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ABSTRACT 

 

There are increasing numbers of natural disasters occurring worldwide, 

particularly in populated areas. Such events affect a large number of people causing 

injuries and fatalities. With ever increasing damage being caused by large-scale natural 

disasters, the need for appropriate evacuation strategies has grown dramatically. 

Providing rapid medical treatment is of utmost importance in such circumstances. The 

problem of transporting patients to medical facilities is a subject of research that has 

been studied to some extent. One of the challenges is to find a strategy that can 

maximize the number of survivors and minimize the total cost simultaneously under a 

given set of resources and geographic constraints. However, some existing mathematical 

programming methodologies cannot be applied effectively to such large-scale problems. 

In this thesis, two mathematical optimization models are proposed for abating the 

extensive damage and tragic impact by large-scale natural disasters. First of all, a 

mathematical optimization model called Triage-Assignment-Transportation (TAT) 

model is suggested in order to decide on the tactical routing assignment of several 

classes of evacuation vehicles between staging areas and shelters in the nearby area. The 

model takes into account the severity level of the evacuees, the evacuation vehicles’ 

capacities, and available resources of each shelter. TAT is a mixed-integer linear 

programming (MILP) and minimum-cost flow problem. Comprehensive computational 

experiments are performed to examine the applicability and extensibility of the TAT 

model. 
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Secondly, a MILP model is addressed to solve the large-scale evacuation 

network problem with multi-priorities evacuees, multiple vehicle types, and multiple 

candidate shelters. An exact solution approach based on modified Benders’ 

decomposition is proposed for seeking relevant evacuation routes. A geographical 

methodology for a more realistic initial parameter setting is developed by employing 

spatial analysis techniques of a GIS. The objective is to minimize the total evacuation 

cost and to maximize the number of survivors simultaneously. In the first stage, the 

proposed model identifies the number and location of shelters and strategy to allocate 

evacuation vehicles. The subproblem in the second stage determines initial stock and 

distribution of medical resources. To validate the proposed model, the solutions are 

compared with solutions derived from two solution approaches, linear programming 

relaxation and branch-and-cut algorithm. Finally, results from comprehensive 

computational experiments are examined to determine applicability and extensibility of 

the proposed model. 

The two evacuation models for large-scale natural disasters can offer insight to 

decision makers about the number of staging areas, evacuation vehicles, and medical 

resources that are required to complete a large-scale evacuation based on the estimated 

number of evacuees. In addition, we believe that our proposed model can serve as the 

centerpiece for a disaster evacuation assignment decision support system. This would 

involve comprehensive collaboration with LSNDs evacuation management experts to 

develop a system to satisfy their needs. 
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CHAPTER I 

INTRODUCTION 

 

I.1. Motivation 

 

Natural disasters are often large-scale, rapid-onset, and overwhelming catastrophes 

relative to the scale of damage and the toll of casualties. On January 12th 2010, an 

estimated three million people were affected by the Haiti earthquake; approximately 

320,000 people died, 300,000 were injured, and over a million people were rendered 

homeless. The 2011 Tohoku tsunami was responsible for an estimated 16,000 deaths, 

about 6,150 people were injured, and 2,850 were missing. The tsunami caused nuclear 

accidents, and many nuclear power generators were taken down. Citizens within 50 

miles of the Fukushima Diichi Nuclear Power Plant were urged to evacuate. In 

November 2013, Typhoon Haiyan (or Typhoon Yolanda in the Philippines) adversely 

affected a large region of Southeast Asia. In the Philippines, the death toll from the 

typhoon reached 6,000 along with a large number of people reported missing. 

Large-scale natural disasters (LSNDs) have become regular occurrences that 

result in extensive economic damage as well as significant loss of life or mental injury. 

The extent of cumulative damage by recent LSNDs is too extreme to be estimated. 

According to an announcement by the Centre for Research on the Epidemiology of 

Disasters (CRED) (2012), there was a small decrease (-11.08%) in the number of total 

people affected by natural disasters in 2011 compared to the annual average from 2001 
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to 2010. However, in 2011, the natural disaster damage in the world (US$ 362.8 billion) 

increased by 272.2% compared to the annual average damage from 2001 to 2010 (US$ 

97.5 billion). Over the past few years, the growth rate of victims affected by LSNDs has 

decreased steadily, but rather the estimated damage cost has increased rapidly. This 

phenomenon of lesser number of affected people is likely due to increased planning and 

deployment of resources during a disaster to evacuate and save lives effectively. 

Governments and other agencies bear a significant amount of cost to perform these 

actions. Therefore, efficient preparation plans and tactical evacuation strategies against 

natural disasters can reduce the total evacuation cost and increase the total survivors, 

simultaneously. 

Disasters are unstructured in scope and they are often unpredictable in regard to 

scale, timing, impacts and consequent catastrophes, especially LSNDs. To cope with the 

residual effects of LSNDs, the systematic organization of people, labor and available 

resources is requested. Howitt and Leonard (2006) propose four domains in order to 

improve disaster response effectively: Capabilities, Structures and Systems, People, and 

Coordination. In order to cope with LSNDs appropriately, optimal evacuation routes, 

adequate traffic control policies, and sufficient medical equipment and relief supplies are 

positively necessary with the capacity to maintain themselves in the disaster affected 

areas within a reasonable time period. Many of the relief resources used during disaster 

response are expensive and not always used or consumed on a regular basis. Maintaining 

such relief resources at every potential disaster area is inefficient and not cost effective. 

In order to adequately handle the surge in demand during a disaster, the main challenge 
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lies in being able to locate, mobilize, and allocate relief resources quickly. The other 

challenges are to coordinate their use effectively upon arrival at a disaster scene and to 

transport evacuees to safe shelters. This is significant since disaster evacuations give rise 

to surplus traffic flow, mostly against available network capacity. In conclusion, 

decision-makers for disaster risk management face numerous challenges when 

determining how to transport evacuees efficiently, find the best evacuation routes from 

affected areas to safe shelters, and distribute indispensable medical resources to the right 

shelter at the right time. 

 

I.2. Research objective and overview 

 

The World Health Organization (WHO) (1995) defines a disaster as any occurrence that 

causes damage, ecological disruption, loss of human life, or deterioration of health and 

health services on a scale sufficient to warrant an extraordinary response from outside 

the affected community or area. The US Federal Emergency Management Agency 

(FEMA) (2012) describes it as an occurrence of a natural catastrophe, technological 

accident, or human caused event that has resulted in severe property damage, deaths, 

and/or multiple injuries. The American College of Emergency Physicians (ACEP) 

(2011) states that a disaster has occurred when the destructive effects of natural or man-

made forces overwhelm the ability of a given area or community to meet the demand for 

healthcare. Disasters are often described as a result of the combination of the exposure to 

a hazard, the conditions of vulnerability that are present, and insufficient capacity or 
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measures to reduce or cope with the potential negative consequences. In general, 

disasters may be classified in a variety of ways, but in this thesis, the disasters are 

classified into two categories: natural and man-made (or technological) disasters. 

LSNDs are an unforeseen event occurring directly from natural causes, including 

but not limited to, hurricane, earthquake, flood, tsunami, volcanic eruption, wildfire or 

other similar events that result in significant disastrous consequences in terms of human 

fatalities, injuries, and property damage. In this thesis, two mathematical modeling 

methods are addressed to lessen the impact of LSNDs. Fig. 1 depicts the thesis overview. 

 

 

Fig. 1. Thesis overview 

 

In the optimization model 1, in order to describe the LSND evacuation problem, 

a mixed-integer linear programming (MILP) model is proposed and solved with an exact 

solution approach such as the branch-and-cut (B&C) algorithm. However, because there 

are several limitations on the modeling and solution approaches in the model, the 
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optimization model 2 is suggested to overcome the barriers with two-stage optimization 

modeling method and geographic information system (GIS) techniques. After that, some 

results are compared, and used for deriving conclusions and future works. 

 

I.3. Organization of this thesis 

 

This thesis introduces a systematic approach for designing and solving LSND evacuation 

problems using large-scale optimization models and the relevant solution approaches. To 

understand the features and impacts of the LSND, Chapter II explains the systematic 

process of disaster risk management, and describes the principal fields of action of this 

procedure. There are some studies using mathematical modeling, simulation modeling 

and GIS-based modeling to solve large-scale evacuation problems. These studies along 

with their advantages and disadvantages are summarized. Finally, the limitations of the 

existing models are addressed in Chapter II. 

Chapter III develops a MILP model for LSND evacuation problem, followed by 

enhancements to the model to relax the restriction on the number of evacuees that can be 

transported by evacuation vehicles. Numerical experimentation results and resultant 

discussions are also provided. 

In Chapter IV, the MILP model proposed in Chapter III is extended. The two-

stage optimization model is proposed for the efficient evacuation modeling and solution 

approach after describing the LSND evacuation problem with MILP formally. Chapter 

IV discusses how BD and GIS methodologies can be applied to the solution approaches 
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for the evacuation network problem. Then computational experiments are conducted for 

the LSND evacuation problems and several principal results are provided and discussed. 

Chapter V is dedicated to several discussions on the computational results 

analysis after summarizing several findings and offers suggestions for expanding our 

research to other classes of LSND evacuation modeling. Finally, our conclusions and 

future works are presented. 



 

7 

CHAPTER II 

LITERATURE REVIEW 

 

In this chapter, we review several studies to understand the disaster risk management for 

the LSND evacuation. To handle the LSNDs more efficiently, various concepts and 

definitions of disaster life cycle (DLC) are examined. We also investigate diverse LSND 

evacuation models and compare the advantages and disadvantages of each model. 

Finally, we find some limitations of existing evacuation models and derive some ideas 

for a novel modeling method. 

 

II.1. Disaster risk management 

 

The National Oceanic and Atmospheric Administration (NOAA) (2012) reports that 

each natural disaster of 2011 caused at least $1 billion in damage. According to the 

CRED report published in 2012, five countries, comprising of the Philippines, the United 

States, China, India, and Indonesia, accounted for 31% of the total global disaster 

occurrences in 2011. In addition, seven out of the top 10 countries reporting global 

disaster mortality are located in Asia, while the other three countries are located in the 

Americas. The top seven Asian countries account for 83.1% of the fatalities from all the 

natural disasters. Also, the year 2011 was the most expensive year ever in terms of the 

economic damage caused by natural disasters; Japan (US$ 212.5 billion), United States 

(US$ 59.4 billion), Thailand (US$ 40.3 billion), and several other national incidents. Not 
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surprisingly, there appears to be a relationship between the levels to which societies 

accept the disaster risk management strategies and to which they experience disasters. 

Consequently, as natural disasters increase, so does the interest in disaster risk 

management (Drabek, 1986). 

Disaster risk management aims to avoid, lessen, or transfer the adverse effects of 

hazards through activities and measures for prevention, mitigation, and preparedness 

(ISDR, 2009). A well-planned LSND evacuation strategy is one of the key requirements 

for successful LSND risk management. A primary component of the LSND evacuation 

strategy is an effective evacuation policy or system, which plays a dominant role in 

reducing mortalities and injuries. 

According to ISDR Secretariat (2004), the disaster risk management framework 

is composed of the following main components. 

 

• Political commitment and institutional development (Governance): Defined 

in terms of political commitment and strong institutions, governance has to 

lessen the disaster risk, allocate several indispensable relief and medical 

resources to the right places, take a risk of failure for disaster policies, as well 

as attract participation from relative organizations. 

• Risk identification and assessment: It is relatively clear-cut to identify the 

scale and outbreak time of natural disasters. Systematic assessment methods 

of the damage on the natural disasters are also well-organized. It is now 

imperative to recognize natural disaster occurrences as soon as possible. 
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• Knowledge management: Information communication strategy, publicity 

activities and training, and research on the evacuation plan are required to 

improve knowledge on disaster risk management. 

• Risk management applications & instruments: Risk management applications 

and instruments have been given attention with the recognition of the 

environment protection policies. 

• Disaster preparedness, contingency planning and emergency management: A 

well-prepared system against disasters can give an early warning, cope with 

the evacuation procedure for disasters, and make an adequate relief/medical 

logistics plan. 

 

According to the above framework, disaster risk management is mainly 

composed of pre- and post-disaster events based on the DLC. Disaster risk management 

sometimes includes only pre-disaster management strategies, but all phases of disaster 

risk management have to be evaluated regarding hazard-related losses, economic turmoil 

and collapse, social consensus as well as medical ethics. 

With respect to the many diverse definitions of DLC and an inhomogeneous 

understanding of the cycle defining terms in literature, this chapter gives a contribution 

to create a unified language as a basis for communication among stakeholders. 

The initial idea of the DLC is introduced by Carr (1932) and considered a four-

stage sequence pattern of events such as (i) Preliminary or Prodromal, (ii) Dislocation 

and Disorganization, (iii) Readjustment and Reorganization, and (iv) Confusion-delay. 
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For the past three decades, policy makers, educators, practitioners, and researchers in the 

United States have designed a four-phase model to prepare for and respond to disasters 

well: (i) Preparedness, (ii) Response, (iii) Recovery, and (iv) Mitigation. 

The four-phase model is effective to frame subjects related to disaster 

preparedness as well as economic restoration after a disaster. Each phase requires 

evident means, strategies, and resources, and confronts miscellaneous challenges. The 

four-phase model covers all of the actions described in the abovementioned 

classification while providing a more focused view of evacuation strategy activities. 

Moreover, the four-phase classification is based on the Comprehensive Emergency 

Management concept introduced in the 1978 report of the National Governors’ 

Association (NGA) Emergency Preparedness Project (Altay and Green III, 2006). 

Although the four phases are part of the common language and theoretical 

underpinning of disaster evacuation or emergency management in the U.S., a number of 

adaptations can be found. Some of the recent changes are subtle and involve only 

additional words, perhaps to be more descriptive. A disaster cycle has four phases, and 

all responses must pass through each: Mitigation, Planning, Response, and Recovery 

(Goolsby, 2011). In Idaho State, Mitigation is changed to Mitigation and Prevention. 

Another variation is that Planning/Preparedness is replaced by just Preparedness in the 

City of Winston-Salem. 

According to the Johns Hopkins and the International Federation of Red Cross 

and Red Crescent Societies (2008), the disaster cycle is presented by Mitigation, 
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Preparedness, Response, and Reconstruction (or Rehabilitation). However, Prevention 

phase can be included as a part of DLC when a disaster cannot be prevented entirely. 

The Transportation Research Board (2007) suggests the homeland security all-

hazards taxonomy as the cycle, which is Prevent, Protect, Respond, and Recover, in the 

TR News. Guided by The Texas Homeland Security Strategic Plan 2010-2015 (Perry, 

2010), Texas moves forward on a broad front to improve their ability to Prevent, Protect 

from, Respond to and Recover from all disasters or threats. In recent years, the U.S. 

Department of Homeland Security (DHS) (2009) and FEMA (2010) have adopted the 

terms, Resilience and Prevention, as part of the paradigm of disaster evacuation or 

emergency management. FEMA suggests that emergency planning addresses each of the 

four mission areas identified in the National Strategy for Homeland Security: to prevent, 

protect against, respond to, and recover from natural, technological, or human-caused 

emergencies. 

In conclusion, although the four-phase model is a prevalent strategy and provides 

the theoretical underpinning of disaster risk management, a number of adaptations can 

be found. Some studies now refer to five or six phases rather than four. Others have 

changed the descriptive terms for one or more of the phases. Furthermore, a number of 

government publications examined as part of this research are more confusing than 

informative. In fact, many of those definitions of DLC show overlap of adjacent phases. 

This acknowledges that critical activities frequently cover more than one phase, and the 

boundaries between phases are seldom precise. Most articles also emphasize that                                              

important interrelationships exist among all the phases. In this thesis, Mitigation and 
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Reconstruction (or Recover) phase are regarded as a Resiliency phase and the conceptual 

diagram (Fig. 2) is helpful in designing a disaster evacuation strategy. In order to 

improve effective responses of disaster risk management, in this thesis, the three-phase 

DLC is proposed as follows: Preparedness, Response, and Resiliency (Fig. 3). 

 

 

Fig. 2. DLC comparison 

 

 

Fig. 3. DLC concept proposed by this thesis 

 

In our proposed concept of DLC, the phases of Preparedness and Response are 

addressed and focused in this thesis. The following literature reviews are not only related 

to the phases, but also presented the relevant problem modeling methods and solution 

approaches for coping with LSNDs. 
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II.2. Mathematical models for the LSND evacuation 

 

The recent spate of large-scale natural disasters evinces the necessity for planning 

disaster risk management that focuses on performing strategic evacuation and 

responding to the catastrophic events in a timely fashion. Despite the critical importance 

of this issue, we find surprisingly few studies that look at how the allocation of capacity, 

paired with various types of evacuees and several disaster evacuation vehicles, affects 

evacuation traffic flow and evacuation efficiency. According to a survey study (Altay 

and Green III, 2006), only 28.4% of 109 articles related to disaster risk management are 

about natural disaster evacuation. They also point out that mathematical programming is 

used as a solution methodology in only 32.1% of the cases. 

Several researchers have focused their attention on a large-scale evacuation 

network model with a wide variety of methodologies including mixed-integer 

programming (Cova and Church, 1997; Cova and Johnson, 2003; Chen and Miller-

Hooks, 2008; Tayfur and Taaffe, 2009; Sayyady and Eksioglu, 2010; Bretschneider and 

Kimms, 2011; Na and Banerjee, 2012), dynamic programming (Chiu et al., 2007; 

Andreas and Smith, 2009; Yao et al., 2009; Bish et al., 2014), approximate dynamic 

programming (Erdelyi and Topaloglu, 2010), stochastic programming (Mete and 

Zabinsky, 2010; Li et al., 2011; Mclay and Mayorga, 2013), multi-objective 

optimization (Stepanov and Smith, 2009), and various heuristic techniques (Cova and 

Church, 1997; Sayyady and Eksioglu, 2010; Xie et al., 2010). 
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Among many mathematical modeling approaches, the MILP formulation method 

has been frequently used for a network flow problem or several evacuation problems 

with integer extension of variables. However, many researchers have pointed out that 

some computational difficulties can arise in model management or in the solution 

approach of the model when any type of model becomes quite large. In other words, the 

expansion of the MILP problem scale generated by the number of variables or 

constraints often poses a challenge while attempting to solve them. One of the 

challenges is in the difficulty in solving NP-complete problems using off-the-shelf 

solvers is the excessive CPU time requirement. Na and Banerjee (2012) address a LSND 

evacuation problem with MILP and find that the CPU solution time and occupied 

memory size increases sharply as the size of problem (or the number of variables) rises. 

Hence, although many LSND evacuation problems are often formulated using a MILP 

method for better modeling, there are several limitations on the formulation and solution 

approaches for LSND evacuation problems. This has led to the use of decomposition 

procedures for obtaining the exact solutions rather than approximate solutions. This is 

because a very large model may not fit into memory, but the decomposition algorithm 

can allow the smaller pieces to fit. Consequently, exact solution approaches such as 

Dantzig-Wolfe decomposition (DWD), Benders’ decomposition (BD), and Lagrangian 

relaxation (LR) have been considered for solving the MILP evacuation problems. 

The decomposition algorithm generally involves the iterative solution of the 

easier subproblem, with adjusted incumbent solutions passed to the subproblem between 

iterations. The Dantzig-Wolfe algorithm (1960) and Benders’ algorithm (1962) are the 
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best-known examples for large-scale optimization models. BD (Benders, 1962) is 

helpful to efficiently process the large-scale MILP problems that often arise in practical 

applications. The method partitions the MILP problem into two problems, named master 

problem and subproblem. The master problem and the subproblem are solved iteratively 

until the upper and lower bounds are sufficiently close. With the BD techniques, Sherali 

et al. (1991) address a nonlinear mixed-integer programming evacuation problem, Chen 

and Miller-Hooks (2008) examine and solve a building evacuation problem with shared 

information, and Andreas and Smith (2009) consider the design of an evacuation tree. 

BD is different from DWD in terms of the decomposed problems. BD splits the 

variable set into two subsets, but DWD does the constraint set. Thus, BD is often 

described as DWD applied to the dual of a problem. Tomlin (1966) focuses on a 

complicated network flow problem with multi-commodities and various costs. In 

addition, he considers two different forms of node-arc and arc-chain, and shows the two 

different formulations can be quite equivalent. For very large linear programs, he 

concludes that the DWD can be regarded as decomposing the node-arc flows into arc-

chain flows. 

Lagrangian optimization is another popular technique for solving problems with 

complicating constraints. Xie and Turnquist (2011) have formulated a lane-based 

evacuation network optimization problem, and developed an integrated LR and tabu 

search solution method. 

Since computational struggles of optimization problems increases significantly 

with the number of variables and constraints, solving smaller problems iteratively can be 
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more efficient than solving a single large problem (Smith and Sonuc, 2011). However, 

increasing the number of constraints and variables often leads to deviation from a special 

or desirable problem structure, thereby limiting the use of decomposition techniques. 

Finally, these have contributed to the exploration and application of heuristic methods. 

Several metaheuristic methodologies have been applied to the disaster evacuation 

problems with mixed-integer variables, including tabu search (Sayyady and Eksioglu, 

2010; Xie et al., 2010; Xie and Turnquist, 2011), genetic algorithm (Teklu et al., 2007; 

Miller-Hooks and Sorrel, 2008; Ng and Waller, 2010; Berkoune et al., 2012), and ant 

colony optimization algorithm (Yi and Kumar, 2007; Vitins and Axhausen, 2009; Fang 

et al., 2011). Nevertheless, the heuristic procedures are not guaranteed to find the global 

optimum. The heuristic algorithms are used to find approximate solutions for many 

complicated optimization problems within polynomial time. This makes it difficult to 

use heuristic procedures if the intent is to obtain a global optimal solution or even a local 

optimal solution within specified threshold intervals. 

When we develop mathematical models for LSND evacuation problems, the 

dynamic network flow model can be also considered. Several dynamic network flow 

models for an evacuation problem deal with building evacuation policy, evacuation 

routing selection, or disaster relief allocating strategy (Chalmet et al., 1982; Jarvis and 

Ratliff, 1982; Sheffi et al., 1982; Haghani and Oh, 1996; Pidd et al., 1996; Cova and 

Johnson, 2003; Chiu et al., 2007). Erdelyi and Topaloglu (2010) develop a dynamic 

model for a capacity allocation problem with multiple priority levels with an 

approximate dynamic programming (ADP) approach.  
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In conjunction with evacuation strategies, logistics support problems have been 

considered extensively in disaster risk management (Yi and Özdamar, 2007). In the 

beginning of response phase, the evacuation strategies are the most important, but 

logistics operations for continuous relief and medical supplies are also required 

necessarily for evacuees or survivors in the damaged region. In order to allocate the 

medical resources and transport the injured evacuees as timely as possible, quick relief 

access to affected regions and suitable assignment of evacuation vehicles and safe 

shelters are required (Sherali et al., 1991; Özdamar et al., 2004; Yi and Özdamar, 2007). 

 

II.3. GIS-based models for the LSND evacuation 

 

Disaster risk management is generally spatial-oriented. Spatial optimization models with 

GIS technology are considered as an important decision-making method in disaster risk 

management. All phases of DLC are closely connected with information generated from 

diverse places and agents. The appropriate information has to be collected, arranged, and 

shared immediately in order to decide the scale and scope of disaster risk management. 

Actually, while evacuating a number of evacuees, it is so important to have the accurate 

information at the right time and to respond appositely against LSNDs. With utilizing a 

GIS, decision-makers and rescue workers can share requisite information through 

geographic database systems anywhere. Hence, GIS can provide a mechanism to be 

concentrated and revealed visually serious issues during LSND evacuation processes 

(Johnson, 2000). 
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In particular, in the preparedness and response phase, GIS can play a significant 

role in the development of intelligent LSND evacuation systems. Dunn (1992) examines 

the role of GIS in deciding the optimal evacuation paths, De Silva et al. (1993) develop 

and integrate a simulation model into GIS for disaster evacuation planning, and Cova 

and Church (1997) address a GIS-based method to resolve potential difficulties of 

disaster risk management before occurring LSNDs. Recently, Crooks and Wise (2013) 

present an explicit agent-based model using GIS techniques with the scenario of the 

2010 Haiti earthquake. The routes of evacuees and the relevant events are examined. 

However, there are few previous studies that applied both BD techniques and 

GIS methodologies to a LSND evacuation problem. In Chapter IV, we develop an MILP 

formulation for the evacuation and propose a solution framework based on a BD scheme 

with an embedded GIS module. Such a modeling approach may also enable evacuation 

planners to evaluate several scenarios of some real-time problems (Cova and Church, 

1997; De Silva et al., 2000; Stepanov and Smith, 2009). 
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CHAPTER III 

A DYNAMIC NETWORK EVACUATION MODEL FOR TRANSPORTING 

MULTIPLE PRIORITY EVACUEES 

 

III.1. Introduction 

 

Natural disasters are unpredictable and unavoidable, and often result in serious damage. 

Providing rapid medical treatment is of utmost importance in such circumstances. The 

problem of transporting patients to medical facilities is a subject of research that has 

been studied to some extent. One of the challenges is to find a strategy that can 

maximize the number of survivors and minimize the total cost simultaneously under a 

given set of resources and geographic constraints. Hence, a well-planned disaster risk 

management can help lessen the adverse effect of the disasters. 

For the preparedness and response phases against natural disasters, an evacuation 

network model is formulated as a large-scale deterministic MILP problem. This model is 

different from the papers reviewed in Chapter II as follows: 

• The proposed model is developed as an MILP formulation for LSND 

evacuation. A solution approach, B&C algorithm, attempts to obtain the exact 

solution without the use of decomposition, or relaxation techniques. In this 

case, a primary consideration is not the extent of CPU usage and time to 

solve the problem, but rather a reasonable solution within proper error ranges. 

The time issues and limitations on the proposed model are discussed later. 
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• There are multiple objectives in the proposed model, which has evacuees 

with different priorities, various categories of vehicles for transporting 

evacuees, multiple staging areas for evacuees, and several shelter (e.g., 

hospital) choices for evacuees. In this model, we focus on (i) the number of 

evacuees to be transported from staging areas to shelters during the response 

phase, (ii) assignment of evacuees to shelters, (iii) allocation of evacuation 

vehicles to evacuees and (iv) allocation of relief resources for evacuees 

needing emergency medical attention. 

• The evacuees have multiple priorities based on the severity level of their 

injuries. There are also multiple types of evacuation vehicles that have 

different speeds, transportation costs and capacities, and the types of patients 

that can be transported. The proposed model tries to solve the allocation-

assignment problem for coordinating relief resources support as well as for 

evacuation operations in disaster response activities considering the 

conditions of evacuees and evacuation vehicles. 

 

III.2. Mathematical modeling 

 

Herein, a LSND evacuation network problem is addressed with discussions on a model 

formulation and relevant assumptions. We propose a large-scale deterministic MILP 

model based on the minimum-cost flow model, referred to as Triage-Assignment-

Transportation (TAT). The objective of TAT model is to minimize the total medical and 
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transportation cost for disaster evacuation, and simultaneously to maximize the number 

of evacuees meeting all conditions and restrictions in a capacitated network. The TAT 

model takes into account (1) the severity levels or transportation priorities of evacuees, 

(2) the types of evacuation vehicles, (3) the capability and speed of evacuation vehicles, 

(4) medical costs of the shelters and (5) setup costs to be transformed for other facilities 

except hospitals to an evacuation shelter. Shelters refer to hospitals and other facilities 

providing medical care in this model. The affected people at the staging areas are 

referred to as evacuees, while the evacuees that have arrived at a shelter are designated 

as patients. This provides a clear distinction of the affected people based on location. 

Finally, we examine significant aspects of the model’s structure, followed by the 

discussion on the relaxation of some restrictions of the primal modeling. 

 

III.2.1. Primal modeling 

 

The assumptions of the TAT model are as follows: 

• In the TAT model, the cost is classified into two categories: medical and 

transportation cost. The medical cost is generated when an evacuee is waiting 

for evacuation vehicles at a staging area or being transported to a shelter. The 

medical cost can be variable based on the severity level of evacuees, waiting 

and transportation time as well as the amount of using medical resources. In 

addition, the transportation cost is incurred as an evacuation vehicle 

transports evacuees between staging areas and shelters. The transportation 
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cost is decided by the evacuation vehicles’ type, distance and traffic 

congestion of the evacuation routes, and/or evacuees’ priority. 

• Prior to the LSND, the evacuation vehicles are assumed to be located in their 

respective home locations. The initial transportation time and cost of 

evacuation vehicles moving from their home location to the staging area is 

ignored in this model. The transportation cost and time are measured from the 

first evacuation traffic originating from the staging area. 

• All patients have completed a triage process, such as START (Simple Triage 

and Rapid Treatment) or SALT (Sort-Assess-Lifesaving Interventions-

Treatment/Transport). At a staging area, a result of a triage process will 

indicate the priority of an evacuee. In general, the evacuees with the highest-

priority are transported to shelters first. 

• Additional medical resources such as physicians and nurses, referred to as 

practitioners in this thesis, can be mobilized from their home institutions to 

the shelters for providing medical care to the evacuees. 

• The time unit is measured in minutes, and all the time dependent parameters 

are expressed as a multiple of this time unit. 

 

The decision variables of the TAT model are as follows: 

t
ijkpX  = 1 if evacuation vehicle k is assigned to p-priority evacuee(s) on an evacuation 

arc ( )ji,  at time t; = 0 otherwise 
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t
jikpY  = 1 if evacuation vehicle k is assigned to p-priority evacuee(s) on an evacuation 

arc ( )ij,  at time t; = 0 otherwise 

t
ljpZ  Number of practitioners moved from institution l to shelter j for p-priority 

patient(s) at time t 

t
ipRP  Number of p-priority evacuees remaining in staging area i at time t 

t
ikSV  = 1, if evacuation vehicle k is at staging area i at time t; = 0 otherwise 

t
jkHV  = 1, if evacuation vehicle k is at shelter j at time t; = 0 otherwise 

t
lpRD  Number of practitioners available to take care of p-priority patients in institution l 

at time t 

+
lpV  Surplus number of practitioners available for p-priority patients in institution l 

after evacuation 

−
lpV  Shortage number of practitioners requested for p-priority patients in institution l 

after evacuation 

t
jpRB  Number of beds for p-priority patients in shelter j at time t 

+
jpU  Surplus number of beds available for p-priority patients in shelter j after 

evacuation 

−
jpU  Shortage number of beds required for p-priority patients in shelter j after 

evacuation 
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The formulation of TAT model is shown here followed by a narrative of the 

objective function and the constraints. 

 

Objective Function 

( ) ( )[ ] ( )∑∑ ++
tpjltpkji

tpjlftpkjiftpkjifMinimize
,,,

3
,,,,

21 ,,,,,,,,,,,                      (1) 

The objective (1) aims at minimizing the total evacuation costs, by considering 

the medical expense of evacuees with multiple priorities ( )( ),,,,,1 tpkjif the transportation 

and standby cost of evacuation vehicles with multiple types ( )( ),,,,,2 tpkjif the 

management cost of practitioners for taking care of patients in shelters ( )( ),,,,3 tpjlf  and 

the surplus and shortage costs for medical resources (e.g., beds) after the evacuation is 

completed ( )( )tpjlf ,,,3 . 

When evacuees are given emergency treatment at staging areas or transported 

from staging areas to shelters, the medical expense is defined as follows: 

( ) ( ) ( )∑∑ ⋅⋅+⋅=
tpkji

t
ijkpkpkp

tpi

t
ipp XwRPtpkjif

,,,,,,
1 ,,,, κς ,                        (2) 

where pς  is the unit cost ($/evacuee/minute) for taking care of a p-priority evacuee at a 

staging area, kpw  is the unit cost ($/evacuee) for taking care of a p-priority evacuee 

during transportation, and the maximal seating capacity ( )kpκ  of an evacuation vehicle k. 

The capacity ( )kpκ  is variable according to the priority of evacuees and the evacuation 

vehicle’s type. In the primal TAT model, we assume that the number of evacuees 

accommodated by an evacuation vehicle is same as the vehicle’s maximal carrying 
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capacity. For instance, if an assigned evacuation vehicle can have at most two evacuees, 

then only two evacuees are always transported to a shelter by the evacuation vehicle, 

even not one evacuee for the cost saving purpose. This restriction will be needed to 

grapple with and discussed in more detail in Chapter III.2.2. 

The cost function ( )( )tpkjif ,,,,2  includes both transportation and standby costs of 

each evacuation vehicle as follows: 

( ) ( )[ ] ( )[ ] ( ) ( )∑∑∑∑ ⋅+⋅+⋅⋅⋅+⋅⋅⋅=
tkj

t
jkk

tki

t
iki

tpkij

t
jikpkk

tpkji

t
ijkpkk HVSVYXtpkjif

,,,,,,,,,,,,
2 6060,,,, ρϕνζνξ  (3) 

where kξ  is the unit cost ($/distance) for transporting evacuees by evacuation vehicle k, 

kζ  is the unit cost ($/distance) for moving evacuation vehicle k without any evacuees, 

and ( )ki ρϕ ,  are the unit costs for managing evacuation vehicles at staging area i and at 

shelter j, respectively. The costs ( )ki ρϕ ,  are the same regardless of vehicle’s types, but 

the costs ( )kk ζξ ,  are different according to vehicle’s types. kν  is an average velocity of 

evacuation vehicle k, and the unit is miles per hour (mph). The average velocity of each 

vehicle type is estimated under a normal road condition as considering transportation 

distance, origin and destination assignment, evacuation vehicles’ type and capacity, and 

evacuees’ priorities. 

The cost function ( )( )tpjlf ,,,3 , related to the practitioners and medical resources, 

is expressed as follows: 

( ) ( ) ( ) ( ) ( )∑∑∑∑ −+−+ ⋅+⋅+⋅+⋅+⋅+⋅=
pj

jppjpp
pl

lpplpp
tpl

t
lpp

tpjl

t
ljpp UUVVRDZtpjlf

,,,,,,,
3 ,,, εχφϑψϖ ,   (4) 

where pϖ  is a moving cost of practitioners from their home institution to the shelter. 
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pψ  is also the unit cost incurred at an institution for managing a practitioner for treating 

p-priority patients, the unit costs ( )pp φϑ ,  are the surplus and shortage costs of 

practitioners at shelters after the whole evacuation process, and similarly, the unit costs 

( )pp εχ ,  are the surplus and shortage costs of beds at shelters after the evacuation is 

completed. 

 

Initial Conditions 

ipipRP λ=0      PpIi ∈∀∈∀ ,                                            (5) 





=
01

000

timeatassignedif

timeatassignednotif
SVik   KkIi ∈∀∈∀ ,                                            (6) 

00 =jkHV      KkJj ∈∀∈∀ ,                                           (7) 

jpjpRB β=0      PpJj ∈∀∈∀ ,                                           (8) 

lplpRD σ=0      PpLl ∈∀∈∀ ,                                           (9) 

Constraint sets (5)-(9) are initial constraints on the multicorrelated parameters 

connected with other restrictions. Constraints (5), (8), and (9) indicate the initial number 

of evacuees at each staging area, beds at each shelter, and practitioners at each 

institution, respectively. Constraints (6)-(7) show the standby status of each vehicle at 

staging areas or at shelters at the beginning of disaster evacuation. For example, if there 

are 30 vehicles available at staging area 1 in the beginning, then { }30,,2,1,10
1 L∈∀= kSV k , 

and { }.,32,31,00
1 L∈∀= kSV k  This also indicates the starting point of each vehicle is a 
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staging area, and the initial travel time and cost from their origin to a staging area are 

disregarded. 

 

Staging Area Constraints 

( ) pip
kj

t
ijkpkp

t
ip

t
ip XRPRP µηκ −+⋅−= ∑+

,

1   { }1,,1,0,, max −∈∀∈∀∈∀ ETtPpIi L        (10) 

{ }
∑∑

−+ +−=
pj

txma

jikp
pj

t
ijkp

t
ik

t
ik

jikYXSVSV
,

,0

,

1 τ
  { }1,,1,0,, max −∈∀∈∀∈∀ ETtKkIi L        (11) 

Constraint (10) presents the variation of evacuees at each staging area by time. In 

particular, in the TAT model, we consider the number of each p-priority mortality ( )pµ  

while they waiting for transporting to any shelter. We assume that the highest-priority 

evacuees may be more likely to die. The number of p-priority evacuees ( )ipη  arrived at 

staging area i from disaster fields are also presented in (10). The priorities of patients are 

determined during the triage process at the staging area, and can change based on the 

severity level of injury. However, in this model, the severity level of injury is not 

improved or aggravated during the evacuation process. In the absence of available 

vehicles for transporting higher priority evacuees waiting in a staging area, lower 

priority evacuees can be assigned first if possible. 

Constraint (11) indicates the state and location of evacuation vehicles according 

to their assignment. When considering the number of available evacuation vehicles, jikτ  

is a specific factor in the model. This is because jikτ  is the transportation time between 

staging area i and shelter j, which is calculated as ( ) 60/ ×= kjijik νδτ . In other words, jikτ  
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depends on the distance ( )jiδ  between staging area i and shelter j, and average velocity 

( )kν  of the evacuation vehicle. After starting the evacuation procedure, the evacuation 

vehicles may be assigned from a staging area to a shelter, and then after jikτ  time 

periods, the evacuation vehicles will arrive at the shelter. They will be able to be 

reassigned to a staging area again after jikτ  time periods. Thus, the number of available 

vehicles at staging areas is dependent on jikτ , so the assignment of evacuation vehicles 

can be controlled by jikτ . 

If a real-time traffic data is contemplated, then traffic flow conditions of each 

evacuation route at time t can be factored in the calculation. As per the assumptions of 

an evacuation vehicle’s type and transportation distance, it is possible that there are no 

vehicles returning from the shelters during the first few time periods. For example, if the 

length of an arc ( ) ( )1,1, =ji  is 50 miles and the average velocity of evacuation vehicle 1 

is 50 mph, then evacuation vehicle 1 cannot arrive at staging area 1 back from shelter 1 

within 2 hours. In other words, during the first 2 hours of the evacuation period, 

evacuation vehicle 1 cannot move from shelter 1 to staging area 1 more than once. 

 

Transportation Constraints 

ij
pk

t
ijkpX α≤∑

,

     TtJjIi ∈∀∈∀∈∀ ,,                                (12) 

ji
pk

t
jikpY ι≤∑

,

     TtJjIi ∈∀∈∀∈∀ ,,                                (13) 
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The capacity constraint sets (12)-(13) on arc ( )ji,  ensure that no flow will exist 

on arc ( )ji,  if that arc is not a part of the evacuation route. Otherwise, the sum of flow 

on the arc ( )ji,  at any time t cannot exceed the arc’s capacity ijα , where ijα  is the 

entrance flow leaving staging area i toward shelter j. The reverse is also true for the flow 

from shelter j to staging area i, represented by jiι . The flows, ijα  and jiι , may be 

measured based on historical data and will vary with traffic congestion state of each 

evacuation route. In other words, the number of evacuation vehicles will increase with 

the increase in the number of evacuees. The evacuation routes can eventually become 

congested resulting in no traffic movement. As a result, we need to limit the number of 

evacuation vehicles entering arc ( )ji, . ijα  and jiι  can be variable over the evacuation 

time period according to the congestion state of evacuation routes. However, in this 

thesis, the restricted capacities are fixed after several experiments. 

 

Practitioners Constraints 

∑−=+

j

t
ljp

t
lp

t
lp ZRDRD 1     { }1,,1,0,, max −∈∀∈∀∈∀ ETtPpLl L        (14) 

−+ −= lplp

ET

lp VVRD xma     PpLl ∈∀∈∀ ,                                          (15) 

( ) ( )∑∑ ⋅≤⋅
tl

t
ljpp

tki

t
ijkpkp ZX

,,,

γκ    PpJj ∈∀∈∀ ,                                          (16) 

The constraint sets (14)-(16) are general flow restrictions on the practitioners in 

shelters and their home institutions at time t. The constraints (14) and (15) are the 

variation and the number of available practitioners in an institution for taking care of 
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patients with multiple priorities, respectively. Constraint (16) presents the minimum 

number of practitioners required for taking care of patients in each shelter. The ability 

ratio ( )pγ  provides a mechanism in this model to evaluate and match a practitioner’s 

expertise and the number of patients that can be handled by the practitioner. The 

matching process is beyond the scope of this thesis. 

 

Shelter Constraints 

{ }
∑∑

−+ +−=
p

txma

ijkp
p

t
jikp

t
jk

t
jk

ijkXYHVHV
τ,01         { }1,,1,0,,, max −∈∀∈∀∈∀∈∀ ETtKkJjIi L (17) 

( )∑ ⋅−=+

ki

t
ijkpkp

t
jp

t
jp XRBRB

,

1 κ           { }1,,1,0,, max −∈∀∈∀∈∀ ETtPpJj L           (18) 

−+ −= jpjp

ET

jp UURB xma            PpJj ∈∀∈∀ ,                                             (19) 

In the shelters, there are some restrictions about evacuation vehicles and medical 

resources for patients. Constraint (17) addresses standby condition of evacuation 

vehicles at the shelters. Constraint (18) presents the changing number of beds by time in 

the shelters, and the number of beds available is controlled according to the number of 

patients transported at time �, and after the evacuation is completed ( )xmaET . The surplus 

and shortage cost on the beds after the whole evacuation process are considered in (19). 

 

Integrality, Binary, & Non-negativity Constraints 

,,,, Β∈t
jk

t
ik

t
jikp

t
ijkp HVSVYX  binary,  TtPpKkJjIi ∈∀∈∀∈∀∈∀∈∀ ,,,,       (20) 

,, +Ζ∈t
ip

t
ljp RPZ    integer, TtPpLlJjIi ∈∀∈∀∈∀∈∀∈∀ ,,,,      (21) 
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,, Ζ∈t
lp

t
jp RDRB   integer, TtPpLlJj ∈∀∈∀∈∀∈∀ ,,,       (22) 

,,,, +
−+−+ ℜ∈lplpjpjp VVUU     PpLlJj ∈∀∈∀∈∀ ,,                              (23) 

Finally, constraint sets (20)-(23) have integrality, binary, and non-negativity 

restrictions. In (22), the decision variables, ( )t
lp

t
jp RDRB , , are unrestricted. Considering the 

mixed-integer decision variables, challenges remain in the trade-offs between the 

modeling techniques that can accommodate the multifaceted complexity of the 

evacuation process versus their computational intractability. 

 

III.2.2. Enhanced modeling 

 

In the formal model described in the previous section, there is a restriction on the 

number of evacuees that can ride each evacuation vehicle. The limitation is relaxed here, 

so the number of evacuees riding an evacuation vehicle is flexible and is not same as the 

carrying capacity of the vehicles. In the enhanced model, the number of evacuees for 

evacuation vehicles to accommodate is a decision variable. It is natural, however, that 

the number cannot exceed the designated carrying capacity of each evacuation vehicle. 

Hence, the objective function is changed to as follows: 

( ) ( )[ ] ( )∑∑ ++
tpjltkpji

tpjlftkpjiftkpjifMinimize
,,,

3
,,,,

24 ,,,,,,,,,,, .                      (24) 

The modified partial objective function ( )( )tpkjif ,,,,4  is as follows: 

( ) ( ) ( )∑∑ ⋅+⋅=
tpkji

t
ijkpkp

tpi

t
ipp WRPtpkjif

,,,,,,
4 ,,,, ως ,                             (25) 
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where t
ijkpW  is the number of p-priority evacuees transported by an evacuation vehicle k 

on the arc ( )ji,  at time t. t
ijkpW  will, in turn, be substituted for ( )t

ijkpkp X⋅κ . 

Hence, constraint sets (10), (16), and (18) are restated as follows: 

pip
kj

t
ijkp

t
ip

t
ip WRPRP µη −+−= ∑+

,

1    { }1,,1,0,, max −∈∀∈∀∈∀ ETtPpIi L ,      (26) 

( )∑∑ ⋅≤
tl

t
ljpp

tki

t
ijkp ZW

,,,

γ     PpJj ∈∀∈∀ , ,                                       (27) 

∑−=+

ki

t
ijkp

t
jp

t
jp WRBRB

,

1     { }1,,1,0,, max −∈∀∈∀∈∀ ETtPpJj L .      (28) 

Similar to the primal TAT model, constraint (26) presents the variation of 

evacuees at staging areas. Constraint (27) guarantees the minimal number of 

practitioners required for taking care of patients at the shelters. Constraint (28) shows 

that the number of beds provided from shelters is variable based on the number of 

evacuees transported by time. 

 

III.3. Numerical experimentation 

 

A numerical experimentation is conducted for natural disaster risk management and 

operations in order to demonstrate the application of the TAT model. The purpose of the 

experimentation is twofold: (i) to examine the performance and applicability of the 

proposed methodology in a LSNDs evacuation network, and (ii) to evaluate the potential 

merits and deficiencies of implementing resulting optimal evacuation plans in possible 

evacuation problem instances. 
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III.3.1. Numerical example 

 

The TAT model is performed on an evacuation network that has 2 staging areas, 3 

shelters, 3 institutions, 2 vehicle types (i.e., ambulance and helicopter), and 3 patient-

priority types (Fig. 4). In Fig. 4, hospitals indicate the shelters, and institutions refer to 

the home locations of the practitioners where they normally practice. They are likely to 

be assigned to one among the shelters during the evacuation process. 

 

 

Fig. 4. Illustration of a numerical example 

 

The primal TAT model is discussed first, which is followed by the 

implementation of the enhanced model. We consider short-notice disasters that have a 

desirable lead time between 24 and 72 hours. This is because decision makers are 

required to resolve alternate tactical evacuation strategies based on the expected spatial-

temporal influence of the disaster. All of the time period intervals are in 10-minutes 

increment, and the whole evacuation time is set as 30 hours. Later, several examples 
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with different maximal evacuation time (from 20 hours to 60 hours) are implemented, 

and their results are compared in order to analyze the issues required for effective 

disaster evacuation. The velocity of each vehicle is determined based on the assumption 

of no traffic congestion on the road. For the same vehicle type, the velocities of the 

evacuation vehicles are assumed to be the same. 

In the TAT model, there are two important probability parameters: pµ  and ipη . 

pµ  indicates an expected number of evacuees that are likely to die at a staging area 

while waiting for evacuation. The parameter is closely related to the priority of the 

evacuees. ipη  is related to the number of evacuees who arrive from the disaster affected 

areas into the designated staging areas. Both of the parameters remain the same 

regardless of staging areas. The parameters of this problem can be generated according 

to historical data accumulated from several natural disaster occurrences. In this example, 

the parameters are assumed to follow a Uniform probability distribution, i.e., Uniform 

[0, 5] for 1st-priority patients. Some parameters related to the initial conditions (5)-(9) 

are listed in Table 1. ipλ  is the number of evacuees at each staging area at the beginning of 

disaster evacuation. jpβ  is the number of beds at shelter j for p-priority patients, and lpσ  

is the number of practitioners at institution l available to provide care for  p-priority 

patients. 

Some parameters for evacuation vehicles and network traffic conditions are 

summarized in Table 2. jiδ  is the distance between staging area i and shelter j, and kpκ  

is the maximal seating capacity of an evacuation vehicle k for p-priority evacuees. 
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Table 1. Initial conditions 

 p = 1 p = 2 p = 3 

ipλ  
i = 1 100 150 200 

i = 2 150 250 400 

jpβ  

j = 1 500 2000 5000 

j = 2 500 3500 5000 

j = 3 1000 5000 8500 

lpσ  

l = 1 100 50 30 

l = 2 150 75 45 

l = 3 200 55 55 

 ambulance helicopter 

0
ikSV  

i = 1 36 4 

i = 2 54 6 

 

Table 2. Parameters for evacuation vehicles and transportation conditions 

 j = 1 j = 2 j = 3 

iϕ  
i = 1 5 5 5 

i = 2 5 5 5 

ijα  
i = 1 10 15 20 

i = 2 5 10 15 

jiι  
i = 1 10 15 20 

i = 2 5 10 15 

ijδ  
i = 1 15 20 30 

i = 2 10 15 20 

 ambulance helicopter 

kζ  1 3 

( kξ , kρ ) (2, 5) (5, 5) 

kν  60 100 

kpκ  

p = 1 1 2 

p = 2 2 5 

p = 3 3 10 



 

36 

An empty evacuation vehicle moving from a shelter to a staging area is assumed 

to have a lower transportation cost. In other words, the unit cost while transporting an 

evacuee is higher. The unit cost )( pς  for transportation is shown in Table 3. 

 

Table 3. Parameters for evacuees 

 p = 1 p = 2 p = 3 

pς  ($/evacuee/min) 150 50 20 

kpω  
ambulance 20 10 5 

helicopter 30 15 7 

 

The 1st-priority patients have a higher cost than lower-priority patients. This 

implies that patients with the highest-priority must be transported first, which will satisfy 

the aim of the objective function to minimize total evacuation cost. kpω  is the unit cost 

for taking care of a p-priority evacuee during transportation by evacuation vehicle k 

($/evacuee). The parameter is determined based on the evacuation vehicle’s type and the 

priority of evacuees. 

 

III.3.2. Results and analysis 

 

These problem instances were solved using IBM OPL IDE 6.3, ILOG CPLEX 12.1.0 

software on a Dell OPTIPLEX 960 with two 3.00 GHz CPU Intel® Core™2 Quad 

processors and 8 GB RAM. The primary results are shown in Table 4. The example 
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model contains 548,843 constraints, 330,687 integer variables, 742,100 binary variables, 

and 4,380 real variables. 

 

Table 4. Computation primary results 

 TAT LP relaxation 

Total Cost $12M $7M 

# of evacuees 997 846 

# of practitioners 683 579 

CPU time 86,197 sec 6,028 sec 

Iterations 20,968,315 1,209,457 

 

The B&C algorithm is applied to obtain an exact solution to the problem. In most 

cases, the B&C algorithm is able to solve and prove optimality for large-scale problems 

compared to the cutting-plane method or the branch-and-bound algorithm (Kumar et al., 

2010). It took about 86,197 seconds to obtain the optimal solution. The objective 

function value is $12M, and this is selected among 21 solution pools. The integer 

optimal solution was obtained after 20,968,315 iterations with 4,753 nodes. 

The objective cost ($11.96M) is close to the incumbent objective cost ($11.97M) 

obtained after about 7,200 seconds. One of the available options for solving large-scale 

problems in polynomial time would be to decide on a reasonable gap between the 

desired goal and the incumbent objective cost. Using such an approach, it is possible to 

scale up the evacuation model reflecting the realities of the disaster compared to other 

approaches such as decomposition methodologies or heuristic approaches. 
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The objective value ($M) and gap (%) obtained at each iteration are illustrated in 

Fig. 5. The MIP gap is the difference between the best integer solution and the objective 

of the best node remaining, after which the B&C algorithm is stopped and a feasible 

solution is begun searching. It can be seen that the interim solution after about 2,000 

seconds has a significantly smaller gap, compared to the initial difference. 

 

 

Fig. 5. Objective value ($M) and gap (%) 
 

 

Fig. 6. Trend of number of 1st-priority patients remaining in both staging areas 

 

Fig. 6 highlights a few other implications. Staging area 1 requires more 

evacuation vehicles and medical practitioners. This is because the number of evacuees 
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waiting in staging area 1 is increasing as the evacuation progresses. On the other hand, 

staging area 2 has enough medical resources for evacuating 1st-priority patients under 

current conditions, as you can see in Fig. 6. 

Fig. 7 shows the assignment and allocation example of evacuation vehicles 

between staging areas and shelters. The top points represent the state of evacuation 

vehicles transported p-priority evacuees from staging area 1 to shelter A. The middle 

points show that the evacuation vehicles staying at shelter A return to staging area 1. The 

differences between the top and middle points indicate the effectiveness on the 

assignment and allocation of the evacuation vehicle. 

 

 

Fig. 7. Example of evacuation vehicle assignment for p-priority evacuees on arc (1, A) 
 

Although it is trivial that LP relaxation results are lower than the TAT model’s, 

we check to see how the results of the TAT model increase in comparison with the LP 

relaxation model. Several interesting results are observed (Table 4), when comparing the 

linear programming model. For total cost, the TAT model has a higher cost (∆71%) than 

the LP model, which was as expected. For the number of evacuees, there is a 17.85% 

increase in the TAT model. Even with the increase in the evacuation cost for a natural 
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disaster, the number of survivals increases slightly. Thus, the number of evacuees 

transported by each evacuation vehicle needs to be flexible under their maximum 

capacity, instead of the assumption that the number of evacuees that can be transported 

by each evacuation vehicle is fixed. 

Considering the models with several scenarios, 9 different scenarios are resolved 

and compared (Table 5). The problems have different maximal evacuation time from 20 

hours (TAT-120T) to 60 hours (TAT-360T), including the enhanced TAT model (eTAT-

180T). CPLEX 12.1.0 is used to solve the MILP formulation of this problem. CPLEX 

runs are stopped after 7200 CPU seconds, and the best solutions under the restriction are 

reported. As the whole evacuation time is increasing in each scenario, the MIP bound 

gap with the best lower bound at each problem is mounting slowly (Table 5). 

Reviewing the results of these experiments with various scenarios, we show that 

every experiment can have reasonable local optimum solutions within the pre-specified 

CPU solution time (Fig. 8). We observe that the results are not influenced by the CPU 

solution time. In other words, although a large-scale problem is solved with a large CPU 

solution time, it is not remarkably different with the situations with shorter solution time. 

Thus, if we solve the disaster evacuation problems using the TAT model and can set up a 

restricted error range, then we can find a local optimal solution within polynomial time 

(e.g., all experiments except TAT-180T-2 and eTAT-180T), instead of solving the 

problems until a global optimal value (e.g., TAT-180T-2 experiment) is obtained. These 

can carry an important meaning that leads to the reduction of solution time and 

evacuation total cost. 
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Fig. 8. Results comparison of the 10 scenarios 
 

The two scenarios, TAT-180T-1 and TAT-180T-2, have different CPU time for 

solving the same problem. TAT-180T-1 needed 7,200 seconds for obtaining a solution. 

There was no time limit set for TAT-180T-2, and it stopped after 86,404 seconds. 

However, there is not a significant difference of total cost when compared to 

TAT-180T-1. Although we have enough time to solve a large-scale problem, it does not 

lead to a significantly improved total cost when compared to the case with a shorter 

solution time. When this model is applied to solve a real-life problem with the large-

scale number of staging areas, shelters and evacuation vehicles, the convergence may be 

slow. The problem size and solution time can pose significant challenges in obtaining 

the optimal solution. One of the possible options is to solve the enhanced model. The 

scenario, eTAT-180T in Table 5, is related to the enhanced model. The experiment 

shows that if the evacuation vehicles have flexibility in the number of patients to be 

transported, it can result in an improved objective cost. However, the gap between the 

optimal objective value and the interim objective increases. This is a trade-off for the 

decision makers. 
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Table 5. Comparison of results for each TAT model 

Problem 
Total Cost 

($M) 
MIP Bound 

(Gap, %) 
# of Evacuees 

(for 1st priority) 
CPU Time 
(second) 

# of Iterations 

TAT-120T 5.59 0.07 896 7,201.90 3,219,313 

TAT-150T 8.40 0.07 923 7,206.73 2,136,509 

TAT-180T-1 11.97 0.12 914 7,205.86 1,464,598 

TAT-180T-2 11.96 0.02 916 85,917.02 20,968,315 

eTAT-180T 16.49 1.08 919 7,201.26 729,824 

TAT-210T 16.27 0.09 913 7,207.36 1,188,886 

TAT-240T 21.31 0.14 914 10,804.65 1,021,839 

TAT-270T 27.13 0.27 903 7,201.99 803,335 

TAT-300T 33.81 0.69 883 7,207.73 662,669 

TAT-330T 41.11 0.66 882 7,203.52 693,418 

TAT-360T 49.04 0.41 893 7,204.73 636,079 
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III.4. Summary and conclusion 

 

Developing a timely and effective disaster evacuation model is one of the key strategies 

of saving lives during a natural disaster. The decision-making capability of the model 

can provide a mechanism for improving disaster response planning. In Chapter III, we 

provide an overview of the evacuation network models for LSNDs and consider a 

disaster evacuation model using an MILP. The model decides on the tactical routing 

assignment of multiple types of evacuation vehicles in order to transport evacuees with 

various priorities from affected areas to safe shelters. The TAT model is a MILP and 

minimum-cost flow problem. Comprehensive computational experiments are performed 

to examine the applicability and extensibility of the TAT model. 

The main contribution of TAT model is that it proposes a large-scale 

deterministic network evacuation model to allow the use of an exact solution approach, 

such as B&C method, for solving the MILP problem. Another contribution is that we 

show the quality of solutions remained very close to the optimal value even if the whole 

evacuation time is subject to small changes. For an effective solution approach, several 

scenarios with different assumptions and parameters are analyzed and compared, 

followed by a discussion of some of the interesting observations in the scenarios. In 

particular, we show that the B&C procedure can yield reasonable solutions in 

polynomial computation time by solving large-scale problems with the proposed 

formulation. Consequently, the proposed model enables decision-makers to design a 

useful evacuation strategy with some conditions such as a type or severity level of a 
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natural disaster, affected area information, or an emergency measure in the preparedness 

stage. This will enhance rapid response performance of LSNDs management authorities. 

In addition, this study not only proposes a model that can be incorporated into 

any such decision-support tool, but also reveals the value of information on instances as 

the whole evacuation time is changed. In some instances where the whole evacuation 

time is greater than 60 hours, difficulties have been observed resulting in an explosion in 

the search tree. In disaster risk management, challenges remain in the trade-offs between 

the realism of the models that can accommodate the multifaceted complexity of the 

evacuation process versus their computational intractability. 

The TAT model can offer insight to decision makers about the number of staging 

areas, evacuation vehicles, and medical resources that are required to complete a large-

scale evacuation based on the estimated number of evacuees. We also expect that the 

TAT model can be applied to several research areas such as Transportation, Logistics, or 

even Manufacturing. 
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CHAPTER IV 

LARGE-SCALE EVACUATION NETWORK MODEL FOR TRANSPORTING 

EVACUEES WITH MULTIPLE PRIORITIES 

 

IV.1. Introduction 

 

The extent of cumulative damage by recent LSNDs is too extreme to be estimated. Over 

the past few years, the growth rate of victims affected by LSNDs has decreased steadily, 

but the estimated damage cost has increased rapidly (Na and Banerjee, 2012). With ever 

increasing damage being caused by LSNDs, the need for appropriate evacuation 

strategies has grown dramatically. Evacuation decision-makers face numerous 

challenges when determining how to transport evacuees efficiently, find the best 

evacuation routes from affected areas to safe shelters, and distribute indispensable 

medical resources to the right shelter at the right time. 

Within the context of the proposed MILP model, we make the following 

contributions. First, this model suggests a disaster evacuation network modeling 

technique that allows the optimal shelters’ number and location, evacuation routes 

assignment, evacuation vehicles allocation, and distribution of medical resources. 

Second, our proposed solution framework can solve a LSND evacuation problem 

considering critical spatial-temporal conditions. Finally, the proposed modeling 

methodology can be integrated with either simulation-based or (meta) heuristics-based 

methods, which means that the this research is applicable to a wide range of models and 
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tools that are familiar to researchers in industrial engineering, transportation engineering, 

or computer science. 

 

IV.2. Problem description 

 

A MILP problem is described for coping with LSND with a complicated evacuation 

network. Initially, evacuees are taken to staging areas immediately when they are found, 

then their priorities are determined by a triage system, and emergency treatments are 

provided based on their severity level. Staging areas must be spacious areas located 

around disaster fields and accessible by evacuation vehicles. 

Shelters are temporary medical facilities that can be used to house evacuees 

during the period of evacuation. There are three possible types of shelters: extensive 

shelters, restricted shelters, and other large shelters without medical infrastructure. 

Extensive shelters (e.g., hospital) are large medical facilities that have existing 

capabilities to provide care for the various priorities of evacuees. However, the capacity 

of extensive shelters in an affected region is often limited. Restricted shelters (e.g., 

clinic, medical center) are smaller medical facilities than extensive shelters, and have 

existing capabilities to provide treatment for evacuees. The number of restricted shelters 

in an affected region is expected to be higher than the number of extensive shelters, but 

restricted shelters are also limited. Other large shelters without medical infrastructure 

(e.g., sports arena, theater) are extensive facilities that can accommodate a large number 

of evacuees with suitable amounts of basic amenities such as climate control, bathrooms, 
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kitchen, and sufficient space to organize beds. Such facilities do not have the inherent 

capabilities to take care of the various priorities of evacuees. The restricted shelters and 

other large shelters without medical infrastructure are called candidate shelters, which 

can be transformed into evacuation shelters during a period of evacuation only. 

After determining the number and location of shelters, decision-makers have to 

decide the type and number of evacuation vehicles and find optimal evacuation routes to 

satisfy their objectives. Each evacuation vehicle has different capacities, transportation 

costs, and average velocities. With transporting evacuees to assigned shelters, there are 

also logistics flows of medical resources shipped from relief warehouses to the right 

shelter at the right time. Next, we proceed with a discussion on the mathematical 

modeling of the problem of interest. For this purpose, in Fig. 9, we first present the 

underlying structure of the proposed evacuation model including the location sets along 

with the flow and some notable decision variables. 

 

 

Fig. 9. Underlying structure of the proposed model network 
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IV.3. Mathematical modeling 

 

Herein, we formulate the tactical evacuation planning problem as a MILP for LSNDs. 

The objective is to minimize the total evacuation cost and to maximize the number of 

survivors simultaneously. For an effective response phase of a natural disaster, the 

proposed model finds the number and location of shelters and a strategy on the routing 

assignment of evacuation vehicles. In order to provide evacuees with indispensable 

medical resources efficiently, our model also addresses amounts of initial holding stocks 

and the way to distribute medical resources. The proposed model takes into account the 

severity levels of evacuees in each staging area, the capacities of evacuation vehicles and 

routes, and available medical resources in every shelter. 

In the proposed model, strategic assumptions are as follows: 

• Associated costs are explained in five categories: (i) setup costs, which 

transform candidate shelters into formal evacuation shelters, (ii) care costs 

when evacuees are waiting for transportation to shelters and while evacuees 

are transported by evacuation vehicles, (iii) holding costs of medical 

resources in each shelter and evacuation vehicles in each staging area, (iv) 

transportation costs, which arise from transporting evacuees from staging 

areas to shelters and shipping medical resources from relief warehouses to 

shelters, and (v) surplus and shortage costs of medical resources per unit 

time. All costs are determined or changed by the priorities of evacuees, the 

types of evacuation vehicles, and the types of medical resources. 



 

49 

• All evacuation vehicles are located in the staging areas at the beginning of the 

evacuation process. When the evacuation vehicles depart from a staging area, 

they can transport evacuees to any shelter considering the relevant 

constraints, but have to return from the assigned shelter to the initial staging 

area. 

• The medical resources used for the period of evacuation are expensive, but 

are always in demand and consumed on a regular basis. On the other hand, 

maintaining many of the medical resources at every potential candidate 

shelter is inefficient and not cost-effective. Every shelter can have initial or 

safe stocks in order to mitigate the difficulties in mobilization of medical 

resources during the period of evacuation, but a holding cost is incurred. The 

shipping and holding costs are different according to the classification of 

medical resources and the distance between relief warehouses and shelters. 

 

IV.3.1 Sets and indices 

 

I   Set of staging areas; { }max,,2,1 SAIi L=∈∀  

J   Set of shelters; { } CE JJJSHJj UL ==∈∀ ,,,2,1 max  

  EJ   Set of extensive shelters; 

CJ   Set of candidate shelters; ORC JJJ U=  

  RJ   Set of restricted shelters; 

OJ   Set of other large shelters without medical infrastructure 
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K   Set of relief warehouses; { }max,,2,1 RWKk L=∈∀  

L   Set of evacuation vehicles; { }max,,2,1 VHKk L=∈∀  

P   Set of evacuees priorities; { }max,,2,1 EPPp L=∈∀  

R   Set of medical resources; { }max,,2,1 MRRr L=∈∀  

T   Set of evacuation periods; { }max,,1,0 ETTt L=∈∀  

 

IV.3.2 Parameters 

 

jκ  Setup cost for transforming candidate shelter ( )CJj ∈  into a formal 

evacuation shelter 

pξ  Unit cost for taking care of p-priority evacuees in staging areas 

($/evacuee/minute) 

lθ   Unit cost for holding an evacuation vehicle l in staging areas ($/minute) 

ijlτ   Transportation time of evacuation vehicle l from staging area i to shelter j 

lζ   Unit cost of evacuation vehicle l for transporting evacuees ($/distance) 

ijlδ   Actual distance of arc (i, j) for evacuation vehicle l (mile) 

lν   Average velocity of evacuation vehicle l (mph) 

rh  Unit cost for holding r-type medical resources in a shelter before 

occurring a natural disaster ($/resource) 
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rσ  Unit cost for shipping r-type medical resources to shelters 

($/resource/distance) 

kjδ   Actual distance of arc (k, j) (mile) 

+
rϕ   Surplus cost of r-type medical resources ($/resource) 

−
rϕ   Shortage cost of r-type medical resources ($/resource) 

krϑ   Maximal capacity of r-type medical resources in relief warehouse k 

jpρ  Maximal capacity of p-priority evacuees that shelter j can be 

accommodated 

ipη  Number of p-priority evacuees in staging area i at the beginning of 

evacuation processes 

lpϖ  Maximal number of p-priority evacuees who can be accommodated on 

evacuation vehicle l 

t
ijlψ  Maximal number of evacuation vehicle l that can pass on a route (i, j) at 

time t 

lχ   Preparation time of evacuation vehicle l for transporting next evacuees 

 

IV.3.3 Decision variables 

 

jx   = 1, if candidate shelter ( )CJj ∈  is selected as an evacuation shelter; 

= 0, otherwise 
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t
ijlpy  Number of p-priority evacuees transported by evacuation vehicle l 

through arc (i → j) at time t 

t
ijlpz  = 1, if evacuation vehicle l transported p-priority evacuees through arc (i 

→ j) at time t; = 0, otherwise 

t
ipo   Number of p-priority evacuees remaining in staging area i at time t 

t
ils  Number of evacuation vehicle l preparing to transport evacuees in staging 

area i at time t 

t
kjrw   Amount of medical resources r shipped through arc (k → j) at time t 

jru  Amount of medical resources r required to be prepared in shelter j at the 

beginning of evacuation processes 

+t
jrq             Surplus amount of r-type medical resources remained at shelter j at time t 

−t
jrq             Shortage amount of r-type medical resources remained at shelter j at time t 

 

IV.3.4 Objective function 
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There is a setup cost for transforming a candidate shelter into a formal evacuation 

shelter. The restricted shelters have a somewhat lower setup cost than the other large 

shelters without medical infrastructure. The care costs are incurred in every staging area 

and during transportation to shelters, which is determined by evacuees’ priority, distance 

between staging areas and shelters, and evacuation vehicles’ type. Note that the medical 

cost for evacuees with the highest priority is the most expensive. 

When evacuation vehicles are waiting to transport evacuees, the holding cost is 

determined based on the waiting time and evacuation vehicle’s type. The transportation 

cost of evacuation vehicles is calculated by the transportation distance and the 

evacuation vehicle’s type. Although we consider a distance on the same set of a staging 

area and a shelter, the distance is different by the evacuation vehicle’s type. For instance, 

a helicopter moves a shorter distance from a staging area to a shelter than an ambulance. 

If medical resources in each shelter are higher or lower than the required amounts, 

surplus or shortage costs are incurred each time. 

 

IV.3.5 Constraints 

 

( ) Ppx
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Constraint (30) ensures that the total capacity ( jpρ ) of existing extensive shelters 

and new selected candidate shelters cannot be less than the total number of evacuees in 

all staging areas at the beginning of the evacuation process. Constraint (31) states that 

the total number of p-priority evacuees transported from staging area i to any shelters is 

less than or equal to the number of p-priority evacuees in each staging area at the 

beginning of the evacuation process. At the same time, constraint (32) guarantees that 

the total number of p-priority evacuees transported to each assigned shelter j cannot 

exceed the maximal capacity of formal evacuation shelters. Note that 
EJj∈1  (or 

CJj∈1 ) is 

an indicator function having the value 1 for all elements in EJ  (or CJ ) and the value 0 
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for all elements not in EJ  (or CJ ). In addition, the capacity constraint (32) on arc (i, j) 

ensures that no flow will exist on arc (i, j) if that arc is not a part of the evacuation route. 

When evacuees are rushed by evacuation vehicles to shelters, the maximal capacity of 

evacuation vehicles is also considered. Constraint (33) indicates that the number of 

evacuees transported to assigned shelters at a time cannot exceed the sum of the 

maximal capacity of evacuation vehicles based on the evacuee priority and the 

evacuation vehicle type. Constraint (34) represents the variation in evacuees of each 

staging area, and in this model, we consider no additional evacuees generated from 

disaster fields and no fatalities during the whole evacuation period. If the evacuees occur 

from disaster fields to staging areas during evacuation processes, we can consider a 

probability model based on previous existing historical data. Note that no evacuees are 

transported from staging areas to shelters at the beginning of the evacuation process, that 

is 00 =ijlpy . 

Constraint (35) addresses the maximal capacity ( t
ijlψ ) of evacuation routes, which 

is involved with the number of road traffic lanes, condition of assigned roads, type of 

evacuation vehicles, and observation time slots. The evacuation vehicles occupy the road 

during ijlτ  minutes under a normal scenario. The total number of evacuation vehicles on 

the arc (i, j) from 1+− ijlt τ  to t , therefore, cannot exceed the maximal capacity of the 

road. ijlτ  is the transportation time of evacuation vehicle l under normal traffic 

conditions between staging area i and shelter j, which is calculated as ( ) 60/ ×= lijlijl νδτ . 

After launching the evacuation procedure, the evacuation vehicles may be allocated from 
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a staging area to a shelter, and then after ijlτ  minutes, the evacuation vehicles will arrive 

at the assigned shelter. They will be able to be reassigned to a staging area again after (

lijl χτ + ) minutes. As per the assumptions of an evacuation vehicle’s type and 

transportation distance, it is possible that there are no evacuation vehicles returning from 

shelters during the first few periods. Thus, the number of available evacuation vehicles 

in staging areas is dependent on ijlτ , so the assignment of evacuation vehicles can be 

controlled by ijlτ . Note that no evacuation vehicles move from staging areas to shelters 

at t = 0, that is 00 =ijlpz . 

Constraint (36) is related to the state and location of evacuation vehicles 

according to their assignment, and manages the allocation of evacuation vehicles to 

evacuees or shelters. If an evacuation vehicle has a traffic time ( ijlτ ) between staging 

area i and shelter j under normal traffic conditions and preparation time ( lχ ) of the 

evacuation vehicle for transporting next evacuees, the evacuation vehicle can arrive at its 

initial staging area i again after lijl χτ +⋅2  minutes. Constraint (36) also states that the 

number of evacuation vehicles l for transporting p-priority evacuees from shelter j to 

staging area i is none from beginning to lijl χτ +⋅2 . Note that the initial number of 

evacuation vehicles in each staging area is determined before starting the evacuation 

processes. For example, let us suppose there are 50 ambulances and 10 helicopters in 

staging area 1 and 30 ambulances and 5 helicopter in staging area 2. Then for l=1..60, 

10
1 =ls , but for l=61..95, 00

1 =ls . Conversely, for l=1..60, 00
2 =ls , but for l=61..95, 10

2 =ls
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. But if a candidate shelter is not selected as an evacuation shelter, the evacuation 

vehicles are not assigned at the candidate shelter. This also indicates that the starting 

point of each evacuation vehicle is a staging area, and the initial travel time and cost 

from their origin to a staging area are disregarded. 

Constraint (37) restricts the amount of medical resources shipped from relief 

warehouses to shelters by the volume of each type of medical resources kept in each 

relief warehouse. Constraint (38) decides the initial amount of medical resources 

required to minimize the costs for distributing and mobilizing medical resources to 

shelters. In this model, we have assumed that an evacuee requires an l-type medical 

resource to be treated. In particular, when surplus or shortage of medical resources 

arises, the relevant costs are incurred per unit time. 

Constraint (39) enforces the integrality restrictions on the binary variables and 

finally constraints (40-41) enforce the non-negativity restrictions on the corresponding 

decision variables. 

 

IV.4. Solution approach 

 

Due to the large number of variables and constraints involved in the proposed model, 

direct use of traditional and standard solvers is found to be highly inefficient. The BD 

approach, specifically, has proven to be a powerful technique for solving such large-

scale MILP problems. This section describes our solution framework including a 

modified BD based on GIS in order to solve a LSND evacuation problem. 
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The overall solution framework is illustrated in Fig. 10. First, the GIS module 

computes the shortest paths from staging areas to candidate shelters if the candidate 

shelters are within a reasonable and specified transportation time and/or distance, as 

accommodating all evacuees. With multiple staging areas and multiple candidate 

shelters, the GIS module utilizes the Dijkstra’s algorithm and generates candidate 

evacuation shelters ( CE JJJ U= ) where can be used in an experiment. The GIS module 

also provides the potential evacuation routes between staging areas and the selected 

candidate evacuation shelters ( CE JJJ U= ) as well as the relevant routes’ information. 

The ArcGIS network analyst extension makes the evacuation route network to obtain an 

initial incumbent solution of the master problem. 

Then, with the initial solution obtained from the GIS module, the modified BD 

algorithm starts to solve the problem. The optimal number and location of evacuation 

shelters are determined, and evacuation vehicles are allocated and assigned by the 

evacuation plan. Concurrently, the algorithm finds an efficient logistics plan for shipping 

medical resources to shelters. The GIS component is based on ArcGIS 10.1. 

The BD algorithm is applied iteratively over the relaxed master and subproblems 

until convergence is achieved. The convergence criterion is satisfied when 

)()( UBLBUB ⋅≤− ε , where UB is an upper bound obtained by the best optimal solution 

of the subproblem and the dual-problem, LB is a lower bound by the solution of the last 

master problem, and ε  is the tolerance for stopping criterion and is extremely small in 

value. This procedure is summarized in step 4 of the modified BD algorithm, which is 

described as follows. 
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Fig. 10. Solution framework 

 

Step 1: (Initialization) 

Initialize the iteration counter n, the LB l of the objective function, and its UB u. 

 The initial solution set, { }00000
0 ,,,, t

il
t
ip

t
ijlp

t
ijlpj sozyxX = , is obtained by the GIS 

Module. 

Step 2: (Solve subproblem) 

 Solve the subproblem as follows: 

 ( ) ( ) ( ) .)13(),10(),9(..|*









⋅+⋅+⋅⋅+⋅= ∑∑∑∑∑∑∑∑∑
∈ ∈ ∈

−−++

∈ ∈ ∈ ∈∈ ∈

tsqqwuhMinf
Jj Rr Tt

t
jrr

t
jrr

Kk Jj Rr Tt

t
kjrkjr

Jj Rr
jrr ϕϕδσ  

 If feasible, generate an optimality cut [2]. 

Compute the UB: 

( ) ( ) ( ) ( ) ** 2 fzysoxv
Ii Jj Ll Pp Tt

t
ijlpijll

t
ijlpijlp

Ii Ll Tt

t
ill

Ii Pp Tt

t
ipp

Jj
jj

C

+⋅⋅⋅+⋅⋅+⋅+⋅+⋅← ∑∑∑∑∑∑∑∑∑∑∑∑
∈ ∈ ∈ ∈ ∈∈ ∈ ∈∈ ∈ ∈∈

δζτξθξκ  

 { }.,* uvMinu ←  

If u is updated, set incumbent solution set: 
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 else if infeasible, generate a feasibility cut [2]. 

Step 3: (Add cut to MP and solve it) 

 If subproblem was feasible, 

Add an optimality cut to MP. 

 else 

Add a feasibility cut to MP. 

 Solve MP to get 1+nX  and 1+nv  as the optimal value. 

 Set { }lvMaxl n ,1+← . 

Step 4: (Termination) 

Check the difference between UB and LB. 

If )()( UBLBUB ⋅≤− ε , stop. 

else 

Set .1+←nn  

Return to Step 2. 

 

IV.5. Computational experiments 

 

A numerical experiment is conducted for a LSND evacuation problem. The purpose of 

the experiment is twofold: (i) to explore the applicability and performance of the 

proposed model in a large-scale evacuation network, and (ii) to evaluate the potential 
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merits and deficiencies of implementing resulting optimized evacuation plans in a 

possible LSND problem instance. 

The proposed model is performed on a LSND evacuation network that has 2 

staging areas, 2 existing shelters, 6 candidate shelters, 2 relief warehouses, 80 evacuation 

vehicles, 3 patient-priority types, 2 evacuation vehicle types, and 3 medical resource 

types. In particular, 6 candidate shelters are classified as 3 restricted shelters and 3 other 

large shelters without medical infrastructure in the network. The city of Galveston, 

Texas is used as an example for designing the LSND evacuation network. The city is 

about 45 miles southeast of downtown Houston. The Galveston causeway is the only 

major road connected to neighborhood areas. If the Galveston causeway is rendered 

unusable by a LSND, there are few routes to transport evacuees to nearby areas. Given 

these characteristics of the city of Galveston, it is necessary to establish an evacuation 

strategy against LSNDs. 

In the experiment, we consider a short-notice natural disaster that has a desirable 

lead time of around 24 hours. This is because decision-makers are required to develop 

alternate tactical evacuation strategies based on the expected spatial-temporal influence 

of impending natural disasters. If necessary, decision-makers can establish an alternate 

evacuation plan every 24 hours approximately. All of the time period intervals are in 1-

minute increments, and the whole evacuation time (ETmax) is set as 24 hours in our 

experiment. The number of evacuation vehicles (VHmax) is made up of 64 ambulances 

and 16 helicopters. 
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Table 6. Summary of principal parameters in the experiment 

p or r 
 

1 2 3 
p 

 
1 2 3 

ipη  
i = 1 500 1,000 3,500 

jpρ  

j = 1 150 230 750 

i = 2 500 1,000 3,500 j = 2 175 255 950 

lpϖ  
ambu 1 2 6 j = 3 125 225 550 

heli 2 4 12 j = 4 150 245 750 

rh  30 40 50 j = 5 120 255 850 
+
rϕ  40 50 60 j = 6 200 395 1,350 

−
rϕ  60 80 100 j = 7 225 415 1,550 

krϑ  
k = 1 5,000 5,500 5,500 j = 8 250 455 1,650 

k = 2 6,000 6,000 7,000 pξ  500 250 150 

 
type lθ  lζ  lν  

r 
 

1 2 3 

ambulance 0.10 0.25 50 rσ  0.14 0.16 0.18 

helicopter 0.15 0.45 100 ETmax 1,440 VHmax 80 

 

Some principal parameters in the experiment are presented in Table 6. There are 

100,000 evacuees in two staging areas at the beginning of the evacuation process, but it 

is assumed that there are no additional evacuees rescued from disaster fields, and no 

fatalities occur in staging areas and while transporting to shelters. Each evacuation 

vehicle has a different speed, capacity, and transportation cost and distance. In 

particular, if some evacuees are transported from a staging area to a shelter by an 

ambulance, the ambulance has to move further than a helicopter because ambulances are 

driven through a road network. The GIS module generates several spatial parameters of 

the target evacuation routes network and provides the input to the proposed modified BD 

algorithm. In addition, the total capacity of existing extensive shelters often cannot 

satisfy the number of evacuees, so the additional candidate shelters have to be selected 
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for evacuees. It is assumed that the capacity of a route ( t
ijlψ ) does not change with time, 

so it is fixed regardless of time-based traffic variations. In other words, t
ijlψ  is regarded 

as ijlψ  in this model. 

The experiment is first solved using IBM OPL IDE 6.3, ILOG CPLEX 12.1.0 

software on a Dell OPTIPLEX 960 with two 3.00 GHz CPU Intel® Core™2 Quad 

processors and 8 GB RAM. The primary results are shown in Table 3. We also 

implement the proposed model using ILOG CPLEX 12.1 Callable Library in Microsoft 

Visual Studio 2012 in order to compare the solutions obtained from the branch-and-cut 

algorithm and the proposed modified BD algorithm. We use CPLEX MIP and LP 

solvers to optimize the master problem and subproblems in both algorithms. 

Several interesting results are observed when comparing other algorithms such as 

branch-and-cut and linear programming (LP) relaxation (Table 7). First, the proposed 

modified BD algorithm has a higher total evacuation cost than all others. When 

compared to the results of the LP relaxation model, the total evacuation cost of the 

proposed model increases by 11.74% or $1,961,823. This cost may change with 

modifications in the initial conditions or some of the other parameters. 

Second, the number of 1st priority evacuees transported to shelters in the 

modified BD algorithm is 1 evacuee lower than in the B&C algorithm, and 11 (or 10.21) 

evacuees lower than in the LP relaxation algorithm. With the decrease in the number of 

evacuees evacuated, the total evacuation cost of the proposed model escalates slightly. 

Third, the number of iterations and the CPU solution time decreased significantly 

in the modified BD algorithm. For the modified BD algorithm, CPU solution time is 
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25.18% lower and the number of iterations is 98.73% lower than experimental results 

from the B&C algorithm. The variation on the objective evacuation costs along iterations 

is presented in the Fig. 11. 

 

 

Fig. 11. Convergence of the proposed algorithm 

 

Table 7. Experimental results comparison 

 Proposed modified BD Branch-and-Cut LP relaxation 

Total evacuation cost 
($) 

18,667,991 18,667,864 16,706,168 

Number of formal 
evacuation shelters 

6 6 6.38 

Number of 
1st priority evacuees 

836 837 846.21 

Number of 
solution iterations 

179 14,060 12,064 

CPU solution time 
(seconds) 

1,526 2,039.54 223.20 

 

IV.6. Summary and conclusion 

 

In this chapter, we have addressed an evacuation modeling to design and solve a LSND 

problem with an existing road network. A MILP formulation is presented to determine 
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an optimal assignment of evacuees, allocation of evacuation vehicles, location of 

shelters, and logistics flow of medical resources. In addition, we propose an exact 

solution approach based on modified BD, which implements faster than the branch-and-

cut algorithm. A GIS methodology is applied to the proposed solution approach for the 

setting of more realistic parameters. Furthermore, in order to examine the applicability 

and extensibility of the proposed model, we conduct a comprehensive computational 

experiment using a large-scale realistic instance based on the city of Galveston. Finally, 

for validating the proposed model, our solutions are compared with other methods 

derived from traditional solution approaches such as linear programming relaxation and 

B&C algorithm. 
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CHAPTER V 

CONCLUSION 

 

Developing a timely and effective disaster evacuation model is one of the key strategies 

of saving lives during LSNDs. The decision-making capability of the model can provide 

a mechanism for improving disaster response planning. In this thesis, two mathematical 

modeling methods are addressed to abate the impact of LSNDs. The optimization model 

1, TAT model, describes the LSND evacuation procedures with a MILP modeling 

method and solves the problem by using the B&C algorithm. The model decides on the 

tactical routing assignment of multiple types of evacuation vehicles in order to transport 

evacuees with various priorities from affected areas to safe shelters. However, because 

of several limitations on the modeling and solution approach in the model, the 

optimization model 2 uses the two-stage optimization modeling method with an existing 

road network and GIS techniques in order to overcome the restrictions. In addition, we 

propose an exact solution approach based on modified BD, which implements faster than 

the B&C algorithm. A GIS methodology is applied to the proposed solution approach for 

the setting of more realistic parameters. Furthermore, in order to examine the 

applicability and extensibility of the proposed model, we conduct a comprehensive 

computational experiment using a large-scale realistic instance based on the city of 

Galveston. Finally, for validating the proposed model, our solutions are compared with 

other methods derived from traditional solution approaches such as LP relaxation and 

B&C algorithm. 
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In disaster risk management, challenges remain in the trade-offs between the 

realism of the models that can accommodate the multifaceted complexity of the 

evacuation process versus their computational intractability. Some future works includes 

developing a large-scale stochastic optimization model with real-time windows. Another 

future work would involve conducting agent-based simulation experiments with some 

statistical methods. In conclusion, we believe that our proposed model can serve as the 

centerpiece for a disaster evacuation assignment decision support system. This would 

involve comprehensive collaboration with LSNDs evacuation management experts to 

develop a system to satisfy their needs. 
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