

23



zk = h(xpk, 0) +Hk(xk − xpk) +Mkvk, vk ∼ N (0, Rk) (2.18b)

where

Ak =
∂f

∂x
(xpk, u

p
k, 0), Bk =

∂f

∂u
(xpk, u

p
k, 0), Gk =

∂f

∂w
(xpk, u

p
k, 0),

Hk =
∂h

∂x
(xpk, 0), Mk =

∂h

∂v
(xpk, 0) (2.19)

Now, let us define the following errors:

• LQG error (main error): ek = xk − xpk

• KF error (estimation error): ẽk = xk − x̂+
k

• LQR error (estimation of LQG error): ê+
k = x̂+

k − x
p
k

Note that these errors are linearly dependent: ek = ê+
k + ẽk. Also, defining δuk =

uk−upk and δzk = zk−zpk := zk−h(xpk, 0), we can rewrite the above linearized models

as follows:

ek+1 = Akek +Bkδuk +Gkwk (2.20a)

δzk = Hkek +Mkvk (2.20b)

In Kalman filtering, we aim to provide an estimate of the system’s state based on

the available partial information we have obtained until time k, i.e., z0:k. The state

estimate is a random vector denoted by x+
k , whose distribution is the conditional

distribution of the state on the obtained observations so far, which is called belief
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and is denoted by bk:

bk = p(x+
k ) = p(xk|z0:k) (2.21)

x̂+
k = E[xk|z0:k] (2.22)

Pk = C[xk|z0:k] (2.23)

where E[·|·] and C[·|·] are the conditional expectation and conditional covariance

operators, respectively. In the Gaussian case, we have bk = N (x̂+
k , Pk), i.e., the

belief can only be characterized by its mean and covariance, i.e., bk ≡ (x̂+
k , Pk).

Kalman filtering consists of two steps at every time stage: a prediction step and

an update step. In the prediction step, the mean and covariance of prior x−k is

computed. For the system in Eq. (2.20) prediction step is:

ê−k+1 = Akê
+
k +Bkδuk (2.24)

P−k+1 = AkP
+
k A

T
k +GkQkG

T
k (2.25)

In the update step, the mean and covariance of posterior x+
k is computed. For the

system in Eq. (2.20), the update step is:

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )−1 (2.26)

ê+
k+1 = ê−k+1 +Kk+1(δzk+1 −Hk+1ê

−
k+1) (2.27)

P+
k+1 = (I −Kk+1Hk+1)P−k+1 (2.28)

Note that

x̂+
k = E[xk|z0:k] = xpk + ê+

k = xpk + E[ek|z0:k] (2.29)
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Pk = C[xk|z0:k] = P+
k = C[ek|z0:k] (2.30)

Once we obtain the belief from the filter, a controller can generate an optimal

control signal accordingly. In other words, we have a time-varying mapping µk from

the belief space into the control space that generates an optimal control based on

the given belief uk = µk(bk) at every time step k. An LQR controller is of this kind

and it is optimal in the sense of minimizing following cost:

JLQR = E

[∑
k≥0

(x̂+
k − x

p
k)
TWx(x̂

+
k − x

p
k) + (uk − upk)

TWu(uk − upk)

]

= E

[∑
k≥0

(ê+
k )TWx(ê

+
k ) + (δuk)

TWu(δuk)

]
(2.31)

The linear control law that minimizes this cost function for a linear system is of the

form:

δuk = −Lkê+
k (2.32)

where the time-varying feedback gains Lk can be computed recursively as follows:

Lk = (BT
k Sk+1Bk +Wu)

−1BT
k Sk+1Ak (2.33)

Sk = Wx + ATk Sk+1Ak − ATk Sk+1BkLk (2.34)

If the nominal path is of length N , then the SN = Wx is the initial condition of the

above recursion, which is solved backwards in time. Note that the whole control is

uk = upk + δuk.

Plugging the obtained LQR control law into the Kalman filtering equations, we
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can get the following error dynamics, for the defined errors:

 ek+1

ẽk+1

 =

 Ak −BkLk BkLk

0 Ak −Kk+1Hk+1Ak


 ek

ẽk


+

 Gk 0

Gk −Kk+1Hk+1Gk −Kk+1Mk+1


 wk

vk+1

 (2.35)

or equivalently,

 ek+1

ê+
k+1

 =

 Ak −BkLk

Kk+1Hk+1Ak Ak −BkLk −Kk+1Hk+1Ak


 ek

ê+
k


+

 Gk 0

Kk+1Hk+1Gk Kk+1Mk+1


 wk

vk+1

 (2.36)

Defining ζk := (ek, ê
+
k )T and qk := (wk, vk+1)T , we can rewrite Eq. (2.36) in a more

compact form as

ζk+1 = F kζk +Gkqk, qk ∼ N (0, Qk), Qk =

 Qk 0

0 Rk+1

 (2.37)

with appropriate definitions for F k and Gk.

The above equation along with the following equation on estimation covariance

propagation

Pk+1 = (I −Kk+1Hk+1)(AkPkA
T
k +GkQkG

T
k ) (2.38)

characterize the evolution of the state xk and belief bk ≡ (x̂+
k , Pk) under the time-

27



varying LQG controller.

2.2.2 Stationary LQG Controller

A stationary Linear Quadratic Gaussian (SLQG) controller is often used to reg-

ulate (or stabilize) the system state to a pre-planned point (also called set-point,

nominal, or desired point) in the presence of process and observation noise. In prin-

cipal it is designed (and optimal) for linear systems with Gaussian noise, but it is also

can be utilized for stabilizing nonlinear systems locally around the planned point. An

SLQG controller is composed of a Stationary Kalman Filter (SKF) as an estimator

and a Stationary Linear Quadratic Regulator (SLQR) as a controller. At every time

step k, SKF provides the a posteriori distribution over the system state (belief) bk,

and SLQR generates control uk based on bk.

In this section, we first discuss the system linearization around the planned point,

and then discuss the SKF, SLQR and SLQG corresponding to this nominal point.

Consider the nonlinear partially-observable state-space equations of the system as

follows:

xk+1 = f(xk, uk, wk), wk ∼ N (0, Qk) (2.39a)

zk = h(xk, vk), vk ∼ N (0, Rk) (2.39b)

and consider a planned state point xp, to whose vicinity the controller has to drive

the system. If the system state reaches the xp, it is assumed that the system remains

there with zero control, up = 0, i.e.,

xp = f(xp, 0, 0) (2.40)

The role of a closed-loop stochastic controller, during the state regulation, is com-
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pensating robot deviations from the desired point due to the noise effects and driving

the robot close to the desired point in the sense of minimizing following quadratic

cost:

J = E

[∑
k≥0

(xk − xp)TWx(xk − xp) + (uk)
TWu(uk)

]
(2.41)

where Wx and Wu are the positive definite weight matrices for state and control cost,

respectively.

Again, similar to the time-varying case, since we only have imperfect information

of the state xk, we have to make the estimate x+
k of the state based on the available

observations z0:k and the controller generates the control signal based on the esti-

mated value of the state, i.e., belief. Based on the separation principle [15], in linear

systems with Gaussian noise, the above minimization is equivalent to performing

two separate minimizations that lead to the separate design of the SKF and SLQR.

In the following, we first discuss the linearization of a nonlinear model and then we

discuss how the SKF and the SLQR can be designed for this linearized system and

finally combine them to construct an SLQG controller.

Given a desired point xp, we linearize the dynamics and observation model in

Eq. (2.39), as follows:

xk+1 = f(xp, 0, 0) + As(xk − xp) +Bs(uk − 0) +Gswk, wk ∼ N (0, Qs) (2.42a)

zk = h(xp, 0) +Hs(xk − xp) +Msvk, vk ∼ N (0, Rs) (2.42b)

where

As =
∂f

∂x
(xp, 0, 0), Bs =

∂f

∂u
(xp, 0, 0), Gs =

∂f

∂w
(xp, 0, 0),
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Hs =
∂h

∂x
(xp, 0), Ms =

∂h

∂v
(xp, 0) (2.43)

Now, let us define the following errors:

• SLQG error (main error): ek = xk − xp.

• SKF error (estimation error): ẽk = xk − x̂+
k , where x̂+

k = E[x+
k ] = E[xk|z0:k].

• SLQR error (estimation of SLQG error): ê+
k = x̂+

k − xp.

Note that these errors are linearly dependent: ek = ê+
k + ẽk. Defining δuk := uk and

δzk := zk − zp = zk − h(xp, 0), we can rewrite above linearized models as follows:

ek+1 = Asek +Bsδuk +Gswk (2.44a)

δzk = Hsek +Msvk (2.44b)

In SKF, we aim to provide an estimate of the system’s state based on the available

partial information we have obtained until time k, i.e., z0:k. The state estimate is a

random vector denoted by x+
k , whose distribution is the conditional distribution of

the state on the obtained observations so far, which is called belief and is denoted by

bk = p(x+
k ) = p(xk|z0:k). In the Gaussian case, the belief can only be characterized

by its mean and covariance, i.e., bk ≡ (x̂+
k , Pk). Thus, in the Gaussian case, we can

write:

bk = p(x+
k ) = p(xk|z0:k) = N (x̂+

k , Pk)⇔ bk ≡ (x̂+
k , Pk) (2.45)

x̂+
k = E[xk|z0:k], Pk = C[xk|z0:k] (2.46)

where E[·|·] and C[·|·] are the conditional expectation and conditional covariance

operators, respectively.
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SKF consists of two steps at every time stage: a prediction step and an update

step. In the prediction step, the mean and covariance of prior x−k is computed. For

the system in Eq. (2.44) the prediction step is:

ê−k+1 = Asê
+
k +Bsδuk (2.47)

P−k+1 = AsP
+
k A

T
s +GsQsG

T
s (2.48)

In the update step, the mean and covariance of posterior x+
k is computed. For the

error system in Eq. (2.44), the update step is:

Kk = P−k H
T
s (HsP

−
k H

T
s +MsRsM

T
s )−1 (2.49)

ê+
k+1 = ê−k+1 +Kk+1(δzk+1 −Hsê

−
k+1) (2.50)

P+
k+1 = (I −Kk+1Hs)P

−
k+1 (2.51)

Note that

x̂+
k = xp + ê+

k , Pk = P+
k (2.52)

In SKF, if (As, Hs) is an observable pair and (As, Q̌s) is a controllable pair, where

GsQsG
T
s = Q̌sQ̌

T
s , then the prior and posterior covariances P−k and Pk and the

filter gain Kk all converge to their stationary values, denoted by P−s , Ps, and Ks,

respectively [15]. The P−s can be computed by solving following DARE. Having P−s ,

stationary gain Ks and estimation covariance Ps is computed as follows:

P−s = GsQsG
T
s + As(P

−
s − P−s HT

s (HsP
−
s H

T
s +MsRsM

T
s )−1HsP

−
s )ATs , (2.53)

Ks = P−s H
T
s (HsP

−
s H

T
s +MsRsM

T
s )−1, (2.54)
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Ps = (I −KsHs)P
−
s (2.55)

In Stationary LQR (SLQR) we have a stationary mapping µs from the belief

space into the control space that generates an optimal control based on the given

belief uk = µs(bk) at every time step k. SLQR controller is optimal in the sense of

minimizing following cost:

JSLQR = E

[∑
k≥0

(x̂+
k − x

p)TWx(x̂
+
k − x

p) + (uk)
TWu(uk)

]

= E

[∑
k≥0

(ê+
k )TWx(ê

+
k ) + (δuk)

TWu(δuk)

]
(2.56)

If the (As, Bs) is a controllable pair and (As, W̌x) is an observable pair, where

W̌x
T
W̌x = Wx, then, the stationary linear control law that minimizes the cost func-

tion JSLQR for a linear system is of the form:

δuk = −Lsê+
k (2.57)

where the stationary feedback gain Ls can be computed as follows:

Ls = (BT
s SsBs +Wu)

−1BT
s SsAs (2.58)

Ss = Wx + ATs SsAs − ATs SsBsLs (2.59)

where the second equation is indeed a Discrete Algebraic Riccati Equation (DARE)

that can be efficiently solved for Ss. Plugging Ss into Eq. (2.58), we get the feedback

gain Ls.

Plugging the obtained control law of SLQR into the SKF equations, we can get
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the following stationary dynamics for the defined errors:

 ek+1

ẽk+1

 =

 As −BsLs BsLs

0 As −KsHsAs


 ek

ẽk


+

 Gs 0

Gs −KsHsGs −KsMs


 wk

vk+1

 (2.60)

or equivalently,

 ek+1

ê+
k+1

 =

 As −BsLs

KsHsAs As −BsLs −KsHsAs


 ek

ê+
k


+

 Gs 0

KsHsGs KsMs


 wk

vk+1

 (2.61)

Defining ζk := (ek, ê
+
k )T and qk := (wk, vk+1)T , we can rewrite Eq. (2.61) in a more

compact form as

ζk+1 = F sζk +Gsqk, qk ∼ N (0, Qs), Qs =

 Qs 0

0 Rs

 (2.62)

with appropriate definitions for F s and Gs.

It can be shown that if F s is a stable matrix, i.e. limκ→∞(F s)
κ = 0, the ζk

converges in distribution to ζs ∼ N (0,Ps). The stationary covariance Ps is the

solution of the following Lyapunov equation:

Ps = F sPsF
T

s +GsQsG
T

s (2.63)
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Note that Ps can be decomposed to four blocks

Ps =

 Ps,11 Ps,12

Ps,21 Ps,22

 (2.64)

such that Ps,11 = limk→∞C[ek] and Ps,22 = limk→∞C[ê+
k ]. Therefore, since x̂+

k =

xp + ê+
k , the estimation mean is also converging to a stationary random variable,

denoted by x̂+
s :

x̂+
s := lim

k→∞
x̂+
k ∼ N (xp,Ps,22) (2.65)

Due to the linear relation ek = ê+
k + ẽk, we can also conclude limk→∞C[ẽk] =

Ps,11 + Ps,22 − 2Ps,12. It can be proven that in stationary LQG, the stability of

matrix F s is a direct consequence of the controllability of the pair (As, Bs) and the

observability of pair (As, Hs) [15], [16].

Thus, collecting all the conditions, if (As, Bs) and (As, Q̌s) are controllable pairs,

where GsQsG
T
s = Q̌sQ̌

T
s , and if (As, Hs) and (As, W̌x) are observable pairs, where

Wx = W̌ T
x W̌x, then under the stationary LQG the belief bk converges in distribution

to a stationary belief:

bs := lim
k→∞

bk = N (x̂+
s , P

+
s ) (2.66)

where P+
s is a deterministic quantity and we can characterize the distribution over

the stationary belief as:

bs ≡ (x̂+
s , P

+
s ) ∼ N


 xp

P+
s

 ,

 Ps,22 0

0 0


 (2.67)
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2.2.3 Periodic LQG Controller

A periodic Linear Quadratic Gaussian (PLQG) controller is a time-varying LQG

controller that is designed to track a pre-planned periodic trajectory (also called

nominal, desired, or open-loop trajectory) in the presence of process and observation

noise.

In this section, we first discuss the system linearization and planned nominal

trajectory, and then discuss the KF, LQR and LQG corresponding with this nominal

trajectory. Consider the nonlinear partially-observable state-space equations of the

system as follows:

xk+1 = f(xk, uk, wk), wk ∼ N (0, Qk) (2.68a)

zk = h(xk, vk), vk ∼ N (0, Rk) (2.68b)

A T -periodic planned nominal trajectory for the robot is a sequence of planned

states (xpk)k≥0 and planned controls (upk)k≥0, such that it is consistent with the noise-

less dynamics model, i.e., we have:

xpk+1 = f(xpk, u
p
k, 0), xpk+T = xpk, upk+T = upk (2.69)

The role of a closed-loop stochastic controller, during the trajectory tracking exe-

cution, is to compensate for robot deviations from the planned trajectory due to

noise effects and keeping the robot close to the planned trajectory in the sense of

minimizing the following quadratic cost:

J = E

[∑
k≥0

(xk − xpk)
TWx(xk − xpk) + (uk − upk)

TWu(uk − upk)

]
(2.70)
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where Wx and Wu are the positive definite weight matrices for the state and control

cost, respectively.

Since the state space is not fully observable and it is only partially observable, at

every step of LQG execution, a Kalman filter estimates the system state and an LQR

controller generates the optimal control based on this estimation. We first linearize

the system along the nominal path and then describe the KF and LQR designed

along this path.

Given a periodic nominal trajectory (xpk, u
p
k)k≥0, we linearize the dynamics and

observation model in (2.68), as follows:

xk+1 = f(xpk, u
p
k, 0) + Ak(xk − xpk) +Bk(uk − upk) +Gkwk, wk ∼ N (0, Qk) (2.71a)

zk = h(xpk, 0) +Hk(xk − xpk) +Mkvk, vk ∼ N (0, Rk) (2.71b)

where
Ak = ∂f

∂x
(xpk, u

p
k, 0), Bk = ∂f

∂u
(xpk, u

p
k, 0), Gk = ∂f

∂w
(xpk, u

p
k, 0),

Hk = ∂h
∂x

(xpk, 0), Mk = ∂h
∂v

(xpk, 0)

(2.72)

It is worth noting that the linearized system is a periodic one, i.e.,

Ak+T = Ak, Bk+T = Bk, Gk+T = Gk, Hk+T = Hk, Mk+T = Mk, Qk+T = Qk, Rk+T = Rk.

(2.73)

Now, let us define the following errors:

• LQG error (main error): ek = xk − xpk

• KF error (estimation error): ẽk = xk − x̂+
k
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• LQR error (mean of estimation of LQG error): ê+
k = x̂+

k − x
p
k

Note that these errors are linearly dependent: ek = ê+
k + ẽk. Also, defining δuk =

uk−upk and δzk = zk−zpk := zk−h(xpk, 0), we can rewrite the above linearized models

as follows:

ek+1 = Akek +Bkδuk +Gkwk, wk ∼ N (0, Qk) (2.74a)

δzk = Hkek +Mkvk, vk ∼ N (0, Rk) (2.74b)

which is a periodic linear system due to the (2.73).

A Periodic Kalman Filter (PKF) is a time-varying Kalman filter, whose under-

lying linear system is periodic, as in (2.74). In Kalman filtering, we aim to provide

an estimate of the system’s state based on the available partial information we have

obtained until time k, i.e., z0:k. The state estimate is a random vector denoted by

x+
k , whose distribution is the conditional distribution of the state on the obtained

observations so far, which is called belief and is denoted by bk:

bk = p(x+
k ) = p(xk|z0:k) (2.75)

x̂+
k = E[xk|z0:k] (2.76)

Pk = C[xk|z0:k] (2.77)

where E[·|·] and C[·|·] are the conditional expectation and conditional covariance

operators, respectively. In the Gaussian case, we have bk = N (x̂+
k , Pk), i.e., the

belief can only be characterized by its mean and covariance, i.e., bk ≡ (x̂+
k , Pk).

Similar to the conventional Kalman filtering, PKF consists of two steps at every

time stage: a prediction step and an update step. In the prediction step, the mean

and covariance of prior x−k is computed. For the system in (2.74) the prediction step
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is:

ê−k+1 = Akê
+
k +Bkδuk (2.78)

P−k+1 = AkP
+
k A

T
k +GkQkG

T
k (2.79)

In the update step, the mean and covariance of posterior x+
k is computed. For the

system in (2.74), the update step is:

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )−1 (2.80)

ê+
k+1 = ê−k+1 +Kk+1(δzk+1 −Hk+1ê

−
k+1) (2.81)

P+
k+1 = (I −Kk+1Hk+1)P−k+1 (2.82)

Note that

x̂+
k = E[xk|z0:k] = xpk + E[ek|z0:k] = xpk + ê+

k (2.83)

Pk = C[xk|z0:k] = C[ek|z0:k] = P+
k (2.84)

Lemma 1. In Periodic Kalman filtering (PKF), if for all k, the pair (Ak, Hk) is

detectable and the pair (Ak, Q̌k) is stabilizable, where GkQkG
T
k = Q̌kQ̌

T
k , then the

prior and posterior covariances P−k and Pk and the filter gain Kk, all converge to their

T -periodic stationary values, denoted by P̌−t , P̌t, and Ǩt, respectively [18]. Matrix

P̌−t is the unique Symmetric T -Periodic Positive Semi-definite (SPPS) solution [18]

of the following Discrete Periodic Riccati Equation (DPRE):

P̌−k+1 = GkQkG
T
k + Ak(P̌

−
k − P̌

−
k H

T
k (HkP̌

−
k H

T
k +MkRkM

T
k )−1HkP̌

−
k )ATk (2.85)
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Having P̌−k , the periodic gain Ǩk and estimation covariance P̌k is computed as follows:

Ǩk = P̌−k H
T
k (HkP̌

−
k H

T
k +MkRkM

T
k )−1, (2.86)

P̌k = (I − ǨkHk)P̌
−
k (2.87)

where

P̌−k+T = P̌−k , Ǩk+T = Ǩk, P̌k+T = P̌k (2.88)

Proof. See [18].

If the pair (Ak, Hk) is detectable and the pair (Ak, Q̌k) is stabilizable, then the

pair (Ak, Hk) is observable and the pair (Ak, Q̌k) is controllable, and hence Lemma

9 follows.

A PLQR controller is the separated controller part of the PLQG controller. Once

the Periodic Kalman filter produces the estimation (belief), the PLQR controller

generates an optimal control signal accordingly. In other words, we have a time-

varying mapping µk from the belief space into the control space that generates an

optimal control based on the given belief uk = µk(bk) at every time step k. In PLQG,

the mapping µk is the control law of the PLQR controller, which is optimal in the

sense of minimizing following cost:

JPLQR = E

[∑
k≥0

(x̂+
k − x

p
k)
TWx(x̂

+
k − x

p
k) + (uk − upk)

TWu(uk − upk)

]

= E

[∑
k≥0

(ê+
k )TWx(ê

+
k ) + (δuk)

TWu(δuk)

]
(2.89)
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The linear control law that minimizes this cost function for a linear system is:

δuk = −Lkê+
k , Lk+T = Lk (2.90)

Lemma 2. In a Periodic LQR (PLQR), if for all k, the pair (Ak, Bk) is stabiliz-

able and the pair (Ak, W̌x) is detectable, where Wx = W̌ T
x W̌x, then the time-varying

feedback gains Lk is a T -periodic gain, i.e., Lk+T = Lk and is computed as follows:

Lk = (BT
k Sk+1Bk +Wu)

−1BT
k Sk+1Ak (2.91)

where Sk is the SPPS solution of the following DPRE:

Sk = Wx + ATk Sk+1Ak − ATk Sk+1Bk(B
T
k Sk+1Bk +Wu)

−1BT
k Sk+1Ak (2.92)

Note that the whole control is uk = upk + δuk.

Plugging the obtained control law of PLQR into the PKF equations, we can get

the following error dynamics, for the defined errors:

 ek+1

ẽk+1

 =

 Ak −BkLk BkLk

0 Ak − Ǩk+1Hk+1Ak


 ek

ẽk


+

 Gk 0

Gk − Ǩk+1Hk+1Gk −Ǩk+1Mk+1


 wk

vk+1

 (2.93)

or equivalently,

 ek+1

ê+
k+1

 =

 Ak −BkLk

Ǩk+1Hk+1Ak Ak −BkLk − Ǩk+1Hk+1Ak


 ek

ê+
k


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+

 Gk 0

Ǩk+1Hk+1Gk Ǩk+1Mk+1


 wk

vk+1

 (2.94)

Defining ζk := (ek, ê
+
k )T and qk := (wk, vk+1)T , we can rewrite (2.94) in a more

compact form as

ζk+1 = F kζk −Gkqk, qk ∼ N (0, Qk), Qk =

 Qk 0

0 Rk+1

 (2.95)

with appropriate definitions for F k and Gk. Thus, ζk is a random variable with a

Gaussian distribution, i.e.,

ζk = N (0,Pk) (2.96)

or  xk

x̂+
k

 ∼ N (

 xpk

xpk

 ,Pk) (2.97)

where Pk is the solution of following Discrete Periodic Lyapunov Equation (DPLE):

Pk+1 = F kPkF
T

k −GkQkG
T

k (2.98)

which can be decomposed into four blocks

Pk =

 Pk,11 Pk,12

Pk,21 Pk,22

 (2.99)

Lemma 3. Under the preceding assumptions in Lemma 1 and Lemma 2, the solution
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of DPLE in (2.98) converges to a unique SPPS solution P̌k independent of the initial

covariance P0, i.e., P̌k+T = P̌k.

Proof. See [18].

Therefore, the process in (2.95) converges to a cyclostationary process [17], i.e.,

the distribution over ζk is periodic. Hence, since x̂+
k ∼ N (xpk,Pk,22), the distri-

bution over the estimation mean also converges to a periodic distribution, i.e.,

x̂+
k ∼ N (xpk, P̌k,22) = N (xpk+T , P̌k+T,22). Hence, this analysis leads to the follow-

ing lemma:

Lemma 4. Under a Periodic LQG, the belief falls into a Gaussian cyclostationary

process, i.e., the distribution over belief bk = (x̂+
k , Pk) converges to the following

periodic Gaussian distribution:

bk ≡ (x̂+
k , Pk) ∼ N


 xpk

P̌k

 ,

 P̌k,22 0

0 0


 (2.100)

The degeneracy of the Gaussian distribution over belief in (2.100) is due to the

fact that P̌k is a deterministic process. It is worth noting that the belief mean

converges to the T -periodic belief E[bk+T ] = E[bk] = (xpk, P̌k). Hence, Lemma 8

follows, as it is the same as Lemma 4, where we have:

bck =

 xpk

P̌k

 , Ck =

 P̌k,22 0

0 0

 (2.101)

42



3. LITERATURE REVIEW

In this chapter, we review the literature most relevant to our research. We start by

reviewing different methods for planning in belief space and explaining their relation

to the original POMDP framework. Additionally, we discuss literature concerning the

probabilistic completeness of roadmap-based algorithms in the deterministic setting.

We also review related literature on nonholonomic motion planning. Lastly, we look

into literature related to the physical implementation of belief space planners as well

as the methods that are robust to model discrepancies and changing environments.

3.1 Belief Space Planning Algorithms

Uncertainty in robotic systems usually stems from three sources: (i) motion un-

certainty, which is also called process or dynamic uncertainty, and results from the

noise that affects system dynamics, (ii) sensing uncertainty, which is also referred to

as imperfect state information, and can be caused by the noise that affects the mea-

surements made by sensors, and (iii) uncertainty in the environment map, such as

uncertain obstacle locations or uncertain location of features (information sources)

in the environment.

While there are methods that deal with map uncertainty [38, 62, 65], we do not

utilize them in our framework as we assume there is no uncertainty in the environment

map. Methods such as [10, 26, 27, 60] use sampling-based motion planning ideas to

deal with motion uncertainty. However, these techniques do not consider sensing

uncertainty in the planning problem.

Another class of methods that are most related to FIRM consider both motion

and sensing uncertainties in planning. The planning problems under motion and

sensing uncertainty in their most general form are modeled as a POMDP problem.
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The ultimate goal in planning under uncertainty (solving POMDPs) is finding the

best policy that generates the optimal actions as a function of belief. However, due

to the intractability of POMDP solution, practical results for these methods usually

are limited to problems with a small set of states [44]. Point-based POMDP solvers

such as [13, 52, 72, 80] have increased the size of problems that can be solved by

POMDPs. However, they do not handle continuous state, control, and observation

spaces. For the Gaussian belief case, there are some techniques such as [95, 96]

that handle continuous spaces locally around a given trajectory in belief space. The

method in [78] generalizes local approaches to non-Gaussian beliefs.

In continuous state, control, and observation space, most methods do not follow

the POMDP framework due to its complexity. Instead, they return a nominal path

as the solution to the planning problem, which is fixed regardless of the process and

sensor noise in the execution phase. Censi et al. [23] propose two algorithms for

planning based on forward graph search and backward constraint propagation on

a grid-based representation of the space. Platt et al. [79] plan in continuous space

by relying on maximum likelihood observations and finding the best nominal path

through nonlinear optimization methods. In the LQG-MP method [93], the best

path is found among a finite number of RRT paths by simulating the performance of

LQG on them all. The method in [22] is another example of a tree-based approach,

in which the underlying nominal trajectory is optimized using RRT*. Vitus and

Tomlin [99] propose an approach to optimize the underlying trajectory by formulating

the problem as a chance constrained optimal control problem. In [94], the authors

extend the LQG-MP to roadmaps. Moreover, [81] and [43] utilize roadmap-based

methods based on the PRM approach, where the best path is found through breadth-

first search on the Belief Roadmap (BRM). However, on all these roadmap-based

methods the optimal substructure assumption is broken, i.e., the edge costs depend
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on each other.

Since these methods return a nominal path instead of a feedback policy, in the

case of large deviations, or starting from a new point, replanning has to be per-

formed. However, unless the planning domain is small [79], in the presence of large

disturbances, replanning in these methods is computationally very expensive. The

reason is that the constructed planning tree depends on the initial belief and thus

all computations needed to construct the tree (i.e., to predict future costs) have to

be reproduced for a query from a new starting initial belief. BRM ameliorates this

expensive computation using covariance factorization techniques. However, it still

does not satisfy the optimal substructure assumption and thus for a new query from

a new initial point, the search algorithm has to be run again. In the presence of

obstacles, recomputing the collision probabilities is also required, which makes re-

planning even more expensive. In other words, these methods are single-query in the

sense that the edge costs are computed for each query.

Thus, online replanning can be done only if the planning domain is small (e.g.,

[79]) or if the planning horizon is short, such as Receding Horizon Control-based

(RHC-based) approaches (e.g., [25]). The method proposed in [91] is an RHC-based

method, where the nominal path is updated dynamically over anN -step horizon. The

PUMA method proposed in [40] is also an RHC-based framework, where instead of

a single action, a sequence of actions (macro-action) is selected at every decision

stage. However, these methods entail repeatedly solving open loop optimal control

problems at every time step, which is computationally very expensive as the previous

computations, in general, cannot be reused for the queries from the new initial point.

In FIRM, however, the best feedback policy, i.e., a mapping from belief space to

actions, is computed offline, which is the main goal of planning under uncertainty

(POMDPs). Moreover, in FIRM, the optimal substructure assumption holds and
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as a result, the costs of the edges on the roadmap are independent of each other.

Therefore, the roadmap is independent of the initial point, and in replanning from a

new initial point, the computations need not be reproduced. In other words, FIRM

is a multi-query roadmap in the belief space in the sense that all edge costs are

independent of query. If the goal belief is fixed, the feedback over the graph can be

computed (see Eq. (4.17)) offline, in which case the algorithm is robust to changes

in the start point of query, and if the goal is also varying, graph feedback can be

computed (see Eq. (4.17)) online, which results in a multi-query roadmap that is

robust to changes in the start and goal points of the query.

In the methods that account for sensing uncertainty, the state has to be estimated

based on measurements. To handle unknown future measurements in the planning

stage, methods in [23,43,79,81,91] consider the maximum likelihood (ML) observa-

tion sequence to predict the estimation performance. In contrast, [93, 94] and the

FIRM method take all possible future observations into account in planning. As a

result, these methods lead to more reliable plans since they take into account possible

deviations of the belief caused by future unknown observations.

In the presence of obstacles, due to the dependency of collision events in different

time, only methods such as Monte Carlo simulation that can take such dependence

into account can be used to compute the collision probabilities reliably (see Fig. 3.1).

However, these methods are computationally expensive. As a result, approximate

safety measures have been designed to efficiently account for obstacles in planning

[23,91,93,94]. However, a problem with some of these collision probability measures

is that they are built on the assumption that the collision probabilities at different

stages along the path are independent of each other, which is not true in general, and

may lead to very conservative or optimistic plans. Fig. 3.1 shows the dependence of

the collision probability in time step k1 and k2, i.e., P(xk1 ∈ F ) and P(xk2 ∈ F ), where
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xk is the robot state at time step k and F is the obstacle set (shown by rectangles).

The ellipses are 3σ ellipses of Gaussian distributions obtained by Kalman filtering.

Also, the samples in a Monte-Carlo simulation are shown by small circles. The dark

ones have collided with obstacles and do not get propagated, while the light ones

are the safe samples. Although the overall collision probability in Fig. 3.1(a) is much

more than the collision probability Fig. 3.1(b), simplified safety measures based on

ellipse-obstacle intersection area lead to the same safety measure in Fig. 3.1(a) and

3.1(b), and are unable to capture this dependency. As a result, different methods (e.g.

[75]) provide more accurate and faster ways of computing collision probabilities. In

FIRM, however, collision probabilities can be computed and seamlessly incorporated

into the planning stage without making simplifying assumptions.

(a) (b)

Figure 3.1: This figure shows the dependence of the collision probability in different
time steps. Such a dependence can be captured by Monte Carlo simulations but not
using the covariance ellipse-obstacle intersection area.

3.2 Probabilistic Completeness

Due to the success of sampling-based methods in many practical planning prob-

lems, many researchers have investigated the theoretical basis for this success. How-

ever, almost all of these investigations have been done for algorithms that are de-

47



signed for deterministic planning. The literature in this direction falls into two

categories: path isolation-based methods and space covering-based methods.

In the path isolation-based approach, one path is chosen, and it is tiled with

sets such as ε-balls in [46] or sets with arbitrary shapes but strictly positive measure

in [55]. Then, the success probability is analyzed by investigating the probability

of sampling in each of the sets that tile the given path in the obstacle-free space.

Methods in [46], [55], [89], and [19] are among those that perform path isolation-based

analysis of planning algorithms.

In the space covering-based analysis approach, an adequate number of sampled

points to find a successful path is expressed in terms of a parameter ε, which is a

property of the environment. A space is ε-good if every point in the state space can

at least be connected to an ε fraction of the space, using local planners. Methods

in [42] and [47] are among these methods.

These methods were developed for the situation where the desired result from the

planning algorithm is a path. However, in the presence of uncertainty, the concept of

“successful path” is no longer meaningful because on a given path different policies

may result in different success probabilities, some interpreted as successful and some

not. Thus, since the planning algorithm returns a policy instead of a path, the success

has to be defined for a policy. This research extends these concepts to probabilistic

spaces, i.e., to sampling-based methods concerning planning under uncertainty. In

Chapter 4 Section 4.5, we define the concept of a successful policy and accordingly

the concept of probabilistic completeness, and formulate them rigorously.
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3.3 Belief Space Planning for Nonholonomic and/or Non-point-stabilizable

Systems

Nonholonomic motion planning deals with planning open-loop or feedback (closed-

loop) plans for moving an object that is subject to nonholonomic constraints. The

unicycle model is an important example of a nonholonomic system, and is commonly

used to approximately model a variety of systems ranging from differential drive and

synchro drive single-body robots [57] to steerable needles in surgery [100]. One of

the challenges in nonholonomic motion planning is stabilizing the system to a point.

Thus, if we consider two basic motion tasks: point-to-point motion, which deals with

driving a moving object from an initial state to a goal state, and trajectory following,

which deals with following a trajectory in state space, then, in contrast to the holo-

nomic case, point-to-point motion in nonholonomic systems is a more difficult task

than trajectory tracking [73]. As mentioned, the main challenge is the state stabi-

lization to the target node. Another class of systems, for which state stabilization

(and this point-to-point motion) is a challenge is the class of non-point-stabilizable

systems. This class includes fixed-wing aircraft as their velocity cannot fall under

some threshold to maintain the lift requirement. Thus, stabilizing such systems to a

fixed state is a challenge.

Similar to motion planning in state space, in belief space the basic motion tasks

can be defined as: point-to-point motion, which deals with driving the belief of

the moving object from a given belief to a target belief, and trajectory following,

which deals with following a trajectory in belief space. Both these tasks are more

challenging in belief space than in state space. The point-to-point motion in belief

space is required to construct a query-independent roadmap such as FIRM in belief

space.
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In fully-observable environments, Generalized PRM [27] performs point-to-point

motion under motion uncertainty. In partially observable environments, under mo-

tion and sensing uncertainty, the Feedback-based Information RoadMap (FIRM)

utilizes feedback controllers for the purpose of belief stabilization, and hence embeds

the point-to-point motion behavior in belief space.

In Chapter 6, we present an instantiation of the abstract FIRM framework for

nonholonomic systems using Dynamic Feedback Linearization-based (DFL-based)

controllers. Adopting a DFL-based controller along with a stationary Kalman filter,

we embed point-to-point motion in belief space for nonholonomic systems and in-

stantiate a FIRM. In Chapter 7, we propose a concrete instantiation of the abstract

FIRM framework that can handle non-point-stabilizable systems using Periodic con-

trollers as belief stabilizers.

3.4 Real-time Replanning in Belief Space

Real-time replanning in the belief space is a vital capability in many applica-

tions for two main reasons. First, the belief dynamics are usually more random than

the state dynamics because the belief is directly affected by the system observation.

Therefore, a spurious data association (detecting a wrong feature ID), which is a

very common failure in many sensing systems (such as vision or laser range find-

ers), can cause large changes in the belief. Hence, online replanning is necessary to

recover from such failures. Second, in practical applications, discrepancies between

real models and the models used for computation are a significant source of error

and cause the belief to occasionally have behaviors different than expected nominal

behavior. Again, by being able to replan, the robot can recover from such belief

deviations. Besides these two points, online replanning can help the robot to cope

better with changes in the environment as well as recover from large deviations that
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may occur in its location.

However, the majority of the state-of-the-art methods for planning in belief space

are not equipped with online replanning capabilities. Sampling-based methods for

solving belief space planning such as Belief RoadMap (BRM) [81], LQG-MP [94], [22],

or [51] are single query methods (the solution is valid for a given initial belief).

Therefore, in case of replanning from a new belief all (or most) of the computation

needs to be redone, which prevents their usage when frequent real-time replanning

is required. Similarly, point-based methods such as [76], [52], [13], [28] are rooted in

a single initial belief.

On the other hand, trajectory optimization-based methods can be used for re-

planning in a Receding Horizon Control (RHC) scheme. In an RHC scheme (as

will be detailed in Chapter 8), the optimal trajectory is computed within a limited

horizon. Then, only the first step of the trajectory is executed and the rest of it is

discarded. From the new point, then, the optimal trajectory is recomputed and this

process is repeated until the system reaches the goal region. The RHC framework was

originally designed for deterministic systems and its extension to stochastic systems

and belief space planning is still an open problem. A direct approach is to replace

the uncertain quantities (such as noise) with their nominal values (e.g., zero, for

zero-mean Gaussian noise), and then treat the stochastic system as a deterministic

one and use it in an RHC framework. Methods such as [35], [79], [25], [40], and [91]

fall into this category and are among the trajectory optimization-based methods that

can be used in an RHC framework, with an additional assumption that future obser-

vations are deterministic. However, in such an approach the optimization is carried

out only within a limited horizon, and therefore the system may locally choose good

actions but after a while may find itself in a high cost region. Moreover, removing

the stochasticity of the system state (or belief) may lead to unreliable plans. In
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this research, we propose a method based on FIRM embedded in a rollout policy

framework that addresses these issues. In other words, in the proposed belief space

planning method, we consider all possible future (random) observations. Moreover,

we pick the FIRM plan as the base policy of the rollout policy method and thus

incorporate the cost-to-go beyond the optimization horizon into the planning. We

detail this approach in Chapter 8.
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4. FEEDBACK-BASED INFORMATION ROADMAP (FIRM)

The main goal and contribution of this dissertation is to develop a “graph-based

framework for motion planning under uncertainty” to address the intractability of

the “constrained POMDP” problem (see Eq. (2.14)). In this chapter, we discuss

feedback controllers and belief reachability under them. Then, we detail how we

can generate a graph in belief space using feedback controllers. We call this graph

“Feedback-based Information RoadMap (FIRM)” and describe how the constrained

POMDP problem can be reduced to a tractable problem on this graph. By solving

the dynamic programming problem on this graph, we compute the feedback tree

for this problem. Subsequently, we provide performance guarantees on the solution

by computing the success probability of the obtained solution. Finally, we define

the concept of “probabilistic completeness under uncertainty”, introduce tools to

analyze belief space planners in general, and prove the probabilistic completeness of

the FIRM framework in particular.

The goal of this chapter is to construct an abstract FIRM framework, assuming

that there exists a mechanism to guarantee belief reachability. Hence, if for a class

of systems, one can design a controller that satisfies the belief reachability require-

ment, the controller can be plugged into the abstract FIRM framework to generate

a concrete instantiation of it, i.e., a representative graph in the belief space for

the considered class of systems. We discuss concrete instantiations of this abstract

framework in Chapters 5, 6, and 7.

We start this chapter by defining elements and assumptions needed in FIRM

Parts of this section reprinted with permission from “FIRM: Sampling-based feedback mo-
tion planning under motion uncertainty and imperfect measurements.” by Aliakbar Aghamoham-
madi, Suman Chakravorty, and Nancy Amato. International Journal of Robotics Research (IJRR),
33(2):268–304, 2014. Copyright 2014 by Sage publications.
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construction. Accordingly, we transform the original intractable POMDP problem

(see Eq. (2.14)) into a Semi-Markov Decision Process (SMDP) problem in belief

space using a representative graph of local feedback controllers. Then, we construct

an arbitrarily good approximation to the solution of this belief SMDP. Doing so, we

obtain a tractable MDP, the so called “FIRM MDP”. We discuss this derivation first

for the obstacle-free case, and then we add the obstacles to the planning framework.

Finally, we characterize the quality of the solution obtained by FIRM via its success

probability and provide a generic algorithm for planning with FIRM.

4.1 Feedback Controllers and Reachability

As discussed in Chapter 2, in partially observable environments, the available

data for decision-making at time step k can be compressed into the information-

state or belief bk. As discussed, using dynamic estimation schemes, belief can be

propagated as bk+1 = τ(bk, uk, zk+1) (See Eq. (2.4)), which can be presented as a one-

step transition pdf p(bk+1|bk, uk) or a one-step transition probability P(B|bk, uk) =∫
B
p(bk+1|bk, uk), where B ⊂ B.

In partially observable environments, at each stage, the decision making process is

performed based on the belief at that stage. Thus, a (separated) feedback controller

in partially observable spaces is a mapping from the belief space to the control space,

i.e., µ(·) : B→ U. Consider a given set of such controllers denoted by M. Later, we

discuss the structure of the set M in detail.

Generating controls based on a given controller µ, the belief evolves according to

a Markov chain whose one-step transition density function (if one exists) is denoted

by p1(b′|b, µ) : B ×M × B → R≥0 and defined as p1(b′|b, µ) := p(b′|b, µ(b)). Thus,

the feedback controller µ essentially induces a Markov chain with the transition

probability p1(b′|b, µ) over the belief space B. In general the n-step transition pdf
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under the controller µ is recursively defined as:

pn(b′′|b, µ) :=

∫
B
p(b′′|b′, µ(b′))pn−1(b′|b, µ)db′ (4.1)

In a similar way, P1(B|b, µ) : B ×M ×BB → [0, 1] denotes the transition prob-

ability from b to B under the local controller µ after one step, i.e., P1(B|b, µ) :=

P(B|b, µ(b)). The set BB is the sigma-algebra on the belief space B. Similar,

Pn(B|b, µ) : B × M × BB → [0, 1] denotes the transition probability from b to B

under the local controller µ after n steps.

T (A|b, µ) : B ×M ×BB → [0,∞] denotes the hitting time on the set A, under

the controller µ starting from belief b. Formally it is defined as:

T (A|b, µ) := min{k ≥ 0, bk ∈ A|b0 = b, µ} (4.2)

Following the notation in [61], APn(·|b, µ) : B ×M ×BB ×BB → [0, 1] denotes

the probability of transition from b to B in n steps under the controller µ “avoiding”

the set A. APn(·|b, µ) is called the n-step taboo probability and is formally defined

as:

APn(B|b, µ) := Pr(bn ∈ B, bk /∈ A, ∀k = 0, · · · , n− 1|b0 = b, µ)

= Pr(bn ∈ B, T (A) ≥ n|b, µ) (4.3)

We call region B ⊂ B a stopping region of the controller µ if we force the controller

to stop executing as the belief reaches the region B, i.e., for all b ∈ B, we impose
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P1(B|b, µ) = 1.

Therefore, BPn(·|b, µ) for the controller µ with stopping region B is the tran-

sition probability from b to B under µ in exactly n steps (not less or more), i.e.,

BPn(B|b, µ) := Pr(bn ∈ B, bk /∈ B, ∀k = 0, · · · , n− 1|b0 = b, µ). Therefore, we can

write:

Pn(B|b, µ) =
n∑
k=0

BPk(B|b, µ) (4.4)

Also, we can write the n-step transition probability as the probability of landing in

the stopping region B in at most n steps :

Pn(B|b, µ) = Pr(T (B|b, µ) ≤ n) (4.5)

Consider the controller µ that starts executing from belief b and stops executing

when the belief enters region B. Thus, we can define p(b′|b, µ) as the pdf (if it exists)

over the belief space, when the controller µ, invoked at b, stops executing, i.e.:

p(b′|b, µ) := lim
n→∞

pn(b′|b, µ) (4.6)

Similarly, P(B|b, µ) represents the transition probability from b to B induced by µ,

when the controller stops executing. Thus, the probability of landing in stopping

region B in finite time is P(B|b, µ), which is computed as:

P(B|b, µ) := lim
n→∞

Pn(B|b, µ)

= Pr(belief ever enters B)

= Pr(T (B|b, µ) <∞)
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=
∞∑
n=0

BPn(B|b, µ) (4.7)

The stopping region B is called reachable under a controller µ starting from b

if P(B|b, µ) = 1. The stopping region B is called accessible under a controller µ

starting from b, if P(B|b, µ) > 0.

The stopping region B is called αT -reachable under a controller µ starting from

b if PT (B|b, µ) = Pr(T (B|b, µ) ≤ T ) > α, i.e., the controller can drive the system

into B in fewer than T steps with a probability greater than α.

The reachability basin B̆ associated with the pair (µ,B) is the set of all be-

liefs from which B is reachable under µ in the absence of constraints. Hence, the

reachability and αT -reachability basins, respectively, are defined as follows:

B̆ = {b ∈ B : P(B|b, µ) = 1}, (4.8)

B̆(α, T ) = {b ∈ B : PT (B|b, µ) > α}, (4.9)

Clearly, B ⊂ B̆, and in practical cases, B is much smaller than B̆.

4.2 FIRM Graph

In this section, we assume that there are no constraints (i.e., F = ∅), and we

reduce planning over the entire belief space to planning over a representative graph

in the belief space. Doing so, we can reduce the MDP problem in (2.11) over the

continuous space into a tractable MDP problem over the graph.

The first step in the construction of the proposed framework is to sample a set of

stabilizers {µj}, where each stabilizer µ(·) is a mapping from the belief space to the

control space. Typically, every stabilizer is characterized by a dv-vector of parameters
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v ∈ Rdv , i.e., we can denote the j-th stabilizer more rigorously as µj(·; vj) : B→ U.

As a result, we can sample the parameters V = {vj} and then construct a stabilizer

corresponding to each parameter. One can view the set V as a set of underlying

PRM nodes in the parameter space.

FIRM nodes {Bj} are disjoint sets in belief space, where the j-th node has to be

chosen such that it is reachable under the j-stabilizer, i.e., P(Bj|b, µj) = 1, with a

sufficiently large B̆. We discuss the size of B̆ further below. Note that, for practical

purposes, the reachability condition can be replaced by αT -reachability if needed.

Consider a set of N samples {(µi, Bi)}Ni=1, where the reachability basin of the

i-th sample is denoted by B̆i. Now, consider {Bi}Ni=1 as the nodes of a graph. The

node Bi is connected to the node Bj if, starting from any b ∈ Bi, we can reach Bj

using µj. In other words Bi is connected to the node Bj if Bi ⊂ B̆j. Again, the

reachability condition can be replaced by the αT -reachability condition.

For simple systems (linear with Gaussian noise) and some controllers (such as

SLQG), the connection condition can be checked analytically. However, in general,

checking this connection condition analytically may be very difficult. In such cases,

the Markov chain induced by the controller can be simulated numerically (e.g., using

particle-based methods). Accordingly, we can approximate the reachability (or αT -

reachability) probability and check if the condition is true or not. Since this process

is done offline, the computational burden can be tolerated. However, as we will see

further below, in many cases, designing suitable edge controllers in practice increases

the reachability probability such that practically one can assume the reachability is

satisfied and so there is no need to propagate the probability distribution.

By definition, the graph node B associated with the controller µ acts as the

stopping region of the controller. However, if the process under the stabilizer hits

another graph node before its corresponding graph node, we can stop the controller
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and pick the best controller from this intermediate node. Therefore, we can extend

the stopping region for all controllers to the union of all nodes Ψ := ∪Nl=1B
l. As a

result, we will not necessarily have P(Bi|b, µi) = 1 since the process may hit some

other node before Bi. However, we will have P(Ψ|b, µi) = 1 for all i in the absence

of constraints.

To ease the connection step, and to handle cases where we have distant nodes (in

sparse graphs), we can precede each stabilizer by a time-varying controller (referred

to as the edge-controller). To illustrate this idea, consider two nodes Bi and Bj,

where Bi * B̆j, i.e., Bi cannot be connected to Bj through µj. In this case, we can

connect the underlying state nodes vi and vj in the state space by a finite trajectory

eij (say with length l) and then design a time varying controller µijk , for k = 0, 1, · · · , l

to track this finite trajectory. Therefore, if node Bi is in the reachability basin of

(µijk , B̆
j), then obviously Bi would be in the reachability basin of (µij, Bj), where

µij = {µij0:l, µ
j}. We call µij the (i, j)-th local controller, as it connects node Bi to

node Bj.

Formally, we define the constructed graph with the set of nodes V = {Bi}Ni=1 and

the set of edges (or local controllers) M = {µij}. The set of controllers available at Bi

is denoted by M(i), i.e., the set of edges starting from Bi. Similar to PRM, in which

the path (final solution) is constructed as a concatenation of edges on the roadmap, in

FIRM, the policy is constructed by the concatenation of the local policies. However,

it is worth noting that by this construction we still perform planning in a continuous

space and do not discretize the control space.

By the term “macro-action”, we mean a sequence of control signals (actions)

[39,40]. In other words, a macro-action is a sequence of open-loop policies. It is im-

portant to note that a local controller is not a macro-action, but rather a sequence

of policies (macro-policy), each of which is a mapping from belief space to the con-
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tinuous control space. Using macro-actions results in an open-loop policy which

cannot compensate for the belief state deviation from the planned path. However,

under local-controllers (macro-policies), the feedback nature of the controllers en-

able compensation for controllers. Thus, the belief can be steered toward a stopping

region.

4.2.1 Belief Semi-Markov Decision Processes (Belief SMDP)

In this section, we reduce the planning (MDP) problem over the entire belief space

into a planning (SMDP) problem over a subset of belief space, which is actually the

union of FIRM graph nodes, i.e., Ψ = ∪jBj.

First, we generalize the concept of one-step cost c(b, u) : B × U → R≥0 to the

one-step SMDP cost Cs(b, µ) : B×M→ R≥0, which represents the cost of invoking

the local controller µ(·) at the belief state b, i.e.,

Cs(b, µ) :=
T∑
t=0

c(bt, µ(bt)|b0 = b), (4.10)

where T := T (Ψ|b, µ).

According to the above definitions, the original POMDP, formulated using DP

in Eq. (2.12), can be reduced to a Semi-Markov Decision Process (SMDP) [88] in the

belief space, referred to as a belief SMDP or Semi-POMDP (SPOMDP):

Js(b) = min
µ∈M(i)

Cs(b, µ) +

∫
Ψ

p(b′|b, µ)Js(b′)db′, ∀b ∈ Bi, ∀i. (4.11)

The integration over the entire belief space in Eq. (2.12) is reduced to integration

over the sampled nodes, i.e., Ψ, in Eq. (4.11) as µ stops executing.
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4.3 FIRM MDP

The DP in (4.11), though computationally more tractable than the original

POMDP, is defined on the continuous neighborhoods Bi and thus, still formidable

to solve. However, for sufficiently small Bi’s, the cost-to-go of all beliefs in Bi, are

approximately equal. A similar statement holds for the incremental cost. Thus,

we can define the transition cost and probabilities Cg : V × M → R and Pg :

V × V × M → [0, 1] on the FIRM graph, i.e., over the finite space V, such that

Pg(Bj|Bi, µij) is the transition probability from Bi to Bj under the local planner

µij. Similarly, Cg(Bi, µij) denotes the cost of invoking local planner µij at the FIRM

node Bi. These roadmap level quantities are defined using the following “piecewise

constant approximation”, which is an arbitrarily good approximation for smooth

enough functions and sufficiently small Bi’s:

∀b ∈ Bi, ∀i, j


Cg(Bi, µij) := C(bic, µ

ij) ≈ C(b, µij),

Pg(·|Bi, µij) := P(·|bic, µij) ≈ P(·|b, µij),
(4.12)

where bic is a point in Bi, for example, its center, if Bi is ball. This approximation

essentially states that any belief in the region Bi is represented by bic for the purpose

of decision making.

Graph policy πg : V→M is a function that returns a local planner for any given

node of the FIRM graph. Let us denote the space of all graph policies by Πg.

To choose a policy in Πg, we define the graph cost-to-go from every graph node

(FIRM node), and then pick the policy πg
∗

that minimizes the defined cost-to-go.

Starting from B0 and using the policy πg, the cost-to-go (or value) function Jg(·; πg) :
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V× Πg → R is formally defined as:

Jg(B0; πg) =
∞∑
k=0

E [Cg(Bk, π
g(Bk))]

s.t. P(Bk+1|Bk, π
g) (4.13)

Optimal cost-to-go Jg : V→ R≥0 is defined as follows:

Jg(Bi) = min
πg∈Πg

Jg(Bi; πg) (4.14)

Given the approximation in Eq. (4.12), the DP equation in Eq. (4.11) becomes:

Jg(Bi) = Js(bic) = min
µ∈M(i)

Cs(bic, µ) +

∫
Ψ

p(b′|bic, µ)Js(b′)db′

= min
µ∈M(i)

Cs(bic, µ) +
∑
j

∫
Bj
p(b′|bic, µ)Js(b′)db′

≈ min
µ∈M(i)

Cg(Bi, µ) +
∑
j

∫
Bj
p(b′|bic, µ)Jg(Bj)db′

= min
µ∈M(i)

Cg(Bi, µ) +
∑
j

Jg(Bj)P(Bj|bic, µ)

= min
µ∈M(i)

Cg(Bi, µ) +
∑
j

Jg(Bj)Pg(Bj|Bi, µ), ∀i (4.15)

Accordingly, we can get the graph feedback πg : V→M through the following DP:

Jg(Bi) = min
µ∈M(i)

Cg(Bi, µ) +
∑
j

Pg(Bj|Bi, µ)Jg(Bj), ∀i (4.16a)

πg(Bi) = arg min
µ∈M(i)

Cg(Bi, µ) +
∑
j

Pg(Bj|Bi, µ)Jg(Bj), ∀i (4.16b)

Thus, the original POMDP over the entire belief space, becomes a finite Nv-state
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MDP in Eq. (4.16) defined on the finite set of FIRM nodes V = {Bi}Nvi=1. We call

the MDP in Eq. (4.16), the FIRM MDP in the absence of obstacles. It is worth

noting that Jg(·) : V → R is the cost-to-go function over the FIRM nodes, which

assigns a cost-to-go for every FIRM node Bi and the mapping πg(·) : V → M is a

mapping over the FIRM graph, from FIRM nodes into the set of local controllers

that returns the optimal local controller that has to be taken at any FIRM node.

Given Cg(B, µ) for all (B, µ) pairs, the DP in Eq. (4.16) can be solved offline using

standard techniques such as the value/policy iteration to yield a feedback policy πg

over FIRM nodes {Bi}.

4.3.1 Incorporating Obstacles (Constraints) into FIRM MDP

In the presence of obstacles (i.e., state or control constraints), we cannot always

ensure that the local controller µij(·) can drive any b ∈ Bi into Bj with probability

one. Instead, we have to specify the failure probabilities that the robot collides with

an obstacle (hits the failure set F ⊂ X× U).

We can generalize the stationary transition probabilities from P(·|b, µ) : BB×M×

B→ [0, 1] into P(·|b, µ) : {BB, F}×M×B→ [0, 1] such that P(F |b, µij) denotes the

probability of hitting failure set F before hitting stopping region Ψ under µ starting

from b.

Similarly, we generalize edge transition probabilities from Pg(·|B, µ) : V × V ×

M → [0, 1] into Pg(·|B, µ) : {V, F} × V × M → [0, 1] such that Pg(F |Bi, µ) :=

P(F |bic, µ). Again, given the function P(·|b, µ) is smooth and given that sets Bj are

suitably small, we can make the approximation Pg(·|Bi, µ) := P(·|bic, µ) ≈ P(·|b, µ)

for all b ∈ Bi and for all i.

Finally, we generalize the cost-to-go function from Jg : V → R≥0 into Jg :

{V, F} → R≥0, such that Jg(F ) is a user-defined suitably high cost for hitting
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obstacles. Note that the cost-to-go from the goal node is zero, i.e., Jg(Bgoal) =

0. Therefore, we can modify Eq. (4.16) to incorporate constraints, by repeating

the procedure in the previous subsection to get the FIRM MDP in the presence of

obstacles:

Jg(Bi) = min
µ∈M(i)

Cg(Bi, µ) + Jg(F )Pg(F |Bi, µ)

+
∑
j

Jg(Bj)Pg(Bj|Bi, µ), (4.17a)

πg(Bi) = arg min
µ∈M(i)

Cg(Bi, µ) + Jg(F )Pg(F |Bi, µ)

+
∑
j

Jg(Bj)Pg(Bj|Bi, µ). (4.17b)

All that is required to solve the above DP equation is the values of the costs

Cg(Bi, µ) and the transition probability functions Pg(·|Bi, µ). Thus, the main dif-

ference from the obstacle free case is the addition of a “failure” state to the FIRM

MDP along with associated probabilities of failure from various nodes Bi.

When a policy is executed, there is a stopping condition that stops the execution.

In the motion planning problem under uncertainty (also known as the stochastic

shortest path problem), the system stops if it reaches the goal region in the belief

space Bgoal or it fails (e.g., hits an obstacle), i.e., F happens.

For the system to not fall into an infinite cycle or to not stop before the termina-

tion condition is satisfied, the cost of taking any action before the stopping condition

is satisfied has to be positive. It also has to be zero when the stopping condition is
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met: 
c(b, u) = 0 if (b ∈ Bgoal) or (F happens)

c(b, u) ≥ ε > 0 if otherwise

(4.18)

which results in a zero cost-to-go from the goal region, i.e., Jg(Bgoal) = 0, for all

b ∈ Bgoal. To steer the system towards the successful stopping region, i.e., Bgoal, and

steer the system away from the failure stopping regions, we set the cost-to-go of the

goal region to zero and we set the cost-to-go of the failure regions to a high value to

keep the system away from them:


Jg(Bgoal) = 0

Jg(F ) = JF

(4.19)

where JF is a user-defined high cost-to-go for failing.

4.3.2 Overall Policy π

The overall feedback π : B → U is generated by combining the global policy πg

on the graph and local policies {µij}. Suppose at the k-th time step the active local

controller is shown by µ∗k. It remains unchanged µ∗k+1 = µ∗k, and keeps generating

control signals based on the belief bk at each time step, until the belief reaches

the corresponding stopping region, Ψ. Once the belief enters the stopping region

Ψ = ∪jBj, it is in a graph node, say B∗k ∈ V. Accordingly, the global policy πg

chooses the next local controller, i.e., µ∗k+1 = πg(B∗k). Thus, this hybrid policy is
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stated as follows:

uk=π(bk)=


µ∗k(bk), µ

∗
k = πg(B∗k−1), if bk ∈ B∗k−1

µ∗k(bk), µ
∗
k = µ∗k−1, if bk /∈ Ψ

(4.20)

Given the initial belief is b0, if b0 is in one of the graph nodes, then we just

choose the best local controller using πg. However, if b0 does not belong to any of

the graph nodes, we first make a singleton set B0 = {b0} and connect it to the graph

nodes based on the connect methods discussed earlier in this chapter. Denoting

the outgoing edges (local controllers) from B0 as M(0), we compute the transition

cost Cg(B0, µ), the transition probabilities Pg(Bj|B0, µ) for all j, and the failure

probability P(F |B0, µ) for invoking local controllers µ ∈ M(0) at B0. Then, we

choose the best initial controller µ∗0 as:

µ∗0 =



arg min
µ∈M(0)

{Cg(B0, µ) + Pg(F |B0, µ)Jg(F )

+
∑
j

Pg(Bj|B0, µ)Jg(Bj)}, if @r, s.t. b0 ∈ Br

πg(Br), if ∃r, s.t. b0 ∈ Br

(4.21)

It is worth noting that computing µ∗0 is the only part of the computation that depends

on the initial belief b0 and that has to be performed online, i.e., if a large deviation

occurs, µ∗0 is the only part that needs to be reproduced for the new initial point.

That is after µ∗0 drives the system to a graph node, then the optimal policy is known

as it is associated with the graph node. Computing µ∗0 is feasible online as M(0)

contains a limited number of edges.
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4.3.3 Success Probability

We also quantify the quality of the solution π in the presence of obstacles. To

this end, we require the probability of success of the policy πg at the higher level

Markov chain on FIRM nodes given by Eq. (4.17b). Without loss of generality let us

assume that the first node B1 is the goal node Bgoal. The DP in Eq. (4.17) has N +1

states {F,Bgoal, B2, · · · , BN} that can be decomposed into three disjoint classes: the

failure class {F}, the goal class {Bgoal}, and the transient class {B2, B3, · · · , BN+1}.

The goal and failure classes are absorbing recurrent classes of this Markov chain. As

a result, the transition probability matrix of this higher level N + 1 state Markov

chain can be decomposed as follows [66]:

P =


Pf 0 0

0 Pgoal 0

Rf Rgoal Q

 . (4.22)

where, Pgoal = Pg(B1|B1, ·) = 1 and Pf = Pg(F |F, ·) = 1, since goal and failure

classes are the absorbing recurrent classes, i.e., the system stops once it reaches

the goal or it fails. Q is a matrix that represents the transition probabilities be-

tween transient nodes in the transient class, whose (i, j)-th element is Q[i, j] =

Pg(Bi+1|Bj+1, πg(Bj+1)). Vectors Rgoal and Rf are (N − 1) × 1 vectors that rep-

resent the probability of transient nodes V \ Bgoal getting absorbed into the goal

and failure node, respectively, i.e., Rgoal[j] = Pg(B1|Bj+1, πg(Bj+1)) and Rf [j] =

Pg(F |Bj+1, πg(Bj+1)). Then, it can be shown that the success probability from any

desired node Bi ∈ V \Bgoal is given as follows [66]:

P(success|Bi, πg) := P(Bgoal|Bi, πg)
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= ΓTi−1(I −Q)−1Rgoal, ∀i ≥ 2, (4.23)

where Γi is a column vector with all elements equal to zero except the i-th element

which is set to one. Note that the vector Ps = (I −Q)−1Rgoal includes the success

probability from every graph node.

In the next section, we will discuss the success probability in more detail in

the context of probabilistic completeness. However, according to the computed

P(success|Bi, πg), one can compute the success probability from any given initial

belief b0 as

P(success|b0, π) =
∑
j

P(Bj|b0, µ
∗
0)P(success|Bj, πg), (4.24)

where µ∗0 is given by Eq. (4.21). Then, this success probability is compared with a

minimum acceptable success probability, denoted by pmin. If the condition P(success|b0, π) >

pmin is not satisfied, then the number of nodes in the graph has to be increased until

the condition is satisfied. If, from the initial point b0, a successful policy in the class

of admissible policies exists, then this procedure will eventually find a successful pol-

icy by increasing the number of nodes, due to the probabilistic completeness of the

method, which is discussed in Section 4.5 of the current chapter.

4.4 Generic FIRM Algorithms

The generic algorithms for the offline construction of FIRM and online planning

with FIRM are presented in Algorithms 1 and 2, respectively. Concrete instantiations

of these algorithms for SLQG-FIRM are given in Chapter 5.

As mentioned earlier, most approaches for planning in belief space in continuous

state, action, and observation spaces result in query-dependent plans. However, one
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Algorithm 1: Generic Construction of the FIRM graph (Offline)

1 Sample a set of stabilizer parameters V = {vi} and construct stabilizers
M = {µi} accordingly;

2 Sample set of belief nodes V = {Bi} such that they satisfy the reachability
condition;

3 Connect the belief nodes using local controllers µij;
4 For each Bi and µ ∈M(i), compute the transition cost Cg(Bi, µ), and

transition probabilities Pg(Bj|Bi, µ) and Pg(F |Bi, µ) associated with invoking
µ at Bi;

5 Solve the graph DP in Eq. (4.17) to compute feedback πg over graph nodes,
and compute the π accordingly;

Algorithm 2: Generic planning (or replanning) on FIRM (Online)

1 Given an initial belief b0, invoke the controller µ0(·) in Eq. (4.21), to take the
robot into some FIRM node B;

2 while B 6= Bgoal do
3 Given the system is in FIRM node B, invoke the global feedback policy πg

to choose the local feedback policy µ(·) = πg(B);
4 Let the local controller µ(·) execute until the robot is absorbed into a

FIRM node B′ or until it hits the failure set;
5 if Collision happens then return Collision;
6 Update current node B ← B′;

of the contributions of FIRM is that its construction does not depend on the query.

In Algorithms 1 and 2, it is assumed that the goal is fixed for all queries; in this

case in the planning phase we are only robust to changes in the starting point of the

query. However, to make the algorithms also robust to changes in the goal belief,

one can just move the last line of Algorithm 1 to the first line of Algorithm 2. Note

that the computationally expensive part of Algorithm 1 is the computation of edge

costs, which is independent of the start and goal location of the submitted query.
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4.5 Probabilistic Completeness Under Uncertainty

In this section, we extend the concept of probabilistic completeness of planning

algorithms for deterministic systems to the concept of probabilistic completeness

of planning algorithms under uncertainty based on [4]. Accordingly, in the next

subsection, we discuss the probabilistic completeness of FIRM. We start by reviewing

the definition of success and probabilistic completeness in the deterministic case, and

then we extend these definitions to the stochastic case.

In the deterministic case, such as conventional PRM, the outcome of the planning

algorithm is a path. Thus, success is defined for paths: for a given initial and goal

point, a successful path is a path connecting the start point to the goal point, which

entirely lies in the obstacle-free space.

In the absence of uncertainty, a sampling-based motion planning algorithm is

probabilistically complete if by increasing the number of samples, the probability of

finding a successful path, if one exists, asymptotically approaches one.

In the presence of uncertainty, success cannot be defined for a path but is instead

defined for a policy. Indeed, on a given path, different policies may result in different

success probabilities. Moreover, under uncertainty, one can only assign a probability

for reaching goal. Thus, to define success for a policy we consider a threshold pmin ∈

[0, 1] and decide about success or failure accordingly.

In the presence of uncertainty, the solution of the planning algorithm is a function,

called a closed-loop policy or feedback. Therefore, success is defined for policies: for

a given initial belief b0 and goal region Bgoal, a successful policy is a policy under

which the probability of reaching the goal from the given initial point is greater than

some predefined threshold pmin. In other words, π is successful for a given b0 if

P(success|b0, π) := P(Bgoal|b0, π) > pmin.

70



In sampling-based methods, a policy is parametrized by a set of samples. These

samples can be in the state or belief space, depending on the algorithm. Let us

denote these samples in a generic space by {γ1, γ2, · · · , γN}. Thus, we can high-

light the dependency of the sampling-based policy on the samples by the notation

π(·; {γ1, γ2, · · · , γN}). The number of samples is denoted by N .

To define strong probabilistic completeness under uncertainty (SPCUU) let us

suppose there exists a successful policy π̌. Then a sampling-based motion planning

algorithm is SPCUU if increasing the number of samples without bound causes the

probability of finding a successful policy to approach one. In other words, if there

exists a successful policy π̌, then we have the following property for the sampling-

based policy π:

lim
N→∞

P(Bgoal|b0, π) > pmin, (4.25)

where N is the number of samples in the sampling-based method.

Achieving an algorithm that is SPCUU requires searching in the entire space of

policies, which is a computationally intractable task. Usually, in solving POMDPs

the space of admissible policies is restricted to a sufficiently rich subset of policy

space, denoted by Π, within which the method searches for the best policy. Re-

stricting the successful policy to the set Π, we define a weaker notion of probabilistic

completeness under uncertainty:

Suppose there exists a successful policy π̌ ∈ Π. Then, a sampling-based mo-

tion planning algorithm is probabilistically complete under uncertainty (PCUU), if

increasing the number of samples without bound, the probability of finding a success-

ful policy approaches one. In other words, if there exists a successful policy π̌ ∈ Π,

then for the sampling-based policy π, we have lim
N→∞

P(Bgoal|b0, π) > pmin.
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As discussed earlier, in FIRM, inspired by the sampling-based PRM framework,

this reduction from the entire function space to the restricted set of policies Π is per-

formed by sampling feedback local planners and concatenating them. Therefore, the

structure of local planners defines the set Π. Each local planner µij is parametrized

by its corresponding parameter vj. However, as mentioned, we can consider the set

V = {vi} as the set of nodes which form an underlying PRM. Thus, any policy π ∈ Π

is parametrized by the set of underlying PRM nodes V = {vi}Nvi=1. We highlight this

dependency explicitly through the notation π(·;V). Therefore, the PCUU condition

for FIRM can be written more explicitly as:

lim
Nv→∞

P(Bgoal|b0, π(·;V)) > pmin. (4.26)

For a concrete instantiation of FIRM, we can explicitly characterize the set Π. For

example, in SLQG-FIRM, Π is the set of all possible policies that can be generated

by concatenating LQG controllers.

4.5.1 Probabilistic Completeness of FIRM

Obviously, FIRM-based methods are not SPCUU algorithms. However, in this

section, we show that under mild practical conditions, FIRM-based methods are

PCUU algorithms. We first provide an analysis of the local planners in belief space,

and then state the assumptions more rigorously.

Throughout this section, the norm ‖ · ‖ denotes the supremum norm, when it is

applied to functions. The norm ‖ · ‖op is applied on operators and it stands for the

operator norm [49]. It is worth noting that in this section, by the word “continuous”

we mean “Lipschitz continuous.” Finally, we assume that Xfree is a compact set.

X = (x, b) ∈ Xh is referred to as hyper-state (or h-state), which is a state-belief

pair. The space of all h-states is called hyper-state space (h-state space) Xh = X×B.
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The pµ(X ′|X ) denotes the one-step transition pdf induced by the local controller µ,

over the h-state space. Also, let Pn(S|X , µ) denote the transition probability from

h-state X into the set S ⊂ Xh in at most n steps.

The role of the (i, j)-th local planner or local controller is to drive the belief from

the region Bi to its stopping region Bj in the belief space. For notational simplicity,

we ignore the case that the controller can stop in any FIRM node, and we restrict

its stopping region to Bj. In the presence of obstacles, we extend the concept of

stopping region to include obstacles also. The stopping regions {Bj} in the belief

space and the stopping region F in the state space, both can be extended to the

h-state space, respectively denoted by {Bj} and F , where Bj ⊂ Xh and F ⊂ Xh are

defined as:

Bj := {(X, b)|X ∈ Xfree, b ∈ Bj}, (4.27)

F := {(X, b)|X ∈ F, b ∈ B}, (4.28)

Sj := Bj ∪ F , Sj := Xh \ Sj (4.29)

where Sj and Sj, respectively, denote the entire stopping region and transient region

under the local controller µij.

If, under dynamics induced by the local planner, the system reaches the target

node Bj, the local planner is considered to be successful, and if the system hits

an obstacle, the local planner is considered to fail. The success probability of a

local planner, i.e., the absorption probability into FIRM nodes, is computed through

solving the following integral equation that results from the law of total probability:

P(Bj|X , µij) =

∫
Xh
pµ

ij

(X ′|X )P(Bj|X ′, µij)dX ′
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=

∫
Bj

pµ
ij

(X ′|X )dX ′ +
∫
Sj

pµ
ij

(X ′|X )P(Bj|X ′, µij)dX ′. (4.30)

where the second equality in Eq. (4.30) follows from substituting the following con-

ditions, inherited from FIRM construction, into the first integral:

P(Bj|X , µij) =


1, if X ∈ Bj

0, if X ∈ F
. (4.31)

Henceforth, we drop indices i and j to simplify expressions. Thus, we can write:

P(B|X , µ)=

∫
B

pµ(X ′|X )dX ′+
∫
S

pµ(X ′|X )P(B|X ′, µ)dX ′

= R(X ) + TS [P(B|·, µ)] (X ), (4.32)

where the operator TS and the function R(X ) are defined as:

TS [f(·)] (X ) :=

∫
S

pµ(X ′|X )f(X ′)dX ′, R(X ) :=

∫
B

pµ(X ′|X )dX ′. (4.33)

The solution of the integral equation in Eq. (4.32) is expressed in the following

as a Liouville-Neumann series [49], similar to the solution of the inhomogeneous

Fredholm equation of second type [49].

P(B|X , µ) =
∞∑
n=1

Tn
S [R(·)] (X ). (4.34)

We show that the series in Eq. (4.34) is a convergent series by resorting to the fol-

lowing assumption, which is a weaker version of the aforementioned FIRM condition

on the design of nodes and local controllers.
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Assumption 1. We assume that there exists some time step N , at which the con-

troller stops with a positive probability. Mathematically, there exists an N <∞ and

β > 0 such that PN(Sj|X , µij) ≥ β > 0, for all X .

This assumption is almost always true, as it rephrases the role of a controller in

driving the system toward the target region. For example, if we have Gaussian noise

(as is the case in SLQG-FIRM), the assumption is true for N = 1 regardless of the

utilized controller.

Lemma 1. Given Assumption 1, we have:


‖Tn
S‖op ≤ 1, n < N

‖Tn
S‖op ≤ 1− β < 1, n ≥ N∑∞
n=0 ‖Tn

S‖op ≤ c <∞.

(4.35)

Before proving Lemma 1, we state and prove the following lemma:

Lemma 2. Consider the bounded function 0 ≤ f(X ) ≤ 1, and kernel k(X ′,X ) ≥ 0.

Then, for any set A, we have:

‖
∫
A

k(X ′,X )f(X ′)dX ′‖ ≤ ‖
∫
A

k(X ′,X )dX ′‖. (4.36)

Proof. Given the properties of f(·) and k(·, ·), we have k(X ′,X )f(X ′) ≤ k(X ′,X ),

for all X and X ′. Taking the integral from both sides with respect to X ′ and then

taking the supremum norm with respect to X , the result follows.

Now we prove Lemma 1.

Proof. If we denote the domain of operator TS by D, we know that for all f ∈ D, we

have 0 ≤ f(X ) ≤ 1, because f(X ) is the probability of reaching given set S under
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some given controller invoked at point X . Thus, it cannot be negative or greater

than one and based on Lemma 2, we have:

‖TS [f ] ‖=‖
∫
S

pµ(X ′|X )f(X ′)dX ′‖ ≤ ‖
∫
S

pµ(X ′|X )dX ′‖

= ‖P1(S|X , µ)‖ ≤ 1. (4.37)

Therefore, based on the definition of operator norm, we have:

‖TS‖op = sup
f(·)
{‖TS [f ]‖ : ∀f ∈ D, ‖f‖ ≤ 1} ≤ 1. (4.38)

According to Assumption 1, there exists a finite number N , such that:

inf
X

Pn(S|X , µ) = β > 0 ∀n > N, (4.39)

where “inf” and “sup” denote the infimum and supremum, respectively. Thus, we

have

‖Pn(S|X , µ)‖=sup
X

(1− Pn(S|X , µ))=1− inf
X

Pn(S|X , µ)

= 1− β < 1 ∀n > N. (4.40)

Let us denote the n-th iterated kernel of TS as pn(X ′|X , µ). Since this iterated

kernel is a pdf, we have pn(X ′|X , µ) ≥ 0, ∀X ,∀X ′,∀n. We can write:

‖TN
S [f ] ‖ = ‖

∫
S

pN(X ′|X , µ)f(X ′)dX ′‖

≤ ‖
∫
S

pN(X ′|X , µ)dX ′‖ = ‖PN(S|X , µ)‖ ≤ α < 1, (4.41)
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where α = 1 − β, and similar to Eq. (4.38), we get ‖TN
S ‖op ≤ α < 1. From the

operator norm properties, we have:

‖TN+1
S ‖op ≤ ‖TN

S ‖op‖TS‖op ≤ α < 1

and similarly for all n ≥ N , we have:

‖Tn
S‖op ≤ α < 1 ∀n ≥ N.

Now, consider the series:
∑∞

i=1 ‖Tn
S‖op. We can split the sum to smaller pieces as

follows:
∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op +

∞∑
i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op.

But because ‖Tn+1
S ‖op ≤ ‖Tn

S‖op for all n ≥ N , we have

(i+1)N∑
n=iN+1

‖Tn
S‖op ≤ N‖TiN

S ‖op.

Also, we know

‖TiN
S ‖op ≤ ‖TN

S ‖iop ≤ αi

and thus, we have:

∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op︸ ︷︷ ︸

≤N

+
∞∑
i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op

≤ N +
∞∑
i=1

Nαi = N +
N

1− α
= c <∞.
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Corollary 1. The series
∑∞

n=0 Tn
S [R] is a convergent series, and therefore we can

define the resolvent operator (I −TS)−1[R] =
∑∞

n=0 Tn
S [R], where ‖(I −TS)−1‖op ≤

c <∞.

Proof. We know ‖R‖ ≤ 1, and thus we can write:

‖
∞∑
n=0

Tn
S [R]‖ ≤

∞∑
n=0

‖Tn
S‖op‖R‖ ≤

∞∑
n=0

‖Tn
S‖op ≤ c <∞.

Thus, series
∑∞

n=0 Tn
S [R] is a convergent series and we can define the operator (I −

TS)−1[R] =
∑∞

n=0 Tn
S [R]. We have

‖(I −TS)−1‖op = ‖
∞∑
n=0

Tn
S‖op ≤ c <∞. (4.42)

According to Corollary 1, the success probability of the local controller µ can be

written using the defined resolvent operator as:

P(B|X , µ) = (I −TS)−1[R(·)](X ). (4.43)

As the first result of this section (Proposition 1), we aim to show that this ab-

sorption probability varies continuously with respect to changes in the parameters

of the local planner. However, we will first state two assumptions.

Assumption 2. We assume the local planning law and induced transition probabil-

ities are smooth, i.e.,

• Local control laws are continuous in their parameters, i.e., for the (i, j)-th local

controller, mapping µij(·; vj) : B→ U is a continuous function in its parameter

vj.
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• The transition pdf on h-state, i.e., p(X ′|X , u) is a continuous function of the

control u, i.e., there exists a c1 < ∞, such that ‖p(X ′|X , u) − p(X ′|X , ǔ)‖ ≤

c1‖u− ǔ‖.

Finally, we state the following assumption, in which we emphasize the fact that,

as v → v̌, the transition probability induced by the local controller µ(·; v) into the

sets B and B̌ has to converge also, which is a reasonable assumption for a smooth

control law.

Assumption 3. Consider the controllers µ(·; v), and µ̌(·; v̌), whose corresponding

extended absorption regions are denoted by B and B̌, respectively. We assume that

there exist real numbers r > 0 and c′ <∞, such that for ‖v − v̌‖ ≤ r, we have:

‖P1(B 	 B̌|X , µ)‖ ≤ c′‖v − v̌‖ (4.44)

where 	 is the symmetric difference operator, i.e., B 	 B̌ = (B \ B̌) ∪ (B̌ \ B).

Now we state the following proposition on the continuity of the success probability

of local planners:

Proposition 1. (Continuity of absorption probabilities): Given Assumptions 1, 2,

and 3, the absorption probability P(Bj|b, µij) is continuous in parameter vj for all

i, j, and b.

We first state the following lemma on the continuity of the transition probability

in the local controller parameter.

Lemma 3. Given Assumption 2, there exists a c2 <∞ such that

‖p(X ′|X , µ(b; v))− p(X ′|X , µ̌(b; v̌))‖ ≤ c2‖v − v̌‖. (4.45)
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Proof. The result directly follows by combining two parts of Assumption 2.

Now we are ready to prove Proposition 1.

Proof. To show P(B|X , µ) is continuous in v, we perturb v to some v̌, such that

‖v − v̌‖ < r. The local controller associated with node v̌ is referred to as µ̌, whose

successful absorption region is denoted by B̌ and stopping region is Š. Similarly the

corresponding transient operator and recurrent function are referred to as ŤŠ and Ř.

Finally, the success probability associated with the perturbed node v̌ is P(B̌|X , µ̌).

To shorten the statements, we refer to P(B|X , µ) and P(B̌|X , µ̌) respectively by P(X )

and P̌(X ). As a result of node perturbation, the success probability is perturbed as:

P(B|X , µ)−P(B̌|X , µ̌) :=P−P̌=R+TS [P]−Ř−ŤŠ [P̌]

=R−Ř+TS [P]−TS [P̌]+TS [P̌]−TŠ [P̌]+TŠ [P̌]−ŤŠ [P̌]

=(R−Ř)+TS [P− P̌]+(TS−TŠ)[P̌]+(TŠ−ŤŠ)[P̌],

where

TŠ [f(·)] (X ) :=

∫
Š

pµ(X ′|X )f(X ′)dX ′. (4.46)

Let us define the operators T∆S := (TS −TŠ) and ∆TŠ := (TŠ − ŤŠ). Now, based

on Corollary 1, we can write:

P− P̌ = (I −TS)−1
[
R− Ř + T∆S [P̌] + ∆TŠ [P̌]

]
, (4.47)

and thus the following inequality holds on the supremum norm of the perturbation
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of the absorption probability:

‖P− P̌‖

≤ ‖(I −TS)−1‖op
(
‖R− Ř‖+ ‖T∆S [P̌]‖+ ‖∆TŠ [P̌]‖

)
≤ c

(
‖R− Ř‖+ ‖T∆S [P̌]‖+ ‖∆TŠ [P̌]‖

)
= c (‖K1(X )‖+ ‖K2(X )‖+ ‖K3(X )‖) , (4.48)

whereK1(X ) := R(X )−Ř(X ), K2(X ) := T∆S [P̌(·)](X ), andK3(X ) := ∆TŠ [P̌(·)](X ).

In the following we bound K1, K2, and K3, and thus bound ‖P− P̌‖, accordingly.

4.5.1.1 Bound for K1(X )

The supremum norm of K1(X ) is:

‖K1(X )‖ = ‖R(X )− Ř(X )‖

= ‖
∫
B

pµ(X ′|X )dX ′ −
∫
B̌

pµ̌(X ′|X )dX ′‖

= ‖
∫
B∩B̌

[pµ(X ′|X )− pµ̌(X ′|X )]dX ′

+

∫
B−B̌

pµ(X ′|X )dX ′ −
∫
B̌−B

pµ̌(X ′|X )dX ′‖

≤
∫
B∩B̌

‖pµ(X ′|X )− pµ̌(X ′|X )‖dX ′

+ ‖
∫
B−B̌

pµ(X ′|X )dX ′ +
∫
B̌−B

pµ̌(X ′|X )dX ′‖

from (4.45)

≤
∫
B∩B̌

c2‖v − v̌‖dX ′ + ‖P1(B 	 B̌|X , µ)‖

+ ‖P1(B̌ 	 B|X , µ̌)‖
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from (4.44)

≤ c′2‖v − v̌‖+ 2c′‖v − v̌‖ = γ1‖v − v̌‖, (4.49)

where c′2 < ∞ and γ1 = c′2 + 2c′ < ∞. In the penultimate inequality, we also used

the fact that P1(B̌−B|X , µ̌) ≤ P1(B̌	B|X , µ̌) and P1(B−B̌|X , µ) ≤ P1(B	B̌|X , µ)

because B̌ − B ⊆ B̌ 	 B and B − B̌ ⊆ B 	 B̌.

4.5.1.2 Bound for K2(X )

We have:

‖K2(X )‖ = ‖T∆S [P̌]‖ = ‖TS [P̌]−TŠ [P̌]‖

= ‖
∫
S

pµ(X ′|X )P̌(X ′)dX ′ −
∫
Š

pµ(X ′|X )P̌(X ′)dX ′‖

=‖
∫
S−Š

pµ(X ′|X )P̌(X ′)dX ′ −
∫
Š−S

pµ(X ′|X )P̌(X ′)dX ′‖

≤‖
∫
S−Š

pµ(X ′|X )P̌(X ′)dX ′ +
∫
Š−S

pµ(X ′|X )P̌(X ′)dX ′‖

=‖
∫
S	Š

pµ(X ′|X )P̌(X ′)dX ′‖
from (4.36)

≤ ‖
∫
S	Š

pµ(X ′|X )dX ′‖

= ‖P1(S 	 Š|X , µ)‖ ≤ ‖P1(B 	 B̌|X , µ)‖ (4.50)

= ‖P1(B 	 B̌|X , µ)‖
from (4.44)

≤ γ2‖v − v̌‖,

where γ2 = c′ <∞. The penultimate inequality and equality follow from the relations

S 	 S ′ ⊆ B 	 B′ and B 	 B′ = B 	 B′, respectively.
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4.5.1.3 Bound for K3(X )

We have:

‖K3(X )‖ = ‖∆TŠ [P̌]‖ = ‖TŠ [P̌]− ŤŠ [P̌]‖

= ‖
∫
Š

pµ(X ′|X )P̌(X ′)dX ′ −
∫
Š

pµ̌(X ′|X )P̌(X ′)dX ′‖

= ‖
∫
Š

(
pµ(X ′|X )− pµ̌(X ′|X )

)
P̌(X ′)dX ′‖

≤
∫
Š

‖pµ(X ′|X )− pµ̌(X ′|X )‖‖P̌(X ′)‖dX ′

from (4.45)

≤
∫
Š

c2‖v − v̌‖dX ′ = γ3‖v − v̌‖, (4.51)

where γ3 <∞.

Therefore, based on Eq. (4.49), Eq. (4.50), Eq. (4.51), and Eq. (4.48), we can con-

clude that:

‖P(B|X , µ)− P(B̌|X , µ̌)‖ ≤ γ‖v − v̌‖, (4.52)

where γ = c(γ1 + γ2 + γ3) < ∞, which completes the proof that the absorption

probability under the controller µ is continuous in the PRM node v.

Now we present the main result regarding the probabilistic completeness of FIRM-

based methods:

Theorem 1. Given Assumptions 1, 2, and 3, any planning algorithm under uncer-

tainty that is generated based on the FIRM framework (i.e., guarantees belief node

reachability and induces a roadmap in the belief space with independent edge costs)

is probabilistically complete under uncertainty (PCUU).
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Before starting with the proof of Theorem 1, we state the following proposition

that concludes the continuity of the success probability of π (overall planner) given

the continuity of the success probability of the individual local planners (µijs).

Proposition 2. (Continuity of success probability of π): The success probability

P(success|b0, π) is continuous in V , if the absorption probabilities P(Bj|b, µij) are

continuous in vj for all i, j, and b.

Proof. Given that P(Bj|b, µij) is continuous in vj, for all i, j, we want to show that

P(success|π, b0) is continuous in all vj. First, let us look at the structure of the

success probability.

P(success|b0, π)=P(B(µ0)|b0, µ0)P(success|B(µ0), πg), (4.53)

where µ0 is computed using Eq. (4.21). The term P(B(µ0)|b0, µ0) in the right hand

side of Eq. (4.53) is continuous because the continuity of P(Bj|b, µij) for all i, j is

assumed in this proposition. Thus, we only need to show the continuity of the

second term in Eq. (4.53). Without loss of generality we can consider Bi = B(µ0).

Then, we need to show that P(success|Bi, πg) is continuous in vi for all i.

As we saw in Section 4.3.3, the probability of success from the i-th FIRM node

is as follows:

P(success|Bi, πg) = ΓTi (I −Q)−1Rg, (4.54)

Moreover, we can consider Bgoal = BN without loss of generality; then, the (i, j)-th

element of matrix Q is Q[i, j] = P(Bi|Bj, πg(Bj)), and the j-th element of vector Rg

is Rg[j] = P(BN |Bj, πg(Bj)). Since we considered the Bj as the stopping region of
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the local controller µij, we have:

P(Bj|Bi, µil) = 0, if l 6= j. (4.55)

Therefore, all the non-zero elements in the matrices Rg and Q are of the form

P(Bj|Bi, µij). Thus, given the continuity of P(Bj|b, µij), the transition probability

P(Bj|Bi, µij) is continuous and the matrices Rg and Q are continuous. Therefore,

P(success|Bi, πg) and thus P(success|b0, π) are continuous in underlying PRM nodes.

Now we are ready to prove Theorem 1:

Proof. Based on the definition of probabilistic completeness under uncertainty, if

there exists a successful policy π̌, FIRM has to find a successful policy π as the

number of FIRM nodes increases unboundedly. Thus, we start by assuming that

there exists a successful policy π̌ ∈ Π for a given initial belief b0. Since each policy in

Π is parametrized by a PRM graph, there exists a PRM with nodes V̌ = {v̌i}Ni=1 that

parametrizes the policy π̌. Since π̌ is a successful policy, we know P(success|b0, π̌) >

pmin. Thus, we can define ε∗ = P(success|b0, π̌)− pmin > 0.

Given Assumptions 1, 2, and 3, and based on Propositions 1 and 2, we know

that P(success|b0, π) is continuous with respect to the parameters of the local plan-

ners, i.e., for any ε > 0, there exists a δ > 0, such that if ‖V − V̌‖ < δ, then

|P(success|b0, π(·;V))− P(success|b0, π̌(·; V̌))| < ε. The notation ‖V − V̌‖ < δ means

that ‖vi− v̌i‖ < δ, for all i, or equivalently, vi ∈ Ω̌i, for all i, where Ω̌i is a ball with

radius δ, centered at v̌i.

Therefore, for the introduced ε∗, there exists a δ∗ and corresponding regions

{Ω̌i}Ni=1, such that if we have a PRM whose nodes (or a subset of nodes – A subset
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of nodes is sufficient, because the success probability is a non-decreasing function in

terms of the number of nodes) satisfy the condition v∗i ∈ Ω̌i, for all i = 1, · · · , N ,

then the planner π parametrized by this PRM has a success probability greater than

pmin, i.e., P(success|b0, π(·;V)) > pmin, and hence π is successful.

Since δ > 0, the regions Ω̌i have nonempty interiors. Consider a PRM with a

sampling algorithm, under which there is nonzero probability of sampling in Ω̌i, such

as uniform sampling. In other words, consider a sampling algorithm under which Ω̌i

are the sets with nonzero probability measures. Thus, starting with any PRM, if we

increase the number of nodes, a PRM node will eventually be chosen at every Ω̌i, with

probability one. Therefore the policy constructed based on these nodes will have a

success probability greater than pmin, i.e., we eventually get a successful policy if one

exists. Thus, FIRM is probabilistically complete under uncertainty (PCUU).

The basic idea of probabilistic completeness under uncertainty stems from an

idea similar to the one in the path isolation-based analysis for planners in determin-

istic systems. Roughly speaking, in the path isolation argument for sampling-based

planners in the absence of uncertainty, if there is a successful path and a non-zero

neighborhood of this path, in which every path is successful, we can eventually find a

path in this neighborhood, by increasing the number of samples, unboundedly. Sim-

ilarly, in the presence of uncertainty, if there is a successful policy, it is parametrized

by some parameters (set of PRM nodes, in FIRM). Thus, if there exists a non-zero

measure neighborhood of these parameters, within which selected parameters lead to

a successful policy, then we can eventually reach a successful policy by increasing the

number of samples unboundedly and choosing samples in the target neighborhoods.
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4.6 Rollout Policy for Dynamic Replanning in Belief Space

To handle frequent changes in the environment, changes in the goal location, large

deviations in the robot’s location, and in general to handle discrepancies between

models used for simulation and the actual models, we resort to dynamic replanning

in belief space. In this section, we discuss the extension of the RHC and Rollout

policy [15] to the belief space to design a principled scheme for online replanning in

the belief space that can cope with large deviations and changes in the environment

map.

To make the connection with the rollout policy, we re-state the POMDP problem

in a more general setting of the time-varying policy.

π0:∞(·) = arg min
Π0:∞

∞∑
k=0

E [c(bk, πk(bk))]

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk)) (4.56)

In the above problem, we seek for a sequence of policies π0:∞ = {π0(·), π1(·), π2(·), · · · },

where πk maps any given bk to the optimal action uk. Πk is the space of all possible

policies at time step k, i.e., πk ∈ Πk. In the infinite horizon case, it can be shown

that the solution is a stationary policy πs, i.e., π1 = π2 = · · · = πs and the prob-

lem is reduced to the one introduced earlier in this chapter. However, we keep the

time-varying format for the reasons that will be clear further below.

As discussed earlier, solving the POMDP problem is computationally intractable

over continuous state, action, and observation spaces. However, the more difficult

problem is to solve the POMDP problem online as needed to cope with changes in

the models or map (the case in our application). In this section, we discuss how
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FIRM can be exploited to make it possible to re-solve POMDPs online.

Constructing a FIRM and Computing the optimal graph policy πg, it is straight-

forward to handle the changes in the start and goal location (see Algorithms 3

and 4). Note that if the desired factor is the success probability only, one can

initialize the success probability from b0 to 0; i.e., P ∗(b0) = 0 before the for

loop in Algorithm 3. Then, the one can replace the condition in line 8 of Algo-

rithm 3 by P(B|b0, µ)P success(B) > P ∗(b0) and add the condition update statement

P ∗(b0) = P(B|b0, µ)P success(B) into the for loop.

Algorithm 3: (Re)plan from

1 input : Start belief b0, Graph Cost-to-go Jg(·), FIRM nodes V = {Bi},
Success probabilities P success(·)

2 output : Next Local Controller µ∗

3 Find r neighboring nodes N = {Bi}ri=1 to b0;
4 Set J∗(B) =∞;
5 for B ∈ N do
6 Construct local planner µ from b0 to B;
7 Compute the transition cost C(b0, µ) and probability P(B|b0, µ);
8 if C(b0, µ) + P(B|b0, µ)J(B) + (1− P(B|b0, µ))J(F ) < J∗(B) then
9 J∗(B) = C(b0, µ) + P(B|b0, µ)J(B) + (1− P(B|b0, µ))J(F );

10 µ∗ = µ;

11 return µ∗;

Receding horizon control (often referred to as rolling horizon or model predictive

control) was originally designed for deterministic systems [36] to cope with model

discrepancies. For stochastic systems, where the closed-loop (feedback) control law

is needed, formulation of the RHC scheme is up for debate [25, 56, 84, 98]. In the

most common form of RHC [15] the stochastic system is approximated with a de-

terministic system by replacing the uncertain quantities with their typical values
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Algorithm 4: (Re)plan to

1 input : Goal state vgoal, FIRM Graph G = {V,M}
2 output : FIRM feedback πg

3 Bgoal ← Sample the FIRM node associated with vgoal;
4 Add Bgoal to the FIRM graph; i.e., V← V ∪ {Bgoal};
5 Connect Bgoal to its r nearest neighbors using edges {µ(i,goal)}. Also,

M←M ∪ {µ(i,goal)};
6 Compute the cost-to-go Jg and feedback πg over the FIRM nodes by solving

the graph DP in Eq. (4.17);
7 return πg;

(e.g., maximum likelihood value.) In belief space planning the quantity that injects

randomness in belief dynamics is the observation. Thus, one can replace the ran-

dom observations zk with their deterministic maximum likelihood value zml, where

zmlk := arg maxz p(zk|xdk) in which xd is the nominal deterministic value for the state

that results from replacing the motion noise w by zero, i.e., xdk+1 = f(xdk, πk(b
d
k), 0).

The deterministic belief bd is then used for planning in the receding horizon window.

At every time step, the RHC scheme performs a two-stage computation. At the first

stage, the RHC scheme for deterministic systems solves an open-loop control problem

(i.e., returns a sequence of actions u0:T ) over a fixed finite horizon T as follows:

u0:T = arg min
U0:T

T∑
k=0

c(bdk, uk)

s.t. bdk+1 = τ(bdk, uk, z
ml
k+1)

zmlk+1 = arg max
z
p(z|xdk+1)

xdk+1 = f(xdk, uk, 0) (4.57)

In the second stage, it executes only the first action u0 and discards the remaining

actions in the sequence u0:T . However, since the actual observation is noisy and is not
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equal to the zml, the the belief bk+1 will be different that bdk+1. Subsequently, RHC

performs these two stages from the new belief bk+1. In other words, RHC computes

an open loop sequence u0:T from this new belief, and this process continues until the

belief reaches the desired belief location. Algorithm 5 recaps this procedure.

Algorithm 5: RHC for Partially-observable stochastic systems

1 input : Initial belief bcurrent ∈ X, Bgoal ⊂ B
2 while bcurrent /∈ Bgoal do
3 u0:T = Solve the optimization in Eq.(4.57) starting from bd0 = bcurrent;
4 Apply the action u0 to the system;
5 Observe the actual z;
6 Compute the belief bcurrent ← τ(bcurrent, u0, z);

State-of-the-art methods such as [91] and [77] utilize the RHC-in belief space.

This framework is also called Partially-closed loop RHC (PCLRHC) [91] since it

partially exploits some information about future observations (i.e., zml) and does

not fully ignore them.

There are some issues regarding the presented RHC framework. First, due to the

limited horizon and ignoring the cost-to-go beyond the horizon, the method may get

stuck by choosing actions that guide the robot toward “favorable” states (with low

cost) in the near future followed by a set of “unfavorable” states (with a high cost)

in the long run. Second, the presented form of RHC ignores the stochasticity of the

system within the horizon, which may lead to inaccurate approximation of the cost

and unreliable control actions. To overcome these issues, researchers have proposed

variants of RHC and different frameworks, such as the “rollout policy”, based on the

idea of repeated planning [15].
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Another class of methods that aims to reduce the complexity of the stochastic

planning problem in Eq. (4.17) is the class of rollout policies [15], which are more

powerful than the described version of RHC in the following sense: First, they search

for a sequence of policies (instead of open-loop controls) within the horizon, and do

not approximate the system with a deterministic one. Second, they use a suboptimal

policy, called the “base policy”, to compute a cost-to-go function J̃ that approximates

the true cost-to-go beyond the horizon. In other words, at each step of the rollout

policy scheme, the following closed-loop optimization is solved:

π0:T (·) = arg min
Π0:T

E

[
T∑
k=0

c(bk, πk(bk)) + J̃(bT+1)

]

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk)) (4.58)

Then, only the first control law π0 is used to generate the control signal u0 and

the remaining policies are discarded. Similar to the RHC, after applying the first

control, a new sequence of policies is computed from the new point. The rollout

algorithm is detailed as shown in Algorithm 6.

Algorithm 6: Rollout algorithm in Belief Space:

1 input : Initial belief bcurrent ∈ B, Bgoal ⊂ B
2 while bcurrent /∈ Bgoal do
3 π0:T = Solve optimization in Eq.(4.58) starting from b0 = bcurrent;
4 Apply the action u0 = π(b0) to the system;
5 Observe the actual z;
6 Compute the belief bcurrent ← τ(bcurrent, u0, z);
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Although the rollout policy in the belief space efficiently reduces the computa-

tional cost compared to the original POMDP problem, it is still formidable to solve

since the optimization is carried out over the policy space. Moreover there should be

a base policy that provides a reasonable cost-to-go J̃ . In the following, we propose

a rollout policy in the belief space based on the FIRM-based cost-to-go.

In FIRM-based rollout policy, we adopt the FIRM policy as the base policy of

the rollout algorithm. Accordingly, the cost-to-go of the FIRM policy will be used as

the cost-to-go beyond the horizon. Now, if we have a dense FIRM graph such that

FIRM nodes partition the belief space, i.e., ∪iBi = B, then at the end of horizon, the

belief bT+1 belongs to a FIRM node B, from which the FIRM cost-to-go is available.

However, in practice, when the FIRM nodes cannot cover the entire belief space, we

need to make sure that the truncated policy can drive the belief into a FIRM node

at the end of horizon. However, since the belief evolution is random, we may not

be able to guarantee the belief reaches a FIRM node at the end of a deterministic

horizon T . Therefore, instead of truncating the policy over time, we truncate the

policy over the belief and leave the horizon length to be random (denoted by T ) as

follows:

π0:∞(·) = arg min
Π̃

E

[
T∑
k=0

c(bk, πk(bk)) + J̃(bT +1)

]

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk))

bT +1 ∈ ∪jBj, (4.59)
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where for bT +1 ∈ Bj we have

J̃(bT +1) = Jg(Bj) (4.60)

where Π̃ is a restricted set of policies under which the belief will reach a FIRM

node Bj in finite time (possibly random). More rigorously, if π ∈ Π̃ and π =

{π1, π2, · · · }, then for finite T , we have P(bT +1 ∈ ∪jBj|π) = 1, i.e., belief will enter

into a FIRM node under π after finite time. In other words, the last constraint in

(4.59) is redundant as it is already satisfied by the definition of Π̃. However, it is

explicitly written in (4.59) to emphasize this constraint. Also, it is worth noting that

the FIRM-based cost-to-go Jg(·) plays the role of the cost-to-go beyond the horizon

J̃(·) (Equation (4.60)). In Chapter 8, we implement FIRM-based rollout policy to

handle changes in the environment map and large deviations in the robot’s location.

4.7 Discussion

In summary, in FIRM we aim to transform the original POMDP problem into a

belief SMDP problem and solve it on a subset of belief space. Given the smoothness

of the cost function and transition probabilities, the solution of the FIRM MDP is

arbitrarily close to the solution of the belief SMDP over FIRM nodes. The important

characteristic of FIRM is that it is solved offline and thus performing the online

phase of planning (or replanning) is computationally feasible in online. To exploit

the generic FIRM framework, one has to find (B, µ) pairs, where B is reachable

(or αT -reachable) under µ, as FIRM nodes and edges. Also, transition costs and

probabilities need to be computed. Finally, the corresponding FIRM MDP needs to

be solved, which provides a global feedback policy on the graph that can be used in

planning, as detailed in Algorithm 2. SLQG-FIRM, presented in the next chapter,

is an instance of FIRM, in which the design of local controllers µij and FIRM nodes
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Bi is based on the properties of SLQG controllers.
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5. FIRM INSTANTIATION FOR HOLONOMIC SYSTEMS

In this chapter, we develop a concrete FIRM for holonomic systems where be-

lief reachability is accomplished by Stationary Linear Quadratic Gaussian (SLQG)

controllers. We refer to this variant of FIRM as the SLQG-based FIRM. We discuss

how an SLQG controller can satisfy belief node reachability. We characterize SLQG-

based FIRM nodes and edges, and we provide concrete sampling and connecting

methods.particular.

We start this chapter by reviewing LQG controllers. Then, we restrict our atten-

tion to the class of systems that SLQG-FIRM can handle and address how we can

define nodes in belief space to satisfy reachability using SLQG controllers. Next, we

explain the procedure of constructing local controllers (i.e., FIRM edges) and the

SLQG-based FIRM graph. We compute transition probabilities and costs associ-

ated with each graph edge and compute the graph feedback. Finally, we describe

algorithms for planning with this framework and demonstrate its performance on

different systems and in different scenarios.

5.1 Preliminaries on SLQG

To construct the SLQG-based FIRM we assume the noise is Gaussian. It is worth

noting that the abstract FIRM framework does not make any assumption on the form

of the belief (e.g., it does not require the belief to be Gaussian). We start this section

by defining the notation needed to deal with Gaussian beliefs.

We denote the random estimation vector by x+, whose distribution is bk =

Parts of this section reprinted with permission from “FIRM: Sampling-based feedback mo-
tion planning under motion uncertainty and imperfect measurements.” by Aliakbar Aghamoham-
madi, Suman Chakravorty, and Nancy Amato. International Journal of Robotics Research (IJRR),
33(2):268–304, 2014. Copyright 2014 by Sage publications.
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p(x+
k ) = p(xk|z0:k, u0:k−1), and denote the mean and covariance of x+ by x̂+ = E[x+]

and P = E[(x+ − x̂+)(x+ − x̂+)T ], respectively. Denoting the Gaussian belief space

by GB, every function b(·) ∈ GB, can be characterized by a mean-covariance pair

(x̂+, P ). Abusing notation, we also show this pair by b ≡ (x̂+, P ) ∈ Rn × Sn+, where

the mean vector belongs to the n-dimensional Euclidean space Rn and the covariance

matrix belongs to the space of all positive semi-definite n× n matrices Sn+.

An LQG controller is composed of a Kalman filter as the state estimator and

an LQR controller (see Fig. 2.1). Thus, the belief dynamic bk+1 = τ(bk, uk, zk+1) is

known and comes from the Kalman filtering equations, and the controller uk = µ(bk)

that acts on the belief comes from the LQR equations. Considering a quadratic cost

for state error and control error, LQG is an optimal controller for linear systems

with Gaussian noise [15]. However, it is also often used for stabilization of nonlinear

systems around a given trajectory or around a given point.

Time-varying LQG is designed to track a given trajectory, in which at every

time step, a different feedback policy is utilized. Stationary LQG is a time-invariant

policy, in which LQG is designed around a given point, say v, to steer the state of

the system to v [15]. In Sections 2.2.1 and 2.2.2 we have discussed these controllers

in detail.

Let us denote a configuration of a robotic system [58] by q. Kinematic models

are specified in terms of the configuration variable q, while dynamical models are

specified by the state x = (q, q̇), where q̇ denotes the corresponding velocities. In

SLQG-FIRM, we sample the underlying PRM nodes (stabilizer parameters) from the

configuration space. Thus, for dynamical systems, we impose the condition q̇ = 0

on the samples, i.e., we sample from the equilibrium space of the system, which is

denoted by X in this dissertation.
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Remark 1. FIRM can be generalized to cases that do not need to sample in equilib-

rium space. For example, in systems such as fixed-wing aircraft, the system cannot

reach the zero velocity q̇ = 0. In such cases, SLQG is not a suitable choice and one

needs to design more appropriate controllers, such as periodic controllers as detailed

in Chapter 7. In such a case, we sample periodic maneuvers as FIRM nodes. In

other words, we go from periodic trajectory to periodic trajectory instead of going

from point to point.

5.2 Belief Stabilizers

In SLQG-FIRM nodes, we use Stationary LQG (SLQG) controllers as belief sta-

bilizers, i.e., as a tool to reach (stabilize to) a predefined belief (FIRM node). To

explain how SLQG works as a belief stabilizer, consider a fixed point v ∈ X in the

state space and consider the following linear (linearized) system about v:

xk+1= Axk + Buk + Gwk, wk ∼ N (0,Q) (5.1a)

zk= Hxk + vk, vk ∼ N (0,R), (5.1b)

The goal of the SLQG controller designed about v is to keep the state as close as

possible to the desired point v and also keep the consumed energy at a reasonable

level. More rigorously, SLQG minimizes the following quadratic cost:

J = E{
∑
k≥0

(xk − v)TWx(xk − v) + uTkWuuk}, (5.2)

where Wx and Wu are positive definite weight matrices that are defined by the user.

As discussed in Chapter 2, under the SLQG controller minimizing the above cost,
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the belief propagation and control generation is carried out as follows:

bk+1 ≡

 x̂+
k+1

P+
k+1

 =

 Ax̂+
k + Buk + Kk+1(zk+1 −H(Ax̂+

k + Buk))

(I −Kk+1H)(AP+
k AT + GQGT )

 ≡ τ(bk, uk, zk+1),

(5.3)

where Kk is called the Kalman gain at the k-th time step and is computed as follows:

Kk+1 = (AP+
k AT + GQGT )HT (H(AP+

k AT + GQGT )HT + MRMT )−1. (5.4)

The control signal is generated using a stationary feedback gain Ls:

uk = −Ls(x̂
+
k − v) =: µ(bk), Ls = (BT

s SsBs + Wu)
−1BT

s SsAs, (5.5)

where, Ss is the solution of the following Discrete Algebraic Riccati Equation (DARE):

Ss = Wx + AT
s SsAs −AT

s SsBs(B
T
s SsBs + Wu)

−1BT
s SsAs. (5.6)

Consider an n × n matrix A. A pair of matrices (A,B) is called a controllable

pair if C = [B,AB,A2B, · · · ,An−1B] (referred to as controllability matrix) has

rank n [15]. A pair of matrices (A,H) is called observable if the pair (AT ,HT ) is

controllable [15].

Let us also define the matrices Q̌ and W̌x such that GQGT = Q̌Q̌T , Wx =

W̌T
xW̌x. We next consider a class of linear systems and quadratic cost weights that

satisfy the following property:

Property 1. Pairs (A,B) and (A, Q̌) are controllable pairs, and pairs (A,H) and

(A,W̌) are observable pairs.
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In the following, we present three lemmas, through which we can construct

reachable SLQG-FIRM nodes for the systems that satisfy Property 1. However,

approaches such as dynamic feedback linearization-based FIRM (see Chapter 6) or

periodic LQG-based FIRM (see Chapter 7) extend this class of systems by excluding

the controllability part in Property 1, and thus consider a broader class of systems.

Lemma 4. Consider the SLQG controller designed to drive the state of the system

in Eq. (5.1) to a point v ∈ X. Given that Property 1 is satisfied, in the absence

of a stopping region, the belief bk under an SLQG controller converges to a unique

stationary belief bs, in distribution (i.d.). In other words, the distribution over belief

converges to a unique distribution. That is,

bk
i.d.→ bs ∼ N (bc, C). (5.7)

Note that bk is a random belief that converges to another random belief bs. In the

Gaussian setting, the distribution over the random belief bs is N (bc, C), where, bc =

E[bs] ≡ (v, Ps). The stationary estimation covariance matrix Ps is characterized in

Lemma 5, and the covariance C is characterized in Section 2.2.2.

Proof. See Section 2.2.2.

Lemma 5. Given Property 1, the following Algebraic Riccati equation (DARE) has

a unique symmetric positive definite solution [15], denoted by P−s :

P−s = GQGT + A(P−s − P−s HT (HP−s HT + R)−1HP−s )AT. (5.8)

Moreover, the stationary covariance matrix Ps introduced in Lemma 4 is computed
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as:

Ps = P−s − P−s HT (HP−s HT + R)−1HP−s . (5.9)

Proof. See Section 2.2.2 or [15].

Now we state the main result, through which we can construct reachable FIRM

nodes under SLQG-based belief stabilizers:

Lemma 6. Consider the SLQG controller designed to drive the state of the system in

Eq. (5.1) to a point v ∈ X. Suppose matrix H is full rank and Property 1 is satisfied.

Then, any set B ⊂ B, whose interior contains bc ≡ (v, Ps), is reachable under the

designed SLQG controller starting from any Gaussian distribution. Moreover, the

estimation covariance Pk converges to the unique deterministic stationary covariance

Ps.

Proof. Let us consider the state space model of the linear system of interest as follows:

xk+1= Axk + Buk + Gwk, wk ∼ N (0,Q) (5.10a)

zk= Hxk + vk, vk ∼ N (0,R). (5.10b)

Based on Lemma 4, if (A,B) and (A, Q̌) are controllable pairs, where GQGT =

Q̌Q̌T , and if (A,H) and (A,W̌x) are observable pairs, where Wx = W̌T
xW̌x,

then the estimation covariance deterministically tends to a stationary covariance

Ps. Therefore, for any ε > 0, after a deterministic finite time, Pk enters the ε-

neighborhood of the stationary covariance, denoted by Ps.

The estimation mean dynamics, however, is stochastic and is as follows for the
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system in Eq. (5.10):

x̂+
k+1 = v + (A−BL−Kk+1HA)(x̂+

k − v)

+ Kk+1HA(xk − v) + Kk+1HGwk + Kk+1vk+1

= v − (A−BL)v + (A−BL−Kk+1HA)x̂+
k

+ Kk+1HAxk + Kk+1HGwk + Kk+1vk+1 (5.11)

where the Kalman gain Kk is:

Kk = P−k HT (HP−k HT + R)−1 (5.12)

Since K is full rank (due to the condition on the rank of H), and since the v and w

are Gaussian noises, the Eq. (5.11) induces an irreducible Markov process over the

state space [61]. Thus, if we have a stopping region for the estimation mean with size

ε > 0, the estimation mean process will hit this stopping region in a finite time [61],

with probability one.

Based on the estimation mean dynamics in Eq. (5.11) and the state dynamics in

Section 2.2.2, in the absence of stopping region, if the estimation mean process and

state process start from x̂+
0 and x0, respectively, such that E[x̂+

0 ] = v and E[x0] = v

(which indeed is the case in FIRM due to the usage of edge-controllers), “the mean

of estimation mean” remains on the v, i.e., E[x̂+
k ] = v, for all k. As a result, if we

center the stopping region for the estimation mean at v, the probability of hitting

the stopping region is maximized and the stopping time is minimized.

Combining the results for estimation covariance and estimation mean, if we define

the region B as a set in the Gaussian belief space with a non-empty interior centered

at (v, Ps), then the belief bk ≡ (x̂+
k , Pk) enters region B in finite time with probability
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one. Thus, the pair (B, µ) is a proper pair over whole GB.

Therefore, based on Lemma 6, SLQG can accomplish the belief reachability for

an appropriately chosen region B. In the next subsection we explicitly characterize

the region B.

5.3 Designing SLQG-FIRM Nodes

As mentioned, to construct a FIRM we first construct an underlying PRM [48].

In the SLQG-FIRM, nodes of the underlying PRM, denoted by {vj}Nvj=1, are sampled

from the obstacle-free space. Considering linear systems or nonlinear systems that

are locally well approximated by linearization, we linearize the system about every

PRM node. Let us denote the linear (linearized) system about vj as follows:

xk+1= Ajxk + Bjuk + Gjwk, wk ∼ N (0,Qj) (5.13a)

zk= Hjxk + vk, vk ∼ N (0,Rj). (5.13b)

where wk and vk are motion and measurement noise, respectively, drawn from zero-

mean Gaussian distributions with covariances Qj and Rj.

To design the j-th FIRM node Bj, we first design the SLQG controller µjs (see

Eq. (5.5)) corresponding to the system in Eq. (5.13). The controller µjs is called the

j-th node controller or the j-th belief stabilizer. Given Property 1, based on Lemma

4, the limiting random belief bjs ≡ (x̂+j

s , P j
s ) exists. x̂+j

s and P j
s are the stationary

estimation mean and covariance, respectively. Note that under SLQG, x̂+j

s is a

random variable and P j
s is a deterministic matrix. Moreover, in Lemma 4, it is

shown that bjc = E[bjs] ≡ (vj, P j
s ), where P j

s is shown to be unique and computed in
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Lemma 5. Thus, we can characterize the j-th node center:

bjc ≡ (vj, P j
s ). (5.14)

As a result, considering Bj as a ball with an arbitrary radius ε > 0 centered at bjc,

the pair (Bj, µjs) is a proper pair, based on Lemma 6; i.e., Bj is reachable under µjs.

Thus, one can define the j-th FIRM node as Bj = {b : ‖b− bjc‖b < δ}, where ‖ · ‖
b

denotes a suitable norm in belief space and δ defines the FIRM node size. A typical

example of such a FIRM node in Gaussian belief space can be defined by considering

mean and covariance separately:

Bj = {b ≡ (x, P ) : ‖x− vj‖ < δ1, ‖P − P j
s ‖m < δ2} (5.15)

where δ1 and δ2 are suitably small thresholds that determine the size of FIRM node

Bj. ‖ · ‖ is a suitable vector norm and ‖ · ‖m is a suitable matrix norm. We denote

the set of all SLQG-FIRM nodes as V = {Bi}.

5.4 Designing SLQG-FIRM Edges

A FIRM edge is actually a local planner (local feedback controller). In SLQG-

based FIRM, the local controller representing the (i, j)-th edge is denoted by µij.

The role of µij is to drive the belief from the node Bi to the node Bj. Based on

Lemma 6, for a linear system, if we choose µij = µjs, as has been done in [2], the node

Bj is reachable under µij. However, to better cope with nonlinearities, we construct

the local controller µij by preceding the node-controller with a time-varying LQG

controller µijk , which is called an edge-controller here. Time-varying LQG controllers

have been described in detail in Section 2.2.1.

To design edge-controllers, first the underlying PRM edges, denoted by E =
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{eij}, have to be constructed. For kinematics-based models there are many different

methods in the PRM literature to construct such edges. For dynamical models, there

are fewer choices. A few examples are [92] or [5].

An edge-controller µijk in SLQG-FIRM is built by linearizing the system along

the (i, j)-th PRM edge eij and designing a time-varying LQG controller to track it

(see Section 2.2.1). The edge-controller has two major roles. First it tries to track

the PRM edge and thus exploits the available information on the PRM edges, such

as some clearance from the obstacles. Second, in the case that the neighboring PRM

nodes are not close to each other, it takes the belief into the valid linearization region

of the j-th belief stabilizer, where it hands over the system to the belief stabilizer,

and the belief stabilizer in turn takes the system to the j-th FIRM node.

Thus, overall, the (i, j)-th local controller µij is the concatenation of the (i, j)-th

edge controller µijk and j-th node-controller (belief stabilizer) µjs. We denote the

set of all SLQG-FIRM edges by M = {µij} and the set of all SLQG-FIRM edges

originating from Bi by M(i).

Formally, we define SLQG-FIRM as a graph with the set of nodes V = {Bi} and

the set of edges (or local controllers) M = {µij}. The set of controllers originating

from Bi is denoted by M(i) ⊂M.

5.5 Transition Probabilities and Edge Costs

To find a feedback on a FIRM graph, we need to compute the cost associated

with the graph edges. Moreover, we include the constraint set F in the planning

with FIRM by computing the probability of violating the constraint (x, u) /∈ F

along the graph edges. Let us denote the cost of taking controller µij at node Bi

by Cg(Bi, µij). Superscript g refers to the “global” (or “graph-level”) quantities, as

these quantities are used to find the global policy (or policy on the graph). Similarly,
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let Pg(Bj|Bi, µij) and Pg(F |Bi, µij) denote the probability of the transition to Bj and

F under µij, respectively. These quantities are rigorously defined in Chapter 4 and

their connection with the original POMDP is established. In this subsection, we give

examples of how such costs and transition probabilities can be computed.

Computing transition probabilities Pg(·|Bi, µij) in general can be computationally

expensive. Here, we utilize particle-based methods to approximate the distributions

and thus compute the collision probabilities. Basically, we can approximate the

failure and reachability probabilities based on the number of particles that violate

the constraints (hit the set F ) and based on the number of particles that can reach

the target node (hit the set Bj). The method is described in more detail with

the experiments in Section 5.8 of this chapter. The dependency of collision events

in different time steps, which is ignored in most collision probability computation

methods in the POMDP literature, can be taken into account rigorously in particle-

based methods. Owing to the offline construction of FIRM, the high computational

burden of particle-based approaches can be tolerated. However, any other method

for computing transition probabilities can also be adopted, such as [75].

The FIRM edge costs in general and their derivation based on the one-step costs of

the original POMDP problem are defined in Chapter 4. However, roughly speaking,

we can define the cost Cg(Bi, µij) as the sum of all one-step costs along the edge

until the system reaches the target node Bj or hits the failure set F . Depending

on the application, one can define a variety of cost functions. Here, we form a cost

function based on a linear combination of the estimation accuracy and edge traversal

time. This cost function aims to find paths for which the estimator (and hence the

controller) can perform well and also to find faster paths. An indicator of estimation

error is the trace of estimation covariance. Thus, we define Φij = E[
∑T

k=1 tr(P ij
k )]

along the edge. In stationary LQG, the covariance matrix evolves deterministically
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and thus the expectation operator can be omitted. However, if the filter of choice

in the edge-controller is the Extended Kalman Filter (EKF), the covariance matrix

evolution is also stochastic, and this measure can take into account its stochasticity.

Let us denote the mean stopping time under controller µij as T̂ ij. Then, the total

edge cost is considered as a linear combination of estimation accuracy and expected

stopping time, with suitable coefficients α1 and α2.

Cg(Bi, µij) = α1Φij + α2T̂ ij. (5.16)

5.6 Graph Feedback on SLQG-FIRM

Graph policy πg : V→M is a function that returns an edge (local controller) for

any given node of the graph. We denote the space of all graph policies by Πg. To

choose the best graph policy in Πg we define the optimal graph cost-to-go Jg from

every graph node.

The cost-to-go from a given node Bi is equal to the cost of the next taken con-

troller, i.e., Cg(Bi, πg(Bi)), plus the expected cost-to-go from the next node or from

the failure set. In other words, the dynamic programming equations for this graph

are:

Jg(Bi) = min
M(i)

Cg(Bi, µij) + Jg(F )Pg(F |Bi, µij)

+ Jg(Bj)Pg(Bj|Bi, µij), (5.17a)

πg(Bi) = arg min
M(i)

Cg(Bi, µij) + Jg(F )Pg(F |Bi, µij)

+ Jg(Bj)Pg(Bj|Bi, µij). (5.17b)

in which, J(F ) is a suitably high user-defined cost-to-go for hitting the obstacles.
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The cost-to-go from goal node Bgoal is defined to be zero, i.e., Jg(Bgoal) = 0.

The DP in Eq. (5.17) is a tractable DP as it is defined on a finite number of

graph nodes. Computing the transition costs and probabilities offline, this DP can

be solved online using standard techniques, such as value/policy iteration methods,

for any submitted query. As a result, FIRM is indeed a multi-query roadmap in

belief space. Moreover, if the goal node is fixed and only the starting point of the

query changes, then this DP can be solved offline and πg can be stored as a look-up

table.

Algorithm 7 details the construction of SLQG-FIRM with a given goal node.
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Algorithm 7: Offline Construction of SLQG-FIRM

1 input : Free space map, Xfree
2 output : FIRM graph G
3 Sample PRM nodes V = {vj}Nvj=1 and construct its edges E = {eij};
4 forall the PRM nodes vj ∈ V do
5 Design the node controller (stationary LQG) µjs about the node vi using

Eq. (5.5);
6 Compute associated bjc using Eq. (5.14);
7 Construct FIRM node Bj using Eq. (5.15);

8 Construct V = {Bi};
9 forall the PRM edges eij ∈ E do

10 Design the edge controller (time-varying LQG) µijk along the edge eij

(detailed in Section 2.2.1);
11 Construct the local controller µij by concatenating edge controller µijk and

node controller µjs;
12 Set b0 = bic;
13 Generate sample belief paths b0:T and ground truth paths x0:T induced by

controller µij invoked at Bi;
14 Compute the transition probabilities Pg(F |Bi, µij) and Pg(Bj|Bi, µij) and

transition cost Cg(Bi, µij);

15 Construct M = {µij};
16 Compute the cost-to-go Jg and feedback πg over the FIRM nodes by solving

the DP in Eq. (5.17);
17 G = (V,M, Jg, πg);
18 return G;

5.7 Planning with SLQG-FIRM (Query-phase)

Given that the FIRM graph is computed offline, the online phase of planning

(and replanning) on the roadmap becomes very efficient, and thus feasible in real

time. In this section, we assume that the goal node is fixed and we just input the

start point as the query. However, as discussed in the previous subsection, one can

easily submit queries with different goal locations by solving DP online. If the initial

belief b0 of the submitted query does not belong to any Bi, we create a singleton
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set B0 = {b0} as the initial FIRM node. To connect B0 to the FIRM graph, we go

back into the state space, where the underlying PRM is constructed. There, we add

a new PRM node to the graph v0, which is the expected value of the robot state,

i.e., v0 = E[x0]. Then, we connect v0 to the underlying PRM graph based on the

connecting function of the adopted PRM. We denote the set of newly added edges

originating from v0 by E(0). Then, corresponding to each edge in E(0), we design

a local controller and call the set of them M(0). Finally, we choose the best initial

controller among the local controllers in M(0) using:

µ∗0(·) =arg min
µ∈M(0)

{Cg(B0, µ) + Pg(B(µ)|B0, µ)Jg(B(µ)) + Pg(F |B0, µ)Jg(F )}, (5.18)

where B(µ) is the target node of the controller µ. Under the controller µ∗0, belief

evolves and enters one of FIRM nodes, if no collision occurs. From this FIRM node,

a combination of the global graph policy πg and the local edge policies {µij} can

take the belief to the goal node, as explained below.

After computing a global graph feedback πg and local edge feedbacks {µij}, we

can construct a full feedback π. Actually, at every time instance, π is equal to one of

the local feedbacks, which is chosen by the global feedback in the last visited node.

In other words, given the current FIRM node, we use policy πg defined on FIRM

nodes to find µ∗ and pick µ∗ to move the robot into B(µ∗). This process is continued

until the system reaches the goal region or hits the failure set. Algorithm 8 illustrates

this procedure.

An autonomous robot is said to be in the kidnapped situation if it is carried to

an unknown location while it is in operation. The problem of recovering from this

situation is referred to as the kidnapped robot problem [29].

Consider a kidnapped robot problem in a known environment. Just after the
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Algorithm 8: Online Phase Algorithm (Planning or Replanning with SLQG-
FIRM)

1 input : Initial belief b0, FIRM graph G
2 if ∃Bi ∈ V such that b0 ∈ Bi then
3 Compute µij = πg(Bi);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0 to the PRM. Let E(0)

denote the set of outgoing edges from v0;
6 Set B0 = {b0}; Design local controllers associated with edges in E(0). Call

the set of these local controllers M(0);
7 forall the µ ∈M(0) do
8 Generate sample belief paths b0:T and ground truth paths x0:T induced

by controller µ invoked at b0;
9 Compute the transition probabilities Pg(F |B0, µ) and Pg(B(µ)|B0, µ)

and transition costs Cg(B0, µ);

10 Set i = 0 and choose the best initial local controller µij within the set
M(0) using Eq. (5.18);

11 while Bi 6= Bgoal do
12 Denote the target node of µij by Bj;
13 while bk /∈ Bj and “no collision” do
14 Apply the control uk = µij(bk) to the system;
15 Get the measurement zk+1 from sensors;
16 if Collision happens then return Collision;
17 Update belief as bk+1 = τ(bk, µ

ij(bk), zk+1);

18 Set Bi = Bj, then compute µij = πg(Bi);

robot is kidnapped, it would be risky to apply any control, because the robot may

be close to an obstacle. Thus, in such a scenario, we first initialize the system

belief with a Gaussian with large covariance and go into an “information gathering”

mode, where we do not apply any control signal and only gather measurements,

until the covariance shrinks to a reasonable covariance or it remains unchanged for

a significant amount of time (i.e., when there is no additional information to reduce

the uncertainty). Afterwards, we connect the resulting belief to the FIRM nodes

and continue applying the FIRM policy to move the robot toward the goal region.
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A more efficient approach of handling this problem is detailed in Chapter 8 using

innovation signals.

5.8 Experimental Results

In this section, we first illustrate theoretical results from the previous sections

on a planar robot in a small three-dimensional planning domain. Then, we present

planning results for a larger three-dimensional state space. Finally, we report the

results of the method on a dynamical model of an eight-arm manipulator (sixteen-

DOF state space). This section is followed by a brief comparison with other state-

of-the-art methods in this domain.

5.8.1 Planar 3D Omni-directional Robot

The main goal of this subsection is to illustrating steps in construction and plan-

ning with SLQG-FIRM. In this subsection, we focus on an omni-directional robot.

Its state is composed of its 2D position in the plane and its heading angle. The goal

in this section is to illustrate the steps of constructing SLQG-FIRM and planning

with it.

A 3-wheel omni-directional mobile robot is used in experiments with the nonlinear

kinematic model given in [45]. The state vector is composed of a 2D location and

heading angle x = [1x, 2x, θ]T in a global world frame. u = [1u, 2u, 3u]T is the vector

of controls, where iu is the linear velocity of the i-th wheel. w is the motion noise,

which is drawn from a zero-mean Gaussian distribution. The motion dynamics for

this robot, in its original continuous form is [45]:

ẋ = fc(x, u, w) = T (x)u+ w, (5.19)
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where

T (x)=
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 , (5.20)

where r is the distance of the wheels from the robot’s center of mass. The discrete

motion dynamics is shown by:

xk = f(xk−1, uk−1, wk−1). (5.21)

wk ∼ N (0,Q) is the motion noise at the k-th time step, which is drawn from a

zero-mean Gaussian distribution with covariance matrix Q. It can be shown that

if we linearize this system, the linearized motion model satisfies the controllability

condition in Property 1.

In experiments, the robot is equipped with exteroceptive sensors that provide

range and bearing measurements from existing landmarks (radio beacons) in the

environment. The 2D location of the j-th landmark is denoted by Lj. Measuring Lj

can be modeled as follows:

jz = jh(x, jv) = [‖jd‖, atan2(jd2,
jd1)− θ]T + jv, jv ∼ N (0, jR),

where jd = [jd1,
jd2]T := [1x, 2x]T − Lj. The vector jv is a state-dependent observa-

tion noise, with covariance

jR = diag((ηr‖jd‖+ σrb)
2, (ηθ‖jd‖+ σθb )

2). (5.22)

In other words, the uncertainty (standard deviation) of the sensor reading increases as
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the robot gets farther from the landmarks. ηr = ηθ = 0.3 determines this dependence,

and σrb = 0.01 meter and σθb = 0.5 degrees are the bias standard deviations. A

similar model for range sensing is used in [81]. We assume the robot observes all

NL landmarks at all times and their observation noise is independent. Thus, the

total measurement vector is denoted by z = [1zT , 2zT , · · · ,NLzT ]T , and, due to the

independence of measurements of different landmarks, the observation model for all

landmarks can be written as:

z = h(x) + v, v ∼ N (0,R), R = diag(1R, · · · ,NLR). (5.23)

It is straightforward to show that the linearized version of this observation model

satisfies the observability condition in Property 1. Therefore, this entire system

model (motion and sensing models) satisfies Property 1 and thus the SLQG-FIRM

can be used for planning.

Figure 5.1(a) shows a sample environment, including obstacles, landmarks, and

enumerated nodes in (1x, 2x, θ) space. Nodes are shown by blue triangles, which en-

code the position (1x, 2x) and heading angle θ of the robot. Landmarks are shown by

black stars. The corresponding FIRM nodes are computed and shown in Fig. 5.1(b).

All elements in Fig. 5.1(b) are defined in (1x, 2x, θ) space but only the (1x, 2x) portion

of them is shown. Each bjc ≡ (vj, P j
s ) is illustrated by a red dot representing vj and

a green ellipse, representing 3σ ellipse of covariance P j
s . Each FIRM node Bj is a

neighborhood around bjc. In the experiments, we define the node region using the

component-wise version of Eq. (5.15), to handle the error scale difference in position

and orientation variables:

Bj = {b ≡ (x, P )| |x− vj|
.
< ε, |P − P j

s |
.
< ∆}, (5.24)
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where |·| and
.
< stand for the absolute value and component-wise comparison op-

erators, respectively. We also set ε = [0.07(meter), 0.07(meter), 1(degree)]T and

∆ = εεT to quantify Bj’s. The projection of Bj onto the space of estimation mean,

i.e., Bj
x = {x̂+ : |x̂+ − vj|

.
< ε} is a neighborhood around vj, which is shown by

a cyan rectangle centered at vj. The projection of Bj onto the space of estimation

covariances, i.e., Bj
P = {P : |P −P j

s |
.
< ∆} is a neighborhood around P j

s . However,

in a 2D plot Bj
P cannot be shown due to its high dimension. Thus, we partially illus-

trate it only by two dashed green ellipses that represent 3σ covariances of P j
s −∆d

and P j
s + ∆d, where ∆d is the matrix ∆, whose off-diagonal elements are set to zero.

For illustration purposes, both of these neighborhoods, i.e., Bj
x and Bj

P , are five times

magnified in Fig. 5.1(b).
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Figure 5.1: (a) Figure depicts the underlying PRM graph. Gray polygons are the
obstacles and black stars represent the landmarks’ locations. (b) FIRM nodes cor-
responding to PRM nodes.
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After designing FIRM nodes and local controllers, the transition costs and proba-

bilities have to be computed. Based on the given task and needed accuracy, different

approaches can be taken. Here, we use a particle-based approximation of the distri-

bution to compute these quantities, and we use M = 100 particles. In other words,

for every (B, µ) pair, we perform 100 runs. At every run, a sample path of state x,

a sample path of estimation mean x̂+, and a sample path of estimation covariance

P is generated. If the filter of choice in the edge-controller is the Linearized Kalman

Filter (LKF) [32], [85], the covariance evolution is deterministic and there is no need

to generate 100 different sample covariance paths. However, if the filter of choice in

the edge-controller is the Extended Kalman Filter (EKF) [32], [85], then we have to

generate the sample covariance paths too, to take into account the stochasticity of

the covariance matrix. Figure 5.2(a) depicts sample paths of the true state x and

estimation mean x̂+ in green and dark red, respectively, for M = 100 particles. Note

that when a true state path (green path) collides with an obstacle, the process stops

and failure happens. However, in this figure, for illustration purposes, we continue

the process and ignore the obstacles to better show the uncertainty tube and infor-

mation availability at different parts of the space. As seen in Fig. 5.2(a), the behavior

of the true state on the edges which have access to more accurate observations is

remarkably close to the planned behavior. In contrast, on the edges that receive less

informative observations, the controller cannot effectively compensate for deviations

of the ground truth from the nominal path, which can lead to collision with obstacles.

To simplify the figure, Fig. 5.2(b) depicts sample estimation covariance evolution

only for a single particle. In this figure, to keep the centers of ellipses (i.e., the

estimation mean) on the planned points, we let the process and observation noise be

zero. However, note that, in general, the estimation mean is affected by the noise

(as is seen in Fig. 5.2(a)). Indeed, Fig. 5.2(b) can be seen as the maximum-likelihood
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estimation uncertainty tube over the roadmap.
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Figure 5.2: Sample paths induced by controllers invoked at different nodes. (a) For
M = 100 particles, sample ground truth paths and sample estimation mean paths
are shown in green and dark red, respectively. (b) The most likely path under the
optimal policy and shortest path are shown in red and yellow respectively. The 3σ
ML estimation uncertainty tube is drawn in blue.

Let us denote the q-th sample path for the true state by x
(q)
0:T q , for the estimation

mean by x̂
+(q)
0:T q , and for the estimation covariance by P

(q)
0:T q , where T q is the stopping

time of the q-th particle in executing µ at B. Moreover, one can assign a weight

to each particle q based on its probability of occurrence. There are different ways

proposed to compute these weights in the Sequential Monte Carlo literature [34].

However, the main condition is that they have to sum to one, i.e.,
∑M

q=1 w
(q) = 1.

Here we simply consider w(q) = M−1. Note that if we run µij at Bi, all these

quantities also have to have a ij superscript. Having these sample paths, we can

compute the transition costs and probabilities associated with invoking the µij at
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Bi. For the collision probability, we have:

Pg(F |Bi, µij) = E[IF |Bi, µij] ≈
M∑
q=1

w(q)IF (x
(q)
0:T q) (5.25)

Pg(Bj|Bi, µij) = 1− Pg(F |Bi, µij) (5.26)

where IF is the failure indicator. IF (x
(q)
0:T q) is one if xk ∈ F for some k ≤ T (q).

Otherwise it is zero. T q, or more rigorously T ij(q) , is the stopping time of the q-

th particle in executing µij at Bi. To compute T ij(q) , we only need to check the

condition b ∈ Bj at every time step and find the first time step that belief b enters

the stopping region Bj. Thus, we can compute the mean stopping time as

T̂ ij = E[T ij] ≈
M∑
q=1

w(q)T ij(q) . (5.27)

To compute the filtering cost defined in Section 5.5, again we use the particle-based

representation of belief:

Φij = E[
T ij∑
k=1

tr(Pk)|Bi, µij] ≈
M∑
q=1

T q∑
k=1

w(q)tr(P
(q)
k ), (5.28)

where P
(q)
k is the estimation covariance at the k-th time step of the q-th particle.

Finally, the cost of taking µij at Bj is as follows:

Cg(Bi, µij) = α1Φij + α2T̂ ij

where we used the coefficients α1 = 0.95 and α2 = 0.05. Table 5.1 shows these

quantities for several (Bi, µij) pairs in corresponding to Fig. 5.2.

Plugging the computed transition costs and probabilities into Eq. (4.17), we can
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Table 5.1: Computed costs for several Node-controller pairs in FIRM using 100
particles

(Bi,µij) pair B1,µ1,4 B4,µ4,8 B8,µ8,10 B10,µ10,11 B11,µ11,12 B1,µ1,3 B3,µ3,6 B6,µ6,12

Pg(Bj |Bi,µij) %97 %95 %99 %77 %79 %87 %55 %79
Φij 18.5967 11.2393 6.8229 15.1148 26.2942 23.6183 48.8189 43.6207

E[T ij ] 238.2 193.0 150.0 209.6 170.8 200.3 242.4 219.2
σ[T ij ] 21.8 28.7 15.1 24.5 22.6 22.7 30.1 26.7

solve the DP and compute the graph policy πg. This process is performed once offline

if the goal location is fixed. Fig. 5.3(a) shows the policy πg on the constructed FIRM

in this example. Indeed, at every FIRM node Bi, the policy πg decides which local

controller has to be taken, which in turn aims to take the robot to the next FIRM

node. Thus, the online part of the planning is quite efficient and reduces to executing

the controller and generating the control signal.

An important consequence of this framework is that replanning can be performed

using FIRM efficiently. Suppose due to some unmodeled large disturbance, the

robot’s belief deviates significantly from the planned path, i.e., for some appropriate

norm ‖ · ‖ on belief space we have ‖bk −E[bpk]‖ > %, where bpk is the planned belief at

k-th time step, and % is the threshold for deciding if replanning is needed or not. In

such cases, replanning occurs and based on Algorithm 8. In Fig. 5.3(b), we illustrate

a simple replanning process. In this figure, it is assumed that an unmodeled large

disturbance affects the system, such that the estimation mean significantly deviates

from the planned path. The deviated mean is shown on the figure as the “restart

point”. Thus, based on Algorithm 8, we connect this point to the PRM. In Fig. 5.3(b)

the newly added PRM edges, i.e., E(0), are shown by dashed green lines. Then, for

every edge in E(0), we design a local controller. Call the set of newly constructed

local controllers M(0). For every µ ∈ M(0) compute corresponding transition costs
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and probabilities. Finally, according to Bellman’s principle of optimality, we use

the precomputed cost-to-go’s Jg(·) to decide which controller will be taken at the

“restart point” using Eq. (4.21). Taking this controller, the belief state returns to

the FIRM nodes, and from there again we can use the precomputed πg to control

the robot toward the goal region.

We show the most likely path under πg in red in Fig. 5.2(b). The shortest path

is also illustrated in Fig. 5.2(b) in yellow. It can be seen that the “most likely path

under the best policy” detours from the shortest path to a path along which the

filtering uncertainty is smaller and it is easier for the controller to avoid collisions.
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Figure 5.3: Planning and replanning on FIRM. (a) Policy πg resulted from solving
DP in Eq. (4.17) is shown by red arrows. Indeed for every FIRM node, the policy
πg tells that which controller has to be taken. (b) In this figure it is assumed that
an unmodeled large disturbance affects the system, such that the estimation mean
significantly deviates from the planned path. The deviated mean is denoted by
“restart point” on the figure.
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5.8.2 Larger Environment

In this section, we consider the same omni-directional robot with the same obser-

vation model, and we perform planning in a larger environment (shown in Fig. 5.5),

whose size is almost 10,000 square meters. Every grid square is a 10 by 10 area. The

standard deviation of the process noise is assumed to be 1 meter for the positional

degrees of freedom and 7 degrees for the angular degree of freedom. We start with a

5-node FIRM and at every step we randomly sample five more nodes until we reach

500 nodes. Thus, overall, we construct 100 FIRM graphs in this environment, for

each of which we measure the construction time (cumulative) and compute the suc-

cess probability. Plots in Fig. 5.5 show these quantities as a function of the number of

nodes for a sample run on an Intel i5 dual-core 1.7 GHz machine with 4GB memory.

50 particles are used for collision checking, and every node in the underlying PRM

is connected to its 3 nearest neighbors.
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Figure 5.4: This figure shows (for a sample run) the success probability of the gen-
erated plan versus the number of nodes, as well as the construction time (offline) for
the plan.
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Basically, FIRM construction is an anytime algorithm in the sense that one can

increase the number of nodes and stop enlarging the graph when a termination con-

dition is satisfied such as: (i) achieving a desirable success probability or a desirable

cost-to-go, (ii) no change is observed in the success probability or in the cost-to-

go for a significant time, or (iii) exceeding the maximum allowed time for offline

computation.

Again, as is seen from Fig. 5.5, the highest likelihood path under the optimal

policy detours from the shortest path towards the more informative regions in the

environment. As a result, it reduces the collision probability and at the same time

increases the estimation accuracy and controller efficiency. However, it is important

to note that the returned solution is not a single path, but it is a feedback law over

the entire space. For the video of executing this plan (with less number of nodes to

unclutter the video) see https://parasol.tamu.edu/groups/amatogroup/movies/

ExtensionOne\_v5.mp4 and https://parasol.tamu.edu/groups/amatogroup/movies/

LargeEnvironmentDoubleSpeed.mp4 ([70] and [71]).

We also conducted a simulation to illustrate the robustness of the method to

large deviations. In this simulation, the robot is pushed away from the roadmap sev-

eral times by some large disturbances, and replanning is performed online based on

Algorithm 8. The video of this simulation is available at https://parasol.tamu.

edu/groups/amatogroup/movies/ExtensionTwo\_v6.mp4 and https://parasol.

tamu.edu/groups/amatogroup/movies/Replanning4TimesFaster.mp4 ([68] and [69]).
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Figure 5.5: This figure shows different snapshots of the roadmap for 50, 75, 105,
275, 425, and 500 nodes, respectively. The most likely path under the optimal plan
is also shown in blue. Stars indicate landmarks. Mean and covariance of the FIRM
node centers are shown by small blue triangles and their associated red ellipses,
respectively. Also, see [68–71] for videos of planning with FIRM in this environment.
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5.8.3 8-arm Manipulator

On a given graph, the number of paths between two given points grows expo-

nentially with the size of graph. Thus, in the direct propagation of uncertainty

on a roadmap, the number of edge costs and transition probabilities that need to

be computed is exponential in the number of underlying PRM nodes (see Section

5.9 for a detailed analysis). As a result, when we deal with high dimensional state

spaces, where PRM needs to have many edges and nodes, it is not feasible to use

the methods that perform direct uncertainty propagation. However, using FIRM, we

only need to compute the costs and transition probabilities for as many edges as the

underlying PRM has. Thus, we can easily increase the dimension to the level that

PRM can handle, and the complexity of the algorithm is increased only by a constant

factor (involving computation of costs and transition probabilities of a single edge).

In the following experiment, we verify the effectiveness of FIRM in handling high-

dimensional systems through a simple example of an 8-arm manipulator. To the best

of our knowledge, this is the first belief space planner that can provide a plan over

an entire roadmap for an eight-dimensional system, while incorporating expensive

costs in planning such as computing collision probabilities. This experiment shows

that FIRM can be used as a practical tool in real-world problems.

We consider an 8-arm manipulator with eight revolute joints in the plane. The

state of the system is described by the angles of joints and their velocities x =

(θ1, · · · , θ8, θ̇1, · · · , θ̇8)T , and the available control is considered to be the angular

acceleration (or torque) of joints u = (α1, α2, · · · , α8). The process noise w =

(w1, w2, · · · , w8) is modeled as a zero-mean Gaussian noise on angular accelerations.

Therefore, the continuous motion model for every link is θ̈i = αi+wi, whose discrete
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version for the entire state can be written as:

xk+1 = Axk +Buk +Gwk (5.29)

where

A =

 I8 I8δt

08 I8

 , B =

 08

I8δt

 , G =

 08

I8

√
δt

 . (5.30)

δt is the time interval between two consecutive time steps, and In and 0n are the

identity matrix and square zero matrix of dimension n, respectively.

We use the light-dark environment setting as the observation model, which is

also used in [78,79]. In the light-dark environment, the accuracy of sensory readings

is encoded by a gray level, in which the regions that have access to more accurate

sensory readings are lighter than the regions that do not have access to such infor-

mative sensory readings. In this experiment, we assume that we measure the state

of the system, but this measurement is more accurate as we get closer to the left wall

on which our sensor is mounted. (This model is adopted from [79].) Thus, we have

z = h(x) = [z1, · · · , z8]T , where

zi = θi + vi, vi ∼ N (0, (η|xi − l|+ σb)
2) (5.31)

where xi is the x coordinate of the i-th joint location, and l is the location of the

vertical wall. η defines the dependency of the noise standard deviation on the distance

from wall, and σb is the bias standard deviation. Figure 5.6 shows an example of

such an environment, in which l = −1.5, η = .1, and σb = 10−4. The full observation
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model can be written as:

zk = h(xk) = Hxk +Mvk (5.32)

where, H = [I8, 08] and M = I8.

The described system is a controllable and observable system, and thus we adopt

the SLQG controller as the stabilizing controller. Therefore, the parameters of the

controller are points in the equilibrium space, as explained in previous sections. In

other words, to generate sample nodes in the state space, we need to sample the

configuration space (θ1, · · · , θ8) and append zero angular velocities to it. To connect

these samples in the state space we design simple trajectories between nodes, along

which we accelerate the joints (angles) by a constant acceleration until half way to

the next node and thereafter we decelerate the joints until reaching the next node.

First, corresponding to sampled nodes in the state space, we compute correspond-

ing FIRM nodes and then design local controllers according to Algorithm 7. In a

similar procedure to the one in the previous experiment, we compute the transition

costs and probabilities.

To solve the DP, we need to characterize the goal nodes. In Fig. 5.6, the goal

region for the tip location of the manipulator is shown by a purple circle. We mark all

PRM samples whose tip locations are within the goal region, as goal nodes. Setting

the cost-to-go to zero for all goal nodes, we solve the DP and compute the optimal

feedback on the graph according to Algorithm 7. Finally, we execute the plan based

on Algorithm 8 and we illustrate the propagation of the covariance of the manipulator

tip in Fig. 5.6 in red. As can be seen in Fig. 5.6, there are two passages among the

obstacles to reach the goal region. Although the right passage is closer to the initial

configuration of the manipulator, the manipulator detours to a longer path through
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the left passage, because there is more accurate sensory information available in

the left passage than the right one. As is seen in this example, the feedback plan

minimizes the collision probability and picks the safest path, while it is robust to

deviations. In other words, if for any reason the manipulator deviates significantly

from the underlying PRM, the feedback plan connects the deviated belief to the best

neighboring FIRM node, in real-time, and continues the pre-computed plan from

this node.

Figure 5.6: This figure shows a result of executing the FIRM plan for an 8-arm
manipulator in a light-dark (sensing) environment. The manipulator is attached to
the origin (0, 0) and the purple region is the goal region for the manipulator tip.
To simplify the figure, we only show the uncertainty of the manipulator tip (end-
effector). The initial mean and covariance is shown by black, and the evolution of
the tip covariance during the plan execution is shown in red. The final estimation
mean and the true configuration of the manipulator are shown in blue and green,
respectively. Obstacles are shown in brown. The manipulator follows a longer but
safer path to the goal region through the left passage, compared to the shorter but
risky (with high collision probability) path through the right passage.
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5.9 Comparison

In this section, we perform a short comparison of SLQG-FIRM against the two

most related methods in the literature: BRM [81] and LQG-MP on roadmaps [94].

Both methods are belief space planners that exploit roadmap-based ideas. We com-

pare the methods in terms of the offline construction and online planning complexity,

and also in terms of some other properties listed in Table 5.2. In the following, we

go over the complexity analysis that leads to the entries in this table.

In a general graph, the number of paths between two given nodes is exponential

in the number of nodes N . For example, if each node in a graph is connected to

k-nearest neighbor nodes on the graph, for a search depth of d edges on the graph,

the corresponding search tree contains kd paths. Notice that each of these paths has

d edges on it. Thus, if we directly (without using belief stabilizers) propagate the

uncertainty on a roadmap for a depth of d, we have to evaluate the cost on dkd edges.

So, the asymptotic complexity of the overall problem is of the order O(NkN). Now,

if computing the cost and transition probabilities associated with each edge under

uncertainty is a constant multiplier O(c) of computing its cost in deterministic case,

then the overall complexity of the methods based on direct belief propagation is also

O(NkN). On the other hand, in any variant of FIRM, due to the edge independence,

only the cost of O(Nk) edges needs to be constructed as in PRM, and thus the overall

complexity of offline construction of FIRM is O(Nk).

If the system deviates from the valid region of the plan, in direct propagation

methods, edge costs need to be recomputed for all edges. So, in BRM and LQG-MP

on roadmaps, the replanning complexity will be of the order O(NkN). If the cost of

each edge is defined in such a way that it only depends on the belief at the start and

end of edge (i.e., does not depend on the belief along the edge), BRM can reduce
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the computation complexity to O(N
l
kN) through covariance factorization techniques,

where l is assumed to be the length (number of steps) of each edge. In FIRM, in the

case of replanning (submitting a query with new starting point), it is only required

to connect the deviated belief to k neighboring FIRM nodes. Thus, we only need to

compute the cost for the k new edges. It is worth noting that if the underlying PRM

is dense enough such that the valid region of the local controllers covers the space,

edge cost computation in the replanning phase reduces to zero because if the system

deviates out of a valid region of a local planner, it will fall into the valid region of

some other planner.

To reduce the complexity of the search algorithm in BRM and LQG-MP on

roadmaps, it is assumed that the costs on different edges of the roadmap are in-

dependent. This heuristic can reduce the complexity of the algorithm, but still it

may be significantly high compared to the PRM or FIRM. Moreover, this heuris-

tic (edge independent assumption) is not true without having belief stabilizers, and

thus search algorithms relying on such a heuristic may result in solutions arbitrar-

ily different from the true solution of the search algorithm. Assuming that no such

heuristic is used in the search algorithm, Table 5.2 summarizes the complexity of

these algorithms.
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The huge reduction in the computational complexity of the planning algorithm

(in particular, in the online phase), opens many possibilities in utilizing POMDP

solvers in real-world applications. Moreover, due to its sampling-based nature, it

ameliorates the curse of dimensionality just as PRM does in the deterministic case.

In other words, if the dimension of the system increases, we need a greater number of

nodes N in the underlying PRM to capture the free space connectivity, in which case

we cannot use direct methods due to their complexity. However, FIRM can tolerate

the increase in the dimension since its complexity is only a constant multiplier of the

PRM complexity.
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6. FIRM INSTANTIATION FOR NONHOLONOMIC SYSTEMS

In this chapter, we develop a concrete FIRM for nonholonomic systems. The

belief reachability in this case is accomplished by combining the Kalman filter and

Dynamic Feedback Linearization (DFL) based controller respectively as the esti-

mator and separated controller. We refer to this variant of FIRM as DFL-based

FIRM.particular.

We start this chapter by discussing some of the challenges in dealing with non-

holonomic systems. Then, we present the procedure of constructing stabilizers and

local controllers (i.e., FIRM edges) based on a combination of Kalman filter and

DFL-based separated controllers. Finally, we describe the planning algorithms with

this framework and demonstrate its performance.

6.1 Controllability in Nonholonomic Systems

An implicit assumption in roadmap-based methods such as PRM is that on every

edge there exists a controller to drive the robot from the start node to the end node of

the edge or to an ε-neighborhood of the end node, for some small ε > 0. For a linearly

controllable robot, a linear controller can locally track a PRM edge and drive the

robot to its endpoint node. However, for a nonholonomic robot such as a unicycle,

the linearized model at any state point (and zero velocity) is not controllable, and

hence, a linear controller cannot stabilize the robot to the PRM nodes. Consider the

Parts of this section reprinted with permission from “Nonholonomic motion planning in be-
lief space via dynamic feedback linearization-based FIRM” by Aliakbar Aghamohammadi, Suman
Chakravorty, and Nancy Amato. International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, 2012. Copyright 2012 by IEEE.
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discrete unicycle model:

xk+1 =f(xk, uk, wk)=


xk + (Vk + nv)δt cos θk

yk + (Vk + nv)δt sin θk

θk + (ωk + nω)δt

 , (6.1)

where xk = (xk, yk, θk)
T describes the robot state, in which (xk, yk)

T is the 2D position

of the robot and θk is the heading angle of the robot, at time step k. The vector

uk = (Vk, ωk)
T is the control vector consisting of linear velocity Vk and angular

velocity ωk. The motion noise vector is denoted by wk = (nv, nω)T ∼ N (0,Qk).

Linearizing this system about the point (node) v = (xp, yp, θp), one can conclude

that the system is linearly controllable if and only if V p > 0. Thus, in stabilizing the

robot to a PRM node, where the nominal control is zero, up = (V p, ωp)T = (0, 0)T , the

system is not linearly controllable. Therefore, a linear controller cannot stabilize the

unicycle to a PRM node. Moreover, based on the necessary condition in Brockett’s

theorem [21], even a smooth time-invariant nonlinear control law cannot drive the

unicycle to a PRM node, and the stabilizing controller must be either discontinuous

and/or time-varying.

On roadmaps in belief space, the situation is even more complicated, since the

controller has to drive the robot to the ε-neighborhood of a belief node in belief space.

Again, if the linearized system is controllable, using a linear stochastic controller such

as the stationary LQG controller, one can drive the robot belief to the belief node

as discuss in Chapter 5. However, if the linearized system about the desired point is

not controllable, the belief stabilization, if possible, is much more difficult than state

stabilization. Consider a unicycle robot, equipped with sensors measuring the range

and bearings from a set of landmarks in the environment. Linearizing the motion and
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sensing models of this system for stabilization purposes, we get a linearly observable

system but not a linearly controllable system. In this section, we handle this situation

by utilizing a DFL-based controller along with a Kalman filter to steer the system

belief toward a pre-defined node in belief space.

6.2 DFL-based FIRM

To exploit the generic FIRM framework, one has to determine proper (B, µ) pairs

of the FIRM nodes and local controllers. Also, there has to be a way of computing

transition costs and probabilities. In this Chapter, we propose one such approach for

nonholonomic systems, where we construct a FIRM in which belief stabilization is

performed by compositing a Kalman Filter as the estimator and a Dynamic Feedback

Linearization-based (DFL-based) controller as the belief controller. Accordingly, we

design the reachable FIRM nodes Bj, and local planners µij, required in (4.17).

Then we discuss how the transition probabilities Pg(·|Bi, µij), and costs Cg(Bi, µij)

in (4.17) are computed. Finally, we solve the corresponding FIRM MDP and provide

the algorithms for offline construction of DFL-based FIRM and online planning with

it. To deal with Gaussian beliefs, we rely on the notation defined in Chapter 5.

In Chapter 5, the optimal LQG controller is utilized for the construction of local

controllers in FIRM. However, it is limited to models which are linearly stabilizable

to a point in state space, which excludes the class of nonholonomic systems such as

a unicycle model. Here, we combine the Kalman filter and a DFL-based controller

to construct a belief stabilizable for the unicycle model with partial information.

This construct is a suboptimal design for the controller in a partially-observable

environment. However, it is efficient in practice, and shows a promising solution

for constructing a Feedback-based Information RoadMap (FIRM) for nonholonomic

systems such as the unicycle model.
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6.2.1 Estimator Design

For the state estimation we adopt the Kalman Filter (KF), which is commonly uti-

lized for localizing unicycle robots [90]. Thus, the belief dynamic bk+1 = τ(bk, uk, zk+1)

is a result of the Kalman filtering equations. In Section 2.2.2, we review the Kalman

filter and its stationary behavior in detail. Here, we only discuss the limiting belief

behavior under the stationary KF (SKF).

Consider a PRM node v. Let us denote the linear (linearized) system about the

node v by the tuple Υ = (A,B,G,Q,H,M,R) that represents the following state

space model:

xk+1= Axk + Buk + Gwk, wk ∼ N (0,Q) (6.2a)

zk= Hxk + Mvk, vk ∼ N (0,R). (6.2b)

where wk and vk are motion and measurement noises, respectively, drawn from zero-

mean Gaussian distributions with covariances Q and R.

Consider a stationary KF (SKF), which is designed to estimate the state of the

system in (6.2). Let us also define the matrix Q̌ such that GQGT = Q̌Q̌T . Now,

consider the class of systems that satisfy the following property:

Property 2. The pair (A, Q̌) is a controllable pair [15], and the pair (A,H) is an

observable pair [15].

Lemma 7. Given Property 2, the estimation covariance under the SKF, designed for

the system in (6.2), converges to the matrix Ps, independent of its initial covariance:

Ps = P−s − P−s HT (HP−s HT + MRMT )−1HP−s , (6.3)
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where, P−s is the unique symmetric positive semi-definite solution of the following

Discrete Algebraic Riccati Equation (DARE):

P−k+1 = A(P−k − P
−
k HT (HP−k HT + MRMT )−1HP−k )AT

+ GQGT . (6.4)

Proof. See [15].

The estimation mean, however, evolves randomly, as it is a function of obtained

observations. In SKF, the evolution of estimation mean is as follows:

x̂+
k+1 = (I −KH)Ax̂+

k + (I −KH)Buk

+ Kzk+1 + (I −KH)(I −A)v, (6.5)

where, K = P−s HT (HP−s HT + MRMT )−1.

6.2.2 Belief Controller (Separated Controller) Design

The belief system is an underactuated system, i.e., the dimension of control space

is less than the dimension of belief space. However, we can have full control of the

estimation mean, while based on Lemma 7 the estimation covariance under the SKF,

tends to Ps. As a result, if we design a feedback controller to control the estimation

mean towards node v in state space, and assuming the system remains in the valid

linearization region of the SKF (which is a reasonable assumption), then the belief

will approach bc = (v, Ps) in belief space. Considering a stopping region in belief

space, whose interior contains bc, the belief process under the feedback control will

hit the stopping region in a finite time.

For a nonholonomic system such as the unicycle model, the system is not linearly
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controllable. Thus, we resort to the original nonlinear model, and utilize a Dynamic

Feedback Linearization-based (DFL-based) controller to control the estimation mean

for the nonholonomic unicycle model. The nonlinear form of (6.5) is:

x̂+
k+1 = f(x̂+

k , uk, 0) + Kz̃k+1, (6.6)

where, z̃k+1 is the observation error, defined as

z̃k+1 = h(f(xk, uk, wk), vk+1)− h(f(x̂+
k , uk, 0), 0)

≈ HAê+
k + HGwk + Mvk+1, (6.7)

in which the function h is the observation model that maps the states to observations,

i.e., zk = h(xk, vk), where vk models the zero-mean Gaussian sensing noise. Random

variable ê+
k is the estimation error defined by ê+

k = xk − x̂+
k . The approximation in

(6.7) results from linearizing functions h and f . The important point is that the

equation in the right hand side of (6.7) does not depend on uk. Also, note that ê+
k

is unknown as it depends on the (unknown) true state xk.

Kalman filters are vastly used for state estimation in non-holonomic systems and

show great success in practice; thus, it is reasonable to assume that the estimation

error ê+
k is small. Therefore, the whole term Kz̃k+1 in (6.6) can be treated as a

small control-independent perturbation affecting the system. Therefore, we adopt

a controller to control the unicycle model, which is effectively robust to the noise

injected by Kz̃k+1. The controller of choice is a DFL-based controller proposed in [73],

as it offers a robust behavior with respect to disturbances. Moreover, it provides an

exponentially fast stabilization procedure, and has a natural, and smooth, transient

performance. Experimental results verify the robustness of this controller to the
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above-mentioned disturbance Kz̃k+1.

To construct the DFL-based controller for unicycle model, first we transform the

system state such that the target node coincides with the origin, i.e., if we denote

v = (vx,vy,vθ) and x̂+
k = (x̂+

k , ŷ
+
k , θ̂

+
k ), we can transfer the system state as:

 x̆+
k

y̆+
k

 =

 cos vθ − sin vθ

sin vθ cos vθ


−1 x̂+

k − vx

ŷ+
k − vy

 , (6.8a)

θ̆+
k = θ̂+

k − vθ. (6.8b)

Now the controller has to drive the x̆+
k = (x̆+

k , y̆
+
k , θ̆

+
k ) to the origin. Ignoring the

disturbance term in estimation mean dynamics, and assuming x̂+
k+1 = f(x̂+

k , uk, 0), we

compute the estimation mean derivative in the last time step, based on the previous

control signal uk−1 = (Vk−1, ωk−1):


˙̆x+
k−1

˙̆y+
k−1

˙̆
θ+
k−1

 =


Vk−1 cos θ̆+

k−1

Vk−1 sin θ̆+
k−1

ωk−1

 (6.9)

Accordingly, we compute the intermediate controls:

u′1 = −kp1x̆+
k−1 − kd1

˙̆x+
k−1 (6.10)

u′2 = −kp2y̆+
k−1 − kd2

˙̆y+
k−1 (6.11)

where, as described in [73], the condition on the gains are kpi, kdi > 0 for i = 1, 2 and

also k2
d1 − 4kp1 = k2

d2 − 4kp2 > 0 and kd2 − kd1 > 2(k2
d2 − 4kp2).5.
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Finally, we compute the control signal at time step k:

Vk = Vk−1 + (u′1 cos θ̆+
k−1 + u′2 sin θ̆+

k−1)δt (6.12)

ωk = (u′2 cos θ̆+
k−1 − u

′
1 sin θ̆+

k−1)V −1
k−1 (6.13)

Therefore, the controller, parametrized by the target point v, receives current

estimation mean x̂+
k and the previous control uk to generate the next control uk+1.

We show this mapping by uk+1 = µ(x̂+
k , uk).

6.2.3 Designing FIRM Nodes {Bj}

As mentioned, to construct a FIRM, we first construct its underlying PRM,

characterized by its nodes and edges {{vj}, {eij}}. Linearizing the system about the

PRM node vj results in a linear system Υj = (Aj,Bj,Gj,Qj,Hj,Mj,Rj):

xk+1= Ajxk + Bjuk + Gjwk, wk ∼ N (0,Qj) (6.14a)

zk= Hjxk + Mjvk, vk ∼ N (0,Rj) (6.14b)

Then, we design a stationary Kalman filter τ j and a DFL-based belief controller µj

corresponding to the system Υj. The controller µj is called the j-th node-controller.

Accordingly, we choose the belief nodes Bj such that Bj is an ε-ball in belief space,

centered at bjc ≡ (vj, P j
s ), where P j

s is the stationary covariance of the SKF designed

for the system Υj, computed using (6.3). Therefore, Bj can be written as:

Bj = {b ≡ (x, P ) : ‖x− vj‖ < δ1, ‖P − P j
s ‖m < δ2}, (6.15)

where ‖ ·‖ and ‖ ·‖m denote suitable vector and matrix norms, respectively. The size

of the FIRM nodes are determined by δ1 and δ2, which are sufficiently small to satisfy
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the approximation in (4.12). Based on Lemma 7, the condition ‖Pk − P j
s ‖m < δ2

is satisfied after a deterministic finite time k > N and based on the adopted DFL

design, which has a global attractive behavior in state space (and exponentially fast

stabilization), the condition ‖x− vj‖ < δ1 is satisfied in a finite random time.

6.2.4 DFL-based Local Controllers µij

The role of the local controller µij is to drive the belief from the node Bi to node

Bj. To construct the local controller µij, we precede the node-controller µj with a

so called edge-controller µijk .

The main role of the edge-controller µijk is that it takes the belief at node Bi and

drives it to the vicinity of the node Bj, where it hands the system over to the node-

controller µj, which in turn takes the system into a FIRM node Bi. As opposed to the

point-stabilization procedure, if we linearize the unicycle model along the PRM edge

eij, where the nominal linear velocity is greater than zero, the unicycle is linearly

controllable. As a result, we use a time-varying LQG controller to track the edge eij.

Thus, overall, the local controller µij is the concatenation of the edge-controller

µijk and the node-controller µj. By this construct, the expected stopping time of the

node-controller decreases as the initial belief of the node-controller is closer to the

target node Bj, due to the usage of the edge-controllers.

6.2.5 Transition Probabilities and Costs

In general, it can be a computationally expensive task to compute the transition

probabilities P(·|Bi, µij) and costs C(Bi, µij) associated with invoking local controller

µij at node Bi. However, owing to the offline construction of FIRM, this is not an

issue. We utilize sequential Monte Carlo methods [34] to compute the collision and

absorption probabilities. For the transition cost, we first consider estimation accu-

racy to find the paths, on which the estimator, and consequently, the controller can
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perform better. A measure of estimation error is the trace of estimation covariance.

Thus, we use Φij = E[
∑T

k=1 tr(P ij
k )], where P ij

k is the estimation covariance at the

k-th time step of the execution of local controller µij. The outer expectation opera-

tor is useful in dealing with the Extended Kalman Filter (EKF), whose covariance is

stochastic [32,85]. Moreover, since we are also interested in faster paths, we take into

account the corresponding mean stopping time, i.e., T̂ ij = E[T ij], and the total cost

of invoking µij at Bi is considered as a linear combination of estimation accuracy

and expected stopping time, with suitable coefficients ξ1 and ξ2.

C(Bi, µij) = ξ1Φij + ξ2T̂ ij. (6.16)

6.2.6 Construction of DFL-based FIRM and Planning With it

Algorithm 9 details the construction of FIRM. A crucial feature of FIRM is

that it can be constructed offline and stored, independent of future queries. In the

construction, presented in Algorithm 9, it is independent of the starting point of

query. However, it can also be independent of the goal location, by postponing

the DP equation solver (Line 16 of Algorithm 9) to the online phase (beginning of

Algorithm 10). Moreover, owing to the reduction from the original POMDP to an

n-state MDP on belief nodes, the FIRM MDP can be solved using standard DP

techniques such as value/policy iteration to yield the optimal policy πg that picks

the optimal local planner µ∗ = πg(Bi) at each FIRM node Bi among all controller

µ ∈ M(α, i). Given that the FIRM graph is computed offline, the online phase of

planning (and replanning) on the roadmap becomes very efficient and thus, feasible

in real time. If the given initial belief b0 does not belong to any Bi, we create a

singleton set B0 = b0. To connect the B0 to FIRM, we first, compute the expected

value of the robot state, i.e., E[x0] using its distribution b0 and add the E[x0] to the
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PRM nodes, and connect it to the PRM graph. The set of newly added edges going

from E[x0] to the nodes on PRM are called E(0). We design the local controllers

associated with each edge in E(0) and call the set of them as M(0). Then choosing

a local controller in M(0), the belief enters one of the FIRM nodes, if no collision

occurs. Thus, given the current node, we use policy πg defined in (4.17) over FIRM

nodes to find µ∗, and pick µ∗ to move the robot into B(µ∗). Algorithm 10 illustrates

this procedure.

Algorithm 9: Offline Construction of DFL-based FIRM

1 input : Free space map, Xfree
2 output : FIRM graph G
3 Construct a PRM with nodes V = {vj}, and edges E = {eij}, where i, j = 1, · · · , n;
4 forall the PRM nodes vj ∈ V do
5 Design the node-controller (DFL-based) µj to stabilize the system to vj ;

6 Compute the FIRM node center bjc = (vj , P js ) using (6.3);

7 Construct FIRM node Bj using (6.15) centered at bjc;

8 Collect all FIRM nodes V = {Bj};
9 forall the (Bi, eij) pairs do

10 Design the edge-controller µijk , as discussed in Section 6.2.4;

11 Construct the local controller µijk by concatenating edge-controller µijk and

node-controller µjk;
12 Set the initial belief b0 equal to the center of Bi, based on the approximation in

(4.12);
13 Generate sample belief paths b0:T and state paths x0:T induced by controller µij

invoked at Bi;
14 Compute the transition probabilities Pg(F |Bi, µij) and Pg(Bj |Bi, µij) and

transition costs Cg(Bi, µij);

15 Collect all local controllers M = {µij};
16 Compute cost-to-go Jg and feedback πg over the FIRM by solving the DP in (4.17);
17 G = (V,M, Jg, πg);
18 return G;
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Algorithm 10: Online Phase Algorithm (Planning with DFL-based FIRM)

1 input : Initial belief b0, FIRM graph G, Underlying PRM graph
2 if ∃Bi ∈ V such that b0 ∈ Bi then
3 Choose the next local controller µij = πg(Bi);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0 to the PRM nodes. Call the

set of newly added edges E(0) = {e0j};
6 Design local planners associated with edges in E(0); Collect them in set

M(0) = {µ0j};
7 forall the µ ∈M(0) do
8 Generate sample belief and state paths b0:T , x0:T induced by taking µ at b0;
9 Compute the transition probabilities P(·|b0, µ) and transition costs C(b0, µ);

10 Set i = 0; Choose the best initial local planner µ0j within the set M(0) using
(4.21);

11 while Bi 6= Bgoal do
12 while (@Bj , s.t., bk ∈ Bj) and “no collision” do

13 Apply the control uk = µijk (bk) to the system;
14 Get the measurement zk+1 from sensors;
15 if Collision happens then return Collision;

16 Update belief as bk+1 = τ(bk, µ
ij
k (bk), zk+1);

17 Update the current FIRM node Bi = Bj ;
18 Choose the next local controller µij = πg(Bi);

6.3 Experimental Results

In this section, we illustrate the results of FIRM construction on a simple PRM.

As a motion model, we consider the nonholonomic unicycle model whose kinematics

are given in (6.1). As the observation model, in experiments, the robot is equipped

with exteroceptive sensors that provide range and bearing measurements from ex-

isting radio beacons (landmarks) in the environment. The 2D location of the j-th

landmark is denoted by Lj. Measuring Lj can be modeled as follows:

jz = [‖jd‖, atan2(jd2,
jd1)− θ]T + jv, jv ∼ N (0, jR),

jR = diag((ηr‖jd‖+ σrb)
2, (ηθ‖jd‖+ σθb )

2), (6.17)
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where jd = [jd1,
jd2]T := [x, y]T − Lj. The uncertainty (standard deviation) of

sensor readings increases as the robot gets farther from the landmarks. The pa-

rameters ηr = ηθ = 0.3 determine this dependency, and σrb = 0.01 meters and

σθb = 0.5 degrees are the bias standard deviations. A similar model for range sensing

is used in [81]. The robot observes all NL landmarks at all times and their obser-

vation noises are independent. Thus, the total measurement vector is denoted by

z = [1zT , 2zT , · · · ,NLzT ]T and due to the independence of measurements of different

landmarks, the observation model for all landmarks can be written as z = h(x) + v,

where v ∼ N (0,R) and R = diag(1R, · · · ,NLR).

Figure 6.1(a) shows a simple environment with nine radio beacons (black stars).

A PRM is constructed in the 3D space of (x, y, θ) with 46 nodes and 102 edges.

PRM nodes are shown by blue triangles with their numbers in red. To construct

the FIRM nodes, we first solve the DARE corresponding to each PRM node and

design its corresponding DFL-based node-controller. Then, we form the node centers

bjc = (vj, P j
s ), some of which are drawn in Fig.6.1(a), by the 3σ ellipse (in blue)

of the covariance P j
s . Finally, to handle the error scale difference in position and

orientation variables, we construct the FIRM nodes based on the component-wise

version of (6.15), as follows:

Bj = {b ≡ (x, P )| |x− vj|
.
< ε, |P − P j

s |
.
< ∆}, (6.18)

where |·| and
.
< stand for the absolute value and component-wise comparison oper-

ators, respectively. We set ε = [0.8, 0.8, 5◦]T and ∆ = εεT to quantify the Bj’s.

After designing FIRM nodes and local controllers, the transition costs and prob-

abilities are computed in the offline construction phase. Here, we use sequential

weighted Monte Carlo based algorithms [34] to compute these quantities. In other
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Figure 6.1: A sample PRM, with numbered nodes. Seven landmarks are shown by
black stars and obstacles are shown by gray polygons. (a) Node 9 is the start node
and nodes 20, 27, 39, and 42 are goal nodes. Shortest path and the most-likely
path under FIRM policy are shown in green and red, respectively. (b) The center of
FIRM node, i.e., bc is drawn for a selected number of PRM nodes. The feedback πg

is visualized for those FIRM nodes by red arrows.

words, for every (Bi, µij) pair, we perform M runs and accordingly approximate the

transition probabilities Pg(Bj|Bi, µij), Pg(F |Bi, µij), and costs Cg(Bi, µij). A simi-

lar approach is detailed in [3]. Table 6.1 shows these quantities along the best path

resulting from the FIRM policy (see Fig.6.1(a)), where M = 101 and the coefficients

in (6.16) are ξ1 = 0.98 and ξ2 = 0.02. Along edges where none of the 101 particles

have collided with obstacles the collision probability is approximated by a value less

than 1/101 = 0.0099. The expected value and standard deviation of the time it takes

for the controller to drive the belief into the target node is also reported in Table 6.1.

Table 6.2 shows the same quantities for the edges along the shortest path. Compar-

ing these two tables, it is seen that the path returned by the FIRM policy is safer,

in terms of collision probability, and more informative, in the sense of localization

uncertainty, when compared to the shortest path.

Using the computed transition costs and probabilities in (4.17), we can solve the
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Table 6.1: Computed costs for several pairs of node-and-controller using 101 particles
along the path returned by πg.

(Bi,µ
ij) pair B9,µ

9,1 B1,µ
1,5 B5,µ

5,33 B33,µ
33,35 B35,µ

35,38 B38,µ
38,42

Pg(F |Bi,µ
ij) 15.3846% 7.6923% <0.99% <0.99% <0.99% 15.3846%

Φij 4.5967 1.9831 0.68936 1.6048 0.58705 0.53226
E[T ij ] 144.4545 217.3077 86.1538 161.2308 73 180.5455
σ[T ij ] 66.7224 28.2396 9.109 5.7757 2.7433 40.6924

Table 6.2: Computed costs for several pairs of node-and-controller using 101 particles
along the shortest path.

(Bi,µ
ij) pair B9,µ

9,1 B1,µ
1,4 B4,µ

4,8 B8,µ
8,27

Pg(F |Bi,µ
ij) 15.3846% 38.4615% 46.1538% 38.4615%

Φij 4.5967 2.0181 2.8001 2.1664
E[T ij ] 144.4545 168.375 127.2857 111.25
σ[T ij ] 66.7224 50.3841 12.9192 38.1042

DP problem and compute the policy πg on the graph. This process is performed

only once offline, independent of the starting point of the query. Fig. 6.1(b) shows

the policy πg on the constructed FIRM in this example. Indeed, at every FIRM

node Bi, the policy πg decides which local controller should be invoked, which in

turn aims to take the robot belief to the next FIRM node.

Thus, the online part of planning is quite efficient, i.e., it only requires executing

the controller and generating the control signal, which is done online. An important

consequence of feedback πg is efficient replanning. In other words, since πg is inde-

pendent of the query, if due to some unmodeled large disturbance, the robot’s belief

deviates significantly from the planned path, it suffices to bring the robot back to the

closest FIRM node and from there πg drives the robot to the goal region as shown in
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Fig. 6.1(b). In Fig. 6.1(a), we also show the shortest path (green) and the resulting

path under policy πg (red). It can be seen that the path returned by the best policy

detours from the shortest path to a path along which the filtering uncertainty is

smaller, and on which it is easier for the controller to avoid collisions.
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7. FIRM INSTANTIATION FOR NON-POINT-STABILIZABLE SYSTEMS

This chapter is concerned with designing a concrete FIRM method for systems

with kinodynamical constraints, in particular, systems, whose velocity cannot fall

below a certain threshold (referred to as “non-stoppable” or “non-point-stabilizable”

systems). Consider a control problem where the system state is composed of the

position and velocity (x, ẋ) of an object. Stabilizing this system to a state (x =

a, ẋ = b) where b 6= 0 is not possible, because in order to stabilize x to a, ẋ must go

to zero. As an example of a non-stoppable system, consider a system whose state only

consists of a position x, but it has constraints on its velocity ẋ > b > 0. All fixed-

wing aircraft fall into this category as their velocity cannot fall under some threshold

to maintain the lift requirement. Thus, stabilizing such systems to a fixed state is a

challenge. This challenge is even more difficult when stabilization has to be achieved

under uncertainty. In this chapter, we propose a framework that circumvents the

need for point stabilization in graph-based (roadmap-based) methods by means of

stabilization to suitably designed periodic maneuvers.

The main contribution of this chapter is proposing an instantiation of the abstract

FIRM framework that can handle non-stoppable systems, and in general dynamical

systems (which are not stabilizable to a point with zero-velocity), such as fixed-

wing aircraft. To do so, we first introduce periodic-node PRM in state space, whose

nodes lie on periodic trajectories, each one called an orbit. Then, we analyze the

use of Periodic Linear Quadratic Gaussian (PLQG) controllers as belief stabilizers.

Accordingly, we propose an approach to characterize and select reachable regions in

belief space under PLQG controllers. Then, periodic-node PRM is leveraged to a

corresponding graph (FIRM) in belief space, which is constructed offline, independent
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of future queries, and can be used efficiently for replanning purposes. Collision

probabilities are incorporated in the planner’s construction.

7.1 Periodic-Node PRM

We circumvent the problem of stabilization to roadmap nodes by designing a

variant of PRM, called Periodic-Node PRM (PNPRM). Although there are different

ways to address this problem in state space, the critical property of PNPRM is that

it can be extended to the belief space and forms a roadmap in belief space such that

the belief nodes are reachable without a point-stabilization process. Let us denote

the motion model with xk+1 = f(xk, uk, wk), where state, control, and process noise

at the k-th time step are denoted by xk, uk, and wk, respectively.

Similar to traditional PRM, PNPRM also consists of nodes and edges. However,

in PNPRM, the nodes lie on small T -periodic trajectories (trajectories with period

T ) in the state space, called orbits, which satisfy the control constraints and non-

holonomic constraints of the moving robot. To construct a PNPRM, we first sample

a set of orbits in the state space, and then on each orbit, a number of state nodes

are selected. Let us denote the j-th orbit trajectory by Oj := (xp
j

k , u
pj

k )k≥0, where

xp
j

k+1 = f(xp
j

k , u
pj

k , 0), xp
j

k+T = xp
j

k , and up
j

k+T = up
j

k . The set of PNPRM nodes that

are chosen on Oj is denoted by Vj = {vj1,v
j
2, · · · ,vjm} where vjα = xp

j

kα
for some

kα ∈ {1, · · · , T}. Edges in PNPRM do not connect nodes to nodes, but they connect

orbits to orbits in a way that respect all the control constraints and nonholonomic

constraints. Thus, the (i, j)-th edge denoted by eij connects Oi to Oj.

As a result, a node viα is connected to the node vjγ through concatenation of three

path segments: (i) the first segment is a part of Oi that connects viα to the starting

point of eij. This part is called a pre-edge and is denoted by eiαj, (ii) the second

segment is the edge eij itself that connects Oi to Oj, and (iii) the third segment is
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a part of Oj that connects the ending point of eij to the vjγ. This part is called the

post-edge and is denoted by eijγ .

One form of constructing orbits is based on circular periodic trajectories, where

the edges are the lines that are tangent to the orbits. Figure 7.1(a) shows a simple

PNPRM with three orbits Oi, Or, and Oj. On each orbit four nodes are selected

which are drawn (dots) with different colors. Edges eij and erj connect the cor-

responding orbits. The covariance ellipses associated with each PNPRM node are

shown in Fig. 7.1(b) and discussed further below.
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Figure 7.1: (a) A simple PNPRM with three orbits, twelve nodes, and two edges. (b)
b̀lα = (vlα, P̌

l
kα

) is the center of corresponding belief nodes, where P̌ l
kα

’s are shown by

their 3σ-ellipse. As an example of FIRM node, the magnified version of Bj
2, which

is a small neighborhood centered at b̀j2, is shown in the dotted box, where the blue
shaded region depicts the covariance neighborhood and green shaded region depicts
the mean neighborhood.

7.2 PLQG-based FIRM Construction

In this section, we construct a FIRM, in which local controllers are Periodic LQG

(PLQG) controllers. Utilizing PLQG controllers, we design reachable FIRM nodes

Bj
γ, and local planners µα,ij, required in (4.17). Then we discuss how the transition
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probabilities Pg(·|Bi
α, µ

α,ij), and costs Cg(Bi
α, µ

α,ij) in (4.17) are computed. We start

by defining notation needed for dealing with Gaussian beliefs.

7.2.1 Designing PLQG-based FIRM Nodes {Bj
α}

An LQG controller is composed of a Kalman filter as the state estimator and

an LQR controller. Thus, the belief dynamics bk+1 = τ(bk, uk, zk+1) are known, and

come from the Kalman filtering equations, and the controller uk = µ(bk) that acts on

the belief, comes from the LQR equations. LQG is an optimal controller for linear

systems with Gaussian noise [15]. However, it is most often used for stabilizing

nonlinear systems to a given trajectory or to a given point.

Periodic LQG (PLQG) is a time-varying LQG that is designed to track a given

periodic trajectory [18, 30]. In Section 2.2.3 we have reviewed the periodic LQG

controller in detail. Here, we only state the reachability result under the PLQG

controller.

Consider a T -periodic PNPRM orbit O = (xpk, u
p
k)k≥1 and the set of nodes {vα}

on it. Let us denote the time-varying linear (linearized) system along the orbit O

by the tuple Υk = (Ak,Bk,Gk,Qk,Hk,Mk,Rk) that represents the following state

space model, where Υk = Υk+T :

xk+1= Akxk + Bkuk + Gkwk, wk ∼ N (0,Qk) (7.1a)

zk= Hkxk + Mkvk, vk ∼ N (0,Rk), (7.1b)

Consider the Periodic LQG (PLQG) controller that is designed for the system in

(7.1) to track the orbit (xpk, u
p
k)k≥1, through minimizing the following quadratic cost:

J = E

[∑
k≥0

xTkWxxk + uTkWuuk

]
(7.2)
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where xk = xk − xpk and uk = uk − upk. Matrices Wx and Wu are the positive

definite weight matrices for state and control cost, respectively. Let us also define

the matrices Q̌k and W̌x such that GkQkG
T
k = Q̌kQ̌

T
k , Wx = W̌T

xW̌x, for all k.

Now, consider the class of systems, and associated LQG controllers that satisfy the

following property:

Property 3. The pairs (Ak,Bk) and (Ak, Q̌k) are controllable pairs [15], and the

pairs (Ak,Hk) and (Ak,W̌x) are observable pairs [15], for all k = 1, · · · , T .

The linearized model of a large class of systems satisfy the controllability con-

dition in Property 3. Note that the linearization is done along the orbit (i.e., the

nominal controls upk are non-zero) and thus, even the linearized version of nonholo-

nomic systems (e.g., unicycle model) satisfy this condition [73]. The observability

condition on the pair (Ak,Hk) is related to the sensor model and the sensors has to

be designed in such a way to satisfy this condition.

In the following, we present three lemmas, through which we can construct pairs

of periodic LQG controllers, and reachable nodes in belief space, for non-stoppable

systems and systems with dynamics (possibly nonholonomic).

Lemma 8. Consider the PLQG controller designed for the system in (7.1) to track

the orbit (xpk, u
p
k)k≥1. Given Property 3 is satisfied, in the absence of a stopping

region, the belief process bk under PLQG converges to a Gaussian cyclostationary

process [17], i.e., the distribution over belief converges to a T -periodic Gaussian

distribution, where we denote the mean and covariance of this process by bck and Ck,

respectively:

bk ∼ N (bck, Ck) = N (bck+T , Ck+T ), (7.3)
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where bk ≡ (x̂+
k , Pk) and bck ≡ (xpk, P̌k). The covariance matrices P̌k is characterized

in Lemma 9 and covariance Ck is characterized in Section 2.2.3.

Proof. See Section 2.2.3.

Lemma 9. Given Property 3, the following Discrete Periodic Riccati Equation (DPRE)

has a unique Symmetric T -Periodic Positive Semi-definite (SPPS) solution [18], de-

noted by P̌−k :

P̌−k+1 = GkQkG
T
k+ (7.4)

Ak(P̌
−
k − P̌

−
k HT

k (HkP̌
−
k HT

k + MkRkM
T
k )−1HkP̌

−
k )AT

k

Moreover, the covariance matrix P̌k introduced in Lemma 8 is computed as

P̌k = P̌−k −P̌
−
k HT

k (HkP̌
−
k HT

k + MkRkM
T
k )−1HkP̌

−
k (7.5)

Proof. See Section 2.2.3 or [18].

Now, we state the main result, through which we can construct the proper pairs

of periodic LQG controller and nodes in belief space for non-stoppable systems or

systems with higher-order-dynamics.

Lemma 10. Consider the PLQG controller µ designed for the system in (7.1) to

track the orbit (xpk, u
p
k)k≥1. Suppose the matrix Hk is full rank, and Property 3 is

satisfied. Also, consider the sets B1, B2, · · · , Bm in belief space, such that the interior

of Bα contains bckα for some kα ∈ {1, · · · , T}. Then, under µ, the region ∪αBα is

reachable in a finite time with probability one.

Proof. The intuitive idea behind the poof is that if we define a region centered at

the mean value of a Gaussian distribution, and if we sample from this distribution,
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in a finite number of samples we will end up with a sample in the given region. The

proof is detailed in Section 2.2.3.

As mentioned, to construct a FIRM, we first construct its underlying PNPRM,

characterized by the triple {{Oj}, {vjα}, {eij}}. Linearizing the system along the

j-th orbit Oj = (xp
j

k , u
pj

k )k≥0 results in a time-varying T -periodic system Υj
k =

(Aj
k,B

j
k,G

j
k,Q

j
k,H

j
k,M

j
k,R

j
k):

xk+1= Aj
kxk + Bj

kuk + Gj
kwk, wk ∼ N (0,Qj

k) (7.6a)

zk= Hj
kxk + Mj

kvk, vk ∼ N (0,Rj
k). (7.6b)

where wk and vk are motion and measurement noises, respectively, drawn from zero-

mean Gaussian distributions with covariances Qj
k and Rj

k. The important property of

the system in (7.6) is that it is a T -periodic system, i.e.,Υj
k = Υj

k+T . Then, we design

a PLQG controller µjk corresponding to the system Υj
k. The controller µjk is called the

j-th node-controller. Since the orbits are designed such that Property 3 is satisfied on

them, based on Lemma 8 the belief converges to a Gaussian cyclostationary process,

with mean bc
j

k , which can be computed using Lemma 9, where its existence and

uniqueness are also guaranteed. Knowing that vjα, for α = 1, · · · ,m, lies on orbit

Oj, such that vjα = xp
j

kα
, we choose the belief nodes Bj

α, for α = 1, · · · ,m such that

Bj
α is an ε-ball in belief space, centered at b̀jα := bc

j

kα
≡ (xp

j

kα
, P̌ j

kα
) = (vjα, P̌

j
kα

): (See

Fig.7.1(b).)

Bj
α={b ≡ (x, P ) : ‖x− vjα‖ < δ1, ‖P − P̌ j

kα
‖m<δ2}, (7.7)

where ‖ ·‖ and ‖ ·‖m denote suitable vector and matrix norms, respectively. The size

of the FIRM nodes is determined by δ1 and δ2. Based on Lemma 10, ∪αBj
α is a reach-

153



able region under the node-controller µjk. Note that δ1 and δ2 are sufficiently small

thresholds that determine the size of FIRM node Bj that satisfy the approximation

in (4.12).

7.2.2 PLQG-based Local Controllers µα,ij

The role of the local controller µα,ij is to drive the belief from the node Bi
α to

∪γBj
γ, i.e., to a node Bj

γ, for some γ = 1, · · · ,m. To construct the local controller

µα,ij, we precede the node-controller µjk, with a time-varying LQG controller µα,ijk ,

which is called the edge-controller here.

Consider a finite trajectory that consists of three segments: i) the pre-edge eiαj

as defined in Section 7.1, ii) the edge itself eij, and iii) a part of Oj that connects

the ending point of eij to xp
j

0 . Edge-controller µiαjk is a time-varying LQG controller

that is designed to track this finite trajectory. The main role of the edge-controller

is that it takes the belief at node Bi and drives it to the vicinity of a starting point

of orbit Oj, where it hands over the system to the the node-controller, and the

node-controller in turn takes the system to a FIRM node.

Thus, overall, the local controller µα,ij is the concatenation of the edge-controller

µα,ijk and the node-controller µjk. Note that since reachability is guaranteed by the

node-controller (periodic LQG controller), by this construction, the stopping region

∪γBj
γ is also reachable under the local controller µα,ij. Hence the reachability condi-

tion is satisfied by this construction.

7.2.3 Transition Probabilities and Costs

In general, it can be a computationally expensive task to compute the transition

probabilities P(·|Bi
α, µ

α,ij) and costs C(Bi
α, µ

α,ij) associated with invoking local con-

troller µα,ij at node Bi
α. However, owing to the offline construction of FIRM, it is

not an issue in FIRM. We utilize sequential Monte Carlo methods [34] to compute
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the collision and absorption probabilities. For the transition cost, we first consider

estimation accuracy to find the paths, on which the estimator, and consequently,

the controller can perform better. A measure of estimation error is the trace of

estimation covariance. Thus, we use Φα,ij = E[
∑T

k=1 tr(Pα,ij
k )], where Pα,ij

k is the

estimation covariance at the k-th time step of the execution of local controller µα,ij.

The outer expectation operator is useful in dealing with the Extended Kalman Filter

(EKF), whose covariance is stochastic [32, 85]. Moreover, as we are also interested

in faster paths, we take into account the corresponding mean stopping time, i.e.,

T̂ α,ij = E[T α,ij], and the total cost of invoking µα,ij at Bi
α is considered as a lin-

ear combination of estimation accuracy and expected stopping time, with suitable

coefficients ξ1 and ξ2.

C(Bi
α, µ

α,ij) = ξ1Φα,ij + ξ2T̂ α,ij. (7.8)

7.2.4 Construction of PLQG-FIRM and Planning With it

The crucial feature of FIRM is that it can be constructed offline and stored,

independent of future queries. Note that based on the Algorithms 11 and 12, we still

need to know the goal location. However, to be fully independent of both the start

and goal location of the query, one can solve the DP in the online phase. Moreover,

owing to the reduction from the original POMDP to an n-state MDP on belief nodes,

the FIRM MDP can be solved using standard DP techniques such as value/policy

iteration to yield the optimal policy πg that picks the optimal local planner µ∗ =

πg(Bi
α) at each FIRM node Bi

α among all controller µ ∈ M(α, i). Algorithm 11

details the construction of FIRM. Given that the FIRM graph is computed offline,

the online phase of planning (and replanning) on the roadmap becomes very efficient

and thus, feasible in real time. If the given initial belief b0 does not belong to any
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Bi, we create a singleton set B0 = b0. To connect B0 to FIRM, we first compute

the expected value of the robot state, i.e. E[x0] using its distribution b0 and add

E[x0] to the PRM nodes, and connect it to the PRM graph. The set of newly added

edges going from E[x0] to the nodes on PRM is called E(0). We design the local

controllers associated with each edge in E(0) and call the set of them M(0). Then

choosing a local controller in M(0), the belief enters one of the FIRM nodes if no

collision occurs. Thus, given the current node, we use policy πg defined in (4.17b)

over FIRM nodes to find µ∗, and pick µ∗ to move the robot into B(µ∗). Algorithm

12 illustrates this procedure.
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Algorithm 11: Offline Construction of PLQG-FIRM

1 input : Free space map, Xfree
2 output : FIRM graph G
3 Construct a PNPRM with T -periodic orbits O = {Oj = (xp

j

k , u
pj

k )k≥0}, nodes

V = {vjα}, and edges E = {eij}, where i, j = 1, · · · , n and α = 1, · · · ,m;
4 forall the PNPRM orbits Oj ∈ O do

5 Design the node-controller (periodic LQG) µjk along the periodic trajectory;

6 Compute the periodic mean belief trajectory bc
j

k = (xp
j

k , P̌
j
k ) using (7.5);

7 Construct m FIRM nodes Vj = {Bj
1, · · · , B

j
m} using (7.7), where Bj

α is centered

at bc
j

kα
;

8 Collect all FIRM nodes V = ∪nj=1Vj ;
9 forall the (Bi

α, e
ij) pairs do

10 Design the edge-controller µα,ijk , as discussed in Section 7.2.2;

11 Construct the local controller µα,ijk by concatenating edge-controller µα,ijk and

node-controller µjk;
12 Set the initial belief b0 equal to the center of Bi

α, based on the approximation in
(4.12);

13 Generate sample belief paths b0:T and state paths x0:T induced by controller
µα,ij invoked at Bi

α;
14 Compute the transition probabilities Pg(F |Bi

α, µ
α,ij) and Pg(Bj

γ |Bi
α, µ

α,ij) for all
γ and transition cost Cg(Bi

α, µ
α,ij);

15 Collect all local controllers M = {µα,ij};
16 Compute cost-to-go Jg and feedback πg over the FIRM by solving the DP in (4.17);
17 G = (V,M, Jg, πg);
18 return G;
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Algorithm 12: Online Phase Algorithm (Planning with PLQG-based FIRM)

1 input : Initial belief b0, FIRM graph G, Underlying PNPRM graph
2 if ∃Bi

α ∈ V such that b0 ∈ Bi
α then

3 Choose the next local controller µα,ij = πg(Bi
α);

4 else
5 Compute v0 = E[x0] based on b0, and connect v0 to the PNPRM orbits. Call

the set of newly added edges E(0) = {e0j};
6 Design local planners associated with edges in E(0); Collect them in set

M(0) = {µ0,0j};
7 forall the µ ∈M(0) do
8 Generate sample belief and state paths b0:T , x0:T induced by taking µ at b0;
9 Compute the transition probabilities P(·|b0, µ) and transition costs C(b0, µ);

10 Set α, i = 0; Choose the best initial local planner µ0,0j within the set M(0) using
(4.21);

11 while Bi
α 6= Bgoal do

12 while (@Bj
γ , s.t., bk ∈ Bj

γ) and “no collision” do

13 Apply the control uk = µα,ijk (bk) to the system;
14 Get the measurement zk+1 from sensors;
15 if Collision happens then return Collision;

16 Update belief as bk+1 = τ(bk, µ
α,ij
k (bk), zk+1);

17 Update the current FIRM node Bi
α = Bj

γ ;
18 Choose the next local controller µα,ij = πg(Bi

α);
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7.3 Experimental Results

In this section, we illustrate the results of FIRM construction on a simple PN-

PRM. As a motion model, we consider the nonholonomic unicycle model whose

kinematics are as follows:

xk+1 =f(xk, uk, wk)=


xk + (Vk + nv)δt cos θk

yk + (Vk + nv)δt sin θk

θk + (ωk + nω)δt

, (7.9)

where xk = (xk, yk, θk)
T describes the robot state (2D position and heading angle).

The vector uk = (Vk, ωk)
T is the control vector consisting of linear velocity Vk and an-

gular velocity ωk. The motion noise vector is denoted by wk = (nv, nω)T ∼ N (0,Qk).

As the observation model, in experiments, the robot is equipped with exteroceptive

sensors that provide range and bearing measurements from existing radio beacons

(landmarks) in the environment. The 2D location of the j-th landmark is denoted by

Lj. Denoting the vector from the robot to the j-th landmark by jd = [jd1,
jd2]T :=

[1x, 2x]T − Lj, measuring Lj can be modeled as follows:

jz = jh(x, jv) = [‖jd‖, atan2(jd2,
jd1)− θ]T + jv, (7.10)

where, jv ∼ N (0, jR) and jR = diag((ηr‖jd‖+σrb)2, (ηθ‖jd‖+σθb )2). The uncertainty

(standard deviation) of the sensor reading increases as the robot gets farther from the

landmarks. The parameters ηr = ηθ = 0.3 determine this dependency, and σrb = 0.01

meter and σθb = 0.5 degrees are the bias standard deviations. A similar model for

range sensing is used in [81]. The robot observes all NL landmarks at all times

and their observation noise is independent. Thus, the total measurement vector is
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denoted by z = [1zT , 2zT , · · · ,NLzT ]T and due to the independence of measurements

of different landmarks, the observation model for all landmarks can be written as

z = h(x) + v, where v ∼ N (0,R) and R = diag(1R, · · · ,NLR).

We first show a typical SPPS solution of DPRE on the orbits. Fig. 7.2(a) shows

a simple environment with six radio beacons (black stars). For illustration purposes,

we choose five large circular orbits and every orbit is discretized into 100 steps. Thus

the SPPS solution of the DPRE in (7.4) on each orbit leads to a hundred covariance

matrices that are superimposed on the graph in red. As is seen from Fig. 7.2(a), the

localization uncertainty along the orbit is not homogeneous and varies periodically.

Another important observation from the Fig. 7.2(a) is obtained by noticing the left

top orbit in the Fig. 7.2(a). As can be seen, the localization uncertainty in the right

hand side of the landmark, which lies close to orbit, is greater than its left hand side.

In other words, this lack of symmetry emphasizes that although the phrase The closer

to the landmark, the lesser the sensing uncertainty is true, the phrase The closer to

the landmark, the lesser the localization uncertainty is not true, which emphasizes

the role of dynamic model in filtering and its interaction with the observation model.

In Fig. 7.2(b), we illustrate the covariance convergence in the periodic belief process.

As can be seen in Fig. 7.2(b), the initial covariance is three times larger than the

limiting covariance, and in less than one period it converges to the SPPS solution of

DPRE. The convergence time is a random quantity, whose mean and variance can be

estimated through simulation. However, in practical cases it usually converges in less

than one full period, because the initial covariance is closer to the actual solution

(due to the use of edge-controllers) and also the orbit size is much smaller, when

compared to Fig. 7.2(b).

Figure 7.3(a) shows a sample PNPRM with 23 orbits and 67 edges. To simplify

the explanation of the results, we assume m = 1, i.e., we choose one node on each
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Figure 7.2: (a) Five orbits (T = 100) and corresponding periodic estimation covari-
ances as the SPPS solution of DPRE in (7.4). (b) Sample covariance convergence
on an orbit (T = 20) under PLQG. Red ellipses are the solution of DPRE and green
ellipses are the evolution of estimation covariance. The initial covariance is three
times bigger than the SPPS solution of DPRE, i.e., P0 = 3P̌0.

orbit. All elements in Fig.7.3(a) are defined in (x, y, θ) space but only the (x, y)

portion is shown here. To construct the FIRM nodes, we first solve the corresponding

DPREs on each orbit and design its corresponding node-controller (PLQG). Then,

we pick the node centers b̀jα = (vjα, P̌
j
kα

) and construct the FIRM nodes based on the

component-wise version of (7.7), to handle the error scale difference in position and

orientation variables:

Bj
α = {b ≡ (x, P )| |x− vjα|

.
< ε, |P − P̌ j

kα
|
.
< ∆}, (7.11)

where |·| and
.
< stand for the absolute value and component-wise comparison oper-

ators, respectively. We set ε = [0.8, 0.8, 5◦]T and ∆ = εεT to quantify the Bj
α’s.

After designing FIRM nodes and local controllers, the transition costs and prob-

abilities are computed in the offline construction phase. Here, we use sequential

weighted Monte Carlo based algorithms [34] to compute these quantities. In other
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Figure 7.3: A sample PNPRM with circular orbits. Number of each orbit is written
in its center. Nine landmarks (black stars) and obstacles (gray polygons) are also
shown. The moving directions on orbits and on edges are shown by little triangles
with a cross in their heading direction. (a) Nodes 2 and 7 (distinguished in black) are
start and goal nodes, respectively. Shortest path (green) and the most-likely path
(red) under FIRM policy are also shown. (b) Assuming on each orbit, there exists a
single node, the feedback πg is visualized for all FIRM nodes.

words, for every (Bi
α, µ

α,ij) pair, we perform M runs and accordingly approximate

the transition probabilities Pg(Bj
γ|Bi

α, µ
α,ij), Pg(F |Bi

α, µ
α,ij), and costs Cg(Bi

α, µ
α,ij).

A similar approach is detailed in [3]. Table 7.1 shows these quantities for several

(Bi
α, µ

α,ij) pairs corresponding to Fig.7.3(a), where M = 101 and the coefficients in

(7.8) are ξ1 = 0.98 and ξ2 = 0.02.

Table 7.1: Computed costs for several pairs of node-and-controller using 101 particles.

(Biα,µ
α,ij) pair B2

1 ,µ
1,(2,3) B4

1 ,µ
1,(4,5) B6

1 ,µ
1,(6,7) B11

1 ,µ1,(11,12) B2
1 ,µ

1,(2,1) B8
1 ,µ

1,(8,20) B16
1 ,µ1,(16,7)

Pg(F |Biα,µα,ij) 9.9010% 17.8218% 15.8416% 29.7030% 7.9208% 1.9802% 0.9901%

Φα,ij 2.1386 2.2834 1.9181 0.9152 2.1695 1.1857 0.4385

E[T α,ij ] 63.6703 82.6747 62.5882 58.2000 51.7033 50.2755 35.4653

Plugging the computed transition costs and probabilities into (4.17), we can solve
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the DP problem and compute the policy πg on the graph. This process is performed

only once offline, independent of the starting point of the query. Fig. 7.3(b) shows

the policy πg on the constructed FIRM in this example. Indeed, at every FIRM

node Bi
α, the policy πg decides which local controller should be invoked, which in

turn aims to take the robot belief to the next FIRM node. It is worth noting that

if we had more than one node on each orbit, the feedback πg may return different

controllers for each of them and for every orbit we may have more than one outgoing

arrow in Fig. 7.3(b).

Thus, the online part of planning is quite efficient, i.e., it only requires executing

the controller and generating the control signal. An important consequence of the

feedback πg is the efficient replanning procedure. In other words, since πg is inde-

pendent of query, if due to some unmodeled large disturbances, the system deviates

significantly from the planned path, it suffices to bring the system back to the closest

FIRM node and from thereon the optimal plan is already known, i.e., πg drives the

robot to the goal region as shown in Fig. 7.3(b).

We show the most likely path under the πg, in red in Fig. 7.3(a). The shortest

path is also illustrated in Fig. 7.3(a) in green. It can be seen that the “most likely

path under the best policy” detours from the shortest path to a path along which the

filtering uncertainty is smaller, and it is easier for the controller to avoid collisions.
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8. DYNAMIC ONLINE REPLANNING IN BELIEF SPACE:

APPLICATION TO PHYSICAL MOBILE ROBOTS

In this chapter, we aim at closing the loop of (i) analysis, (ii) computation, and

(iii) physical realization. We aim to implement the method on low-cost physical

robots equipped with low-cost sensors. To cope with discrepancies between compu-

tational models and real-world models, we utilize the proposed scheme in Chapter

4 for dynamic replanning in belief space. We investigate the performance of the

method in an office-like environment and demonstrate its robustness to changing

environments, sensory failures, and large deviations.

8.1 Introduction

Consider an autonomous low-cost mobile robot, working in an office environment.

Each time it visits a goal location (or accomplishes a task), a new goal location (task)

is assigned to it. Therefore, the robot needs to change its plan according to each

goal. Moreover, although in an office-like environment most objects are stationary,

there exist objects whose state may change discretely (such as office doors that

may be opened or closed). Therefore, the robot needs to replan when it encounters

such changes in the environment. However, low-cost robots are not able to follow

the control commands exactly due to motion noise and they do not have exact

measurements due to sensor noise. Therefore, this problem calls for online planning

algorithms in uncertain, partially observable environments, where the state of some

objects (e.g., doors) is subject to change over time. This is a typical scenario for many

service and healthcare robots operating in indoor home or office-like environments.

In a broader sense, this problem is an instance of the problem of decision making and

control under uncertainty. However, what makes the problem more difficult is the
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need for a robust solution that is able to replan online to cope with discrete changes

in the environment, failures in sensory system, and large deviations from the nominal

plan.

In addition to inherent challenges in solving POMDPs (such as the curse of

dimensionality and curse of history), when dealing with real-world physical systems,

there is another important challenge: the discrepancy between the real models with

the models used for computation. These include discrepancies in the process model

(state evolution model), the process noise model (distribution), sensor model, sensing

noise model (distribution), and the environment map. In other words, the equation

used for modeling the state evolution always is a simplification of the system’s physics

or the distribution used for the process noise never exactly matches the true noise

distribution. Such discrepancies can lead to deviations of the system from the desired

plan. A plausible solution for this problem is an ability to replan dynamically as the

system encounters such deviations or observes signs of discrepancy during the plan

execution. Moreover, as mentioned, online replanning can handle discrete changes in

the environment and make the system more robust to intermittent sensing failures.

The main body of POMDP literature, in particular sampling-based methods,

propose single-query solvers, i.e., the computed solution depends on the initial belief

[53,81,94]. Therefore, in replanning (planning from a new initial belief) almost all the

computations need to be reproduced, which limits their usage in cases where online

replanning is needed. In particular, dynamic replanning schemes such as Receding

Horizon Control (RHC), where the planning problem needs to be solved frequently

from new start points, calls for online policy generation which restricts the usage

of single-query methods. However, multi-query methods such as FIRM provide a

construction mechanism, independent of the initial belief of the system. As a result,

they are suitable methods to be used in an RHC framework.
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The emphasis of this chapter is on the implementation of FIRM on a physical

robot. We also investigate how dynamic online replanning can generate a feedback

plan that is robust to discrepancies between real models and computational models

as well as robust to changes in the environment, failures in the sensory system, and

large deviations from the nominal plan. We believe these results lay the ground work

for further moving the theoretical POMDP framework toward practical application,

and achieving long-term autonomy in robotic systems.

The main goal of these experiments is to have a belief space planner that can

handle the uncertainties associated with a typical low-cost robot in an office-like en-

vironment. We use an iRobot Create platform (Figure 8.2), on which a Dell Latitude

laptop with an on-board camera and wireless networking capability is mounted. As

will be discussed further below, landmarks are installed in the environment. The

robot can get noisy measurements of the relative range and bearing to landmarks.

The desired behavior for the planner is to guide the robot to the goal through the

parts of the environment where the robot can better localize itself and hence better

avoid collisions. However, most importantly, we need the planner to be able to replan

online so that it can cope with deviations resulted from model discrepancies, changes

in the environment, large disturbances, and sensor failures.

To design and evaluate a planner with the mentioned properties, we consider a

scenario, where the robot needs to operate in an office environment. We conduct

an experiment where the robot needs to reach a goal, and each time it reaches a

goal, a new goal is submitted by the user. During this long run the robustness of

the method is investigated with respect to (i) changing obstacles, such as doors,

and moving people, (ii) changes in the goal location, (iii) deviations due to missing

information sources, and (iv) kidnap situations (significant sudden deviation in the

robot’s location). During the run, there are many situations where the robot needs

166



to replan: It needs to replan each time a new goal is submitted and move toward

the new goal. Also, the robot encounters changes in the obstacle map. For example

it encounters doors that are in a different state than they were supposed to be.

Similarly, it encounters moving people. Observing these changes, the robot updates

its map and replans online and updates its policy accordingly. Moreover, the robot

may be “kidnapped” by a person to an unknown location during the run. Thus,

the robot needs to recover from this catastrophic situation. Finally, the robot may

deviate from its nominal location due to temporary failures in the sensing system.

In all these cases a online replanning scheme can help robot to recover from the

situation and accomplish toward its goal.

8.1.1 Environment

The specific environment for conducting experiments is the fourth floor of the

Harvey Bum Bright (HRBB) building at the Texas A&M University campus in Col-

lege Station, TX. A floor-plan can be seen in Fig. 8.1. The floor spans almost 40

meters of hallways whose width are almost 2 meters, which is distinguished in yellow

and blue in Fig. 8.1. The main experiments are conducted in the region which is

highlighted in blue in Fig. 8.1, part of which contains a large cluttered office (room

407). This area has interesting properties that makes the planning more challenging:

(i) As is seen in Fig. 8.1, there are several doors in this office (407) which may be

opened or closed. Two of these doors (front-door and back-door) are shown in Fig.

8.1. In addition, (ii) there are objects such as trash-cans in this environment which

usually get displaced and block some of the landmarks in the environment. This is

an instance of missing information sources. Finally, (iii) people are moving in this

area. Therefore, a reactive behavior may displace the robot from its planned path,

which introduces another challenge for the high level planner.
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Back-door of 
407 region

Front-door of 
407 region

Figure 8.1: Floor-plan of the environment, in which experiments are conducted.

8.1.2 Robot Model

The robot utilized in our experiments is the iRobot Create mobile robot (See Fig.

8.2). The robot can be modeled as a unicycle whose kinematics is as follows:

xk+1 =f(xk, uk, wk)=


xk + (Vkδt+ nv

√
δt) cos θk

yk + (Vkδt+ nv
√
δt) sin θk

θk + ωkδt+ nω
√
δt

 , (8.1)

where xk = (xk, yk, θk)
T describes the robot state, in which (xk, yk)

T is the 2D position

of the robot and θk is the heading angle of the robot, at time step k. Control

commands are the linear and angular velocities uk = (Vk, ωk)
T . We use the Player
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robot interface [37] to send these control commands to robot.

The motion noise vector is denoted by wk = (nv, nω)T ∼ N (0,Qk), which mostly

arose from uneven tiles on the floor, wheel slippage, and inaccuracy in the length of

time control signals need to be applied. Experimentally, we found that in addition

to the fixed uncertainty associated with the control commands there exists a portion

of the noise that is proportional to the signal strength. Thus, we model the variance

of the process noise at the k-th time step as

Qk =

 (ηVk + σVb )2 0

0 (ηωk + σωb )2

 (8.2)

where, in our implementations we have η = 0.03, σVb = 0.01m/s, σωb = 0.001rad =

0.057deg.

Figure 8.2: A picture of the robot (an iRobot Create) in the operating environment.
Landmarks can be seen on the walls.

The connection between the planner and the robot hardware is established through
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the Player robot interface [37].

8.1.3 Sensing Model

For sensing purposes, we use the on-board camera existing on the laptop. We

perform a vision-based landmark detection based on ArUco (a minimal library for

Augmented Reality applications) [63]. Each landmark is a black and white pattern

printed on a letter-size paper. The pattern on each landmark follows a slight modifi-

cation of the Hamming code, and has a unique id, so that it can be detected robustly

and uniquely. Landmarks are placed on the walls in the environment (see Fig. 8.2)

at the same height with the camera (robot is moving in a 2D space). The absolute

position and orientation of each landmark in the environment is known. The ArUco

library performs the detection process and presents the range and bearing relative

to each visible landmark along with its id. Therefore, if we denote the j-th land-

mark position in the 2D global coordinates as jL, we can model the observation as

a range-bearing sensing system:

jzk = [‖jdk‖, atan2(jd2k ,
jd1k)− θ]T + jv, jv ∼ N (0, jR),

where jdk = [jd1k ,
jd2k ]

T := [xk, yk]
T − Lj.

A random vector jv models the measurement noise associated with the mea-

surement of the j-th landmark. Experimentally, we found that the intensity of the

measurement noise increases by the distance from the landmark and by the incident

angle. The incident angle refers to the angle between the line connecting the camera

to landmark and the wall, on which landmark is mounted. Denoting the incident an-

gle by φ ∈ [−π/2, π/2], we model the sensing noise associated with the j-th landmark
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as a zero mean Gaussian, whose covariance is

jRk =

 (ηrd‖jdk‖+ ηrφ|φk|+ σrb)
2 0

0 (ηθd‖jdk‖+ ηθφ|φk|+ σθb )
2

 (8.3)

where, in our implementations we have ηrd = 0.1, ηrφ = 0.01, σrb = 0.05m, ηθd =

0.001, ηθφ = 0.01, and σθb = 2.0deg.

At every step the robot observes a subset of the landmarks, which fall into its field

of view. Suppose at a particular step the robot can see r landmarks {Li1 , · · · , Lir}.

The concatenation of visible landmarks is the total measurement vector that is de-

noted by z = [i1zT , · · · , irzT ]T and due to the independence of measurements of differ-

ent landmarks, the observation model for all landmarks can be written as z = h(x)+v,

where v = [i1vT , · · · , irvT ]T . Thus, the full measurement noise vector is drawn from

v ∼ N (0,R), where R = diag(i1R, · · · , irR).

8.2 FIRM Elements

In this section, we discuss the concrete realization of the FIRM constructed for

conducting the experiments.

Although the objective function can be general, the cost function we use in our

experiments includes the localization uncertainty, control effort, and elapsed time.

c(bk, uk) = ζptr(Pk) + ζu‖uk‖+ ζT . (8.4)

where tr(Pk) is the trace of estimation covariance as a measure of localization un-

certainty, i.e., Pk =
∫
X x

2bkdx − (
∫
X xbkdx)2. The norm of the control signal ‖uk‖

denotes the control effort, and ζT is present in the cost to penalize each time lapse.

Coefficients ζp, ζu, and ζT are user-defined task-dependent scalars to combine these
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costs to achieve a desirable behavior. In the presence of constraints (such as ob-

stacles in the environment), we first assume that the task fails if the robot violates

these constraints (e.g., collides with obstacles). Therefore, in case of failure, the

running-sum of costs (cost-to-go), i.e., J(F ) =
∑∞

t′ c(b, u) is set to a suitably high

cost-to-go.

To construct a FIRM graph, we first need to sample a set of stabilizers. Each

stabilizer is a feedback controller (whose role is to drive the belief to a FIRM node),

and thus it consists of a filter and a separated controller [50]. Similar to the case

in Chapter 5, we first sample a set of points V = {vi} in the problem’s state space

and then associated with each point we construct a stabilizer. Since during stabi-

lization the system is around the target point and aims to reach the target point v,

we adopt the Stationary Kalman Filter. As discussed in the previous chapter, an

important observation is that if the system is observable the covariance under this

filter converges to a stationary covariance P+
s that can be obtained through solving

a corresponding Discrete Algebraic Riccati Equation (DARE), whose solution can

be computed efficiently [11]. It is important to note that the stationary covariance

P+
s does not depend on the choice of the separated-controller as long as the sepa-

rated controller can keep the system close enough to the target node such that the

linearized model about the target point is valid. However, if due to a large noise or

any other reason the system goes far from the target point, the dynamic replanning

will take care of the deviation as will be discussed in later sections.

A separated-controller µ is responsible for generating the control signal based on

the available belief, i.e., uk = µ(bk). The iRobot Create is a nonholonomic robot

and is modeled as a unicycle (see Section 8.1.2). Since the covariance is already

approaching its stationary value, the separated-controller needs to only act on the

mean value and drive it toward the target point v. Therefore, we can use a variety
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of controllers designed for stabilizing nonholonomic systems, e.g., [73], [64], and [83].

However, it is worth noting that the mean value gets affected by random observations,

and thus it is impossible to take it to an exact point in the belief space. However,

defining a ball around the target point v, the controller can take the mean value into

this ball in a finite time (note that the observation noise has a zero mean). As a

result, the adopted controller needs to perform well under such uncertainties, which

limits our choices. In our experiments, we implemented different controllers such

as polar coordinate-based controller [33], or Dynamic Feedback Linearization-based

controller (see Chapter 6). Observing their behavior on a physical robot, the best

results were obtained using a variant of the Open-Loop Feedback Control (OLFC)

scheme [15]. In this variant of OLFC, for a given v, we compute an open-loop control

sequence starting from the current estimation mean and ending at v. Then, we apply

a truncated sequence of the first l controls (l = 5 in our experiments). This process

repeats every l steps until we reach the graph node. Only one control (i.e., l = 1) is

not enough due to the nonholonomicity of the system.

Therefore, similar to previous chapters, we construct FIRM node B = {b : ‖b −

b̀‖ ≤ ε} associated with each sample v, where b̀ ≡ (v, P+
s ). Characterizing a FIRM

node for each sampled node vi, we get a set of FIRM nodes {Bi}. We denote the

edge (controller) between nodes i and j by µij and the set of edges by M = {µij}.

Computing costs and transition probabilities associated with each edge, we solve

the DP in Equation 4.17 to get the optimal graph policy πg (optimal mapping from

graph nodes to edges); i.e., πg : V→M. We denote the set of all possible policies as

Πg.

The particular tracker and stabilizer we have adopted in our implementation are

the same as the tracker and stabilizer used along the edges (described in Section 8.2).

If the current belief is b0 = (x̂+
0 , P0) we fix xd0 = x̂+

0 . Then, for each FIRM node Bj, we
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retrieve the corresponding state node vj (based on b̀j = (vj, P j) (see Section 8.2)) and

fix xdn = vj. Accordingly, aim to find the optimal vj and intermediate deterministic

states and controls xd0:n, u
d
0:n that satisfy the system equations, xdk+1 = f(xdk, u

d
k, 0).

To also handle changes in the environment, changes in the goal location, or large

deviations in its location, we adopt the FIRM-based rollout policy. Therefore, we

aim to find a sequence of policies that ends up in a FIRM node and minimizes the

cost in (4.59). To find this optimal policy, we parametrize the policy space Π̃ and

perform the minimization over the parameter space. For our particular system, the

policy is considered to be a concatenation of a tracker µk (a controller to track a

nominal trajectory) and a stabilizer µs (a controller that stabilize the belief to a

fixed belief):

π(·; {xd0:n,v}) = {µk(·;xd0:n), µs(·; v)} (8.5)

The tracker is parametrized by a nominal deterministic trajectory xd0:n. The role

of tracker is to drive the belief to the vicinity of a belief node (FIRM node). The

stabilizer is parametrized by a nominal state v. The role of stabilizer is to drive the

belief into the FIRM node.

8.3 Experimental Results on Planning with PRM and FIRM

In this section, we discuss results of PRM and FIRM-based motion planning

on a low-cost iRobot Create equipped with a laptop. The integrated web-camera

(monocular) is used to observe the landmarks. The goal of this section is to show

how FIRM, as a belief space planner, guides the robot through regions with reduced

collision probability, and more information to better localize the robot.

The solution of the dynamic programming problem, i.e., πg, is visualized with a

feedback tree. Recall that πg is a mapping (look-up table) that returns the next best
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edge for any give graph node. Therefore, for each node, the feedback tree contains

only one outgoing edge (µ = πg(Bi)). The feedback tree is rooted at the goal node.

The environment is shown in Fig. 8.3. Blue regions are obstacles and black

regions are free space. Landmarks are shown by small white diamonds. The start

and goal locations for the motion planning problem are marked in Fig. 8.3. The

goal location is inside room 407 (see Fig. 8.1) and the start is close to the front

door. In the following, we compare the performance (success probability) of MAPRM

(Medial-Axis PRM), a conventional configuration space planner, with FIRM.

MAPRM builds the roadmap on the medial axis of the obstacles in the environ-

ment. In other works, the MAPRM nodes have maximum clearance (distance) from

the obstacles. We construct Medial-Axis PRM (MAPRM) in this environment. The

resulting roadmap is shown in Fig. 8.3. As can be seen, there exists a homotopy class

of paths between the start and goal nodes through the front door of room 407 as

well as a homotopy class of paths through the back door of the room. From Fig. 8.3,

it is obvious that the path through the front door is shorter. Moreover, the path

through the front door has a larger obstacle clearance (larger minimum distance from

obstacles along the path) compared to the path through the back door (since the

back door is half open). Therefore, based on conventional metrics in deterministic

settings, such as shortest path or maximum clearance, MAPRM chooses the path

through the front door over the path through the back door. The feedback tree that

results from solving the DP in this case is shown in Fig. 8.4. As expected, the DP

guides the robot to go through the front door.

To execute the plan generated from PRM, we use time-varying LQG controllers

to keep the robot close to the nominal path returned as the solution of the PRM-

based planning. However, due to the lack of enough information along the nominal

path, the success rate of this plan is low, and the robot frequently collides with
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obstacles along the path as the robot is prone to drift. The success probability along

the nominal path is computed by a Monte Carlo simulation (100 runs) and is equal

to 27% (27 runs out of 100 runs were successful).

As can be seen in Fig. 8.3, the distribution of information is not uniform in

the environment. The density of landmarks (information sources) along the path

through the back door is more than the landmarks along the path going through

the front door. Incorporating the information distribution in the environment in

planning leads to a better judgement of the narrowness of passages. For example, in

this experiment, the path through the front door seems to be shorter than the path

through the back door. However, considering the information sources the success

probability of going through the back door is more than the success probability of

going through the front door. Such knowledge about the environment is reflected

in the FIRM cost-to-go and success probability in a principled rigorous framework.

As a result, it generates a policy that suits the application, taking into account the

uncertainty, and available information in the environment. Solving a DP problem

on the FIRM graph gives a feedback as shown in Fig. 8.5, which results in an 88%

success probability.
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Starting 
point

goal 
point

Back-door 
is half open

Shortest path

Safest path

Figure 8.3: The environment including obstacles (blue regions), free space (black
region), and landmark (white diamonds) are shown in this figure. An MAPRM
graph approximating the connectivity of free space is also shown. The start and goal
points (for the experiments in this section) are distinguished by crosses in the light
blue.

Figure 8.4: The feedback tree generated by solving DP on MAPRM is shown in
yellow. From each node there is only one outgoing edge (in yellow), computed by
DP, guiding the robot toward the goal (See Fig. 8.3). Arrows in pink coarsely
represent the direction on which the feedback guides the robot.
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Figure 8.5: The feedback tree generated by solving DP on FIRM is shown. As can
be seen the computed feedback guides robots through the more informative regions
that leads to more accurate localization and less collision probabilities. Arrows in
pink coarsely represent the direction on which the feedback guides the robot.
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8.4 Robustness Experiments

In this section, we examine and discuss the robustness properties of the FIRM-

based RHC framework for stochastic systems. We first look into the case where

the obstacle map is subject to change. Then, we investigate the robustness to large

deviations. Finally, we consider repeated changes in the goal location, along with

the types of changes mentioned above and demonstrate the method’s performance

on a more complex scenario.

8.4.1 Robustness to Changes in the Environment: Obstacles and Information

Sources

In our experiments, we consider three types of obstacles. Most obstacles are

static such as walls. The second class of obstacles include those that discretely

change their state such as doors in the environment (open and closed state). The

last class of objects consists of people standing or moving in the environment. It

is worth noting that dealing with a fully dynamic environment is not a goal of this

research. To handle moving obstacles (people) we assume there exists a reactive

planner at a lower level that suppresses the belief space planner in the vicinity of

obstacles. Accordingly, after moving away from the moving obstacle, the robot may

have deviated from its nominal plan and thus the belief space planner has to replan

to recover from such deviations. The main focus of the following experiments is to

demonstrate how our method can replan online when encountered with changes in

the environment map. Dealing with agile obstacles or a fully dynamic environment

requires development of more sophisticated reactive planners and is beyond the scope

of this research.

As the first experiment, we consider the environment shown in Fig. 8.1. The

start and goal locations are shown in Fig. 8.6(a). We construct a PRM in the
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environment ignoring the changing obstacles (assuming all doors are open and there

are no people in the environment). Then we construct a corresponding FIRM and

solve dynamic programming on it. As a result, we get the feedback tree shown in

Fig. 8.6(a) that guides the robot to go through the back door of room 407. However,

the challenge is that the door may be closed when the robot reaches it, and there

may be people moving in the environment. Moreover, for different reasons (such as

blur in the image or blocked landmarks by people or different objects), the robot

may miss detecting landmarks temporarily during the run.

We assume that the robot is equipped with a sensor that detects the obstacles

in the vicinity of the robot. Such perception can be performed by a Laser Range

Finder (LRF). However, designing the perception module is not a concern of this

research, and since our robot is not equipped with a LRF, we use a simple method

in our experiments to detect objects. We stick a small marker with a specific ID on

moving objects (doors or people’s shoes). When the robot observes these landmarks,

it realizes that there is an obstacle in the vicinity of the robot. To handle such

a change in the obstacle map and replan accordingly, we use the “lazy feedback

evaluation” algorithm outlined below.

To adapt the proposed framework to the changing environment, we rely on lazy

evaluation methods. Inspired by the lazy evaluation methods for PRM frameworks

[20], we propose a variant of the lazy evaluation methods for evaluating the generated

feedback tree. The basic idea is that at every node the robot re-evaluates only the

next edge (or the next few edges up to a fixed horizon) that the robot needs to take.

By re-evaluation, we mean it needs to re-compute the collision probabilities along

these edges. If there is a significant change in the collision probabilities, the dynamic

programming problem is re-solved and a new feedback tree is computed. Otherwise,

the feedback tree remains unchanged and the robot keeps following it. Such lazy
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evaluation (computing the collision probabilities for a single edge or a small number

of edges) can be performed online. The method is detailed in Algorithm 13.

Algorithm 13: Lazy Feedback Evaluation (Lazy Replanning)

1 input : Feedback tree πg, current belief bcurrent
2 output : Updated feedback tree, πg

3 Update the obstacles map;
4 if there is a change in map then
5 F ← Retrieve the sequence of nominal edges returned by feedback up to

horizon l;
6 forall the edges µ ∈ F do
7 Re-compute the collision probabilities Pnew(B, µ) from the start node

B of edge;

8 if exists µ ∈ F such that |Pnew(B, µ)− P(B, µ)| > α then
9 P(B, µ)← Pnew(B, µ);

10 πg ← Replan(bcurrent);

11 return πg;

Imagine a case where the robot is in a room with two doors. Suppose after

checking both doors, the robot realizes they are closed. In such cases to persuade

the robot to recheck the state of doors, we reset the door state to “open” after a

specific amount of time as if the robot forgets that the door was “closed”. In our

experiments, the forgetting time for doors is 10 minutes, and the forgetting time for

other moving obstacles is about 10 seconds.

Figure 8.6(b) shows a snapshot of our run when the robot detects the change

signal, i.e., detects the door is in a different state than its recorded situation in the

map. As a result, the robot updates the obstacle map as can be seen in Fig. 8.6(b)

(Door is closed). Accordingly, the robot replans; Figure 8.6(b) shows the feedback

tree resulting from the replanning. As can be seen, the new feedback guides the
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robot through the front door since it detects the back door is closed. The full video

of this run provides much more detail and is available in [67].

It is important to note that it is the graph structure of FIRM that makes such a

replanning feasible online. The graph structure of FIRM allows us to locally change

the collision probabilities in the environment without affecting the collision proba-

bility of the rest of the graph (i.e., properties of different edges on the graph are in-

dependent of each other). It is important to note that such a property is not present

in any other state-of-the-art belief space planner, such as BRM (Belief Roadmap

Method) [81], or LQG-MP [94]. In those methods, collision probabilities and costs

on all edges (the number of possible edges is exponential in the size of the underlying

PRM) need to be re-computed.

We may also miss detecting some information sources. For example, people may

block the landmarks temporarily. Also, in our physical experiments, we observed

that the rugged parts of the floor, which leads to a lot of jitter in the robot’s motion,

can make the captured images blurry. Thus, in those regions we may miss some

landmarks intermittently (this is an example of discrepancy in computational models

and physical models). Also, we constantly encountered objects (such as trash cans)

that have been moved and block some of the landmarks. This phenomenon can also

be a common issue for service robots.

Experimentally, we found that the effect of missing information sources in the

environment is usually manifest in two ways: (i) an increase in stabilization time, or

(ii) a deviation from the underlying nominal PRM edge. Therefore, we check both

these conditions at each step and if either of them is satisfied, we use the replanning

algorithm from the current belief. The current belief (initial belief for replanning)

usually has a larger uncertainty due to the missing information sources, and thus

replanning can take into account this growth in uncertainty.
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Robot’s view
(Back door is open)

External view

Goal point

Feedback goes 
through the back door

Robot’s location

(a)

Goal point

An obstacle is added to 
the doorway

Robot’s location

Replanning leads to a feedback 
that goes through the front door

Back-door is closed

(b)

Figure 8.6: (a) The back door is open at this snapshot. The feedback guides the
robot toward goal through the back door. (b) The back door is closed at this snap-
shot. Robot detects the door is closed and updates the obstacle map (adds door).
Accordingly robot replans and computes the new feedback. The new feedback guides
the robot through the front door.

8.4.2 Robustness to Large Deviations

In this subsection, we investigate the robustness of the proposed framework in

dealing with large deviations in the robot’s position. As a more general form of this

problem, we consider the kidnapped robot problem.

An autonomous robot is said to be in the kidnapped situation if it is carried to
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an unknown location while it is in operation. The problem of recovering from this

situation is referred to as the kidnapped robot problem [29]. This problem is com-

monly used to test a robot’s ability to recover from catastrophic localization failures.

This problem introduces different challenges such as (i) how to detect kidnapping,

(ii) how to localize the robot, and (iii) how to control the robot to accomplish its

goal. Our main focus, here, is on the third part, i.e., how to replan in belief space

from the new point in the belief space after recovering from being kidnapped.

To detect the kidnapped situation, we constantly monitor the innovation signal

z̃k = zk − z−k (the different between the actual observations and predicted observa-

tion). To define the specific measure of innovation we use in our implementation,

recall that the observation at time step k from the j-th landmark is the relative range

and bearing of the robot to the j-th landmark, i.e., jzk = (jrk,
jθk). The predicted

version of this measurement is shown by jz−k = (jr−k ,
jθ−k ). We monitor the following

measures of the innovation signal:

r̃k = max
j

(|jrk − jr−k |), θ̃k = max
j

(dθ(jθk,
jθ−k )) (8.6)

where dθ(θ, θ′) returns the absolute value of the smallest angle that maps θ onto θ′.

Passing these signals through a low-pass filter, we filter out the outliers (temporary

failures in the sensory reading). Denoting the filtered signals by rk and θk, we

monitor the conditions rk < rmax and θk < θmax. If both are satisfied, we follow

the FIRM feedback (i.e., we are in the Feedback Following Mode (FFM)). However,

violation of any of these conditions means that the robot is constantly observing high

innovations, and thus it is not in the location in which it believes to be (i.e., it is

kidnapped).

Once it is detected that the robot is kidnapped, we first replace the estimation
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covariance with a large covariance (to get an approximately uniform distribution

over the state space). Then, we enter the Information Gathering Mode (IGM),

where we take very small and conservative steps (e.g., turning in place or taking

random actions with small velocities) to get some known measurements. Once the

robot obtains a few measurements, the localization module corrects the estimation

value and innovation signal reduces. When conditions rk < rmax and θk < θmax are

satisfied again, we quit the information gathering mode.

First kidnap point

First 
placement 

point

Second 
kidnap point

Second 
placement point

Figure 8.7: This figure shows the set up for the experiment containing two kidnap-
ping.

After recovering from being kidnapped, controlling the robot in belief space is

a significant challenge as the system can be far from where it was supposed to be.

However, using FIRM, the robot just needs to go to a neighboring node from this

new point. Since the FIRM graph is spread in the belief space, there is no need for

costly replanning procedure. Indeed, the only required computation is to evaluate

the cost of edges that connect the new start point to the neighboring FIRM nodes.
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Figure 8.8: This figure shows the innovation signals r̂k and θ̂k during this run. When
both of the signals are below their specified thresholds rmax and θmax (dashed red
lines), robot follows the FIRM feedback. Otherwise, the system enters the informa-
tion gathering mode.

Figure 8.7 shows a snapshot of a run that contains two kidnapping and illustrates

the robustness of the planning algorithm to the kidnapping situation. The start and

goal positions are shown in Fig. 8.7. The feedback tree (shown in yellow) guides

the robot toward the goal through the front door. However, before reaching the

goal point the robot is kidnapped in the hallway (see Fig. 8.7) and placed it in an

unknown location within the 407 office (see Fig. 8.7). In our implementations, we

consider rmax = 1 (meters) and θmax = 50 (degrees). The first jump in 8.8 shows this

deviation. Once the robot recovers from being kidnapped (i.e., when both innovation

signals in Fig. 8.8 fall below their corresponding thresholds), replanning from the

new point is performed. This time, the feedback guides the robot toward the goal

point from within room 407. However, again before the robot reaches the goal point,

it is kidnapped and placed in an unknown location (see Fig. 8.7). The second jump
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in the innovation signals in Fig. 8.8 corresponds to this kidnapping.

8.4.3 A Longer and More Complex Experiment: Robustness to Changing Goals,

Obstacles, and Landmarks and to Large Deviations

In this section, we emphasize the ability of the system to perform long-term tasks

that consist of visiting several goals. The replanning ability allows us to change the

plan online as the goal location changes. In this experiment, we consider a scenario

in which users submit a new goal for robot to reach after it reaches its currently

assigned goal. While the robot needs to change the plan each time a new goal is

submitted, it frequently encounters changes in the obstacle map (open/closed doors

and moving people) as well as missing information and kidnapped robot situations.

Thus, the robot needs to perform many and frequent online replannings in belief

space to cope with these changes. The video in [67] shows robots performance in

this long and complex scenario.
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the door
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Figure 8.9: This figure shows the set up for the longer experiment with a sequence
of goals as well as intermediate events and changes in the environment map.
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In the following, we provide an itemized description of the specific steps involved

in this run based on Fig. 8.9. Also, we discuss different changes in the environment

with which the robot needs to cope along the way to accomplishing its goals. All of

the following steps can be seen more clearly in the accompanying video [67].

1. The robot starts at the starting point shown in Fig. 8.9 and aims to reach goal

1 as shown in Fig. 8.9. Goal 1 is inside room 407. FIRM returns a feedback

tree that guides the robot through the back door of 407 (cf. Fig. 8.9).

2. The robot goes through the narrow passage introduced by the back door (it

is half-open). However, before reaching the goal it gets kidnapped (the first

kidnap point as shown in Fig. 8.9). The robot is placed in an unknown location

(shown in Fig. 8.9 by first placement point.)

3. Observing new landmarks, the robot detects that it has been kidnapped. Ac-

cordingly it adds a new node to the graph and replans online. As a result, the

feedback guides the robot toward the goal point through the back door again.

4. However, in the meantime the back door has closed and when the robot reaches

the vicinity of the back door, it detects that the door is closed. Therefore, it

updates its map by closing the door (i.e., putting an obstacle at the doorway).

Note that the robot will open the door (remove the obstacle) in its map after

the forgetting time of 10 minutes. Accordingly, the robot replans a feedback

tree that guides the robot through the front door toward the goal point.

5. Along the way, people are moving in the hallway and inside the 407 office. Thus,

the robot replans accordingly as it encounters the people. Moving people are

ignored but the standing people and static obstacles such as a trash-can (see

Fig. 8.9) temporarily get added to the map as obstacles. Replanning several
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times to cope with such changes, the robot goes through the front and inner

doors and reaches the goal point inside the 407 office.

6. After reaching the goal point, another goal (second goal in Fig. 8.9) is assigned

to the robot.

7. Replanning for reaching this goal leads to a feedback tree that guides the robot

through the inner door, and front door, toward goal 2.

8. However, as the robot reaches the vicinity of the inner door, it detects the door

has been closed. Therefore, it updates its map and replans accordingly. The

replanning leads to a feedback tree that guides the robot toward goal 2 through

the back door. Again, along the way robot encounters moving people in the

office 407 and in the hallway.

9. However, before reaching the goal point, the robot gets kidnapped at the “sec-

ond kidnap point” as shown in Fig. 8.9. The robot is placed at a really far-off

point (the “second placement point”). Once the robot detects it is kidnapped,

it replans and moves slower to gather information. Detecting landmarks, it

reduces its uncertainty and continues going toward the goal point.

10. After reaching the goal point, the next goal (i.e., third goal) is assigned to the

robot (see Fig. 8.9). Replanning (Re-query) for this goal, leads to a feedback

that guides the robot through the front door.

11. However, when the robot reaches the front door, it encounters a person standing

in the doorway. Accordingly, it replans and decides to go through the back

door.
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12. On the way to the back door, it is again displaced at the “third kidnap point”

and placed at the “third placement point”.

13. This time, due to the forgetting time, the replanning leads to a path through

the front door (the person is not there any more).

14. Again, the robot follows the feedback and achieves its goal.

This long and complicated scenario demonstrates the robustness of the method to

model discrepancies, changes in the environment, and large deviations in the robot’s

location. Such robustness stems from the ability to replan online in belief space.

It is worth noting that online replanning in belief space is a challenge for state-of-

the-art methods in belief space as they mainly rely on structures that depend on

the system’s initial belief. Hence, when the system’s belief encounters a significant

deviation, replanning from the new belief requires the structure to be re-built and

it is a not a feasible operation online. However, constructing a query-independent

graph in FIRM allows us to embed it in a replanning scheme such as the rollout

policy technique and perform online replanning dynamically.
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9. CONCLUSION AND FUTURE WORK

In this chapter, we review the contributions of this work and discuss future work

that can utilize or extend this research.

In this work, we proposed the Feedback-based Information RoadMap (FIRM)

framework for solving the motion planning problem under motion and sensing un-

certainties. FIRM is the first multi-query graph-based method for planning in belief

space, and hence it can be viewed as the extension of the celebrated Probabilistic

Roadmap Method (PRM) to belief space. The results and contributions of the work

can be discussed in three parts: (i) the abstract FIRM framework, (ii) concrete in-

stantiations of FIRM for three main classes of robotic systems, and (iii) practical

impact of FIRM.

The abstract FIRM framework proposes a method to reduce the original compu-

tationally intractable POMDP problem to a computationally tractable problem on a

representative graph in belief space [2,8]. The abstract FIRM utilizes feedback con-

trollers to steer the belief toward graph nodes and establishes assumptions for these

feedback controllers to ensure the belief node reachability in finite time. Hence,

FIRM preserves the optimal substructure property on the roadmap and overcomes

the curse of history in the original POMDP problem. Another important contri-

bution of FIRM is its ability to seamlessly integrate constraints, such as collision

probabilities, into the planning framework. An important feature of the solution

returned by FIRM is that once the graph edge costs and transitions are formed, the

success probability associated with the returned solution can be characterized ana-

lytically, which provides theoretical guarantees on the performance of the method.

Moreover, we have extended the probabilistic completeness concept to planners un-
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der uncertainty and showed that FIRM is PCUU (probabilistically complete under

uncertainty) [4]. Therefore, for any given set of sampled nodes one can compute the

success probability analytically, and increase the number of nodes to achieve a de-

sired success probability (if such a policy exists in the class of graph policies) Finally,

the computational complexity of the algorithm designed for the offline construction

of FIRM, is a constant multiplier of the computational complexity of constructing

the underlying PRM, i.e.; it is linear in the number of graph nodes. Therefore, it

offers a scalable structure compared to the main body of belief space planners that

are exponential in the number of underlying samples.

In this work, we constructed concrete instantiations of the abstract FIRM frame-

work for three main classes of robotic systems: holonomic, nonholonomic, and non-

point-stabilizable. SLQG-FIRM [2,8] proposes a method to satisfy the assumptions

established in the abstract framework for holonomic systems. SLQG-FIRM utilizes

SLQG controllers as the belief stabilizers. The method characterizes the reachable

beliefs under SLQG controllers and proposes a belief sampling and connecting tech-

niques accordingly. Presenting algorithms for constructing the graph and planning

with it, we demonstrated the performance of SLQG-FIRM on different scenarios,

such as omni-directional mobile robots and an 8-arm manipulator. We analyzed

the computational complexity of the method and provided concrete numbers on the

method construction speed. Additionally, this work proposed an instantiation of the

abstract FIRM for nonholonomic systems using dynamic feedback linearization-based

controllers. This instantiation is referred to as the DFL-based FIRM [6]. Finally, we

generalized the method from “point stabilization” to “periodic maneuver stabiliza-

tion” to handle non-stoppable (or non-point-stabilizable) systems such as fixed-wing

aircraft. The Periodic-Node PRM (PNPRM) is introduced whose nodes lie on peri-

odic trajectories, called orbits. Exploiting the properties of periodic LQG controllers
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on the orbits, the local planners in the PNPRM-based FIRM framework are realized

by periodic LQG controllers, such that the distribution over the belief converges to

a periodic distribution. Accordingly, it is shown that by suitably choosing the belief

node regions along the orbits, the belief node reachability and hence the established

assumptions in the abstract FIRM framework are achieved.

Equally important, the FIRM framework offers powerful tools for practical pur-

poses. First, its multi-query (or query-independent) nature makes it robust to large

deviations. In other words, since the optimal feedback on the graph is computed

from all graph node offline, in the online phase large deviations can be compensated

by driving the belief to a neighboring graph node and following the feedback from

thereon. Second, FIRM provides more reliable solutions in the sense that the fail-

ure probabilities are accurately incorporated into the planning framework. Third,

its scalability allows us to consider larger planning domains for POMDP problems.

Finally, it is a suitable framework to be embedded in dynamic replanning schemes

such as the rollout policy framework [1]. This is a key ability to handle (i) dis-

crepancies between real world models and computational models, (ii) changes in the

environment and obstacles, and (iii) large deviations. By implementing this belief

space planner on a physical robot and demonstrating its robustness to the above-

mentioned discrepancies, this method takes an important step in making POMDP

methods applicable to real world robotic applications.

FIRM opens up new directions to follow for planning under uncertainty. The con-

crete FIRM instantiations proposed in this dissertation are limited to the Gaussian

beliefs, and thus it is a subject of future work to design a non-Gaussian instantia-

tion of the abstract FIRM framework. Analyzing stationary behavior of belief under

non-Gaussian filters such as particle filters combined with an appropriate choice of a

separated controller might be the first step in this direction. Similarly, devising in-
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stantiations of the FIRM framework that can handle the systems with discrete state,

control, or observations spaces is another future research direction. In other words,

one can come up with belief stabilizers that work in discrete state space settings to

design a discrete-state variant of FIRM.
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[82] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. On-

line planning algorithms for POMDPs. Journal of Artificial Intelligence Re-

search, 32:663–704, 2008.

[83] Claude Samson and K Ait-Abderrahim. Feedback control of a nonholonomic

wheeled cart in cartesian space. In IEEE International Conference on Robotics

and Automation, pages 1136–1141, Sacramento, CA, 1991.

[84] Shridhar K. Shah, Chetan D. Pahlajani, Nicholaus A. Lacock, and Herbert G.

Tanner. Stochastic receding horizon control for robots with probabilistic state

constraints. In IEEE International Conference on Robotics and Automation

(ICRA), Minneapolis, MN, 2012.

[85] Dan Simon. Optimal State Estimation: Kalman, H-infinity, and Nonlinear

Approaches. John Wiley and Sons, Inc, Malden, MA, 2006.

[86] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable

Markov processes over a finite horizon. Operations Research, 21(5):1071–1088,

1973.

[87] Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming

connexion. Control and Cybernetics, 35(3):599–620, 2006.

[88] Richard Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning. Arti-

ficial Intelligence, 112:181–211, 1999.

205
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