
A SCALABLE FRAMEWORK FOR PARALLELIZING SAMPLING-BASED

MOTION PLANNING ALGORITHMS

A Dissertation

by

SAMSON ADE JACOBS

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Nancy M. Amato
Committee Members, Lawrence Rauchwerger

Valerie Taylor
Jim Morel

Head of Department, Nancy M. Amato

May 2014

Major Subject: Computer Science

Copyright 2014 Samson Ade Jacobs

ABSTRACT

Motion planning is defined as the problem of finding a valid path taking a robot

(or any movable object) from a given start configuration to a goal configuration

in an environment. While motion planning has its roots in robotics, it now finds

application in many other areas of scientic computing such as protein folding, drug

design, virtual prototyping, computer-aided design (CAD), and computer animation.

These new areas test the limits of the best sequential planners available, motivating

the need for methods that can exploit parallel processing.

This dissertation focuses on the design and implementation of a generic and scal-

able framework for parallelizing motion planning algorithms. In particular, we focus

on sampling-based motion planning algorithms which are considered to be the state-

of-the-art. Our work covers the two broad classes of sampling-based motion planning

algorithms — the graph-based and the tree-based methods. Central to our approach

is the subdivision of the planning space into regions. These regions represent sub-

problems that can be processed in parallel. Solutions to the sub-problems are later

combined to form a solution to the entire problem. By subdividing the planning

space and restricting the locality of connection attempts to adjacent regions, we re-

duce the work and inter-processor communication associated with nearest neighbor

calculation, a critical bottleneck for scalability in existing parallel motion planning

methods. We also describe how load balancing strategies can be applied in complex

environments. We present experimental results that scale to thousands of processors

on different massively parallel machines for a range of motion planning problems.

ii

DEDICATION

To my beloved wife, Wuraola; love is our greatest asset, the future is nothing to fear.

To our two adorable daughters, Molayo and Moyo; with all thy getting, get wisdom.

iii

ACKNOWLEDGEMENTS

I am indebted to a number of people for their support in the course of my PhD

program.

First and foremost, my advisor and mentor, Prof. Nancy M. Amato, for her

continual support and sometime demanding request which has made me both a

better researcher and a leader. Her passion for excellence is one thing I will cherish

for years to come.

I would like to thank my committee members, Prof. Lawrence Rauchwerger,

Prof. Valerie Taylor, and Prof. Jim Morel, for their useful suggestions and guidance.

I would like to thank faculty, staff, postdocs, alumni, and current students of

Parasol Lab who in one way or other have made contributions to the work presented

in this dissertation. Worth mentioning here are the following individuals: Prof.

Jennifer Welch, Kay Jones, David Ramirez, Dr. Shawna Thomas, Dr. Roger Pearce,

Dr. Gabriel Tanase, Dr. Timmie Smith, Dr. Nathan Thomas, Harshvardan, Adam

Fidel, Antal Buss, Ioannis Papadopoulos, Shishir Sharma, Bryan Boyd, Jory Denny,

Kasra Manavi, Troy McMahon, Chinwe Ekenna, Cindy Yeh, Andy Giese, and Daniel

Tomkins.

I acknowledge the work of undergraduate students whom I have had the privilege

to mentor, in particular, Juan Burgos, Cesar Rodriguez both from Texas A&M Uni-

versity, Dezshaun Meeks from Praire View A&M University, and Nicholas Stradford

from University of North Texas. I am grateful to them for their contributions to this

work.

Lastly, I would like to thank my family and friends for their love, patience, and

support.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1 Research Contributions . 5
1.2 Outline . 6

2. PRELIMINARIES AND RELATED WORK 7

2.1 Preliminaries . 7
2.1.1 Motion Planning . 7
2.1.2 Sampling-Based Motion Planning 7

2.2 Related Work . 10
2.2.1 Parallel Sampling-Based Motion Planning 10
2.2.2 Space Subdivision . 16
2.2.3 Load Balancing Techniques 17

3. STRATEGY FOR PARALLELIZING SAMPLING-BASED MOTION PLAN-
NING ALGORITHMS . 20

3.1 Strategy Overview . 20
3.2 STAPL Framework . 22

4. GRAPH-BASED PARALLEL MOTION PLANNING 26

4.1 Space Subdivision and Region Graph Construction 26
4.2 Constructing Regional Roadmaps . 27
4.3 Connecting Regional Roadmaps . 29
4.4 Algorithm Analysis . 30
4.5 Experimental Evaluation . 32

4.5.1 Algorithms . 32
4.5.2 Machine Architectures . 32
4.5.3 Motion Planning Problems . 33
4.5.4 Experimental Results . 33

v

5. TREE-BASED PARALLEL MOTION PLANNING 41

5.1 Space Subdivision and Region Graph Construction 41
5.2 Constructing Regional Subtrees . 42
5.3 Connecting Regional Subtrees . 42
5.4 Algorithm Analysis . 43
5.5 Experimental Evaluation . 46

5.5.1 Bulk Synchronous Distributed RRT 46
5.5.2 Parallelizing Nearest Neighbor Search 47
5.5.3 Machine Architecture . 48
5.5.4 Motion Planning Problems . 50
5.5.5 Experimental Results . 50

6. RADIAL BLIND RRT . 58

6.1 Blind RRT . 58
6.1.1 Algorithm . 59
6.1.2 Probabilistic Completeness . 61

6.2 An Improved Radial RRT using Blind RRT 62
6.2.1 Algorithm . 62
6.2.2 Probabilistic Completeness . 65
6.2.3 Algorithm Analysis . 67

6.3 Experimental Evaluation . 69
6.3.1 Experimental Setup . 69
6.3.2 Map Coverage . 71
6.3.3 Parallel Performance . 72

7. USING LOAD BALANCING TO SCALABLY PARALLELIZE SAMPLING-
BASED MOTION PLANNING ALGORITHMS 74

7.1 Basic Load Balancing Techniques . 75
7.2 Load Balancing for PRM . 77
7.3 Load Balancing for RRT . 79
7.4 Implementation in STAPL . 81
7.5 Experimental Evaluation . 83

7.5.1 Setup . 83
7.5.2 Parametrically Imbalanced Environment 84
7.5.3 Experimental Results . 90

8. ROADMAP QUALITY ANALYSIS . 95

8.1 Evaluation Metrics . 95
8.1.1 Edge Metrics . 95
8.1.2 Coverage and Connectivity Metrics 97
8.1.3 Query Processing and Path Length 99
8.1.4 Structural Metrics . 99

8.2 Roadmap Graph Properties . 100
8.3 Experimental Evaluation . 102

vi

8.3.1 Setup . 102
8.3.2 Experimental Results . 102

8.4 Heterogeneous Environment: A Natural Fit for Spatial Subdivision
and Parallelism . 109
8.4.1 Adaptive Sampling and Connection 112
8.4.2 Experimental Results . 113

9. CONCLUSION . 118

REFERENCES . 121

vii

LIST OF FIGURES

FIGURE Page

1.1 Planning space subdivision strategies: (a) uniform subdivision and (b) ra-
dial subdivision . 4

2.1 An illustration of PRM . 9

2.2 An illustration of RRT . 11

2.3 An illustration of SRT . 16

3.1 Types of subdivision: (a) uniform (b) radial (c) adaptive 23

3.2 STAPL software architecture. 25

4.1 Space subdivision: (a) A 2D environment subdivided into 9 regions, (b)
region graph - the 9 vertices represent each of the 9 regions with corre-
sponding color, edges encode the adjacency information between regions. . 28

4.2 Environments studied for graph-based method 34

4.3 Comparison of our proposed method (pSBMP-PRM and pSBMP-RRT) to
two existing approaches: pPRM and pSRT 35

4.4 Results from three different motion planning problems on Linux cluster
using pSMBP-PRM and pSMBP-RRT methods 38

4.5 Results from varying input size for the articulated linkage robot in a clut-
tered environment using pSMBP-PRM method 39

4.6 Higher processor counts on Cray XE6 petascale machine 40

5.1 Example of radial subdivision for a 2D Cspace. Each process concur-
rently builds a branch (using sequential RRT) rooted at qr and biased
toward a target qi (e.g., qn for the black process). 42

viii

5.2 Tree pruning example, the new edge (purple) between the red and
blue branches causes a cycle in the red branch, the dashed edge is
identified for removal. 44

5.3 Bulk synchronous distributed RRT. (a) T is initialized to root, (b)
The first iteration with m=2, (c) The second iteration where globally
communicated data is shown in black. 48

5.4 Environments studied for tree-based method 51

5.5 Effect of varying m in the bulk synchronous distributed RRT. 53

5.6 Radial subdivision distributed RRT performance on Linux cluster. 54

5.7 Distributed RRT performance on Cray XE6 machine. 56

5.8 Radial RRT performance results for grid environment on Cray XE6
machine . 57

5.9 Radial RRT performance results for stripline environment on Linux
cluster . 57

6.1 RRT expands greedily up to ∆q, qrand, or an obstacle is hit (a) Blind
RRT Expand always expands up to ∆q distance or qrand while also
retaining either all free witnesses (b) or only the first free witness (c)
to return a set of expansion nodes Qnew. 61

6.2 (a) An example environment with four regions, represented by their
points (blue) on the outer circle. (b) Radial Blind RRT concurrently
expanding in the four regions ignoring obstacles as it goes. (c) Radial
Blind RRT concurrently and locally removes invalid nodes of the tree
and connects CC s within each region (new edges emphasized in ma-
genta). (d) Radial Blind RRT connects CC s between regions yielding
a final tree. 66

6.3 Example of Radial RRT not being able to solve an example query. . . 66

6.4 Motion planning problems. 68

6.5 Comparing coverage after performing RRT, Radial RRT, and Radial
Blind RRT. All results are normalized to RRT. 70

6.6 Execution times of Radial RRT and Radial Blind RRT. 73

ix

7.1 Roadmap graph node distribution (a) before rebalancing: majority of
nodes are present on two processors (green and brown color) (b) after
rebalancing: almost even distribution of nodes. 74

7.2 Regular subdivision method for parallel PRM. 76

7.3 The fundamental migrate primitive, redistribution of a container based
on a view and rebalancing a view based on weights. 81

7.4 Customizable scheduling scheme for a call to a parallel algorithm. . . 83

7.5 Imbalanced cube environment . 84

7.6 Subdivision of imbalanced cube environment 85

7.7 In a 3x3 spatial decomposition, the (a) model’s estimation of the vol-
ume of free space and (b) the number of roadmap nodes sampled per
region in a test run. 87

7.8 In a 9x9 spatial decomposition, the (a) model’s estimation of the vol-
ume of free space and (b) the number of roadmap nodes sampled per
region in a test run. 88

7.9 Experimental validation of measure of load imbalance in model envi-
ronment. (α = 2, β = 4 and Rx = 256, Ry = 1) 88

7.10 Experimental validation of potential improvement in model environ-
ment. (α = 2, β = 4 and Rx = 256, Ry = 1) 89

7.11 Evaluation of (a) execution time and (b) coefficient of variation and
(c) load distribution for PRM on Hopper. 91

7.12 Evaluation of computing roadmap in the walls environment for a rigid
body robot on Hopper . 91

7.13 Execution time for PRM with various load balancing strategies in (a)
walls (b) walls-45 (c) and free environment. 92

7.14 Breakdown of the amount of tasks stolen vs. executed locally for PRM
on (a) 96 and (b) 768 cores on Hopper. 93

7.15 Breakdown of (a) the various phases of PRM (b) and the effect of load
balancing on remote accesses. 94

7.16 Execution time for RRT with various load balancing strategies in (a)
mixed (b) mixed-30 (c) and free environment. 94

x

8.1 Impact of space subdivision on graph structure: For a given query
point (red), 3-nearest neighbors are shown in green. Selected neigh-
bors differ as a result of space subdivision. 102

8.2 Environments . 103

8.3 Quality evaluation in free environment 105

8.4 Relationship between diameter and average shortest paths 106

8.5 Page (vertex) rank for different region subdivision 107

8.6 Page (vertex) rank distributions for 1 and 4 regions 108

8.7 Quality evaluation in 3D clutter environment 109

8.8 Quality evaluation in 2D clutter environment 110

8.9 Paths for (a) sequential planner, and (b-d) parallel planner at different
processor counts . 110

8.10 Roadmap and paths for (a) sequential planner, and (b-d) parallel plan-
ner at different processor counts . 111

8.11 Quality evaluation in maze environment 111

8.12 Heterogeneous environments . 113

8.13 Region classification : number of regions per sampler for both 2D and 3D
heterogenous environments . 114

8.14 Quality evaluation in 2D heterogenous environment 116

8.15 Quality evaluation in 3D heterogenous environment 117

xi

1. INTRODUCTION

This dissertation presents a scalable framework for parallelizing sampling-based

motion planning algorithms. Motion planning is defined as the problem of finding a

valid path taking a robot (or any movable object) from a given start configuration

to a goal configuration in an environment. While motion planning has its roots in

robotics, it now finds applications in other areas of scientific computing including

protein folding [1, 2, 3], minimally-invasive surgical planning [4], and drug design

[5, 6, 7, 8], and computer-aided design [9, 10, 11, 12]. These new application areas

are known to test the limit and capability of existing sequential motion planners [13].

Due to the infeasibility of exact motion planning [14, 15], sampling-based methods

[15] are now the state-of-the-art for solving motion planning problems. Sampling-

based approaches are efficient and can be applied to problems with many degrees of

freedom (e.g., robotic manipulators with many links or proteins with many amino

acids). While not guaranteed to find a solution, sampling-based methods are known

to be probabilistically complete, meaning that the probability of finding a solution,

given one exists, increases with the number of samples generated [16]. Sampling-

based motion planning algorithms have been highly successful at solving previously

unsolved problems [4, 15], and much research has focused on developing more so-

phisticated variants of them [4, 15].

Sequential sampling-based motion planning algorithms still require substantial

resources in time and hardware to solve computationally intensive applications. For

example, modeling the motion of a small protein using sequential sampling-based

motion planning techniques can take days on a typical desktop machine [17]. This

time increases to several weeks if more accurate energy calculations are used or if

1

larger proteins are studied. Hence, it is practically infeasible to study larger pro-

teins or to significantly increase the detail and accuracy at which their motions

are modeled. To address this problem, researchers have turned to parallel pro-

cessing as an alternative option to explore. For many application areas, parallel

processing offers the advantage of not only reducing computation time, but also im-

proving the solution quality and enabling larger problems to be solved than were

feasible before. Although there has been some research in parallel motion planning

[18, 19, 20, 21, 17, 22, 23, 24, 25, 26, 13], no scalable solution has been proposed.

This research proposes a new framework for parallelizing sampling-based motion

planning algorithms. Central to our proposed framework [27, 28, 29] is the novel

subdivision of the planning space into regions and an abstraction that represents

the spatial relationship between the regions called a region graph R(V,E). The

vertices, V , of the region graph represent the regions and the edges, E, represent

the adjacencies between regions. The regions represent subproblems that can be

processed independently (and in parallel). The task or subproblem associated with

each region is to build a roadmap (graph or tree) that encodes representative paths

approximating the topology of the planning space of the associated region. The

regional roadmaps are later combined to obtain a roadmap for the entire space. This

merging of regional roadmaps is facilitated using the region graph. In particular, the

region graph is the enabling infrastructure facilitating the process of connecting the

regional roadmaps as its edges identify adjacent regions between which connections

are attempted.

By subdividing the planning space and restricting the locality of connection at-

tempts to adjacent regions, we reduce the work and inter-processor communication

associated with nearest neighbor calculation, a critical bottleneck in the scalability

of existing parallel motion planning methods [30, 31, 23, 24]. While our framework

2

employs the standard sequential planners (e.g., the probabilistic roadmap method

(PRM)[16] or rapidly-exploring random tree (RRT)[32]) as underlying motion plan-

ning algorithms, the resulting roadmap may be structurally different than would

result if one of them were applied to the problem as a whole. Hence, we carried out

an experimental evaluation of our algorithms to study both the structural difference

and its impact on the solution of the motion planning problems.

In addition, we address the problem of load balancing [33] in complex planning

spaces. For most complex planning spaces, as the granularity of the subdivision

increases, the heterogeneity of the regions will increase, leading to an increase in load

imbalance because the cost of planning depends on the complexity of the region. To

address the load imbalance, we apply standard load balancing techniques based on

data-structure redistribution and work stealing and show the effectiveness of the two

techniques at combating load balancing issues that arise at scale.

Unlike other previous and related work, our work covers the two broad classes

of sampling-based motion planners: graph-based (e.g., the probabilistic roadmap

method (PRM)[16]) and tree-based (e.g., rapidly-exploring random tree (RRT)[32])

methods. We explored different planning space subdivision approaches suitable for

the two sampling-based motion planning broad classes: a uniform mesh-like subdi-

vision for graph-based (see Figure 1.1(a)) and radial subdivision (see Figure 1.1(b))

for tree-based. We provide both theoretical and empirical proof of scalable and su-

perior performance compared to previous methods. We present experimental results

obtained from our studies of a wide range of motion planning problems utilizing

different parallel architectures; ranging from small-scale linux clusters to an IBM

Power5+ machine to a Cray XE6 petascale machine.

3

(a)

(b)

Figure 1.1: Planning space subdivision strategies: (a) uniform subdivision and (b) radial
subdivision

4

1.1 Research Contributions

The key contributions of this dissertation can be summarized as follows:

� The first reported work in parallel sampling-based motion planning based on

spatial subdivision of the configuration space (Cspace). Our proposed framework

is compatible with any sampling-based algorithm, including both graph-based

methods, e.g., the Probablistic Roadmap (PRM) and the tree-based methods,

e.g., Rapidly-exploring Random Trees (RRT).

� A novel radial subdivision of Cspace suitable for tree-based planners that allows

the computation to be distributed efficiently.

� A novel motion planning algorithm, Blind RRT capable of exploring the free

space (Cfree) regardless of the obstacle space (Cobstacle) to Cfree ratio. Blind

RRT provides both scalability and probablistic completeness for motion plan-

ning.

� Experimental results demonstrate we achieve better and more scalable per-

formance on thousands of processors than previous parallel sampling-based

planners. Application of load balancing techniques based on data-structure

redistribution and work-stealing to achieve scalability across different motion

planning problems.

Much of this research has been published [34, 27, 28, 29, 35, 33]. A poster [27]

and a paper [28] describing the parallelization of graph-based motion planning algo-

rithms were presented at the 2011 ACM/Microsoft Research Student Research Poster

Competition at Supercomputing Conference (SC) and the 2012 IEEE International

Conference on Robotics and Automation (ICRA), respectively. Radial subdivision

5

for RRT [29] and blind RRT [35] were published at ICRA 2013 and the IEEE/RSJ

International Conference on Robotics and Systems (IROS) 2013, respectively. Our

work on using load balancing techniques for complex motion planning problems [33]

will be presented at IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS) in 2014.

1.2 Outline

The rest of this dissertation is organized as follows. We provide an overview of

sampling-based motion planning and a survey of related work on parallel motion

planning in Chapter 2. In Chapter 3, we discuss the overview of the scalable frame-

work for parallelizing sampling-based motion planning algorithms. In Chapter 4 and

Chapter 5, we focus on the specifics of our framework for parallelizing the graph-

based and the tree-based motion planning algorithms, respectively. In Chapter 6,

we extend our discusion on parallelizing tree-based motion planning algorithms, by

presenting a novel probablistically complete and distributed RRT algorithm called

Radial Blind RRT. Chapter 7 describes load balancing techniques for enabling scal-

able parallelization of sampling-based motion planning algorithms. In Chapter 8, we

evaluate the quality and structure of the roadmaps constructed using our proposed

framework. Finally, we conclude the dissertation in Chapter 9.

6

2. PRELIMINARIES AND RELATED WORK

2.1 Preliminaries

2.1.1 Motion Planning

The motion planning problem is to find a valid path (e.g., one that is collision-

free and satisfies any joint limit and/or loop closure constraints) for a movable object

starting from a specified start configuration to a goal configuration in an environment

[15]. A single configuration is specified in terms of the movable object’s d indepen-

dent parameters or degrees of freedom (dof). The set of all possible configurations

(both feasible and infeasible) defines a configuration space (Cspace) [14, 15]. Cspace

is partitioned into two sets: Cfree (the set of all feasible configurations) and Cobstacle

(the set of all infeasible configurations). Motion planning then becomes the problem

of finding a continuous sequence of points in Cfree that connects the start and the

goal configuration.

A complete solution to the motion planning problem is computationally intensive

and has been proved to be PSPACE-hard with an upper bound that is exponential

in the movable object’s dofs [14, 15]. In other words, for any complete planner to

guarantee that a solution to a motion planning problem exists or not, exponential

time in the number of dofs is required. As an alternative, there are efficient heuristic

and approximate algorithms that trade completeness for efficiency. Sampling-based

motion planning is one such approach.

2.1.2 Sampling-Based Motion Planning

Sampling-based methods [15] are a state-of-the-art approach to solving motion

planning problems in practice. While not guaranteed to find a solution if one ex-

7

ists, sampling-based methods are known to be probabilistically complete, i.e., the

probability of finding a solution given one exists increases with the number of sam-

ples generated. Sampling-based methods are broadly classified into two main classes:

roadmap or graph-based methods such as the Probabilistic Roadmap Method (PRM)

[16] and tree-based methods such as Rapidly-exploring Random Tree (RRT) [32].

2.1.2.1 Graph-Based Methods

The Probablistic Roadmap Method (PRM) is a well known sampling-based mo-

tion planning approach. In solving motion planning problems, PRM constructs a

graph G = (V,E), called a roadmap, to capture the connectivity of Cfree (Figure 2.1

[36]). A node in the graph G represents a valid placement of the movable object, and

an edge is added between two nodes if a simple path can be defined and validated by

the so-called local planner — an important primitives of all sampling-based planners

[37, 38, 39, 40, 41]

In the original method [16] (shown in Algorithm 1), nodes are generated using

uniform random sampling and connections are attempted between a node and its k-

nearest neighbors as computed using some distance metric (e.g., Euclidean, Geodesic

or Root-Mean-Square distance [40]). Once the roadmap is constructed, query pro-

cessing is done by connecting the start and goal configurations to the roadmap and

extracting a path from the roadmap that connects them. Many variants of PRMs

have been proposed that bias node generation or connection or query processing in

various ways [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

2.1.2.2 Tree-Based Methods

The Rapidly-exploring Random Tree (RRT) is another sampling-based motion

planning method used in practice. RRT is particularly well suited for non-holonomic

and kinodynamic motion planning problems [54, 55]. The basic sequential RRT

8

Algorithm 1 Sequential PRM

Input: An environment env, the number of nodes N
Output: A roadmap graph G containing N nodes

1: i← 0
2: while i < N do
3: q ← GetValidRandomNode(env)
4: G.AddNode(q)
5: i← i+ 1
6: end while
7: for all q ∈ G do
8: Q← FindNeighbor(G, q, k)
9: for all qnear ∈ Q do

10: if local planner can connect q and qnear then
11: G.AddEdge(q, qnear)
12: end if
13: end for
14: end for
15: return G

Figure 2.1: An illustration of PRM1

(shown in Algorithm 2 and illustrated pictorially in Figure 2.2 [36]) grows a tree

rooted at the start configuration that expands outward into unexplored areas of

the Cspace. RRT first generates a uniform random sample qrand, and identifies the

closest node qnear in the tree to qrand, and then qnear is “extended” toward qrand for

1Reprinted from Computer Science Review, Volume 6, I. Al-Bluwi, T. Simon, J. Cortes, Motion
planning algorithms for molecular simulations: A survey, Pages 125-143., Copyright (2012), with
permission from Elsevier. [36]

9

a stepsize of at most ∆q. If the extension is successful, qnew is added to the tree

as a node and the pair qnear and qnew is added as an edge. To solve a particular

query, RRT repeats this process until the goal configuration is connected to the tree.

RRT-connect is a variant that grows two trees towards each other; one rooted at

the start configuration and the other at the goal configuration [56]. These two trees

explore Cspace until they are connected. Many variants of RRT have been proposed

and discussed [15, 57, 23, 53].

Algorithm 2 Sequential RRT

Input: An environment env, a root qroot, the number of nodes N
Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)
2: i← 0
3: while i < N do
4: qrand ← GetRandomNode(env)
5: qnear ← FindNeighbor(T, qrand, 1)
6: qnew ← Extend(qnear, qrand)
7: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then
8: T .AddNode(qnew)
9: T .AddEdge(qnear, qnew)

10: i← i+ 1
11: end if
12: end while
13: return T

2.2 Related Work

2.2.1 Parallel Sampling-Based Motion Planning

Research in robotic motion planning spans over three decades, resulting in the

development of different types of sequential and parallel algorithms for motion plan-

ning [15, 58]. The recent renewed interest in parallel motion planning algorithms

10

Figure 2.2: An illustration of RRT2

is due to the progress made in sequential algorithms, the ubiquity of parallel and

distributed machines, and the demand for more efficiency in solving complex, high

dimensional problems. In this section, we discuss related work in parallelizing motion

planning algorithms.

One of the earliest parallel motion planning algorithm is the parallel randomized

search algorithm proposed by Gini in 1999 [18]. Using the algorithm, the Cspace was

discretized, represented with bitmap arrays, and then broadcast to all processors.

The desired goal location was also broadcast to all processors and each processor

explored the entire search space randomly. The first processor to find a path from

the start location to the goal location sends a termination signal to the remaining

processors, and then reports its solution.

The search algorithm is as shown below:

(Each processor does the following in parallel)

1. repeat until goal found or global time-out

2. Gradient Descent until local minimum

3. while no improvement or time-out

2Reprinted from Computer Science Review, Volume 6, I. Al-Bluwi, T. Simon, J. Cortes, Motion
planning algorithms for molecular simulations: A survey, Pages 125-143., Copyright (2012), with
permission from Elsevier. [36]

11

4. repeat K times or until improvement found

5. Random Walk to escape local minimum

6. Gradient Descent until a local minimum

6. if no improvement

7. then Randomly Backtrack

8. if improvement found

9. then append new path to previous path

7. if goal found

8. then broadcast termination message

As described in the algorithm above, two heuristic measures — the Gradient

Descent and Random Walk — were used to find a better node and guide the search

path at each step. The random walks and randomized backtracking also help find

a place in a different region of the search space where the heuristic is more reliable.

At every point in the search path, successors of a node are generated in a random

manner until a successor is found with a better heuristic value that will eventually

lead to the goal configuration.

Isto [19] describes a two level algorithm to solving motion planning problems of

average degrees of freedom. The parallel implementation of the algorithm in [19]

was reported in [20]. The basic idea of the two level algorithm is to deal with the

exponential cost of the complete discretization of the Cspace and the susceptibility

to local minimal of local plannners. Unlike the classic grid-based approach, this

approach does not explicitly compute or build the Cspace. Rather, landmarks or

subgoals are generated in the space and attempts are made to connect them. Thus,

the path from the start to the goal is found via a number of randomly generated

subgoal configurations.

12

In its parallel implementation [19], an implicit grid representation of the Cspace

was made. Local planners were distributed as tasks across slave processors. Each

slave process generates a minimal number of subgoals and landmarks and attempts

to connect them using the local planners. The local planners are adaptive and are

coordinated by the global planner on the master processor using some heuristic mea-

sures. This heuristic measure decision is based on how many subgoals are generated

in each cell. As more subgoals are needed and generated for solving the problem, the

global planner increases the capability of the local planner. The author exprimented

with the 5 DOF benchmark of Hwang and Ahuja [59] to solve the problem with

a 296 × 171 × 42 × 191 × 105 grid representation of Cspace in seconds. A further

resolution of the Cspace into 2960× 1710× 420× 1910× 1050 grid was also solved in

minutes on a Linux PC cluster with 11 processors.

PRM was the underlying sequential algorithm for the work reported in [21, 17].

The parallel algorithm is as shown below. The algorithm proceeds in two stages.

First, node generation which was reported to be 2-3% of the total execution time.

At the node generation stage, each of the p processors samples the Cspace in parallel

to generate N/p configurations. The second stage was that of connecting nodes

generated in the first stage to form roadmap. At the second stage, attempts are made

by each processor to connect each sample to its k nearest neighbors. The original

parallel algorithm [21] was implemented in a shared-memory machine focusing on

robotics applications. The parallel approach was later extended to a protein folding

application [17] and was implemented on distributed memory machines.

PRM NodeGeneration

(Each processor does the following)

1. for 1 ≤ i ≤ n/p

2. generate a random cfg, c

13

3. if c is free

4. save c

5. endif

6. endfor

PRM NodeConnection

(Each processor does the following; each has a unique pid)

1. for each cfg c, indexed p ∗ (pid− 1) to p ∗ (pid)

2. N := k closest neighboring from all cfg’s to c

3. for each n ∈ N

4. if local planner can connect n and c

5. save edge(n,c)

6. endif

7. endfor

8. endfor

In [22], the authors adopt the OR parallel paradigm to parallelize RRT compu-

tations on shared-memory machines. The RRT computation is replicated on each

process and processes concurrently explore the entire Cspace. The first process to find

a solution sends a termination message to other processes. In the same work, the au-

thors present a parallel algorithm in which processes concurrently and cooperatively

build a single tree under a shared-memory model. Each process executes its own

program and communicates to the other processes by exchanging data through the

shared memory in a concurrent read exclusive write (CREW) fashion. The authors

also study a hybrid algorithm combining the OR parallel paradigm and the CREW

model. The processes are divided into groups and each group cooperatively builds

14

its own tree. The first group to find a solution sends a termination message to the

others.

Bialkowski et al. parallelize RRT and RRT∗ by focusing on parallelizing the col-

lision detection phase [23]. The implementation was done in CUDA and GPU. A

more recent work focuses on multicore architectures [24]. The authors present three

algorithms for distributed RRT. The first algorithm is a message passing implemen-

tation of the OR parallel paradigm. In the second algorithm, each process builds

part of tree and globally communicates with the other processes each time a new

node and edge is added. The third algorithm adopts a manager-worker approach.

Instead of having multiple copies of the tree, only the manager initializes and main-

tains the tree while the expansion computation is delegated to the worker processes.

The drawback with the manager-worker approach is that it does not scale well as it

is prone to load imbalance with more workload on master process(es).

Another algorithm of interest is the Parallel Sampling-based Roadmap of Trees

(PSRT) [25, 26, 13]. PSRT combines the multiple query sampling characteristics of

PRMs with the efficient local planning capabilities of single query of RRTs. In the

PSRT roadmap graph, the nodes represent trees and not individual configurations

as in regular PRM. The collections of these trees form the roadmap (Figure 2.3).

Connections between trees are attempted between closest pairs of configurations

between the two trees. Similar to the third algorithm of [24], the authors adopted the

manager-worker architecture. Each worker process computes a predefined number

of trees in the entire Cspace. The manager is responsible for arbitration of tree

ownership, nearest neighbor computations, and determination of which pairs of trees

to attempt for connection. Edge validation is distributed to the worker processes.

15

Figure 2.3: An illustration of SRT

2.2.2 Space Subdivision

The concept of Cspace subdivision has been proposed and used in many exist-

ing sequential motion planning algorithms. One of the earliest complete (or exact)

motion planning algorithms computes an exact representation of C-space by uni-

formly dividing it along the robot’s degrees of freedom into cells [60]. However, this

approach is not practical for high dimensional problems because of its exponential

computation complexity.

Another space subdivision approach is the Approximate Cell Decomposition (ACD)

method [61]. ACD subdivides the C-space into rectangular cells. Each generated cell

is labelled as empty if it lies completely in free space, full if it lies completely in

obstacle space, or mixed otherwise. PRM is combined with ACD to compute local-

ized roadmaps by generating samples within these cells. The connectivity graph for

adjacent cells in ACD is augmented with pseudo-free edges that are computed based

on localized roadmaps.

Feature sensitive motion planning [62, 63] proposes a supervised method of re-

cursively breaking up an environment into regions and classifying these regions as

free, clutter, narrow, or blocked by comparing region features to a database of known

region types. Roadmaps are constructed in each region and recombined to form a

16

final roadmap. Partitioning was first done by randomly choosing one of the robot’s

degrees of freedom and dividing along a random value for that parameter [62]. This

partitioning process was repeated recursively until homogeneous but overlapping sets

of regions are obtained where homogeneity is defined according to a set of features

measured for each region. The partitioning approach in [63] is based on knowledge of

the environment gained by building a small roadmap and using configurations from

the roadmap to determine the best degrees of freedom to subdivide and the best

splitting point within those degrees of freedom.

RESAMPL [64] subdivides the C-space into local regions based on an initial

sampling of the entire space. As a partitioning strategy, RESAMPL first generates

a small set of samples, both valid and invalid, in the entire space. Some of these

samples, selected from the set randomly, become representative samples for the local

regions. Region sizes are determined by the distance of the representative sample to

its k-nearest neighbors in the initial set.

2.2.3 Load Balancing Techniques

Load balancing is the practice of distributing computation or workload among

parallel processing elements in an approximately equal manner. It is a well-studied

problem in parallel and distributed computing. Load balancing is critical to the

overall performance of a parallel algorithm. The overall performance is affected

because the slowest process(or) (possibly with more work than other process(or))

determines the overall performance and scalability of the parallel algorithm. There

are a number of load balancing techniques in the literatures, but work-stealing (active

attempts to ”steal” work from possibly overloaded process(or)) has become the de

facto dynamic scheduling technique for various parallel programming environments

and runtimes, including Cilk [65], TBB [66], UPC [67] and many others. Blumofe and

17

Leiserson [68] show that work-stealing is provably optimal within a constant factor for

scheduling multithreaded computations with dependences. These approaches prove

successful in shared-memory architectures, but have their limitations when applied

to distributed-memory. For shared-memory implementations, the issue of locality is

generally not stressed, due to the relatively uniform level of memory access compared

with distributed memory. Recently, locality-aware work stealing implementations

began placing more emphasis on the notion of affinity [69] and have shown to perform

well in practice.

The issue of locality in work stealing scheduling becomes more important in

distributed-memory, as assigning a task to a non-affine core could result in a severe

degradation in performance due to remote memory accesses. In some PGAS pro-

gramming environments such as UPC [70], it is suggested that coarse-grained tasks

be preferred over fine-grained tasks, as a large number of small remote accesses will

have a higher impact on performance.

The X10 programming language [71] and runtime system offers work-stealing in

distributed-memory architectures. Of particular interest, X10’s lifeline work-stealing

approach has shown success in balancing load for various applications, including the

popular UTS [72] benchmark. Chapel [73] is a programming language for parallel

computations that runs in distributed-memory. It provides work-stealing scheduling,

but is currently limited to only computations which run on shared-memory.

Charm++ [74] is a parallel programming language and runtime environment that

supports a large suite of load balancing mechanisms. In the Charm programming

environment, computations are expressed as objects that represent both the work

and associated data. In such a model, the work and data are inherently coupled,

making it difficult to reason about a data structure or describe a computation in

parametric and data- independent fashion.

18

In addition to work stealing, other popular approaches for load imbalance in-

clude using partitioning tools for meshes, arbitrary graphs and other data structures.

Zoltan [75], ParMetis [76] and Jostle [77] are just a few such redistribution frame-

works that provide various repartitioning algorithms and data management tools.

These approaches are suited for algorithms that follow a pattern of partitioning fol-

lowed by computation separated by global barriers, but do not allow for asynchronous

migration of elements during a computation.

19

3. STRATEGY FOR PARALLELIZING SAMPLING-BASED MOTION

PLANNING ALGORITHMS∗

In this chapter, we discuss our approach for parallelizing sampling-based motion

planning algorithms, starting with general overview that is common to both graph-

based and tree-based motion planning algorithms. We then present an overview of

the Standard Template Adaptive Parallel Library (stapl), the parallel C++ library

from which all parallel algorithms presented in this dissertation are built.

3.1 Strategy Overview

We present a four step strategy for parallelizing sampling-based motion algo-

rithms. These steps are the high-level description of our approach and are shown in

Algorithm 3.

Algorithm 3 Parallel Sampling-based Motion Planning

Input: An environment E, A set of motion planners S, number of regions NR

Output: A roadmap graph G or tree T
1: Decompose E into N regions
2: Make a region graph R = (VR, ER) with VR and ER representing each region and

adjacency information between regions, respectively
3: Independently and in parallel, construct roadmaps or trees in each region using

any desired planner s ε S
4: Connect regional roadmaps or trees in adjacent regions to form a roadmap G or

tree T for the entire problem

In step 1, we subdivide a given environment describing the obstacles and movable

∗Part of the data reported in this chapter is reprinted with permission from “A Scalable Method
for Parallelizing Sampling-Based Motion Planning Algorithms” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA) by S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Amato,
2012. Copyright©2012, IEEE. [28]

20

object into regions. These regions represent sub-problems that can be processed in

parallel. The subdivision procedure is generic so as to support different planning

space decomposition strategies depending on the nature of the problem. For example,

a uniform workspace subdivision may be sufficient for a motion planning problem of

average degrees of freedom or a uniformly cluttered environment (see Figure 3.1(a)).

In another case, the subdivision could be radial that is tailored to a particular motion

planner (e.g., RRT) (see Figure 3.1(b)). In some other cases, adaptive subdivision

that is tailored to the heterogeinity of the environment is needed so as to adapt

suitable motion planners different part of the environment (see Figure 3.1(c)). A

combination of both uniform and adaptive subdivision can also be applied if need

be.

In step 2, we make a region graph of the regions resulting from the planning

space subdivision in step 1. The region graph is an abstraction that represents the

spatial relationship between regions. In particular, the vertices of the region graph

represent the regions and the edges represent the adjacencies between regions. As a

relational concept, no assumption is made about the nature of the region graph; it

could be a mesh graph, a graph of fixed degree where the number of neighbors is the

same or fixed a prior, or a graph of graphs representing the hierarchical nature of the

regions. As an example, a hierarchical region graph would have the outer graph as

super-vertices representing outer regions and an inner graph representing the inner

regions. The region graph facilitates the inter-regional roadmap or tree connection

at a later stage. The flexibility of constructing such a graph lends itself to graph

algorithms that can be easily parallelized and redistributed to resolve load imbalance,

a common occurrence in complex non-homogeneous motion planning problems.

In Step 3, having subdivided the planning space into regions, we independently

and in parallel, construct a roadmap or tree in each region.The roadmap or tree

21

construction does not depend on the underlying sampling-based motion planning

algorithm or strategy and can handle a variety of planning schemes. In other words,

an appropriate sequential planner (e.g., PRM or RRT or their variants) can be used

in constructing regional roadmap (subgraph) or regional trees (subtrees). This phase

of the computation is embarrassingly parallel. The task or subproblem associated

with each region is to build a roadmap (graph or tree) that encodes representative

paths approximating the topology of the planning space of the associated region, this

is done in parallel without inter-regional (or interprocess) communication.

In Step 4, we connect nearby regional roadmaps or trees to form a roadmap

representing the entire planning space. The region graph is the enabling infrastruc-

ture facilitating the process of connecting the region roadmaps. The region graph

infrastructure aids identification of adjacent regions between which connections are

attempted. In this way, communication is limited only to adjacent regions. As is

shown in subsequent chapters, the implementation of the region connections is flexi-

ble and influenced by specific subdivision strategies or underlying sequential planners

(e.g., possibility of a cycle is avoided when a single-rooted tree is desired).

3.2 STAPL Framework

All the parallel algorithms discussed in this dissertation have been implemented

using stapl (Standard Template Adaptive Parallel Library), a research project in

the Parasol Lab at Texas A&M University. stapl [78, 79, 80, 81] is a generic, scal-

able framework for parallel C++ code development. stapl is designed as a superset

of ISO Standard C++ Standard Template Library (stl) [82]. stapl is platform

independent and supports both shared and distributed memory. stapl provides a

collection of building blocks (as shown in Figure 3.2) for writing parallel programs.

These building blocks are commonly referred to as components and include a collec-

22

(a)

(b)

free

clutter

narrow
passage blocked

(c)

Figure 3.1: Types of subdivision: (a) uniform (b) radial (c) adaptive

23

tion of parallel algorithms (pAlgorithms), parallel and distributed data structures

(pContainers) and views to abstract data access in pContainers.

stapl pContainers are similar to the stl containers but much more enriched

and support both static and dynamic parallel and distributed data structures. The

pContainers include pVectors, pArray, pList, pMatrices and pGraphs, which are

parallel versions of vector, array, linked list, matrices and graphs respectively. The

stapl pAlgorithms provide parallel versions of the stl algorithms and are written

in terms of views similar to how stl algorithms are written in terms of iterators.

The stapl PARAGRAPH abstracts the concept of a task graph needed for par-

allel execution. Each task in the task graph consists of a workfunction and a view

representing the data on which the workfunction will be applied. stapl also pro-

vides a communication infrastructure called an adaptive runtime system (ARMI).

ARMI is built on MPI and hides machine specific details and provides a uniform

communication interface.

Except otherwise noted, all algorithms presented in this work were written in

C + + and implemented within the stapl framework as stapl pAlgorithms. These

pAlgorithms are implemented using the pContainer as data structure. In partic-

ular, we made use of the stapl graph library [83] to represent the parallel data

structures (e.g., the region graph, the roadmap graph, the rapidly-exploring ran-

dom tree (RRT)) and a number of stapl graph algorithms such as bread-first-search

(BFS), pagerank, connected components, diameter, and single-source shortest path

(SSSP).

24

U s e r A p p lica tio n C o d e

p A lg o rith m s p V ie w s

P A R A G R A P H

R u n -tim e S ys te m

P th re a d s, O p e n M P , M P I, N a tiv e , …

A
da

pt
iv

e
F

ra
m

ew
or

k

S ch e d u le r P e rfo rm a n ce M o n ito rA R M I C o m m u n ica tio n L ib ra ry

p C o n ta in e rs
D e p e n d e n ce

P a tte rn s

P A R A G R A P H E xe cu to r

Figure 3.2: STAPL software architecture.

25

4. GRAPH-BASED PARALLEL MOTION PLANNING∗

In this chapter, we discuss our approach for parallelizing graph-based motion

planning algorithms. The overall algorithm is shown in Algorithm 4. We discuss the

core subroutines of the algorithm in the following sections.

Algorithm 4 Graph-Based Algorithm

Input: An environment env, the number of nodes N , the number of processes p,
the number of regions Nr

Output: A roadmap graph G containing N
1: Let region graph R(V,E) = ∅.
2: Let Rd = Subdivide E into Nr regions.
3: Add a vertex for each region r of Rd to R.
4: for all neighboring regions (r1, r2) ε Rd) par do
5: Add the edge (r1, r2) to R.
6: end for
7: for all regions vi ∈ V par do
8: G← Construct regional roadmap using sequential planner
9: end for

10: for all neighboring regions (vi, vj) ∈ E par do
11: G← Connect roadmap of regions vi and vj

12: end for
13: return G

4.1 Space Subdivision and Region Graph Construction

In line 2 of Algorithm 4, the environment representing the movable object and the

obstacles is subdivided into regions. The subdivision is based on the geometry of the

planning space. The planning space may be subdivided into regions using the Cspace

∗Part of the data reported in this chapter is reprinted with permission from “A Scalable Method
for Parallelizing Sampling-Based Motion Planning Algorithms” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA) by S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Amato,
2012. Copyright©2012, IEEE. [28]

26

positional degrees of freedom, i.e., the x, y and z dimensions. A simple illustration of

a 2D environment subdivided into nine regions is shown in Figure 4.1(a). We main-

tain some user-defined overlap between regions to allow sampling in the portions of

the space that are at the boundaries that may facilitate connection between regional

roadmaps at a later stage.

The subdivision is represented by a region graph, whose vertices represent regions

and whose edges encode the adjacency information between regions. Figure 4.1(b)

shows the region graph corresponding to the subdivision shown in Figure 4.1(a). The

algorithm for the region graph construction is shown in Algorithm 5. In addition

to geometric and adjacency information, the region graph also maintains additional

information that keeps track of the connected components in each region. This

additional information is used when connecting adjacent regions.

Algorithm 5 Region Graph Construction

Input: An environment E and the number of regions NR.
Output: A region graph R.
Let R = ∅.
Let Rd = SubDivideSpace(E,NR).
Add a vertex for each region r of Rd to R.
for all neighboring regions (r1, r2) ε Rd) par do

Add the edge (r1, r2) to R.
end for
return R.

4.2 Constructing Regional Roadmaps

Sequel to space subdivision and region graph construction, each processor is as-

signed at least one region and the task of building a regional roadmap in its assigned

region(s) using sequential planner. At this step, any of the existing sampling-based

27

D E

C

F

IHG

BA

obs
tacl

e

obs
tacl

e

A C

IG

A B

ED

H

F

Figure 4.1: Space subdivision: (a) A 2D environment subdivided into 9 regions, (b) region
graph - the 9 vertices represent each of the 9 regions with corresponding color, edges encode
the adjacency information between regions.

28

motion planning algorithms, such as PRM (and its variants) or RRT (and its vari-

ants) can be used. This step is independent of the sampling strategy employed.

In constructing the regional roadmap, each processor independently generates and

connects samples in its assigned region with no communication with other regions.

The nodes and edges made at this step are added to the roadmap graph. These

nodes and edges represent the valid configurations of the movable object and the

connections between the configurations, respectively.To facilitate and streamline the

connection at the next step, we keep track of the size and a vertex representative for

each connected component (CCIDs) in the regional roadmap. These CCIDs are

stored in the region graph for each region.

4.3 Connecting Regional Roadmaps

The final step in constructing the full roadmap is to connect the regional roadmaps.

Prior to this step, we track the sizes and number of connected components in each

region. The regional graph stores this information which is input to the region con-

nection algorithm shown in Algorithm 6. Other inputs to the algorithm include: k,

the number of connections to be attempted between adjacent regions, the type of

connection method, and a local planner used to verify connections.

For every edge identifying neighboring regions in the region graph, we attempt a

connection between candidate node(s) of connected components in the source region

to candidate node(s) of connected components in the target region. Even though our

implementation is independent of which region connection method is used, for the

results presented in this dissertation, we attempt to connect regions based on the size

of connected components in each region and the distance between connected com-

ponents across regions [84]. For the size-based connection, we attempt connections

between a user-defined k largest connected components from the source region and k

29

Algorithm 6 Region Roadmap Connection

Input: A region graph R, connection method, k number of candidates, local plan-
ner lp
Output: A roadmap graph G.
for all edges E ε R par do

if (connection method == closest) then
sourceCC = select k center of mass based closest CC to target region from
E.source
targetCC = select k center of mass based closest CC to source region from
E.target

end if
if (connection method == largest) then

sourceCC = select k largest CCs from E.source
targetCC = select k largest CCs from E.target

end if
for all pairs(sourceCC, targetCC) do

if lp.IsConnectable(sourceCC, targetCC) then
Add the edge(sourceCC, targetCC) to G.

end if
end for

end for
return G.

largest connected components from the target region. For the distance-based connec-

tion, we attempt to connect the k-closest connected components between the regions

based on the distance between them. This distance is computed between the centers

of mass (a measure of average of all configurations in the connected component) of

the two connected components.

4.4 Algorithm Analysis

The original PRM algorithm as reported in [16] requires O(N2) time and O(N)

space to construct a roadmap with N configurations. This serves as the basis for our

analysis and is used for the complexity of constructing a regional roadmap.

The overall time complexity of our approach as described in Algorithm 3 can be

30

given as:

T = Td(Env, nr) +
nr∑
i=1

Tr(i) + Tc(i, j)|ER| (4.1)

where T is the sum of the cost of space decomposition Td for a given environment

Env subdivided into nr regions, the cost Tr(i) of roadmap construction in region

ri, for all vi ε VR, and the cost Tc(i, j) of connecting regional roadmaps in regions

ri and rj, for all (ri, rj) ε ER. If we make a simplifying assumption that the cost

of constructing regional roadmap is the same for all regions vi ε VR, then equation

above can be rewritten as :

T = Td(Env, nr) + Tr(i)|VR|+ Tc(i, j)|ER| (4.2)

Step 1 involves space decomposition. We assume p processors/tasks and that the

regions are divided equally among the p processors. In this case, space decomposition

and region graph construction can be done in O(|VR| + |ER|)/p where VR and ER

are the vertices and edges of the region graph, respectively.

Step 2 of Algorithm 3 involves the construction of the regional roadmaps. Since

we are assuming there are p regional roadmaps, each of the same size, this implies

they will have N/p nodes each, and hence the cost of (sequentially) constructing the

PRM roadmap for each region will be O((N/p)2). If regional roadmaps are RRTs

instead, one would use the cost of constructing an RRT of size N/p here instead, and

similarly for any other desired approach for constructing a regional roadmap.

Inter-processor communication occurs when connecting regional roadmaps. The

region graph infrastructure helps to limit both computation and communication to

adjacent regions. If we assume a naive connection attempt between every configura-

tion in a region to every configuration in neighboring region, this worst case scenario

31

will result in O((N/p)2) edge computations plus the cost of communication between

neighboring processors.

Thus, in summary, the time, work and space complexity of this approach can be

given as O((N/p)2) time, O((N2)/p) work, and O(N) space respectively.

4.5 Experimental Evaluation

In this section, we analyze the performance of our strategy for parallelizing graph-

based motion planning algorithms comparing the results with two similar previous

methods. We evaluate the performance of our framework on two different parallel

machines for two different motion planning problems. We demonstrate that our

approach achieves more scalable performance than the previous parallel algorithms.

4.5.1 Algorithms

We implemented four different algorithms. The first two were based on our pro-

posed approach but with two different strategies as the underlying sequential planner.

These two implementations are referred to as pSBMP-RRT, a parallel sampling-

based motion planning method with RRT as the underlying sequential planner, and

pSBMP-PRM, a parallel sampling-based motion planning method with PRM as the

underlying sequential planner. For evaluation and comparison, we implemented two

additional parallel algorithms: the parallel PRM (pPRM) [21] and parallel sampling-

based roadmap of trees (pSRT)[25, 26]. Please note that pPRM and pSRT were im-

plemented based on our understanding of how they were described in the literature

and it is possible that different implementations may perform better.

4.5.2 Machine Architectures

Our experiment was carried out on two massively parallel computers. The first is

a Cray XE6 petascale machine at Lawrence Berkely National Laboratory. It has 6384

32

nodes and a total of 153,216 cores with 217 TB of memory and peak performance of

1.288 peta-flops. The second machine is a major computing cluster at Texas A&M

University. It has a total of 300 nodes, 172 of which are made of two quad core

Intel Xeon and AMD Opteron processors running at 2.5GHz with 16 to 32GB per

node. The 300 nodes have 2400 cores in all with over 8TB of memory and a peak

performance of 24 Tflops.

4.5.3 Motion Planning Problems

We used two different kinds of environments. The first is a homogeneous cluttered

environment with dimensions of 512 x 512 x 512 units. The cluttered elements span

the x-axis. The cluttered environment has a total of 216 obstacles, each of size 2 x 64

x 64 units, as shown in Figure 4.2(a). The second environment shown in Figure 4.2(b)

is a non-homogeneous cluttered environment. This particular environment models

the floor plan of the H.R. Bright building (HRBB), the building that houses the

Departments of Computer Science and Engineering and Aerospace Engineering at

Texas A&M University.

In both environments, we use two different kinds of robots: a 4 x 4 x 4 unit

cube-like rigid body robot and a three-link articulated linkage robot, with each link

having dimensions of 7 x 1 x 1 units.

4.5.4 Experimental Results

4.5.4.1 Comparison with Previous Approaches

We tested the four algorithms (pSBMP-PRM, pSBMP-RRT, pPRM and pSRT)

on the Linux cluster varying the processor count from 1 to 16. The input sample size

was fixed at 9600 for each of the four algorithms. Each experiment was run five times

and the average maximum time for the 5 runs was computed. Figures 4.3(a) and (b)

show the running time and speedup for the four algorithms. From Figure 4.3, one

33

(a) Clutter

(b) Building

Figure 4.2: Environments studied for graph-based method

34

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 8 16

T
im

e(
s)

of Cores

pSBMP-PRM
pSBMP-RRT

pSRT
pPRM

(a) Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

S
pe

ed
up

of Cores

Ideal
pSBMP-PRM
pSBMP-RRT

pSRT
pPRM

(b) Speed up

Figure 4.3: Comparison of our proposed method (pSBMP-PRM and pSBMP-RRT) to
two existing approaches: pPRM and pSRT

35

will observe that our proposed method (pSBMP-PRM and pSBMP-RRT) achieves

good scalability compared to the existing methods. For this particular experiment,

we stopped at a processor count of 16 because the two existing algorithms (the

pPRM in particular) could no longer scale beyond 16 processor counts. The existing

algorithms are limited in scalability primarily because of the inherent interprocessor

communication overhead they incurred.

4.5.4.2 Effects of Different Environments and Machine Architectures

We conducted further experiments in order to observe how our method would

perform in different environments and machine architectures. Even though these

problems exhibit different levels of difficulty and homogeneity leading to differences

in running time, we observe that their relative performances are still similar.

Figure 4.4 shows both the timing and scalability results for three different motion

planning problems. The first problem is the cluttered environment with an articu-

lated linkage robot (ClutterLinks), the second is the building environment with an

articulated linkage robot (HRBBLinks), and the third is the building environment

with a rigid body robot (HRBBRigid). We observe that the more difficult the prob-

lem, the better the scaling. The basic reason for this is that processors (cores) are

fully engaged with computation which in some cases (if the algorithm and exper-

iments are properly designed) lowered the overhead cost of idle or inter-processor

communication.

We also observe that scalability improves with an increase in sample size. For

the same reason as with problem difficulty, increasing sample size ensures that the

processors are fully engaged with computation. Figure 4.5 shows results for varying

sample size for the articulated linkage robot in a cluttered environment problem.

This set of experiments was carried out on the Linux cluster with processor counts

36

from 32 to 256.

To study scalability and test the limit of our method, we explore further exper-

iments on a Cray XE6 petascale machine. In this experiment, we tested processor

counts of 240, 480, 720, 960 and 1200. The results are shown in Figure 4.6. We ob-

serve that scalability is still possible on a massively parallel machine such as the Cray

XE6. The results also suggest that, to the extent possible, our proposed method is

independent of machine architecture. Thus, though there may be variance in results,

we still expect to see similar performance and scalability across different platforms.

37

32 64 128 256
0

100

200

300

400

500

600

of Cores

R
un

ni
ng

 T
im

e(
s)

ClutterLinks−pSBMP−PRM
ClutterLinks−pSBMP−RRT
HRBBLinks−pSBMP−PRM
HRBBLinks−pSBMP−RRT
HRBBRigid−pSBMP−PRM
HRBBRigid−pSBMP−RRT

(a) Time

32 64 128 256
0

1

2

3

4

5

6

7

8

9

of Cores

S
ca

lin
g(

st
ar

ts
 a

t P
=

32
)

ClutterLinks−pSBMP−PRM
ClutterLinks−pSBMP−RRT
HRBBLinks−pSBMP−PRM
HRBBLinks−pSBMP−RRT
HRBBRigid−pSBMP−PRM
HRBBRigid−pSBMP−RRT

(b) Scaling (Processor counts at P= 32, 64, 128, 256)

Figure 4.4: Results from three different motion planning problems on Linux cluster using
pSMBP-PRM and pSMBP-RRT methods

38

 0

 100

 200

 300

 400

 500

 32 64 128 256

T
im

e(
s)

of Cores

N=25600
N=153600
N=256000

(a) Time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 32 64 128 256

S
ca

lin
g

(s
ta

rt
s

at
 P

=
32

)

of Cores

Ideal
N=25600

N=153600
N=256000

(b) Scaling (Processor counts at P= 32, 64, 128, 256)

Figure 4.5: Results from varying input size for the articulated linkage robot in a cluttered
environment using pSMBP-PRM method

39

 20

 40

 60

 80

 100

 120

 140

 240 480 720 960 1200

T
im

e(
s)

of Cores

pSBMP-PRM
pSBMP-RRT

(a) Time

 0

 1

 2

 3

 4

 5

 240 480 720 960 1200

S
ca

lin
g(

st
ar

ts
 a

t P
=

24
0)

of Cores

Ideal
pSBMP-PRM
pSBMP-RRT

(b) Scaling (Processor counts at P= 240,480,720,960,1200)

Figure 4.6: Higher processor counts on Cray XE6 petascale machine

40

5. TREE-BASED PARALLEL MOTION PLANNING∗

Inspired by the growth nature of RRT, in this chapter, we discuss a novel parallel

and distributed RRT algorithm (Radial RRT). Radial RRTradially subdivides the

Cspace into regions, constructs a portion of the tree in each region in parallel, and

connects the subtrees, removing cycles if they exist. Unlike the spatial subdivision

discussed in Chapter 4, the radial subdivision method discuss in this chapter is well

suited for tree-based motion planning algorithm that (radially) grows a tree starting

from a single root whereas the previous method builds a tree of multiple roots.

We present a novel radial subdivision for parallelization that is especially suited

for RRTs. Starting from the root qroot, we subdivide Cspace into conical regions and

build part of the tree (subtrees) in each region. These subtrees are later connected

in a manner such that no cycle exists after region connection. We exploit locality by

only attempting to connect branches that reside in neighboring regions. Figure 5.1

shows an example for a two dimensional Cspace. Each process builds a branch (shown

in different colors) starting at the root that is biased toward their region of Cspace.

5.1 Space Subdivision and Region Graph Construction

Algorithm 7 describes the Cspace subdivision-based RRT computation in detail.

Region construction first creates a hypersphere Sd in d-dimensional Cspace centered

at qroot ∈ Rd with radius r. We generate Nr random points at distance r from qroot.

Each point qi defines a conical region centered around the ray −−−→qrootqi. We construct

a region graph G(V,E) where each vertex vi represents a region defined by qi and an

∗Part of the data reported in this chapter is reprinted with the kind permission of IEEE from
“A Scalable Distributed RRT for Motion Planning ” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA) by S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, 2013. Copyright
©2013, IEEE. [29]

41

Figure 5.1: Example of radial subdivision for a 2D Cspace. Each process concurrently
builds a branch (using sequential RRT) rooted at qr and biased toward a target qi
(e.g., qn for the black process).

edge (vi, vj) is added if qj is one of the k − closest neighbors of qi. Thus, the edges

in the region graph encode the neighborhood information between regions.

5.2 Constructing Regional Subtrees

After region graph construction, we independently (in parallel) run sequential

RRT in each region. The RRT construction is done in a way that the tree is biased

toward the region target qi. Each region is centered around the random ray −−−−→qroot, qi.

Some overlap between regions is allowed so subtrees can explore part of the space in

adjacent regions, enabling easier connection between subtrees in the next phase.

5.3 Connecting Regional Subtrees

Using the adjacency information provided by the region graph, we make connec-

tion attempts between each region branch and its adjacent neighbors. We check if

any edge connection at this point creates a cycle. If a cycle exists, we prune the tree

so as to remove any cycles. In the results presented here, tree pruning is performed

by running a graph search algorithm. Figure 5.2 shows a simple pictorial illustration

42

Algorithm 7 Radial Subdivision Distributed RRT

Input: An environment env, a root qroot, the number of nodes N , a stpdfize ∆q, the
number of processes p, the number of regions Nr, a region radius r, the number
of adjacent regions k

Output: A tree T containing N nodes rooted at qroot

1: QNr ← generate Nr random points of r distance from qroot

2: Initialize region graph G(V,E) with V ← QNr and E ← ∅
3: for all qi ∈ QNr par do
4: neighbors← FindNeighbors(G, qi, k)
5: for all n ∈ neighbors do
6: G.AddEdge(qi, n)
7: end for
8: end for
9: for all vi ∈ V par do

10: T ← ConstructBiasedRRT(env, qroot, N/p,∆q, qi)
11: end for
12: for all (vi, vj) ∈ E par do
13: ConnectTree(T, vi, vj)
14: if Cycle(T) then
15: Prune(T)
16: end if
17: end for
18: return T

for tree pruning.

5.4 Algorithm Analysis

The complexity analysis of the parallel algorithms for radial subdivision RRT

can be broken down into the following phases: the region construction phase, the

regional radial RRT construction phase, the region connection phase, and removal

of cycles phase. The overall time complexity of the algorithm can be described in

terms of these phases as:

T = Td(Env, nr, d) + Tr(i)|VR|+ Tc(i, j)|ER|+ Tcycle (5.1)

43

Figure 5.2: Tree pruning example, the new edge (purple) between the red and blue
branches causes a cycle in the red branch, the dashed edge is identified for removal.

where the total time T is the sum of the cost Td of region graph G(VR, ER) construc-

tion for a given environment Env subdivided into nr regions with each region having

d neighbors, the cost Tr of constructing sequential Radial RRTs in region ri, for all

vi ε VR, the cost Tc of connecting neighboring subtrees between adjacent regions ri

and rj, for all (ri, rj) ε ER, and the cost Tcycle of removing cycle that may exist

after region connection. In our analysis, p refers to the number of parallel processing

elements (processors), we assume there as many regions as number of processors. In

other words, nr is some constant factors of p and nr ≤ p. Please note that our anal-

ysis assumes a uniform cost of constructing subtrees in each region; this assumption

may fail in a situation where the regions are non-uniform.

In the first phase, we construct the region graph of nr vertices and dnr edges. The

dominant factor in constructing the region graph is the d-nearest neighbor search,

with O(n2
r log d) complexity assuming a brute force search. Each processor p will

44

generate nr

p
regions. So in parallel constructing the dnr edges will take O(n2

rlogd
p

)

time.

The second phase of the radial subdivision RRT parallel algorithm involves radial

RRT construction in each region.Time complexity of the operation at this phase

can be computed from our understanding of O(N2) complexity of sequential RRT

algorithm [32]. From phase one we know there are nr regions. If we assume a

uniform distribution of work and that nr is a constant factor of p, a subtree of size

c ∗ N/p is expected from each region, this size is equivalent of N/p where N is

the expected overall tree size and c is the constant factor relating nr to p. With

this assumption, the expected cost of constructing subtree in each region given p

processing elements is O((N/p)2). Similar to region construction in the first phase,

the expected dominant factor in constructing the regional subtree as the size of the

tree grows asymptotically is the nearest neighbor search. Also note that we assume

a brute force nearest neighbor search, recognizing the fact that the complexity can

be reduced with approximate nearest neighbor data structure such as kd-tree.

Similar to the graph-based method presented in the previous chapter, inter-

processor communication occurs when connecting regional subtrees. However, this

communication is managed using the region graph. The region graph limits the com-

munication to adjacent regions. The worst case scenario in region connection is a

naive connection attempts between every node in the source regional subtree to every

node in the target region subtree. If we assume this naive approach, the expected

computational cost will be O((N/p)2) plus the cost of communication among the

processing elements.

The last phase of the radial subdivision RRT parallel algorithm is in removing

cycle that may exist as a result of region connection. To remove the cycle, we compute

a bread-first-search (BFS) of the resulting roadmap/tree and then remove edges that

45

are not in the BFS tree resulting in a computational complexity of O((N +m)/p) +

O(m/p) where N is as previously defined (e.g., the expected overall tree size) and m

are the number of edges in the roadmap/tree prior to cycle removal.

We assume that N >> nr, so, the final time, work, and space complexity of

Radial RRT can be given as O((N/p)2) + O((N + m)/p) + O(m/p), O((N2)/p) +

O(N +m) +O(m), and O(N) respectively.

5.5 Experimental Evaluation

In this section, we evaluate the performance of radial subdivision distributed RRT

(radial RRT) comparing the experimental results to an existing distributed RRT

algorithm. We demonstrate that radial RRT achieves more scalable performance

than the existing parallel algorithm. We present results from two different parallel

machines for two different motion planning problems.

5.5.1 Bulk Synchronous Distributed RRT

For the primary purpose of evaluation and comparison with our proposed method,

we implement and extend the distributed RRT algorithm presented in [24] in two

ways. First, in order to optimize the use of space and memory, each process does not

maintain a copy of the tree. Instead, they all have shared access to the tree which

is stored in a global, distributed data structure. Requests to access an element on

another process are sent and received through the global identifier (GID) assigned

to the element. Second, we regulate inter-processor communication by introducing

a variable m that controls how much expansion will be done before a global update

and broadcast. Setting m = 1 gives the same computational pattern as in [24].

Algorithm 8 describes bulk synchronous distributed RRT. We first initialize the

tree T with the root node qroot. Subsequently, each process locally (in parallel)

samples m nodes and finds its nearest node qnear in the tree. If the expansion

46

qnear toward qrand is successful, then the pair (qnew, qnear) is added to a temporary

container Nm. After m steps, the global tree is updated. This process continues

until the termination condition is met. Figure 5.3 shows a simple illustration of bulk

synchronous distributed RRT computation in which p=2, m=2 and N=8.

Algorithm 8 Bulk Synchronous Distributed RRT

Input: An environment env, a root qroot, the number of nodes N , a stpdfize ∆q, the
number of processes p, the number of local expansion stpdf m

Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)
2: for all proc p ∈ P par do
3: i← 0
4: while i < N/p do
5: localContainer Nm

6: for j = 1 . . .m do
7: qrand ← GetRandomNode(env)
8: qnear ← FindNeighbor(T, qrand, 1)
9: qnew ← Extend(qnear, qrand,∆q)

10: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then
11: Nm.Insert(qnear, qnew)
12: end if
13: end for
14: for all node pair n ∈ Nm do
15: T .AddNode(n.qnew)
16: T .AddEdge(n.qnear, n.qnew)
17: i← i+ 1
18: end for
19: end while
20: end for
21: return T

5.5.2 Parallelizing Nearest Neighbor Search

There is a clear need for fine-grained parallelism in sampling-based motion plan-

ning [23, 24]. The nearest neighbor search is considered a key bottleneck to scalable

47

(a) (b) (c)

T
T

Process 0

Process 1

T= root

Figure 5.3: Bulk synchronous distributed RRT. (a) T is initialized to root, (b) The
first iteration with m=2, (c) The second iteration where globally communicated data
is shown in black.

performance. In this work, we implement and incorporate a nested and fine-grained

parallel computation of nearest neighbor search within the radial subdivision dis-

tributed RRT and bulk synchronous distributed RRT algorithms described earlier.

Our implementation has a map reduce parallel computation pattern [85].

Algorithm 9 describes the approach in the context of a distributed RRT. To com-

pute the nearest point qnear to a query point qrand, each processing element sends

qrand to the other processing elements by calling MapReduce(). The mapping func-

tion (Algorithm 10) receives the query point qrand and locally computes its nearest

neighbor in its local portion of the tree (Tp) based on a given distance metric. The

reduce function (Algorithm 11) takes the two inputs returned by the mapping func-

tion and computes the nearest neighbor to qrand from the two inputs based on the

same distance metric.

5.5.3 Machine Architecture

The same parallel machines as presented in Chapter 4 (the Linux cluster and the

Cray XE6 machines) were used for the experiments in this chapter. Each node of the

48

Algorithm 9 Parallel NNS Distributed RRT

Input: An environment env, a root qroot, the number of nodes N , a stpdfize ∆q,the
number of processes p

Output: A tree T containing N nodes rooted at qroot

1: T .AddNode(qroot)
2: for all proc p ∈ P par do
3: i← 0
4: while i < N/p do
5: subtree Tp ∈ T
6: qrand ← GetRandomNode(env)
7: qnear ← MapReduce(Map(Tp, qrand),

Reduce(qnear, qnear))
8: qnew ← Extend(qnear, qrand,∆q)
9: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then

10: T.AddNodeToTree(qnew)
11: T.AddEdgeToTree(qnear, qnew)
12: end if
13: i← i+ 1
14: end while
15: end for
16: return T

Algorithm 10 Map

Input: A set of points S, a query q
Output: A map of closest point to q and its distance M

1: M ← FindNeighbors(S, q, 1)
2: return M

Algorithm 11 Reduce

Input: Two maps M1 and M2 of points and their distances to a query q
Output: The closest point p ∈M1 ∪M2

1: if M1.distance ≤M2.distance then
2: p←M1.point
3: else
4: p←M2.point
5: end if
6: return p

49

Linux cluster is made of 8 processor cores, thus, for this machine we present results

for processor counts in multiples of 8. Each node of the Cray XE6 machine consists

12 processor cores. This architectural layout also influenced our choice of processor

counts to be in multiple of 12. Our code was written in C++ and compiled with

gcc-4.5.2 on the Linux cluster and gcc-4.6.3 on the Cray XE6 machine. Using stapl,

the same C++ code was used on both architecture types.

5.5.4 Motion Planning Problems

We studied three different kinds of environments: a 512×512×512 uniformly clut-

tered environment (shown in Figure 5.4(a)) and a 7x7x7 grid environments (shown

in Figure 5.4(b)) and another clutter environment with strip-like obstacles (shown in

Figure 5.4(c)). There are 216 obstacles each of size 2× 4× 4 uniformly scattered in

the clutter environment. The grid environment has eight obstacles placed in a grid

form. We studied two different kinds of robot types: a 4×4×4 units 6 dof cube-like

rigid body robot and an eleven-link (16 dof) articulated linkage robot, with each

link having dimensions of 7× 1× 1 units.

5.5.5 Experimental Results

5.5.5.1 Bulk Synchronous Effect

We first study the effect of the m parameter introduced in Algorithm 8 to tune

the amount of local expansion done before a global update. We fixed the sample size

at 16,384 and used m = {1, 16, 64}. Note that m = 1 is the same as the distributed

algorithm presented in [24]. Figure 5.5 shows the running time as a function of

the number of processors on the Linux cluster for the rigid body robot up to 256

processors.

Localizing the computation and thus minimizing frequent inter-processor commu-

nication by varying m does impact performance of distributed RRT, but this effect

50

(a) Clutter

(b) Grid

(b) Stripline

Figure 5.4: Environments studied for tree-based method

51

is not obvious until higher processor counts, see Figure 5.5(b). In fact, m = 1 seems

to outperform the others until around p = 16.

5.5.5.2 Radial Subdivision Scalability Study

As seen with the bulk synchronous distributed RRT, localizing computation re-

duces communication overhead which in turn improves the overall scalability of the

algorithm. We now look at the scalability of radial subdivision distributed RRT on

the two different robots: the 6 dof rigid body and the 16 dof articulated linkage.

Figure 5.6 shows performance result on the Linux cluster up to 64 processors. Ra-

dial subdivision RRT was able to achieve almost near linear speedups for both robot

types.

5.5.5.3 Effect of Machine Architecture

We next study how the machine architecture impacts performance for both the

bulk synchronous distributed RRT and the radial subdivision distributed RRT. For

the bulk synchronous distributed RRT we use m = {1, 25, 50} while keeping the

sample size constant. Figure 5.7 shows performance results for the rigid body robot

on the Cray XE6 machine. Radial subdivision distributed RRT scales almost linearly,

similar to what was observed on Linux cluster. Scalability of the bulk synchronous

distributed RRT depends on the value of m and the number of processors. As in the

previous experiments (Figure 5.5), the impact of increasing m is much felt at higher

processor counts at which inter-processor communication become significant.

5.5.5.4 Grid Environment

To further understand the performance of radial subdivision in a different sce-

nario, we evaluated the radial subdivision algorithm in a grid environment with rigid

body robot on Cray XE6 machine. In this evaluation, we kept the number of regions

52

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 16 64 128 256

T
im

e(
s)

of Processors

m=1
m=16
m=64

(a) X-axis starting from p = 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 16 64 128 256

T
im

e(
s)

of Processors

m=1
m=16
m=64

(b) X-axis starting from p = 16

Figure 5.5: Effect of varying m in the bulk synchronous distributed RRT.

53

 0

 500

 1000

 1500

 2000

 2500

 1 2 4 8 16 64

T
im

e(
s)

of Processors

6DOF Robot
16DOF Robot

(a) Time

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 64

S
ca

la
bi

lit
y

of Processors

6DOF Robot
16DOF Robot

(b) Scalability

Figure 5.6: Radial subdivision distributed RRT performance on Linux cluster.

54

constant at 480 across all processor count and varied the sample size per region. The

results from the evaluation are shown in Figure 5.8. Given different input sizes, we

saw decrease in execution time as the number of processors increases.

5.5.5.5 Stripline Environment

We conduct another experiment using the stripline environment. In this environ-

ment, we varied the ammount of Cfree volume by varying the obstacles sizes. We

fixed the samples sizes at 4096 per region for 256 regions and varied the processor

count from 8 to 256. This experiment was conducted on Linux cluster and the results

are shown in Figure 5.9. We observed almost linear scalability in all cases.

55

 50

 100

 150

 200

 250

 300

 350

 24 48 96 120

T
im

e(
s)

of Processors

Radial RRT
Bulk RRT (m=1)

Bulk RRT (m=25)
Bulk RRT (m=50)

(a) Time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 24 48 96 120

S
ca

la
bi

lit
y

of Processors

Radial RRT
Bulk RRT (m=1)

Bulk RRT (m=25)
Bulk RRT (m=50)

(b) Scalability

Figure 5.7: Distributed RRT performance on Cray XE6 machine.

56

 20

 40

 60

 80

 100

 120

 140

 160

 180

 24 48 96 120

T
im

e(
s)

of Processors

N=100 samples/region
N=200 samples/region

Figure 5.8: Radial RRT performance results for grid environment on Cray XE6
machine

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 8 16 32 64 128 256

S
ca

la
bi

lit
y

of Processors

30% Free
60% Free

100% Free

Figure 5.9: Radial RRT performance results for stripline environment on Linux clus-
ter

57

6. RADIAL BLIND RRT∗

The radial distributed RRT algorithm presented in Chapter 5 does not work

efficiently for all problem instances. As an example, if an obstacle completely blocks

RRT growth in a region, the free planning space that is beyond the blockage will not

be covered and thus planning problems cannot always be solved. In this chapter,

we extend the idea of radial subdivision and develop a new algorithm, Radial Blind

RRT [35]. Radial Blind RRT ignores obstacles during initial growth to efficiently

explore the entire space. By ignoring obstacles, Radial Blind RRT explores the

space efficiently while keeping track of feasible paths. It later merges parts of the

tree that may have become disconnected from the root by using RRT-Connect [56].

We start our discussions with Blind RRT — a novel sequential motion planning

algorithm — the idea on which Radial Blind RRT is built. The sequential Blind

RRT will serve as a subroutine for the parallel Radial Blind RRT algorithm.

6.1 Blind RRT

In this section, we describe the design, motivation and advantages of Blind RRT

compared to the standard RRT. Although used in this work to improve Radial RRT,

we present Blind RRT as a probabilistically complete strategy for motion planning,

capable of solving problems independently of parallel computation. The motivation

behind Blind RRT is the incapability of expansion for Radial RRT when an obstacle

completely blocks progress in a region. Therefore, we propose to ignore obstacles, or

blindly expand through them. Blind RRT takes advantage of the rapid expansion

∗Part of the data reported in this chapter is reprinted with permission from “Blind RRT: A
Probabilistically Complete Distributed RRT ” in Proc. IEEE/ Int. Conf. Intel. Rob. Syst.
(IROS) by C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato, 2013. Copyright
©2013, IEEE. [35]

58

rate of RRTs, i.e., growing towards unexplored areas of Cspace.

6.1.1 Algorithm

The Blind RRT strategy, shown in Algorithm 12, starts by iteratively expand-

ing a tree τ rooted at a configuration qroot, similar to RRT. We alter the standard

RRT Expand subroutine to continue growing through obstacles recording a set of

configurations Qnew that occur during an expansion step. These witnesses are added

to τ in the Update function. If valid edges exist between successive nodes in Qnew,

these edges are added as well. Note that at this point, the Blind RRT has the same

nodes as an RRT in an obstacle free environment and the RRT edges that are valid

considering obstacles. After performing Nbr Blind RRT expansion iterations, Blind

RRT deletes all invalid nodes in τ and performs a connection phase that attempts

to connect the various connected components (CC s). Following this, all CC s other

than the CC containing the root are deleted, and τ is returned.

Algorithm 12 Blind RRT

Input: A root configuration qroot, the initial number of nodes Nbr, a maximum
expanding distance ∆q

Output: A tree τ containing Nbr nodes rooted at qroot

1: τ ← {qroot}
2: for n = 1 . . . Nbr do
3: qrand ← RandomNode()
4: qnear ← NearestNeighbor(τ, qrand)
5: Qnew ← Expand(qnear, qrand,∆q)
6: τ.Update(qnear, Qnew)
7: end for
8: τ.DeleteInvalidNodes()
9: ConnectCCs(τ)

10: τ.DeleteInvalidCCs()
11: return τ

59

Note that one benefit of the standard RRT algorithm is early termination if coarse

coverage is sufficient to solve the query. This can be achieved here by interleaving

tree construction and evaluation and setting Nbr appropriately.

6.1.1.1 Blind Tree Expansion

We describe two alternatives when performing blind expansion. Note that other

RRT expansion algorithms could be modified and used appropriately. The first

performs validity checking for the entire line from qnear to qnew (either at a distance

∆q from qnear towards qrand or qrand itself, whichever is closer), collecting nodes

that are valid along the boundary of Cobstacle (Figure 6.1(b)). It adds all the nodes

collected as well as qnew (which itself may or may not be valid). The second stops

at the first validity change, records the valid node, and directly jumps to qnew and

adds it (Figure 6.1(c)). The latter skips part of the collision detection, while the

former keeps track of more valid nodes. It is important to note that nodes contained

in Cobstacle may be added to the tree if they are found ∆q away from qnear, but only

edges between valid configurations are added to the tree.

6.1.1.2 Connected Component Connection

At the end of the first step, any obstacles found along the expansion may have

caused parts of τ to become disconnected from the root, yielding multiple CC s in τ .

However, we would like to only have one CC in τ that contains the root. For this,

we join pairs of CC s, CC a and CC b, using RRT-Connect [56] where τa = CC a and

τb = CC b. In the connection step, we first choose CC a as a random CC , and then

choose a target CC , CC b, by the CC whose centroid is closest to the centroid of CC a.

A nearest neighbor query is performed from the centroid of CC a to the centroids of

the other CC s. It significantly reduces the nearest neighbor computation, as the

number of CC s is much less than the number of nodes in the tree. This is used

60

Figure 6.1: RRT expands greedily up to ∆q, qrand, or an obstacle is hit (a) Blind
RRT Expand always expands up to ∆q distance or qrand while also retaining either
all free witnesses (b) or only the first free witness (c) to return a set of expansion
nodes Qnew.

as an approximation scheme in selecting the closest CC . Component connection

iteratively selects CC s to connect to until either one CC is achieved or a maximum

number of failures is reached. After the CC connection phase we retain only the

component containing the root.

6.1.2 Probabilistic Completeness

Probabilistic completeness is a desirable property of randomized planners which

describes their ability to find a solution path, assuming one exists, as the number

of samples tends to infinity. In this section, we describe and prove the probabilistic

completeness of Blind RRT. We assume that the Cspace is ε-good [86] for some ε > 0.

Theorem 1. Blind RRT is probabilistically complete.

Proof. Given any two configurations qs and qg in the same connected component of

61

Cfree, a path exists between qs and qg. If no obstacles are present in the environment,

i.e., Cfree ≡ Cspace, then an RRT rooted at qs will reach within ε of qg after n0 fixed

step expansions of distance ∆q, (i.e., a path exists in the tree between qs and qg), n0

Blind RRT expansions are also sufficient to reach within ε of qg. This is due to the

fact that Blind RRT explores Cspace identically to an RRT grown in the absence of

obstacles because Blind RRT expansions ignore Cobstacle.

After Blind RRT removes invalid nodes of the tree, qg exists in some component of

the tree CC g. If CC s ≡ CC g, where CC s is the component of the tree containing

qs, then a path exists in the tree between qs and qg. If CC s 6≡ CC g, then Blind

RRT uses RRT-Connect to merge CC g with CC s. It follows from the probabilistic

completeness of RRT-Connect [56] that Blind RRT will connect CC g to CC s to yield

a valid path between qs and qg.

6.2 An Improved Radial RRT using Blind RRT

In this section, we introduce an improved Radial RRT framework for parallelizing

RRTs which uses Blind RRT as a subroutine.

6.2.1 Algorithm

Radial Blind RRT starts by radially subdividing Cspace as in Radial RRT pre-

sented in Chapter 5. It makes use of a region graph, which is an abstraction of the

different subdivisions of Cspace. To subdivide Cspace and construct the region graph,

the algorithm randomly samples Nr points QNr on a d-dimensional hypersphere of

radius r centered at qroot, where d is the dimension of Cspace, r is a bound on the

growth of the region, and qroot is the root configuration of the RRT. Note that this

applies to any dimension of Cspace. These samples that define the subdivision be-

come the vertices of the region graph. A k-closest connection routine determines

the adjacency of the regions defining the edges of the region graph. The number of

62

neighbors a region has, and thus the communication later required, can be tuned by

k.

Radial Blind RRT, shown in Algorithm 13, constructs a Blind RRT in parallel in

each region. Each region constructs a tree of Nbr/p nodes whose growth is bounded

to the region, where Nbr is input as the number of nodes for the tree and p is the

number of processing elements. Most likely, each region will contain several CC s

that need to be connected back to the root component. This takes place in a global

region connection phase.

Algorithm 13 Radial Blind RRT

Input: A root configuration qroot, the number of nodes Nbr, a maximum expansion
distance ∆q, the number of processors p, the number of regions Nr, a region
radius r, the number of adjacent regions k

Output: A tree τ containing Nbr nodes rooted at qroot

1: Gr(V,E)← ConstructRegionGraph(Nr, r, k)
2: for all vi ∈ V par do
3: τ ← τ ∪ BlindRRT(qroot, Nbr/p,∆q, vi)
4: end for
5: τmst ← MinimumSpanningTree(Gr(V,E))
6: for all (vi, vj) ∈ τmst par do
7: ConnectRegions(vi, vj)
8: end for
9: return τ

The region connection phase, described in Algorithm 14, attempts to connect

CC s from neighboring regions. The neighboring regions identified from the region

graph allow for reducing the global communication between processing elements,

thus improving scalability of the approach. Prior to the region connection phase,

a minimum spanning tree of the region graph is computed so that no cycles are

produced in the tree when connecting regions. Additionally, the minimum spanning

63

tree provides information as to which neighbors are closest, and thus there is a higher

probability of successful connection. To reduce the communication overhead in the

region connection phase, we import all necessary information from the target region

Rt, instead of updating the CC information every time a connection is performed. At

the beginning, we know that none of the CC s in the source region Rs are connected

to the CC s in Rt, so we initialize two sets: U the unconnected CC s and C the

already merged CC s. Initially, the first contains all Rt CC s and the second is the

empty set. P is a queue containing all the CC s in the source region, Rs. The goal

is to merge U with P without creating cycles. First, we dequeue a CC , CC local from

P and iterate through the CC s in C, attempting connections and stopping if one

is found. Then, we iterate through the CC s in U , attempting connections to all of

them; if a connection is made, we update the sets C and U by adding CC local to C

and removing it from U . We perform this operation until P is empty. Note that

connections between CC s from the same region are not explicitly attempted in this

phase. They have already been attempted in the BlindRRT call for each region (see

Algorithm 13, line 3). However, multiple CC s may connect to the same remote CC

progressively merging the CC s into one. This procedure not only performs region

connection with reduced communication overhead, but may also indirectly connect

local CC s through the remote CC s. After this global CC connection step, we may

or may not have connected all CC s of the overall tree back to the root component.

Therefore, we remove all remaining CC s.

Figure 6.2 shows an example of the different steps of the parallel algorithm on

a simple 2-D environment with p = 4 processors. Figure 6.2(a) shows the example

environment with regions decomposed. Regions are represented by points (blue) on

the outer sphere. Figure 6.2(b) shows a Radial Blind RRT expanded for Nbr/p = 20

expansions. Notice how Radial Blind RRT ignores and expands through Cobstacle

64

Algorithm 14 Connect Regions

Input: Two regions Rs and Rt

1: Pending CC s Queue P ← Rs.GetCCs()
2: Connected CC s C ← ∅
3: Unconnected CC s U ← Rt.GetCCs()
4: while ¬P.IsEmpty() do
5: CC local ← P.Dequeue()
6: for all CC remote ∈ C do
7: if RRT− Connect(CC local,CC remote) then
8: break
9: end if

10: end for
11: for all CC remote ∈ U do
12: if RRT− Connect(CC local,CC remote) then
13: C = C ∪ CC remote

14: U = U\CC remote

15: end if
16: end for
17: end while

covering all of Cspace. Figure 6.2(c) shows the tree after local CC connection is

performed. New edges are emphasized by magenta ellipses. Figure 6.2(d) shows the

tree after global region connection. Again new edges are emphasized with magenta

ellipses.

6.2.2 Probabilistic Completeness

In this section, we show two things: the probabilistic incompleteness of Radial

RRT and the probabilistic completeness of Radial Blind RRT.

Observation 1. Radial RRT is not probabilistically complete because an obstacle

can entirely block exploration of a region, in such a way that connections between

adjacent regions will not be able to cover Cspace, see Figure 6.3.

Theorem 2. Radial Blind RRT is probabilistically complete.

65

(a) Region Decomposition (b) Blind RRT Expansion (c) Local CC Connection (d) Region Connection

Figure 6.2: (a) An example environment with four regions, represented by their
points (blue) on the outer circle. (b) Radial Blind RRT concurrently expanding in
the four regions ignoring obstacles as it goes. (c) Radial Blind RRT concurrently
and locally removes invalid nodes of the tree and connects CC s within each region
(new edges emphasized in magenta). (d) Radial Blind RRT connects CC s between
regions yielding a final tree.

Figure 6.3: Example of Radial RRT not being able to solve an example query.

Proof. Without loss of generality assume Cfree is a single connected component.

Collectively the Blind RRTs built in each region will be able to expand and cover

all of Cspace in the initial expansion phase, for the reasons stated in the proof of

Theorem 1. After the local connection phase, Radial Blind RRT recombines adjacent

regions with RRT-Connect. By the probabilistic completeness of RRT-Connect [56],

all regions will be merged and all components of the tree will be merged into one.

66

Thus, Radial Blind RRT is probabilistically complete.

6.2.3 Algorithm Analysis

In this section, we present complexity analysis of Radial Blind RRT. Recall that

the original RRT algorithm as presented in [32] requires O(N2) time (in the worst

case) to construct a tree with N configurations. That analysis assumes a brute force

strategy for nearest neighbor queries, as will our analysis. We note to the reader

that more efficient mechanisms for nearest neighbor queries exist in the literature,

e.g., KD-trees, but for simplicity of analysis we assume worst case computation.

The Radial Blind RRT given in Algorithm 13 can be broken down into four

phases: region graph construction, Blind RRT construction, minimum spanning tree

(MST) computation, and region connection. The overall time complexity of the

algorithm can be described in terms of these four phases as:

T = Trg + TBRRT + TMST + Tc

where the total time T is the sum of the cost Trg of region graph construction for a

given environment subdivided into nr regions with each region having d neighbors,

the cost TBRRT of constructing nr sequential Blind RRTs, the cost TMST of computing

an MST of the region graph, and the cost Tc of connecting neighboring CC s between

adjacent regions given from the MST. In our analysis, p refers to the number of

parallel processing elements. Please note that our formulation assumes a uniform

cost of constructing subtrees in each region; this assumption may fail in a situation

where the regions are non-uniform.

In the first phase, we construct the region graph of nr vertices and dnr edges. The

dominant factor in constructing the region graph is the d-nearest neighbor search,

67

with O(n2
r log d) complexity assuming a brute force search. Each processor p will

generate nr

p
regions. So in parallel constructing the dnr edges will take O(n2

rlogd
p

)

time.

The second phase of the algorithm constructs a Blind RRT in each region of size

Nbr = N
nr

, where N is the expected number of nodes for tree construction. Since

the complexity of sequential Blind RRT is equivalent to the complexity of RRT, the

total work for this phase is O((N
nr

)2). Assuming uniform distribution of work across

the processing elements, the time complexity is O((N
nr

)2/p).

Most inter-processor communication occurs when connecting regional subtrees in

phase four. However, this communication is managed by reducing the region graph

to a MST in phase three, which will require a time complexity of O(dnr log nr

p
) [87].

Then, phase four will require O(cnr) instantiations of RRT-Connect, each requiring

O(N2
rrtc) work, where c is the maximum number of CC s within a region and Nrrtc is

the maximum number of nodes allotted per RRT-Connect tree. Upon parallelization,

phase four requires O(
cnrN2

rrtc

p
) time.

We assume that N >> nr and Nrrtc >> nr, so the final time complexity for

Radial Blind RRT can be reduced to:

T = O((
N/nr

p
)2) +O(

cnrN
2
rrtc

p
)

(a) 2-D Clutter (b) 2-D Grid (c) 2-D Maze (d) 3-D
Maze

Figure 6.4: Motion planning problems.

68

implying that the time spent per phase can vary based upon the success in covering

the space with fewer CC s, i.e., lower connection time.

6.3 Experimental Evaluation

In this section, we analyze Radial Blind RRT under two different perspectives.

We compare its effectiveness to that of sequential RRT and Radial RRT. Also, we

present the scalability of the algorithm against Radial RRT. Section 6.3.2 compares

the methods in a few environments showing the efficiency of Radial Blind RRT

exploration, and Section 6.3.3 presents the performance of Radial Blind RRT with

different processor counts. Recall, the goal of this algorithm is to have a scalable

RRT useful for motion planning. Standard parallel RRT methods do not scale well,

whereas Radial RRT does. However, Radial RRT is unable to cover the planning

space as well as RRT. Thus, the goal of this section is to show that Radial Blind RRT

allows both scalability, like Radial RRT, and good coverage, comparable to RRT.

6.3.1 Experimental Setup

Experiments were conducted on a Linux computer center at Texas A&M Univer-

sity. The cluster has a total of 300 nodes, 172 of which are made of two quad core

Intel Xeon and AMD Opteron processors running at 2.5GHz with 16 to 32GB per

node. The 300 nodes have 8TB of memory and a peak performance of 24 Tflops.

Each node of the cluster is made of 8 processor cores, thus, for this machine we

present results for processor counts in multiples of 8.

All the methods use Euclidean distance as the distance metric, straight-line local

planning, brute force neighborhood finding, and collision detection tests as validity

tests. Four different environments were used: 2-D Clutter (Figure 6.4(a)), 2-D Grid

(Figure 6.4(b)), 2-D Maze (Figure 6.4(c)), and 3-D Maze (Figure 6.4(d)).

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8
N

or
m

al
iz

ed
 C

ov
er

ag
e

Number of Regions

RRT
Radial RRT

Radial Blind RRT

(a) 2-D Clutter

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8

N
or

m
al

iz
ed

 C
ov

er
ag

e

Number of Regions

RRT
Radial RRT

Radial Blind RRT

(b) 2-D Grid

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8

N
or

m
al

iz
ed

 C
ov

er
ag

e

Number of Regions

RRT
Radial RRT

Radial Blind RRT

(c) 2-D Maze

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8

N
or

m
al

iz
ed

 C
ov

er
ag

e

Number of Regions

RRT
Radial RRT

Radial Blind RRT

(d) 3-D Maze

Figure 6.5: Comparing coverage after performing RRT, Radial RRT, and Radial
Blind RRT. All results are normalized to RRT.

70

6.3.2 Map Coverage

In this section, we compare each method’s ability to map space by analyzing the

coverage of the generated trees. We approximate coverage with a sample size of 250

uniformly sampled nodes. Since Radial Blind RRT deletes nodes at two points of

its execution, it is not effective to use a desired final number of nodes. Instead, we

fixed the parameter Nbr to be 500. Another parameter that plays an important role

is the number of CC connection attempts in the local phase. Given that for each

environment the number of CC s will vary, we set the number of CC connection

attempts to be five times the number of CC s after the initial expansion phase. This

number was chosen according to initial testing results which demonstrated that a

high number of CC connection attempts only increases the number of nodes but

does not connect the tree significantly better, making the method rather slow. To

have a fair comparison between methods, for each random seed, we ran Radial Blind

RRT first and recorded the number of nodes, Ni. Then, we took the number of

nodes to be the Ni for both RRT and Radial RRT. Radial Blind RRT and Radial

RRT were tested with Nr = [1, 2, 4, 8]. Coverage results are averaged over 10 random

seeds and normalized to RRT. Results are shown in Figure 6.5.

Radial Blind RRT results in better map coverage compared with Radial RRT,

except in one case (2D-Grid with one region) in which Radial Blind RRT was com-

parable to Radial RRT. Moreover, in most of the 2D environments Radial Blind

RRT has higher or comparable coverage compared to RRT. In higher dimensional

cases (3D-Maze), we believe radial decomposition hampers exploration for a fixed

number of nodes. However, we note that Radial Blind RRT still performs better

than Radial RRT in these cases. We will look at improving these results for higher

dimensional problems in the future. From these results, we can see that Radial Blind

71

RRT shows usefulness in planning over Radial RRT alone, and in some cases, e.g.,

2D homogeneous environments, Radial Blind RRT actually outperforms RRT.

6.3.3 Parallel Performance

We evaluated Radial Blind RRT on the Linux cluster varying the processor count

from 1 to 16. We compare Radial Blind RRT to Radial RRT to see differences in

performance as the number of regions increases. In these experiments, the number

of cores is equal to the number of regions. It is important to note that Radial RRT’s

and Radial Blind RRT’s trees differ as the region count differs. We carried out the

experiments in the 2-D Clutter, 2-D Grid, and 3-D Maze environments. The initial

input sample size was fixed at 1600. Each experiment was run five times and the

average runtime of the longest running processor was computed. Results are shown

in Figure 6.6.

We observe that the relative performance of each algorithm depends on the en-

vironment. When Radial RRT requires more time, many failed attempts occur as

regions restrict the expandability of the tree. In these cases, more computation time

is spent attempting expansions as the tree attempts to grow to a specific size. When

Radial Blind RRT requires more time, more work is spent in attempting to connect

disconnected components. The tree size for Radial Blind RRT is larger, so we expect

that Radial Blind RRT requires more work from an initial sample set. Considering

runtime, we can see that even though Radial Blind RRT does more work, as it ex-

plores space better, running times are still comparable. Additionally, as the number

of regions and processors increases, the running times decrease.

72

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processors

Radial Blind RRT
Radial RRT

(a) 2-D Clutter

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processors

Radial Blind RRT
Radial RRT

(b) 2-D Grid

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processors

Radial Blind RRT
Radial RRT

(c) 3-D Maze

Figure 6.6: Execution times of Radial RRT and Radial Blind RRT.

73

7. USING LOAD BALANCING TO SCALABLY PARALLELIZE

SAMPLING-BASED MOTION PLANNING ALGORITHMS

Regular spatial subdivision is limited in the types of motion planning environ-

ments it can handle. This method performs well in uniform and homogeneous envi-

ronments, but not complex, non-uniform and heterogenous environments. For exam-

ple, a house or factory floor is typically composed of logically separate parts; open

or free space, cluttered space, doorway, narrow passages, stair, rooms etc. Regular

subdivision in this scenario is limited and prone to load imbalance. As an illustra-

tion, consider the regular subdivision of the planning space in Figure 7.2; if different

processors are assigned to each region, processors assigned to region0 are apparently

overloaded. This irregularity in planning space leads to workload imbalance, which

will have an overall negative affect on scalability.

(a) (b)

Figure 7.1: Roadmap graph node distribution (a) before rebalancing: majority of
nodes are present on two processors (green and brown color) (b) after rebalancing:
almost even distribution of nodes.

Figure 7.1 illustrates the distribution of the roadmap graph for an environment

74

that suffers from a high degree of load imbalance using regular spatial subdivision.

Shown is a sample run with four processors where the color of a node represents a

single processor. In Figure 7.1 (a), it is clear that the majority of the roadmap nodes

are only present on two processors, and the remaining two processors have only a

small number of vertices. In contrast, Figure 7.1 (b) shows an even distribution of

roadmap nodes after applying load balancing techniques.

One important consideration that any load balancing strategy must take into

account is the granularity in which the problem is partitioned. This is because the

size of the biggest quanta of work establishes a lower bound by which the problem

can be balanced using a perfect load balancing strategy. In addition, a more refined

problem provides more opportunity to distribute work amongst processing elements.

For parallel motion planning, regions represent the quanta of work and thus for the

presented load balancing strategies we consider an over partitioned region graph.

In this section we will describe two load balancing techniques that will benefit

parallel sampling-based motion planning algorithms.

7.1 Basic Load Balancing Techniques

Work stealing [68, 65] is an important technique used to balance an imbalanced

computation. In this method the computation is logically divided into a collection of

tasks. When a processing element runs out of its local tasks it attempts to steal tasks

from potential victims. This strategy is well suited for shared-memory systems but

has some drawbacks in distributed-memory systems. In such systems, an important

decision to make when stealing tasks is whether the data associated with those tasks

should be moved to the thief processing element. This decision is usually application

dependent and is influenced by the following factors:

� Access to remote data can adversely affect the performance of the application.

75

obstacle

obstacle

start

goal
region0 region1 region2

Figure 7.2: Regular subdivision method for parallel PRM.

� The same data may be required by the thief processor for subsequent phases

of the computation.

There are two variations on the way data can be made available to the thief:

replication and ownership transfer. In the case of replication, some sort of software

coherence mechanism may be required to deal with the multiple copies of data,

while in some cases the overheads associated with transferring ownership to the thief

processor may be prohibitively high. In this work we have a model in which transfer

of ownership is considered.

Repartitioning of data is another strategy to address load imbalance. In an owner-

computes model of computation, it is well known that data distribution is fundamen-

tal to achieving acceptable levels of load balance. There exists an exhaustive amount

of literature regarding partitioning [75, 76, 77] of distributed data structures. We

focus on computing, and enforcing through data migration, high quality partitions

of the problem across processing elements.

In general, the type of load balancing technique applied to an imbalanced com-

putation depends on the nature of the computation itself. Repartitioning of data

structures is well suited for applications in which a good estimate of the computa-

76

tion associated with the data can be easily computed. Furthermore, the total amount

and structure of the computation is known a priori. In contrast, work stealing is

best suited for dynamic applications in which either the execution of the algorithm

defines more computation as the algorithm progresses, or the work associated with

the input data cannot be easily estimated to a reasonable degree of accuracy.

For regular spatial subdivision parallel PRM, the number of sampled configura-

tions within a region provides a reasonable estimate for the amount of computation

associated with that region. For this reason, we expect repartitioning to be the load

balancing strategy of choice.

7.2 Load Balancing for PRM

For the approaches to parallel motion planning discussed in previous chapters,

it is difficult to compute a good partition of the data structures offline due to the

input-dependence and random nature of the algorithms. For this reason, an online

repartitioning strategy is the most natural answer to finding a relatively high quality

partition for a given environment and processor configuration.

In parallel motion planning, the two data structures of interest are the graph

representation of regions and the roadmap or RRT graph itself. Regions represent

spatial subdivisions of the environment in which configurations will be sampled. Con-

nections are attempted between configurations through the use of collision detection

methods. It is well known in motion planning that the cost of connecting samples

in Cspace is highly representative of the amount of time the overall algorithm will

take in generating a solution. This in fact is the most time consuming phase of the

entire computation. As regions that have a high number of samples will generally

incur a large amount of collision detection calls, a good metric for approximating the

amount of work that a region will generate is the number of samples in the roadmap

77

that lie within that region.

Using this information, we can determine that load imbalance in terms of regions

corresponds to the number of roadmap samples of the region, and this metric can be

used to weight regions. A high quality partition of the region graph will attempt to

balance the regions based on this metric. However, as regions are also spatial entities,

the spatial geometry of regions should also be preserved in an ideal partition. By

partitioning the region graph using these approximations of the amount of work

that a region will perform, the algorithm will see a higher level of load balance for

subsequent phases of computation.

Algorithm 15 Regular Subdivision with Repartioning

Input: Regional roadmap graph with sample configurations R(V,E).
Output: Connected roadmaps with in regional graph

1: for all vi ∈ V par do
2: W ← ComputeRegionWeight(vi)
3: end for
4: GraphRepartition(R, W)
5: for all vi ∈ V par do
6: G← ConstructRegionalRoadmap(vi)
7: end for

In Algorithm 15, we show how to use repartitioning to influence load balancing in

parallel PRM. The main imbalanced computation, ConstructRegionalRoadmap for

a given region, is performed only after attempting to redistribute the regional graph

based on the weight for each region. This will ensure that this phase of computation

will be balanced according the metric of the number of sampled configurations within

a region.

Since different regions represent different amounts of work due to presence of

78

obstacles and differences in generated samples, some processing elements will deplete

their local work faster than others. This property of the computations also makes

it amenable for work-stealing strategies. In the experimental results, we present the

performance gains due to these two strategies when compared to no load balancing.

7.3 Load Balancing for RRT

Radial subdivision for RRT discussed in Chapter 5 and Chapter 6 is an inherently

dynamic application, the amount of work that a region will perform is difficult to

estimate beforehand, work stealing is a prime candidate for this algorithm. Naturally,

some branches will have more difficulty exploring Cspace than others, and processors

assigned to branches that correspond to relatively simple portions of the environment

will run out of local work quickly.

Algorithm 16 Work-stealing Radial Subdivision

Input: Regional roadmap graph, steal policy.
Output: Set of constructed RRT branches

1: while Global termination not detected do
2: for all p ∈ Processors par do
3: Q← { Regions of p }
4: while Q is not empty do
5: Rcurrent ← Qpop

6: ConstructBiasedRRT(Rcurrent)
7: end while
8: V ← choose victim based on steal-policy
9: Steal regions from V based on policy

10: end for
11: end while

Algorithm 16 shows work stealing during the construction of the biased RRTs for

radial subdivision. The main computation in which RRTs are expanded in indepen-

dent branches is shown in Line 6. As each processor is assigned regions in which to

79

explore, we model these branches in a local work queue. When this local queue is

depleted, the processing element will issue steal requests to potential victims in hopes

of receiving additional branches in which to explore. On a victim processor, work is

stolen from the back of its local work queue. Potentially, priority could be given to

regions to send to the requesting processor; however, computing such a priority is

non-trivial due to the dynamic nature of the algorithm.

The choice of selecting a victim is a particularly important decision. This is

because the cost of stealing from a processor on the same shared-memory node is

generally less than the cost of stealing from a processor on another node. More im-

portantly, for parallel motion planning, the choice of victims should also be related to

the distribution of the region graph among the processors. After the RRT construc-

tion phase, neighboring processing elements will communicate with each other to

perform region connections. This indicates that stealing from neighbors in the RRT

construction phase would also benefit the region connection phase, as the regions to

which to connect will be local to the same processing element.

We consider several work stealing strategies in the context of parallel motion

planning. One strategy (rand-k) is a randomized strategy in which a thief requests

additional regions from k random processors. For the purpose of our experimental

evaluation, we have fixed k to be 8. Another strategy we employ is a heuristic (hy-

brid) wherein processors are assumed to be arranged in a 2D mesh and underloaded

processors will first ask neighboring processors for work. In the event that no request

could be serviced in the neighborhood, requests are sent to a random processor. In

the experimental results section, we compare and contrast these two strategies.

80

7.4 Implementation in STAPL

Load imbalance in parallel computations is dealt with in various ways in stapl.

The repartitioning-based approach to load balancing discussed in previous sections,

this is realized in stapl through redistribution of the two pContainers in the parallel

motion planning algorithms.

In its most basic form, an application can be instrumented to perform repar-

titioning by simply providing a view of the container to migrate, and weights of

the individual elements of the container (Figure 7.3). Additionally, a user-defined

function can be provided that will define actions that need to be taken upon a migra-

tion, such as additional migrations of secondary data structures. Internally, the data

structure will be redistributed using various techniques, including stapl algorithms

that diffusively move work to neighbors and attempt to minimize edge cuts and by

extension preserve geometric features of the graph, or those that globally balance

weight in blocks. Alternatively, the stapl Load Balancing Framework can also be

used interoperably with external partitioning libraries, such as Zoltan [75].

c on ta ine r . migrate (GID g , Location l o c) ;

c on ta ine r . r e d i s t r i b u t e (View view) ;

r eba lance (View vw , WeightMap w map , ActionMap a map) ;

Figure 7.3: The fundamental migrate primitive, redistribution of a container based
on a view and rebalancing a view based on weights.

An alternative approach to help address load imbalance is to employ a work-

stealing strategy during the computation itself. This is realized in stapl by providing

81

support for customizable schedulers. Figure 7.4 shows the call site of an algorithm

that is explicitly instrumented to use a work-stealing scheduler.

The work-stealing scheduler moves tasks from from overloaded processors to un-

derloaded processors. In addition to moving the specification of work, stapl will

also migrate the data associated with the work to the thief location. Migration of a

container’s elements during a computation will have the additional benefit of balanc-

ing data in the container according to a metric that is directly associated with the

performed computation. Because of this, any subsequent computation that will have

an affinity pattern similar to the previous computation will be balanced in terms of

load. Thus, the goal of migrating the task’s data would be to seed work for future

computations in a balanced manner.

In order to improve programmer productivity, stapl provides a shared-object

view to an application developer. The details about the distribution and locality of

data are hidden from the users. Advanced users still have access to this informa-

tion, but this is not the default programming model. The advantage of this model

is that the user is free to choose the most natural expression for the application

without worrying about performance. In the context of parallel motion planning,

this translates to a high number of fine grained accesses to the vertices of the region

graph. To support such a model and achieve good performance, stapl relies on

placing the computation and data near each other and automatically aggregating

any requests for remote data. By moving the data associated with a task, the work

stealing scheduler reduces the number of remote accesses.

In essence, the work stealing scheduler’s migration of tasks and data not only

achieves balanced computation, but also a data distribution that is most suited for

that distribution of computation. For many iterative applications, such changes in

the initial iterations of the computation can be beneficial for achieving balanced

82

computation in the later iterations of the application.

An important decision that the scheduler has to make is the choice of the victims.

The cost of stealing from a location on the same node can be less that the cost of

stealing from a location on another node. More importantly, for parallel motion

planning, the choice of victims should also be related to the distribution of the region

graph among the locations. After the node connection phase, neighboring locations

will communicate with each other to perform region connections. This indicates that

stealing from neighbors in the node connection phase would also benefit the region

connection phase.

In the experimental section we describe some of the strategies for choosing victims

with which we have experimented.

p a lgor i thm (view , work stealing scheduler (. . .))

Figure 7.4: Customizable scheduling scheme for a call to a parallel algorithm.

7.5 Experimental Evaluation

7.5.1 Setup

Experimental studies were conducted on two massively parallel machines: a

153,216 core Cray XE6 (Hopper) and a 2,400 core Opteron cluster (opteron-

cluster). The environments considered in this section are a 3D narrow passage

with a rigid-body robot in which 90% of the space is blocked (walls) and a cluttered

narrow passage environment with 40% blocked space (narrow).

83

7.5.2 Parametrically Imbalanced Environment

Consider an environment with a single β × β cube obstacle. The distance from

the bounding box to the cube is α.

In such an environment, we have the following:

Vtotal = (2α + β)2 (7.1)

Vobs = β2 (7.2)

Vfree = (2α + β)2 − β2 (7.3)

The coordinates of the obstacle are (α, α) and (α + β, α + β).

β

αα

2α + β

αα

α α

β

Figure 7.5: Imbalanced cube environment

Consider an arbitrary two-dimensional subdivision of this environment, where the

number of cuts in the x dimension is Px and the number of cuts in the y dimension

84

is Py. A region rij is formed by these cuts.

The size of any region in the x dimension is P−1
x (2α+ β) and P−1

y (2α+ β) in the

y dimension.

rij

2α + β
Py

2α + β
Px

Py

Px

Figure 7.6: Subdivision of imbalanced cube environment

The bounding box for region rij can be computed by:

BBx0(rij) = i× P−1
x (2α + β)2 (7.4)

BBy0(rij) = j × P−1
y (2α + β)2 (7.5)

BBx1(rij) = BBx0(rij) + P−1
x (2α + β)2 (7.6)

BBy1(rij) = BBy0(rij) + P−1
y (2α + β)2 (7.7)

85

The obstacle within the region can be found by:

obsx0(rij) = max{BBx0(rij), obsx0} (7.8)

obsy0(rij) = max{BBy0(rij), obsy0} (7.9)

obsx1(rij) = min{BBx1(rij), obsx1} (7.10)

obsy1(rij) = min{BBy1(rij), obsy1} (7.11)

From the bounding box and obstacle, we can compute the volume of the free

space (Vfree) by using the total volume of a region and the volume of the obstacle

within the region.

Vtotal(rij) = (BBx1(rij)−BBx0(rij))(BBy1(rij)−BBy0(rij)) (7.12)

Vobs(rij) = (obsx1(rij)− obsx0(rij))(obsy1(rij)− obsy0(rij)) (7.13)

Vfree(rij) = Vtotal(rij)− Vobs(rij) (7.14)

With the estimation of the free space in the environment, we can say that the

total load that that region will experience is proportional to Vfree, the amount of

free space within that region.

A naive mapping of regions to processors would perform a 1D partitioning of the

86

region mesh and assign columns of regions to processors. Given p processors and a

region mesh size of Rx × Ry, we linearize regions in the x dimension and assign a

balanced partition of regions to each processor. The total load of a processor L(p)

is the sum of Vfree for each region assigned to that processor.

A measure of imbalance among processors is the coefficient of variation, defined

to be the ratio of the standard deviation σ and mean µ load. The naive region

mapping will have a high coefficient of variation for the model environment. We also

compute the best possible partitioning of the region graph statically using a greedy

global partitioning algorithm, as the exact problem is NP-complete.

7.5.2.1 Model Evaluation

The following figures show the model’s calculation of the volume of the free space

for the imbalanced environment (α = 2, β = 4).

 0.5

 1.5

 2.5

 0.5 1.5 2.5
 0

 1

 2

 3

 4

 5

 6

 7

(a)

 0.5

 1.5

 2.5

 0.5 1.5 2.5
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b)

Figure 7.7: In a 3x3 spatial decomposition, the (a) model’s estimation of the volume
of free space and (b) the number of roadmap nodes sampled per region in a test run.

Figure 7.7 (a) shows the model’s estimation of Vfree for each region of the region

graph in a 3x3 decomposition. It accurately models the size of the obstacle in the

center of the environment, and a diffusive amount of free space radiating outward

87

 0.5

 1.5

 2.5

 3.5

 4.5

 5.5

 6.5

 7.5

 8.5

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

(a)

 0.5

 1.5

 2.5

 3.5

 4.5

 5.5

 6.5

 7.5

 8.5

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
 0

 20

 40

 60

 80

 100

(b)

Figure 7.8: In a 9x9 spatial decomposition, the (a) model’s estimation of the volume
of free space and (b) the number of roadmap nodes sampled per region in a test run.

from the origin. Figure 7.7 (b) shows the number of roadmap nodes generated

per region after running the algorithm on the model environment. As we can see,

it closely tracks the model’s estimation of the free space per region, and thus the

amount of load per region. Similarly, Figure 7.8 shows close tracking between the

model’s estimation and experimental evaluation for a 9x9 decomposition.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 8 16 32 64 128 256

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Number of processors

Coefficient of Variation of Model Environment on Opteron

Model imbalance
Model improvement

Experimental imbalance
Repartitioning improvement

Figure 7.9: Experimental validation of measure of load imbalance in model environ-
ment. (α = 2, β = 4 and Rx = 256, Ry = 1)

Figure 7.9 shows the model’s prediction of the imbalance with the naive parti-

88

tioning strategy and the best possible load balance possible. In addition, we plot

the measure of load imbalance experienced during a trial run of the application and

show that we closely track the model. As shown, the best possible distribution of

regions to processors for higher core counts shows less benefit, as each processor has

an increasingly smaller granularity of work as the number of processors increases.

 0

 0.5

 1

 1.5

 2

16 32 64 128

Im
pr

ov
em

en
t

Number of processors

Theoretical Improvement and Experimental Speedup
 using Model Environment on Opteron

Theoretical (unit length squared)
Experimental (number of samples)

Runtime (seconds)

Figure 7.10: Experimental validation of potential improvement in model environ-
ment. (α = 2, β = 4 and Rx = 256, Ry = 1)

Figure 7.10 shows the total improvement for various metrics according to the

model and an experimental evaluation. We study the potential improvement accord-

ing to the model, which measures the total reduction in Vfree for the processor with

the highest amount of Vfree, the reduction in the number of roadmap nodes on the

highest loaded processor and the overall improvement in execution time for the node

connection phase with using repartitioning. In general, we track the model’s theoret-

ical estimate of the best load distribution in terms of roadmap nodes, which in turn

closely tracks the improvement in execution time. The discrepancies between best

distribution of Vfree and roadmap node distribution can be explained by both the

89

probabilistic nature of the computation and by the geometric restrictions enforced

by the repartitioning. The gap between the improvement in roadmap distribution

and total time reduction is a result of the number of roadmap nodes per region being

an imperfect indicator of the total amount of work generated by that region.

7.5.3 Experimental Results

7.5.3.1 PRM

For this experiment, we evaluated our load balancing techniques on a highly

load imbalanced environment (walls). Figure 7.11 (a) shows raw execution time

of computing the final roadmap on the Hopper platform for this strong scaling

experiment. We can see that using repartitioning, we are able to achieve a 2.9 times

improvement over the baseline on 96 cores and a 1.68 times improvement on 768

cores. Because of the strong scaling nature of our experiment, there are significantly

fewer regions per processor at 768 cores, which allows for less opportunity for moving

load across processors. One metric to quantify the degree of load imbalance is the

coefficient of variation, defined to be the ratio of the standard deviation σ to the

mean µ. From Figure 7.11 (b), we can see that although the coefficient of variation

is substantially lower for all processor counts after repartitioning, the difference is not

as much for higher processors counts simply because of less opportunity to rebalance.

Figure 7.11 (c) shows the distribution of load across processors on a 192-core run on

Hopper. We see that without load balancing, there is a wide spread in work and

after applying repartitioning, a distribution closer to the ideal is achieved.

In addition to repartioning, Figure 7.11 also illustrates the difference between the

two work stealing strategies. For lower core counts, rand-k performs better, due to

the higher probability of finding work faster than hybrid.

For the same experiment, we show the breakdown of the various phases of parallel

90

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 96 192 384 768

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of PRM With Load Balancing Techniques
 using Walls Environment on Hopper

Without LB
Repartitioning

Hybrid WS
Rand-8 WS

(a)

 0.001

 0.01

 0.1

 1

 10

 96 192 384 768

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Number of processors

Coefficient of Variation of PRM
 using Walls Environment on Hopper

Before Repartitioning
After Repartitioning

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 r

oa
dm

ap
 n

od
es

Processor

Load Profile of PRM
 using Walls Environment on Hopper

Without LB
Repartitioning

Ideal

(c)

Figure 7.11: Evaluation of (a) execution time and (b) coefficient of variation and
(c) load distribution for PRM on Hopper.

 0

 500

 1000

 1500

 2000

 2500

 3000

 384 768 1536 3072

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of PRM With Load Balancing Techniques
 using Walls Environment on Hopper

Without LB
Repartitioning

Figure 7.12: Evaluation of computing roadmap in the walls environment for a rigid
body robot on Hopper

PRM in Figure 7.15 (a). As suspected, the portion of the computation connecting

roadmap nodes in a region dominates most of the computation at 90% of the total

execution time. After load balancing for both methods, the total time decreases,

mainly because of the decrease in node connection time. For repartitioning, there is

an increase in region connection time, which can be partially attributed to an increase

in remote accesses in the region connection phase, as shown in Figure 7.15 (b). This

is due to an increase in edge cuts, which was induced by repartitioning. The work-

stealing method performs better than the non-load-balanced run, but not as well as

repartitioning. We can see that the node connection phase does not improve to the

91

 0

 1000

 2000

 3000

 4000

 5000

 6000

 32 64 128 256

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of PRM With Load Balancing Techniques
 using Walls Environment on Opteron

Without LB
Repartitioning

Hybrid WS
Rand-8 WS

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of PRM With Load Balancing Techniques
 using Walls-45 Environment on Opteron

Without LB
Repartitioning

Hybrid WS
Rand-8 WS

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of PRM With Load Balancing Techniques
 using Free Environment on Opteron

Without LB
Repartitioning

Hybrid WS
Rand-8 WS

(c)

Figure 7.13: Execution time for PRM with various load balancing strategies in (a)
walls (b) walls-45 (c) and free environment.

extent of repartitioning, due to the random and non-exact nature of work-stealing

and various overheads involved. However, region connection was not affected to the

degree as shown with repartitioning because the method ultimately did not move

a large amount of regions and thus the number of edge cuts were not affected as

severely.

Figure 7.12 shows that the general trend shown in the previous analysis holds

for higher processor counts on Hopper. Similarly, Figure 7.13 demonstrates the

portability of these techniques to opteron-cluster.

Figure 7.14 provides a detailed breakdown for hybrid work-stealing illustrating

the number of tasks that were executed locally and the number of stolen tasks for

each processor. In Figure 7.14 (a), we see that a substantial number of underloaded

processors find work to be stolen and execute a large amount of stolen tasks. In

contrast, we find that at higher processor counts, such as those shown in Figure 7.14

(b), it becomes difficult for underloaded processors to find work to be stolen, as

the work per processor decreases and the pool of potential processors from which to

request increases. The figure shows that few processors are able to find work once

they have exhausted their local regions. Moreover, the amount of work available

92

 0

 50

 100

 150

 200

 250

 300

 350

 400
T

as
ks

 e
xe

cu
te

d

Processor

Distribution of Tasks Induced by Work Stealing on 96 Cores on Hopper

Stolen
Non-stolen

(a)

 0

 10

 20

 30

 40

 50

 60

T
as

ks
 e

xe
cu

te
d

Processor

Distribution of Tasks Induced by Work Stealing on 768 Cores on Hopper

Stolen
Non-stolen

(b)

Figure 7.14: Breakdown of the amount of tasks stolen vs. executed locally for PRM
on (a) 96 and (b) 768 cores on Hopper.

for stealing also decreases. Both these behaviors are expected for strong scaling

experiments.

7.5.3.2 Radial RRT

We also evaluated our load balancing techniques on the radial RRT parallel mo-

tion planning algorithm. As discussed in Section 7, it is difficult to estimate the

amount of work that a radial branch will compute due to the probabilistic and

dynamic nature of the algorithm. Thus, computing an effective partition for load

balancing is difficult and therefore, this study will focus on work stealing strategies

for radial subdivision.

Figure 7.16 shows the total execution time for computing the final RRT for a rigid

body robot in the narrow environment on opteron-cluster. Using the hybrid

work-stealing strategy allowed the algorithm to achieve a speedup of 1.65 times on

32 cores and a slight decrease in performance at 256 cores. A similar pattern of

decreasing marginal benefit of work-stealing from regular subdivision is exhibited in

this experiment. As with regular subdivision, the amount of available work to steal

per processor decreases as the number of processors increase, while the number of

93

 0

 100

 200

 300

 400

 500

 600

 700

 800

No LB Hybrid WS Rand-8 WS Repartitioning

E
xe

cu
tio

n
tim

e
(s

)

Method

Various Load Balancing Policies using Walls Environment
 at Fixed 192 Core Count on Hopper

Region Connection
Node Connection

Other

(a)

100

101

102

103

104

105

106

No LB Repart

R
em

ot
e

ac
ce

ss
es

Method

Effect of LB on Remote Accesses in Region Connection
 using Walls Environment at Fixed 768 Core Count on Hopper

Region Graph
Roadmap Graph

(b)

Figure 7.15: Breakdown of (a) the various phases of PRM (b) and the effect of load
balancing on remote accesses.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 32 64 128 256

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of Radial RRT With Load Balancing Techniques
 on CfgMixed2D Environment on Opteron

Without LB
Hybrid WS

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 32 64 128 256

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of Radial RRT With Load Balancing Techniques
 on CfgMixed2D-30 Environment on Opteron

Without LB
Hybrid WS

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 32 64 128 256

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Execution Time of Radial RRT With Load Balancing Techniques
 on Free Environment on Opteron

Without LB
Hybrid WS

(c)

Figure 7.16: Execution time for RRT with various load balancing strategies in (a)
mixed (b) mixed-30 (c) and free environment.

potential victims from which to steal also increases. For these reasons, work stealing

does not improve the total execution time to the same degree on higher core counts

as much it could when work was plentiful at lower processor counts.

94

8. ROADMAP QUALITY ANALYSIS

In this chapter, we evaluate and compare the quality and structure of roadmaps

constructed using our framework for parallelizing sampling-based motion planning

algorithms with roadmaps constructed using traditional sequential planners. Also,

we provide experimental results that show that motion planning problems involving

heterogenous environments are a natural fit for spatial subdivision based parallel

processing.

8.1 Evaluation Metrics

We start by presenting the evaluation metrics to be used in our experimental

study.

8.1.1 Edge Metrics

8.1.1.1 Number of Edges

We consider the number of edges generated for a roadmap graph to be an impor-

tant measure of the quality of the roadmap graph. In general, the number of edges is

indicative of the connectivity and structure of the roadmap graph. Roadmap graphs

with more edges tend to be better connected and are likely to have smaller diame-

ters. Therefore, it is important that we consider the number of edges as a primary

roadmap quality metric.

Given a roadmap graph G(V,E) of V vertices and a connection method that at-

tempts to connect the k closest or random neighbors to each vertex v ∈ V , an upper

bound on the number of edges E using a sequential planner is:

E = O(V ∗ k) (8.1)

95

Our proposed parallel algorithm will yield a roadmap graph with an upper bound

on the number of edges as:

E = O(V ∗ k + ER ∗ k′) (8.2)

where ER is the number of edges in the region graph and k′ is the number of

closest pair connections made between adjacent regions.

If the number of edges is a measure of roadmap quality, then we expect that the

roadmap generated using parallelism and spatial subdivision to be of higher quality

because:

O(V ∗ k + ER ∗ k′) > O(V ∗ k)∀ER > 1 (8.3)

In the above, we assume that each k or k′ identified neighbor or resulting edge

connection is unique. This may not be the case if the edges are not unique, a condition

which may occur if V is low and k or k′ is high. Typically, k is a constant and is

normally very low compared to V [15, 88], so our assumption is emperically valid.

Also, selecting unique random neighbors increases the possibility that the resulting

edge connection is unique. While selecting closest neighbors is the defacto standard

in motion planning algorithms, it is not uncommon to explore random neighbor

selection [25, 26, 13]. In fact, some studies have shown that random neighbor selection

does improve roadmap quality [88].

8.1.1.2 Edge Length

Edge length is a useful metric as it has the potential to affect the diameter of the

roadmap graph as well as the path length of a resulting query. Typically, shorter

edges are preferred but this is not always the case; it largely depends on the motion

planning problem. If we adopt the so called k nearest neighbor selection and edge

96

connection method, the intuition is that edges made by the subdivision approach are

likely to be longer compared to edges without subdivision. This is because of the

possibility that there would be closer neighbor(s) in another region. This issue can

be addressed by increasing the overlap distance between regions. Also, depending

on the neighbor selection policy chosen and the problem, the average edge length of

the region-based (parallel) roadmap graph should be shorter than the average edge

length of the roadmap generated using a sequential planner. This is because of the

closer proximity between nodes in the region-based roadmap graph.

8.1.2 Coverage and Connectivity Metrics

8.1.2.1 Coverage

Coverage is a measure of node distribution and reachability [89] of a roadmap

graph. Given a configuration c in Cfree F , we define coverage of c as the subset of

F that is visible from c:

Coverage(c) = ∀c′ ∈ F |visible(c, c′) = true (8.4)

The coverage of a set S = c1, c2,, cn can be defined as the union of the coverage

of the set elements:

Coverage(S) =
n⋃

i=1

Coverage(ci) (8.5)

The roadmap graph G(V,E) is said to cover the Cfree when each configuration

c ∈ Cfree can be connected using the local planner to at least one node v ∈ V [89].

The higher the coverage, the better the roadmap should be.

97

8.1.2.2 Connectivity

Connectivity is a measure of how well a roadmap graph is connected or how close

it is in representing the connectivity of the free space Cfree. One common way to

compute the connectivity of a graph is to define connections between a pair of nodes

(v, v′) in the graph. A pair of nodes is said to be connectible if a local planner could

find a path between them. The roadmap graph G(V,E) is said to be maximally

connected if for all pairs of nodes (v, v′) ∈ V , if there exists a path in Cfree between

v and v′, then there exists a path in G between v and v′ [89].

8.1.2.3 Number and Size of Connected Components

The number and size of the connected components (CC) is another useful metric,

particularly in our work in which the planning space is subdivided into regions and

regions are assigned to processors with the task of constructing roadmap in each

region. In this scenario, at best, without regional roadmap connection, we end up

with a number of connected components that equals the number of regions. Even so,

connecting the regional roadmaps must take place for complete solution. The number

and size of the resulting CCs after region connection is a good way to measure how

effective the region connection phase is as well as a measure of the overall quality

of the final roadmap. The number of connected components of the roadmap graph

should represent the topology of the underlying Cspace as much as possible. Typically,

the fewer the connected components the better the quality of the generated roadmap

graph.

98

8.1.3 Query Processing and Path Length

8.1.3.1 Witness Query Processing

While not a sufficient metric for evaluating the quality of roadmap, witness query

processing is still a common way to do such evaluation. The motion planning prob-

lem is considered solved when a movable object starting at an initial configurations

reaches its final or goal configuration. A practical way to validate this is to use the

witness query processing metric.

8.1.3.2 Witness Query Path Length

With every successful processing of a witness query, we could extract and compute

the path that takes a movable object to a specified goal position from a start position.

While different subdivision and processor counts may produce different path lengths

and results may be biased for every pair of witness queries, a shorter path length is

typically considered as resulting from a better roadmap.

8.1.4 Structural Metrics

8.1.4.1 Diameter

The diameter is an important metric to understanding the structure of the roadmap

graph. Commonly defined as the length of the shortest path between two extreme

nodes in a graph, the diameter of a graph gives us more insight into the underlying

changes in the roadmap graph construction. It is an indication of how long paths

in the roadmap graph would be. While it may be sufficient to keep track of the

diameter of the largest connected component in the graph sometimes it is useful to

track other connected components as well.

99

8.1.4.2 Average Shortest Path

The diameter tells us about the longest shortest path in a graph. It will be

useful to also know about the average of the shortest paths as well as their standard

deviation. This knowledge gives a form of balance in understanding the structural

differences between both the sequential and parallel roadmap graph. The diameter

tells us about the worst case scenario, the average shortest path tells us about the

average or expected behavior in querying the roadmap graph.

8.1.4.3 Page (Node) Rank

PageRank [90] is a popular algorithm for computing the relative importance of

nodes in a graph. It was made popular by web graphs but could be used with any

graph. PageRank (PR) or NodeRank is used here to understand how node or vertices

with higher ranks could impact the shortest path, diameter or the overall structural

properties of roadmap graph. A larger diameter could mean that there is a node of

higher PR on the critical path. This node then becomes a “must− pass− through”

in the graph and could become a bottleneck if a shorter path is desired.

8.2 Roadmap Graph Properties

Our framework for parallelizing sampling-based motion planning made no as-

sumption about the underlying sampling scheme, nearest neighbor search, local plan-

ning, connection method, or the sequential planner in general. In other words, our

proposed method inherits the probablistic completeness properties of the underlying

sequential planner. It is trivial to show that for two connected components in two

regions a RRT-Connect will find a path if one exists. The probabilistic completeness

of our framework then follows from the probabilistic completeness of RRT-Connect

[56].

100

However, it is expected that there will be structural differences in the roadmap

graph generated by the sequential planner and our spatial subdivision-based parallel

planner. The resulting roadmap graph structures will not be identical. The struc-

ture is impacted by both node (configuration) generation as well as the connection

between each configuration and its neighbors. The difference in node generation re-

sults from the fact that different processes will pick a random configuration in Cspace

differently, but this is not critical, since, for probabilistic completeness, how sampling

is done is not as important as the denseness of the sampling sequence [86]. The other

more important issue that impacts the structure of the graph is edge connection or

distribution. A critical component of the node connection phase of sampling-based

motion planning is the nearest neighbor search. The spatial subdivision affects how

neighbors are selected which then impacts the resulting edges and eventually the

structure of the graph. As an illustration, consider the picture shown in Figure 8.1a,

for the query point shown in red, the three nearest neighbors are shown in green. In

Figure 8.1b, the Cspace is now subdivided into two regions. Because of this subdivi-

sion, the three nearest neighbors points (in green) to the query point (in red) have

now changed. This change will impact the structure of the graph. Depending on the

environment and ratio of the sample set to the neighbor set, the resulting edges and

diameter could be longer or shorter.

For the two reasons highlighted above, therefore, the roadmap graph built by

concurrent processes exploring separate regions of the planning space cannot be

identical to the one built by a sequential planner with or without spatial subdivision.

101

1	 Region	

(a) 1 Region (b) 2 Regions

Figure 8.1: Impact of space subdivision on graph structure: For a given query point
(red), 3-nearest neighbors are shown in green. Selected neighbors differ as a result
of space subdivision.

8.3 Experimental Evaluation

8.3.1 Setup

Our experimental studies were carried out on a wide range of motion planning

problems as depicted in the environments shown in Figure 8.2. These environments,

represent the class of enviroments that are commonly used as motion planning bench-

mark. Unless otherwise stated, each experiment was averaged over five runs.

8.3.2 Experimental Results

8.3.2.1 Free Environment

Our first experiment was conducted in a free environment modelled as a 50 ×

30 × 50 unit box without obstacles as shown in Figure 8.2(a). The movable object

was a rigid cube robot of 2×1×2 units. For this experiment, we keep the number of

samples generated fixed at 800 nodes and the number of regions at 2 per processor

while varying the processor counts from 1 to 4. We also ran the same experiment

using the sequential planner. The result of this experiment is shown in Figure 8.3.

Each quality metric is normalized to its equivalent result using sequential planner.

102

(a) Free (b) 3D Clutter (c) 2D Clutter (d) Maze

Figure 8.2: Environments

For most of the metrics, we observed that the parallel roadmap graph is at par with

the sequential roadmap graph. The parallel graph has more edges than the sequential

which can be explained from the previous section that the roadmap graph generated

using our framework should theoretically have a higher upper bound in terms of

number of edges. The claim for more edges in the parallel graph is feasible in a

free environment where the probability of generating unique edges is higher. Also,

we observed that the average edge length in the parallel graph is lower compared

to the sequential graph. This is expected because the ratio of the sample size N to

the k nearest neighbor is reduced as compared to the sequential planner. A shorter

average edge length could also be a reason for a shorter path length, if the shorter

edges are in the path for the witness queries. We also observed that the sequential

planner generated a graph of smaller diameter compared to the parallel planner. This

observation led us to assert that even though both the sequential and the parallel

roadmap are closely related using different metrics, they are somewhat structurally

different.

To better understand the reason and the nature of these structural differences,

103

we compute the average and standard deviation of all the shortest paths. We expect

that the average shortest path will give a clearer picture than just computing the

approximate diameter (the longest of all the shortest paths). We also compute the

page rank for all the vertices in the graph to identify which are the most prominent

of all the vertices as we further subdivide the space. The results for both shortest

paths and page rank are shown in Figure 8.4 and Figure 8.5, respectively. Figure 8.4

shows that the overall average shortest paths reduces with an increase in regions,

similar, as to what was observed with the diameter evaluation. Figure 8.5 is a plot of

the page rank of each node (vertex) in the graph against the node (vertex) descriptor

for different numbers of regions in the subdvision. We observed that nodes in our

graph are ranked differently as we recursively subdivide the Cspace. This difference is

fundamental to the difference we observed in other metrics and among other things

impacts the structural difference in the graph. For instance, the diameter will be

different as the shortest path algorithms traverse the graph, i.e., the diameter could

be shorter or longer depending on the ranks of the nodes on the longest shortest

path. Figure 8.6 shows a frequency distribution of node (page) ranks for one and

four regions. We observed that the frequency distributions are not uniform. This

non-uniform distribution has a potential impact on the diameter of the graph and

the graph’s structural properties in general.

8.3.2.2 3D Clutter Environment

Our second experiment was conducted in a large uniformly cluttered enviroment

with dimensions 512 x 512 x 512 units. The environment has a total of 216 obsta-

cles, each of size 2 x 64 x 64 units as shown in Figure 8.2(b). In this experiment,

we are interested in understanding the quality of the parallel roadmap graph when

obstacles are present in an environment. Each of the evaluation metrics previously

104

Figure 8.3: Quality evaluation in free environment

discussed were evaluated against the roadmap graph generated using sequential plan-

ner. Similar to the previous experiment, we fixed the sample size at 800 nodes, 2

regions per processor and varied the number of processor counts from 1 to 4. We ob-

served that most quality evaluation metrics for both sequential and parallel (almost)

matched. The parallel planner mapped the space with a single connected compo-

nent that equals the graph size. The sequential computed a roadmap that has two

connected components one with 799 nodes and the other a singleton. The parallel

graphs also have more edges compared to the sequential graphs. We observed that

the diameter of the parallel graphs are much longer than the sequential graphs. One

way to explain this could be that there are longer edges in the longest shortest path

of the parallel roadmap graphs compared to sequential roadmap graphs. This could

be a fair assumption as our experiment shows that while the average edge lengths of

both graphs are almost the same, the maximum edge length of parallel graph ranges

from 2.6 times (2.6x) to 4.6 times (4.6x) the sequential graph.

105

Figure 8.4: Relationship between diameter and average shortest paths

8.3.2.3 2D Clutter Environment

We conducted another experiment in a 2D clutter environment (shown in Fig-

ure 8.2(b)). We observed similarity in most of the evaluation metrics comparing the

parallel and sequential graphs. Results from our experiment are shown in Figure 8.8.

The noticeable exceptions are in the diameter, and the number and size of the con-

nected components. While there is a close similarity in the diameter of the largest

connected components, we observed that the sum of the diameters of the parallel

roadmap graph is at most 1.9 times (1.9x) that of the sequential roadmap graph.

Even though the average edge lengths for the parallel and the sequential graph are

closely matched, we observed that the maximum edge length of the parallel graph

is about 3 times (3x) that of the sequential graph, this observation could possibly

explain the difference in the sum of the diameters for both graphs. Both sequential

and parallel planners were successful in solving the witness queries. However, we

106

Figure 8.5: Page (vertex) rank for different region subdivision

observed that in most cases, the parallel planner found better or shorter paths than

the sequential planner. Pictures of paths produced by both planners are shown in

Figure 8.9 and Figure 8.10.

8.3.2.4 Maze Environment

The next environment we studied was a 3D maze environment shown in Fig-

ure 8.2(d). Similar to the previous experiments, we kept the number of samples

generated fixed at 800 nodes, the number of regions at 2 per processor and varied

the processors counts from 1 to 4. The results for each metric were normalized against

results from sequential planner as shown in Figure 8.11. We observed that for many

of the evaluation metrics, the results are similar to or at par with roadmaps gener-

ated by the sequential planner. Both parallel and sequential planners built graphs

with similar coverage, connectivity, and with the ability to solve witness queries. The

107

Figure 8.6: Page (vertex) rank distributions for 1 and 4 regions

observable differences are in the number and size of the connected components as

well as the diameter of the graphs. The parallel graph made 1.5 times (1.5x) to 2.5

times (2.5x) the number of connected components (CCs) compared to the sequential

planner. However, the size of the largest CC varies a little more on 4 processors and

a little less on 2 processors. Given that there is more than one CC for both sequential

and parallel graphs, we evaluate the diameter of the graph for both the largest con-

nected component (max diameter) and the sum of the diameter for all non-singleton

connected components. We observed that the roadmap graphs generated using our

subdivision based parallel processing framework have larger diameters. In a diffi-

cult environment such as the 3-D maze we could reduce the number of connected

components using other region connection methods that are known to work well in

108

Figure 8.7: Quality evaluation in 3D clutter environment

expanding connected components in difficult environment.

8.4 Heterogeneous Environment: A Natural Fit for Spatial Subdivision and

Parallelism

The heterogeneous environment underscores the importance of motion planning

in a real-world scenario. Most realistic environments for motion planning prob-

lems are not homogenous. Rather, they are composed of subproblems that may

be homogeneous. These types of heteregenous environments are a natural fit for

our proposed framework in which we subdivide the planning space into regions,

assign the regions to processors to work on as subproblems and then combine so-

lutions to each subproblems, to form a solution for the entire problem. As dis-

cussed in the related work section in Chapter 2, there have been many differ-

ent motion planning algorithms that extend the original basic planning algorithms

[42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. These algorithms focus on dealing

with particular instances of motion planning problems using different heuristics. For

109

Figure 8.8: Quality evaluation in 2D clutter environment

(a) Sequential (b) P1 (c) P2 (d) P4

Figure 8.9: Paths for (a) sequential planner, and (b-d) parallel planner at different
processor counts

instance, obstacle-based PRM (OBPRM) [42, 46] uses information about the ob-

stacle space to deal with narrow passage problems or medial-axis PRM (MAPRM)

[43] is effective when clearance from obstacles is needed. Likewise, many studies

have considered region identification and adaptive planning [64]. Adaptive planning

identifies and maps appropriate sampling techniques to a region of an heterogenous

enviroment. Other approaches have also explored hybrid planning [91] in such a way

that existing planners are combined when needed to provide a better solution.

We leverage the idea of region classification and adaptive planning to underline

110

(a) Sequential (b) P1 (c) P2 (d) P4

Figure 8.10: Roadmap and paths for (a) sequential planner, and (b-d) parallel plan-
ner at different processor counts

Figure 8.11: Quality evaluation in maze environment

the significance of our framework. The idea of adaptive sampling which researchers

have proposed over the years will find usefulness in our spatial subdivision parallel

framework. Problems involving heterogeneous environments are a natural fit for

our proposed framework; such problems are large-scale and are suitable for any

spatial subdivision method such as proposed in this dissertation. Moreover, using

our approach on a large-scale heterogeneous problems benefits from the scalability

that is possible parallel processing.

111

8.4.1 Adaptive Sampling and Connection

We apply the work in [64, 34] to identify regions so as to map appropriate samplers

to a region and to also adaptively select appropriate neighbor selection method for

node connection in a region. In Algorithm 17, we show a modified version of the

original algorithm presented in Chapter 4. The overall approach is still essentially the

same but differs in two ways. First, a region classification process is inserted between

region construction and roadmap construction. Second, the roadmap construction

now uses an adaptive node connection (ANC) algorithm [34] for node connection.

Sequel to region graph construction and prior to roadmap construction, we classify

each region as either free, blocked, narrow, surface, transition or unknown. As part

of region classification, we map an appropriate sampling method to the region based

on the region type. This sampling method will be used in constructing a regional

roadmap in the regional roadmap construction phase.

Algorithm 17 Parallel Sampling-Based Motion Planning with Region Classification

Input: Region graph R(V,E).
Output: Roadmap graph G

1: for all v ∈ V par do
2: sampler ← ClassifyRegion(v)
3: end for
4: for all v ∈ V par do
5: G← ConstructRegionalRoadmap(v, vsampler)
6: end for
7: for all e ∈ E par do
8: G← ConnectRegionalRoadmap(esource, etarget)
9: end for

To identify a given region, we applied the entropy-based region classification

model proposed in [64]. The entropy-based model classifies a region based on a

112

measure of disorder of the training sample (configuration) in the region. This measure

is based on a validity test of the training samples. Each region could be potentially

classified to have high or low entropy. For instance, regions containing samples that

are completely free (valid) or completely blocked (invalid) are considered to have low

entropies. Regions with a mixture of both free and blocked samples are considered

to have high entropies. Regions with high entropies are also likely to be classified as

narrow, transition or surface. Further refinement may be required in most cases and

this could involve further sampling beyond initial coarse sampling before a decision

on type or class of a region is made. This refinement improves the fidelity of the

classifier.

8.4.2 Experimental Results

In this section, we present experimental results that show the significance of the

parallel spatial subdivision planning for heterogenous environments. The environ-

ments used in this experiment are shown in Figure 8.12. Each of the environments

shown is a combination or mixture of different homogeneous environments rang-

ing from free, clutter, narrow passage and blocked. In the 2D environment (Fig-

ure 8.12(a)), a rod-like robot must traverse a series of free, narrow and cluttered

(a) 2D (b) 3D

Figure 8.12: Heterogeneous environments

113

environments starting from the bottom left to the top left. In the 3D environment

(Figure 8.12(b)), a large spinning (spherical) robot would also have to traverse a

series of narrow passages and cluttered environments starting from the bottom left

to the top right of the environment.

For the experiments reported here, we subdivide the environments into 16 re-

gions and apply the region classification algorithm to classify each region and map

a suitable sampler to each region. Figure 8.13 shows a plot of the number of regions

that uses a particular sampler for both the 2D environment and 3D environment.

Information about the sampler to use is stored as part of the region properties in the

region graph. This information is later used in the regional roadmap construction

phase. From Figure 8.13, we observe that the region classifier does in fact return

more than one sampling strategy for the heterogenous environment.

Figure 8.13: Region classification : number of regions per sampler for both 2D and 3D
heterogenous environments

We evaluate the quality of the roadmap constructed using our framework with

114

roadmaps constructed by the sequential algorithms. In comparing with the sequential

planner, we used each of the three sampling strategies that is contained in set of

samplers for parallel planners (e.g., Uniform PRM (UniformPRM), Obstacle-based

PRM (OBPRM), and Medial-axis PRM (MAPRM)). Our approach (PSBMP) used

all of the sampling strategies in an adaptive manner (i.e., it adaptively selects which

sampler is appropriate for each region). In the node connection phase, the adaptive

node connection strategy (ANC) was used. The adaptive node connection strategy

adaptively selects an appropriate connector for each region after it has “learnt” which

connector is suitable for the region.

In the 2D environment, we observed a superior performance of our approach

(PSBMP) across almost all metrics in comparison to the sequential versions. The

reason for this superior performance can be explained in two ways. First, mapping an

appropriate node generation method to each region improves the quality of samples

generated because of the inherent advantage of applying an appropriate node genera-

tion method for the region. The second issue is the benefit of using an adaptive node

connection (ANC) method. This benefit comes from the fact that the heterogeneous

environment is already subdivided into almost homogeneous regions. Therefore, it

was easier for ANC to quickly learn an appropriate connector for the region leading

to an increase in the number of edges and better connectivity. This is not the case

with the sequential planner without spatial subdivision, thus the learning process

using the sequential planner without subdivision incurs more penalty than reward

leading to possibly lower edge counts and relatively poor connectivity. The result

from this experiment is shown in Figure 8.14. From the figure, we observe that our

approach (PSBMP) made more edges than Uniform PRM and OBPRM, and fewer

connected components than OBPRM and MAPRM. Our approach has better con-

nectivity because the connected component with largest size is about 1/8 less than

115

the graph size of 1600 nodes. This is not the case with other methods. The size of

the largest connected component in the roadmap constructed using PSBMP is 1.8

times (1.8x), 6 times (6x), and 4 times (4x) that of roadmaps constructed using Uni-

form PRM, OBPRM and MAPRM, respectively. PSBMP produces roadmap graphs

with better connectivity and shorter diameter than the other methods. We observed

the same trend in the 3D environment (results shown in Figure 8.15), except that

MAPRM is now more competitive compared to what we saw in the 2D environment.

Still, our results indicate that PSBMP has superior performance across all metrics

of interest in both 2D and 3D heterogeneous environments.

Figure 8.14: Quality evaluation in 2D heterogenous environment

116

Figure 8.15: Quality evaluation in 3D heterogenous environment

117

9. CONCLUSION

The need for solving large problems within an acceptable time frame is at the

center of demand for parallel computing. Numerous areas of computing and various

applications now require such solutions. One such area is motion or path planning.

While motion planning has its roots in robotics, it now finds applications in other

areas of scientific computing including protein folding, minimally-invasive surgical

planning and drug design and virtual prototyping and computer-aided design. These

application areas test the limit and capability of existing sequential motion planners,

motivating the need for methods that can exploit parallel processing.

In this dissertation, we present a scalable framework for parallelizing sampling-

based motion planning algorithms. Central to our method is the novel subdivision of

the planning space into regions and an abstraction of the relationship between regions

called a region graph R(V,E). The vertices, V , of the region graph represent the

regions and the edges, E, represent adjacencies between regions. Having subdivided

the planning space into regions, each region is assigned to a processor to work on

independently (and in parallel) as a subproblem. The task or subproblem for each

processor is to build a roadmap (graph) or tree approximating the topology of the

planning space. Solutions to the subproblems are later combined to form a solution to

the entire problem. This combination is facilitated using the region graph. The region

graph is the enabling infrastructure facilitating the process of connecting the region

roadmaps as it aids identification of adjacent regions between which connections are

attempted.

By subdividing the planning space and restricting the locality of connection at-

tempts, we reduce the work and inter-processor communication associated with near-

118

est neighbor calculation, thus enabling scalable results and better performance com-

pared to previous methods. In addition, we address the problem of load balancing

in complex planning spaces. In addressing the load balancing problems, we applied

standard load balancing techniques based on data-structure redistribution and work

stealing and show the effectiveness of the two techniques at alleviating load balancing

problems that arise at scale. Furthermore, we carried out an experimental evalua-

tion of our framework to study the structural differences of the resulting roadmaps

in comparison to those produced by sequential planners, and the impact of these

differences on the solutions to motion planning problems.

Unlike previous work, the work presented in this dissertation covers the two

broad classes of sampling-based motion planning: the graph-based (e.g., probabilis-

tic roadmap method (PRM)) and the tree-based (e.g., rapidly-exploring random

tree (RRT)) methods. Although we used a general framework, we explored different

planning space subdivision approaches suitable for the two classes of sampling-based

motion planning. We provide both theoretical and empirical proof of scalable and su-

perior performance compared to previous methods. We present experimental results

obtained from our studies of a wide range of motion planning problems utilizing

different parallel architectures; ranging from small-scale linux clusters to an IBM

Power5+ machine to Cray XE6 petascale machine. In particular, we show that our

proposed method results in a more scalable and load-balanced computation on a

single-node with 8 cores up to a distributed shared-memory of 3000+ cores.

Future work will extend our current approach such that we can more efficiently

handle more complex environments and attempt higher dimensional problems. In

the future, we would also like to explore parallel algorithms for dealing with motion

planning under uncertainty, motion planning in dynamic environments, and parallel

algorithms to handle both motion and task planning in a single framework. While

119

these areas are currently being explored in the sequential domain, it will be worth-

while to explore parallel algorithms that could deal with these problems in an efficient

manner.

120

REFERENCES

[1] M. Apaydin, A. Singh, D. Brutlag, and J.-C. Latombe, “Capturing molecular

energy landscapes with probabilistic conformational roadmaps,” in Proc. IEEE

Int. Conf. Robot. Autom. (ICRA), 2001, pp. 932–939.

[2] N. M. Amato and G. Song, “Using motion planning to study protein folding

pathways,” J. Comput. Biol., vol. 9, no. 2, pp. 149–168, 2002, Special issue of

Int. Conf. Comput. Molecular Biology (RECOMB) 2001.

[3] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato, “Using motion

planning to study RNA folding kinetics,” in Proc. Int. Conf. Comput. Molecular

Biology (RECOMB), 2004, pp. 252–261.

[4] J. C. Latombe, “Motion planning: A journey of robots, molecules, digital

actors, and other artifacts,” Int. Journal of Robotics Research, vol. 18, no. 11,

pp. 1119–1128, 1999.

[5] A. P. Singh, J.-C. Latombe, and D. L. Brutlag, “A motion planning approach

to flexible ligand binding,” in Int. Conf. on Intelligent Systems for Molecular

Biology (ISMB), 1999, pp. 252–261.

[6] O. B. Bayazit, G. Song, and N. M. Amato, “Ligand binding with OBPRM and

haptic user input: Enhancing automatic motion planning with virtual touch,”

in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001, pp. 954–959, This work

was also presented as a poster at RECOMB 2001.

[7] G. Song and N. M. Amato, “Using motion planning to study protein folding

pathways,” in Proc. Int. Conf. Comput. Molecular Biology (RECOMB), 2001,

pp. 287–296.

121

[8] L. Kavraki and J. C. Latombe, “Randomized preprocessing of configuration

space for fast path planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

1994, pp. 2138–2145.

[9] Y. Koga, K. Kondo, J. Kuffner, and J. Latombe, “Planning motions with

intentions,” in Proc. ACM SIGGRAPH, 1995, pp. 395–408.

[10] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Better flocking behaviors using

rule-based roadmaps,” in Proc. Int. Workshop on Algorithmic Foundations of

Robotics (WAFR), Dec 2002, pp. 95–111.

[11] H. Chang and T. Y. Li, “Assembly maintainability study with motion planning,”

in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1995, pp. 1012–1019.

[12] O. B. Bayazit, G. Song, and N. M. Amato, “Enhancing randomized motion

planners: Exploring with haptic hints,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), 2000, pp. 529–536.

[13] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap of trees for

large-scale motion planning,” IEEE Transactions on Robotics and Automation,

vol. 38, pp. 793–884, 2005.

[14] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in Proc.

IEEE Symp. Foundations of Computer Science (FOCS), San Juan, Puerto Rico,

October 1979, pp. 421–427.

[15] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and

Implementations, MIT Press, Cambridge, MA, June 2005.

[16] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

122

Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, August 1996.

[17] S. Thomas, G. Tanase, L. K. Dale, J. M. Moreira, L. Rauchwerger, and N. M.

Amato, “Parallel protein folding with STAPL,” Concurrency and Computation:

Practice and Experience, vol. 17, no. 14, pp. 1643–1656, 2005.

[18] M. Gini, “Parallel search algorithms for robot motion planning,” Workshop

on Practical Motion Planning in Robotics: Current Approaches and Future

Directions, IEEE Conference on Robotics and Automationificial Intelligence,

1996.

[19] P.Isto, “A two level search algorithm for motion planning,” in Proceedings

International Conference on Advanced Robotics, pp. 2025–2031, 1997.

[20] P.Isto, “A parallel motion planner for systems with many degrees of freedom,”

in Proceedings International Conference on Advanced Robotics, pp. 339–344,

2001.

[21] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrass-

ingly parallel,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1999, pp.

688–694.

[22] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,” in Proc.

Italian Assoc. AI, 2002, pp. 834–841.

[23] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the RRT

and the RRT*,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), 2011.

[24] D. Devaurs, T. Simeon, and J. Cortes, “Parallelizing RRT on distributed-

memory architectures,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2011.

[25] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki,

“Probabilistic roadmaps of trees for parallel computation of multiple query

123

roadmaps,” in Proceedings of International Symposium on Robotics Research,

Sienna, Italy, October 2003.

[26] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki, “Sampling-

based roadmap of trees for parallel motion planning,” IEEE Trans. Robot.

Automat., 2005.

[27] S. A. Jacobs and N. M. Amato, “From days to second: Scalable parallel al-

gorithms for motion planning,” in ACM Student Research Compet, Conf. on

High Performance Computing, Networking, Storage and Analysis Companion

Proceedings, Seattle, WA, USA, 2011, SC ’11.

[28] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Amato, “A

scalable method for parallelizing sampling-based motion planning algorithms,”

in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2012.

[29] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, “A

scalable distributed RRT for motion planning.,” in Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), 2013.

[30] E. Plaku and L. Kavraki, “Distributed computation of the knn graph for large

high-dimensional point sets,” Journal of Parallel and Distributed Computing,

vol. 67, no. 3, 2007.

[31] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search using

gpu,” in CVPR Workshop on Computer Vision on GPU, Anchorage, Alaska,

USA, 2008.

[32] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” in Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), 1999, pp. 473–479.

124

[33] A. Fidel, S. A. Jacobs, S. Sharma, N. M. Amato, and L. Rauchwerger, “Us-

ing load balancing to scalably parallelize sampling-based motion planning algo-

rithms,” in Proc. International Parallel and Distributed Processing Symposium

(IPDPS), Phoenix, Arizona, USA, May 2014.

[34] C. Ekenna, S. A. Jacobs, S. Thomas, and N. M. Amato, “Adaptive neighbor

connection for prms: A natural fit for heterogeneous environments and paral-

lelism,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), November 2013, pp.

1–8.

[35] C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato, “Blind

RRT: A probabilistically complete distributed RRT,” in Proc. IEEE Int. Conf.

Intel. Rob. Syst. (IROS), November 2013.

[36] I. Al-Bluwi, T. Simeon, and J. Cortes, “Motion planning for molecular simula-

tions; a survey,” Computer Science Review, vol. 6, no. 4, pp. 125–143, 2012.

[37] T. Horsch, F. Schwarz, and H. Tolle, “Motion planning for many degrees of

freedom – random reflections at c-space obstacles,” in Proc. IEEE Int. Conf.

Robot. Autom. (ICRA), 1994, pp. 3318–3323.

[38] K. K. Gupta and Z. Guo, “Motion planning for many degrees of freedom:

Sequential search with backtracking,” IEEE Trans. Robot. Automat., vol. 11,

no. 6, pp. 897–906, 1995.

[39] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configu-

ration spaces,” Int. J. Comput. Geom. & Appl., pp. 495–517, 1999.

[40] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, “Choosing

good distance metrics and local planners for probabilistic roadmap methods,”

IEEE Trans. Robot. Automat., vol. 16, no. 4, pp. 442–447, August 2000.

125

[41] J. Denny and N. M. Amato, “The toggle local planner for sampling-based

motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), St. Paul,

Minnesota, USA, May 2012, pp. 1779–1786.

[42] Y. Wu, “An obstacle-based probabilistic roadmap method for path planning,”

M.S. thesis, Department of Computer Science, Texas A&M University, 1996.

[43] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A probabilistic

roadmap planner with sampling on the medial axis of the free space,” Tech.

Rep. TR98-022, Dept. of Computer Science, Texas A&M University, College

Station, TX, Nov 1998.

[44] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sampling

strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), May 1999, vol. 2, pp. 1018–1023.

[45] J. Denny and N. M. Amato, “Toggle PRM: Simultaneous mapping of C-free

and C-obstacle - a study in 2D -,” in Proc. IEEE Int. Conf. Intel. Rob. Syst.

(IROS), San Francisco, California, USA, Septempber 2011, pp. 2632–2639.

[46] H.-Y. C. Yeh, S. Thomas, D. Eppstein, and N. M. Amato, “UOBPRM: A

uniformly distributed obstacle-based PRM,” in Proc. IEEE Int. Conf. Intel.

Rob. Syst. (IROS), Vilamoura, Algarve, Portugal, 2012, pp. 2655–2662.

[47] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive config-

uration spaces,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1997, pp.

2719–2726.

[48] N. M. Amato and Y. Wu, “A randomized roadmap method for path and ma-

nipulation planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1996,

pp. 113–120.

126

[49] R. Bohlin and L. E. Kavraki, “Path planning using Lazy PRM,” in Proc. IEEE

Int. Conf. Robot. Autom. (ICRA), 2000, pp. 521–528.

[50] L. Guibas, C. Holleman, and L. Kavraki, “A probabilistic roadmap planner

for flexible objects with a workspace medial-axis-based sampling approach,” in

Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), 1999, vol. 1, pp. 254–259.

[51] M. H. Overmars and P. Švestka, “A probabilistic learning approach to motion

planning,” in Algorithmic Foundations of Robotics. A. K. Peters, Wellesley,

MA, 1995.

[52] J. Denny, K. Shi, and N. M. Amato, “Lazy toggle PRM: A single-query ap-

proach to motion planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

Karlsruhe, Germany, May 2013, pp. 2407–2414.

[53] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” International Journal of Robotics Research (IJRR), vol. 30, pp. 846–

894, 2011.

[54] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int. J.

Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[55] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and

prospects,” in New Directions in Algorithmic and Computational Robotics, pp.

293–308. A. K. Peters, 2001, book contains the proceedings of the International

Workshop on the Algorithmic Foundations of Robotics (WAFR), Hanover, NH,

2000.

[56] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-

query path planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000,

pp. 995–1001.

127

[57] S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based

rapidly-exploring random tree,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), 2006.

[58] D. Henrich, “Fast motion planning by parallel processing - a review,” Journal

of Intelligent and Robotic Systems, vol. 20, no. 1, pp. 45–69, 1997.

[59] Y. K. Hwang and N. Ahuja, “Gross motion planning – a survey,” ACM Com-

puting Surveys, vol. 24, no. 3, pp. 219–291, 1992.

[60] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configuration

space for findpath with rotation,” in Proc. Int. Conf. Artif. Intel., 1983, pp.

799–806.

[61] L. Zhang, Y. Kim, and D. Manocha, “A hybrid approach for complete motion

planning,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2007, pp. 7–14.

[62] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato, “A ma-

chine learning approach for feature-sensitive motion planning,” in Algorithmic

Foundations of Robotics VI, pp. 361–376. Springer, Berlin/Heidelberg, 2005,

book contains the proceedings of the International Workshop on the Algorith-

mic Foundations of Robotics (WAFR), Utrecht/Zeist, The Netherlands, 2004.

[63] M. A. Morales A., L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato, “C-

space subdivision and integration in feature-sensitive motion planning,” in Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), April 2005, pp. 3114–3119.

[64] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “(RESAMPL): A region-

sensitive adaptive motion planner,” in Algorithmic Foundation of Robotics VII,

pp. 285–300. Springer, Berlin/Heidelberg, 2008, book contains the proceed-

128

ings of the International Workshop on the Algorithmic Foundations of Robotics

(WAFR), New York City, 2006.

[65] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou, “Cilk: an efficient multithreaded runtime system,” in Proceedings

of the fifth ACM SIGPLAN symposium on Principles and practice of parallel

programming, New York, NY, USA, 1995, PPOPP ’95, pp. 207–216, ACM.

[66] Intel, Reference Manual for Intel Threading Building Blocks, version 1.13, 2009.

[67] T. El-Ghazawi and L. Smith, “Upc: unified parallel c,” in Proceedings of the

2006 ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006,

SC ’06, ACM.

[68] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations

by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sept. 1999.

[69] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: a scalable locality-aware

adaptive work-stealing scheduler for multi-core systems,” in Proceedings of

the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, New York, NY, USA, 2010, PPoPP ’10, pp. 341–342, ACM.

[70] S. jai Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on manycore

clusters,” in In Fifth Conference on Partitioned Global Address Space Program-

ming Models, 2011.

[71] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: an Object-Oriented Approach to Non-

Uniform Cluster Computing,” in Annual ACM SIGPLAN Conf. on Object-

Oriented Programming, Systems, Languages, and Applications, New York, NY,

USA, 2005, pp. 519–538, ACM Press.

129

[72] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng,

“Uts: an unbalanced tree search benchmark,” in Proceedings of the 19th inter-

national conference on Languages and compilers for parallel computing, Berlin,

Heidelberg, 2007, LCPC’06, pp. 235–250, Springer-Verlag.

[73] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The Cascade High Productiv-

ity Language,” in The Ninth Int. Workshop on High-Level Parallel Programming

Models and Supportive Environments, Los Alamitos, CA, USA, 2004, vol. 26,

pp. 52–60.

[74] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object ori-

ented system based on C++,” SIGPLAN Not., vol. 28, no. 10, pp. 91–108,

1993.

[75] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, “Zoltan

data management services for parallel dynamic applications,” Computing in

Science and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[76] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme for

irregular graphs,” in Proceedings of the 1996 ACM/IEEE conference on Su-

percomputing (CDROM), Washington, DC, USA, 1996, Supercomputing ’96,

IEEE Computer Society.

[77] C. Walshaw and M. Cross, “JOSTLE: Parallel Multilevel Graph-Partitioning

Software – An Overview,” in Mesh Partitioning Techniques and Domain De-

composition Techniques, F. Magoules, Ed., pp. 27–58. Civil-Comp Ltd., 2007,

(Invited chapter).

[78] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas, X. Xu,

M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL pView,” in

Int. Workshop on Languages and Compilers for Parallel Computing (LCPC),

130

in Lecture Notes in Computer Science (LNCS), Houston, TX, USA, September

2010.

[79] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase,

N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger, “STAPL:

Standard template adaptive parallel library,” in Proc. Annual Haifa Experi-

mental Systems Conference (SYSTOR), New York, NY, USA, 2010, pp. 1–10,

ACM.

[80] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauch-

werger, “A framework for adaptive algorithm selection in STAPL,” in Proc.

ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPoPP), Chicago, IL, USA,

2005, pp. 277–288, ACM.

[81] S. Saunders and L. Rauchwerger, “ARMI: an adaptive, platform independent

communication library,” in Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog.

(PPoPP), San Diego, California, USA, 2003, pp. 230–241, ACM.

[82] D. Musser, G. Derge, and A. Saini, STL Tutorial and Reference Guide, Second

Edition, Addison-Wesley, 2001.

[83] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, “The stapl parallel

graph library,” in Languages and Compilers for Parallel Computing, Lecture

Notes in Computer Science, pp. 46–60. Springer Berlin Heidelberg, 2012.

[84] M. Morales, S. Rodriguez, and N. M. Amato, “Improving the connectivity of

PRM roadmaps,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), September

2003, vol. 3, pp. 4427–4432.

[85] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

131

[86] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations

of probabilistic roadmap planning,” Int. J. Robot. Res., vol. 25, pp. 627–643,

July 2006.

[87] S. Chung and A. Condon, “Parallel implementation of boruvka’s minimum

spanning tree algorithm,” Parallel Processing Symposium, International, vol. 0,

pp. 302, 1996.

[88] T. McMahon, S. Jacobs, B. Boyd, L. Tapia, and N. M. Amato, “Local random-

ization in neighbor selection improves prm roadmap quality,” in Proc. IEEE

Int. Conf. Intel. Rob. Syst. (IROS), 2012.

[89] R. Geraerts, “Sampling-based motion planning: Analysis and path quality,”

Ph.D. thesis, Utrecht University, 2006.

[90] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search

engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117, 1998.

[91] D. Hsu, G. Sánchez-Ante, and Z. Sun, “Hybrid PRM sampling with a cost-

sensitive adaptive strategy,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

2005, pp. 3885–3891.

132

