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ABSTRACT 

 

 Fluorescence lifetime imaging microscopy (FLIM) is a noninvasive invasive 

optical imaging modality which is finding new applications in medical imaging. In 

FLIM, the fluorescence time decay is measured at a pixel. The fluorescence impulse 

response function (IRF) is then estimated using a deconvolution of the instrument 

response and the measured fluorescence time decay. Two of the challenges facing FLIM 

are speed of the deconvolution and the accuracy of the IRFs. 

The linear expansion of the fluorescence decays based on the orthonormal 

Laguerre basis functions (LBFs) is among the fastest methods for estimating the IRFs. 

The automated implementation to optimize the Laguerre parameter improves the speed 

of the deconvolution using the LBFs but uses a global optimization. Therefore, the IRFs 

do not necessarily mimic exponential time decays, or monotonically decreasing 

functions. On the other hand, applying a constraint to the LBFs using the Active Set 

Nonnegative Least Squares (NNLS) method improves the IRF estimation. The 

estimation of the Laguerre parameter using the NNLS method, however, is about 10-15x 

slower. By combining these two deconvolution techniques, we found that the 

deconvolution time is similar to the automated global Laguerre parameter deconvolution 

while the IRF estimation always results in a monotonically decreasing function. 
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NOMENCLATURE 

 

FLIM Fluorescence Lifetime Imaging Microscopy 

IRF Impulse Response Function 

FWHM Full-Width Half-Max 

BP Bandpass Filter 

B[a]P Benza[a]pyrene 

SCC Squamous Cell Carcinoma 

LBFs Laguerre Basis Functions 

n Derivative Order 

OLS Ordinary Least-Squares Fitting 

CLS-n n-th Derivative Constrained Least-Squares Fitting 

���� � Optimized Using the Linear Least-Squares Fitting Laguerre 

Method 

������ � Optimized Using an Iterative Method for the n-th Derivative 

Constrained Least-Squares Fitting Laguerre Method 

Modified OLS-n Method Combining the Ordinary Least-Squares Fitting and n-th 

Derivative Constrained Least-Squares Fitting Laguerre Methods 
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1. INTRODUCTION 

  

 

Multispectral fluorescence lifetime imaging (multispectral FLIM) has gained 

recognition over the last decade as a noninvasive optical imaging modality but with only 

limited applications in clinical imaging [1-5]. Many of the limitations have been 

addressed and improved upon within the last decade [6-9], but some limitations still 

remain. One of these limitations is the improper deconvolution of the fluorescence 

decays within the data set. We aim to address this issue by constraining the 

deconvolution method for the analysis of Fluorescence Lifetime Imaging Microscopy 

(FLIM) data for better fitting and decays while minimizing the time required for 

processing. 

In time-domain FLIM, the recorded decay at a given pixel of the FLIM image 

can be mathematically modeled as a convolution of the instrument response with the 

Impulse Response Function (IRF) of the sample at that pixel (Fig. 1). Therefore, in order 

to estimate the IRF, the instrument response must be deconvolved from the recorded 

fluorescence decay, which has intrinsic system noise added (Fig. 2). 

 



 

 

Figure 1: Example of Convolution. The instrument response is convolved with the IRF, resulting in 

 

Figure 2: Example of Deconvolution. The

Resulting in a More Complex 

 

 

Among the most common deconvolution techniques are functions which model 

the IRF as a multi-exponential decay and estimates the lifetime and amplitude 

parameters iteratively [10] and functions which use a stretched exponential function 

[11].  Both techniques use a non

priori knowledge about the modeled exponentials.

methods demand user intervention and are computationally expensive.

result in time-consuming method

relevant, applications. 
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Example of Convolution. The instrument response is convolved with the IRF, resulting in 

the recorded fluorescence decay. 

 

Example of Deconvolution. The Measured Fluorescence Decay is Noise

Resulting in a More Complex Deconvolution Process. 

Among the most common deconvolution techniques are functions which model 

exponential decay and estimates the lifetime and amplitude 

] and functions which use a stretched exponential function 

].  Both techniques use a non-linear least squares optimization and require some 

knowledge about the modeled exponentials. Similarly, most of the existing 

demand user intervention and are computationally expensive. These 

consuming methods which cannot be used for real-time, or clinically 

 

 

Example of Convolution. The instrument response is convolved with the IRF, resulting in 

 

Measured Fluorescence Decay is Noise-Corrupted, 

Among the most common deconvolution techniques are functions which model 

exponential decay and estimates the lifetime and amplitude 

] and functions which use a stretched exponential function 

linear least squares optimization and require some a 

Similarly, most of the existing 

These aspects 

time, or clinically 
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Recently, FLIM deconvolution methods based on the linear expansion of the 

fluorescence decays on a set of orthonormal Laguerre functions have gained popularity 

[12-16]. An automated FLIM time-deconvolution method exists also based on the 

Laguerre method to optimize one of parameters, which results in a reduction of the 

required computation time [7]. The method estimates the expansion coefficients on all 

pixel decays using only one iteration and a linear least-square estimation, performing at 

least two orders of magnitude faster. The method uses an a priori number of 

orthonormal bases and optimizes the decay rate, referred to as the Laguerre parameter. 

However, the method is a global optimization and as such uses the entire data set. The 

global optimization achieves optimal fitting for the majority of the IRFs in the data set 

but with the possibility of local spatial area abnormalities. To overcome this limitation, 

we will apply a constraint to the FLIM time-deconvolution method based on the linear 

expansion of the fluorescence decays on an orthonormal Laguerre basis [17]. Our work 

will utilize the speed of the Laguerre deconvolution method while ensuring proper 

deconvolved decays. 
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2. METHODS 

  

 

2.1 Multispectral FLIM 

The FLIM data being used was acquired through a high-speed multispectral 

FLIM imaging system developed by Shrestha et al. [6], shown schematically in Fig. 3. 

The scanning FLIM system was implemented following a direct pulse-recording scheme, 

in which the pixel rate could be equal to the laser repetition rate. A frequency tripled Q-

switched Nd:YAG laser was used as the excitation source (355 nm, 30 kHz maximum 

repetition rate, 1 ns pulse FWHM). The fluorescence emission was separated into three 

bands using a set of dichroic mirrors and filters (390 ± 20 nm for collagen, 452 ± 22.5 

nm for elastin, and 550 ± 20 nm for lipids). Each band was launched into a fiber with 

different lengths (1 m, 10 m and 19 m, respectively), chosen to provide ~45 ns intervals 

between each emission band decay. The three consecutive decays were detected with a 

MCP-PMT (rise time: 150 ps) and sampled with a high bandwidth digitizer (1.5 GHz, 4 

GS/s). The system lateral resolution was measured to be 100 µm. Each multispectral 

FLIM image (FOV: 2mm x 2mm at 60 pixels x 60 pixels) was acquired in ~7 s.  
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Figure 3: Schematic of the FLIM System. Dichroic mirrors guide the laser beam to the sample and 

the emission beam to the FLIM collection system: BP, bandpass filter; DM, dichroic mirror. 

 

 

2.2 Tissue Specimens – Hamster Cheek Pouch Database  

A Syrian hamster cheek pouch model was used for the oral cancer study. The 

protocol for the model was based on work done by Brandon et al. [18], who developed a 

protocol to produce squamous cell carcinomas in the hamster cheek pouch using 

Benzo[a]pyrene (B[a]P) as the carcinogen to allow for more predictable precancerous 

lesions. The imaging protocol was used to image 52 male Syrian hamsters (25 control, 

27 treated) using the system described above [6]. Each animal was imaged at several 

points, resulting in about 250 FLIM datasets. After histology, the tissue imaged was 

classified as: 1) healthy, 2) hyperkeratosis (increase in the keratin layer), 3) hyperplasia 

(increase in the thickness of the epithelial layer due to an increased number of cells), 4) 

mild dysplasia, 5) moderate dysplasia, 6) severe dysplasia, and 7) Squamous Cell 

Carcinoma (SCC). As the current work only addresses signal processing, no 

comparisons were made to the tissue classification. 



 

6 

 

 

2.3 Deconvolution Using Laguerre Basis Functions (LBFs) 

In the context of time-domain FLIM, the series of time-gated fluorescence 

intensity maps 	(�, 
) are given by the convolution of Impulse Response Function 

(IRF) ℎ(�, 
) with the instrument response �(
): 

	(�, 
) = � ℎ(�, �)�(
 − �)���
���  (1) 

where � denotes the pixel location, 
 denotes the time gate (
 =  0,1,2 … , � − 1), and 

  determines the extent of system memory [8]. The Laguerre deconvolution technique 

uses a set of Discrete Laguerre Functions (DLF) as the orthonormal basis to represent 

the IRF: 

ℎ(�, 
) = � !"(�)#"$(
)���
"��  (2) 

where, !"(�) are the unknown Laguerre Expansion Coefficients (LEC) at pixel �, #"$(
) 

denotes the %&' order DLF [8] defined as below: 

#"$(
) = ���"( (1 − �)�( �(−1)) *
+, *%+, �"�)(1 − �))"
)��  (3) 

and ., the Laguerre order, is the number of DLFs used to model the IRF. The Laguerre 

parameter (0<�<1) determines the rate of exponential decline of the DLFs and defines 

the time scale for which the Laguerre expansion of the system IRF is most efficient in 

terms of convergence [9].  The DLF decays faster as � decreases (Fig. 4). 
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Figure 4: �-Dependence of Discrete Laguerre Functions (DLFs) 

 

 

For a given pixel, the output /(
) can thus be written as: 

/(
) = 	(�, 
) = �
01
11
2!"(�) 3 � #"$(�)�(
 − �)���

��� 45666666766666689:;(�) <=
==
>���

"��  (4) 

Then, the system of linear equations defined in Equation 5 can be expressed in a matrix 

notation as follows: 
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@ /(0)/(1)⋮/(� − 1)B5667668CD
= @ E�$(0) ⋯ E���$ (0)E�$(1) ⋯ E���$ (1)⋮ ⋱ ⋮E�$(� − 1) ⋯ E���$ (� − 1)B566666666676666666668H; 011

12 !�!�⋮⋮!���<==
=>

578IJ
+ L (5) 

We need to calculate the LEC vector, IJ, in order to obtain the IRF. The linear least-

squares solution to IJ is: 

IJ = (H$N H$)��H$CD (6) 

This solution, however, does not always result in an exponentially decreasing IRF. In 

order to modify the IRF, a constraint must be added.  

 

2.4 Adding a Constraint to the LBFs 

According to Liu et al [n], an IRF is referred to as an exponential decay (or 

monotonically decreasing function) if the function, h(t), for 0 ≤ Q ≤ ∞ follows the 

following requirements: 
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(i) ST�&→V ℎ(Q) = 0 

(ii) ℎW(Q) < 0, and   

(iii) ℎWW(Q) > 0, 

where ℎW(Q) and ℎWW(Q) are, respectively, the first and second derivatives of ℎ(Q). These 

requirements translate into the dual problem 

min]∈_`aC − H$IJa(                                                                                     (7)subject to  (−1)�k(�)l$IJ ≥ 0  

and 

minn∈_opq rs *H$N C + (−1)�k$(�)Nt,r(
                                                                                    (8)subject to  t ≥ 0  

where k(�) is the n-th order forward finite difference matrix [19], s is the Cholesky 

decomposition of the positive definite matrix (H$N H$)��, and k$(�) = k(�)l$. The 

constrained least-squares solution for IJ, IJ���(�)
, of the IRF is 

IJ���(�) = (H$N H$)�� *H$N C + (−1)�k$(�)NtJ(�), (9) 
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where tJ(�) is the solution to Equation 8, evaluated using an Active Set Non-Negative 

Least Squares (NNLS) [20]. As the definition for an exponential decay only requires the 

second derivative, the order, n, used for the NNLS method is also set to 2. However, 

because the third derivative has previously been published [17], both the second and 

third derivatives will be compared. 

 

2.5 Methods and Parameters for Comparison 

In order to compare the proposed constrained least-squares Laguerre method 

with existing Laguerre methods, we propose comparing each method by itself as well as 

combinations of the methods. The criteria for evaluation are the processing time required 

and whether the resulting IRF fits the definition of an exponential. The Laguerre 

parameter, �, is optimized using the method proposed by Pande et al. when using the 

linear least-squares Laguerre method [7]. However, when using the non-linear 

constrained least-squares Laguerre method, an iterative method is used to find the 

Laguerre parameter. The Laguerre parameter is determined to within a precision of 

0.001. The Laguerre methods are also compared to a common biexponential method, as 

described below. Table 1 has the notations used to discuss the results.  
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Table 1:  Notations 

Notation Meaning 

OLS Ordinary, or linear, least-squares 

CLS-n n-th derivative Constrained least-squares 

���� 
� optimized using the Linear least-squares 

Laguerre method [23] 

������ 

� optimized using an iterative method for the 

n-th derivative Constrained least-squares 

Laguerre method 
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All data sets are processed using MATLAB
®

 2013a on a destop running 

Windows 7 64-bit OS with an Intel® Core™2 Duo CPU @ 3.00GHz processor. All data 

set consist of three channels, each containing 3600 convolved curves and a 

representative instrument response curve. The instrument response curve is aligned with 

the majority of the convolved curves. All methods use five orthonormal LBFs (L=5). 

Studies have been conducted with a larger number of orthonormal LBFs. While a larger 

number of LBFs results in better fitting of the recorded fluorescence decay, the noise in 

the recorded fluorescence decay also affects the resulting deconvolved curve to a greater 

extent because of overfitting. The NNLS method is implemented using the lsqnonneg.m 

function. Table 2 has the methods which are tested along with the global optimization 

and deconvolution codes used for each method.  
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Table 2: Methods Tested 

Method Optimized Alpha Used Deconvolving Code(s) Used 

���� with OLS ���� OLS Laguerre 

�����w with CLS-3 �����w CLS-3 Laguerre 

�����( with CLS-2 �����( CLS-2 Laguerre 

���� with CLS-3 ���� CLS-3 Laguerre 

���� with CLS-2 ���� CLS-2 Laguerre 

Modified OLS-3 ���� 

OLS Laguerre and CLS-3 

Laguerre 

Modified OLS-2 ���� 
OLS Laguerre and CLS-2 

Laguerre 

Biexponential -- Biexponential Estimation 

 

The “Modified OLS-3” and “Modified OLS-2” methods use an a priori limit to 

decide whether the OLS Laguerre code results in an exponential decay. If the result is 

not an exponential decay, the curve is re-evaluated using the CLS Laguerre code. The a 

priori limit was found to be -3.2e+14 s
-2

 using the function 
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min x k(ℎ(
)ℎ�yz(
) ∗ (∆Q)(} (10) 

 

where k(() is the second-order forward finite difference matrix [19], ℎ(
) is the 

deconvolved IRF for a given pixel, ℎ�yz(
) is the maximum value of ℎ(
), and ∆Q is 

the sampling time. If (10) results in a value lower than the a priori limit, the curve is re-

evaluated. 

The “Biexponential” method estimates the IRF using the formula 

 

ℎ(
) = ~����∆&/�� + ~(���∆&/��   (11) 

 

where ~� and ~( are the exponential decay coefficients and �� and �( are the lifetimes 

for the two exponential decays.  
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3. RESULTS AND DISCUSSION 

  

 

3.1 Run Times Comparison 

The time required to optimize the Laguerre parameter and deconvolve the curves 

in one data set is shown in Table 3, separated by channel (or fluorescence band). As 

expected, the “�����w with CLS-3” and “�����( with CLS-2” methods took over an 

order of magnitude longer than the “���� with OLS” method to process. The reason for 

the increased time is due mainly to the iterative method of optimizing the Laguerre 

parameter and in part due to the non-negative least squares method used for the 

constraint. Also, the optimization process for these methods parsed the data set, using 

only 1 in 4 pixels. The “Biexponential” method also used a non-linear optimization and 

took around 5-6 times longer to process than the “���� with OLS” method. 
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       Table 3: Time Required to Process a Data Set (Separated by Channel). Row 1 represents 290nm, Row 2 Represents 452nm, and Row 3 

       Represents 520nm. 

Method 

���� 

with 

OLS 

�����w 

with 

CLS-3 

�����( 

with 

CLS-2 

���� 

with 

CLS-3 

���� 

with 

CLS-2 

Modified 

OLS-3 

Modified 

OLS-2 
Biexponential 

Time Required to 

Optimize and 

Deconvolve Data Set 

(in sec, Mean ± SD) 

8.1875 

± 

0.7723 
98.2766 

± 

16.6738 
89.7019 

± 

11.3805 

16.7718 

± 

1.4389 

15.8769 

± 

1.4049 

8.8770 

± 

0.9565 

8.8063 

± 

0.8910 

53.7339 

± 

7.7396 

8.0355 

± 

0.6665 
113.3097 

± 

15.6732 
99.2588 

± 

15.0895 

16.7316 

± 

1.4110 

15.8144 

± 

1.3631 

8.7912 

± 

1.5169 

8.7535 

± 

1.4210 

47.2317 

± 

7.0774 

8.4124 

± 

0.3540 
102.2207 

± 

21.2903 
97.0556 

± 

19.0635 

17.0753 

± 

0.9068 

16.2329 

± 

0.6131 

8.9874 

± 

0.9033 

8.9406 

± 

0.7804 

50.3208 

± 

11.0607 

 



 

17 

 

 

The “���� with CLS-3” and “���� with CLS-2” methods took about twice as 

long as the “���� with OLS” method to process, mainly due to the non-negative least 

squares method used for the constraint. The “Modified OLS-3” and “Modified OLS-2” 

methods took only slightly longer to process than the “���� with OLS” method. These 

methods only corrected the fitting for those curves which did not follow the definition of 

an exponential decay curve; thus, the time required for processing using these methods 

was also reduced. Based on our data, the average percentage of curves in any channel 

which did not follow the definition of an exponential decay was about 3.95%, equivalent 

to 142 curves. 

 

3.2 Error and Fitting Comparison  

The fit of the modeled curve to the original data is determined by the error, L, 

between the two curves as 

 

L(�, 
) = /(�, 
) − /J(�, 
) (12) 

 

where / is the convolved output and /J is the convolved fit. The mean squared error, 

MSE, is determined by 

 

��� = 1� ∗  �� � L(�, 
)(
��  (13) 
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where R is the number of pixels and   determines the extent of system memory. 

Similarly, the normalized error, L����, can be calculated by 

 

L����(�, 
) = /(�, 
) − /J(�, 
)/�yz(�, 
)  (14) 

 

where /�yz is the maximum value of the convolved output of a curve, and the 

normalized mean squared error, MSEnorm, can be calculated by 

 

������� = 1� ∗  �� � L����(�, 
)(
��  (15) 

The normalized mean square error for a curve is shown in Table 4, separated by channel. 
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         Table 4: Normalized Mean Square Error for a Convolved Curve (Separated by Channel). Row 1 represents 290nm, Row 2 Represents 

         452nm, and Row 3 Represents 520nm. 

Method 

���� 

with 

OLS 

�����w 

with 

CLS-3 

�����( 

with 

CLS-2 

���� 

with 

CLS-3 

���� 

with 

CLS-2 

Modified 

OLS-3 

Modified 

OLS-2 
Biexponential 

Normalized Mean 

Squared Error 

(Mean  ± SD) 

0.0166 

± 

0.0053 

0.0178 

± 

0.0053 

0.0167 

± 

0.0053 

0.0180 

± 

0.0056 

0.0169 

± 

0.0055 

0.0170 

± 

0.0057 

0.0168 

± 

0.0055 

0.0177 

± 

0.0050 

0.0154 

± 

0.0055 

0.0168 

± 

0.0060 

0.0156 

± 

0.0057 

0.0169 

± 

0.0059 

0.0157 

± 

0.0056 

0.0157 

± 

0.0058 

0.0155 

± 

0.0056 

0.1257 

± 

0.0342 

0.0268 

± 

0.0056 

0.0278 

± 

0.0061 

0.0271 

± 

0.0058 

0.0277 

± 

0.0060 

0.0270 

± 

0.0057 

0.0270 

± 

0.0057 

0.0269 

± 

0.0057 

0.0276 

± 

0.0058 
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All of the methods have similar errors and the “���� with OLS” method has the 

lowest average normalized mean square error. The time required to process the methods, 

though, indicate that the “Modified OLS-3” and “Modified OLS-2” methods are 

preferable for comparison. 

While the error fitting of the data set is important from a quantitative standpoint, 

the deconvolved curve itself is also important from a qualitative standpoint. Although 

the fluorescence curve fittings and their respective error fittings show a good fit for the 

models (Table 4 and Figs. 5-8), the deconvolved curves signify two improper 

deconvolution cases and one proper deconvolution case. 

Figs. 5, 6, and 7 show the measured fluorescence and the fittings obtained from 

the four methods. The curve fittings in the first two cases for the “���� with OLS” 

method (Figs. 5(a) and 7(a)) oscillate around the measured fluorescence as the curve 

decreases from the maximum value while the “Modified OLS-3” method fittings (Figs. 

5(b) and 6(b)) and “Modified OLS-2” method fittings (Fig. 5(c) and 6(c)) do not 

oscillate around the measured fluorescence. The result of the “���� with OLS” fitting for 

the third case (Fig. 7(a)) was determined to be above the a priori limit for the 

deconvolved curve and, therefore, was not reprocessed for “Modified OLS-3” and 

“Modified OLS-2” methods. The “Biexponential” method fittings (Figs. 5(d), 6(d), and 

7(b)) are shown for comparison. Fig. 9 shows the normalized errors for all the cases, 

reiterating that all the models are a good fit to the measured fluorescence. 
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Figure 5: Measured Fluorescence and Convolved Fittings for the First Case. The “α_OLS with 

OLS” Method Fitting Depicts an Oscillatory Behavior. (a) “α_OLS with OLS”, (b) "Modified OLS-

3", (c) "Modified OLS-2", and (d) "Biexponential" Methods. 

. 
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Figure 6: Measured Fluorescence and Convolved Fittings for the Second Case. The “α_OLS with 

OLS” Method Fitting Depicts an Oscillatory Behavior. (a) “α_OLS with OLS”, (b) "Modified OLS-

3", (c) "Modified OLS-2", and (d) "Biexponential" Methods. 
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Figure 7: Measured Fluorescence and Convolved Fitting for the Third Case. (a) “α_OLS with OLS”, 

"Modified OLS-3", and "Modified OLS-2" Methods and (b) the "Biexponential" Method. 

 

 

 

  



 

 

Figure 8: Normalized Error for (a) the

24 

Normalized Error for (a) the First Case, (b) the Second Case, and (c) the Third Case.

 

 
First Case, (b) the Second Case, and (c) the Third Case. 
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The deconvolved exponential curves are shown in Figs. 9 – 11 for the three 

cases. . The first case (shown in Fig. 9) depicts a slight downward concavity for the 

“���� with OLS” method deconvolution, shown in Fig. 9(a), between approximately 5ns 

and 12ns (see inset for magnified curve). Because a downward concavity represents a 

negative second derivative, the curve fails the third property listed for an exponential 

decay. The second case (shown in Fig. 10) depicts a sinusoidal behavior for the “���� 

with OLS” method deconvolution, shown in Fig. 10(a), between approximately 12ns and 

30ns. Because a sinusoid oscillates between higher and lower values, the curve fails the 

second and third properties listed for an exponential decay. The “Modified OLS-2” and 

“Modified OLS-3” method deconvolutions, however, do not fail the properties listed for 

an exponential decay, and the results are similar to the “Biexponential” method 

deconvolution. In the third case (shown in Fig. 11), the “���� with OLS” method 

deconvolution follows all the listed properties of an exponential decay and is similar to 

the “Biexponential” method deconvolution. 

 



 

 

Figure 9: Deconvolved Fluorescence Decay Estimations for the First Case. The “

Method Deconvolution Depicts a Negative Concavity. (a) “

3", (c) "Modified OLS-2", and (d) "Biexponential" Methods. Inset: Curve 
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ved Fluorescence Decay Estimations for the First Case. The “α_OLS with OLS” 

Method Deconvolution Depicts a Negative Concavity. (a) “α_OLS with OLS”, (b) "Modified OLS

2", and (d) "Biexponential" Methods. Inset: Curve Between 2.5ns and

 

 

α_OLS with OLS” 

_OLS with OLS”, (b) "Modified OLS-

Between 2.5ns and 20ns. 



 

 

Figure 10: Deconvolved Fluorescence Decay Estimations for the Second Case. The “

OLS” Method Deconvolution Depicts a Sinusoi

OLS-3", (c) "Modified OLS-2", and (d) "Biexponential" Methods. Inset: Curve 
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Deconvolved Fluorescence Decay Estimations for the Second Case. The “

OLS” Method Deconvolution Depicts a Sinusoidal Behavior. (a) “α_OLS with OLS”, (b) "Modified 

2", and (d) "Biexponential" Methods. Inset: Curve Between 12.5ns and 

30ns. 

 

 

Deconvolved Fluorescence Decay Estimations for the Second Case. The “α_OLS with 

_OLS with OLS”, (b) "Modified 

Between 12.5ns and 



 

 

Figure 11: Deconvolved Fluorescence Decay Estimations for

OLS”, "Modified OLS-3", and "Modified OLS
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Deconvolved Fluorescence Decay Estimations for the Third Case. (a) “

3", and "Modified OLS-2" Methods and (b) the "Biexponential" Method.

 

 

 

Third Case. (a) “α_OLS with 

2" Methods and (b) the "Biexponential" Method. 
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4. SUMMARY AND CONCLUSIONS 

  

 

In this study, we have demonstrated that combining multiple deconvolution 

techniques results in faster and more accurate deconvolution of recorded fluorescence 

decays in FLIM. The use of the automated method for global Laguerre parameter 

optimization results in a fast deconvolution while the use of the constraint on the 

Laguerre Basis Functions (LBFs) insures proper deconvolution. The use of the LBFs 

also allows for simultaneous deconvolution of a large data set. The constraint on the 

LBFs prevents overfitting of the recorded fluorescence decays, thereby removing the 

effect of noise from the deconvolved curve. Therefore, neither the number of 

exponentials nor the Laguerre parameter value requires a priori assumptions. The 

efficacy of the difference in the average lifetime maps, though, has yet to be determined 

with respect to tissue classification. 
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With respect to the deconvolutions, the “Modified OLS-2” and “Modified OLS-

3” method deconvolutions are similar to each other. The “Modified OLS-3” method 

deconvolutions, however, tend to look less piecewise and more smooth than the 

“Modified OLS-2” method deconvolutions. While either method is feasible, we have not 

been able to identify a requirement for using the third derivative when the second 

derivative is available. 

Furthermore, the current work requires the fluorescence signal to decay down to 

zero with time. If the recorded signal does not decay down towards zero by the end of 

the acquisition time period, the algorithm will force the convolved fit to do so. This 

“forcing” will result in poorly modeled fluorescence signals with large normalized 

errors. An example of this situation is recorded a fluorescence signal with a relatively 

long average lifetime (ex. ~14ns) for a relatively shorter time period (ex. ~50ns). 

Correlating average lifetime values to required signal acquisition time period, however, 

is outside the scope of this paper.
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