
SYNTHESIZING ROBUST NETWORKS FOR ENGINEERING APPLICATIONS

WITH RESOURCE CONSTRAINTS

A Dissertation

by

HARSHA NAGARAJAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Swaroop Darbha
Co-Chair of Committee, Sivakumar Rathinam
Committee Members, K. R. Rajagopal

Sergiy Butenko
Head of Department, Andreas A. Polycarpou

May 2014

Major Subject: Mechanical Engineering

Copyright 2014 Harsha Nagarajan



ABSTRACT

This dissertation deals with the following simpler version of an open problem

in system realization theory which has several important engineering applications:

Given a collection of masses and a set of linear springs with a specified cost and

stiffness, a resource constraint in terms of a budget on the total cost, the problem

is to determine an optimal connection of masses and springs so that the resulting

structure is as stiff as possible, i.e., the structure is connected and its smallest non-

zero natural frequency is as large as possible.

One often encounters variants of this problem in deploying Unmanned Aerial

Vehicles (UAVs) for civilian and military applications. In such problems, one must

determine the pairs of UAVs that must maintain a communication link so that con-

straints on resources and performance, such as a limit on the maximum number of

communication links deployed, power consumed and maximum latency in routing

information from one UAV to the other, are met and a performance objective is

maximized. In this dissertation, algebraic connectivity, or its mechanical analog -

the smallest non-zero natural frequency of a connected structure was chosen as a

performance objective. Algebraic connectivity determines the convergence rate of

consensus protocols and error attenuation in UAV formations and is chosen to be

a performance objective as it can be viewed as a measure of robustness in UAV

communication networks to random node failures.

Underlying the mechanical and UAV network synthesis problems is a Mixed In-

teger Semi-Definite Program (MISDP), which was recently shown to be a NP-hard

problem. There has not been any systematic procedure in the literature to solve this

problem. This dissertation is aimed at addressing this void in the literature. The
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novel contributions of this dissertation to the literature are as follows: a) An itera-

tive primal-dual algorithm and an algorithm based on the outer approximation of the

semi-definite constraint utilizing a cutting plane technique were developed for com-

puting optimal algebraic connectivity. These algorithms are based on a polyhedral

approximation of the feasible set of MISDP, b) A bisection algorithm was developed

to reduce the MISDP to a Binary Semi-Definite Program (BSDP) to achieve better

computational efficiency, c) The feasible set of the MISDP was efficiently relaxed

by replacing the positive semi-definite constraint with linear inequalities associated

with a family of Fiedler vectors to compute a tighter upper bound for algebraic con-

nectivity, d) Efficient neighborhood search heuristics based on greedy methods such

as the k-opt and improved k-opt heuristics were developed, e) Variants of the prob-

lem occurring in UAV backbone networks and Air Transportation Management were

considered in the dissertation along with numerical simulations corroborating the

methodologies developed in this dissertation.
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1. INTRODUCTION

This dissertation deals with the development of novel tools for addressing an

open problem in system realization theory which has relevance to several important

problems in biomedicine, altering the dynamic response of discrete and continuous

systems, connectivity of Very Large Scale Integrated (VLSI) circuits, as well as the

co-ordination of Unmanned Aerial/Ground vehicles. The simplest case of this open

problem, referred to as the Basic Problem (or simply, BP) is the following: Given

a finite set of masses, a set of linear springs and dampers, a given subset of springs

or dampers that may only be connected between a specified pair of masses, a transfer

function to be realized with a subset of these components by connecting them appro-

priately, the decision problem is to determine if there is an interconnection which

can accomplish this objective. The resolution of BP is open and far from simple.

If we restrict ourselves to mechanical systems with springs and masses, and require

further that the interconnections should be made so that the resulting structure is

one-dimensional, the resulting problem has a nice connection to Graph Laplacians

in graph theory. Graph Laplacians (or simply Laplacians) play an important role in

assessing robustness of connectivity and are similar to stiffness matrices in discrete

structural mechanical systems. The analogy may be made as follows: a mass serves

the role of a node and a spring serves the role of an edge that connects two nodes in

a graph. If one assigns the cost of the edge to be the stiffness of the corresponding

spring, the resulting Graph Laplacian is the same as the stiffness matrix that one

obtains for the corresponding structural mechanical system. A brief overview of

Laplacian matrices is given in section 1.1.

A typical transfer function in structural systems relates the input displacement
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or force acting on a mass to the displacement of another mass in the structural

network. In the absence of any damping in the structural systems, only trans-

fer functions that have purely imaginary zeros and poles can be realized. The

poles of the system correspond to the natural frequencies of the interconnected

system, the interconnections being the sought quantities. The zeros of the sys-

tem can be thought of as the natural frequencies of an associated constrained sys-

tem obtained by setting the output displacement to be identically zero, that is by

constraining the appropriate mass to be stationary. Essentially, the fundamental

problem of system realizability with a collection of springs and masses reduces

to the following variant: Given a set V of masses and E of springs, and a set

of bounds on natural frequencies w1l, w1u, w2l, w2u, . . . , wpl, wpu, (with p ≤ |V |),

is there a connection of masses in which at most q springs are used which re-

sults in the interconnected structure having natural frequencies that lie between

[w1l, w1u], [w2l, w2u], . . . , [wpl, wpu]? This is a reasonable relaxation of the original

problem which requires w1l = w1u, w2l = w2u, . . . , wpl = wpu in the following sense.

The feasible set of the relaxed problem is bigger and the possibility of finding a

solution should be better.

When wil = t, wiu =∞ for all i = 1, . . . , p, one obtains a decision problem for a

related problem involving the maximization of augmented algebraic connectivity in

graphs. The difference between the BP and the augmented algebraic connectivity

maximization problem is as follows: In the BP, none of the masses are connected to

any springs initially, whereas in the augmented algebraic connectivity problem, the

masses may initially be connected partially and one is seeking additional edges to

maximize the algebraic connectivity. This problem was only recently shown to be

NP-hard [1] and may be stated as follows: Given an interconnected system of springs

and masses, a prescribed number q and a positive number, t, the decision problem
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is to determine if one can find at most q additional springs that have not yet been

used so as to make the second smallest natural frequency (which is also known as

the algebraic connectivity for the associated Laplacian) to be greater than t. We will

recall that the second smallest natural frequency is a measure of the “stiffness” of

the structure and the smallest natural frequency is always zero corresponding to the

rigid body mode admitted by the structure (a detailed discussion on the measure for

stiffness of mechanical systems can be found in section 1.2.1). Since every instance of

the maximum augmented algebraic connectivity problem is an instance of the system

realization problem, NP-hardness of the former problem implies the NP-hardness of

the latter problem and hence, non-trivial.

The problem of maximizing the augmented algebraic connectivity has applica-

tions to stiffening existing or damaged structures. The need for repair and strength-

ening of damaged or deteriorated structures subject to tight budget constraints has

been an important challenge all over the world. As discussed in [2], there are many

seismic resistant structures built before the 1970s which are still in service beyond

their design life. These existing structures were designed with inadequate lateral

load resistance because earlier building codes specified lower levels of seismic loads.

Currently, it has been a topic of great interest to address the problem of deficiency

in the structural system by adequately strengthening the structural system in order

to attain the desired level of seismic resistance. Structural strengthening or rehabili-

tation, as defined in UNIDO (United Nations Industrial Development Organization)

manual, may consist of modification of the existing structural members or addition

of new structural members so that their structural strength, stiffness and/or duc-

tility are improved. An improvement in the overall stiffness of a structure can be

achieved through the addition of new structural members of known stiffness values

to increase the respective characteristics of the structure like bracing in a frame or
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skeleton structure or new shear walls in a shear wall structure. One must also take

into consideration the constraints on total budget/cost, while improving the overall

stiffness of the structure. One may abstract the problem of strengthening structures

as follows: Given a budget, a list of additional structural members to choose from

along with their costs, the problem is to augment the structure so as to make it as

strong (stiff) as possible by retrofitting additional structural members to the existing

structure within the specified budget.

Algebraic connectivity, as the name indicates, is a measure of connectivity. In

the structural context, a single dimensional structure is connected if a force applied

at almost any point on the structure will influence the displacement of structure or

the stress at almost all other locations and hence, cannot admit more than a single

rigid body mode. Moreover, if the structure may be thought of as a linear discrete

structural mechanical system, the structure is tightly connected if the stiffness of

every spring is sufficiently high or equivalently, all its non-zero natural frequencies

are sufficiently high. We may carry this analogy to applications involving a formation

or collection of UAVs.

This dissertation is also motivated by a scenario as shown in the figure 1.1.

In this scenario, there are clusters of ground robots moving in disparate regions

that need to communicate their data and information amongst themselves. It is

known a priori that the clusters will move slowly, and are known to be within a

radius Rmax of their centroid. The ground-to-ground communication between these

clusters may be hampered by obstacles such as mountains or tall buildings that

prevent line-of-sight communications. Since the power of a signal attenuates as the

fourth power of distance in ground-to-ground communication, while it only decreases

as the second power of the distance in ground-to-air and air-to-air communication

[3, 4], an ad-hoc network of UAVs is envisioned. The UAVs serve as backbone
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(a) Initial configuration

(b) Configuration after rigid body rotation

Figure 1.1: In this figure, part (a) represents an initial configuration of backbone
UAVs communicating with ground robots in disparate regions. As shown with the
coloring of robots, not all robots are able to maintain a ground-to-air communication
link with the UAVs. But in part (b), after a rigid body rotation of the backbone
network about the centroid, the remaining ground robots are able to maintain a
ground-to-air communication link with the UAVs.
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nodes and serve to establish communication between the clusters from ground. The

robots use ground-to-air communication with the UAVs and the UAVs utilize air-to-

air communication amongst themselves to reduce the overall power consumption for

maintaining communication and transferring data.

The operational concept is as follows: The collection of UAVs maintain a fixed

distance between them. The collection rotates about the centroid as a rigid body

through an unit angle, stop at that configuration to facilitate communication with

robots and then step through another unit angle and this procedure continues. Asso-

ciated with each UAV, one may associate a circular footprint on the ground; robots

in the footprint can utilize ground-to-air communication with the UAV. As the col-

lection of UAVs rotates about the centroid, the footprints of UAVs sweep/cover the

area of the footprint on the ground. Rotating the UAVs about the centroid helps in

providing a time window for ground-to-air communication between the robots and

the UAVs without the UAVs having to track the robots.

Maintaining a rigid formation of UAVs provides a convenient way of maintaining

the backbone UAV network. An important problem of maintaining a rigid formation

is the problem of determining the underlying information flow graph, i.e., the deter-

mination of the pairs of UAVs that are maintaining communication. It is well-known

that with a given decentralized controller as in [5], the convergence rate of the error

in maintaining a desired constant spacing with respect to other UAVs in the forma-

tion is influenced by the algebraic connectivity of the (unweighted) information flow

graph; if the algebraic connectivity is higher, the convergence is faster. In essence,

this problem is identical to BP.

Another variant of BP arises in the same scenario when we deal with the con-

struction of an adhoc infrastructure network with UAVs, i.e., the determination

of the relative location of UAVs as well as the pairs of UAVs that must maintain
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air-to-air communication. Since UAVs have limited battery power on-board, power

consumption is an important issue. We use the following model of power consump-

tion: to maintain a connection (or a communication link) between the ith and jth

UAVs, the power consumed is given by αijd
2
ij, where dij is the distance between the

UAVs and αij is the coefficient of proportionality and is dependent on the product of

antenna gains of the transmitting and receiving UAVs. The coefficient αij may also

be viewed as a strength of the communication link. If αij is higher, then the data rate

that can be transmitted across the link is correspondingly higher. From the point of

reducing interference in communication, there is an upper bound on the transmit-

ted power by every UAV. This constraint limits communication between UAVs that

are sufficiently far apart. The antennas and associated signal processing circuitry

is typically powered by batteries on-board a UAV and this further limits the power

that can be consumed in transmitting signals by every UAV. Instead of dealing with

this constraint at the individual UAV level, we consider a surrogate constraint on

the power consumption of the system as a whole. The total power consumed by the

UAVs for maintaining air-to-air connectivity (or simply connectivity) is the sum of

the power consumption associated with all the employed communication links. The

total power consumption affects the cost of operation of the network and hence, can

be treated as a resource.

One can naturally associate a graph with the network of backbone UAVs, with

the UAVs serving as nodes, communication links being edges and a weight, αij

associated with the communication link between the ith and jth UAVs. The desirable

attributes of a communication network are: lower diameter so as to minimize latency

in communicating data/information across the network, high isoperimetric number so

that the bottlenecking in a network can only occur at higher data rates and robustness

to node and link failures. It is known that a higher value of algebraic connectivity
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of a network is associated with a network with the previously mentioned desirable

attributes[6]. In relation to graph theory, algebraic connectivity provides a measure

of how weakly any subset of vertices is connected to the remaining graph. In this

measure, a subset of vertices is considered to be weakly connected if a normalized

cut (sum of the number of edges leaving the subset) of the subset has a low value.

Essentially, a tightly connected network with a larger normalized cut corresponds to

a network with a higher algebraic connectivity. Algebraic connectivity as a measure

of network connectivity is also superior to other measures such as the node or the

link connectivity of a network ; for example, any (unweighted) spanning tree has

a node or a link connectivity of one. On the other hand, it is known that a star

network has a higher algebraic connectivity compared to that of any (Hamiltonian)

path in the network. A star network, for instance, is considered to be more robust

against a random removal of a node in the network as opposed to a path which

gets disconnected upon the removal of any intermediate node [6]. For this reason,

we pose the network synthesis problem as that of determining the network with

the maximum algebraic connectivity over all possible networks satisfying the given

resource and operational constraints.

Simply put, a variant of the BP that arises in this application is as follows:

Given a collection of UAVs which can serve as backbone nodes, how should they be

arranged and connected so that

(i) the convex hull of the projections of their locations on the ground spans a

prespecified area of coverage,

(ii) the resources such as the total UAV power consumption for maintaining con-

nectivity and the total number of communication links employed are within

their respective prescribed bounds, and
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(iii) algebraic connectivity of the network is maximum among all possible networks

satisfying the constraints (i) and (ii).

Variants of BP have recently received attention in the UAV literature, for ex-

ample, a few of the relevant references are [7], [8], [9], [5], [10]. However, prior to

this dissertation, a systematic and computationally efficient method for solving the

problem exactly was lacking.

Apart from mechanical systems, similar problems appear in disparate research

areas including biomedicine and VLSI circuit design. In biomedicine, of particular

relevance is the field of systems biology which aims to study the interplay between

proteins, nucleic acids and other cellular components at the global level. In this

research area, one is interested in engineering and achieving a desired output by

either allowing certain new interactions or disallowing some interactions from taking

place. In the simplest form, these interactions may be modeled by systems of coupled

ordinary differential equations and in more complicated situations such as cascades

of biochemical reactions that need to be controlled, the interactions can be modeled

by a system of coupled partial differential equations.

A similar problem is also encountered in VLSI circuit design[11]. Due to steady

miniaturization of VLSI devices and a quest for faster communication rates, there are

critical performance objectives placed on the design of interconnects [12],[13] between

the components of a VLSI circuit including minimization of interconnect delays and

signal distortion, minimization of signal delays between time-critical components,

minimization of total wire length etc. A fundamental problem in VLSI circuit design

[11] deals with designing a suitable network topology (i.e., the interconnects between

the components) such that the specified performance objective is realized. The same

problem also appears in disparate disciplines such as coding theory[14], image webs

9



[15], air traffic management [16, 17] and free space optical and communication net-

works [18],[19].

Solving the BP, i.e., finding the optimal network corresponding to the maximum

value of augmented algebraic connectivity is non-trivial. It is further compounded

by the rapid increase in the size of the problem with an increase in the number of

nodes (for example, masses). Even for instances of moderate size involving 8 identical

masses, if one were asked to pick only 7 springs to form a connected structure, there

are 86 ≈ 262144 combinatorial possibilities (for a graph with n masses, there are

nn−2 connected structures with n− 1 springs). The difficulty is further accentuated

by the non-smooth and nonlinear nature of the objective function. The focus of the

dissertation is to develop numerical algorithms for computing optimal networks as

well as for computing sub-optimal networks along with a bound on their suboptimality.

1.1 A note on Laplacian matrix

A graph G is specified by a set of vertices V , a set of edges E ⊂ V × V and

a cost function c : E → <+. A graph G is compactly represented as G(V,E, c).

Let n denote the cardinality of V and let In be the identity matrix of dimension n.

Without any loss of generality, we can arbitrarily number the vertices and associate

the numbers with the vertices. Let i, j ∈ V and let ei, ej correspond to the ith

columns of In. If a, b ∈ <n, let a ⊗ b denote the tensor product of a and b. Let cij

denote the cost of the edge {i, j}.

The graph Laplacian of G(V,E, c) is defined as:

L :=
∑

e={i,j}∈E
cij(ei − ej)⊗ (ei − ej).

The component of L in the ith row and jth column is given by Lij and is as follows:
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Lij =


−cij, if i 6= j, {i, j} ∈ E,∑

j:{i,j}∈E cij, if i = j,

0, otherwise

As an example, Laplacian matrix for the graph shown in Figure 1.2(a) is as follows:

L =



1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


(1.1)

There are other variants of Laplacians that are used; this dissertation primarily

focuses on the graph Laplacian.

1.1.1 Relationship between Laplace’s equation and graph Laplacian

Consider the following one-dimensional Laplace’s equation:

−d
2u

dx2
= f(x), (1.2)

where f(x) is the source, u(x) is the response and d2

dx2
(·) is the Laplacian operator.

As shown in Figure 1.2(b), consider a discretized space such that the given domain

Ω = [0, X] is discretized with equally spaced points xi, i = 1 . . . 6 and the grid size

h = 1. Hence, a one-dimensional stencil using a second order central differencing

which approximates the Laplacian operator at point xi is given as follows:
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d2u

dx2

∣∣∣
x=xi
≈ ui+1 − 2ui + ui−1

h2
= ui+1 − 2ui + ui−1

where, ui ≈ u(xi).

1

2
3 4

5

1

1 1
1

61

(a) A graph with unit weights

x1 x2 x3 x4 x5

h

x6

(b) Finite difference grid

Figure 1.2: A graph with unit weights and its equivalent finite difference grid.

In order to represent the discretized Laplace’s equation in the matrix form, we

consider the following cases:

Dirichlet boundary condition: For the Laplace’s equation in (1.2), let the Dirich-

let boundary conditions be as follows:

u1 = u(x1) = α1, u6 = u(x6) = α6.

Under these boundary conditions, discretizing the Laplace’s equation in (1.2) over

the grid shown in Figure 1.2(b), we obtain the following matrix form:
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

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2





u2

u3

u4

u5


=



f2 − α1

f3

f4

f5 − α6


(1.3)

It is evident that the square sub-matrix obtained by dropping the first and the

last rows and columns of the Laplacian matrix in equation (1.1) is the same as the

coefficient matrix in equation (1.3).

A combination of Neumann and Dirichlet boundary conditions:

For the Laplace’s equation in (1.2), let the Neumann boundary condition be:

du

dx

∣∣∣
x=x1

= β1

and the Dirichlet boundary condition be

u6 = u(x6) = α6.

A natural first order approximation to the derivative at x1 is a one sided difference

du

dx

∣∣∣
x=x1

≈ u1 − u2

h
= β1.

Under these boundary conditions, discretizing the Laplace’s equation in (1.2) over

the grid shown in Figure 1.2(b), we obtain the following matrix form:
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

1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2





u2

u3

u4

u5


=



f2 − β1

f3

f4

f5 − α6


(1.4)

It is evident that the square sub-matrix obtained by dropping the the last two rows

and columns of the Laplacian matrix in equation (1.1) is the same as the coefficient

matrix in equation (1.4).

The graph interpretation of the discretized problem is shown in Figure 1.2(a).

In this interpretation, every graph vertex in Figure 1.2(a) can be treated as a grid

point; the edges of the graph shown in Figure 1.2(a) have a cost of 1 unit. The finite

difference stencil at the grid point can be treated as the local Laplacian matrix and

the unit edge cost corresponds to the homogeneous material with a unit thermal

conductivity in the case of heat conduction equation.

1.1.2 Graph Laplacian and electrical systems

Consider a simple electrical network with four resistors and five junctions as

shown in Figure 1.3. In graph theoretic terms, the junctions represent the vertices

of the graph, the resistors represent the edges in the graph and the corresponding

conductance values represent the edge weights. For the convenience in the notation,

we describe each resistor by it’s conductance values, which is the inverse of its resistive

values. As an example, if the resistance between vertices two and five is 1
c25

Ω, then

it’s conductance value is equal to c25f.

The problem of interest is to find the voltages V1, V2, V3, V4 and V5 at all the

vertices in the electrical resistive network given that I1 and I5 units of current enters
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1

Ω

I1
I5

I4

c12

Ω

Ω

Ω

2
3

4

5

c23

c25

c34

Figure 1.3: An electric network with resistors labeled by their conductance values
(f)

at vertices one and five respectively and I4 units of current leaves from the fourth

vertex.

From Ohm’s law, we know that the current flowing across the edges 1 → 2,

2→ 3, 5→ 2 and 3→ 4 are c12(V1 − V2), c23(V2 − V3), c25(V5 − V2) and c34(V3 − V4)

respectively. By applying Kirchoff’s current balance law at all the vertices, we have

the following set of linear equations:

c12(V1 − V2) = I1,

−c12(V1 − V2) + c25(V2 − V5) + c23(V2 − V3) = 0,

−c23(V2 − V3) + c34(V3 − V4) = 0,

−c34(V3 − V4) = −I4,

−c25(V2 − V5) = I5.
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The above system can be expressed in matrix form as follows:



c12 −c12 0 0 0

−c12 c12 + c23 + c25 −c23 0 −c25

0 −c23 c23 + c34 −c34 0

0 0 −c34 c34 0

0 −c25 0 0 c25


︸ ︷︷ ︸

Admittance matrix



V1

V2

V3

V4

V5


=



I1

0

0

−I4

I5


(1.5)

It can be noted from the above admittance matrix that the (i, j)th entry is the

negation of the conductance between the vertices i and j and the ith diagonal entry

is the sum of the conductances of all the resistors incident at ith vertex. Hence, this

matrix is same as the Laplacian matrix of the weighted graph shown in 1.4(a) and

also the stiffness matrix shown in (1.6).

1.1.3 Graph Laplacian and discrete mechanical systems

1

2

3
4

5
w12 w25

w23

w34

(a) Weighted graph

F4

m5
m1 m2 m3 m4 m5

k12

k25

k23 k24

F1 F2 F3
F5

(b) Spring mass system

Figure 1.4: A weighted graph and its equivalent form as a spring-mass system.

Consider a simple five degree of freedom vibratory system shown in Figure 1.4(b).

At equilibrium, the springs are unstretched. The springs are assumed to be linear
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with a stiffness coefficient kij if the spring connects masses mi and mj. An application

of Newton’s laws yields the following governing equations of motion:



m1 0 0 0 0

0 m2 0 0 0

0 0 m3 0 0

0 0 0 m4 0

0 0 0 0 m5





ẍ1

ẍ2

ẍ3

ẍ4

ẍ5


+



k12 −k12 0 0 0

−k12 k12 + k23 + k25 −k23 0 −k25

0 −k23 k23 + k34 −k34 0

0 0 −k34 k34 0

0 −k25 0 0 k25


︸ ︷︷ ︸

Stiffness matrix



x1

x2

x3

x4

x5


=



F1

F2

−F3

F4

F5



(1.6)

Hence, for the example shown in Figure 1.4(a), the corresponding Laplacian ma-

trix would be:

L =



k12 −k12 0 0 0

−k12 k12 + k23 + k25 −k23 0 −k25

0 −k23 k23 + k34 −k34 0

0 0 −k34 k34 0

0 −k25 0 0 k25


(1.7)

Clearly, the stiffness matrix in equation (1.6) is the same as the Laplacian matrix in

equation (1.7).
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1.2 Algebraic connectivity as an objective of maximization

Since algebraic connectivity is chosen as an objective of maximization in this

dissertation, a motivation for the choice of the objective is in order. In this section,

the motivation is provided through three different applications where maximizing

algebraic connectivity is meaningful.

1.2.1 Linear mechanical systems

Let the mechanical system consist of n identical masses and |E| springs. If masses

were to be treated as nodes, the linear springs as edges and stiffness coefficients of

the springs as the “weight” associated with each edge (spring), then the algebraic

connectivity of the graph corresponds to the smallest non-zero natural frequency

of the discrete mechanical system. Let M,L respectively represent the mass and

stiffness matrices respectively. The components of L depend on the topology, x, of

connections of masses with the aid of springs. Let e0 denote a vector with every

component being unity. If δ, f represent respectively the vectors of displacements

and forces acting on the masses, then the governing equations corresponding to a

given topology x may be compactly expressed as

Mδ̈ + L(x)δ = f.

Let ‖δ‖2, ‖f‖2 represent the 2-norm of δ and f respectively. Let F = {f : ‖f‖2 ≤

1, f · e0 = 0.} The condition f · e0 = 0 implies that the net force acting on the

system of masses is zero and hence, the centroid of the masses remains stationary if

it is stationary initially.

For a given topology x, let v1, v2, . . . vn be the unit eigenvectors of L(x) corre-
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sponding to eigenvalues λ1 ≤ λ2 ≤ · · ·λn.

L(x) =
n∑
i=1

λivi ⊗ vi.

Since L(x)e0 = 0, it implies that λ1 = 0, v1 = e0√
e0·e0 . Clearly, when the displacements

of all the masses are the same, the deflections in the springs are zero and this eigen-

vector corresponds to a “rigid-body” mode. If the set of masses is connected, then

it will admit only one rigid body mode; in this case λ2 > 0. Otherwise, λ2 = 0 sug-

gesting that there is another rigid body mode; in this case, one can find two disjoint

sets of masses S1 and S2 that are not connected by any spring and correspondingly,

the governing equations of motion in this case can be recast as:

 M1 0

0 M2


︸ ︷︷ ︸

M

 δ̈1

δ̈2


︸ ︷︷ ︸

δ̈

+

 L1(x) 0

0 L2(x)


︸ ︷︷ ︸

L(x)

 δ̈1

δ̈2


︸ ︷︷ ︸

δ

=

 f1

f2


︸ ︷︷ ︸

f

.

We can construct a force f ∈ F as follows: the forces on the masses in S1 and S2

are 1√
n

√
|S2|
|S1| and − 1√

n

√
|S1|
|S2| units respectively. Clearly ‖f‖2 = 1 and the sum of

the forces acting on the masses is zero. However, the masses in S1 and S2 move as

if they are independent masses with a constant acceleration. Hence, in this case,

the difference in the steady state displacements among the masses is unbounded.

Since such a topology of connections is not desirable, let X denote the topology of

connection of masses with springs which admits only a single rigid body mode.

Lemma 1 Let δs be the vector of displacements of masses of the mechanical system

due to the forcing function f . If x ∈ X , and the initial value of average displacement
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and velocity of all masses is zero, then

max
f∈F

‖δs‖2 =
1

λ2(L(x))
.

Proof Since f is a constant force, δs is a vector of constants and hence satisfies

L(x)δs = f.

Let f be decomposed along the eigenvectors v2, . . . , vn as

f =
n∑
i=2

αivi,

so that

αj = vj · f = vj · L(x)δs = L(x)vj · δs = λjvj · δs.

From the assumption that the initial average displacement and velocity of all masses

is zero, it follows that the average displacement and velocity of masses is zero through-

out as:

e0 · [Mδ̈ + L(x)δ] = e0 · f = 0,⇒ e0 · δ̈ = 0.

Hence, δs cannot have a component along v1 or equivalently along e0. Since x ∈ X ,

δs =
n∑
j=2

vj · f
λj

vj ⇒ ‖δs‖2
2 =

n∑
j=2

α2
j

λ2
j

≤
∑n

j=2 α
2
j

λ2
2

=
1

λ2
2

.

Since the maximum is achieved when f = v2, it follows that

max
f∈F
‖δs‖2 =

1

λ2

.
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Clearly, the maximum value of the 2-norm of forced response of the mechanical

system can be minimized when λ2(L(x)) is a maximum. It is for this reason that

algebraic connectivity (or the second smallest eigenvalue of L(x) is maximized.

1.2.2 Application to rigid formations

Consider a formation of n identical UAVs in a single dimension trying to maintain

a fixed distance from each other throughout their motion. Suppose the motion of

the ith UAV is given by:

Xi(s) =
1

s2
[P (s)Ui(s)−Di(s)], (1.8)

where P (s) is a proper, rational transfer function, Xi(s), Ui(s) and Di(s) are respec-

tively the Laplace transformation of the position of, control input to and disturbing

force acting on the ith UAV. The term P (s) represents the actuator transfer function

and relates the control input to a UAV with the actuation force generated by the

UAV.

Suppose the UAVs desire to maintain a constant relative separation with respect

to each other with the help of an identical on-board controller represented by the

transfer function C(s). Aiding the UAVs in accomplishing this task is a set of

communication and sensing devices. An underlying information flow graph indicates

the information available to each UAV. For example, if the ith UAV has the position

and velocity information of the jth UAV in the collection, the ith and jth UAVs

are considered adjacent or neighbors in the information flow graph. For the sake

of simplicity of exposition, if ith UAV has the information of jth UAV, it will be

assumed that the converse also holds. Let Si be the set of neighbors of the ith UAV.
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With this set up, one may associate a Laplacian with the information flow graph.

For i 6= j, the component of Laplacian in the ith row and jth column is −1 if the

ith and jth UAVs are neighbors and is zero otherwise. For each i, the ith diagonal

element is the number of UAVs, |Si|, that are neighbors of the ith UAV. Clearly, the

sum of the components of the corresponding row (and column) is zero.

Let X̄(s) denote the Laplace transformation of the position of the centroid of the

formation and let the error in spacing Ei(s) := Xi(s) − X̄(s) − Li
s

, where Li is the

desired position of the ith UAV from the centroid. The input to the controller is the

aggregate error in maintaining a desired spacing relative to its neighbors and may

be described as:

Ui(s) = −C(s)
∑
j∈Si

[Xi(s)−Xj(s)−
Li − Lj

s
] = −C(s)

∑
j∈Si

[Ei(s)− Ej(s)]. (1.9)

In this case, the error evolution equation can be described by:

[s2In + P (s)C(s)L]E(s) = −D(s)− s2X̄(s)− s`, (1.10)

where E(s), D(s) are respectively the Laplace transformation of the vector of errors

in spacing and disturbing forces acting on the UAVs. The term ` represents the vector

of desired distances of the UAVs from the centroid and L represents the Laplacian

associated with the information flow graph.

The associated characteristic equation is given by

Πn
i=2(s2 + λi(L)P (s)C(s)) = 0.

The stability of motion of the formation of UAVs is governed by the eigenvalues of

the Laplacian. Clearly, P (0)C(0) 6= 0; otherwise, the errors do not decay to zero
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as 0 is one of the roots of the characteristic equation. The term P (0)C(0) > 0

indicating that the steady state gain from the aggregate error to the force supplied

by the actuation system is positive. Since λi are the non-zero eigenvalues of the

Laplacian, λi > 0. The high frequency gain is positive as it is the coefficient of

s2. If P (0)C(0) < 0, then for λ > 0, the highest and lowest degree terms of the

characteristic polynomial will be of opposite signs indicating instability of motion.

Physically, if P (0)C(0) < 0 then a UAV lagging behind will lag further behind

and the motion of the UAVs will be unstable. Since P (0)C(0) > 0, the sensitivity

to low frequency disturbances is higher if λ is lower. This can be seen as follows:

Let Ev(s) := v · E(s), Dv(s) := v · D(s), where v is an eigenvector of Laplacian

corresponding to one its non-zero eigenvalues, λ. Then:

v · [s2In + P (s)C(s)E(s)] = −v ·D(s)− s(v · `),

which simplifies to

(s2 + λP (s)C(s))Ev(s) = −Dv(s)− s(v · `).

Correspondingly, the disturbance attenuation transfer function is given by −1
s2+λP (s)C(s)

.

At a low frequency, w, the low frequency attenuation is governed by | 1
−w2+λP (0)C(0)

|

since P (0)C(0) > 0. Clearly, higher the value of λ, the better is the attenuation.

Since disturbance attenuation at low frequencies is important, it is reasonable to

maximize λ2, the lowest non-zero eigenvalue of the Laplacian.

1.2.3 Application to UAV network synthesis

Earlier in this section, a variant of BP involving the construction of an adhoc

infrastructure network with UAVs has been alluded to. It required the maintenance
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of a rigid formation and a control law for maintaining such a formation can be con-

structed along the lines mentioned in the earlier subsection. The networking aspect

of this problem also has relevance to the maximization of algebraic connectivity of the

underlying communication graph. Since UAVs form a backbone network, each UAV

must be able to transmit data at a constant rate, say r bits/sec to every other UAV

in the network; however, each UAV may be receiving data at a rate of R bits/sec to

be transmitted to other UAVs. In order to maintain a desirable quality of service,

one may be interested in finding out the maximum value of R that is allowable so

that the network is not congested or “bottlenecked”; from the viewpoint of designing

a network, one would be interested in designing a UAV adhoc network so that R is

maximized subject to other constraints on resources.

One may associate a vertex, v, with each UAV, an edge, e with a communication

link and a “weight” αij associated with the edge (communication link) connecting

the ith and jth UAVs. Let V,E represent the set of vertices and edges and let

the underlying communication graph be represented as G(V,E, α). The term αij

is proportional to the product of the antenna gains of the ith and jth UAVs and is

reflective of the data rate that can be communicated across the link. An important

concept in addressing this issue is the value of a cut. A cut may be identified by a

set S ⊂ V, S 6= V . The cut δ(S) is the set of edges with exactly one end in S. The

value of the cut is the sum of the weights of the edges in δ(S) and is represented

by w(δ(S)). Let S̄ be the complement of S in V ; i.e., v /∈ S ⇐⇒ v ∈ S̄. Clearly,

δ(S) = δ(S̄) and the value of the cut is the same.

Suppose the network must be designed so that there is a guaranteed data rate of

R bits/second that every UAV can transmit without the network getting congested.

Given a set S ⊂ V and its complement S̄ ⊂ V , let r(S) be the pairwise data exchange

between every pair of nodes in S and S̄. Then, the total data transmission across
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the cut of S is r(S)|S||S̄| and must be no more than the value of the cut, w(δ(S))

and hence:

r(S) ≤ w(δ(S))

|S| · |S̄| .

If S is of lower cardinality than S̄, then nodes in S can transmit data at a rate of

r(S) to each node in S̄ and consequently,

r(S) max{|S|, |S̄|} ≤ w(δ(S))

|S| · |S̄| max{|S|, |S̄|} =
w(δ(S))

min{|S|, |S̄|} .

Since

R = min
S⊂V

r(S) max{|S|, |S̄|},

it follows that

R ≤ min
S⊂V

w(δ(S))

min{|S|, |S̄|} .

In fact, R can be set to the minimum value of the right-hand side, which is referred

to as the Cheeger constant or Cheeger number, h, or the isoperimetric number of

a graph. If a link (or an edge) in δ(S) were to fail, the capacity of a cut decreases

and the above inequality relates how the guaranteed data rate of transmission is

reduced for every UAV in the network. In the problem of UAV network synthesis, it

is desirable to maximize R over all allowable ways of connecting the UAVs.

The Cheeger number is difficult to compute for a sufficiently large size graph; for

this reason, algebraic connectivity of a graph is used as its surrogate. The justification

for using algebraic connectivity, λ2, of a graph as a surrogate stems from the following

inequality connecting Cheeger constant and algebraic connectivity:

h ≤ λ2 ≤
h2

4
.
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Clearly, if h is small, λ2 is small because of the upper bounding inequality and if h

is large, λ2 is also large because of the lower bounding inequality.

1.2.4 Application to air transportation networks

The fundamental objective of an air transportation network is to transport pas-

sengers from one airport to another in as efficient a manner as possible while meeting

quality of service requirements of the passengers. In this dissertation, a very sim-

ple model of an air transportation network will be considered, where every airport

serves the role of a node, a direct route between two airports serves the role of an

edge between the two nodes. The main issue of interest in this dissertation is the

sensitivity of “connectivity” of air transportation network to some edges being not

operational due to a variety of factors such as weather etc. Here, the term “connec-

tivity” is used loosely. Connectivity is meant to mean the ability to transport the

passengers from their respective origin to their intended destination. Connectivity

can be affected by weather resulting in an edge connecting two nodes being deleted

(i.e., the route being out of operation temporarily or a flight being cancelled). For

example, a reduction in connectivity can result in passengers being stranded at an

airport and the undesirable consequence of reduction in the quality of service to the

passengers.

Given that the motivation is to address connectivity, each edge will be “weighed”

according to the passengers that can be transported across that edge or even more

simply as the number of passenger flights flying that can be flown on the route in

a day. This is a gross simplification; however, this is a first step towards a more

complicated model of an air transportation network. The underlying assumption is

that each flight carries the same number of passengers. Since the quality of service

is associated with the passengers transported from a node, let R(i) be the total
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number of passengers transported from node i. It is assumed that the travel demand

from node i to all other nodes is the same, i.e., the number of passengers desiring to

travel from node i to any other node is exactly the same. The node capacity of the

network may be defined to the maximum value of miniR(i) for which the network is

congested, i.e., for some cut, S ⊂ V , the value of the cut equals the travel demand

across S, that is, the number of passengers starting from S and intending to reach

some node in S̄.

A preliminary design of an air transportation network can be posed as follows:

Suppose a graph, G(V,E,w) of the nodes/vertices (airports), the set of edges E

(routes connecting a pair of airports) and the associated weights. Suppose further

that the cost of operating a route is known a priori; one may even associate a prior-

ity/importance of the route as a cost. The problem is to find a network so that the

minimum serving capacity (i.e., the number of passengers that can be transported

from any node in the network) is maximized without the network getting congested

and the sum of cost of operation of the routes is within a specified budget.

This problem is analogous to the UAV adhoc infrastructure network design prob-

lem, where the objective is to maximize the Cheeger number of the network subject to

resource constraint. Since Cheeger number is difficult to deal with, one can pose the

closely related problem of maximizing algebraic connectivity subjected to resource

constraints.

1.3 Literature review

1.3.1 Relation to current state of knowledge in system theory

The problem of system realization considered in this dissertation was the topic

of a plenary talk by Kalman in an IFAC meeting [20] in 2005. While the relevant

reference to this work is [21], there has not been a formally written problem statement
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to this effect to the best of the knowledge of the author. Neither has there been a

resolution of the problem.

It is known that the algebraic connectivity of a structure is non-zero if and only

if the structure or graph is connected [22], [23], [24]. The problem of maximum

algebraic connectivity has been considered in [25] for reducing the heights of the

water columns at the junction in a network of pipes connecting them. The relevance

of the maximum algebraic connectivity to mixing of Markov Chains is shown in [26].

The work in [26] is concerned only with unweighted graphs and provides bounds on

the maximum algebraic connectivity by exploiting the symmetry of the Laplacian

under the action of permutations. This problem is also relevant to information flow

and motion planning of UAVs as considered in the works [7], [9]. However, none of

them solve the mixed integer semi-definite program. Recently, for the special case of

the maximum augmented algebraic connectivity problem where only one edge must

be added, a bisection algorithm has been presented in [27].

The problem of maximizing augmented algebraic connectivity was considered by

Maas [25]; however, a systematic procedure to solving for the maximum augmented

algebraic connectivity is still lacking. It may be posed compactly as a mixed-integer,

semi-definite program; initial efforts to compute the upper bounds of the maximum

algebraic connectivity (which is the second smallest natural frequency in structural

systems) may be found in [26] and also in the recent work of the authors [10].

1.3.2 Relation to current state of knowledge in discrete optimization

The problem of determining whether one can construct a constant factor approx-

imation algorithm for this problem is still open. From the viewpoint of constructing

cuts for the semi-definite integer programs, Atamturk and Narayanan recently devel-

oped non-linear cuts for conic programs[28], [29]. Since conic programs are special
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instances of semi-definite programs, the general problem of constructing efficient cuts

for semi-definite programs is still open. The recent work in [30] develops efficient

interior-point algorithms for infinite linear programs. Their work was motivated by

the need to solve mixed-integer, semi-definite programs through polyhedral approx-

imations. The book on convex optimization [31] provides an excellent overview of

the algorithms required to solve linear semi-definite programs.

1.4 Summary of contributions

In the context of the problem of maximizing the algebraic connectivity of networks

under resource constraints, our contributions, as presented in sections 2 and 3, are

as follows:

a) Understanding the relevance of BP in the context of disparate fields of research

and providing algorithms for solving BP to optimality, methods to obtain upper

bounds and quick heuristics to obtain sub-optimal solutions.

b) Providing algorithms for solving a variant of BP that arises in the synthesis of

robust UAV communication networks under resource constraints such as the total

number of communication links and the diameter of the network.

c) Providing algorithms for solving a second variant of BP that arises in synthesizing

robust UAV communication networks under resource constraints such as the total

number of communication links and the power consumption constraint.

1.4.1 Organization of the dissertation

This dissertation is organized as follows:

In section 2, we pose the problem of maximizing the algebraic connectivity

as three equivalent formulations; Mixed Integer Semi-Definite Program (MISDP),

MISDP with connectivity constraints and the Fiedler vector formulation as an MILP

and discuss the relative strengths and useful features of the proposed formulations.
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Further, we study the importance of the choice of an appropriate family of finite

number of vectors used to relax the semi-definite constraint and discuss the quality

of the associated upper bounds due to the relaxation.

In section 2, we propose three cutting plane based algorithms to solve the pro-

posed MISDP to optimality, namely: an algorithm based on the polyhedral ap-

proximation of the semi-definite constraint, an iterative primal-dual algorithm that

considers the Lagrangian relaxation of the semi-definite constraint and an algorithm

based on the Binary Semi-Definite Program (BSDP) approach in conjunction with

cutting plane and bisection techniques. Further, by an improved relaxation of the

semi-definite constraint, we discuss the computational efficacy of the cutting plane

algorithm in comparison with the state-of-the-art MISDP solvers in Matlab. Also,

by adopting the BSDP approach and implementing the algorithm in CPLEX, we

discuss the gain in the computation time. Section 2 concludes with heuristics to

synthesize feasible solutions for the BP. The proposed heuristics are based on neigh-

borhood search, namely k-opt and an improved k-opt heuristic with a reduced search

space. We corroborate the quality of the heuristic solutions with respect to optimal

solutions for small instances and present the numerical results for large instances (up

to sixty nodes).

In section 3, we mathematically formulate various resource constraints such as

the diameter constraint and the power consumption constraint. For the problem

of maximizing algebraic connectivity under these resource constraints, we propose

modified versions of the cutting plane algorithms and discuss their computational

performance for relatively small instances. In the context of the problem with power

consumption constraint, we extend the BSDP approach to obtain feasible solutions

and discuss the quality of the associated lower bounds for relatively large instances

(up to ten nodes). Finally, we discuss the performance of the k-opt heuristic in the
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context of solving BP under resource constraints.

Lastly, in section 4, we summarize the results of the work and discuss possible

directions to further develop this field of research.
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2. *ALGORITHMS FOR THE MAXIMIZATION OF ALGEBRAIC

CONNECTIVITY

In this section, the BP of maximizing the algebraic connectivity of graphs is

considered. The rationale for considering algebraic connectivity of graphs as an ob-

jective for optimization is illustrated via various applications, including a discrete

mechanical system, air transportation network and UAV ad-hoc networks. Since

the computation of solutions for combinatorial problems can be sensitive to mathe-

matical formulation of the problem, different mathematical formulations of BP are

presented along with their features. The rest of the section is focused on (1) develop-

ing upper bounds for the optimal value of algebraic connectivity using relaxation and

cutting plane techniques, (2) developing techniques for computing the optimal value

of algebraic connectivity and (3) to provide heuristic techniques for synthesizing sub-

optimal graphs along with the percentage deviation of their algebraic connectivity

from the optimal value.

2.1 Problem formulation for the basic problem of maximizing algebraic

connectivity

Let (V,E,w) represent a graph. Without any loss of generality, we will simplify

the problem by allowing at most one edge to be connected between any pair of nodes

*Reprinted with permission from 1) Algorithms for synthesizing mechanical systems with max-
imal natural frequencies by H.Nagarajan, S.Rathinam, S.Darbha and K.R.Rajagopal, 2012. Non-
linear Analysis: Real World Applications, 13(5):2154-2162, Copyright 2012 by Elsevier Ltd.
2. Synthesizing robust communication networks for UAVs by H.Nagarajan, S.Rathinam, S.Darbha
and K.R.Rajagopal, 2012. American Control Conference, 2012. 3730–3735, Copyright 2012 by
IEEE.
3. Heuristics for synthesizing robust networks with a diameter constraint by H.Nagarajan, P.Wei,
S.Rathinam and D.Sun, 2014. Mathematical Problems in Engineering, Copyright 2014 by Hindawi
Publishing Corporation.
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in the graph. Let wij represent the edge weight with the edge e = {i, j} ∈ E and

let xij ∈ {0, 1} represent the choice variable for every {i, j} ∈ E. Let x be the

vector of choice variables, xij. If xij = 1, it implies that the edge is chosen in the

construction of the network; otherwise, it is not. In the context of UAVs, vertices of

the graph correspond to UAVs and the edges correspond to the communication links

between them. The edge weight corresponds to the strength of the communication

link between a given pair of UAVs.

If v1, v2 are two vectors in the same vector space, we denote their tensor product

by v1⊗v2 and their scalar or dot product by v1 ·v2. If e = {i, j} connects UAVs i and

j, then the effective communication between that pair of UAVs may be expressed as

wijxij. Let ei denote the ith column of the identity matrix In of size |V | = n. We

may define Lij = wij(ei−ej)⊗(ei−ej), and correspondingly, the weighted Laplacian

matrix (in the remainder of this dissertation, the usage of Laplacian matrix implies

weighted Laplacian matrix unless specified) may be expressed as:

L(x) =
∑

i<j,{i,j}∈E
xijLij.

Note that, for a given connected network, L(x) is a symmetric, positive semi-definite

matrix, that is,

v · L(x)v ≥ 0 ∀v.

Let (λ1(L(x)) = 0) < λ2(L(x)) ≤ λ3(L(x)) . . . ≤ λn(L(x)) be the eigenvalues of L(x)

and let v1, v2, . . . vn be the corresponding eigenvectors of L(x).
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The BP can be expressed as:

γ∗ = maxλ2(L(x)),

s.t.
∑

i<j, {i,j}∈E xij ≤ q,

xij ∈ {0, 1}|E|
(2.1)

where q is some positive integer which is an upper bound on the number of edges

to be chosen. Since this is a non-linear binary program, it is paramount to develop

efficient ways of formulate this problem. In the remainder of this section, we shall

focus on developing various equivalent formulations for BP.

2.1.1 Mixed integer semi-definite program

The BP formulation in (2.1) may be equivalently expressed as a Mixed Integer

Semi-Definite Program (MISDP) as follows: let e0 = 1√
n

∑n
i=1 ei so that e0 · e0 = 1.

Then, formulation (2.1) may be expressed as:

γ∗ = max γ,

s.t.
∑

i<j, {i,j}∈E xijLij � γ(In − e0 ⊗ e0),∑
i<j, {i,j}∈E xij ≤ q,

xij ∈ {0, 1}|E|.

(2.2)

We will refer to it as the formulation F1. We first show that this formulation

correctly solves the algebraic connectivity problem.

Lemma 2 Let an optimal solution corresponding to the formulation F1 be γ∗ and

x∗. Then, x∗ is a network that solves BP to optimality with γ∗ being the second

eigenvalue of L(x∗).

Proof Let the eigenvalues of the positive semi-definite matrix, L(x) be given by

(0 = λ1(L(x))) < λ2(L(x)) ≤ . . . ≤ λn(L(x)). We first show that for any connected
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network x, L(x) and γ = λ2(L(x)) satisfy the constraints in the formulation F1. Let

e0 be an eigenvector corresponding to λ1(L(x)) = 0. Then, L(x) admits a spectral

decomposition of the form

L(x) =
n∑
i=1

λi(L(x)) (vi ⊗ vi), (2.3)

where vi is the eigenvector corresponding to eigenvalue, λi(L(x)). Since λ1(L(x)) = 0,

and v1 = e0, the equation (2.3) reduces to

L(x) =
n∑
i=2

λi(L(x)) (vi ⊗ vi). (2.4)

Adding λ2(L(x)) (e0 ⊗ e0) to both sides of the equation (2.4),

L(x) + λ2(L(x)) (e0 ⊗ e0) = λ2(L(x)) (e0 ⊗ e0) +
n∑
i=2

λi(L(x)) (vi ⊗ vi). (2.5)

Since λi(L(x)) ≥ λ2(L(x)), ∀ i ≥ 2, equation (2.5) reduces to the following inequal-

ity:

L(x) + λ2(L(x)) (e0 ⊗ e0) � λ2(L(x))

(
n∑
i=1

(vi ⊗ vi)
)

︸ ︷︷ ︸
In

, (2.6)

L(x) � λ2(L(x)) (In − e0 ⊗ e0). (2.7)

Therefore, for any connected network x, L(x) and γ = λ2(L(x)) satisfy the con-
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straints in the formulation F1. Now, to show that γ∗ =λ2(L(x∗)), it is enough to

prove that γ∗ ≥ λ2(L(x∗)) and γ∗ ≤ λ2(L(x∗)).

Proof for γ∗ ≥ λ2(L(x∗)): We know that x∗ is a feasible solution to formula-

tion F1 with second eigenvalue, λ2(L(x∗)). Since this is a maximization problem,

γ∗ must be an upper bound on λ2(L(x)) for all possible feasible solutions. Hence,

γ∗ ≥ λ2(L(x∗)).

Proof for γ∗ ≤ λ2(L(x∗)): Since (x∗, γ∗) is a feasible solution, we have

L(x∗) � γ∗(In − e0 ⊗ e0). (2.8)

Let v̂ be any unit vector perpendicular to e0. Then

v̂ · L(x∗)v̂ ≥ γ∗. (2.9)

Hence, from the Rayleigh quotient characterization of the second eigenvalue, it fol-

lows that λ2(L(x∗)) ≥ γ∗. �

Approximations of the feasible set of F1: One can approximate the feasible set

of F1 in at least two different ways:

(a) Binary relaxation: In this type of relaxation, the feasible set of the formulation

F1 is expanded by replacing the integer constraint, xij ∈ {0, 1}|E| with 0 ≤

xij ≤ 1, ∀i < j, {i, j} ∈ E.

(b) Relaxation of the semi-definite constraint : The semi-definite constraint can

be equivalently expressed as a family of linear inequalities parameterized as
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follows:

v ·

 ∑
i<j, {i,j}∈E

xijLij − γ(In − e0 ⊗ e0)

 v ≥ 0 ∀v.

where v is any unit vector. One can relax the semi-definite constraint by

picking a finite number of unit vectors, say v1, v2, . . . , vN , and replacing the

semi-definite constraint with the following linear inequalities:

vk ·

 ∑
i<j, {i,j}∈E

xijLij − γ(In − e0 ⊗ e0)

 vk ≥ 0 ∀k = 1, . . . , N.

Naturally, by solving formulation F1 with either of these relaxations, we are guaran-

teed to obtain an upper bound on the maximum algebraic connectivity. Hence, in

the remainder of this section, we discuss the quality of the upper bounds obtained

by considering the binary relaxation of formulation F1 and its variants. Later, in

section 2.2, we discuss the quality of the upper bounds based on the relaxation of

the semi-definite constraint with a finite number of unit vectors without relaxing the

binary constraints.

Performance of formulation F1: For the purposes of implementation, we restrict

our feasible solutions to a set of undirected spanning trees since they serve as min-

imally connected structures. Hence, we solve the following version of formulation

F1.

γ∗ = max γ,

s.t.
∑

i<j, {i,j}∈E xijLij � γ(In − e0 ⊗ e0),∑
i<j, {i,j}∈E xij = n− 1,

xij ∈ {0, 1}|E|.

(2.10)
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From here on, we will prefix a formulation with R to indicate the relaxation

of binary constraints (i.e., replacing the constraint xij ∈ {0, 1}|E| with 0 ≤ xij ≤

1, ∀i < j, {i, j} ∈ E) associated with the formulation. Note that the feasible

solutions of F1 are also feasible for RF1; the optimal value of RF1 is an upper

bound represented by γ∗RF1
. A summary of RF1’s solutions for various problem sizes

is shown in Table 2.1. It is clear from the table that the percentage deviation of

the upper bound (γ∗RF1
) from the best known feasible solution is unsatisfactory even

for problems with small sizes (103.2% gap for five nodes problem). Also, one can

observe that the percent deviation of the upper bound increases with the size of

the problem (maximum gap up to 181.9% for twelve nodes problem), which is an

undesirable feature. However, having formulations with better upper bounds due

to binary relaxations are useful which can in turn reduce the computational time

of the Branch and Bound (B&B) solver for solving the problem to optimality. For

example, any B&B solver requires upper bounds on the optimal γ∗ and one of the

ways it generates this bound is by relaxing the binary constraint on xe.

Also, since the binary relaxation of F1 allows for fractional values of xe, it can

violate the following fundamental property of connectivity: If S is a strict subset of

V , then there must be at least one edge between the set of nodes in S and V −S. The

relaxation sometimes allows the sum of the fractional values of the edges between S

and V −S to be less than unity. As an example, for a random cost matrix (Appendix

A), a support graph constructed based on the binary relaxation solution of the RF1

is shown in Figure 2.1. It is clear from the figure that the min-cut (x38 + x78) value

is equal to 0.805 and hence violates the connectivity property.

A natural way to incorporate the connectivity constraints into the formulation is
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Figure 2.1: Support graph for a random instance where the connectivity constraints
are violated. The edges in the violated cutset are shown in dashed lines.

through the augmentation of flow cuts for the violated cutsets of the following form:

∑
i<j{i,j}∈δ(S)

xij ≥ 1,

where δ(S) represents the edges in the cutset for the which the connectivity require-

ment is not satisfied. From the implementation point of view, this may not be an

efficient way of enforcing connectivity since the number of the violated cutsets may

be exponential for large problems. Alternatively, one can also use the flow formula-

tion of Magnanti and Wong [32] to obtain an equivalently strong lifted formulation

with a polynomial number of constraints.

In the next subsection, we discuss a compact representation of connectivity using

the flow formulation and study the performance of the MISDP with connectivity

constraints.
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2.1.2 Mixed integer semi-definite problem with connectivity constraints

As we discussed in the earlier subsection, though the formulation F1 with binary

requirements on xij enforces connectivity, the relaxed problem RF1 does not ensure

connectivity due to the fractional solutions.

MISDP formulation with cutset constraints which enforces the requirement of

spanning trees as feasible solutions is as follows:

γ∗ = max γ,

s.t.
∑

i<j, {i,j}∈E xijLij � γ(In − e0 ⊗ e0),∑
i<j, {i,j}∈E xij = n− 1,∑
i<j, {i,j}∈δ(S) xij ≥ 1 ∀S ⊂ V,

xij ∈ {0, 1}|E|.

(2.11)

Clearly, if we ignore the integrality restrictions on xij variables, the fractional

solutions still satisfy the connectivity requirements. However, the main drawback of

formulation (2.11) is that the number of cutset constraints are exponential in the

number of the nodes in the network. Hence, we discuss an alternative formulation

based on multicommodity flow model proposed by Magnanti and Wolsey in [32].

In summary, in order to impose the connectivity constraints, the idea of the

multicommodity flow model is as follows: Fix any vertex in the graph as a source

vertex s. Then construct the network xij such that a distinct unit commodity is

shipped from s to each of the vertices in V while satisfying the flow and capacity

constraints. Flow constraints ensure that every distinct commodity indeed reaches its

terminal vertex by satisfying the mass balance at every intermediate vertex. Capacity

constraints ensure that sa the flow of commodity across an edge occurs only if the

capacity of the edge is greater than or equal to the amount of the commodity shipped.
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In the multicommodity flow formulation, let fkij be the the kth commodity flowing

from i to j. In this formulation, although the edge variables are undirected, the flow

variables will be directed. Then, the MISDP formulation with multicommodity flow

constraints, which we shall refer as F2 is as follows:

γ∗ = max γ,

s.t.
∑

i<j, {i,j}∈E xijLij � γ(In − e0 ⊗ e0),∑
j∈V \{s}(f

k
ij − fkji) = 1, ∀k ∈ V and i = s,∑

j∈V (fkij − fkji) = 0, ∀i, k ∈ V and i 6= k,∑
j∈V (fkij − fkji) = −1, ∀i, k ∈ V and i = k,

fkij + fkji ≤ xij, ∀ {i, j} ∈ E,∀k ∈ V,

0 ≤ fkij ≤ 1, ∀i, j ∈ V, ∀k ∈ V,∑
i<j, {i,j}∈E xij = n− 1,

xij ∈ {0, 1}|E|.

(2.12)

Performance of formulation F2: Although the MISDP formulation with multi-

commodity flow constraints (F2) circumvents the enumeration of exponential number

of cutset constraints, the computational performance of this formulation is very poor.

With the integrality constraints, state-of-the-art MISDP solvers like Sedumi in Mat-

lab [33] on a reasonably powerful workstation could not handle problems with five

vertices and ten edge variables. One of the main reasons for the poor performance

is the addition of O(|V |3) flow variables in addition to the O(|V |2) edge variables.

By relaxing the integrality constraints on F2 and solving RF2, the computational

results are summarized in Table 2.1. Again, the performance of RF2 was very poor

and the solvers in Matlab crashed for instances with more than six vertices and

fifteen edge variables. For the case of five vertices, there is a slight improvement in

the upper bound in comparison with the solution for RF1.
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2.1.3 Fiedler vector formulation

There has been a great deal of interest in developing high performance solvers for

solving LPs and MILPs to optimality. Recently, there has also been a progress in the

development of efficient programs for solving semi-definite problems and its variants

with additional constraints such as polynomial constraints, second order conic con-

straints, etc. Here is a link to a comprehensive list of state-of-the-art semi-definite

solvers: http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html.

However, there has not been much focus on developing generic solvers for solving

MISDP problems. In order to utilize the available high performance MILP solvers,

we present an equivalent formulation for F1 in the form of an MILP and study its

performance in this subsection.

We define the following notation before discussing the formulation based on the

Fiedler vectors of feasible solutions: Let Γ represent the set of all feasible solutions

to formulation F1 and

Vf := {v ∈ Rn : v is a Fiedler vector for a feasible solution, x ∈ Γ}.

For the case of spanning trees as feasible solutions, Vf contains the Fiedler vectors

corresponding to the nn−2 spanning trees.

The Fiedler vector formulation, which we shall refer as F3 is as follows:

γ∗ = max γ,

s.t. v · (∑i<j, {i,j}∈E xijLij)v � γ, ∀v ∈ Vf ,∑
i<j, {i,j}∈E xij ≤ q,

xij ∈ {0, 1}|E|.

(2.13)
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We prove the following lemma to show the equivalence of formulations F1 and F3.

Lemma 3 Let (x∗F3, γ
∗
F3) be an optimal solution to F3 and let (x∗F1, γ

∗
F1) be an opti-

mal solution to F1. Then, γ∗F1 = γ∗F3.

Proof Clearly, the feasible set for F1 is a subset of the feasible set for F3 since we

replace the original semi-definite constraint with a finite number of constraints in

F3. Hence, we have

γ∗F3 ≥ γ∗F1 = λ2(L(x∗F1)).

Let vF3 represent the Fiedler vector of x∗F3. From the definition of Vf , we know

that vF3 belongs to the set Vf . However, x∗F3 is feasible for F3. Hence, we have

vF3 · L(x∗F3)vF3 ≥ γ∗F3.

that is,

λ2(L(x∗F3)) ≥ γ∗F3.

Combining all the inequalities, we have

γ∗F1 = λ2(L(x∗F1)) ≥ λ2(L(x∗F3)) ≥ γ∗F3 ≥ λ2(L(x∗F1)) = γ∗F1.

It follows that γ∗F1 = γ∗F3. �

Performance of Fiedler vector formulation: For the implementation purposes,

we restrict the feasible solutions of formulation F3 to undirected spanning trees.

Solving F3 with binary constraints is computationally very inefficient since the num-

ber of the constraints are 86 + 1 (262,145) even for the case of eight nodes. Hence,

we solve RF3 by relaxing the binary constraints on xij. From table 2.1, it is clear
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that the upper bounds obtained are orders of magnitude higher than the optimal

solutions.

Relative strengths of the proposed formulations: Understanding the relative

strengths of the formulations is easier by fixing the continuous variable γ to a constant

non-negative value, which shall be γ̄ in all the three formulations. Since γ̄ is chosen

arbitrarily, the results hold true for any γ.

For a given complete graph G = (V,E), let S denote the set of incidence vectors

of spanning trees sj, j = 1, . . . , (N = |V ||V |−2). Let conv(S) denote the convex hull

of S, that is,

conv(S) := {
N∑
j=1

µjs
j :

N∑
j=1

µj = 1, µj ≥ 0 ∀j = 1, . . . , N}

Since we are interested in undirected edges, we use the following notation for

simplicity where xe represents an edge variable corresponding to edge e := {i, j}.

Based on our earlier discussion, S can be defined for each of the formulations as

follows:

SF1 := {xe ∈ {0, 1}|E| :
∑
e∈E

xeLe � γ̄(In − e0 ⊗ e0),
∑
e∈E

xe = n− 1},

SF2 := {xe ∈ {0, 1}|E| :
∑
e∈E

xeLe � γ̄(In−e0⊗e0),
∑
e∈E

xe = n−1,
∑
e∈δ(S)

xe ≥ 1 ∀S ⊂ V },

SF3 := {xe ∈ {0, 1}|E| : v · (
∑
e∈E

xeLe)v � γ̄,
∑
e∈E

xe = n− 1}.

We have shown that

conv(SF1) = conv(SF2) = conv(SF3).
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Let PF1, PF2 and PF3 denote the polyhedrons obtained by relaxing the binary con-

straints on formulations F1, F2 and F3 respectively.

Lemma 4 PF2 ⊆ PF1 ⊆ PF3

Proof A simple argument to prove this lemma is as follows.

From the definition of PF1 and PF2, we know that PF2 has all the constraints of

PF1 in addition to the cutset constraints. Hence PF2 ⊆ PF1.

Based on the definition of positive semi-definite matrices, the semi-definite con-

straint defining PF1 can be replaced with infinite linear constraints, that is,

v ·
(∑
e∈E

xeLe − γ̄(In − e0 ⊗ e0)

)
v ≥ 0 ∀v.

Since this representation is true for any v ∈ Rn, the set PF1 can be relaxed by

picking only a finite number of vectors, particularly v ∈ Vf . However, based on the

definition, this relaxed set is also PF3. Hence PF1 ⊆ PF3.

Combining the above two results, we have PF2 ⊆ PF1 ⊆ PF3. �

The computational results summarizing the strengths of the formulations shown

in Table 2.1 also matches well with the above lemma.

Useful features of the proposed formulations:

• Formulation F1 provides a compact representation of maximizing the alge-

braic connectivity via it’s semi-definite constraint. Since maximizing algebraic

connectivity automatically ensures connectedness in graphs, additional connec-

tivity constraints can be omitted.
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Table 2.1: Summary of the binary relaxation solutions of proposed formulations. The
entries in the table represent the upper bounds due to binary relaxations and their
corresponding percent gaps from the best known feasible solution (Best FS). N/A
implies that the Matlab’s MISDP/MILP solver could not handle those instances.
For every n, the values shown are averaged over ten random instances.

MISDP (F1) MISDP with flow (F2) Fiedler vector formulation (F3)

n Best FS γ∗RF1
% gap γ∗RF2

% gap γ∗RF3
% gap

5 10.9751 22.1131 103.2 22.0626 102.8 23.6332 116.5
6 15.7173 33.3133 113.6 N/A N/A 33.8767 118.1
7 17.6994 42.7876 144.5 N/A N/A 43.2787 147.4
8 25.5552 56.9862 123.1 N/A N/A 58.2514 128.1
9 28.0676 77.5151 177.8 N/A N/A N/A N/A
10 38.1984 105.7051 178.5 N/A N/A N/A N/A
12 52.0502 146.2322 181.9 N/A N/A N/A N/A

• As it is, solving F1 to optimality is computationally inefficient since the avail-

able MISDP solvers have limited features. However, by relaxing the semi-

definite constraint in F2 using a finite number of vectors, one can readily have

a tighter upper bound by solving the corresponding MILP. Of course, the qual-

ity of the upper bound depends on the number and the type of the vectors

chosen.

• The multicommodity flow constraints in F2 come in handy to enforce con-

nectedness in feasible solutions while solving MILP with relaxed semi-definite

constraints.

• The Fiedler vectors of feasible solutions used in formulation F3 can be readily

used to relax the semi-definite constraint by choosing a few of the many vectors

from the set Vf .

• The solution to F2 with relaxed semi-definite constraints need not be feasible for
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F1, that is, the solution (x∗e, γ
∗
RF1

) need not satisfy the semi-definite constraint.

This implies that the matrix
∑

e∈E x
∗
eLe−γ∗RF1

(In−e0⊗e0) will have a negative

eigenvalue. Hence, based on the eigenvector corresponding to the negative

eigenvalue, one can develop a cutting plane1 to eliminate the current solution

and possibly many other non-optimal solutions. Similarly, a sequence of cutting

planes can be generated until an optimal solution is obtained. This summarizes

the basic idea of the cutting plane algorithms which are discussed in detail in

section 2.3.

In summary, this section has basically dealt with development of three equiv-

alent formulations for the BP and summarized the quality of upper bounds and

the strengths of formulations obtained by considering their respective binary relax-

ations. In the next section, we utilize the various features of these formulations as

discussed to develop tighter upper bounds and ultimately obtain optimal solutions

asymptotically.

2.2 Upper bounds on algebraic connectivity

We discussed in the earlier section that the quality of the binary relaxations for all

the three formulations was poor and became worse with an increase in the problem

size. In this section, we mainly focus on developing techniques to obtain tight upper

bounds for the BP. For any spanning tree as a feasible solution, we first develop

a method to relax the semi-definite constraint using Fiedler vectors; this relaxation

seems to provide better bounds than binary relaxations.

2.2.1 Relaxation of the semi-definite constraint using Fiedler vectors

From our earlier discussion in section 2.1.3, we know that the MILP formulation in

F3 is equivalent to solving the MISDP formulation in F1. However, even for problems

1A brief discussion on the concept of cutting planes can be found in section 2.3.
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of moderate sizes (n ≥ 8), it would be impractical to enumerate all the Fiedler vectors

of feasible solutions in F3. However, by considering only a few vectors from the

many Fiedler vectors of the set Vf and maintaining the integrality constraints, one

can readily obtain upper bounds on the algebraic connectivity due to the relaxation

of the feasible set. Earlier, in section 2.1.1, we had briefly alluded to the concept

of approximating the feasible set of F1 by relaxing the semi-definite constraint with

finite set of linear inequalities with each inequality identified with an appropriate

unit vector. However, in this section, we restrict the relaxation of the feasible set

using the Fiedler vectors and discuss the quality of the bounds obtained from such

relaxations.

The quality of the upper bound from relaxing the semi-definite constraint using

Fiedler vectors depends on the following two factors: 1) Type of feasible solutions

whose Fiedler vectors are considered, 2) The number of Fiedler vectors considered.

Hence, the main focus of this section will be to construct appropriate Fiedler vectors

which provide tight upper bounds and study their quality.

Choosing the type of Fiedler vectors to relax the semi-definite constraint:

We observed that the relaxation of the semi-definite constraint with the Fiedler

vectors of spanning trees with higher value of algebraic connectivity gives very good

upper bounds. A simple, but a rough geometric interpretation of this hypothesis is

as follows: From Figure 2.2, it is clear that the relaxation of the feasible semi-definite

set with the Fiedler vectors corresponding to the spanning trees with higher algebraic

connectivity (γ) gives better upper bound. However, it can also be observed that,

without the Fiedler vector corresponding to the optimal solution, γ∗UB1 will be strictly

greater than γ∗ irrespective of the number of Fiedler vectors used for the relaxation.

This can also be easily deduced from Lemma 3.
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max γ

(x∗, γ∗) γ∗UB1

Feasible spanning trees for MISDP

Positive
semi-
definite
set

(a) Tighter relaxation

max γ

(x∗, γ∗)

Feasible spanning trees for MISDP

Positive
semi-
definite
set

γ∗UB2

(b) Weaker relaxation

Figure 2.2: A geometric interpretation of the relaxation of the semi-definite con-
straint using Fiedler vectors of feasible solutions. In (a), the upper bound obtained
(γ∗UB1) from Fiedler vectors of spanning trees with higher algebraic connectivity is
tighter than the upper bound obtained (γ∗UB2) from Fiedler vectors of spanning trees
with lower algebraic connectivity.

Constructing good feasible solutions: A priori, for a given complete weighted

graph, we neither know the optimal spanning tree with maximum algebraic con-

nectivity nor the sub-optimal spanning trees with higher algebraic connectivities.

However, by enumerating all the spanning trees for small instances, one can observe

that the spanning trees with higher algebraic connectivity tend to have larger values

of the sum of the weights of the edges in the tree. This trend can be clearly observed

in Figure 2.3 for instances with six and seven nodes. It can also be noted from the

figure that the maximum spanning tree is not necessarily the spanning tree with

maximum algebraic connectivity. However, from Table 2.2, we can see that the tree

with maximum algebraic connectivity occurs in the first few thousands (up to eight

nodes) while enumerating all the spanning trees in the decreasing order of the sum

of the weights of the edges in the tree. The enumeration of all the spanning trees in

Figures 2.3(a) and 2.3(b) corresponds to the third and the first instance in Table 2.2

respectively. These are the worst case instances where the optimal spanning tree is

farthest from the maximum spanning tree.

Based on these ideas, we now present a systematic procedure to construct the
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Fiedler vectors used for relaxation of the semi-definite constraint and discuss the

quality of the upper bounds obtained.
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(a) 6 nodes
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Figure 2.3: Graphical representation of the distribution of algebraic connectivity
(λ2) values for all the spanning trees over a random complete graph. The tree with
maximum λ2 is indicated by the circle filled with red color. It can be observed that
the trees with larger values of λ2 tend to have larger sum of the edge weights.

(a) Enumerate a fixed number of spanning trees in the decreasing order of the sum

of the weights of the edges in the tree, where the first tree in the enumerated list

will be a maximum spanning tree.

(b) Rank the enumerated spanning trees in the decreasing order of their algebraic

connectivity values, that is, the tree with rank one will have the maximum value

of algebraic connectivity among the enumerated spanning trees.

(c) Pick a fixed number of the first few ranked spanning trees in the decreasing order

of the algebraic connectivity values. Their Fiedler vectors can be used to relax

the semi-definite constraint.
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Table 2.2: The entries of this table represent the position of the spanning tree with
maximum algebraic connectivity (optimal solution) in the enumerated list of span-
ning trees, where the enumeration is in the decreasing order of the sum of the edge
weights.

Instances 6 nodes 7 nodes 8 nodes

1 39 819 5126
2 21 47 530
3 97 48 81
4 2 466 1058
5 3 109 704
6 30 10 9312
7 11 243 398
8 2 3 12805
9 92 189 11991
10 2 312 1225

Average 30 225 4323

Quality of the upper bounds: In order to enumerate a fixed number of span-

ning trees from the maximum spanning tree, a standard enumeration algorithm for

weighted graphs as given in [34] was implemented in Matlab. The optimal spanning

tree for up to eight nodes was within 4,323 trees while averaged over ten instances

and the worst case being 12,805 as shown in Table 2.2. Hence, from the maximum

spanning tree, we enumerated 15,000 spanning trees for every random instance up

to twelve nodes. The computation time for enumerating up to 15,000 spanning trees

for graphs of sizes up to twelve nodes was less than ten minutes.

The performance of the relaxation of formulation F3 with various number the

Fiedler vectors used for relaxation is shown in Figure 2.4. The percent gap shown in

Figure 2.4 is defined as follows:

percent gap =
γ∗UB − γbfs

γbfs
∗ 100,
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where γ∗UB is the upper bound obtained by solving the relaxed formulation F3 and

γbfs is the algebraic connectivity of the best feasible solution known. The best feasible

solution in this case will be the spanning tree with maximum algebraic connectivity

among the 15,000 enumerated trees.

In Figure 2.4, it can be noted that the average percent gap obtained by relax-

ing with thousand Fiedler vectors for instances of eight, nine, ten and twelve nodes

are 4.13%, 42.9%, 65.7% and 116.1% respectively. Though the gaps grow with the

increase in problem size, they are orders of magnitude better than the binary relax-

ation gaps shown in Table 2.1. Also, for the best instances shown in Figure 2.4, the

optimal solution was obtained with just eight hundred Fiedler vectors for the case of

eight nodes.

2.3 Algorithms for determining maximum algebraic connectivity

In this section, we focus on developing algorithms based on cutting plane tech-

niques to obtain optimal solutions for the problem of maximizing algebraic connec-

tivity (BP).

In principle, the available MISDP solvers in Matlab can be employed to solve

the problem F1 in (2.2). A well known state-of-the-art solver employed for solving

MISDPs is the SEDUMI [33] toolbox which can be accessed with the YALMIP user

interface [35]. However, even on a powerful workstation, the time to compute an

optimal solution using these solvers was in the order of hours for instances involving at

most eight nodes and couldn’t handle instances involving nine nodes or more. (for 8

and 9 nodes, the number of feasible solutions are 262,144 and 4,782,969 respectively).

There is a need for developing algorithms that provide tight upper bounds, in case

the optimal solution cannot be computed efficiently. The cutting plane technique

can be used to provide a monotonically decreasing sequence of upper bounds that
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Figure 2.4: Plot of the percent deviation of the upper bounds obtained by relaxing
the semi-definite constraint using the Fiedler vectors of good solutions from the best
known feasible solution. Average gap corresponds to the average value evaluated
over ten random instances and the best gap corresponds to the instance for which
the percent gap was minimum.

converge to the optimal value of algebraic connectivity. In the previous section,

we discussed in detail an efficient way to approximate the feasible set using Fiedler

vectors of feasible solutions to obtain tight upper bounds. Based on the cutting plane

techniques, one can always further tighten the upper bound and eventually obtain

optimal solutions. Therefore, after a brief introduction to the concepts of cutting
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plane techniques, we propose three cutting plane algorithms to solve the problem of

maximizing algebraic connectivity to optimality.

2.3.1 Cutting plane techniques

In combinatorial optimization problems, cutting plane method generally refers

to an iterative refinement of the feasible set by means of valid linear inequalities

or “cuts” or “cutting planes”. The procedure of adding cutting planes to obtain

optimal solutions are popularly used for solving MILPs. In the early sixties, Gomory

in his papers [36, 37] proposed to solve integer programs by using cutting planes,

thus reducing an integer programming problem to the solution of a sequence of linear

programs. Later, in the early 1990s, Ceria et. al., in their paper [38] introduced a

branch-and-cut approach to solve MILPs which effectively combined the usage of

Gomory cuts with the branch-and-bound procedure.

Cutting plane method for MILPs with a maximization objective works as follows:

Solve the MILP by relaxing the integrality constraints to obtain an easily solvable

linear program. Since this is a relaxation, the optimum value obtained will be an

upper bound to the original MILP. If the optimal solution obtained for the relaxed

MILP is not an integer solution, then there is guaranteed to exist a linear inequality

or a “valid inequality” or a “cutting plane” or simply a cut that separates this

optimal solution from the convex hull of the feasible set of MILP. Finding such a

cutting plane is the “separation problem”. An improved relaxation to the MILP can

be constructed by adding the cut to the existing relaxation. The linear inequality

is satisfied by the optimal solution of the MILP; however, it is not satisfied by the

non-integral optimal solution of the relaxed linear program. The optimal value of

the relaxed linear program provides a tighter upper bound to the MILP. Solving a

sequence of such linear programs with monotonically decreasing upper bound until
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an integer solution is found is the essence of the “cutting plane method”. Having a

polynomial time solvable separation problem for any MILP is not trivial. However,

in the literature, there are many separation heuristics for specific problems, where

these heuristics are not guaranteed to generate cutting planes for every solution of

the relaxed MILP.

In this dissertation, we extend the idea of the standard cutting plane method

for MILPs to solve the proposed MISDP problem. Instead of relaxing the binary

constraints in formulation F1, we relax the semi-definite constraint using a finite

number of Fiedler vectors and solve the corresponding MILP as discussed in the

previous section. To enforce connectivity in the feasible solutions for the MILP, we

invoke the multicommodity flow formulation as discussed in formulation F2. Clearly,

the solution obtained by solving the MILP need not be feasible for the MISDP since

the semi-definite constraint can be violated. Hence, we add a valid inequality which

eliminates the current integral solution to obtain an augmented MILP. Solving a

sequence of such augmented MILPs terminates when the current solution is also

feasible for the MISDP.

In the remainder of this section, we provide a detailed discussion on developing

three algorithms based on the cutting plane techniques as discussed above. Firstly,

we discuss a cutting plane algorithm, where a sequence of MILPs are solved by relax-

ing the semi-definite constraint using a finite number of Fiedler vectors. Secondly,

we provide a bisection algorithm to reduce the MISDP to a sequence of BSDPs

and discuss the gains in the computational efficiency. Thirdly, we discuss an itera-

tive primal-dual algorithm based on the Lagrangian relaxation of the semi-definite

constraint.
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2.3.2 EA1: Algorithm to compute maximum algebraic connectivity

EA1 (EA stands for an algorithm that computes an optimal solution exactly)

involves the construction of successively tighter polyhedral approximations of the

positive semi-definite set corresponding the maximum algebraic connectivity problem

given in formulation F1.

If one were to store the Fiedler vectors of some feasible solutions (spanning trees),

one can relax the semi-definite constraint in F1 as follows:

∑
e∈E

xeQi · Le − γQi · (In − e0 ⊗ e0) ≥ 0, i = 1, . . . , N,

where N is the pre-specified number of constraints used in the termination criteria

and Qi, i = 1, 2, . . . , N are the dyads associated with the Fiedler vectors correspond-

ing to the feasible solutions. If one were to directly approach the solution, one may

pick a bunch of random feasible solutions and construct the associated Qi’s from

their Fiedler vectors. In order to have a tighter initial relaxation of the feasible set,

one can also construct the Qi’s from the feasible solutions as discussed in section

2.2.1. At the end of this section, we shall discuss the computational efficiency of

EA1 by choosing such special Fiedler vectors for the relaxation of the semi-definite

constraint. One may then perform the following iteration to obtain optimal solution:

1. Solve the following MILP using as follows:
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max γ

s.t.
∑
xeQi · Le − γQi · (In − e0 ⊗ e0) ≥ 0, for i = 1, . . . , N,∑
e∈E xe ≤ q,∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,

xe ∈ {0, 1}|E|.

One may observe that the exponential number of cutset constraints can be

replaced with the multicommodity flow formulation as discussed in formulation

F2.

2. Check if the optimal solution x∗ to the above MILP satisfies the semi-definite

constraint: ∑
e∈E

x∗eLe − γ(In − e0 ⊗ e0) � 0.

If not, one can construct a cut associated with the negative eigenvalue of∑
e∈E x

∗
eLe − γ(In − e0 ⊗ e0) by first determining the corresponding eigen-

vector vN+1 and constructing a semi-definite QN+1 = vN+1 ⊗ vN+1. We can

augment the MILP with the following scalar linear constraint which cuts off

this undesirable solution:

∑
e∈E

xeQN+1 · Le − γQN+1 · (In − e0 ⊗ e0) ≥ 0,

which is clearly not satisfied when xe = x∗e, but is satisfied by the optimal

solution.

3. One may then solve the augmented MILP using dual simplex algorithm.

4. This procedure is iterated until x∗e satisfies the semi-definite constraint. Hence,

x∗e is an optimal solution.
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2.3.3 EA2: Algorithm to compute maximum algebraic connectivity

Algorithm 1 : Iterative primal-dual algorithm (EA2)

1: Input: A primal feasible solution
2: Let P := Given primal feasible solution. Let the Fiedler vector of P be denoted

as vP and its corresponding eigenvalue represented as γP
3: primalCost ← γP
4: dualCost ← ∞
5: DualGap ← dualCost-primalCost
6: if DualGap > 0 then
7: Use vP to obtain another primal solution, P ∗, by solving the following dual

problem:

dualCostP∗ = max vP · (
∑

e∈E xeLe)vP
subject to

∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,∑
e∈E xe ≤ q,

xe ∈ {0, 1}|E|.

8: Pt ← P ∗

9: Cuts← ∅
10: while γP > γPt do
11: Augment Cuts with the following constraint:

vPt · (
∑
e∈E

xeLe)vPt ≥ γP

12: Find P ∗ again by solving the above dual problem with all the additional
constraints in Cuts.

13: Pt ← P ∗

14: end while
15:

16: P ← Pt
17: primalCost ← γPt
18: dualCost ← min (dualCost,dualCostPt)
19: DualGap ← dualCost-primalCost
20: Termination criterion: if DualGap > 0 return to line 7, else exit with P

as the optimal primal solution.
21: end if
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EA2 is a cutting plane algorithm based on the iterative primal-dual method as

outlined in Algorithm 1. In this approach, we start with a feasible solution to the

primal problem and iteratively update this feasible solution with a new solution by

solving a related dual problem. The current feasible solution to the primal problem

is only updated with a new solution if the algebraic connectivity of the new solution

is greater than the algebraic connectivity of the current feasible solution. On the

other hand, if it is certain that the new solution found using the dual problem is not

optimum, a cutting plane is augmented to the dual and the dual problem is solved

again (refer to lines 11-12 of the algorithm). The dual problem is resolved with

additional cutting planes until it produces a new solution that is at least as good

as the current primal feasible solution (refer to lines 10-14 of the algorithm). The

algorithm eventually terminates when the dual cost equals the algebraic connectivity

of the best known primal solution (refer to line 20 of the algorithm). A feature of

this algorithm is that the solutions from the dual problem can be continually used to

improve the primal feasible solution while continuously decreasing the optimal dual

cost and hence the upper bound.

In the following discussion, we discuss the formulation of the dual problem related

to the primal and some efficient ways to solve the same. We also outline how to

generate cutting planes if the solution to the dual problem does not produce an

optimal solution.

We form the dual problem by relaxing the semi-definite constraint,

∑
e∈E

xeLe � γ(In − e0 ⊗ e0),

and penalizing the objective with a dual variable Q ∈ R|V |×|V | if the constraint is

violated. Let T be the set of networks on (V,E,we) which are connected and have
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at most q edges from E. Then, one may express the dual function Π(Q), with its

domain being Q � 0 and Q · (In − e0 ⊗ e0) = 1. One may compute Π(Q) for every

Q in its domain as:

Π(Q) = max
x∈T

[
∑
e∈E

xe(Q · Le)].

The computation of Π(Q) may be carried out using the greedy algorithms for span-

ning trees (which are the simplest of the connected networks) given in [39], [40]

mimicking Prim’s or Kruskal algorithm. The property of connectivity is taken into

account by the algorithm and hence, is simple and yet efficient. Since Π(Q) is a dual

function, it is automatically an upper bound for the maximum algebraic connectivity

for every Q in its domain. In our approach, at any iteration of the algorithm, the Q

we pick to solve the dual problem corresponds to the best known feasible solution,

P , available to the primal problem, i.e., Q is chosen to be equal to vP ⊗ vP where

vP is the Fiedler vector corresponding to P . Note that such a choice of Q always

satisfies the constraints Q � 0, Q · (In− e0⊗ e0) = 1 and is therefore always feasible

to the dual. If a solution (say, an optimal tree denoted by P ∗) that solves the dual

problem has an algebraic connectivity greater than the algebraic connectivity of the

primal solution P , then the primal solution is replaced with the optimal tree (i.e.,

P := P ∗) and a new iteration is started again. If algebraic connectivity of P ∗ is less

than that of P , then the dual problem is augmented with the following cutting plane

and solved again. This procedure is repeated until either the dual problem finds a

tree with a greater algebraic connectivity or the dual cost equals the primal cost in

which case the algorithm terminates. The cutting plane that is added is:

vP ∗ · (
∑
e∈E

xeLe)vP ∗ ≥ λ2(L(P )),
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where vP ∗ denotes the Fiedler vector corresponding to the tree P ∗. Observe that the

above inequality is violated if x is chosen to be P ∗ since vP ∗ ·L(P ∗)vP ∗ < λ2(L(P )).

However, from Rayleigh’s inequality, the optimal solution to the primal problem

always satisfies the above inequality.

Remark 1 The outer iteration of the algorithm (lines 6− 21) terminates when the

dual gap becomes zero. If at the end of an outer iteration, the dual gap is not zero,

several dual problems are solved until a tree with better algebraic connectivity is found.

In the worst case, the number of dual problems that need to be solved in an outer

iteration will be at most equal to the number of feasible structures available. Since

during every outer iteration, the increment in the algebraic connectivity is positive

and the number of dual problems that need to be solved is bounded, the algorithm will

eventually terminate with an optimal solution in finite steps.

2.3.4 Performance of algorithms EA1 and EA2

The MISDP formulation F1 was implemented using Matlab’s toolboxes, SeDuMi

and YALMIP which are state-of-the-art semi-definite solvers widely used among the

researchers in the area of semi-definite programing. The proposed exact algorithms

were implemented in C++ programing language and the resulting MILP’s were solved

using CPLEX 12.2 with the default solver options. All computational results in this

paper were implemented on a Dell Precision T5500 workstation (Intel Xeon E5630

processor @ 2.53GHz, 12GB RAM).

Construction of random instances: Random weighted adjacency matrix, A, for

each instance was generated using A = (M ◦ R) + (M ◦ R)T where ◦ denotes the

Hadamard product of magic square (M) and a randomly generated square matrix

(R) with zero diagonal entries. The entries of R are the pseudorandom values drawn
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from the standard uniform distribution on the open interval (0,1) [41]. The term

Aij corresponds to the edge weight which may be chosen to connect nodes i and

j. Every random cost matrix was chosen such that the maximum spanning tree’s

algebraic connectivity was greater than the algebraic connectivity of all the star

graphs (spanning tree with |V | nodes such that the internal node has a degree equal

to |V | − 1). This ensured that the optimal solutions were non-trivial connected

graphs. Adjacency matrices corresponding to the ten weighted complete graphs of

eight nodes are shown in Appendix A.

Corresponding to the weighted adjacency matrices in Appendix A, the optimal

spanning trees with maximum algebraic connectivity are shown in Figure 2.7.

In Table 2.3, for eight node networks, we compare the performance of the proposed

algorithms implemented in CPLEX with the performance of directly solving the

MISDP formulation F1 in MATLAB’s SDP solver. On an average, the two proposed

algorithms performed better than the SDP solver in Matlab. Moreover, the EA2

based on iterative primal dual method performed 1.2 times faster than the EA1

based on the polyhedral relaxation of the semi-definite constraint. Also, we observed

that the MISDP solver in MATLAB ceased to reduce the gap between the upper and

lower bounds it maintained during its branch-and-bound routine for networks with

nine nodes and hence was practically impossible to solve. The proposed algorithms

solved the nine node problem to optimality, but the computation time was in the

order of many hours (8 to 9 hours). The optimal solutions for the problem with nine

nodes are shown in Table 2.6.

In EA1, twenty Fiedler vectors of random spanning trees were used to relax the

semi-definite constraint. The sequence of upper bounds obtained by this algorithm

for instance 3 can be seen in Figure 2.5. For this instance, the algorithm terminates

with an optimal solution after choosing approximately 150 feasible spanning trees
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Table 2.3: Comparison of CPU time to solve MISDP formulation using Matlab’s SDP
solver (T1) with EA1 (T2) and EA2 (T3) solved using CPLEX solver for networks
with 8 nodes.

Instance No. Optimal T1 T2 T3

solution (seconds) (seconds) (seconds)

1 22.8042 1187.07 428.45 610.31
2 24.3207 2771.24 1323.58 1003.56
3 26.4111 1173.02 630.39 655.32
4 28.6912 559.15 631.08 495.89
5 22.5051 715.61 515.51 608.78
6 25.2167 947.16 1515.15 801.10
7 22.8752 1139.56 1371.69 860.07
8 28.4397 753.48 564.80 274.93
9 26.7965 1127.46 824.64 1287.26
10 27.4913 862.81 383.88 213.48

Avg. 1123.35 818.40 680.62
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Figure 2.5: EA1 based on polyhedral approximation of the feasible set: Plot of the
upper bound on the algebraic connectivity versus iterations for instance 3 given in
Table 2.3. Note that the construction of successively tighter polyhedral approxima-
tions of the feasible semi-definite set reduces the upper bound and finally terminates
at the optimal solution with maximum algebraic connectivity (γ∗).
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Figure 2.6: EA2 based on iterative primal-dual method: Plot of algebraic connec-
tivity of primal feasible solutions and dual cost versus iterations for instance 3 given
in Table 2.3. Note that this algorithm terminates when the dual cost equals the
maximum algebraic connectivity (γ∗).

out of the possible 262144 feasible solutions which we think is quite reasonable.

The exit criterion used for EA2 can be clearly observed in Figure 2.6. The dual

cost which is also an upper bound on the optimal solution continuously gets better

with the augmentation of cutting planes and finally exits when the dual gap goes to

zero. In this algorithm, the augmented dual problems were solved using the dual-

simplex method.

2.3.5 EA3: Algorithm to compute maximum algebraic connectivity

The earlier sections dealt with two algorithms which synthesized optimal networks

with eight nodes in a reasonable amount of time and was a huge improvement over the

existing methods to handle MISDPs. However, the computation time for solving nine

node problems to optimality was large. Therefore, we propose a different approach

for finding an optimal solution in this section by casting the algebraic connectivity

problem as the following decision problem: Is there a connected network x with at
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Figure 2.7: Optimal networks of eight nodes with maximum algebraic connectivity for
the random instances shown in Table 2.3 and the corresponding adjacency matrices
in Appendix A.

most q edges from E such that the algebraic connectivity of the network is at least

equal to a pre-specified value (γ̂)?

One of the advantages of posing this question is that the resulting problem turns

out to be a Binary Semi-Definite Problem (BSDP) and correspondingly, the tools

associated with construction of cutting planes are more abundant when compared to
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MILPs. Also, with further relaxation of the semi-definite constraint, it can be solved

using CPLEX, a high performance solver for ILPs.

The above decision problem can be mathematically posed as a BSDP by marking

any vertex (say r ∈ V ) in this graph as a root vertex and then choosing to find a

feasible tree that minimizes the degree of this root vertex 2. In this formulation, the

only decision variables would be the binary variables denoted by xe. Therefore, the

resulting BSDP is the following:

min
∑

e∈δ(r) xe,

s.t.
∑

e∈E xeLe � γ̂(In − e0 ⊗ e0),∑
e∈E xe ≤ q,∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,

xe ∈ {0, 1}|E|.

(2.14)

where, δ(r) denotes a cutset defined as δ(r) = {e = (r, j) : j ∈ V \ r}.

If we can solve this BSDP efficiently, then we can use a bisection algorithm to find

an optimal solution that will maximize the algebraic connectivity. In order to solve

the BSDP using CPLEX, we do the following: we first consider the relaxation of

the semi-definite constraint by taking a finite subset of the infinite number of linear

constraints from the semi-infinite program, but however add cutset constraints to

ensure that the desired network is always connected. These cutset constraints defined

by the inequalities ∑
e∈δ(S)

xe ≥ 1, ∀S ⊂ V,

require that there is at least one edge chosen from the cutset of any subset S (set of

edges from S to its complement S̄ in V ). If the solution to the relaxed BSDP does

2There are several ways to formulate the decision problem as a BSDP. We chose to minimize
the degree of a node as it seems to produce reasonably good feasible solutions in every iteration.
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not satisfy the semi-definite constraint, we add an eigenvalue cut that ensures that

this solution will not be chosen again and then solve the augmented but a relaxed

BSDP again. This cutting plane procedure is continued until a feasible solution is

found. The idea of this procedure is to construct successively tighter polyhedral

approximations of the feasible set corresponding to the desired level of algebraic

connectivity which is very similar to the procedure discussed in EA1. Clearly, the

algebraic connectivity of the feasible solution we have is a lower bound for the original

MISDP. Hence, we increment the value of γ̂ to the best known lower bound plus an

epsilon value and continue to solve the BSDP. This procedure of bisection is repeated

until the BSDP gets infeasible, which implies that we have an optimal solution to the

MISDP. The pseudo code of this procedure is outlined in Algorithm 2. Finding an

eigenvalue cut that removes the infeasible solution at each iteration is clearly shown

in this algorithm.

2.3.6 Performance of EA3

All the computations in this section were performed with the same computer

specifics as mentioned in section 2.3.4. In EA3 (Algorithm 2), for a given random

complete graph, we chose maximum spanning tree as an initial feasible solution since

it was computationally inexpensive to evaluate using the standard greedy algorithms.

For the bisection step, we assumed ε = 0.01.

In Table 2.4, we compare the computational performance of solving a sequence of

BSDPs (in formulation (3.7)) with bisection technique directly using the MATLAB’s

SDP solver with the proposed EA3 based on cutting plane method implemented in

CPLEX. Clearly, the computation time for the EA3 is much faster (46.45 times)

than solving BSDPs directly in MATLAB. For the same set of random instances of

eight nodes, it is also worthy to note that, EA3 performs computationally better
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Algorithm 2 : EA3 (BSDP approach)

Let F denote a set of cuts which must be satisfied by any feasible solution

1: Input: Graph G = (V,E,we), e ∈ E, a root vertex, r, and a finite number of
Fiedler vectors, vi, i = 1 . . .M

2: Choose a maximum spanning tree as an initial feasible solution, x∗

3: γ̂ ← λ2(L(x∗))
4: loop
5: F← ∅
6: Solve:

min
∑

e∈δ(r) xe,

s.t.
∑

e∈E xe(vi · Levi) ≥ γ̂ ∀i = 1, ..,M,∑
e∈E xe ≤ q,∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,

xe ∈ {0, 1}|E|,
xe satisfies the constraints in F.

(2.15)

7: if the above ILP is infeasible then
8: break loop {x∗ is the optimal solution with maximum algebraic connectiv-

ity}
9: else

10: Let x∗ be an optimal solution to the above ILP. Let γ∗ and v∗ be the algebraic
connectivity and the Fiedler vector corresponding to x∗ respectively.

11: if
∑

e∈E x
∗
eLe � γ∗(In − e0 ⊗ e0) then

12: Augment F with a constraint
∑

e∈E xe(v
∗ · Lev∗) ≥ γ∗.

13: Go to step 6.
14: end if
15: end if
16: γ̂ ← γ̂ + ε {let ε be a small number}
17: end loop

than solving MILPs using basic EA1 and EA2 in CPLEX as indicated in Table 2.3.

For the problems with nine nodes, EA3 significantly reduced the average compu-

tational time from eight hours to around five to six hours.
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Table 2.4: Comparison of CPU time to directly solve the BSDPs in bisection pro-
cedure using Matlab’s SDP solver (T1) with the proposed EA3 using CPLEX solver
(T2) for networks with eight nodes.

Instance No. λ∗2 T1 T2

(seconds) (seconds)

1 22.8042 15729.51 254.45
2 24.3207 3652.41 314.62
3 26.4111 3075.72 378.42
4 28.6912 23794.01 420.96
5 22.5051 10032.71 263.06
6 25.2167 20340.92 382.28
7 22.8752 16717.06 484.46
8 28.4397 16837.90 512.47
9 26.7965 44008.42 306.56
10 27.4913 7366.67 204.57

Avg. 15955.68 351.72

2.3.7 Performance of EA1 with an improved relaxation of the semi-definite

constraint

In section 2.3.4, the performance of EA1 was based on the initial relaxation of

the semi-definite constraint using the Fiedler vectors of random feasible solutions.

With such a relaxation, the initial upper bound can be weak and hence can incur

larger time to compute the optimal algebraic connectivity. However, in section 2.2.1,

we discussed a method to provide tight upper bounds by relaxing the semi-definite

constraint using the Fiedler vectors of feasible solutions with higher values of alge-

braic connectivity. Therefore, in this section, we discuss the performance of EA1

with an improved initial relaxation of the semi-definite constraint as discussed in

section 2.2.1.

By choosing thousand Fiedler vectors of good feasible solutions to initially relax

the semi-definite constraint, the computation time to obtain optimal solutions are
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shown in Tables 2.5 and 2.6. T1 corresponds to the time required to enumerate fifteen

thousand spanning trees from the maximum spanning tree and T2 corresponds to

EA1’s time to compute optimal solutions with an improved initial relaxation.

Based on the results in Table 2.5 for the eight nodes problem, the average total

computation time of EA1 with an improved relaxation is eight times faster than the

computation time of EA1 without an improved relaxation. Also, the average total

computation time in Table 2.5 is two times faster than the BSDP approach in EA3.

Based on the results in Table 2.6 for the nine nodes problem, the average total

computation time is around 2.9 hours with the best case instance being 26 minutes.

This is a great improvement compared to the eight hours of computation time for

EA1 without an improved relaxation and compared to five hours of computation time

for EA3. The optimal networks with maximum algebraic connectivity for networks

with nine nodes are shown in Figure 2.8.

Table 2.5: Performance of EA1 with an improved relaxation of the positive semi-
definite constraint for networks with eight nodes.

Instance No. λ∗2 T1 T2 T1 + T2

(seconds) (seconds) (seconds)

1 22.8042 70 12 82
2 24.3207 70 142 212
3 26.4111 70 9 79
4 28.6912 70 6 76
5 22.5051 70 7 77
6 25.2167 70 86 156
7 22.8752 70 20 90
8 28.4397 70 10 80
9 26.7965 70 39 109
10 27.4913 70 5 75

Avg. 103.6
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Table 2.6: Performance of EA1 with an improved relaxation of the positive semi-
definite constraint for networks with nine nodes.

Instance No. λ∗2 T1 T2 T1 + T2

(seconds) (seconds) (seconds)

1 28.2168 170 4295 4465
2 26.3675 170 8093 8263
3 29.8184 170 5377 5547
4 25.8427 170 32788 32958
5 24.2756 170 8880 9050
6 30.0202 170 3981 4151
7 25.6410 170 20458 20628
8 26.9705 170 13796 13966
9 33.5068 170 2908 3078
10 31.7445 170 1417 1587

Avg. 10369.3

2.4 Neighborhood search heuristics

A general approach to developing heuristics for NP-hard problems primarily in-

volves the following two phases: a) Design of algorithms, also known as construction

heuristics, that can provide an initial feasible solution for the problem, and b) De-

sign of a systematic procedure, also known as improvement heuristics, to iteratively

modify this initial feasible solution to improve its quality. Since the feasible so-

lutions discussed in this dissertation mainly concern the construction of spanning

trees, development of a construction heuristic for the proposed problem is quite triv-

ial. However, it is non-trivial to improve a feasible solution to obtain another feasible

solution with better algebraic connectivity.

In section 2.3.5, we discussed an exact algorithm based on the BSDP approach

wherein every iteration of the bisection, we are guaranteed to obtain a feasible solu-

tion with algebraic connectivity greater than or equal to a pre-specified value. How-
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Figure 2.8: Optimal networks of nine nodes with maximum algebraic connectivity for
the random instances shown in Table 2.6 and the corresponding adjacency matrices
in Appendix A.

72



ever, the main drawback of this approach was the solving of MILPs of increasing

complexity in every iteration without any guarantee on a finite computation time.

However, there are several improvement heuristics available in the literature for

sequencing problem and traveling salesman type problems. Some of them include

neighborhood search methods, tabu search [42] and even genetic algorithms [43]. In

this section, we focus on developing quick improvement heuristics for the problem

of maximizing algebraic connectivity based on neighborhood search methods. The

remainder of this section is organized as follows: we initially develop k-opt heuristic

and later an improved k-opt wherein the size of the search space in the neighborhood

of a feasible solution is reduced significantly. We conclude the section with the

computational performance of the proposed heuristics for networks up to sixty nodes.

2.4.1 k-opt heuristic

We consider a neighborhood search heuristic called 2-opt exchange heuristic, a

special case of a more general k-opt heuristic which has been successfully used for

solving traveling salesman problems [44]. We extend the idea of this heuristic to

solve the problem of maximizing algebraic connectivity. This heuristic can also be

easily extended to the problem of maximizing algebraic connectivity with resource

constraints which will be discussed in the later sections.

Any new feasible solution T2 for this problem is said to be in the k-exchange

neighborhood of a feasible solution T1 if T2 is obtained by replacing k edges in T1. In

case of 2-opt, we start with a feasible solution, which is a spanning tree satisfying the

resource constraints, and iteratively perform 2-opt exchanges for every pair of edges

in the initial spanning tree until no such exchanges can be made while improving the

solution. A 2-opt exchange on one such pair of edges of a random spanning tree is

shown in Figure 2.10. An important issue to be addressed is to make sure that the
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solutions resulting after 2-opt exchanges are also feasible. Ensuring feasibility in the

case of spanning trees is relatively easy as after removing 2 edges, we are guaranteed

to have 3 connected components (C1, C2, C3); therefore, by suitably adding any 2

edges connecting all the 3 components, one is guaranteed to obtain a spanning tree.

(1, 4)

(4, 3)

1 2

34

1 2

34

C1

C2 C3

(a) Sample graph

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

(b) 2-opt feasible solutions

Figure 2.9: This figure illustrates the 2-opt heuristic on an initial feasible solution,
T0. After removing a selected pair of edges {(1, 4)(4, 3)} from T0, the three connected
components are shown in (a). Part (b) shows the 2-opt exchange on the connected
components to obtain new feasible solutions.

The new spanning tree (say, T2) is considered for replacing the initial spanning

tree (T1) if it has a better algebraic connectivity than T1. A pseudo-code of 2-opt

heuristic is given in Algorithm 3. Note that this heuristic performs a 2-opt exchange

on a given initial spanning tree to obtain a new tree with better algebraic connectivity
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satisfying the resource constraint. This procedure is repeated on the current feasible

solution iteratively until no improvement is possible.

Algorithm 3 : 2-opt exchange heuristic

1: T0 ← Initial feasible solution
2: λ0 ← λ2(L(T0)))
3: for each pair of edges {(u1, v1), (u2, v2)} ∈ T0 do
4: Let Topt be the best spanning tree in the 2-exchange neighborhood of T0 ob-

tained by replacing edges {(u1, v1), (u2, v2)} in Topt with a different pair of
edges.

5: if λ2(L(Topt)) > λ0 and Topt satisfies the resource constraint then
6: T0 ← Topt
7: λ0 ← λ2(L(Topt))
8: end if
9: end for

10: T0 is the best spanning tree in the solution space with respect to the initial
feasible solution

2.4.2 Improved k-opt heuristic

As discussed in section 2.4.1, there are two main steps in the k-opt exchange

heuristic: Choosing a collection of k edges to remove from the current solution

and then reconnecting the resulting, disjoint components with a new collection of k

edges. Clearly, there are several combinations of k edges that can be removed from

(or added to) a given solution, especially when the number of nodes in the graph

is large. For example, while performing 3-opt heuristic on a network of 40 nodes

with four connected components after deleting any three edges, there would be at

least 16,000 combinations of edges which can be connected to form a spanning tree.

Therefore, choosing an efficient procedure for the deletion and addition of edges is

critical for developing a relatively fast algorithm. In the following subsections, we

provide procedures for implementing these steps.
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Figure 2.10: An example illustrating an improved 2-opt exchange heuristic for a
network of 4 nodes.

Selecting a collection of k-edge combinations to delete: The basic idea here

is to list all the possible combinations of k edges that can be deleted from the current

feasible solution, assign a value for each combination, rank the combinations based on

these values, and then choose a subset of these combinations for further processing.

We assign a value to a combination of edges by first asking the following basic
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Algorithm 4 : k-opt exchange

1: T0 ← Initial feasible solution
2: λ0 ← λ2(L(T0)))
3: Edel ← Subset of k-edge combinations considered for possible deletion as obtained

by the edge ranking procedure
4: for each edge combination in Edel do
5: Delete the k edges present in the edge combination to obtain connected com-

ponents C1, C2, C3, . . . , Ck+1

6: Eadd ← Subset of k-edge combinations considered for possible addition as
obtained by the edge ranking procedure

7: Let T1 be the spanning tree which is feasible and has the largest connectivity
obtained from adding the edges in an edge combination from Eadd

8: if λ2(L(Topt)) > λ0 and Topt satisfies the resource constraint then
9: T0 ← T1

10: λ0 ← λ2(L(T1))
11: end if
12: end for
13: Output T0 as the (new) current solution

question: Which are the k edges that needs to be deleted from the current solution

T0 so that T0 (possibly) incurs the smallest reduction in the algebraic connectivity?

To answer this question, let T0 \{e} denote the graph obtained by deleting an edge e

from the graph T0 and by abuse of notation, let the Laplacian of the graph, T0 \ {e}

be denoted by L(T0 − e). By variational characterization, we have the following

inequality:

λ2(L(T0 − e)) ≤ v′L(T0 − e)v ∀v ∈ V (2.16a)

= v′L(T0)v − v′Lev ∀v ∈ V (2.16b)

= v′L(T0)v − we(vi − vj)2 ∀v ∈ V (2.16c)

where, V := {v :
∑

i vi = 0, ‖v‖ = 1}, we is the weight of edge e = (i, j) and
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vi represents the ith component of the vector v. One may observe from the above

inequality that by choosing an edge with a minimum value of we(vi − vj)
2, the

upper bound on the algebraic connectivity of the graph, T0 \ {e}, is kept as high as

possible. Also, we numerically observed that, we(vi − vj)2 was kept to a minimum

by choosing v as the eigenvector corresponding to the maximum eigenvalue of L(T0).

Hence, for any combination of k edges denoted by S, we assign a value given by∑
e=(i,j)∈S we(vi − vj)2. Then, we rank all the combinations based on the increasing

values and choose a subset of these combinations that corresponds to the lowest

values. In this work, the fraction of combinations that is considered for deletion

is specified through a parameter called the edge deletion factor. The edge deletion

factor is defined as the ratio of the number of k-edge combinations considered for

deletion to the maximum number of possible k-edge combinations (i.e.,
(
n−1
k

)
). We

will discuss more about this factor later in section 2.4.3.

Selecting a collection of k-edge combinations to add: In the case of spanning

trees, after removing k edges, we are guaranteed to have a graph T̃0 with exactly

k + 1 connected components {C1, C2, C3, . . . , Ck+1}; therefore, by suitably adding a

collection of k edges connecting all the k+ 1 components in T̃0, one is guaranteed to

obtain a spanning tree, T1. Also, we add these edges while ensuring that the resulting

tree satisfies the diameter constraints. The new feasible solution T1 is considered for

replacing T0 if it has a larger algebraic connectivity than T0.

As in the edge-deletion procedure, checking for every addition of k edges may

be computationally intensive for large instances. Therefore, we develop another

edge ranking procedure for adding edges as follows: Let T̃0 ∪ {e} denote the graph

obtained by adding an edge e = (i, j) to the graph T̃0 and let the Laplacian of the

graph, T̃0 ∪ {e}, be denoted by L(T̃0 + e). By variational characterization, we have
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the following inequality:

λ2(L(T̃0 + e)) ≤ v′L(T̃0 + e)v ∀v ∈ V (2.17a)

= v′L(T̃0)v + v′Lev ∀v ∈ V (2.17b)

= v′L(T̃0)v + we(vi − vj)2 ∀v ∈ V . (2.17c)

One may observe from the above inequality that by choosing an edge with a

maximum value of we(vi−vj)2, the upper bound on the algebraic connectivity of the

graph, T̃0 ∪ {e} is kept as high as possible. Just like the edge deletion step, let v be

the eigenvector corresponding to the maximum eigenvalue of L(T̃0). Hence, for any

combination of k edges denoted by S, we assign a value given by
∑

e=(i,j)∈S we(vi −

vj)
2. Then, we rank all the combinations based on decreasing values and choose a

subset of these combinations that corresponds to the highest values. The number

of combinations that are considered for addition is another parameter and can be

specified based on the problem instances.

A pseudo-code of the k-opt exchange is outlined in Algorithm 4. An illustration

of such a procedure on one such pair (k = 2) of edges for a spanning tree with 4

nodes is shown in Figure 2.10. This exchange is iteratively applied on the current

solution until no improvements can be made.

2.4.3 Performance of k-opt and improved k-opt heuristic

All the computations in this section were performed with the same computer

specifics as mentioned in section 2.3.4.

In this section, we performed all the simulations for the case of k equal to two

and three, which we shall refer as 2-opt and 3-opt heuristics. The 2-opt (Algorithm
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3) and improved 2-opt heuristics (Algorithm 4) were implemented in Matlab since

the heuristics terminated in a reasonable amount of time. But, we implemented the

improved 3-opt heuristic (Algorithm 4) in C++ programming language which could

handle up to sixty nodes in a reasonable amount of time.

Construction of initial feasible solution: Since the primary idea of the k-opt

heuristic is to search in the neighborhood space of an initial feasible solution, it would

be important to construct a good initial feasible solution. As we saw in the previous

section on exact algorithms (Figure 2.7), the networks with maximum algebraic

connectivity tend to be clustered and are low in diameter. With this intuition, the

procedure to construct an initial feasible solution is as follows: For a given complete

weighted graph with n nodes, sort the n possible star graphs (two diameter graphs)

in the decreasing order of the sum of the weights of the edges incident on the internal

node (weighted degree) of the graph. After sorting, we observed that, performing

k-opt exchange on five of these ranked star graphs provided a great improvement in

the algebraic connectivity.

Selecting edge deletion and edge addition factor: For the improved k-opt

heuristic, we set the edge deletion factor to be equal to 0.15 in all the simulations.

We chose this value based on the simulation results shown in Figure 2.11. This figure

shows the average algebraic connectivity of the final solution (and the computation

time) obtained using the improved 3−opt heuristic as a function of the edge deletion

factor. We observed that there was not much improvement in the quality of the

feasible solutions beyond a value of 0.15 (for the edge deletion factor) even for large

instances (n = 30, 40). Hence, we chose 0.15 as the edge deletion factor. Also, we

set the number of combinations of edges to be added to be at most equal to 5k. For
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improved 3-opt, this parameter was set to 125. We chose this value based on the

simulation results shown in Figure 2.12. For improved 2-opt, this parameter was set

to 25 after performing similar simulations.
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Figure 2.11: Average values of the algebraic connectivity (a) and computation times
(b) obtained as a function of the edge deletion factor using the improved 3-opt
heuristic over ten instances. In these computations, the maximum number of edge
combinations considered for addition between any two components was set to 125.

Performance of k-opt and improved k-opt with respect to optimal solu-

tions: For the problem with 8 nodes, we define the solution quality of the proposed

heuristic as

Solution quality =
λ∗2 − λkopt2

λ∗2
× 100

where λkopt2 denotes the algebraic connectivity of the solution found by the k-opt

heuristic and λ∗2 represents the optimum. The results shown in Table 2.7 are for 10

random instances generated for networks with 8 nodes. Based on the results in Table

2.7, it can be seen that the quality of solutions found by the k-opt (k = 2, 3) and
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Figure 2.12: The average algebraic connectivity (a) and computation times (b) ob-
tained as a function of the maximum number of edge combinations considered for
addition between any two components in the improved 3-opt heuristic over ten in-
stances. In these computations, the edge deletion factor was set to 0.15.

the improved k-opt (k = 2, 3) heuristic were very good and gave optimal solutions

for all the 10 random instances. Also, on an average, the computation time for

the heuristics were less than 1.5 seconds to obtain the best feasible solution for the

problem with 8 nodes. An improvement in the computational time for improved

k-opt heuristic can be observed for larger instances as discussed in the later parts of

this section. Instance 1 of Table 2.7 is pictorially shown in Figure 3.2.

Performance of k-opt and improved k-opt for large instances: For problems

with larger instances (n ≥ 10), in Table 2.8, we analyze the improvement in the

computation time of improved 2-opt heuristic with respect to the standard 2-opt

heuristic and also compare their solution qualities.

For a given initial feasible solution, the neighborhood search space for the im-

proved 2-opt is a subset of the neighborhood search space for the standard 2-opt.

Hence, we define the reduction in the value of the algebraic connectivity of improved
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Figure 2.13: A network with all possible edges connecting 8 nodes including edge
weights are shown in (a). (b) represents the initial feasible solution which is a star
graph. (c) represents an optimal network which also happens to be the solution
found by the 2-opt and 3-opt heuristics.

2-opt from the standard 2-opt as

percent reduction =
λ2opt

2 − λ2optimp
2

λ2opt
2

× 100
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Table 2.7: Comparison of the quality of the solutions found by the k-opt heuristic
(Algorithm 3) for networks with 8 nodes. λ∗2 is the optimal algebraic connectivity.

Optimal solution k-opt, Improved k-opt (k=2,3)

No. λ∗2 Time λkopt2 Solution Time
(sec) quality (sec)

1 3.9712 180.57 3.9712 0.00 1.1
2 4.3101 408.10 4.3101 0.00 2.1
3 3.9297 621.85 3.9297 0.00 1.3
4 3.5275 216.79 3.5275 0.00 2.3
5 3.8753 470.63 3.8753 0.00 0.8
6 3.7972 342.14 3.7972 0.00 1.2
7 3.7125 377.47 3.7125 0.00 1.7
8 3.9205 313.12 3.9205 0.00 1.6
9 3.7940 341.84 3.7940 0.00 2.3
10 3.8923 316.86 3.8923 0.00 2.1

Avg. 358.43 0.00 1.5

where λ2opt
2 is the algebraic connectivity of a solution obtained from the 2-opt heuris-

tic and λ
2optimp
2 is the algebraic connectivity of a solution obtained from the improved

2-opt heuristic. From the results in Table 2.8, it can be seen that the improved 2-opt

heuristic performed almost as good as the 2-opt heuristic without much reduction

in the quality of the solution but with a very remarkable improvement in the com-

putational time to obtain the feasible solution. Therefore, it can be observed that

the greedy procedure of deletion and addition of the edges based on the variational

characterization of the eigenvalues has reduced the neighborhood search space very

effectively.

In Table 2.9, we further study the improvement in the solution quality of the

improved 3-opt heuristic with respect to the improved 2-opt heuristic. For this
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Table 2.8: Comparison of 2-opt with improved 2-opt heuristic solutions for various
problem sizes. Here, the solution quality was averaged over ten random instances for
each n.

n 2-opt Improved 2-opt

Time Percent Time
(sec) reduction (sec)

10 0.88 0.00 0.10
15 8.45 0.00 0.52
20 60.47 0.00 1.65
25 240.57 0.60 3.59
30 1533.98 0.81 12.13
35 3468.75 0.79 37.85
40 5899.62 1.20 57.28
45 8897.69 1.16 116.09
50 10089.31 1.27 139.99
55 12980.78 1.80 350.83
60 16001.02 2.01 505.36

purpose, we define the percent improvement as follows:

percent improvement =
λ

3optimp
2 − λ2optimp

2

λ
3optimp
2

× 100

where λ
3optimp
2 is the algebraic connectivity of a solution obtained from the improved

3-opt heuristic and λ
2optimp
2 is the algebraic connectivity of a solution obtained from

the improved 2-opt heuristic. From the results in Table 2.9, it can be seen that

the improved 3-opt heuristic performed consistently better than the improved 2-opt,

though the quality of solution was quite comparable in an average sense. It can also

be observed that there were instances where the improvement in the solution quality

of the improved 3-opt from the improved 2-opt heuristic was up to around 18 percent

for large instances.

In summary, computational results suggested that the improved 3-opt heuristic
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performed the best while the improved 2-opt heuristic provided a good trade-off

between finding good feasible solutions and the required computation time. Figure

2.14 illustrates the solutions obtained from the improved 2-opt and 3-opt search

heuristic for a network with 40 nodes.

Table 2.9: Comparison of improved 3-opt and improved 2-opt heuristic solutions
for various problem sizes. The percent improvement values were averaged over ten
random instances for each n.

n Improved 2-opt Improved 3-opt

Time Time Average Maximum
(sec) (sec) percent improvement percent improvement

10 0.10 0.29 0.00 0.00
15 0.52 3.06 0.01 0.08
20 1.65 16.32 0.27 2.73
25 3.59 60.38 0.60 4.92
30 12.13 274.93 2.07 7.56
35 37.85 480.15 2.02 12.59
40 57.28 1016.99 5.62 17.89
45 116.09 2309.60 7.10 15.41
50 139.99 4219.17 1.38 5.10
55 350.83 6798.34 6.98 17.56
60 505.36 8974.46 7.97 16.92
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3. *ALGORITHMS FOR THE MAXIMIZATION OF ALGEBRAIC

CONNECTIVITY UNDER RESOURCE CONSTRAINTS

We discussed earlier the variant of BP involving the construction of an adhoc

infrastructure network with UAVs that can be central to civilian and military appli-

cations. We also alluded briefly to the desirable attributes of the UAV adhoc network

such as: a) Lower diameter to minimize latency in communicating data/information

across the network, b) A limit/budget on the power consumed by the UAVs due to

their limited battery capacities and c) High isoperimetric number so that the bottle-

necking in a network can only occur at higher data rates while at the same time be

robust to node and link failures.

In addition to the bound on the number of communication links, treating the

requirements on diameter and power consumption as the constraints on the resources,

a variant of the BP that arises in the UAV application may be posed as follows:

Given a collection of UAVs which can serve as backbone nodes, how should they be

arranged and connected so that

(i) the convex hull of the projections of their locations on the ground spans a

minimum area of coverage,

(ii) the resources such as the diameter of the network, total UAV power consump-

tion for maintaining connectivity and the total number of communication links

*Reprinted with permission from 1) Algorithms for Finding Diameter-constrained Graphs with
Maximum Algebraic Connectivity by H.Nagarajan, S.Rathinam, S.Darbha and K.R.Rajagopal,
2012. Dynamics of Information Systems: Mathematical Foundations, 121–135, Copyright 2012 by
Springer.
2. Synthesizing robust communication networks for UAVs with resource constraints by
H.Nagarajan, S.Rathinam and S.Darbha, 2012. Dynamic Systems and Control Conference, 2012,
2012. 2524–2533, Copyright 2012 by ASME.
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employed are within their respective prescribed bounds, and

(iii) algebraic connectivity of the network is maximum among all possible networks

satisfying the constraints (i) and (ii).

Since each of these resource constraints makes the problem much harder, we sepa-

rately formulate the diameter and power consumption constraint in the forthcoming

sections. Hence, in the remainder of this section, we shall discuss the respective

mathematical formulations and extend the algorithms based on cutting plane tech-

niques as discussed in the in section 2.3 to synthesize optimal networks.

3.1 Maximization of algebraic connectivity with diameter constraint

3.1.1 Problem formulation

Based on the notation defined in section 2.1, the problem of choosing at most q

edges from E so that the algebraic connectivity of the augmented network is maxi-

mized and the diameter of the network is within a given constant (D) can be posed

as follows:

γ∗ = maxλ2(L(x)),

s.t.
∑

e∈E xe ≤ q,

δuv(x) ≤ D ∀u, v ∈ V,

xe ∈ {0, 1}|E|.

(3.1)

where δuv(x) represents the number of edges on the shortest path joining the two

nodes u and v in the network with an incident vector x. In the above formulation,

there are two challenges that need to be overcome before one can pose the above

problem as a MISDP. First, the objective is a non-linear function of the edges in the

network; secondly, the diameter constraint as stated in formulation (3.1) requires

one to implicitly compute the number of edges in the shortest path joining any two
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vertices. We have already discussed in section 2.1 of section 2, how to address the

above non-linear problem as a MISDP which is as follows:

γ∗ = max γ,

s.t.
∑

e∈E xeLe � γ(In − e0 ⊗ e0),∑
e∈E xe ≤ q,

δuv(x) ≤ D ∀u, v ∈ V,

xe ∈ {0, 1}|E|.

(3.2)

1
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(a) Original graph augmented with a
source node

1

2 3

4

56

s

(b) Feasible solution

Figure 3.1: Illustration of an addition of the source node (s) to the original (complete)
graph represented by shaded nodes. If one were given that the diameter of the original
graph must be at most D = 4, then restricting the length of each of the paths from
the source node to (D/2) + 1 = 3, and allowing only one incident edge on s will
suffice as shown in (b)

The next difficulty one needs to address stems from the diameter constraints

formulated in (3.1). To simplify the presentation, let us limit our search of an

optimal network to the set of all the spanning trees. Also, let the parameter D

which limits the diameter of the network be an even number. Then, it is well known

[45] that a spanning tree has a diameter no more than an even integer (D) if and

only if there exists a central node p such that the path from p to any other node in
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the graph consists of at most D/2 edges. If the central node p is given, then one can

use the multicommodity flow formulation [32] to keep track of the number of edges

present in any path originating from node p. However, since p is not known a priori,

a common way to address this issue is to augment the network with a source node (s)

and connect this source node to each of the remaining vertices in the network with

an edge (refer to figure 3.1). If one were to find a spanning tree in this augmented

network such that there is only one edge incident on the source node and the path

from the source node to any other node in the graph consists of at most D
2

+ 1 edges,

the diameter constraint for the original network will be naturally satisfied.

In order to impose the diameter constraints formulated in (3.1), we add a source

node (s) to the graph (V,E) and add an edge joining s to each vertex in V , i.e.,

Ṽ = V ∪ {s} and Ẽ = E ∪ (s, j) ∀j ∈ V . We then construct a tree spanning all

the nodes in Ṽ while restricting the length of the path from s to any other node in

Ṽ . The additional edges emanating from the source node are used only to formulate

the diameter constraints, and they do not play any role in determining the algebraic

connectivity of the original graph.

Constraints representing a spanning tree are commonly formulated in the liter-

ature using the multicommodity flow formulation. In this formulation, a spanning

tree is viewed as a network which facilitates the flow of a unit of commodity from the

source node to each of the remaining vertices in Ṽ . A commodity can flow directly

between two nodes if there is an edge connecting the two nodes in the network. Sim-

ilarly, a commodity can flow from the source node to a vertex v if there is a path

joining the source node to vertex v in the network. One can guarantee that all the

vertices in V are connected to the source node by constructing a network that allows

for a distinct unit of commodity to be shipped from the source node to each vertex

in V . To formalize this further, let a distinct unit of commodity (also referred to as
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the kth commodity) corresponding to the kth vertex be shipped from the source node.

Let fkij be the kth commodity flowing from node i to node j. Then, the constraints

which express the flow of the commodities from the source node to the vertices can

be formulated as follows:

∑
j∈Ṽ \{s}

(fkij − fkji) = 1 ∀k ∈ V and i = s, (3.3a)

∑
j∈Ṽ

(fkij − fkji) = 0 ∀i, k ∈ V and i 6= k, (3.3b)

∑
j∈Ṽ

(fkij − fkji) = −1 ∀i, k ∈ V and i = k, (3.3c)

fkij + fkji ≤ xe ∀ e := (i, j) ∈ Ẽ,∀k ∈ V, (3.3d)∑
e∈Ẽ

xe = |Ṽ | − 1, (3.3e)

0 ≤ fkij ≤ 1 ∀i, j ∈ Ṽ ,∀k ∈ V, (3.3f)

xe ∈ {0, 1} ∀e ∈ Ẽ. (3.3g)

Constraints (3.3a) through (3.3c) state that each commodity must originate at

the source node and terminate at its corresponding vertex. Equation (3.3d) states

that the flow of commodities between two vertices is possible only if there is an edge

joining the two vertices. Constraint (3.3e) ensures that the number of edges in the

chosen network corresponds to that of a spanning tree. An advantage of using this

formulation is that one now has access directly to the number of edges on the path

joining the source node to any vertex in the graph. That is,
∑

(i,j)∈Ẽ f
k
ij denotes

the length of the path from s to k. Therefore, the diameter constraints now can be

expressed as:
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∑
(i,j)∈Ẽ

fkij ≤ (D/2 + 1) ∀k ∈ V, (3.4a)

∑
j∈V

xsj = 1. (3.4b)

To summarize, the MISDP for the network synthesis problem with diameter con-

straints is:

γ∗ = max γ,

s.t.
∑

e∈E xeLe � γ(In − e0 ⊗ e0),∑
e∈E xe ≤ q,

Constraints in (3.3) and (3.4),

xe ∈ {0, 1}|E|.

(3.5)

Note that the formulation in (3.5) is for the case when the desired network is

a spanning tree and the bound on the diameter of the spanning tree is an even

number. Using the results in [45], similar formulations can also be stated for more

general networks with no restrictions on the parity of the bound. In this section, we

will concentrate on the formulation presented in (3.5).

3.1.2 Algorithm for determining maximum algebraic connectivity with diameter

constraint

In order to pose the problem as a BSDP, let the specified level of connectivity be

γ̂. The decision problem can be mathematically formulated as follows: Is there an

incident vector x such that
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∑
e∈E xeLe � γ̂(In − e0 ⊗ e0),∑
e∈E xe ≤ q,

Constraints in (3.3) and (3.4),

xe ∈ {0, 1}|E| ?

(3.6)

The above problem can be posed as a BSDP by marking any vertex in V as a

root vertex r and then choosing to find a feasible tree that minimizes the degree

of this root vertex 1. In this formulation, the only decision variables would be the

binary variables denoted by xe and the flow variables denoted by fkij. Therefore, the

BSDP we have is the following:

min
∑

e∈δ(r) xe,

s.t.
∑

e∈E xeLe � γ̂(In − e0 ⊗ e0),∑
e∈E xe ≤ q,

Constraints in (3.3) and (3.4),

xe ∈ {0, 1}|E|.

(3.7)

As expected, the cutting plane algorithm for the above BSDP in conjunction

with bisection techniques to solve the original MISDP (3.1) to optimality is in very

similar lines as discussed in Algorithm 2. Hence, we present just the pseudo code of

the procedure in Algorithm 5 without discussing the details.

3.1.3 Performance of proposed algorithm

All the computations in this section were performed with the same computer

specifics as mentioned in section 2.3.4.

As discussed in earlier sections, the semi-definite programming toolboxes in Mat-

1There are several ways to formulate the decision problem as a BSDP. For example, one can
also aim to minimize the total weight of the augmented graph defined as

∑
e wexe. We chose to

minimize the degree of a node as it gave reasonably good computational results.
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Table 3.1: Comparison of computational time (CPU time) of the proposed algorithm
for different limits on the diameter of the graph and γ∗ is the optimal algebraic
connectivity. The algorithm was implemented in CPLEX for instances involving 6
nodes.

Instance diameter ≤ 4 no diameter constraint

γ∗ T1 γ∗ T2

(sec) (sec)

1 39.352 7 559.539 8
2 39.920 4 546.915 8
3 67.270 6 765.744 6
4 50.262 10 713.925 5
5 31.218 8 569.959 4
6 52.344 8 662.326 7
7 35.513 7 637.331 6
8 38.677 7 704.89 6
9 46.427 11 574.132 5
10 40.945 7 597.241 5
11 36.770 10 586.950 9
12 42.885 6 587.027 5
13 30.880 8 569.482 10
14 47.583 3 543.145 6
15 37.277 4 517.401 9
16 37.439 11 704.228 8
17 51.434 10 639.456 3
18 42.476 3 620.974 10
19 29.934 3 576.275 4
20 46.980 6 536.366 6
21 25.955 6 630.748 9
22 49.220 6 601.309 4
23 53.282 6 607.615 6
24 45.909 5 524.214 6
25 48.120 3 549.210 3
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Table 3.2: Comparison of computational time (CPU time) of the proposed algorithm
for different limits on the diameter of the graph and γ∗ is the optimal algebraic
connectivity. The algorithm was implemented in CPLEX for instances involving 8
nodes.

Instance diameter ≤ 4 diameter ≤ 6 no diameter constraint

γ∗ T1 γ∗ T2 γ∗ T3

(sec) (sec) (sec)

1 66.1636 298.10 93.0846 184.26 631.739 495.23
2 39.2994 477.34 54.3061 416.43 631.883 980.98
3 44.8588 803.45 45.9793 634.54 604.213 4253.01
4 66.5337 394.02 78.7357 221.21 757.490 815.01
5 33.8383 519.28 53.8226 480.23 755.205 706.25
6 46.6083 1033.09 75.6113 349.12 513.994 586.34
7 51.1379 781.07 63.3915 385.17 550.717 949.30
8 42.8026 931.50 77.4458 319.51 807.108 333.93
9 58.1182 489.43 84.7166 348.82 769.641 482.55
10 50.5110 492.11 54.3155 323.33 646.711 1789.64
11 43.6888 791.01 107.1820 212.34 729.171 472.71
12 47.5213 693.13 82.2919 219.20 655.867 1061.16
13 42.4918 468.44 53.2514 698.21 698.129 1421.38
14 41.1752 445.26 48.9485 261.18 523.118 977.67
15 44.8202 518.13 63.8735 509.77 639.540 504.42
16 40.1853 540.19 72.1540 396.25 690.719 661.91
17 66.6196 480.70 108.0970 254.47 735.361 476.87
18 62.9801 499.78 69.1063 233.33 622.840 1372.58
19 40.7602 542.69 54.9466 343.04 650.096 236.65
20 60.1121 607.19 81.2138 209.15 607.008 590.38
21 66.3578 588.31 80.3600 408.78 609.370 730.82
22 42.8765 776.38 75.5561 458.80 666.251 734.43
23 42.7949 400.03 62.8144 638.11 444.903 942.26
24 63.1568 590.91 73.7841 333.03 680.411 804.27
25 31.3830 232.18 44.6972 231.16 630.107 818.93
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Algorithm 5 :Algorithm for determining maximum algebraic connectivity
with diameter constraint
Let F denote a set of cuts which must be satisfied by any feasible solution

1: Input: Graph G = (V,E,we), e ∈ E, a root vertex r, diameter D and a finite
number of Fiedler vectors, vi, i = 1 . . .M

2: Choose a maximum spanning tree as an initial feasible solution, x∗

3: γ̂ ← λ2(L(x∗))
4: loop
5: F← ∅
6: Solve:

min
∑

e∈δ(r) xe,

s.t.
∑

e∈E xe(vi · Levi) ≥ γ̂ ∀i = 1, ..,M,∑
e∈E xe ≤ q,

xe ∈ {0, 1}|E|,
Constraints in (3.3) and (3.4),
xe satisfies the constraints in F.

(3.8)

7: if the above ILP is infeasible then
8: break loop {x∗ is the optimal solution with maximum algebraic connectiv-

ity}
9: else

10: Let x∗ be an optimal solution to the above ILP. Let γ∗ and v∗ be the algebraic
connectivity and the Fiedler vector corresponding to x∗ respectively.

11: if
∑

e∈E x
∗
eLe � γ∗(In − e0 ⊗ e0) then

12: Augment F with a constraint
∑

e∈E xe(v
∗ · Lev∗) ≥ γ∗.

13: Go to step 6.
14: end if
15: end if
16: γ̂ ← γ̂ + ε {let ε be a small number}
17: end loop

lab could not be used to solve the proposed formulation with the semi-definite and

diameter constraints even for instances with 6 nodes primarily due to the inefficient

memory management. However, due to the combinatorial explosion resulting from

the increased size of the problem, the proposed algorithm with CPLEX solver could

provide optimal solutions in a reasonable amount of run time for instances upto 8
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nodes.

We shall now compare the computational times of the proposed algorithm to

obtain optimal solutions for different values of the bound on the diameter. The results

shown in Tables (3.1) and (3.2) are for 25 random instances generated for networks

with 6 and 8 nodes, respectively. Based on the results in Table (3.1), we observed

that the average run time for obtaining optimal solution for the 6 nodes problem

with diameter constraint was (average T1) 6.6s and without diameter constraint was

(average T2) 6.3s. Based on the results in Table (3.2), we observed that the average

run time for the problem without diameter constraints (average T3 = 927.95s) was

1.61 times greater than the average run time for the problem with diameter ≤ 4

(average T1 = 575.75s) and 2.56 times greater than the average run time for the

problem with diameter ≤ 6 (average T2 = 362.77s). Optimal networks with various

diameters corresponding to instances 1 and 2 of Table (3.2) with 8 nodes may be

found in Figure 3.2.

3.2 Maximization of algebraic connectivity with power consumption constraint

In this section, we mathematically formulate the total power consumed by the

UAV network as a function of the eigenvalues of the Laplacian and later pose the

problem of synthesizing a robust backbone UAV network subject to power consump-

tion constraint as a MISDP problem. Essentially, the problem is to determine the

backbone UAV network with maximum algebraic connectivity subject to the con-

straints on the total power consumed by the network and the number of communi-

cation links.

3.2.1 Related literature

The idea of using UAVs to communicate data has been proposed in the literature;

for example, the use of UAVs as relays in disaster areas has been proposed in [46], [47],
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Figure 3.2: (a),(c),(e) correspond to optimal networks with maximum algebraic con-
nectivity subject to various diameter constraints for instance 1 (from Table (3.2)).
Similar plots for instance 2 are also shown in (b),(d),(e).
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[48], [49], [50] to facilitate a mobile communication network connecting the emergency

responders, control towers and different agencies, thereby enabling a timely exchange

of information between the relevant entities. A similar architecture was envisioned

in [51] for GPS denied navigation of UAVs. Employing some UAVs primarily as

data transmitters has several advantages. For instance, each vehicle may not have

the high-power transmitter and antennas to communicate to the ground station, and

even if it does, such direct links are not suitable for environments with obstructions

or non-line-of-sight communications[47]. In addition, the UAVs may be operating

in dynamic environments where regular cellular towers are either damaged or non-

existent. For these reasons, researchers have proposed meshing architectures [47],[52].

In this architecture, UAVs with a higher communication capability act as mobile

base stations (also referred to as backbone nodes) and its primary job is to connect

the individual vehicles or the regular nodes with limited communication capability

to the control stations. A typical example of such a network is shown in Figure

3.3. Various objectives have been considered in the recent work on optimization of

networks with backbone nodes; for example, in [53], the objective is to minimize

the number of mobile backbone nodes so that all the regular nodes are connected;

in [54], the objective is to optimally chose the location of mobile backbone nodes

so as to maximize the number of regular nodes achieving a minimum throughput.

However, in [53, 54], either the backbone nodes are not allowed to communicate with

each other or the connectivity among the backbone nodes is enforced by requiring a

minimum number of communication links that connect them.

In this work, we consider another objective to optimize the network of mobile

nodes; this objective better reflects the robustness of connectivity among the back-

bone nodes due to random or unexpected failure of communication networks.

The problem dealing with maximization of algebraic connectivity subject to
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: Backbone UAV

: Regular UAV

Backbone
network

Figure 3.3: A typical representation of the UAV backbone network where backbone
UAVs/nodes provide communication support to the regular nodes and each regular
node is assigned to one backbone node as shown.

wiring cost constraint considered by Varshney [14] is closely related to the proposed

problem. Varshney proposes the use of reverse convex program to find a relaxed

solution and proposes the use of rounding to get a feasible solution from the relaxed

solution. Their work lack the development of a systematic procedure to obtain op-

timal network. Also, the numerical results presented in [14] are limited to instances

of problems with at most 7 nodes.

Therefore, in this section, we propose an algorithm based on cutting plane tech-

nique to determine an optimal network for the problem of maximizing algebraic con-

nectivity subject to power consumption constraint. Lastly, we apply a 2-opt heuristic

(developed in section 2.4.1) to find feasible solutions, and use a simple bound on the

optimal algebraic connectivity stemming from the resource constraint to estimate

the quality of the feasible solutions.
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3.2.2 Mathematical formulation of the power consumption constraint

In this subsection, we first formulate the power consumption constraint, and in

the subsequent subsections, we pose the algebraic connectivity problem with all the

resource constraints as a Mixed Integer Semi-Definite Program.

One may sometimes have the choice of positioning UAVs that serve as backbone

nodes. In this case, there is a natural problem of determining the positions of the

UAVs such that the convex hull of the projection of the locations of these UAVs

on to two dimensions is at least equal to the minimum area of coverage, A0. Since

the total power consumed by these UAVs is an important consideration, as defined

in the introduction, if there is a communication link between the ith and jth UAV,

the power consumed is given by Pij := αijd
2
ij. The total power consumed by the

collection of backbone UAVs is
∑

(i,j)∈E Pijxij. To formulate the power consumption

constraint, we now pose the following subproblem: Given the network topology of

the backbone UAVs, what would be an optimal placement of the nodes such that

a. the total power consumed is minimum, and

b. the projected area of the convex hull of the backbone UAVs in the ground plane

in is at least A0?

Clearly, if one were to solve this subproblem, one can solve the original problem of

synthesizing the network of backbone UAVs by considering only those topologies that

result in the total power consumption within the specified budget, Pmax, and then

picking one network topology among them with the maximum algebraic connectivity.

Hence, we shall discuss the formulation of this subproblem in the remainder of this

section.

Suppose the location of the ith UAV is given by (ai, bi, ci), so that for a given
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topology of communication (provided by the set Eg of edges), the total power con-

sumed may be written as:

∑
(i,j)∈Eg

Pij =
∑

(i,j)∈Eg

αij((ai − aj)2 + (bi − bj)2 + (ci − cj)2), (3.9a)

= a ·
∑

e=(i,j)∈Eg

αijLea + b ·
∑

e=(i,j)∈Eg

αijLeb + c ·
∑

e=(i,j)∈Eg

αijLec, (3.9b)

where Le is the local Laplacian matrix corresponding to the edge e and a, b and c

are the vectors whose ith components provide respectively the a, b and c coordinates

of the ith UAV.

In order to improve spatial spread, we will require that the area of the convex hull

of the projections of UAVs’ locations on the horizontal plane be at least a specified

amount, say A0. Without loss of generality, assuming that the origin is at the centroid

of the convex hull as shown in figure 3.4 (for a simple case of five UAVs), we have

the following constraints, 1 · a = 0 and 1 · b = 0 where 1 ∈ Rn is a vector of ones.

Since we are dealing with the convex hull of the projected locations of the UAVs, one

may number the projected locations and order them appropriately, so that the area

may be triangulated with the centroid being one of the vertices of every triangle in

the triangulation and that the area of the convex hull may be expressed as a bilinear

function: A(a,b) has the the property that A(a,b) = −A(b, a). Hence, for some

skew-symmetric matrix, Ω, one may express the area as:

A(a,b) = a · Ωb.

For the case of five nodes shown in Figure 3.4, the skew symmetric matrix is given

103



by:

Ω =
1

2



0 1 0 0 −1

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

1 0 0 −1 0


Since Ω is skew-symmetric, b · Ωb = 0, the component of the vector a along b will

not contribute to the projected area. Therefore, we may require that a · b = 0 so

that a contributes fully to the projected area.

1

2

3

4
5

(0, 0)

(a1, b1)

(a2, b2)

(a3, b3)

(a4, b4)
(a5, b5)

a

b

Figure 3.4: Convex hull of the projections of five UAVs’ locations on the horizontal
plane with the centroid of the area at the origin.

Imposing the non-linear constraint a · Ωb ≥ A0 is hard; for this reason, we

will alternatively specify the constraint on the spread of UAVs indirectly through

requiring the variance in their coordinates to be at least R2 units. Hence, we recast

the problem for locating the UAVs so that the total power consumption is a minimum
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as:

Minimize P = a · La + b · Lb + c · Lc

subject to 1 · a = 0, 1 · b = 0

a · b = 0,

a · a ≥ R2, b · b ≥ R2.

Therefore, by the variational characterization of eigenvalues, the minimum total

power consumed for a given network topology of the UAVs is given by:

R2(λ2(L) + λ3(L)),

where the optimal c is along the vector 1 (corresponding to the zero eigenvalue of

L), a and b along the eigenvectors corresponding to the second and third smallest

eigenvalues of L. In other words, the optimal location of UAVs is such that they

must lie in the same plane (i.e., with their c coordinates being the same) and their

a and b coordinates must lie along the eigenvectors corresponding to the second and

third smallest eigenvalues of the Laplacian for the specified network topology so that

the total power consumption of the communication network is a minimum.

3.2.3 Problem of maximizing algebraic connectivity with power consumption

constraint

As we discussed in section 3.2.2, we showed that, given a network topology for

the UAVs, an optimal placement of the nodes would be along the second and third

eigenvector directions and that the minimum power consumed would be R2(λ2(L) +
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λ3(L)) where L is the Laplacian of that particular topology. Naturally, one would

also be interested in synthesizing a network topology (x) which connects all the

UAVs and such that a) the topology is robust/well-connected against random failure

of links and b) the total power consumed is bounded by a prescribed upper bound

(P̃max), i.e,

λ2(L(x)) + λ3(L(x)) ≤ Pmax

where Pmax = P̃max/R
2.

In order to synthesize a well-connected topology, we chose to maximize the λ2 or

the algebraic connectivity of the weighted Laplacian of the network where weights

of the edges correspond to the proportionality constant, αij. As discussed in the

introduction, algebraic connectivity has been extensively used in the literature as

a measure for robustness of networks. This objective of maximizing algebraic con-

nectivity is reasonable since we observed that the topology of networks with higher

λ2 tend to spread the UAV locations better. Sample feasible networks for 8 and 20

nodes with varying values of λ2 are shown in figure 3.5. In the case of 8 nodes, net-

works with lower λ2 are weakly connected since a random removal of any node/edge

can disconnect the entire network. Networks with lower λ2 seem to have a higher

diameter which can incur more delays in the communication of data among UAVs.

The situation is similar in the case of 20 nodes in figure 3.5.

Based on the model of the power constraint and the notation defined earlier, the

problem of choosing at most q (positive integer) edges from E so that the algebraic

connectivity of the augmented network is maximized can be posed as follows:
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Figure 3.5: This figure represents the positioning of UAVs for various objective values
subject to power consumption constraint. Maximizing λ2(L) indicates that the UAV
locations are more uniformly distributed with well connected topologies.

maxλ2(L(x)),

s.t. λ2(L(x)) + λ3(L(x)) ≤ Pmax,∑
e∈E xe ≤ q,

x ∈ {0, 1}|E|.

(3.10)

Since the objective of this problem is non-linear, it can be converted to a more

tractable but an equivalent MISDP with the non-linear power consumption constraint
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Figure 3.6: This figure represents the trajectories of the UAVs when the backbone
UAV network (8 nodes) is subject to a rigid body rotation by 360 degrees about their
respective centroids. Radius of communication of 0.1 was chosen for all the UAVs.
Note that, the network corresponding to largest λ2 value has the maximum coverage
unlike the networks with with lower λ2.

as follows:
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max γ,

s.t. L(x) � γ(In − e0 ⊗ e0),

λ2(L(x)) + λ3(L(x)) ≤ Pmax,∑
e∈E xe ≤ q,

x ∈ {0, 1}|E|.

(3.11)

The correctness of this formulation exactly follows the proof given in section 2.1.1.

3.2.4 Algorithm for determining maximum algebraic connectivity with power

consumption constraint

Currently, efficient tools for solving MISDPs are not available. In this section,

we extend the idea of the algorithm proposed for solving the BP, which was based

on the cutting plane method. The basic idea of this method is to find an outer

approximation (relaxation) of the feasible set of the MISDP problem and solve the

optimization problem over the outer approximation (which we refer to as a relaxed

problem). If the optimal solution for the relaxed problem is feasible for the MISDP

problem, it is also clearly optimal for the MISDP problem; otherwise, one must refine

the outer approximation, e.g., via the introduction of additional linear inequalities

(referred to as cuts). One may then iteratively refine the outer approximation until

the optimal solution of the outer approximation is also feasible for the MISDP.

We initially tried solving the MISDP problem by relaxing the non-convex power

consumption constraint and adding linear inequalities to cut off optimal solutions

of the relaxed semi-definite programs. We used Matlab and state-of-the-art semi-

definite solvers such as the Sedumi for this implementation and found that it could

not handle problems of size greater than 5 nodes. Hence, we opted to pose this

problem as a MILP problem so that the available high performance solvers such as
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CPLEX can be used.

It is important to understand the sources of difficulty when implementing a cut-

ting plane algorithm for the MISDP problem under consideration. For every vector

v ∈ <n such that v · 1 = 0 and ‖v‖2 = 1, the semi-definiteness requirement is

equivalent to ∑
e∈E

xev · Lev ≥ γ.

In essence, for every such vector v, there is a linear constraint in xe and γ and

since the number of vectors v satisfying v · 1 = 0 and ‖v‖2 = 1 is uncountably

infinite, the semi-definite requirement is equivalent to an uncountable number of

linear constraints in the discrete variables xe, e ∈ E and γ. This constraint makes

the use of standard ILP tools difficult. One can pick any finite subset of these linear

constraints to construct a polyhedral outer approximation.

The non-convex nature of the power consumption constraint in (3.11) makes it

difficult to be taken care of directly by the standard ILP tools. For this reason, we

relax this constraint and provide a method for the construction of “cuts” that cut

off any feasible solution of the relaxed problem that is not feasible for the MISDP.

The schema for solving the MISDP is as follows:

• Step 0: Initialization: Pick a finite set of unit vectors, say vi, i = 1, 2, . . . ,M

that are perpendicular to 1, and the polyhedral outer approximation, P0 is the

feasible set of the inequalities:

∑
e∈E

xevi · Levi ≥ γ, i = 1, 2, . . . ,M,

and xe ∈ {0, 1}, e ∈ E.

• Step 1: Refinement of Polyhedral Outer Approximation: This step in-
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volves the developing of “cuts”. Since the initial polyhedral approximation re-

laxes the semi-definite constraint and the power consumption constraint (3.11),

we outline a method to find the linear inequalities that cut off solutions that

are not feasible for either of these constraints.

a. Cut for the semi-definite constraint violation: A violation of semi-

definite constraint can result in a graph being disconnected. However, we

augment the constraints from a multicommodity flow formulation [32] in

order to ensure that the optimal solution of the relaxed problem is not

disconnected.

If the semi-definiteness requirement (3.11) is violated by the optimal so-

lution given by (x∗e, γ
∗), e ∈ E, (which we assume is connected now) one

may readily use the eigenvalue cut, i.e., if

∑
e∈E

x∗eLe − γ∗(In − e0 ⊗ e0) � 0,

then there is at least one eigenvalue of the matrix on the left hand side of

the above inequality that is negative. Hence, if one were to consider the

corresponding normalized eigenvector, say v, then

∑
e∈E

x∗ev · Lev < γ∗,

and hence, one may refine the polyhedral outer approximation by aug-

menting an additional constraint that must be satisfied by any feasible

solution to MISDP: ∑
e∈E

xev · Lev ≥ γ. (3.12)
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This additional constraint ensures that the solution x∗e, e ∈ E that was

optimal for the relaxed problem will not be feasible now for the augmented

set of inequalities and the feasible set of the augmented set of inequalities

is a refined outer approximation. Also, it can be easily proved that the

inequality (3.12) is a valid inequality for the original problem based on

the variational characterization of the eigenvalues.

b. Cut for the power consumption constraint violation: If the con-

straint on power consumption in (3.11) is violated by x∗e where e ∈ E∗ ⊂

E, one may introduce a constraint requiring that not all the edges of the

optimal solution may be used, and can introduce a branch according to

∑
e∈E∗

xe ≤
∑
e∈E∗

x∗e − 1,

or ∑
e∈E∗

xe ≥
∑
e∈E∗

x∗e + 1.

Since we seek spanning trees in the numerical examples, we only require

the former constraint, namely

∑
e∈E∗

xe ≤
∑
e∈E∗

x∗e − 1, (3.13)

to be enforced in the algorithm. It can again be easily proved that in-

equality (3.13) is a valid inequality as follows: Since (3.13) is an inequality

on the number of edges in the spanning tree, let τi be the ith spanning tree

among nn−2 possible spanning trees and Eτi be the edges in τ thi spanning
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tree. Then we know that

0 ≤ |Eτi ∩ Eτj | ≤ n− 2 ∀ i, j = 1, . . . , nn−2, i 6= j.

From this, it is clear that

∑
e∈Eτi

xe ≤ n− 2

uniquely eliminates τi retaining all other spanning trees valid.

• Step 2: Solve the relaxed problem, i.e., solve the optimization problem over

the feasible set of the refined approximation using ILP solvers to get an updated

solution x∗e, e ∈ E and go to Step 1.

The pseudo code of this procedure is outlined in Algorithm 6. The Algorithm 6 is

guaranteed to terminate in finite number of iterations since the number of feasible

solutions for this problem is finite (nn−2 for a problem with n nodes). The cut

for eliminating solutions that do not satisfy the semi-definite constraint is shown in

steps 7 through 11 of Algorithm 6. Step 12 of Algorithm 6 corresponds to the cut

for eliminating solutions that violate the power consumption constraint.

3.2.5 Performance of proposed algorithm

In this section, we discuss the computational performance of the proposed al-

gorithm (Algorithm 6) to solve the problem of maximizing algebraic connectivity

subject to the consumption constraint. All the computations in this section were

performed with the same computer specifics as mentioned in section 2.3.4.

In order to solve the MISDP in step 6 of the algorithm (6), we used the Sedumi

solver in Matlab and found that they could not handle problems with more than
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Algorithm 6 :Algorithm for determining maximum algebraic connectivity
with power constraint

Notation: Let Î = (In − e0 ⊗ e0).
Let F denote a set of cuts which must be satisfied by any feasible solution

1: Input: A graph G = (V,E), a weight (we) for each edge e ∈ E, Pmax, and a finite
number of Fiedler vectors, vi, i = 1 . . .M

2: Choose any spanning tree, x0 such that λ2(L(x0)) + λ3(L(x0)) > Pmax
3: x∗ ← x0

4: F← ∅
5: while λ2(L(x∗)) + λ3(L(x∗)) > Pmax do
6: Solve:

max γ,
s.t.

∑
e∈E xe(vi · Levi) ≥ γ ∀i = 1, ..,M,∑
e∈E xe ≤ q,∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,

xe ∈ {0, 1}|E|,
xe satisfies the constraints in F.

Let (x∗, γ∗) be an optimal solution to the above problem.
7: if

∑
e∈E x

∗
eLe � γ∗Î then

8: Find the Fiedler vector v∗ corresponding to x∗.
9: Augment F with a constraint v∗ · L(x∗)v∗ ≥ γ∗.

10: Go to step 6.
11: end if
12: If λ2(L(x∗)) + λ3(L(x∗)) � Pmax, augment F with a cut 1 · x ≤ 1 · x∗ − 1.
13: Go to step 6.
14: end while

five nodes. However, solving the same MISDP using the proposed cutting plane

algorithm performed comparatively better using the CPLEX solver and could handle

up to eight nodes though the computation time was in the order of hours.

Table 3.3 shows the optimal solutions for ten random instances with seven nodes.

For the case of 7 nodes, we assumed Pmax equal to fifteen to ensure that the prob-

lem had a feasible solution. From this table, it can be observed that the average

computational time to obtain an optimal solution based on the proposed algorithm
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was around seven hours. Even though the algorithm (6) provides successive tighter

polyhedral approximations with the augmentation of valid inequalities, the conver-

gence to an optimal solution is very slow. The reason for the slow convergence can

be attributed to the strength of the cuts added due to the violation of the power con-

sumption constraint. These cuts are merely solution elimination constraints which

eliminates only the current infeasible integral solution. Generating more valid and

stronger cuts at every iteration of the algorithm can possibly reduce the computa-

tion time to obtain optimal solutions. A sample network with maximum algebraic

connectivity satisfying the power consumption constraint for instance #1 of Table

3.3 is shown in Figure 3.7.

Table 3.3: Computational performance of algorithm (6) to solve the problem of
maximizing algebraic connectivity subject to the power consumption constraint. T1

corresponds to the CPU time taken by CPLEX solver to solve instances with 7
nodes. Note that λ∗2 +λ∗3 represents the power incurred by each network with optimal
connectivity as indicated under λ∗2. Pmax is chosen to be equal to fifteen for all the
instances.

Instance λ∗2 λ∗2 + λ∗3 T1

(sec)

1 7.1278 14.7192 12291.28
2 7.1457 14.9988 10350.02
3 6.7300 14.8166 58481.36
4 6.9879 14.9829 58845.25
5 7.2684 14.8568 28891.07
6 6.4437 14.9999 26543.17
7 7.0472 14.9261 17218.10
8 7.0047 14.9225 27589.19
9 7.0526 14.6940 16413.76
10 7.1569 14.5328 12353.42

Avg. 26894.41
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(a) Complete graph for n = 7
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(b) Optimal network for n = 7

Figure 3.7: In this figure, part (a) represents a complete graph of 7 nodes with ran-
dom edge weights. Part (b) represents an optimal network with maximum algebraic
connectivity (λ∗2 = 7.1278) synthesized from the complete graph which satisfies the
power consumption constraint (λ∗2 + λ∗3 ≤ 15). Note that the locations of the nodes
in (b) are aligned in the second and third eigenvector directions.

3.2.6 Lower bounds based on the BSDP approach

In section 3.2.5, we observed that the convergence of the algorithm (6) to opti-

mality was very slow and was in the order of many hours. Hence, in this section,

we modify the proposed algorithm based on the techniques developed in the earlier

sections on BSDP approach to obtain quick lower bounds and corresponding feasible

solutions.

The MISDP in Step 6 of the algorithm (6) can also be solved to optimality

based on the BSDP approach as discussed in section 2.3.5. The basic idea of this

approach is to solve the feasibility problem where we are interested to obtain a

network with a specified level of connectivity which satisfies the power consumption
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constraint. For completeness, we summarize the algorithm to obtain lower bounds for

the problem of maximizing algebraic connectivity with power consumption constraint

in (7). Clearly, at every iteration of this algorithm, γ̂ serves as the lower bound whose

value monotonically increases until the optimality is reached. Correspondingly, x∗

at every iteration serves as the feasible network satisfying the power consumption

constraint.

Since for this particular problem, we know that λ2(L(x)) + λ3(L(x)) ≤ Pmax and

λ2(L(x)) ≤ λ3(L(x)), a trivial upper bound on the algebraic connectivity would be

λ2(L(x)) ≤ Pmax
2

.

Hence, we use this upper bound to corroborate the quality of the lower bounds

obtained for larger instances.

Construction of an initial feasible solution: As we discussed in the lower bound-

ing procedure in (7), construction of an initial feasible solution is the first step. For

the problem we have considered in this section, an initial feasible solution is any

spanning tree whose power incurred will be less than a given value of upper bound.

Though the eigenvalues of the Laplacian are non-linear functions of the edge weights

of the graph, we observed that the values of λ2 + λ3 are reasonably low for spanning

trees with relatively low edge weights as seen in figure 3.8. Since we found that enu-

merating a fixed number of spanning trees (10000 trees) starting from a minimum

spanning tree using the algorithm discussed in [34] was computationally easier, the

best initial feasible solution which satisfies the power consumption constraint was

chosen from these enumerated trees.

Quality of lower bounds: Computationally, we observed that the proposed lower
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Algorithm 7 : Lower bounding algorithm (BSDP approach)

Let F denote a set of cuts which must be satisfied by any feasible solution

1: Input: Graph G = (V,E,we), e ∈ E, a root vertex, r, Pmax and a finite number
of Fiedler vectors, vi, i = 1 . . .M

2: Choose any spanning tree, x∗ such that λ2(L(x∗)) + λ3(L(x∗)) ≤ Pmax
3: γ̂ ← λ2(L(x∗))
4: loop
5: F← ∅
6: Solve:

min
∑

e∈δ(r) xe,

s.t.
∑

e∈E xe(vi · Levi) ≥ γ̂ ∀i = 1, ..,M,∑
e∈E xe ≤ q,∑
e∈δ(S) xe ≥ 1, ∀ S ⊂ V,

xe ∈ {0, 1}|E|,
xe satisfies the constraints in F.

(3.14)

7: if the above ILP is infeasible then
8: break loop {x∗ is an optimal solution with maximum algebraic connectiv-

ity}
9: else

10: Let x∗ be an optimal solution to the above ILP. Let γ∗ and v∗ be the algebraic
connectivity and the Fiedler vector corresponding to x∗ respectively.

11: if
∑

e∈E x
∗
eLe � γ∗(In − e0 ⊗ e0) then

12: Augment F with a constraint
∑

e∈E xe(v
∗ · Lev∗) ≥ γ∗.

13: Go to step 6.
14: end if
15: end if
16: if λ2(L(x∗)) + λ3(L(x∗)) � Pmax then
17: augment F with a cut 1 · x ≤ 1 · x∗ − 1.
18: else
19: γ̂ ← γ̂ + ε {let ε be a small number}
20: Go to step 6.
21: end if
22: end loop

bounding procedure based on the BSDP approach provided very good quality lower

bounds. For the seven nodes problem, we limited the computation time of the

lower bounding algorithm to three minutes. As shown in Table 3.4, on an average,
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Figure 3.8: Enumeration of all spanning trees for a random instance with six nodes.
It can be observed that spanning trees with lesser sum of edge weights incur lesser
power consumption.

the lower bound obtained was within 3.5 % from the optimal solution. This was

indeed a tremendous improvement in terms of the computation time compared to the

algorithm discussed in the previous section. Certainly, the computation time of the

lower bounding procedure depends on the value chosen for Pmax. As expected, higher

the value of Pmax, larger would be the computation time for the BSDP approach since

the number of bisection steps would increase.

We also tested the computational performance of the lower bounding procedure

for the case of ten nodes with Pmax equal to thirty. The computation time was limited

to three minutes. As shown in Table 3.5, on an average, the lower bound obtained

was within 15.2 % from the upper bound as described earlier. Since, this percent

gap was with respect to the upper bound, we expect this gap to further reduce when

evaluated with respect to the optimal solutions.
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Table 3.4: Quality of lower bounds obtained based on the BSDP approach for the
problem with seven nodes. λLB2 represents the lower bound obtained by terminating
the algorithm (7) in three minutes. The value of Pmax is equal to fifteen.

Instance Optimal solution Lower bound

λ∗2 λ∗2 + λ∗3 λ2
LB λ∗2−λ2LB

λ∗2
(% gap)

1 7.1278 14.7192 7.1067 0.3
2 7.1457 14.9988 6.8177 4.6
3 6.7300 14.8166 6.4897 3.6
4 6.9879 14.9829 6.6520 4.8
5 7.2684 14.8568 7.2608 0.1
6 6.4437 14.9999 6.3397 1.6
7 7.0472 14.9261 6.8744 2.5
8 7.0047 14.9225 6.7295 3.9
9 7.0526 14.6940 6.2335 11.6
10 7.1569 14.5328 6.9836 2.4

Avg. 3.5

3.2.7 Performance of 2-opt heuristic

In this section, we discuss the performance of 2-opt heuristic to obtain feasible

solutions for the problem of maximizing algebraic connectivity under the power con-

sumption constraint. Section 2.4.1 has dealt in detail with the k-opt heuristic for

synthesizing feasible solutions for the BP. Since the extension of this heuristic for

incorporating an additional constraint on the power consumption is quite straight

forward, we do not delve into the details. Instead, for completeness, we summarize

the 2-opt heuristic including the additional resource constraint in (8).

Solution quality of 2-opt heuristic: In Table 3.6, we present the solution quality

of the 2-opt heuristic solutions with respect to the optimal solutions for the problem
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Table 3.5: Quality of lower bounds obtained based on the BSDP approach for the
problem with ten nodes. λLB2 represents the lower bound obtained by terminating
the algorithm (7) in three minutes. Note that Pmax

2
is an upper bound on the optimal

solution and value of Pmax is equal to thirty.

Instances λ2
LB

Pmax
2
−λ2LB

Pmax
2

λ2
LB+ λ3

LB

(% gap)

1 12.9106 14.0 29.176
2 12.4978 16.7 29.204
3 12.3475 17.7 29.623
4 12.7198 15.2 29.329
5 12.7786 14.8 29.393
6 12.2478 18.3 29.381
7 11.3301 24.5 28.804
8 14.0376 6.4 28.632
9 12.7420 15.1 28.062
10 13.5049 10.0 29.187

Avg. 15.2

instances of seven nodes. We define the solution quality or percent gap as

λ∗2 − λ2opt
2

λ∗2
∗ 100

where λ∗2 is the algebraic connectivity of the optimal solution and λ2opt
2 is the algebraic

connectivity of the 2-opt heuristic solution. It is clear from Table 3.6 that the average

percent gap of the 2-opt solution from the optimal solution was around one percent

and many of the 2-opt solutions were indeed optimal. Also, we empirically observed

that the 2-opt heuristic solutions were optimal for 60 % of the random (100) instances.

Therefore, from this short numerical study, we observed that the performance of 2-

opt heuristic was phenomenal since it could generate feasible solutions within one

percent gap from the optimal solutions within a few seconds of the CPU time.

In Table 3.7, we present the scalability of 2-opt heuristic solutions for instances
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Algorithm 8 : 2-opt exchange heuristic

1: T0 ← Initial feasible solution satisfying resource constraints
2: λ0 ← λ2(L(T0)))
3: Input: Pmax
4: for each pair of edges {(u1, v1), (u2, v2)} ∈ T0 do
5: Let Topt be the best spanning tree in the 2-exchange neighborhood of T0 ob-

tained by replacing edges {(u1, v1), (u2, v2)} in Topt with a different pair of
edges.

6: if λ2(L(Topt)) > λ0 and λ2(L(Topt)) + λ3(L(Topt)) ≤ Pmax then
7: T0 ← Topt
8: λ0 ← λ2(L(Topt))
9: end if

10: end for
11: T0 is the best spanning tree in the solution space with respect to the initial

feasible solution

up to 25 nodes. Though we could not obtain optimal solutions for larger instances,

as discussed earlier in section 3.2.6, we used the trivial upper bound on the optimal

λ2 which stems from the power consumption constraint. Hence, the percent gap in

Table 3.7 is given by
Pmax

2
− λ2opt

2

Pmax
2

∗ 100.

The average percent gap was an average value evaluated over ten random instances

for each size of the problem. Pmax values in Table 3.7 were chosen randomly such

that there is existed a feasible solution. Again we observed that the 2-opt heuristic

performed very well for larger instances and also the average percent gap reduced

with the increase in the size of the problem. Certainly, the percent gap depends on

the values of Pmax chosen, that is, the larger the value of Pmax, larger would be the

percent gap. A sample network satisfying the power consumption constraint found

by the 2-opt heuristic can be seen in figure 3.9.
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Table 3.6: 2-opt heuristic solutions for the problem of maximizing algebraic connec-
tivity with power consumption constraint. The results in this table are for instances
with seven nodes. Note that λ∗2 + λ∗3 represents the total power incurred by each
network with optimal connectivity as indicated under λ∗2

Instances Optimal solution 2-opt solution

λ∗2 λ∗2 + λ∗3 λ2opt
2 λ2opt

2 + λ2opt
3 % gap

1 7.1278 14.7192 7.1278 14.7192 0.00
2 7.1457 14.9988 7.0880 14.9557 0.81
3 6.7300 14.8166 6.7300 14.8166 0.00
4 6.9879 14.9829 6.7837 14.9440 2.92
5 7.2684 14.8568 7.2684 14.8568 0.00
6 6.4437 14.9999 6.3817 14.9933 0.96
7 7.0472 14.9261 7.0472 14.9261 0.00
8 7.0047 14.9225 7.0047 14.9225 0.00
9 7.0526 14.6940 6.6520 14.0760 5.68
10 7.1569 14.5328 7.1569 14.5328 0.00

Avg. 1.04

Table 3.7: 2-opt heuristic solutions for the problem of maximizing algebraic connec-
tivity with power consumption constraint. Corresponding to every n, the value of
λ2opt

2 and the percent gap is averaged over ten random instances.

n Pmax Average Average

λ2opt
2 % gap

8 20 9.2964 7.04
9 20 9.6658 3.34
10 20 9.8182 1.82
12 25 12.3150 1.48
15 30 14.9268 0.49
20 50 24.8734 0.51
25 100 49.9549 0.10
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Figure 3.9: 2-opt heuristic solution for a problem with 25 nodes and random edge
weights. For the shown network, λ2opt

2 = 49.9379 (percent gap = 0.12) and Pmax =
100. This figure is just a representation of the connectivity of the network and does
not necessarily represent the location of nodes.
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4. CONCLUSIONS

In this dissertation, we aimed at understanding the relevance of a simplified

version of an open problem in system realization theory which has several important

applications in disparate fields of engineering. The basic problem in the context of

mechanical systems we considered was as follows: Given a collection of masses and a

set of linear springs with a specified cost and stiffness, a resource constraint in terms

of a budget on the total cost, the problem was to determine an optimal connection

of masses and springs so that the resulting structure was as stiff as possible. Under

certain assumptions, we showed that the the structure is stiff when the second non-

zero natural frequency of the interconnection is maximized.

We also aimed at understanding the relevance of the variants of this problem in

deploying UAVs for civilian and military applications. In particular, we were inter-

ested in synthesizing a communication network among the UAVs subject to resource

and performance constraints. Some of the important resource constraints consid-

ered were: limit on the maximum number of communication links, power consumed

and maximum latency in routing the information between any pair of UAVs in the

network. As a performance objective, we considered algebraic connectivity (second

non-zero eigenvalue of the network’s Laplacian) as the measure since it determines

the convergence rate of consensus protocols and error attenuation in UAV formations.

The mechanical/UAV network synthesis problem, formulated as a Mixed Inte-

ger Semi-Definite Problem (MISDP), had scarce literature on the development of

systematic procedures to solve this problem. To address this void in the literature,

we developed novel algorithms to obtain optimal solutions and upper bounds for

moderate sized problems and fast heuristic algorithms to obtain good sub-optimal
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solutions for larger problems.

We posed the problem of maximizing algebraic connectivity as three equivalent

formulations: MISDP formulation, MISDP formulation with connectivity constraints

and Fiedler vector formulation as MILP. We observed that the binary relaxation

of the MISDP formulation did not necessarily satisfy the cutset constraints and

hence invoked the multicommodity flow formulation to ensure that the connectivity

requirements were satisfied. We also posed this problem equivalently as a MILP using

the Fiedler vectors of the feasible solutions since there are not many efficient MISDP

solvers available. We observed that the binary relaxations of these formulations were

very weak (up to 128 percent deviation from the optimal solution for eight nodes

problem). However, owing to the various useful features of the three equivalent

formulations, we developed effective methods for obtaining upper bounds and optimal

solutions.

Relaxing the feasible set by outer approximating the semi-definite constraint in

the MISDP formulation with a finite number of Fiedler vectors would naturally lead

to an upper bound on the maximum algebraic connectivity. Based on this idea,

we proposed a procedure to effectively enumerate the Fiedler vectors of the feasible

solutions to obtain tight upper bounds. We observed that the upper bound was

tighter when the semi-definite constraint was relaxed with Fiedler vectors of solutions

with higher values of algebraic connectivity. With thousand such Fiedler vectors used

for relaxation, the average percent deviation of the upper bound from the optimal

solution was within 4.13% (best deviation = 0%) for the eight nodes problem and

was within 42.9% (best deviation = 25.6%) for nine nodes problem. For the problem

with ten and twelve nodes, the average percent deviation of the upper bound from

the best known feasible solution was within 65.7% (best deviation = 37.7%) and

116.1% (best deviation = 92.1%) respectively. However, the main drawback of this
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procedure is the enumeration of good feasible solutions. If the construction of feasible

solutions is non-trivial, then this procedure would not be effective to obtain tight

upper bounds.

We also proposed three cutting plane algorithms to solve the proposed MISDP

to optimality. Firstly, algorithm EA1 was based on the construction of successively

tighter polyhedral approximations of the positive semi-definite set. Secondly, iter-

ative primal-dual algorithm EA2 considered the Lagrangian relaxation of the semi-

definite constraint where the primal feasible solution was updated iteratively with

a better solution obtained by solving the related dual problem. Thirdly, algorithm

EA3 was based on the Binary Semi-Definite Program (BSDP) approach in conjunc-

tion with cutting plane and bisection techniques. Computationally, we observed that

the proposed algorithms implemented in CPLEX performed much better than the

available MISDP solvers in Matlab. In particular, though the performance of EA1

and EA2 were comparable, an improved relaxation of the semi-definite constraint

in EA1 with good Fiedler vectors tremendously reduced the computation time to

obtain optimal solutions. Computationally, EA1 with an improved relaxation of the

feasible set performed at least eight times better than the standard EA1 and EA2

and at least two times better than EA3. However, without an a priori knowledge of

good Fiedler vectors to relax the feasible set, EA3 performed computationally better

than EA1 and EA2 for problems up to nine nodes. Another useful feature of EA3

was the continually improving lower bound with a corresponding feasible solution at

every bisection step. This was very useful to obtain quick feasible solutions with a

good lower bound for the problem of maximizing algebraic connectivity under power

consumption constraint.

We also developed quick improvement heuristics for the problem of maximizing

algebraic connectivity based on neighborhood search methods. In particular, we
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extended the idea of the well known k-opt search which has been successfully im-

plemented for traveling salesman problems. k-opt search aims to iteratively search

for better solutions by performing an exchange of edges in each iteration. The stan-

dard 2-opt (two edges exchanged in every iteration) search performed very well and

provided optimal solutions for problems with up to nine nodes. However, for larger

problems (n ≥ 15), owing to the exponential rise in the number of edge deletion and

addition combinations, standard 2-opt was very slow. Hence, we proposed an im-

proved k-opt search where the search space was significantly but effectively reduced

based on the variational characterization of eigenvalues. Computational results sug-

gested that the improved 3-opt search performed the best while the improved 2-opt

search provided a good trade-off between finding good solutions and the required

computation time.

Finally, we proposed algorithms to address the variants of BP subject to resource

constraints such as, the diameter constraint and the power consumption constraint.

We posed the problem of maximizing algebraic connectivity of a network as a MISDP

and the diameter of the graph was formulated using a multicommodity flow formu-

lation. We provided computational results for problems involving seven and eight

nodes under varying limits on the diameter of the graph. Even though the pro-

posed algorithm was an improvement over state-of-the-art MISDP solvers, there is

definitely a need for faster algorithms that can handle more number of vertices.

We posed the problem of maximizing algebraic connectivity of a network as a

MISDP and mathematically formulated the power consumption constraint by relat-

ing it to the second and third eigenvalues of the networks’s Laplacian. We proposed

an algorithm to obtain optimal solutions based on cutting plane method. Though

this algorithm was an improvement over the existing MISDP solvers, it could handle

only smaller instances (up to seven nodes) without much guarantee on the run time.
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We employed the BSDP approach in conjunction with the bisection technique to

obtain quick lower bounds from the associated feasible solutions. Terminating the

algorithm in three minutes, the average percent deviation of the lower bound from

the optimal solution for seven nodes problem was 3.5%. For the problem with ten

nodes, the lower bound obtained was within 15.2% from the upper bound (a simple

bound on the optimal algebraic connectivity stemming from the power consumption

constraint). Lastly, we applied 2-opt heuristic to find good feasible solutions. For

the seven nodes problem, the average percent deviation of the 2-opt solution from

the optimal solution was within 1.04%. For larger problem sizes (up to 25 nodes),

2-opt heuristic performed very well with respect to the values of Pmax chosen.
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APPENDIX A

APPENDIX

All the computational results in section 2.3 on algorithms for computing optimal

solutions are based on the weighted adjacency matrices shown below.

Random weighted adjacency matrices for eight nodes problem

A1 =



0 4.561 19.020 37.537 82.393 18.295 50.073 5.511

4.561 0 50.358 2.819 5.916 34.933 43.855 44.377

19.020 50.358 0 16.268 11.806 2.159 45.568 77.271

37.537 2.819 16.268 0 28.642 45.083 62.932 24.352

82.393 5.916 11.806 28.642 0 2.590 23.840 13.704

18.295 34.933 2.159 45.083 2.590 0 4.041 35.791

50.073 43.855 45.568 62.932 23.840 4.041 0 55.830

5.511 44.377 77.271 24.352 13.704 35.791 55.830 0



A2 =



0 7.991 19.023 40.147 46.093 9.834 48.182 39.823

7.991 0 82.412 17.293 26.714 31.590 36.865 22.808

19.023 82.412 0 34.046 22.715 18.902 50.309 14.671

40.147 17.293 34.046 0 25.462 10.701 51.117 34.138

46.093 26.714 22.715 25.462 0 38.596 53.231 16.664

9.834 31.590 18.902 10.701 38.596 0 13.779 58.921

48.182 36.865 50.309 51.117 53.231 13.779 0 53.351

39.823 22.808 14.671 34.138 16.664 58.921 53.351 0


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A3 =



0 5.449 13.087 39.460 14.189 26.056 30.279 41.788

5.449 0 23.490 18.772 24.992 43.876 14.074 66.580

13.087 23.490 0 13.379 44.093 11.845 45.530 65.366

39.460 18.772 13.379 0 28.403 54.327 68.801 30.908

14.189 24.992 44.093 28.403 0 31.147 62.558 8.237

26.056 43.876 11.845 54.327 31.147 0 21.427 78.777

30.279 14.074 45.530 68.801 62.558 21.427 0 61.276

41.788 66.580 65.366 30.908 8.237 78.777 61.276 0



A4 =



0 3.166 10.819 69.610 7.771 35.867 47.759 11.385

3.166 0 23.452 26.608 13.743 63.817 56.875 12.734

10.819 23.452 0 16.165 30.174 46.717 41.704 66.899

69.610 26.608 16.165 0 5.841 57.495 67.210 14.102

7.771 13.743 30.174 5.841 0 63.502 61.732 23.618

35.867 63.817 46.717 57.495 63.502 0 11.427 38.997

47.759 56.875 41.704 67.210 61.732 11.427 0 98.913

11.385 12.734 66.899 14.102 23.618 38.997 98.913 0



A5 =



0 2.544 18.566 23.983 44.333 11.513 47.634 8.196

2.544 0 17.548 20.902 29.848 56.828 16.094 45.784

18.566 17.548 0 20.030 21.883 21.306 19.583 13.961

23.983 20.902 20.030 0 33.448 50.940 7.763 22.462

44.333 29.848 21.883 33.448 0 60.604 57.279 7.599

11.513 56.828 21.306 50.940 60.604 0 19.492 7.163

47.634 16.094 19.583 7.763 57.279 19.492 0 98.613

8.196 45.784 13.961 22.462 7.599 7.163 98.613 0


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A6 =



0 3.368 5.354 64.684 66.925 28.203 41.094 53.284

3.368 0 34.119 8.390 27.285 35.904 11.076 51.050

5.354 34.119 0 33.155 33.273 28.636 34.563 59.182

64.684 8.390 33.155 0 28.884 20.305 43.513 15.110

66.925 27.285 33.273 28.884 0 62.458 34.925 3.265

28.203 35.904 28.636 20.305 62.458 0 4.674 27.095

41.094 11.076 34.563 43.513 34.925 4.674 0 45.437

53.284 51.050 59.182 15.110 3.265 27.095 45.437 0



A7 =



0 5.721 8.828 22.020 55.966 5.384 34.178 43.546

5.721 0 17.823 18.462 31.074 26.090 18.068 28.879

8.828 17.823 0 23.527 25.014 48.801 40.533 53.078

22.020 18.462 23.527 0 37.835 38.275 4.024 19.766

55.966 31.074 25.014 37.835 0 50.395 50.884 11.786

5.384 26.090 48.801 38.275 50.395 0 12.491 35.477

34.178 18.068 40.533 4.024 50.884 12.491 0 71.750

43.546 28.879 53.078 19.766 11.786 35.477 71.750 0



A8 =



0 1.537 12.505 45.077 68.271 6.608 20.672 37.893

1.537 0 76.166 11.996 10.903 25.450 57.973 36.482

12.505 76.166 0 37.794 22.848 20.843 15.406 39.688

45.077 11.996 37.794 0 37.311 29.056 36.097 27.623

68.271 10.903 22.848 37.311 0 63.989 59.293 4.220

6.608 25.450 20.843 29.056 63.989 0 12.757 33.223

20.672 57.973 15.406 36.097 59.293 12.757 0 105.431

37.893 36.482 39.688 27.623 4.220 33.223 105.431 0


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A9 =



0 7.473 13.871 74.945 59.785 28.499 36.559 41.392

7.473 0 63.104 1.118 18.255 56.460 30.670 28.415

13.871 63.104 0 21.090 12.332 26.304 31.328 38.784

74.945 1.118 21.090 0 34.870 35.743 13.807 6.835

59.785 18.255 12.332 34.870 0 74.240 78.291 8.182

28.499 56.460 26.304 35.743 74.240 0 13.607 60.731

36.559 30.670 31.328 13.807 78.291 13.607 0 100.509

41.392 28.415 38.784 6.835 8.182 60.731 100.509 0



A10 =



0 4.673 11.233 47.921 20.123 5.275 11.570 41.965

4.673 0 59.460 26.490 24.895 48.453 49.937 45.337

11.233 59.460 0 20.843 21.083 33.312 3.120 56.785

47.921 26.490 20.843 0 23.790 14.368 57.961 26.491

20.123 24.895 21.083 23.790 0 63.058 84.360 10.774

5.275 48.453 33.312 14.368 63.058 0 6.137 37.142

11.570 49.937 3.120 57.961 84.360 6.137 0 82.681

41.965 45.337 56.785 26.491 10.774 37.142 82.681 0


Random weighted adjacency matrices for nine nodes problem

A1 =



0 51.109 103.141 74.350 3.664 13.229 15.797 18.230 30.797

51.109 0 79.543 7.805 19.555 18.661 25.386 54.808 67.820

103.141 79.543 0 25.047 4.786 38.796 46.383 6.685 88.554

74.350 7.805 25.047 0 28.353 23.511 55.800 46.123 91.246

3.664 19.555 4.786 28.353 0 39.345 74.242 116.722 68.593

13.229 18.661 38.796 23.511 39.345 0 61.739 65.714 3.377

15.797 25.386 46.383 55.800 74.242 61.739 0 6.930 25.114

18.230 54.808 6.685 46.123 116.722 65.714 6.930 0 30.790

30.797 67.820 88.554 91.246 68.593 3.377 25.114 30.790 0


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A2 =



0 55.451 35.171 84.885 5.505 20.855 29.453 30.388 68.093

55.451 0 66.881 7.059 15.901 21.996 19.397 65.193 64.995

35.171 66.881 0 11.186 20.066 14.621 61.816 69.104 45.769

84.885 7.059 11.186 0 52.853 46.755 65.175 47.878 72.586

5.505 15.901 20.066 52.853 0 14.783 39.858 15.650 76.328

20.855 21.996 14.621 46.755 14.783 0 63.148 55.653 6.730

29.453 19.397 61.816 65.175 39.858 63.148 0 3.325 11.846

30.388 65.193 69.104 47.878 15.650 55.653 3.325 0 30.335

68.093 64.995 45.769 72.586 76.328 6.730 11.846 30.335 0



A3 =



0 34.962 106.416 83.430 3.962 19.667 16.809 40.972 23.189

34.962 0 62.136 6.460 21.299 20.235 55.212 32.185 65.989

106.416 62.136 0 3.817 19.672 35.388 38.132 65.466 31.264

83.430 6.460 3.817 0 23.553 67.925 56.553 49.485 72.971

3.962 21.299 19.672 23.553 0 64.328 41.192 98.448 78.225

19.667 20.235 35.388 67.925 64.328 0 64.970 78.577 6.603

16.809 55.212 38.132 56.553 41.192 64.970 0 5.339 19.096

40.972 32.185 65.466 49.485 98.448 78.577 5.339 0 16.332

23.189 65.989 31.264 72.971 78.225 6.603 19.096 16.332 0



A4 =



0 37.880 67.875 100.379 6.067 8.170 32.228 30.653 34.148

37.880 0 80.509 5.478 21.916 35.606 22.303 51.762 83.597

67.875 80.509 0 9.380 22.829 41.847 43.423 38.497 80.200

100.379 5.478 9.380 0 39.792 40.394 34.656 47.301 56.581

6.067 21.916 22.829 39.792 0 82.544 76.565 82.045 15.671

8.170 35.606 41.847 40.394 82.544 0 60.790 137.604 5.053

32.228 22.303 43.423 34.656 76.565 60.790 0 4.473 16.443

30.653 51.762 38.497 47.301 82.045 137.604 4.473 0 23.297

34.148 83.597 80.200 56.581 15.671 5.053 16.443 23.297 0


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A5 =



0 74.434 54.004 49.180 3.425 23.574 14.026 46.679 27.705

74.434 0 72.725 12.127 5.963 32.650 47.091 6.417 5.720

54.004 72.725 0 6.283 23.399 34.824 60.464 43.262 73.479

49.180 12.127 6.283 0 34.042 36.230 30.105 61.880 70.808

3.425 5.963 23.399 34.042 0 41.705 37.664 71.445 28.397

23.574 32.650 34.824 36.230 41.705 0 49.857 64.825 4.676

14.026 47.091 60.464 30.105 37.664 49.857 0 6.500 13.624

46.679 6.417 43.262 61.880 71.445 64.825 6.500 0 17.935

27.705 5.720 73.479 70.808 28.397 4.676 13.624 17.935 0



A6 =



0 64.068 10.484 82.702 5.059 17.211 41.722 51.143 34.027

64.068 0 38.358 13.136 19.432 8.179 36.737 43.368 44.477

10.484 38.358 0 4.736 19.992 35.610 68.747 66.199 100.487

82.702 13.136 4.736 0 26.705 69.996 24.366 62.367 68.319

5.059 19.432 19.992 26.705 0 6.220 42.855 100.982 54.818

17.211 8.179 35.610 69.996 6.220 0 71.220 79.242 6.379

41.722 36.737 68.747 24.366 42.855 71.220 0 4.100 13.469

51.143 43.368 66.199 62.367 100.982 79.242 4.100 0 20.063

34.027 44.477 100.487 68.319 54.818 6.379 13.469 20.063 0



A7 =



0 84.178 40 94.496 3.252 19.661 19.108 56.048 40.033

84.178 0 110.743 7.442 15.846 35.148 24.472 52.636 21.187

40 110.743 0 19.213 19.871 9.568 67.812 51.830 56.333

94.496 7.442 19.213 0 25.484 26.072 51.210 33.379 75.134

3.252 15.846 19.871 25.484 0 84.510 28.471 115.426 110.035

19.661 35.148 9.568 26.072 84.510 0 34.251 47 6.161

19.108 24.472 67.812 51.210 28.471 34.251 0 3.757 9.776

56.048 52.636 51.830 33.379 115.426 47 3.757 0 31.904

40.033 21.187 56.333 75.134 110.035 6.161 9.776 31.904 0


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A8 =



0 46.103 105.745 61.239 5.627 18.101 24.459 47.970 58.582

46.103 0 26.179 6.670 23.523 30.729 48.579 61.829 49.850

105.745 26.179 0 7.958 26.819 26.925 39.978 58.829 59.187

61.239 6.670 7.958 0 16.321 65.826 27.566 56.328 93.999

5.627 23.523 26.819 16.321 0 19.572 19.077 26.750 87.654

18.101 30.729 26.925 65.826 19.572 0 61.369 93.219 4.440

24.459 48.579 39.978 27.566 19.077 61.369 0 5.917 14.002

47.970 61.829 58.829 56.328 26.750 93.219 5.917 0 27.248

58.582 49.850 59.187 93.999 87.654 4.440 14.002 27.248 0



A9 =



0 49.524 47.001 97.199 5.978 14.685 32.794 36.858 34.073

49.524 0 92.926 2.890 25.966 23.370 19.856 72.462 61.856

47.001 92.926 0 20.361 10.725 26.954 27.427 41.613 39.825

97.199 2.890 20.361 0 21.730 43.284 94.839 100.156 61.767

5.978 25.966 10.725 21.730 0 52.430 78.240 76.468 111.859

14.685 23.370 26.954 43.284 52.430 0 129.134 70.418 1.984

32.794 19.856 27.427 94.839 78.240 129.134 0 2.300 16.639

36.858 72.462 41.613 100.156 76.468 70.418 2.300 0 31.418

34.073 61.856 39.825 61.767 111.859 1.984 16.639 31.418 0



A10 =



0 73.479 78.550 57.077 2.770 16.830 27.284 13.703 45.902

73.479 0 96.045 7.971 14.967 18.793 24.575 22.947 58.603

78.550 96.045 0 9.560 14.197 14.033 69.942 64.482 71.409

57.077 7.971 9.560 0 44.664 40.189 51.466 33.023 67.021

2.770 14.967 14.197 44.664 0 65.935 86.901 96.362 119.533

16.830 18.793 14.033 40.189 65.935 0 90.886 50.091 3.862

27.284 24.575 69.942 51.466 86.901 90.886 0 3.593 20.033

13.703 22.947 64.482 33.023 96.362 50.091 3.593 0 14.719

45.902 58.603 71.409 67.021 119.533 3.862 20.033 14.719 0


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