
ENTROPY VISCOSITY METHOD FOR LAGRANGIAN HYDRODYNAMICS

AND CENTRAL SCHEMES FOR MEAN FIELD GAMES

A Dissertation

by

VLADIMIR TOMOV

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Bojan Popov
Co-Chair of Committee, Jim E. Morel
Committee Members, Jean-Luc Guermond

Raytcho Lazarov
Head of Department, Emil J. Straube

May 2014

Major Subject: Mathematics

Copyright 2014 Vladimir Tomov

ABSTRACT

In this dissertation we consider two major subjects. The primary topic is the

Entropy Viscosity method for Lagrangian hydrodynamics, the goal of which is to

solve numerically the Euler equations of compressible gas dynamics. The second

topic is concerned with applications of second order central differencing schemes to

the Mean Field Games equations.

The Entropy Viscosity method discretizes all kinematic and thermodynamic vari-

ables by high-order finite elements and solves the resulting discrete problem on a

computational mesh that moves with the material velocity. The method is based

on two major concepts. The first one is producing high order convergence rates for

smooth solutions even with active viscosity terms. This is achieved by using high or-

der finite element spaces and, more importantly, entropy based viscosity coefficients

that clearly distinguish between smooth and singular regions. The second concept

is providing control over oscillations around contact discontinuities as well as oscil-

lations in shock regions. Achieving this requires adding extra viscosity terms in a

way that the resulting system is still in agreement with generalized entropy inequal-

ities, the minimum principle on the specific entropy and the general requirements

for artificial tensor viscosities like orthogonal transformation invariance, radial sym-

metry, Galilean invariance, etc. We define a fully-discrete finite element algorithm

and present numerical results on model Lagrangian hydro problems. We also discuss

possible extensions of the method, e.g. length scale independent viscosity coeffi-

cients, incorporating mass diffusion into the mesh motion, and handling of different

materials. In addition we present approaches to the different stages of arbitrary

Lagrangian-Eulerian (ALE) methods, which can be used to extend the Entropy Vis-

ii

cosity method. That is, we discuss mesh relaxation by harmonic smoothing schemes,

advection based solution remap, and multi-material zones treatment.

The Mean Field Games (MFG) equations describe situations in which a large

number of individual players choose their optimal strategy by considering global (but

limited) incentive information that is available to everyone. The resulting system

consists of a forward Hamilton-Jacobi equation and a backward convection-diffusion

equation. We propose fully discrete explicit second order staggered finite difference

schemes for the two equations and combine these schemes into a fixed point iteration

algorithm. We discuss the second order accuracy of both schemes, their interaction in

time, memory issues resulting from the forward-backward coupling, stopping criteria

for the fixed point iteration, and parallel performance of the method.

iii

To my family.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Bojan Popov. His mentoring, patience and encouragement made this dissertation

possible. I will always remember what he has done for me.

I owe special thanks to Tzanio Kolev, Veselin Dobrev and Robert Rieben for

giving me the opportunity to work in their team for the last two summers. This

allowed me to learn many new things and to meet many interesting people.

I am also grateful to Dr. Jean-Luc Guermond for all the discussions, his precise

comments and constructive criticisms about my main project. He set high research

standards and he guided me to meet those standards.

I am indebted to Dr. Raytcho Lazarov for encouraging me to start this Ph. D.

program five years ago. I deeply appreciate his belief in me. I greatly value his

advices and support.

I would like to acknowledge Dr. Jim Morel, Dr. Marvin Adams, Dr. Wolfgang

Bangerth, Dr. Andrea Bonito, and Dr. Vivette Girault for their courses, conversa-

tions and comments, which have been crucial to my education and helped me build

my perception of nuclear engineering and numerical analysis.

Most importantly, none of this would have been possible without the help of my

family. I am deeply grateful to my wife Maria, my two young daughters Borislava

and Veronica, my mother Yanka and father Zdravko, and my two brothers Borislav

and Stanimir for the constant love, care and support for all these years.

I am also thankful to the former student Dr. Orhan Mehmetoglu for being a

great office mate!

Last but not least, I would like to thank the faculty and staff at the Mathemat-

v

ics Department of Texas A&M University for providing an effective and enjoyable

learning environment.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Mean Field Games . 1
1.1.1 Physical Motivation . 2

1.2 Systems of Hyperbolic Conservation Laws 6
1.2.1 Convention for Vector and Tensor Operations 7
1.2.2 Characteristic Curves and Loss of Regularity 8
1.2.3 Weak Solutions . 10
1.2.4 Viscosity Limit and Entropy Inequality 11

1.3 The Compressible Euler Equations 14
1.3.1 Conservation Principles . 15
1.3.2 Entropy Quantities . 17
1.3.3 Minimum Principle on the Specific Entropy 20

1.4 Numerical Methods for Lagrangian Hydrodynamics 23

2. CENTRAL SCHEMES FOR MEAN FIELD GAMES 27

2.1 Discretization of the Forward Hamilton-Jacobi Equation 28
2.2 Discretization of the Backward Convection-Diffusion Equation 32
2.3 Fixed Point Iteration . 36

2.3.1 Interaction Between the Equations 36
2.3.2 Difference Norms . 37
2.3.3 Final Algorithm . 40
2.3.4 Memory Usage . 40

2.4 Convergence Properties . 41
2.4.1 Second Order Accuracy of the Hamilton-Jacobi Scheme 42
2.4.2 Second Order Accuracy of the Convection-Diffusion Scheme . 44

2.5 Numerical Tests . 46

vii

Page

2.5.1 Test Problem 1 . 46
2.5.2 Test Problem 2 . 47
2.5.3 Strong Scaling Test . 50

2.6 Related Work . 51

3. ENTROPY VISCOSITY METHOD . 53

3.1 Viscous Regularization . 54
3.2 Lagrangian Formulation . 55
3.3 Discretization Details . 58

3.3.1 Notation . 58
3.3.2 Semi-Discrete Form . 59
3.3.3 Mesh Representation and Position Mappings 62
3.3.4 Length Scales . 63
3.3.5 Viscosity Coefficients . 65
3.3.6 Consistency with General Viscosity Requirements 68
3.3.7 Time Discretization . 73
3.3.8 Time Step Control . 74

3.4 Numerical Tests . 75
3.4.1 2D Taylor-Green Vortex . 75
3.4.2 1D Sod Tube . 77
3.4.3 2D Sedov Explosion . 81
3.4.4 2D Noh Implosion . 84
3.4.5 3D Noh Implosion and Parallel Performance 89

3.5 Extensions of the Method . 90
3.5.1 New Viscosity Coefficients . 90
3.5.2 The Brenner Model . 98

4. ALE HYDRODYNAMICS IN BLAST . 104

4.1 Overview of the Lagrangian Phase in BLAST 105
4.1.1 Viscous Regularization . 105
4.1.2 Semi-Discrete Form . 107
4.1.3 Viscosity Coefficients . 108
4.1.4 Application of the Entropy Production Based Coefficient . . . 109

4.2 Mesh Relaxation . 110
4.2.1 Numerical Tests . 112

4.3 Solution Remap . 113
4.3.1 Advection Remap . 115
4.3.2 Multi-Field Remap . 116
4.3.3 Numerical Tests . 118

4.4 Multi-Material Simulations . 119
4.4.1 Material Indicator Functions 120
4.4.2 Material-Specific Extension Functions 121
4.4.3 Time Evolution . 123

viii

Page

4.4.4 Numerical Tests . 124

5. CONCLUSION . 126

5.1 Mean Field Games . 126
5.2 Entropy Viscosity Method . 126
5.3 ALE Extensions . 127

REFERENCES . 129

ix

LIST OF FIGURES

FIGURE Page

2.1 Plot of mT (x) (on the left side) and the solution m(x, 0.0) (on the
right side) computed on 400 cells for Test Problem 1. 48

2.2 Solution for u (on the left side) and ∂u
∂x

(on the right side) computed
on 400 cells for Test Problem 1. 48

2.3 Plot of mT (x) (on the left side) and the solution m(x, 0.0) (on the
right side) computed on 40 and 3000 cells for Test Problem 2. 49

2.4 Solution for u (on the left side) and ∂u
∂x

(on the right side) computed
on 40 and 3000 cells for Test Problem 2. 50

2.5 Strong scaling test on 6000 cells for Test Problem 2. 51

3.1 Example of a Q4 basis function on an unperturbed mesh. 59

3.2 Example of a Q4 basis function on a perturbed mesh resulting from
the Taylor-Green vortex problem. 60

3.3 Example of a Q2 mapping between reference and actual coordinates. . 64

3.4 Resulting meshes from applying the Option 2 coefficients to a Q4 po-
sition function with h3 (on the left side) and h1 (on the right side) in
equation (3.26). 68

3.5 Velocity magnitude on the initial mesh (on the left side), and on the
final mesh (on the right side) computed by Q4 FE spaces on 16 × 16
cells for the 2D Taylor-Green vortex problem. 77

3.6 Final mesh and velocity magnitude for a Q1 simulation on 16 × 16
cells (on the left side), and for a Q4 simulation on 4× 4 cells (on the
right side) for the 2D Taylor-Green vortex problem. 78

3.7 Density field (on the left side), and compression measure (on the right
side) resulting from using the Option 2 viscosity coefficients for the
1D Sod tube problem. 79

x

FIGURE Page

3.8 Density fields computed with the Option 1 first order coefficients (on
the left side), and Option 1 combined with the entropy production
based coefficients (on the right side) for the 1D Sod tube problem. . . 81

3.9 Comparison between the L2 projections of the Option 1 linear and
non-linear viscosity coefficients (on the left side), and pressure fields
computed by the Option 1 non-linear coefficient (on the right side) for
the 1D Sod tube problem. 81

3.10 Final mesh and density (on the left side), and density vs. radius
comparison between exact density and densities obtained by Option 1
and Option 2 viscosity coefficients (on the right side) for the 2D Sedov
explosion problem. 83

3.11 Entropy production (on the left side), and density vs. radius com-
parison between first order and entropy viscosity results (on the right
side) for the 2D Sedov explosion problem. 83

3.12 Final velocity magnitude (on the left side), and pressure (on the right
side) for the 2D Sedov explosion problem. 84

3.13 Final density and mesh (on the left side), and density vs. radius
comparison to exact solution for each quadrant (on the right side), on
a non-uniform mesh for the 2D Sedov explosion problem. 85

3.14 Final density and mesh (on the left side), and density vs. radius
comparison between exact density, first order and entropy viscosity
results (on the right side) for the 2D Noh implosion problem. 86

3.15 Entropy production based viscosity coefficient (on the left side), and
the Option 1 first order viscosity coefficient (on the right side) for the
2D Noh implosion problem. 86

3.16 Final velocity magnitude (on the left side), and pressure (on the right
side) for the 2D Noh implosion problem. 87

3.17 Final density and mesh (on the left side), and density vs. radius
comparison to exact solution for each quadrant (on the right side), on
a non-uniform mesh for the 2D Noh implosion problem. 88

3.18 Initial length scale at final time (on the left side), and pressure (on the
right side), on a non-uniform mesh for the 2D Noh implosion problem 88

3.19 Final density (on the left side), and 64 MPI tasks division (on the right
side) on 32 cells in each direction for the 3D Noh implosion problem. 90

xi

FIGURE Page

3.20 Strong scaling test for the 3D Noh implosion problem. Run times with
2k MPI tasks, k = 1...6, compared to perfect scaling. 91

3.21 Final density and exact solution (on the left side), and L2 projection
of the final piecewise constant coefficient λ (on the right side) for the
1D Sod tube problem. 97

3.22 Final density (on the left side) and the piecewise constant coefficient
λ (on the right side) for the 2D Sedov explosion problem 97

4.1 Final density field (on the left side), and entropy viscosity coefficient
(on the right side) for the 2D Sedov explosion problem. 111

4.2 Perturbed 2D mesh(on the left side), and the corresponding relaxed
mesh (on the right side) computed by 5 steps of the L1 smoother. . . 113

4.3 Cross-sections of perturbed (on the left side), and relaxed 3D meshes
(on the right side) computed by 3 steps of the L2 smoother. 113

4.4 Mesh distribution to different MPI tasks for 2D (on the left side) and
3D (on the right side) high order meshes. 114

4.5 Original mesh and density (on the left side), and the corresponding
relaxed mesh and remapped density (on the right side). 118

4.6 Original mesh and velocity field (on the left side), and the correspond-
ing relaxed mesh and remapped velocity field (on the right side). . . . 119

4.7 Mesh distribution to different MPI tasks for remap of jump-free fields. 120

4.8 Initial conditions (on the left side), and spurious wave resulting from
wrong initial pressure values (on the right side) for the Triple Point
Interaction problem. 122

4.9 Density profiles at time 1.5 (on the left side), and at time 3.0 (on the
right side) for the Triple Point Interaction problem. 125

4.10 Example of a material indicator function at initial time (on the left
side), and at time 3.0 (on the right side) for the Triple Point Interaction
problem. 125

4.11 Example of a density extension function at initial time (on the left
side), and at time 3.0 (on the right side) for the Triple Point Interaction
problem. 125

xii

LIST OF TABLES

TABLE Page

2.1 L∞ and L1 errors, differences between initial and final mass, and con-
vergence rates with respect to a reference solution computed on 3000
cells for Test Problem 2. 50

3.1 Runge-Kutta lower triangular table for a method of order r. 73

3.2 L1 velocity errors and convergence rates for the 2D Taylor-Green vor-
tex problem. 78

3.3 L1 density errors and convergence rates for the 1D Sod tube problem. 82

4.1 L1 velocity errors and convergence rates resulting from using the en-
tropy based viscosity coefficient for the 2D Taylor-Green problem. . . 110

4.2 Mass, internal energy (IE), kinetic energy (KE) and momentum (MOM)
errors for a remap of jump-free fields. 119

xiii

1. INTRODUCTION

1.1 Mean Field Games

The Mean Field Games (MFG) equations describe situations that arise in Eco-

nomics, Finance or other related subjects, namely a large number of individual play-

ers choose their optimal strategy by considering global (but limited) incentive infor-

mation that is available to everyone. As time evolves, each player’s actions alters the

incentive information which leads to changes in the players’ strategies. The mathe-

matical model of such problems has first been introduced by Lions and Lasry in [40],

and MFG video lectures of Lions can be found in [46]. The MFG system in 1D can

be written as the following forward-backward system of equations:

∂u

∂t
+H

(
∂u

∂x

)
= f(x,m) + σ

∂2u

∂2x
, (1.1)

∂m

∂t
+

∂

∂x

[
H ′
(
∂u

∂x

)
m

]
= −σ∂

2m

∂2x
, (1.2)

u(x, 0) = u0(x), m(x, T) = mT (x), m > 0,

∫
Ω

m dx = 1 for all t ∈ [0, T],

where m is a distribution of players, u is an incentive function, and σ is a volatility

factor. We give further details and a heuristic derivation of the above equations is

Subsection 1.1.1. Notice that equation (1.1) is forward in time, while equation (1.2)

is backward in time. Equation (1.1) is a forward Hamilton-Jacobi (FHJ) equation for

u with a source and a diffusion term. The source f(x,m) describes how the players’

actions affect the incentive information. Equation (1.2) is a backward convection-

diffusion (BCD) equation for m with a diffusion term. The advection term H ′
(
∂u
∂x

)
m

describes how the incentive function influences each player’s actions.

1

Central schemes are the standard tool for numerical approximation of hyperbolic

conservation equations, the first such scheme is introduced by Lax in [42]. Their main

feature is simplicity since they don’t involve Riemann solvers, and their structure al-

lows efficient parallelization. Utilizing these schemes for general convection-diffusion

equations is straightforward, and by exploiting the general Hamilton-Jacobi equa-

tions’ relation to conservation laws, see [11], we can apply central schemes to those

equations as well.

1.1.1 Physical Motivation

Here we discuss the physical meaning of the system (1.1), (1.2). However we

consider the case of having a backward in time equation for u, and a forward equation

for m, so that the initial condition is on m(x, 0), and the final condition is on u(x, T).

Although time direction makes no difference mathematically, the case we discuss is

the more intuitive setting.

Suppose we have some domain, say [0, 1], and a player (or agent) that is at

location x(0) at t = 0. By moving in the domain, this player wants to minimize a

cost function A(x(T)), which is defined with respect to every position in the domain

at final time t = T > 0. Furthermore, there is a transportation cost function B(v(t)),

which is the price at moving with velocity v at time t ∈ [0, T], v = x′(t). Then total

cost is the sum of the final location cost and the transportation cost, namely

A(x(T)) +

∫ T

0

B(v(t)) dt. (1.3)

The player’s goal is to choose a trajectory x(t) that minimizes the above expression.

2

Now we define an optimal cost function u(x0, t0) by

u(x0, t0) = inf

[
A(x(T)) +

∫ T

t0

B(v(t)) dt

]
,

where the infimum is taken over all possible paths x(t), t ∈ [t0, T], starting from

x0. By this definition we have the final time condition u(x(T), T) = A(x(T)). Now

we will show that this optimization problem leads to a backward Hamilton-Jacobi

equation.

Suppose the player is at position x(t), and he moves with his optimal velocity v

for some infinitesimal time dt. By the definition of u we get

u(x, t) = u(x+ vdt, t+ dt) +B(v(t))dt.

Taylor expansion to first order for the right-hand side gives

u(x, t) = u(x, t) + dt

(
v
∂u

∂x
+
∂u

∂t

)
+B(v(t))dt. (1.4)

Since v was the optimal velocity, then v must be the minimizer of

v
∂u

∂x
+B(v(t)). (1.5)

Under the assumption that B is convex (see the remark at the end of the subsection),

and after using the Legendre transform

H(p) = sup
v
vp−B(v), (1.6)

it can be derived that the minimum of (1.5) is −H(∂
∂x
u(x, t)), and the velocity that

3

produces this minimum is v = −H ′(∂
∂x
u(x, t)). Then equation (1.4) takes the form

∂u

∂t
−H

(
∂u

∂x

)
= 0. (1.7)

We may also have noise in the player’s motion, e.g. moving from a position x(t)

with velocity v for time dt may result in being at x(t) + vdt + σ′dBt, where dBt is

infinitesimal Brownian motion, and σ′ is the amount of noise. Then the analogue of

(1.4) is

u(x, t) = u(x, t) + dt

(
v
∂u

∂x
+
∂u

∂t

)
+B(v(t))dt+

(σ′)2

2

∂2u

∂2x
dt,

where the additional term does not depend on the velocity v, hence we can repeat

the same argument. Then we get a Hamilton-Jacobi equation with a diffusion term,

namely

∂u

∂t
−H

(
∂u

∂x

)
= −σ∂

2u

∂2x
, (1.8)

where σ := 1
2
(σ′)2. This equation is solved backwards in time since we know u(x, T).

Now suppose the domain contains infinitely many players, all of them trying to

minimize the same total cost function. We define m(x, t) to be the normalized density

function of players, so that
∫
m(x, t) dx = 1,∀t ∈ [0, T]. The players’ initial positions

m(x, 0) are known. The players are trying to minimize the same total cost function,

hence players that are at the same location all have the same optimal velocity. Then

the flux of players at a point x at time t is m(x, t)v(x, t). If we have noise in the

players’ motion as defined above, then by the Fick’s first law the diffusive flux is

−1
2
(σ′)2 ∂m

∂x
. Then the rate of change in player density for any [a, b] ⊂ [0, 1] is

∂

∂t

∫ b

a

m dx =

∫ b

a

∂

∂x

(
−mv + σ

∂m

∂x

)
dx,

4

leading to the differential form

∂m

∂t
− ∂

∂x

(
mH ′

(
∂u

∂x

))
= σ

∂2m

∂2x
, (1.9)

where we have used the already derived expression for the optimal velocity, namely

v = −H ′(∂
∂x
u(x, t)). Equation (1.9) is a convection-diffusion equation, and it is

solved forward in time since we know m(x, 0).

The final step is to allow the total cost function of each player to depend on the

distribution m(x, t) of all other players. This is done by changing (1.3) to

A(x(T)) +

∫ T

0

B(v(t)) dt+

∫ T

0

f(m(x(t), t)) dt,

where f is additional cost, depending on the density of players at the current position.

For example, if f is an increasing function, then players would prefer to stay away

from each other. The new cost function changes equation (1.8) to

∂u

∂t
−H

(
∂u

∂x

)
= −f(m)− σ∂

2u

∂2x
. (1.10)

Our final system (or Mean Field Game) is equations (1.10) and (1.9) with prescribed

data on u(x, T) and m(x, 0). The backward equation (1.10) tells us what the players

want, and the forward equation (1.9) tells us what they actually get.

An intuitive example for the above situation is the case of fire in a crowded place.

Everybody wants to reach the exit (this acts as a location cost function at final time),

but reaching the exits is difficult (this acts as a moving cost function).

Remark In order to have well-defined Legendre transform in (1.6), we assume that

the movement cost function B(v) is convex and even. If we have a maximization

5

problem with respect to a movement cost function B(v), then we can make the same

derivation as above for the minimization of −B(v) and −f(x,m). However, in the

maximization case, B(v) is assumed to be concave.

Example Here we give some physical intuition about the problem presented in

Subsection 2.5.1. It uses

f(x,m) = −16

(
x− 1

2

)2

− 0.1 max(0,min(5,m)),

H

(
∂u

∂x

)
= −1

2

(
∂u

∂x

)2

, x ∈ [0, 1].

In this case H is concave and we have a maximization problem. Then the function f

can viewed as an incentive (instead of cost), and f tells us that players have biggest

incentive at x = 1
2
. At the same time f is decreasing with respect to m, hence the

incentive decreases as the density of players increases. The players’ optimal velocity

is −H ′(∂u
∂x

) = ∂u
∂x

, so that equation (1.9) becomes

∂m

∂t
+

∂

∂x

(
m
∂u

∂x

)
= σ

∂2m

∂2x
,

meaning that the players move towards the increasing values of u. We conclude that

players want to be in the middle of the domain, but they prefer to stay away from

other players.

1.2 Systems of Hyperbolic Conservation Laws

In this work we consider systems of hyperbolic conservation laws of the form

∂v

∂t
+

d∑
m=1

∂fm(v)

∂xm
= 0,

v(x, 0) = v0(x),

(1.11)

6

where x = (x1...xd), v(x, t) = (v1...vM)T is the vector of unknowns, and f1(v)...fd(v)

are fluxes for each direction, fm(v) = (fm1 ...f
m
M)T . It is assumed that each fm is at

least C1. For smooth solution v, the system (1.11) can also be written as

∂v

∂t
+

d∑
m=1

Am(v)
∂v

∂xm
= 0, (1.12)

where

Am(v) = fm
v , Amij =

∂fmi
∂vj

. (1.13)

The system (1.11) is called hyperbolic if the matrix

d∑
m=1

kmA
m(v) (1.14)

has real eigenvalues and a complete set of eigenvectors for all real km and every v.

This means that the system can be linearized about a fixed solution v and, hence,

hyperbolicity acts as a necessary condition for well posedness of the system with

initial data near v.

1.2.1 Convention for Vector and Tensor Operations

We use the usual convention for vector and tensor operations. That is, for column

vectors a = (a1...ad)
T , b = (b1...bd)

T and order 2 tensors g,h with entries gij, hij where

i, j = 1...d we have:

a⊗ b = abT , (∇a)ij =
∂aj
∂xi

(∇ · g)i =
d∑
j=1

∂gji
∂xj

,

(a · g)i =
d∑
j=1

ajgji, (g · a)i =
d∑
j=1

gijaj, g : h =
∑
ij

gijhij.

7

The following standard identities are going to be used throughout this thesis:

∇ · (a⊗ b) = a · ∇b+ b∇ · a, ∇ · (g · a) = g : ∇a+ (∇ · g) · a,

[
∇
(
a2

2

)]
· b = a · (b · ∇a) .

1.2.2 Characteristic Curves and Loss of Regularity

In this subsection we make a brief overview of some specific features of solutions

to (1.11). Suppose we have smooth initial data so that we can write the system (1.11)

in the form (1.12). Then looking at the Rd × R space-time plane, for any i = 1...M ,

the unknown vi is constant along the characteristic curves

(
∂f 1

i (v)

∂x1

...
∂fdi (v)

∂xd
, 1

)

since its derivative in this direction is zero. Regions where different characteristic

curves approach each other correspond to compression, and regions where the dif-

ferent characteristic curves move away from each other correspond to expansion.

However if characteristics start to intersect, we are led to a multivalued solution.

Since multivalued solutions are not physical, one has to define a discontinuous so-

lution according to some physical considerations. These discontinuities are called

shocks.

Example A typical example for crossing of characteristics is the scalar 1D Burgers’

equation. In this example we start with smooth data, but the solutions becomes

discontinuous in finite time:

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0, u(x, 0) =

1

1 + x2
.

8

For smooth u we have

∂u

∂t
+ u

∂u

∂x
= 0,

meaning that u is constant on the characteristic curves (u, 1). We can express these

curves in terms of x and t by using

∂x(t)

∂t
= u(x(t), t) = u(x, 0)⇒ x(t) = x+ tu(x, 0),

hence the solution u can be written as

u

(
x+

t

1 + x2
, t

)
=

1

1 + x2
.

However if we take two of these curves, say the ones starting at x = 0 and x = 1, we

see that they intersect at t = 2, leading to a multi-valued solution (actually the first

intersection between any two characteristics occurs at earlier time).

A contact regions is a region where the solution is discontinuous, but the under-

lying characteristic curves are parallel. In this case there is neither compression, nor

expansion.

Example The simples example of a contact discontinuity is the linear transport

equation

∂u

∂t
+ a

∂u

∂x
= 0, u(x, 0) =

ul if x < 0,

ur if x > 0.

where a > 0 is a constant. The characteristic lines are x(t) = x+at and the solution

is

u(x, t) =

ul if x < at,

ur if x > at.

9

The solution moves and remains discontinuous, but there is no compression or ex-

pansion.

1.2.3 Weak Solutions

Hyperbolicity, together with additional regularity requirements on Am, can be

used to build local in time, continuously differentiable solutions, see [50]. Due to

the nonlinearities of (1.11), however, as discussed in the previous subsection, solu-

tions which are initially smooth may become discontinuous within finite time. In

order to define solutions globally in time we remove continuity assumptions on v by

considering the equations in distributional sense.

Definition 1.2.1 A function v ∈ L1
loc(R

d × [0,∞)) is a weak solution of (1.11), if

∫ ∞
0

∫
Rd

(
∂w

∂t
· v +

d∑
m=1

∂w

∂xm
· fm(v)

)
dxdt = 0 (1.15)

for every smooth vector function w(x, t) of M components with compact support

within Rd × (0,∞).

Remark For simplicity, equation (1.15) does not take into account initial and bound-

ary conditions.

The concept of weak solutions does not guarantee uniqueness. In some cases the

weak form (1.15) can admit infinitely many weak solutions.

Example We consider the scalar 1D Burgers’ equation

∂u

∂t
+

(
u2

2

)
x

= 0, u(x, 0) =

0 if x < 0,

1 if x ≥ 0.

10

Then we can show that for every 0 < α < 1, a weak solution is

uα(x, t) =

0 if x < αt

2
,

α if αt
2
≤ x < (1+α)t

2
,

1 if x ≥ (1+α)t
2

.

Since this is a 1D problem, we can check whether the above functions are weak

solutions by verifying that equation (1.11) is satisfied in the smooth regions (which

in this case is trivial), and checking the Rankine-Hugoniot jump conditions on the

two lines of discontinuity. These conditions state that if we have a shock on the line

x = ηt so that

u(x, t) =

u+ if x > ηt,

u− if x < ηt,

then the shock speed η is given by

η =
f(u+)− f(u−)

u+ − u−
. (1.16)

All of the given functions contain two shocks with speeds η1 = α
2
, η2 = (1+α)

2
for

which the Rankine-Hugoniot conditions hold, hence all of them are weak solutions.

1.2.4 Viscosity Limit and Entropy Inequality

The non-uniqueness of weak solutions requires a mechanism for determining

whether a weak solution is physical. A weak solution v of (1.11) is called admissible

in the vanishing viscosity sense if it is the limit of solutions vδ in L1
loc as δ → 0 where

11

vδ are the solutions of the viscous equation

∂vδ

∂t
+∇ · f(vδ) = δ∆vδ. (1.17)

If continuously differentiable solutions of (1.17) can be proved to converge in L1
loc,

then one can show that the limit will satisfy (1.15). While the convergence has been

established for the cases of M = d = 1 [37, 42] and M = 2, d = 1 [13, 14, 15], the

result for the case of a general system is still an open problem. However, we assume

the solutions of (1.17) converge as δ → 0 and we use the limit as our criterion for a

“physical” weak solution.

With this assumption, equation (1.17) is used to deduce other conditions which

are easier to verify numerically. To do that we first define a function called “entropy”,

which is a generalization of the thermodynamical entropy.

Definition 1.2.2 A function S(v) is an entropy function for the system (1.11), if:

1. S satisfies STv (fm
v) = (Fm

v)T ,m = 1...d, where the vector F (v) is called entropy

flux.

2. S is a convex function of v.

Now we use this definition in order to derive the so-called “entropy inequality”

admissibility condition originally introduced by Lax [43], Krushkov [37]. Let vδ be

a continuously differentiable solution of (1.17). Then we multiply (1.17) by
(
∂S
∂vδ

)T
on the left to obtain

(
∂S

∂vδ

)T
∂vδ

∂t
+

d∑
m=1

(
∂S

∂vδ

)T
fm

v v
δ
xm = δ

d∑
m=1

(
∂S

∂vδ

)T
∂2vδ

∂2xm
, (1.18)

12

where for simplicity we have split the right-hand side into d one-dimensional expres-

sions. Note that

∂2S(vδ)

∂2xm
=

∂

∂xm

(
∂S

∂vδ
· ∂v

δ

∂xm

)
=

(
∂S

∂vδ

)T
∂2vδ

∂2xm
+

(
∂vδ

∂xm

)T
∂2S

∂2vδ
∂vδ

∂xm
.

Then (1.18) becomes

∂S(vδ)

∂t
+

d∑
m=1

(Fm
v)Tvδxm = δ

d∑
m=1

[
∂2S(vδ)

∂2xm
−
(
∂vδ

∂xm

)T
∂2S

∂2vδ
∂vδ

∂xm

]
,

where the right-hand side’s last term is nonnegative since S(vδ) is convex, it has a

positive semidefinite Hessian. Hence

∂S(vδ)

∂t
+

d∑
m=1

∂Fm(vδ)

∂xm
≤ δ

d∑
m=1

∂2S(vδ)

∂2xm
.

Now we go to a weak form in order to pass to the limit δ → 0. We multiply the

last equation by a nonnegative scalar smooth function ϕ with compact support and

integrate by parts to obtain

∫ ∫
S(vδ)

∂ϕ

∂t
+ F (vδ) · ∇ϕ dxdt ≥ −δ

∫ ∫ d∑
m=1

S(vδ)
∂2ϕ

∂2xm
dxdt.

If vδ → v in L1
loc as δ → 0, then we get

∫ ∫
S(vδ)

∂ϕ

∂t
+ F (vδ) · ∇ϕ dxdt ≥ 0

for every smooth nonnegative test function ϕ. This leads to the following admissi-

bility condition:

Entropy inequality: A weak solution of (1.11) is admissible (or entropy-admissible)

13

if it satisfies the inequality

∂S(v)

∂t
+∇ · F (v) ≤ 0 (1.19)

in the sense of distributions for every pair of convex entropy and entropy flux (S,F).

Remark In the scalar case, it was shown in [4] that entropy-admissible solutions

exists and are unique.

1.3 The Compressible Euler Equations

In this subsection we state the Euler equations of compressible gas dynamics

and explain the physical interpretation of each equation. The dependent variables

in the system are the material density ρ (mass/volume), the material velocity u

(length/time) and the material specific energy e (energy/mass). The system consists

of the following equations:

∂

∂t
ρ+∇ · (uρ) = 0, (1.20)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = 0, (1.21)

∂

∂t

(
ρe+

1

2
ρu2

)
+∇ ·

[
u

(
ρe+

1

2
ρu2 + p

)]
= 0, (1.22)

The material’s pressure p (force/area) and temperature T are determined by equation

of state (EOS), which relates them to the material’s density and specific internal

energy:

p = p(ρ, e).

In this work we use ideal gas equation of state, which gives the following p and T :

p = (γ − 1)ρe, T = (γ − 1)e. (1.23)

14

where γ is the ratio of constant pressure and constant volume heat capacities. Instead

of using the equation for the total energy (1.22), a common practice is to work with

the equation for the internal energy. It is derived by taking a dot product of (1.21)

with u and subtracting the result from (1.22). The resulting equation is

∂

∂t
(ρe) +∇ · (uρe) + p∇ · u = 0. (1.24)

As we see in the following subsections, equations (1.20) - (1.22) express the uni-

versal conservation principle that the time rate of change of some conserved quantity

within a control volume is equal to the source rates minus the sink rates. Equa-

tions (1.20), (1.21), (1.22) stand for mass, momentum and total energy conservation,

respectively.

1.3.1 Conservation Principles

1.3.1.1 Conservation of Mass

Now we explain the physical meaning of equation (1.20). We integrate (1.20)

over a control volume V and obtain

∂

∂t

∫
V

ρ dV = −
∮
ρu · n dA, (1.25)

where n is the surface’s outward unit normal. The left-hand side in (1.25) represents

the rate of change of the mass within V . The term ρu (mass/area-time) is called

mass flux. The right-hand side of (1.25) gives the net rate at which mass enters the

control volume V , namely it’s incoming mass minus outgoing mass per unit time.

15

1.3.1.2 Conservation of Momentum

Here we explain the physical meaning of equation (1.21). We integrate (1.21)

over a control volume V and obtain

∂

∂t

∫
V

ρum dV = −
∮
ρumu · n dA−

∫
V

∂

∂xm
p dV, m = 1...d. (1.26)

The left-hand side has units (momentum/time) and it represents the rate of change of

the momentum in direction m within V . The term ρumu (momentum/area-time) is

momentum flux in direction m, hence the right-hand side’s first term is the net rate at

which the m-th component of momentum enters the volume. The spatial derivative

of p has units (force/volume), hence the right-hand side’s second term is the total

force applied on the material in V . But force has units of (momentum/time), hence

that term can be viewed as total rate of change of momentum within the control

volume V due to pressure gradients. We conclude that the right-hand side of (1.26)

is the rate of change of momentum due to the boundary flux and pressure gradients.

1.3.1.3 Conservation of Total Energy

Here we explain the physical meaning of equation (1.22). We integrate (1.22)

over a control volume V and obtain

∂

∂t

∫
V

(
ρe+

1

2
ρu2

)
dV = −

∮
(ρe+

1

2
ρu2)u · n dA−

∫
V

∇ · (pu) dV. (1.27)

The left-hand side has units (energy/time) and it represents the rate of change of the

total energy within V . The terms ρeu and (1
2
ρu2)u are respectively internal energy

flux and kinetic energy flux, hence the right-hand side’s first term is the net rate at

which internal and kinetic energy enter the volume V . In order to understand the

16

second term in the right-hand side of (1.27), we split it in two parts by

−∇ · (pu) dV = −∇p · u dV − p∇ · u dV.

As discussed after equation (1.26), the term −∇p dV is the total force applied to

the material inside dV . Then −∇p ·u dV becomes the kinetic energy rate of change

for the material inside dV (using that if a force F is applied to a rigid body, the

change of kinetic energy of that body over a path s is F · s). The term ∇ · u dV

has units (volume/time) and represents the volume change of dV due to the material

motion. Volume changes of dV cause changes in its internal energy. The term

p∇ ·u dV represents the internal energy change due to compression or expansion of

the material. We conclude that the right-hand side of (1.27) represents the rate of

change of total energy due to boundary fluxes of internal and kinetic energy, changes

of kinetic energy due to pressure gradients, and changes in internal energy arising

from compression or expansion of the material.

1.3.2 Entropy Quantities

Now we derive an entropy S that is in agreement with Definition 1.2.2. We note

that the first condition of that definition is equivalent (after taking a dot product of

(1.11) with Sv) to:

∂S

∂t
+∇ · F = 0 (1.28)

for every smooth solution v.

We follow the approach first introduced by Harten in [29]. For EOS p = (γ−1)ρe

and T = (γ − 1)e, we define the quantity

s := log(pρ−γ) = log((γ − 1)eρ1−γ) = log((γ − 1)e) + (1− γ) log ρ, (1.29)

17

which we call “specific entropy”. Notice that this is not exactly the physical specific

entropy (it doesn’t satisfy Tds = de− p
ρ2
dρ). Its derivatives with respect to density

and energy are

∂s

∂ρ
=

1− γ
ρ

,
∂s

∂e
=

1

e
. (1.30)

Assuming a smooth solution, multiply (1.20) by ∂s
∂ρ

, (1.24) by ∂s
∂e

and add the resulting

equations:

(
∂s

∂ρ

∂ρ

∂t
+
∂s

∂e

∂e

∂t

)
+ u ·

(
∂s

∂ρ
∇ρ+

∂s

∂e
∇e
)

+∇ · u
���

���
��

(
∂s

∂ρ
ρ+

∂s

∂e
T) = 0,

∂s

∂t
+ u · ∇s = 0.

Now we multiply by f ′(s) where f is any scalar differentiable function of s to obtain

∂f(s)

∂t
+ u · ∇f(s) = 0.

Then we multiply the last equation by ρ, (1.20) by f(s) and add them to obtain

∂

∂t
(ρf(s)) +∇ · (uρf(s)) = 0. (1.31)

Then taking

S := −ρf(s), F := −uρf(s)

satisfies the condition (1.28). This S will be convex, if and only if (see [30]):

f ′(s) > 0, f ′(s)
γ − 1

γ
+ f ′′(s) > 0. (1.32)

18

A family of functionals that satisfies (1.32) is:

f(s) =
γ + α

γ − 1
exp

(
s

γ + α

)
⇒ f ′(s) =

1

ρ(γ − 1)
(pρα)

1
γ+α

where α > 0 is some constant. Then we have the following family of entropies:

S = −ρf(s) =
γ + α

1− γ
(pρα)

1
γ+α , (1.33)

so that S satisfies both conditions of Definition 1.2.2 for any α > 0.

Remark If we had a source Q of internal energy, then (1.31) becomes:

∂

∂t
(ρf(s)) +∇ · (ρf(s))−Qsef ′(s) = 0,

∂S

∂t
+∇ · S +

Qf ′(s)

e
= 0. (1.34)

Remark The amount of violation of (1.31) or (1.34) is called “entropy production”.

It could be non-zero only in regions of discontinuities of the solution. We use this

quantity to scale our viscosity terms, it is our shock detector (and hence the name

“Entropy Viscosity method”).

Remark We usually choose α = 1 in the definition of S (1.33). For smaller values

of α the explicit density dependence decreases, for example α = 0 would imply that

S doesn’t change in contact regions (since the pressure doesn’t change). In that case

the entropy production there is zero and we don’t add viscosity in contacts. However

the choice of α = 0 makes S not strictly convex and hence the entropy inequality

(1.19) is invalid.

Remark We have a minus sign in the definitions of S and F , because we want to

be consistent with (1.32). The specific entropy used by Harten and Lax in [30] is the

19

one from (1.29) multiplied by a negative constant, namely it is log(ρe1/(1−γ)) (which

is minus the physical specific entropy).

1.3.3 Minimum Principle on the Specific Entropy

In this subsection we derive an additional admissibility condition for the Euler

system, namely the minimum principle on the specific entropy, originally derived by

Tadmor in [58]. It states the following:

Minimum principle on the specific entropy: If v(x, t) is a weak solution of

(1.11) that satisfies the entropy inequality (1.19), then for the specific entropy s

defined in (1.29) we have

Ess inf
x∈Ω

s(x, t) ≥ Ess inf
x∈Ω+tU

s(x, 0), (1.35)

for all t > 0 and any domain Ω, where U is the maximal speed |u| in Ω. We go over

the derivation of this admissibility condition for completeness.

First we show that if v(x, t) is a weak solution of (1.11) that satisfies the entropy

inequality (1.19), then for non-positive functions f(s) satisfying (1.32), we have

∫
x∈Ω

ρ(x, t)h(s(x, t)) dx ≥
∫
x∈Ω+tU

ρ(x, 0)h(s(x, 0)) dx. (1.36)

To show this we integrate the entropy inequality (1.19) over the space-time cone

C = {x ∈ Ω + (t− τ)U | 0 ≤ τ ≤ t}.

Recall that F = −uρh(s), then the resulting inequality is

∫
C

∂ρh(s)

∂t
+∇ · (uρh(s)) dxdτ ≥ 0,

20

∫
C

∇∗ · (uρh(s), ρh(s))T dxdτ ≥ 0,

where in the last integral we have the divergence in the space-time plane. Hence we

obtain ∫
∂C

ρh(s)

(
n0 +

d∑
m=1

umnm

)
dxdτ ≥ 0, (1.37)

where n∗ = (n1, ...nd, n0)T is the unit outward normal to the boundary of C, n0 is

the component in the time direction. At τ = 0 we have n∗ = (0, ...0,−1) and the

integral in (1.37) becomes the negative of the right-hand side of (1.36). At τ = t we

have n∗ = (0, ...0, 1) and the integral in (1.37) becomes the left-hand side of (1.36).

Then, (1.37) can be written as

∫
x∈Ω

ρ(x, t)h(s(x, t)) dx−
∫
x∈Ω+tU

ρ(x, 0)h(s(x, 0)) dx ≥

−
∫
∂ C

ρh(s)

(
n0 +

d∑
m=1

umnm

)
dxdτ,

where ∂ C is the boundary of C without τ = 0, τ = 1. Since h(s) ≤ 0 by assumption,

the inequality (1.36) will hold if

n0 +
d∑

m=1

umnm ≥ 0.

On the side surfaces of C we have vectors of the type

(
± x1

|x|
U, ...± xd

|x|
U,∓1

)
,

hence the outward normal vector to the side surfaces has the form

(n1...nd, n0)T =
1√

1 + U2

(
x1

|x|
, ...

xd
|x|

, U

)
.

21

Then we obtain

n0 +
d∑

m=1

umnm =
1√

1 + U2

(
U +

d∑
m=1

umxm
|x|

)
≥ 1√

1 + U2

(
U −

d∑
m=1

u2
m

|u|

)
≥ 0,

where we used that U is the maximal speed and the standard inequality

∣∣∣∣u · x|x|
∣∣∣∣ ≤ u · u|u| .

This confirms that the inequality (1.36) holds for non-positive functions f(s) that

satisfy (1.32).

Remark The above derivation is correct for smooth functions f(s). A more rigorous

derivation would involve taking integrals involving smooth test functions in order to

obtain the result in distributional sense, but we skip this for simplicity, see [28].

In order to obtain the result (1.35) we choose a special h(s) given by

h(s) = min(s− s0, 0), s0 = Ess inf
x∈Ω+tU

s(x, 0).

This function is non-positive and agrees with (1.32), hence (1.36) applies

∫
x∈Ω

ρ(x, t) min(s(x, t)− s0, 0) dx ≥
∫
x∈Ω+tU

ρ(x, 0) min(s(x, 0)− s0, 0) dx.

Here the right integral is zero by the definition of s0. Then the left integral must

also be zero since h(s) ≤ 0. Hence for almost every x ∈ Ω we must have

s(x, t) ≥ s0 = Ess inf
x∈Ω+tU

s(x, 0),

which implies (1.35).

22

1.4 Numerical Methods for Lagrangian Hydrodynamics

The first numerical calculations of the compressible Euler equations involve direct

application of the Rankine-Hugoniot jump conditions (1.16). That is, the domain is

considered as a union of smooth surfaces divided by discontinuities, and the bound-

ary conditions for each surface are supplied by the Rankine-Hugoniot equations.

This approach is very difficult to implement since the shocks are moving relative

to the mesh. Their motion is controlled by the non-linear equations and the jump

conditions, requiring long trial and error computations at each step in time.

The first artificial viscosity approach, known as the Q-method, is originally pro-

posed by Von Neumann and Richtmeyer in [59]. The shock regions are diffused by

introducing a scalar dissipative artificial term that converts a certain amount of me-

chanical energy into heat. The effect of the artificial term is negligible in smooth

regions. The thickness of the resulting diffused shock layers is of the same order as

the interval length used in the numerical calculation, so that the Rankine-Hugoniot

jump conditions are satisfied at near distances from the shocks. This, or extensions

of it, are the approaches used in most numerical methods for solving compressible

Euler equations.

Numerical methods for hydrodynamic equations are classified in two categories:

Eulerian and Lagrangian hydrocodes. In the Eulerian case, the method uses a fixed

computational mesh through which the fluid moves. Lagrangian methods use com-

putational meshes that move with the material. The advantages of this over the

Eulerian approach are the following:

• The grid motion provides a natural form of mesh adaptivity. The cells become

smaller in compression regions, and larger where the material expands. This

is less expensive than adaptive strategies with respect to a fixed mesh, where

23

control quantities are computed to indicate where to modify the mesh, then

the mesh is recomputed and the solutions are mapped to the new mesh.

• Lagrangian methods allow easy coupling to other physical models, for which

quantities are defined with respect to a non-moving material. An example of

this is the coupling of the compressible Euler equations to neutron or radiation

transport equations, where interaction cross-sections are defined with respect

to material at rest.

• Lagrangian methods allow multi-material simulations which keep materials

pure. If material interfaces are aligned with the cell boundaries at initial

time, then those material interfaces will stay on the moving cell boundaries

throughout the whole computation (unless some external diffusion procedure

is added).

The great advantage of Eulerian hydrocodes over the Lagrangian is that they allow

turbulent flows. In general they are also more robust under perturbations in the

solution. Vorticity regions cause tangling of the moving discrete mesh or too much

compression of cells, causing the computational time step to go to zero. A way to

overcome this is the arbitrary Lagrangian-Eulerian (ALE) technique, e.g., [6, 32, 35,

12], where the mesh is evolved by a Lagrangian method until its quality deteriorates,

then the current mesh is adjusted according to some quantities that measure its

quality, followed by remap of the solution to the new mesh.

In this work we are interested in Lagrangian numerical methods. There are three

major approaches for solving compressible Euler equations in Lagrangian frame:

1. Staggered grid hydrodynamics (SGH): thermodynamic variables (density, pres-

sure and internal energy) are approximated by piecewise constant values at each

24

cell, kinematic variables (velocity, acceleration) are defined at the cell vertices,

e.g., [60]. Classical SGH methods use the already mentioned Q-method in order

to add artificial viscosity to the equations.

2. Cell-centered hydrodynamics (CCH): all variables are piecewise constant values

at each cell, approximate Riemann solvers determine velocities at cell vertices,

e.g., [48, 49]. These solvers are usually Godunov-type methods which introduce

sufficient diffusion near shocks.

3. Finite element methods (FEM): all variables are approximated by finite ele-

ment functions. Fully discrete methods are obtained by introducing Galerkin

weak formulations and using high-order time integration, e.g., [20, 16]. These

methods usually employ tensor artificial viscosities, e.g., [56, 36].

Both SGH and CCH methods often suffer from the so-called “mesh imprinting”

phenomenon, which is caused by numerical inaccuracies in the computation of the

spatial gradients. That results in symmetry breaking and spurious grid vorticity, e.g.,

[22]. In addition to that, SGH methods can generate the so-called “hourglass modes”,

see [23], which come from the fact the numerical solution doesn’t see arbitrary scaled

hourglass modes added to the velocity and pressure fields. Such modes grow in time,

leading to spurious mesh distortion. An extension to the classical SGH and CCH

methods is the compatible hydro approach, see [8, 9]. It introduces the notions of

sub-zonal corner masses and sub-zonal corner forces which are used to update the

internal energy in a way that conserves the total energy, and to resist the generation

of hourglass modes. Another way to improve the classical SGH methods is to replace

the originally used Q-method by edge and tensor artificial viscosity formulations, e.g.,

[10, 56, 36, 57].

FEM methods allow approximations with functions of higher polynomial degree

25

on each cell, which leads to high-order convergence in smooth regions, sub-zonal

resolution, curvilinear meshes, improvement in symmetry preservation and reduction

of mesh distortion. These methods are usually general with respect to the choice of

finite element spaces and the order of the used time integrators. FEM methods can

sometimes be viewed as a generalization of existing compatible hydro methods, see

[5].

26

2. CENTRAL SCHEMES FOR MEAN FIELD GAMES

The main idea of this section is to modify and apply the existing explicit sec-

ond order central schemes to each individual MFG equation and then to combine

them into a second order fixed point iteration algorithm. We present the following

contributions:

• We derive a fully discrete explicit second order staggered finite difference scheme

for the FHJ equation (1.1) in Subsection 2.1. The algorithm we propose is a

modification of the method derived by Lin and Tadmor in [45].

• We derive a fully discrete explicit second order staggered finite difference scheme

for the BCD equation (1.2) in Subsection 2.2. The scheme is based on the clas-

sical Nessyahu-Tadmor scheme from [51].

• Both schemes are combined into a fixed point iteration algorithm that solves

the MFG equations in Subsection 2.3. We also describe how the two schemes

interact in time, memory issues and stopping criteria.

• We provide theoretical arguments which confirm that the numerical schemes

for the FHJ and BCD equations produce second order accuracy in Subsection

2.4.

• Numerical results, convergence rates and strong scaling test of our parallel

algorithm are presented in Subsection 2.5

• We compare our approach to some already existing MFG numerical algorithms

in Subsection 2.6.

27

2.1 Discretization of the Forward Hamilton-Jacobi Equation

First we note that Hamilton-Jacobi equations are closely related to conservation

laws. If we consider the two equation types

∂u

∂t
+H

(
∂u

∂x

)
= 0, u(x, t) = u0(x), (2.1)

∂ϕ

∂t
+
∂F (ϕ)

∂x
= 0, ϕ(x, 0) = ϕ0(x), (2.2)

then u(x, t) is the unique physical solution (also called viscosity solution) of (2.1) if

and only if ϕ(x, t) = ∂
∂x
u(x, t) is the unique physical solution (also called entropy

solution) of the conservation law (2.2) with flux F (ϕ) = H
(
∂u
∂x

)
and initial condition

ϕ0(x) = u0(x). Details about this relation can be found in [11] and extension to

multiple dimensions is in [34]. Using this idea, schemes that are initially created for

conservation laws can be applied to Hamilton-Jacobi equations, e.g. [38, 44, 45, 53,

47, 33]. In this subsection we use the same approach and derive a modified version

of the scheme presented in [45] for the FHJ equation (1.1).

We discretize our domain Ω by the grid points xj = j∆x. The discrete points

in time are tn = n∆thj, note that here we march forward in time. Let unj be the

approximate value of u(xj, tn). We think of our discrete approximation as a contin-

uous, piecewise quadratic function with values unj at the grid points xj. Its first and

second spatial derivatives are defined as follows:

(ûx)
n
j+ 1

2
:=

unj+1 − unj
∆x

, (2.3)

28

(ûxx)
n
j+ 1

2
:=

1

∆x
minmod

[
θ
(

(ûx)
n
j+ 3

2
− (ûx)

n
j+ 1

2

)
,

1

2

(
(ûx)

n
j+ 3

2
− (ûx)

n
j− 1

2

)
,

θ
(

(ûx)
n
j+ 1

2
− (ûx)

n
j− 1

2

)]
,

(2.4)

where “minmod” is a nonlinear limiter that guarantees non-oscillatory behavior of

the scheme, and θ ∈ [1, 2], see [51, 38]. Its definition is

minmod(a1, a2, ...) :=

minj(aj) if aj > 0 ∀j,

maxj(aj) if aj < 0 ∀j,

0 otherwise.

(2.5)

Then for x ∈ [xj, xj+1] we define the discrete interpolant

û(x, tn) := unj + (ûx)
n
j+ 1

2
(x− xj) +

1

2
(ûxx)

n
j+ 1

2
(x− xj)(x− xj+1). (2.6)

As we explain in Subsection 2.2, let m̂(x, t) be the approximation of m(x, t) and

mn
j+ 1

2

, (m̂x)
n
j+ 1

2

be the value and first spatial derivative of m̂(xj+ 1
2
, tn). Suppose we

already have the values unj , then the next staggered values in time are derived by

integrating (1.1) over [tn, tn+1] and evaluating at xj+ 1
2
:

un+1
j+ 1

2

= û(xj+ 1
2
, tn) +

∫ tn+1

tn

(
−H(ûx(xj+ 1

2
, t))

+ f(xj+ 1
2
, m̂(xj+ 1

2
, t)) + σûxx(xj+ 1

2
, t)

)
dt.

(2.7)

At this point we use the relation of our FHJ problem to conservation laws, namely

29

in our case ûx satisfies the conservation law

∂

∂t
(ûx) +

∂

∂x
H(ûx) =

∂

∂x
f(x, m̂), (2.8)

where we ignore the diffusion term since our approach does not handle third deriva-

tives of û. Equation (2.8) has finite propagation speed, which means that under a

standard hyperbolic CFL condition on the time step

∆thj
∆x

max
x
|H ′(ûx)| ≤

1

2
, (2.9)

our interpolant’s spatial derivatives ûx, ûxx remain well-defined around xj+ 1
2

for t ∈

[tn, tn+1]. Then we can safely use a quadrature rule for the integral in (2.7). We

apply a midpoint rule where the midpoint values in time of ûx are computed by

Taylor expansion that uses the time derivative from equation (2.8), namely

(ûx)
n+ 1

2

j+ 1
2

= (ûx)
n
j+ 1

2
+

∆thj
2

[
−H ′

(
(ûx)

n
j+ 1

2

)
(ûxx)

n
j+ 1

2

+fx(xj+ 1
2
,mn

j+ 1
2
) + fm(xj+ 1

2
,mn

j+ 1
2
)(m̂x)

n
j+ 1

2

]
.

(2.10)

After we apply the midpoint rule and substitute (2.10), (2.6) into (2.7) we get the

following forward staggered scheme for the FHJ equation (1.1):

un+1
j+ 1

2

=
1

2

(
unj + unj+1

)
− (∆x)2

8
(ûxx)

n
j+ 1

2

+ ∆thj

[
−H

(
(ûx)

n+ 1
2

j+ 1
2

)
+ f(xj+ 1

2
,m

n+ 1
2

j+ 1
2

) + σ
(ûx)

n
j+ 3

2

− (ûx)
n
j− 1

2

2∆x

]
,

(2.11)

where for the σ term instead of using (ûxx)
n+ 1

2

j+ 1
2

computed by (2.4) at tn+ 1
2

(which

requires a lot of operations), we apply a simple central difference at time tn for the

30

second derivative. This approach provides reduction of computational cost and is

sufficient to achieve second order accuracy (see Subsection 2.4).

The time step ∆thj = tn+1−tn for this scheme must take into account not only the

hyperbolic CFL condition (2.9), but also the presence of the Laplace term, namely

∆thj := min

 c∆x

maxj

∣∣∣H ′ ((ûx)nj+ 1
2

)∣∣∣ , c(∆x)2

σ

 , (2.12)

where c is a CFL constant, we usually use 0.4. The term involving σ is derived from

positivity preservation: if we suppose f = H = ûxx = 0 and unj ≥ 0 ∀j in (2.11),

then we enforce un+1
j+ 1

2

≥ 0 by

1

2

(
unj + unj+1

)
− σ ∆t

2∆x2

(
unj + unj+1

)
≥ 0, ∀j ⇒ ∆t ≤ ∆x2

σ
.

The expression (2.12) is recomputed before each time step, because the dependence

of (2.8) on m̂ causes changes in the maximum of H ′.

Remark Depending on σ, in (2.12) we may have ∆t = O(∆x) or ∆t = O(∆x2).

We say that our simulation is in “hyperbolic regime” when ∆t = O(∆x), and we

say that our simulation is in “parabolic regime” when ∆t = O(∆x2). In hyperbolic

regime we have σ = O(∆x), but in parabolic regime we have σ = O(1).

Remark We can define a simpler version of (2.11) by choosing continuous, piecewise

linear approximation with values unj at the grid points xj. This corresponds to the

choice (ûxx)
n
j+ 1

2

= 0, instead of the definition (2.4). Then we can apply the above

derivation by using a left-point rule for the integral in equation (2.7) and obtain the

31

scheme

un+1
j+ 1

2

=
1

2

(
unj + unj+1

)
+ ∆thj

[
−H

(
(ûx)

n
j+ 1

2

)
+ f(xj+ 1

2
,mn

j+ 1
2
) + σ

(ûx)
n
j+ 3

2

− (ûx)
n
j− 1

2

2∆x

]
.

(2.13)

This scheme uses the same time step computation as in (2.12), and requires much

less operations than (2.11). However, as derived later, the scheme (2.13) does not

produce second order convergent method.

2.2 Discretization of the Backward Convection-Diffusion Equation

In this subsection we derive a modification of the central scheme presented in [51]

to discretize the BCD equation (1.2). We use the same spatial grid points xj = j∆x

as in Subsection 2.1. However the discrete points in time are different, we consider

tk = k∆tcd, note that in this algorithm we march backwards in time. We think of our

discrete approximation as a piecewise linear function m̂ where mk
j+ 1

2

is its average

value for the cell [xj, xj+1] (or the value at xj+ 1
2
). The spatial derivative (m̂X)j+ 1

2

at the point xj+ 1
2

is constructed using the uniformly non-oscillatory (UNO) limiter

introduced in [31]:

(m̂X)k
j+ 1

2
:=

1

∆x
minmod

(
mk
j+ 1

2
−mk

j− 1
2

+
1

2
minmod(∆2mk

j− 1
2
,∆2mk

j+ 1
2
),

mk
j+ 3

2
−mk

j− 1
2
− 1

2
minmod(∆2mk

j+ 1
2
,∆2mk

j+ 3
2
)

)
,

(2.14)

∆2mk
j+ 1

2
:= mk

j+ 3
2
− 2mk

j+ 1
2

+mk
j− 1

2
,

32

and we sometimes use the minmod limiter that doesn’t need as many values, namely

(m̂x)
k
j+ 1

2
:=

1

∆x
minmod

(
mk
j+ 1

2
−mk

j− 1
2
,mk

j+ 3
2
−mk

j+ 1
2

)
. (2.15)

Then for x ∈ [xj, xj+1] the approximation function m̂ has the form

m̂(x, tk) = mk
j+ 1

2
+

1

∆x
(x− xj+ 1

2
)(m̂X)k

j+ 1
2
. (2.16)

Suppose we already have the values mk
j+ 1

2

, then the next staggered values in time,

going backwards, are obtained by integrating (1.2) over [tk, tk−1] and [xj+ 1
2
, xj+ 3

2
]:

∫ x
j+3

2

x
j+1

2

m̂(x, tk−1)− m̂(x, tk) dx

+

∫ tk−1

tk

[
H ′(ûx(xj+ 3

2
, t))m̂(xj+ 3

2
, t)−H ′(ûx(xj+ 1

2
, t))m̂(xj+ 1

2
, t)

]
dt =

− σ
∫ tk−1

tk

m̂X(xj+ 3
2
, t)− m̂X(xj+ 1

2
, t) dt.

(2.17)

Similar to Subsection 2.1, the BCD equation (1.2) has a finite speed of propagation,

hence with the standard hyperbolic CFL condition on the time step

∆tcd
∆x

max
x
|H ′(ûx)| ≤

1

2
, (2.18)

the value of m̂ and its spatial derivative m̂x remain well-defined around xj+ 1
2

for

t ∈ [tn−1, tn]. Then we can safely use a quadrature rule for the time integrals in (2.17).

We apply a midpoint rule where the midpoint values in time of m̂ are computed by

33

Taylor expansion that uses the time derivative from equation (1.2), namely

m
k− 1

2

j+ 1
2

= mk
j+ 1

2
+

∆tcd
2

[
H ′′
(

(ûx)
k
j+ 1

2

)
(ûxx)

k
j+ 1

2
mk
j+ 1

2

+H ′
(

(ûx)
k
j+ 1

2

)
(m̂x)

k
j+ 1

2

]
,

(2.19)

where we ignore the diffusion term and use the less sharp m̂x instead of m̂X without

affecting the method’s second order accuracy, see Subsection 2.4. After we apply the

midpoint rule and substitute (2.19) for the time integrals of (2.17), and use (2.16)

for the space integral of (2.17) we get the following backward staggered scheme for

the BCD equation (1.2):

mk−1
j+1 =

1

2

(
mk
j+ 1

2
+mk

j+ 3
2

)
− ∆x

8

(
(m̂X)k

j+ 3
2
− (m̂X)k

j+ 1
2

)
+ ∆tcd

(
H ′
(

(ûx)
k− 1

2

j+ 3
2

)
m
k− 1

2

j+ 3
2

−H ′
(

(ûx)
k− 1

2

j+ 1
2

)
m
k− 1

2

j+ 1
2

∆x

+ σ
mk
j+ 5

2

−mk
j+ 3

2

−mk
j− 1

2

+mk
j− 3

2

2∆x2

)
,

(2.20)

where mk−1
j+1 is the average for the staggered cell [xj+ 1

2
, xj+ 3

2
], and the computation of

(ûx)
k− 1

2

j+ 3
2

, (ûx)
k− 1

2

j+ 1
2

is discussed in Subsection 2.3.1. Similar to the approach in (2.11),

for the σ term instead of using the difference between the midpoint values (m̂X)
k− 1

2

j+ 3
2

and (m̂X)
k− 1

2

j+ 1
2

, we apply a standard central difference at time tk. Doing this allows us

to reduce computational cost while maintaining second order accuracy, see Subsection

2.4.

The time step ∆tcd = tk − tk−1 for this scheme must take into account not only

34

the hyperbolic CFL condition (2.18), but also the presence of the Laplace term:

∆tcd := min

 c∆x

maxj

∣∣∣H ′ ((ûx)kj+ 1
2

)∣∣∣ , c(∆x)2

σ

 , (2.21)

where the derivation of the term involving σ and the CFL constant c are the same as

in (2.12). This expression is recomputed before each time step, because the maximum

of H ′ changes.

Remark The scheme (2.20) preserves initial mass up to boundary conditions. For

the case of periodic boundary conditions, mass is conserved exactly on discrete level,

but for any other type of boundary conditions (Dirichlet, constant extensions, etc.)

the preservation is only on continuous level. For such cases the mass error decreases

under mesh refinement with linear rate.

Remark We can define a simpler version of (2.20) by choosing a piecewise con-

stant function m̂ where mk
j+ 1

2

is its value at xj+ 1
2
. This corresponds to the choice

(m̂X)k
j+ 1

2

= (m̂x)
k
j+ 1

2

= 0, instead of the definitions (2.14) and (2.15). Then we can

apply the above derivation by using a left-point rule for the integral in equation

(2.17) and obtain the scheme

mk−1
j+1 =

1

2

(
mk
j+ 1

2
+mk

j+ 3
2

)
+ ∆tcd

(
H ′
(

(ûx)
k
j+ 3

2

)
mk
j+ 3

2

−H ′
(

(ûx)
k
j+ 1

2

)
mk
j+ 1

2

∆x

+ σ
mk
j+ 5

2

−mk
j+ 3

2

−mk
j− 1

2

+mk
j− 3

2

2∆x2

)
.

(2.22)

This scheme uses the same time step computation as in (2.21), and requires much

less operations than (2.20). However, as derived later, the scheme (2.22) does not

35

produce second order convergent method.

2.3 Fixed Point Iteration

In this subsection we combine the two presented algorithms into a fixed point

iteration.

2.3.1 Interaction Between the Equations

First we explain how the schemes (2.11), (2.20) obtain values in time from each

other. Looking at the forward scheme (2.10), (2.11), suppose we know the values

mk
j+ 1

2

,mk−2
j+ 1

2

for all j where tk ≥ tn ≥ tk−2. Then we use the following second order

interpolation in time:

mn
j+ 1

2
:= mk−2

j+ 1
2

+
mk
j+ 1

2

−mk−2
j+ 1

2

tk − tk−2

(tn − tk−2). (2.23)

It’s important to note that the values used in (2.23) have the same cell staggering,

namely the values mk
j+ 1

2

,mk−2
j+ 1

2

are defined at all points xj+ 1
2
, while the values mk−1

j+ 1
2

are undefined, because evolution from m̂(x, tk) to m̂(x, tk−1) would define the values

of m̂(x, tk−1) only at the grid points xj. The derivative (m̂x)
n
j in (2.10) is computed by

combining (2.23) and (2.14), and the value m
n+ 1

2

j+ 1
2

in (2.11) is computed by applying

(2.23) at time tn+ 1
2
.

The same approach is used when we consider the backward scheme (2.19), (2.20):

suppose we know the values un
j+ 1

2

, un+2
j+ 1

2

for all j where tn+2 ≥ tk ≥ tn. Then uk
j+ 1

2

is

defined by

uk
j+ 1

2
:= un

j+ 1
2

+
un+2
j+ 1

2

− un
j+ 1

2

tn+2 − tn
(tk − tn). (2.24)

Again, note that the values used in (2.24) have the same cell staggering, namely the

values un+2
j+ 1

2

, un
j+ 1

2

are defined at all points xj+ 1
2
, while the values un+1

j+ 1
2

are undefined,

36

because evolution from û(x, tn) to û(x, tn+1) would define the values of û(x, tn+1)

only at the grid points xj. The derivatives (ûx)
k
j+ 1

2

, (ûxx)
k
j+ 1

2

in (2.19), (2.21) are

computed by combining (2.24), (2.3) and (2.4), and the ones in (2.20) are obtained

by applying (2.24) at tk− 1
2

and (2.3).

2.3.2 Difference Norms

In order to use a fixed point iteration, we need to define norms for measuring

difference between consecutive solutions. We motivate our choice by some theoretical

results from [40]. For the cases of periodic or Dirichlet boundary conditions for m

and u, the solution of (1.1), (1.2) is unique, if f is monotone in L2 and H is strictly

convex i.e.∫
Ω

(f(x,m1)− f(x,m2))(m1 −m2) dx ≥ 0, ∀m1,∀m2,

H(p+ q)−H(p)−H ′(p)q ≥ 0, ∀p, q ∈ R, equality implies q = 0.

We go over the proof of the above statement and show that it can be modified for

the case when (−f) is monotone in L2 and (−H) is strictly convex.

Suppose we have two different solutions u1, u2 of (1.1), and two different solutions

m1,m2 that satisfy (1.2). We consider the equations (1.1) for u1, u2, multiply them

by (m1 −m2) and subtract the two resulting equations to obtain

∂(u1 − u2)

∂t
(m1 −m2) +

(
H

(
∂u1

∂x

)
−H

(
∂u2

∂x

))
(m1 −m2) =

(f(m1)− f(m2))(m1 −m2) + σ
∂2(u1 − u2)

∂2x
(m1 −m2).

(2.25)

37

We apply the same procedure to the two equations (1.2) for m1,m2 to obtain

∂(m1 −m2)

∂t
(u1 − u2)

+
∂

∂x

(
H ′
(
∂u1

∂x

)
m1 −H ′

(
∂u2

∂x

)
m2

)
(u1 − u2) =

− σ∂
2(m1 −m2)

∂2x
(u1 − u2).

(2.26)

If we only consider the terms in (2.25), (2.26) that involve time derivatives and

integrate them over t ∈ [0, T] we obtain

∫ T

0

∂(u1 − u2)

∂t
(m1 −m2) dt+

∫ T

0

∂(m1 −m2)

∂t
(u1 − u2) dt =

(((
((((

(((
((

(u1 − u2)(m1 −m2)|T0 −
∫ T

0

∂(m1 −m2)

∂t
(u1−u2) dt+

∫ T

0

∂(m1 −m2)

∂t
(u1−u2) = 0,

since m1(x, T) = m2(x, T) and u1(x, 0) = u2(x, 0). Also, if we only consider the σ

terms in (2.25), (2.26) and integrates them over the domain Ω we obtain

∫
Ω

σ
∂2(u1 − u2)

∂2x
(m1 −m2)−

∫
Ω

σ
∂2(m1 −m2)

∂2x
(u1 − u2) =

��
���

���
���

���[
∂(u1 − u2)

∂x
(m1 −m2)

]
∂Ω

−
∫

Ω

σ
∂(u1 − u2)

∂x

∂(m1 −m2)

∂x

−
���

���
���

���
��[

∂(m1 −m2)

∂x
(u1 − u2)

]
∂Ω

+

∫
Ω

σ
∂(m1 −m2)

∂x

∂(u1 − u2)

∂x
= 0,

since we consider periodic or Dirichlet boundary conditions. Then we integrate

38

(2.25), (2.26) over t ∈ [0, T], x ∈ Ω to obtain

∫ T

0

∫
Ω

[(
H

(
∂u1

∂x

)
−H

(
∂u2

∂x

))
(m1 −m2)

−
(
H ′
(
∂u1

∂x

)
m1 −H ′

(
∂u2

∂x

)
m2

)
∂(u1 − u2)

∂x

]
dxdt =∫ T

0

∫
Ω

(f(m1)− f(m2))(m1 −m2) dxdt.

We can rearrange the terms in the form

∫ T

0

∫
Ω

(f(m1)− f(m2))(m1 −m2)

+m2

(
H

(
∂u1

∂x

)
−H

(
∂u2

∂x

)
−H ′

(
∂u2

∂x

)
∂(u1 − u2)

∂x

)
+m1

(
H

(
∂u2

∂x

)
−H

(
∂u1

∂x

)
−H ′

(
∂u1

∂x

)
∂(u2 − u1)

∂x

)
dxdt = 0.

(2.27)

Convexity of H and monotonicity of f imply that all three terms in (2.27) are non-

negative, hence they must vanish. Then the strict convexity of H implies ∂u1
∂x

= ∂u2
∂x

,

hence the equations (1.2) for m1 and m2 use the same flux. It is well known that

convection-diffusion equations have an unique solution, hence m1 = m2. This implies

that the sources, in equations (1.1) for u1 and u2, are equal, hence u1 = u2 by using

the classical uniqueness results for Hamilton-Jacobi equations.

On the other hand, if (−f) is monotone and (−H) is strictly convex, we can apply

the same argument by saying that all three terms in (2.27) are non-positive, hence

they must vanish. All numerical tests we present use monotone (−f) and strictly

convex (−H).

Under additional assumptions on H, f and u0, there exist smooth or weak solu-

tions, see [40]. Then for σ → 0 there exists a unique solution s.t. u is Lipschitz and

m is a probability measure. Based on these statements, we use the L∞ norm for û

39

and the following norm for m̂:

||m̂i+1(x, t)− m̂i(x, t)||∗ =

∫
Ω

∣∣∣∣∫ x

0

(m̂i+1(s, t)− m̂i(s, t)) ds

∣∣∣∣ dx, (2.28)

where m̂i(x, t), ûi(x, t) are the solutions obtained after the i-th iteration.

2.3.3 Final Algorithm

We are ready to state the complete algorithm:

1. m̂0(x, t) is initialized by the values of mT (x) at every point xj+ 1
2
, let i = 0.

2. ûi+1(x, t) is computed by the algorithm from Subsection 2.1 using m̂i(x, t).

3. m̂i+1(x, t) is computed by the algorithm from Subsection 2.2 using ûi+1(x, t).

4. if convergence is achieved, namely

||m̂i+1(x, 0)− m̂i(x, 0)||∗ < ε and ||ûi+1(x, T)− ûi(x, T)||∞ < ε

then we stop, the solution is m̂i+1, ûi+1. Otherwise i = i+ 1, go to 2.

The tolerance we usually use is ε = 10−6. Notice that the algorithm is fully explicit

and it doesn’t involve any matrix computations.

2.3.4 Memory Usage

The memory problem is the following: values computed from steps 2 and 3 must

be kept in memory in order to be used for the next iteration of the other equation

(the values obtained in step 2 are used in step 3 and vice versa). If our time steps

are in parabolic regime, meaning ∆thj,∆tcd = O(∆x2), and we store all values in

time, then the space-time memory consumption would be O(∆x−3). If the time steps

40

are in hyperbolic regime, meaning ∆thj,∆tcd = O(∆x), the problem doesn’t exist,

because the space-time consumption is the standard O(∆x−2).

We notice that values of m̂ used in the FHJ scheme (2.11) and values of û used

in the BCD scheme (2.20) are already scaled in a sense by ∆t. Since our goal is to

achieve O(∆x2) convergence rates, then in parabolic regime it is sufficient to provide

accuracy of order O(∆t) for these interpolated values, because this would give LTE

of order O(∆t2) or GTE of order O(∆t) = O(∆x2). This means that storing only

O(∆x−1) instead ofO(∆t−1) values in time, for the parabolic regime, will preserve the

second order accuracy and keep the space-time memory consumption to O(∆x−2).

Hence in both regimes storing only O(∆x−1) values in time is sufficient for second

order accuracy.

2.4 Convergence Properties

Here we justify our expectations of second order accuracy in L∞ and the choices

of specific limiters (2.4), (2.14), (2.15). For the time being we refer to ∆thj,∆tcd

just as ∆t since this argument doesn’t focus on the differences between the two.

In order to produce global truncation errors (GTE) of at most O(∆x2) for both

hyperbolic and parabolic regimes, we need local truncation errors (LTE) of sizes at

most O(∆x4), O(∆x2∆t), O(∆x∆t2) or O(∆t3).

First we discuss why the diffusion terms are ignored in the half-time equations

(2.10), (2.19). Since the half-time values are already scaled in a sense by O(∆t) in

(2.11), (2.20), and the diffusion terms are scaled by an additional O(∆t) in (2.10),

(2.19), then these terms’ influence in the final LTE is at most O(σ∆t2) which results

in GTE of at most O(σ∆t). If we are in parabolic regime, then O(∆t) = O(∆x2), σ =

O(1) and ignoring the diffusion terms doesn’t affect the desired accuracy. If we are

in hyperbolic regime, then σ = O(∆x) and the diffusion terms affect the LTE as

41

O(∆t2∆x), hence they can be ignored again.

2.4.1 Second Order Accuracy of the Hamilton-Jacobi Scheme

Now we consider FHJ equation (1.1), a centered difference for ∂
∂t
u(x, tn+ 1

2
) gives

us the midpoint method:

u(x, tn+1) = u(x, tn) + ∆t
∂

∂t
u(x, tn+ 1

2
) +O(∆t3),⇒

u(x, tn+1) = u(x, tn) + ∆t

[
−H

(
∂

∂x
u(x, tn+ 1

2
)

)

+f
(
x,m(x, tn+ 1

2
)
)

+ σ
∂2

∂2x
u(x, tn+ 1

2
)

]
+O(∆t3).

(2.29)

Suppose all values unj are exact for every xj at a fixed time tn. We can also interpolate

m̂ values at times tn, tn+ 1
2

up to at least O(∆x2) accuracy with equation (2.23) as

explained in Subsection 2.3.1. Comparing (2.11) and (2.29), we see that acceptable

LTE are achieved if

(ûxx)
n
j+ 1

2
=

∂2

∂2x
u(xj+ 1

2
, tn) +O(∆x2), (2.30)

1

2

(
unj + unj+1

)
− (∆x)2

8
(ûxx)

n
j+ 1

2
= u(xj+ 1

2
, tn) +O(∆x4), (2.31)

(ûx)
n+ 1

2

j+ 1
2

=
∂

∂x
u(xj+ 1

2
, tn+ 1

2
) +O(∆x2) [or O(∆t∆x)], (2.32)

m
n+ 1

2

j+ 1
2

= m(xj+ 1
2
, tn+ 1

2
) +O(∆x2), (2.33)

σ
(ûx)

n
j+ 3

2

− (ûx)
n
j− 1

2

2∆x
= σ

∂2

∂2x
u(xj+ 1

2
, tn+ 1

2
) +O(∆x2) [or O(∆t∆x)]. (2.34)

Condition (2.30) is satisfied by the limiter (2.4). Then (2.31) comes from taking

Taylor expansions of u(xj, tn), u(xj+1, tn) at xj+ 1
2
. Condition (2.33) is guaranteed by

42

our time interpolation. In order to verify (2.32), we need to look at the half-time

step equation (2.10). Then we see that condition (2.32) holds if:

(ûx)
n
j+ 1

2
=

∂

∂x
u(xj+ 1

2
, tn) +O(∆x2), (2.35)

mn
j+ 1

2
= m(xj+ 1

2
, tn) +O(∆x), (2.36)

(m̂x)
n
j+ 1

2
=

∂

∂x
m(xj+ 1

2
, tn) +O(∆x). (2.37)

(2.35) is clearly satisfied by (2.3), (2.36) is true by the time interpolation proper-

ties, and (2.37) follows from (2.36) and the properties of the minmod limiter (2.15).

Finally, for the left side of (2.34) we have:

σ
(ûx)

n
j+ 3

2

− (ûx)
n
j− 1

2

2∆x
= σ

(
∂2

∂2x
u(xj+ 1

2
, tn) +O(∆x2)

)
= σ

(
∂2

∂2x
u(xj+ 1

2
, tn+ 1

2
) +O(∆t) +O(∆x2)

)
.

If we are in parabolic regime, then ∆t = O(∆x2) and (2.34) holds. If we are in

hyperbolic regime, meaning σ = O(∆x),∆t = O(∆x), then the error on the right

side becomes O(∆t∆x), hence the condition holds again.

Thus we have verified all conditions (2.30)-(2.37), which means that the central

difference scheme (2.11) provides second order accuracy in L∞. Hence we can state

the following proposition:

Proposition 2.4.1 The FHJ scheme (2.11) has GTE of order O(∆x2).

Remark If we consider the simplified scheme (2.13), we immediately see, in the

spirit of equation (2.31), that not considering second derivatives of û results in ap-

proximating u(xj+ 1
2
, tn) by the term 1

2

(
unj + unj+1

)
. By standard Taylor expansion

43

at xj+ 1
2

we have

1

2

(
unj + unj+1

)
= u(xj+ 1

2
, tn) +O(∆x2),

hence this term gives us LTE of size O(∆x2). This means that in hyperbolic regime

we obtain GTE of size O(∆x), and in parabolic regime the scheme doesn’t converge

since the GTE is O(1).

2.4.2 Second Order Accuracy of the Convection-Diffusion Scheme

Now we consider BCD equation (1.2), a centered difference for ∂
∂t
m(x, tk− 1

2
) gives

us the midpoint method:

m(x, tk−1) = m(x, tk)−∆t
∂

∂t
m(x, tk− 1

2
) +O(∆t3)⇒

m(x, tk−1) = m(x, tk) + ∆t

[
∂

∂x

(
H ′
(
∂

∂x
u(x, tk− 1

2
)

)
m(x, tk− 1

2
)

)

+ σ
∂2

∂2x
m(x, tk− 1

2
)

]
+O(∆t3).

(2.38)

Suppose all values mk
j+ 1

2

are exact for every xj+ 1
2

at a fixed time tk. We can also

interpolate û values at times tk, tk− 1
2

up to at least O(∆x2) accuracy with equation

(2.24) as explained in Subsection 2.3.1. Comparing (2.20) and (2.38), we see that

acceptable LTE are achieved if

1

∆x

(
(m̂X)k

j+ 3
2
− (m̂X)k

j+ 1
2

)
=

∂2

∂2x
m(xj+1, tk) +O(∆x2), (2.39)

1

2

(
mk
j+ 1

2
+mk

j+ 3
2

)
− ∆x

8

(
(m̂X)k

j+ 3
2
− (m̂X)k

j+ 1
2

)
= m(xj+1, tk) +O(∆x4), (2.40)

(ûx)
k− 1

2

j+ 1
2

=
∂

∂x
u(xj+ 1

2
, tk− 1

2
) +O(∆x2), (2.41)

m
k− 1

2

j+ 1
2

= m(xj+ 1
2
, tk− 1

2
) +O(∆x2) [or O(∆t∆x)], (2.42)

44

σ
mk
j+ 5

2

−mk
j+ 3

2

−mk
j− 1

2

+mk
j− 3

2

2∆x2
=

σ
∂2

∂2x
m(xj+1, tk− 1

2
) +O(∆x2) [or O(∆t∆x)].

(2.43)

Condition (2.39) is satisfied by the UNO limiter (2.14). The choice of UNO is impor-

tant, since condition (2.39) is not true for the minmod limiter (2.15). Then (2.40)

comes from taking Taylor expansions of m(xj+ 1
2
, tk),m(xj+ 3

2
, tk) at xj+1. The left

side of condition (2.41) is computed by doing time interpolations, followed by apply-

ing (2.3) on them, hence the condition is true by the time interpolation properties

and (2.35). In order to verify (2.42), we need to look at the half-time step equation

(2.19). Then we see that condition (2.42) holds if:

(ûx)
k
j+ 1

2
=

∂

∂x
u(xj+ 1

2
, tk) +O(∆x), (2.44)

(ûxx)
k
j+ 1

2
=

∂2

∂2x
u(xj+ 1

2
, tk) +O(∆x), (2.45)

(m̂x)
k
j+ 1

2
=

∂

∂x
m(xj+ 1

2
, tk) +O(∆x). (2.46)

Condition (2.44) follows immediately from (2.41), and (2.45) follows from time in-

terpolation properties and (2.30). Condition (2.46) is guaranteed by the minmod

limiter (2.15). Finally, the argument about condition (2.43) is the same as the one

for condition (2.34).

Thus we have verified all conditions (2.39)-(2.46), hence the central difference

scheme (2.20) provides second order accuracy in L∞. Hence we can state the following

proposition:

Proposition 2.4.2 The BCD scheme (2.20) has GTE of order O(∆x2).

Remark If we consider the simplified scheme (2.22), we immediately see, in the

spirit of equation (2.40), that not considering first derivatives of m̂ results in approx-

45

imating m(xj+1, tk) by the term 1
2

(
mk
j+ 1

2

+mk
j+ 3

2

)
. By standard Taylor expansion

at xj+1 we have

1

2

(
mk
j+ 1

2
+mk

j+ 3
2

)
= m(xj+1, tk) +O(∆x2),

hence this term gives us LTE of size O(∆x2). This means that in hyperbolic regime

we obtain GTE of size O(∆x), and in parabolic regime the scheme doesn’t converge

since the GTE is O(1).

2.5 Numerical Tests

In this subsection we first show results that are in agreement with the 1D results

obtained in [24]. Then we test the convergence properties of the algorithm on a

manufactured smooth test case. Finally we demonstrate some computational features

of our algorithm. For all tests our CFL constant is c = 0.4.

2.5.1 Test Problem 1

We first examine a test case presented in [24]: it models a maximization problem

(see Subsection 1.1.1), so that the players see increasing incentive in the middle of

the domain, but at the same time they prefer to be away from other players:

f(x,m) = −16

(
x− 1

2

)2

− 0.1 max(0,min(5,m)), H

(
∂u

∂x

)
= −1

2

(
∂u

∂x

)2

,

m0(x) =
1.0

1.1

[
1.0 + 0.2 cos

(
π

(
2x− 3

2

))2
]
, uT (x) = 0.0.

Notice that the system discussed in [24] is forward in time with respect to m and

backward with respect to u, namely it is in the form (1.10), (1.9). In order to simulate

the same test case, but with reversed time, we solve the form (1.1), (1.2) by taking

46

the same expressions for f and H, but we switch the initial and final conditions:

mT (x) =
1.0

1.1

[
1.0 + 0.2 cos

(
π

(
2x− 3

2

))2
]
, u0(x) = 0.0.

The domain is [0, 1], the volatility is σ = 0.5, the final time is T = 0.5 and the

boundary conditions are ∂u
∂x

= ∂m
∂x

= 0 on both ends. Since in this example σ is

big compared to ∆x, we optimize memory usage by saving the solutions of m̂, û for

only 400 time steps (out of 50 000 steps). On Figure 2.1 we show the distribution of

players m at final and initial times. On Figure 2.2 we show the incentive function u

and its gradient ∂u
∂x

at final time. The result is computed on 400 cells, the fixed point

iteration converges on the fifth loop. We observe that our results are in agreement

with the ones in [24].

For this problem’s boundary conditions our algorithm preserves mass only on

continuous level. The difference between initial and final mass converges to zero

linearly under refinement. For the presented simulation on 400 cells the difference is

9.85e−3.

2.5.2 Test Problem 2

The purpose of this example is to verify the method’s ability to obtain second

order convergence rate for a smooth problem. We use a similar setup as in Test

Problem 1, but we initialize mT (x) by a C1 function with compact support:

mT (x) =

4.0 sin2

(
2π
(
x− 1

4

))
x ∈ [1

4
, 3

4
],

0 otherwise.

47

Figure 2.1: Plot of mT (x) (on the left side) and the solution m(x, 0.0) (on the right
side) computed on 400 cells for Test Problem 1.

Figure 2.2: Solution for u (on the left side) and ∂u
∂x

(on the right side) computed on
400 cells for Test Problem 1.

and we keep u smooth by using a similar source:

u0(x) = 0.0, f(x,m) = 3.0mT (x)−min(4.0,m), H

(
∂u

∂x

)
= −1

2

(
∂u

∂x

)2

.

48

The domain is (0, 1), the volatility is σ = 0.05 and in order to keep the solution

smooth enough we use a final time T = 0.05. We compute convergence speed by

considering a reference solution calculated on 3000 cells. Each simulation optimizes

memory usage by storing only ∆x−1 solutions in time. On Figure 2.3 we show the

distributions of players m at final and initial times. On Figure 2.4 we show the

incentive functions u and their gradients ∂u
∂x

at final time. In Table 2.1 we show

convergence speeds for the L∞ and L1 norms, and mass preservation. The presented

norms are computed by dividing the domain in 10 000 cells, comparing the end points

of each cell to obtain the L∞ norm, and applying a 3-point Gauss quadrature rule

in each cell to obtain the L1 norm and the mass. We observe the expected second

order in L∞ and L1, and the linear dissipation of the mass error. The mass error for

the reference solution is 3.28E-9.

Figure 2.3: Plot of mT (x) (on the left side) and the solution m(x, 0.0) (on the right
side) computed on 40 and 3000 cells for Test Problem 2.

49

Figure 2.4: Solution for u (on the left side) and ∂u
∂x

(on the right side) computed on
40 and 3000 cells for Test Problem 2.

m errors u errors
cells L∞ rate L1 rate L∞ rate L1 rate mass error rate

40 2.75E-1 1.74E-2 3.43E-3 9.40E-4 3.74E-7
80 6.66E-2 2.05 4.28E-3 2.02 7.93E-4 2.11 2.51E-4 1.90 1.47E-7 1.34
160 1.64E-2 2.01 1.04E-3 2.04 1.98E-4 1.99 6.42E-5 1.97 6.29E-8 1.22
320 4.13E-3 1.99 2.57E-4 2.01 4.96E-5 2.00 1.60E-5 2.00 3.03E-8 1.05
640 1.01E-3 2.03 6.34E-5 2.02 1.25E-5 1.97 3.90E-6 2.04 1.52E-8 0.99
1280 2.41E-4 2.06 1.47E-5 2.10 3.43E-6 1.87 8.94E-7 2.12 7.66E-9 0.98

Table 2.1: L∞ and L1 errors, differences between initial and final mass, and con-
vergence rates with respect to a reference solution computed on 3000 cells for Test
Problem 2.

2.5.3 Strong Scaling Test

Both schemes (2.11), (2.20) admit easy parallelization. Our algorithm is devel-

oped on C++ with OpenMP threads. In this subsection we report execution times

and make a strong scaling test.

The problem we consider is Test Problem 2 on 6000 cells with all other parameters

as in Subsection 2.5.2. We make one iteration of both schemes (2.11), (2.20) that

consists of 112 500 time steps for each equation. The execution times and the scaling

50

result are displayed on Figure 2.5. We observe that good scaling is achieved when

we have at least 500 cells per processor. Since the parallelism is in space and not in

time, our code is faster for cases when the ratio between cells in space versus steps

in time is bigger i.e. for smaller σ values.

Figure 2.5: Strong scaling test on 6000 cells for Test Problem 2.

2.6 Related Work

In this subsection we describe some already existing algorithms related to the

MFG equations (1.1), (1.2).

In [2], Achdou and Capuzzo-Dolcetta propose implicit finite difference methods

for the stationary case, the time-dependent case where both MFG equations progress

forward in time, and the case of (1.1), (1.2). The authors present detailed proofs

of existence and uniqueness for the discrete problems, and provide bounds on the

solutions. The paper contains results of numerical simulations for 2-dimensional test

cases where both equations go forward in time. The simulations make use of a long

51

time approximation strategy of the stationary problem. The tests confirm that the

used approach is robust when σ → 0, and the results suggest linear convergence.

In [1], Achdou, Camilli and Capuzzo-Dolcetta study the mean field planning

problem (MFGP), which puts an initial condition on m(x, 0) instead of the one on

u(x, 0), and the penalized mean field planning problem (MFGPP), which is in the

same form as (1.1), (1.2). The authors present semi-implicit finite difference schemes

and prove existence and uniqueness of the solution by exploiting a connection between

the discrete formulations and a minimization problem. Results for the MFGP discrete

equations are obtained by solving the MFGPP discrete equations and passing to the

limit of a penalization parameter. The forward - backward MFGPP finite difference

scheme is solved by a Newton method. The presented numerical results show correct

behavior for small σ and first order convergence. The Newton method converges

slower for smaller values of σ.

In [24], Gueant examines the MFG equations (1.1), (1.2) for the special case of

H(∂u
∂x

) = 1
2
(∂u
∂x

)2. The author uses a change of variables which produces two coupled

heat equations with source terms. Under some assumptions on f(x,m), existence

and uniqueness of weak solutions for the new system are proved. Each equation is

approximated in space-time, so that mT (x), u0(x) appear as boundary conditions,

by implicit finite difference schemes. The author proves existence and uniqueness

for both schemes. The discrete equations are solved recursively until fixed point

is reached, a Newton method is applied inside each step. The presented numerical

results show first order convergence and increasing number of Newton iterations for

smaller values of σ.

Alternative to these and to our approach can also be found in [3, 39].

52

3. ENTROPY VISCOSITY METHOD

In this section we propose a new finite element method for solving the Euler equa-

tions of compressible gas dynamics in Lagrangian frame of reference. Our method

combines the following features:

• The equations are regularized in a way that provides control over oscillations

around contact discontinuities as well as oscillations in shock regions. The

added diffusion terms are in agreement with the generalized entropy inequalities

(1.19) and the minimum principle on the specific entropy (1.35).

• The method produces high order convergence rates for smooth solutions even

with active viscosity terms. This is achieved by using viscosity coefficients that

clearly distinguish between smooth and singular regions, and finite element

spaces of high polynomial degree for all dependent variables.

• The proposed diffusion terms are in agreement with the general requirements

for artificial tensor viscosities stated in [36].

This work is motivated and influenced mostly by the idea of entropy production

based artificial viscosity coefficients introduced in [27] and previously used in [61],

[26], and the application of high order finite elements in Lagrangian hydrodynamics

presented in [20]. The general goal of this project is similar to that of Dobrev, Kolev

and Rieben in [20], however, our approach is based on different viscous regularization,

viscosity coefficients, and finite element spaces.

The starting point in the derivation of our viscous regularization is the idea of

adding mass and thermal viscosity, in addition to the standard momentum viscosity,

in order to control density and energy oscillations in contact regions. This approach

53

is also useful in non-ideal gas simulations, when initial contacts transform into com-

posite waves. The extra viscosity terms are introduced in a way so that the resulting

system is still compatible with all generalized entropy inequalities from [37] and the

minimum principle on the specific energy from [58]. The detailed derivation of our

viscosity terms is presented by Guermond and Popov in [28].

Another significant difference between our method and the one in [20] is that

we use entropy residual based viscosity coefficients which are not functions of the

velocity gradient. These coefficients are zero on continuous level for smooth solutions

even in regions of rotation and compression. This results in the method’s high order

convergence rates even with active viscosity terms.

We use the same notions of mesh representation and mesh motion as in [20],

namely position is a continuous finite element function of higher polynomial degree,

resulting in a curvilinear mesh. However we use continuous FE functions for density

and internal energy, since the extra viscosity terms would make a discontinuous

Galerkin formulation difficult to derive and compute.

3.1 Viscous Regularization

A common way to regularize (1.20)-(1.22) is to add diffusion terms which are

similar to the viscosity and thermal diffusion terms in the Navier-Stokes equations.

This approach, however, is in agreement with the minimum principle of the specific

entropy (1.35), only if the thermal diffusion is zero, see Theorem 8.2.3 in [55]. If

the thermal diffusion is removed, the Navier-Stokes regularization would consist of

an artificial viscous force in the momentum equation and a corresponding term in

the total energy equation. The problem with this is that the resulting viscous terms

don’t see contact discontinuities. In contact regions the velocity is constant, there

is no compression, therefore viscosity that only depends on velocity gradients would

54

not be active. In Eulerian frame, as these contact discontinuities move through

the computational mesh, one would see uncontrolled oscillations resulting from the

Gibbs effect. This problem can be concealed in Lagrangian frame by aligning initial

contact discontinuities with the cell boundaries and using discontinuous spaces, but

if contact regions form in time, the above problem would appear.

Our goal is to satisfy the entropy inequality (1.19) and minimum principle on the

specific entropy (1.35). It is shown in [28] that one needs to add mass and thermal

viscosity, in addition to the standard momentum viscosity. This makes our method

more diffusive than methods using the Navier-Stokes regularization approach, but it

gives us a tool for removing oscillation in contact regions as well as the ones in shocks.

A regularization that takes into account all the above considerations is described in

[28] and it has the form

∂ρ

∂t
+∇ · (ρu) = ∇ · f , (3.1)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = ∇ · g, (3.2)

∂

∂t
(ρE) +∇ · (ρEu+ pu) = ∇ · (h+ g · u), (3.3)

where the viscous terms are:

f = λ∇ρ, g = νρ∇u+ f ⊗ u, h = λ∇(ρe)− u
2

2
f .

Here λ and ν are coefficients that control the amount of added diffusion. These

coefficients must have units of (speed × distance).

3.2 Lagrangian Formulation

We want to solve (3.1)-(3.3) in Lagrangian frame of reference. We can think of

our medium as a set of particles having original positions x0. In the Lagrangian

55

setting these particles move with the fluid velocity, namely

d

dt
x(x0, t) := u(x, t).

Then the material derivative (also called total, Lagrangian, convective, etc.) of a

scalar / vector function β = β(x(x0, t), t) is

d

dt
β(x(x0, t), t) =

∂β(x, t)

∂t
+ u(x, t) · ∇xβ(x, t).

Now we express equations (3.1) - (3.3) in terms of their total derivatives:

Density - (3.1) becomes

∂ρ

∂t
+ ρ∇ · u+ u · ∇ρ = ∇ · (λ∇ρ)

⇒ dρ

dt
= −ρ∇ · u+∇ · (λ∇ρ).

Velocity - (3.2) becomes

∂ρ

∂t
u+ ρ

∂u

∂t
+ ρu · ∇u+ u∇ · (ρu) +∇p = ∇ · g,

ρ
du

dt
= −u∇ · f −∇p+∇ · g, ∇ · g = ∇ · (νρ∇u) + f · (∇u) + u∇ · f

⇒ ρ
du

dt
= −∇p+∇ · (νρ∇u) + (λ∇ρ) · (∇u) (3.4)

Total energy - (3.3) becomes

∂ρ

∂t
E + ρ

∂E

∂t
+ Eu · ∇ρ+ ρu · ∇E + ρE∇ · u+∇ · (pu) = ∇ · (h+ g · u),

ρ
dE

dt
= −E∇ · f −∇ · (pu) +∇ · (h+ g · u)− f · ∇E + f · ∇E,

56

ρ
dE

dt
= −∇ · (pu) +∇ ·

(
− ef −

�
�
�u2

2
f + λ∇(ρe)

−
�
�
�u2

2
f + νρ∇u · u+��

�u2f

)
+ f · ∇E

⇒ ρ
dE

dt
= −∇ · (pu) +∇ · (λρ∇e+ νρ∇u · u) + (λ∇ρ) · ∇E. (3.5)

Working with an equation for the internal energy instead of (3.5) is more convenient

for Lagrangian codes. We obtain it by taking a dot product of (3.4) with u and

subtracting that from (3.5):

ρ
de

dt
=− p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u+((((

((((
(

(∇ · (νρ∇u)) · u

+ (∇E) · (λ∇ρ)−(((((
(((((∇ · (νρ∇u)) · u− ((λ∇ρ) · ∇u) · u

⇒ ρ
de

dt
= −p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u+ (∇e) · (λ∇ρ).

Then the final Lagrangian frame system we propose is:

d

dt
x(x0, t) = u(x, t), (3.6)

dρ

dt
= −ρ∇ · u+∇ · (λ∇ρ), (3.7)

ρ
du

dt
= −∇p+∇ · (νρ∇u) + (λ∇ρ) · (∇u), (3.8)

ρ
de

dt
= −p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u+ (∇e) · (λ∇ρ). (3.9)

We solve with respect to position x(x0, t), density ρ(x, t), velocity u(x, t), internal

energy per mass e(x, t). The equation of state (1.23) is still p = (γ − 1)ρe.

57

3.3 Discretization Details

In this subsection we derive a fully-discrete finite element method for the system

(3.6) - (3.9). We propose a semi-discrete form with high-order continuous finite

element spaces and discuss the notions of mesh representation, mappings, length

scale, viscosity coefficients, and time discretization.

3.3.1 Notation

Let Ω0 be our domain at time 0, Ω(t) is the domain at time t. Then {Kh}h>0 is

a mesh family with no hanging nodes that discretizes Ω0. As we progress in time,

the initial mesh changes. By K we refer to a mesh cell that corresponds to an initial

cell K0, and the reference cell is denoted by K̂. The mappings between them are

defined as Φ : K̂ → K,Φ0 : K̂ → K0 and Φ ◦ Φ−1
0 : K0 → K where Φ and K are

time-dependent (but we skip the time index). For positions x in K, we have the

corresponding positions x0 and x̂ in K0 and K̂.

We use a scalar-valued nodal finite element space which is defined with respect

to the starting mesh as

Qk = {v ∈ C0(Ω0); v|K0 ◦ Φ0 ∈ Qk,∀K0 ∈ Kh}.

where Qk is the set of multivariate polynomials of degree at most k. The number

of nodes is denoted by N , ϕ1(x0)...ϕN(x0) are the standard nodal shape functions

of Qk. Since the mesh nodes move, we define the basis functions’ time-dependent

behavior as

ϕ(x, t) := ϕ(x0) (equivalent to ϕ(x, 0) := ϕ(x0),
d

dt
ϕ(x, t) := 0), (3.10)

58

where by the usual convention x = Φ ◦ Φ−1
0 (x0). Examples of Q4 basis functions

on original and perturbed meshes are given on Figure 3.1 and Figure 3.2. Note that

approximation using such functions stays H1 conforming in time . Shape functions

on the reference cell are denoted by ϕ̂i(x̂), i = 1..N̂ .

From this point forward, by ρ,u, e,x, p, S we refer to the variables’ discrete ver-

sions in Qk. Quantities that only depend on x0 are taken at initial time, for example

ρ(x0) is density given by initial conditions.

Figure 3.1: Example of a Q4 basis function on an unperturbed mesh.

3.3.2 Semi-Discrete Form

We get a semi-discrete form by multiplying every equation (3.7) - (3.9) with a

test function and integrating over Ω(t). We use spaces of same polynomial degree

for all dependent variables, namely we seek (ρ,u, e,x) ∈ (Qk ×Qd
k ×Qk ×Qd

k). Our

tests didn’t reveal any benefits in using different polynomial degree for the kinematic

and thermodynamic spaces.

59

Figure 3.2: Example of a Q4 basis function on a perturbed mesh resulting from the
Taylor-Green vortex problem.

• Density - for every j = 1...N we have

∫
Ω(t)

dρ(x, t)

dt
ϕj(x, t) dx = −

∫
Ω(t)

ρ(x, t)∇ · u(x, t)ϕj(x, t)dx

−
∫

Ω(t)

λ∇ρ(x, t) · ∇ϕj(x, t) dx+

∫
∂Ω(t)

λ∇ρ(x, t) · nϕj(x, t)dx.
(3.11)

• Velocity - for every dimension m = 1...d and every j = 1...N we have

∫
Ω(t)

ρ(x, t)
dum(x, t)

dt
ϕj(x, t) dx =

∫
Ω(t)

p(x, t)
∂ϕj(x, t)

∂xm
dx

−
∫
∂Ω(t)

nmp(x, t)ϕj(x, t) dx−
∫

Ω(t)

νρ∇um(x, t) · ∇ϕj(x, t) dx

+

∫
∂Ω(t)

νρ∇um(x, t) · nϕj(x, t) dx

+

∫
Ω(t)

λ∇um(x, t) · ∇ρ(x, t)ϕj(x, t) dx,

(3.12)

where n is the boundary’s outward unit normal.

60

• Internal energy - for every j = 1...N we have

∫
Ω(t)

ρ(x, t)
de(x, t)

dt
ϕj(x, t) dx = −

∫
Ω(t)

p(x, t)∇ · u(x, t)ϕj(x, t) dx

−
∫

Ω(t)

λρ(x, t)∇e(x, t) · ∇ϕj(x, t) dx

+

∫
∂Ω(t)

λρ(x, t)∇e(x, t) · nϕj(x, t) dx

+

∫
Ω(t)

νρ(x, t)∇u(x, t) : ∇u(x, t)ϕj(x, t) dx

+

∫
Ω(t)

λ∇e(x, t) · ∇ρ(x, t)ϕj(x, t) dx.

(3.13)

And the position function x(x0, t) is simply evolved by the chosen time integrator

for the mesh motion equation, namely d
dt
x(x0, t) = u(x, t).

Remark A drawback of adding mass viscosity is that the resulting mass matrices

are time-dependent. For example, the left-hand side of (3.13) and the corresponding

matrix are

∫
Ω(t)

ρ(x, t)
d

dt

(
N∑
i=1

ei(t)ϕi(x, t)

)
ϕj(x, t)dx =

N∑
i=1

dei(t)

dt

∫
Ω(t)

ρ(x, t)ϕi(x, t)ϕj(x, t)dx,

(Me)ij =

∫
Ω0

ρ(x(x0, t), t)ϕi(x0)ϕj(x0)| det Jx0→x|dx0.

Here ρ(x(x0, t), t)| det Jx0→x| = ρ(x0) is not true, which would be the case if we

don’t have additional terms in the mass equation, see [20].

Remark In most cases, the boundary integrals can be dropped. Let’s consider the

one containing p in (3.12). For a boundary that is parallel to a coordinate axis

and we have u · n = 0 as a boundary condition, the integral must be zero, because

61

this condition is enforced by eliminating exactly those entries from the linear system

which correspond to the shape functions involved in that integral. The integral must

also be zero when we have e = 0 on the boundary. Now consider the boundary

integrals containing a viscosity coefficient λ or ν. Model test cases usually assume

smooth regions around the boundary, hence one can say the viscosity coefficients

there should be zero. For cases of a shock wave interacting with the boundary,

however, these boundary integrals must be taken into account.

3.3.3 Mesh Representation and Position Mappings

Mesh position is discretized by a finite element function that represents each

degree of freedom node’s position at time t. A particle with original position x0 is

moved to a new position x(x0, t) given by the standard finite element expansion

x(x0, t) =
N∑
j=1

Xj(t)ϕj(x0), (3.14)

where Xj(t) is the position of the node associated with basis function ϕj at time

t. The use of high-order polynomial basis functions implies the nodal positions are

interpolated by high-order polynomials, hence they are connected by curves and the

mesh is curvilinear. Notice that in order to obtain the position of any point in our

computational mesh, we only need the positions of the finite element nodal points and

the original basis functions. This approach is very efficient since it doesn’t involve

any complicated curve reconstructions.

The formula (3.14) gives us a straightforward way to define the time-dependent

position mapping Φ : x̂ → x from the reference cell K̂ to an actual cell of interest

K:

x(x̂, t) =
N̂∑
i=1

Xj(t)ϕ̂i(x̂), (3.15)

62

where ϕ̂i is a basis function on the reference cell, N̂ is the number of degrees of

freedom on the reference cell, and j ∈ {1..N} is the node index corresponding to

the reference node i ∈ {1..N̂} (local to global DOFS mapping). An example of such

mapping, which uses Q2 spaces, is shown on Figure 3.3. Looking at this figure, the

formula (3.15) tells us that we can obtain the right side’s black points’ positions only

by using the positions of the right side’s red points (which are the moved Q2 FE

nodes) and the basis functions on the reference cell.

The time-dependent Jacobian matrix of this mapping is then simply

J :=
∂x

∂x̂
=

N̂∑
i=1

Xj(t)⊗∇ϕ̂i(x̂). (3.16)

Note that with this definition, J has the usual form:

Jij =
∂xi
∂xj

, i, j = 1..d. (3.17)

At t = 0, we have Φ0 : x̂→ x0 with Jacobian J0 given by (3.16). Later in the text,

we also use the mapping Φ ◦ Φ−1
0 : x0 → x with Jacobian JJ−1

0 .

3.3.4 Length Scales

Artificial viscosity coefficients (λ, ν) must scale like speed times distance. The

usual approach is to define (1) a mesh dependent length scale and (2) a shock-

capturing quantity, for example the entropy production, so that both (1) and (2)

form the final viscosity coefficient. As our tests indicated, the correct approach is

to consider the combination of (1) and (2) instead of taking them as independent

notions. In this subsection we define three different length scales and we match them

with specific coefficients in the next subsection. All scales are defined pointwise in

order to match the usage of high order polynomial spaces.

63

Figure 3.3: Example of a Q2 mapping between reference and actual coordinates.

We start by defining a smooth initial mesh length scale function h0(x):

• On each initial cell K0, for x ∈ K0 define h∗(x) = 1
k
|K0|1/d.

• If h∗(x) has no jumps, then h0 = h∗. Otherwise h0 is computed by a smoothing

procedure with some smoothing constant ε:

∫
Ω0

h0(x)ϕ(x) dx+ε(h∗min)2

∫
Ω0

∇h0(x) · ∇ϕ(x) dx =∫
Ω0

h∗(x)ϕ(x) dx.

(3.18)

We usually take h0 in the same finite element space as our dependent variables.

Once h0(x) is known, we define our three length scales by the mapping Φ ◦ Φ−1
0 :

x0 → x with Jacobian JJ−1
0 from initial to actual coordinates:

1. h1(x) is defined as a perturbation of the initial mesh in the direction of current

motion u(x):

h1(x(x0, t)) = h0(x0)
|JJ−1

0 (x0)u(x)|
|u(x)|

. (3.19)

64

2. h2(x) is defined as in [20]. That is, it’s the perturbation of the initial mesh in

the direction of maximal compression:

h2(x(x0, t)) = h0(x0)
|JJ−1

0 (x0)s(x)|
|s(x)|

. (3.20)

where s(x) is the eigenvector that corresponds to the smallest eigenvalue µ(x)

of ∇su(x). Here µ(x) is a measure of maximal compression (or minimal expan-

sion if the value is positive), and s(x) is the direction in which this compression

occurs.

3. h3(x) is defined to be the measure of the volume change at x:

h3(x(x0, t)) = h0(x0)| det(JJ−1
0 (x0))|. (3.21)

Notice that h1 and h2 are direction-dependent, while h3 is not. They are not finite

element functions, their values are computed whenever needed (usually at quadrature

points).

3.3.5 Viscosity Coefficients

As discussed in the previous subsection, the amounts of artificial viscosity (λ, ν)

must contain an appropriate combination of length scale plus a shock detector, and

should be computed at each quadrature point. We first define “first-order” viscous

coefficients. We call them “first-order” or “linear”, because their shock detector part

will not go to zero under mesh refinement, hence they can produce at most first

order convergence for a smooth solution. Let xn be the position of the quadrature

point of interest at time tn, and cvisc is a tunable constant. We have two options

corresponding to h1 and h2:

65

• Option 1:

λvisc1 := cvisch1(xn)|un(xn)|,

νvisc1 := cvisch1(xn)
(√

γT n(xn) + |un(xn)|
)
.

(3.22)

This quantity is not a real shock detector since it will diffuse the solution

everywhere we have some kind of motion.

• Option 2 (which is used in [20]):

λvisc2 := cvisch
2
2(xn)|µ(xn)|,

νvisc2 :=

cvisch2(xn)

(√
γT n(xn) + h2(xn)|µ(xn)|

)
µ(xn) ≤ 0,

cvisch
2
2(xn)|µ(xn)| otherwise.

(3.23)

where µ(x) ≤ 0 corresponds to compression regions. Notice that this coefficient

is sharper than the first one, but it could be active for smooth solutions as

well (as long as they admit compression). In contact regions, however, this

coefficient will be inactive, since the velocity is constant.

Then we define a “non-linear“ coefficient, which is based on the fact that the

entropy production is zero (on continuous level) for smooth solutions and non-zero

in singular regions. In Lagrangian frame, equation (1.31) becomes

dS

dt
+ S∇ · u = 0.

Then on discrete level, we define

D :=
Sn − Sn−1

tn − tn−1

+ Sn∇ · un(xn), (3.24)

66

where Sn = S(ρn, en) is the entropy functional at tn. If we have an energy source as

in (1.34) then (3.24) becomes

D :=
Sn − Sn−1

tn − tn−1

+ Sn∇ · un(xn) +
Q

f ′(sn)
en, (3.25)

where sn = s(ρn, en) is the specific entropy at tn and Q is the source contribution at

the quadrature point of interest. The total time derivative of S can be approximated

by higher order backward differencing, we do that when we want to achieve higher

order convergence for smooth test cases. Notice that the above formula uses multiple

consecutive meshes. The resulting coefficient is

νentr := centrh
2
3(xn)

|D|
|Sn − Sn|∞,Ω(tn)

, Sn :=

∫
Ω(tn)

Sndx, (3.26)

where centr is a tunable constant. Taking the non-linear coefficient into account, our

two viscosity options become:

• Option 1:

λn1 := min(λvisc1 , νentr), νn1 := min(νvisc1 , νentr). (3.27)

• Option 2:

λn2 := min(λvisc2 , νentr), νn2 := min(νvisc2 , νentr). (3.28)

We expect the first-order coefficients to be the active part in neighborhoods of shocks

and contacts, while the entropy coefficient to provide vanishing viscosity in smooth

regions.

Using appropriate combinations of length scale and shock detectors is essential

for avoiding incorrect mesh behavior. Notice the connection between the used length

scales and the shock detector definitions for all coefficients (3.22), (3.23), (3.26). The

67

first-order shock detectors are direction dependent and their length scale corresponds

to their directions. On the other hand, the entropy production coefficient is direction-

independent and so is its length scale, and this works for most test cases. In general

if we use the Option 1 coefficients, then the length scale in (3.26) should be h1 or

h3, and if we use the Option 2 coefficients, then the length scale for D should be h2

or h3. The appropriate choice however is problem-specific. Example of an incorrect

combination between the Option 2 coefficients and h1 in (3.26) is shown on Figure

3.4.

Figure 3.4: Resulting meshes from applying the Option 2 coefficients to a Q4 position
function with h3 (on the left side) and h1 (on the right side) in equation (3.26).

3.3.6 Consistency with General Viscosity Requirements

Here we comment on the compatibility of our viscosity tensors with the gen-

eral requirements for artificial tensor viscosities stated in [56] and [36]. We use the

formulation from [36]:

• The viscous terms must be invariant under orthogonal transformations of x

68

and u: our method satisfies this requirement on discrete level, the details are

given after the list of requirements.

• For the specific entropy s, see (1.29), we must have ds
dt
≥ 0: our regularization

satisfies a weaker notion of this requirement, namely the minimum principle

on the specific entropy (1.35) on continuous level. This result is established in

[28] (Theorem 3.5).

• The regularized system must be Galilean invariant: our system in Lagrangian

form (3.7) - (3.9) is Galilean invariant. All viscosity coefficients in option 2, the

entropy production D, h2, h3 satisfy the requirement on discrete level. Option

1 and h1 are not Galilean invariant since they depend explicitly on u.

• The artificial viscosity must preserve radial symmetry: we can achieve radial

symmetry only on continuous level, since all length scale definitions depend

on directions and initial cells sizes. This causes violation of radial symmetry

for non-radial or non-uniform meshes. Those differences decrease under mesh

refinement. Radial symmetry on discrete level can be achieved in special cases,

for example meshes consisting of curved radial cells obtained from each other

by orthogonal transformation.

• The viscous force in the momentum equation must be zero for linear velocity

(uniform contractions, rigid rotations) and all artificial viscosity terms must

be zero in regions of expansion: on continuous level, these requirements are

handled by the entropy coefficient (3.26), since the entropy production (1.31)

goes to zero in smooth regions.

Now we show that on discrete level our regularization terms are invariant under

orthogonal transformation.

69

Proposition 3.3.1 Under orthogonal transformation of x and u, the scalar diffu-

sion terms in the mass equation (3.7) and the energy equation (3.9) stay the same,

while the artificial force term in the momentum equation (3.8) is transformed the

same way as x and u.

Proof Since this argument is on fully discrete level, we introduce some new notation:

ρ(x, t) =
N∑
j=1

ρj(t)ϕj(x, t), e(x, t) =
N∑
j=1

ej(t)ϕj(x, t),

um(x, t) =
N∑
j=1

Ujm(t)ϕj(x, t), m = 1..d, Uj = (Uj1...Ujd)
T ,

xm(x0, t) =
N∑
j=1

Xjm(t)ϕj(x0), m = 1..d, Xj = (Xj1...Xjd)
T ,

where the mesh representation details can be found in equations (3.14) - (3.17). The

orthogonal transformation is

X∗
j = AXj , U∗

j = AUj , where AT = A−1.

and all other quantities used with upper index ∗ are defined in the transformed frame.

The Jacobian J∗ of the transformation x̂→ x∗ can be expressed by the Jacobian of

x̂→ x→ x∗:

J∗ = AJ, det(J∗) = det(J).

Then for the finite element shape functions’ gradients we have

∇ϕ∗ = (J∗)−T∇ϕ̂ = AJ−T∇ϕ̂,

70

and the discrete gradient of u∗ is

∇u∗ =
N∑
j=1

U∗
j ⊗∇ϕ

∗
j =

N∑
j=1

(AUj)⊗ (AJ−T∇ϕ̂j) =
N∑
j=1

AUj(∇ϕj)TAT = A∇uAT .

Lets examine the artificial viscosity contribution to a node j in the mass equation

(3.11). On fully discrete level, after moving to the reference frame and applying a

quadrature rule withQ points, the contribution from an arbitrary cellK∗ is computed

by the quantity

−
Q∑
q=1

(
wq| det(J∗)|λ∗

N∑
i=1

ρi(AJ
−T∇ϕ̂i) · (AJ−T∇ϕ̂j)

)
,

where all quadrature weights, gradients, Jacobians, and viscosity coefficient depend

on the quadrature points. But this is the same as

−
Q∑
q=1

(
wq| det(J)|λ∗

N∑
i=1

ρi(J
−T∇ϕ̂i) · (J−T∇ϕ̂j)

)
,

where the latter is equal to the contribution from the corresponding cell K if λ∗ = λ.

Now we look at the artificial force term in the momentum equation (3.12). The

contribution to a node j for dimension m from a cell K∗ is

Q∑
q=1

wq| det(J∗)|

(
− ν∗ρ̂

N∑
i=1

U∗im(AJ−T∇ϕ̂i) · (AJ−T∇ϕ̂j)

+ λ∗ϕ̂j

N∑
k=1

N∑
i=1

U∗kmρi(AJ
−T∇ϕ̂k) · (AJ−T∇ϕ̂i)

)
=

Q∑
q=1

wq| det(J)|

(
− ν∗ρ̂

N∑
i=1

Am ·Ui(J
−T∇ϕ̂i) · (J−T∇ϕ̂j)

+ λ∗ϕ̂j

N∑
k=1

N∑
i=1

Am ·Ukρi(J
−T∇ϕ̂k) · (J−T∇ϕ̂i)

)
,

71

where Am is the m-th row of A. Hence the artificial force is transformed the same way

as u and x if λ∗ = λ and ν∗ = ν. The extra terms in the internal energy equation

(3.13) can be written in a similar to the above way and we reach the same conclusion.

The only interesting term there is ∇u∗ : ∇u∗ = ∇u : ∇u since Frobenius norms are

invariant under orthogonal transformations. Hence the orthogonal transformation

invariance holds if λ∗ = λ and ν∗ = ν. Similar arguments apply for all boundary

integrals as well.

Now we consider the shock detectors. For the entropy production (3.24) we have

D∗ = D since it depends only on scalars and ∇ · u∗:

∇ · u∗ =
N∑
j=1

∇ϕ∗j ·U∗
j =

N∑
j=1

(AJ−T∇ϕ̂j) · (AUj) =

=
N∑
j=1

(A∇ϕj) · (AUj) =
N∑
j=1

∇ϕj ·Uj = ∇ · u.

Option 1 shock detectors in (3.22) are also equal since |u∗| = |Au| = |u|. For Option

2, see (3.23), we have ∇su∗ = A∇suAT , hence ∇su∗ and ∇su are similar matrices.

Then we have µ∗ = µ and s∗ = As. Hence all shock detectors are invariant under

orthogonal transformation.

When we consider the length scales, we need to look at the Jacobian of the

transformation x∗
0 → x∗. That is the Jacobian of x∗

0 → x0 → x → x∗ which is

AJJ−1
0 AT . For the initial scales we have h∗0 = h0 since orthogonal transformations

keep lengths and angles. Then we have

det(A) = 1⇒ det(AJJ−1
0 AT) = det(JJ−1

0)⇒ h∗3 = h3,

|AJJ−1
0 ATu∗|
|u∗|

=
|AJJ−1

0 u|
|Au|

=
|JJ−1

0 u|
|u|

⇒ h∗1 = h1,

72

|AJJ−1
0 ATs∗|
|s∗|

=
|AJJ−1

0 s|
|As|

=
|JJ−1

0 s|
|s|

⇒ h∗2 = h2.

This implies λ∗ = λ, ν∗ = ν for all of our options. 2

3.3.7 Time Discretization

We discretize the time derivatives of (ρ,u, e,x) by standard explicit Runge-Kutta

methods. Such method of order r is defined by the lower triangular table given in

Table 3.1. Let our solution at time t be v = (ρ,u, e,x). We define the operators

a1

a2 b21

a3 b31 b32

... ...
ar br1 br2 ... br,r−1

c1 c2 ... cr−1 cr

Table 3.1: Runge-Kutta lower triangular table for a method of order r.

Fρ,Fu, Fe,Fx corresponding to the weak form (3.11) - (3.13) by

∫
Ω(t)

Fρ(v, t)ϕ dx =

∫
Ω(t)

(
− ρ∇ · uϕ− (λ∇ρ) · ∇ϕ

)
dx,

∫
Ω(t)

ρ[Fu(v, t)]mϕ dx =

∫
Ω(t)

(
p
∂ϕ

∂xj
− νρ∇um · ∇ϕ+ λ∇um · ∇ρϕ

)
dx, ∀m = 1...d,

∫
Ω(t)

ρFe(v, t)ϕ dx =

∫
Ω(t)

(
− p∇ · uϕ+ (νρ∇u : ∇u)ϕ

− λρ∇e · ∇ϕ+ (λ∇e · ∇ρ)ϕ

)
dx,

Fx(v, t) = u.

73

Then if F (v, t) := (Fρ,Fu, Fe,Fx), the solution v is evolved by

vn+1 = vn + ∆t
r∑
i=1

ciki,

ki(ρ, u, e, x) := F

(
vn + ∆t

r∑
j=1

bijkj, tn + ai∆t

)
.

3.3.8 Time Step Control

Because of finite speed of propagation, time step for explicit methods is expected

to restrict propagation of information up to one cell, hence it’s defined as length scale

divided by maximum propagation speed. Although adding viscosity terms in general

changes the hyperbolic nature of the problem, we use the same time step scaling,

since those terms are degenerate and active only in shock regions of limited thickness.

However increasing the artificial viscosity constants decreases the time step. We also

use the usual idea of repeating time steps that are suspected to produce oscillations.

The way to guess that is by comparing consequent time step sizes:

1. Having (ρn,un, en,xn), compute:

∆t = min
x∈Ωn

ch2(x)√
γT n(x) + |un(x)|

. (3.29)

2. Using ∆t, evolve the solution to (ρn+1,un+1, en+1,xn+1) and then compute:

∆t∗ = min
x∈Ωn+1

ch2(x)√
γT n+1(x) + |un+1(x)|

.

3. If ∆t∗ < ∆t⇒ ∆t = 0.9∆t, go to (2) (repeat the step)

4. Else: n = n+ 1, t = t+ ∆t, if ∆t∗ > 1.25∆t⇒ ∆t = 1.02∆t.

74

go to (2).

Where the CFL constant c decreases if the amounts of artificial viscosity are in-

creased. One can also use different constants in steps 3 and 4 (as long as those

constants are reasonable).

3.4 Numerical Tests

In this subsection we demonstrate the behavior of our method on standard La-

grangian hydrodynamics test cases with known exact solutions. First we use a smooth

solution to show the high-order convergence properties of the method. Then, we use

a 1D Riemann problem to demonstrate the shock-capturing properties of the entropy

production-based viscosity coefficients and the methods non-oscillating behavior in

contact regions. Finally, we turn to 2D shock problems which test the methods

symmetry preservation and mesh behavior.

For all test cases, we solve the resulting linear system using a conjugate gradient

algorithm with a diagonal Jacobi preconditioner.

Our method is developed by using the parallel finite element methods library

MFEM [19]. The obtained results are visualized through the OpenGL visualization

tool GLVis [18].

3.4.1 2D Taylor-Green Vortex

The goal of this test case is to demonstrate that for smooth solutions our method

achieves high order convergence rates. All simulations are done by keeping the vis-

cosity terms active (we do not set them to zero explicitly) in equations (3.11) - (3.13).

This confirms the convergence to zero of the entropy production-based viscosity co-

efficients on discrete level.

In the 2D Taylor-Green vortex, a smooth solution for the Euler equations is

manufactured by designing particular initial conditions and introducing an internal

75

energy source Q that keeps all variables, except mesh position, at steady state:

ρt = ut = et = 0.

This means that all variables stay constant while the mesh moves. The above is

equivalent to

∇ρ = 0, ∇ · u = 0, ρu · ∇u = −∇p, Q = u · ∇e.

The source Q changes the Lagrangian frame energy equation to

ρ
de

dt
= −p∇ · u+Q,

and the equations for density and velocity stay the same. The particular initial

conditions and source that give the above relations are

ρ(x0) = 1, u(x0) = (sin(πx0) cos(πy0),− cos(πx0) sin(πy0)),

p(x0) =
ρ

4
(cos(2πx0) + cos(2πy0) + 1, γ =

5

3
,

Q =
3π

8
(cos(3πx) cos(πy)− cos(πx) cos(3πy)) .

For smooth solutions, the order of the method depends on the polynomial degree

of the used finite element spaces, and, more importantly, how fast the artificial

viscosity terms converge to zero. In order to optimize the latter, we use backward

differencing with 2 points for the time derivative in (3.25). This, together with the

h2
3 scaling in (3.26) produces at most 4th order convergence to zero for all artificial

terms added in the equations. One can use backward differencing with more points

in (3.25) in order to achieve orders higher than 4.

76

We run the problem to t = 0.5 and we put u · n = 0 on the boundary. Initial

and final mesh and velocity magnitudes with Q4 finite element spaces are shown

on Figure 3.5. Comparison between Q1 and Q4 simulations with similar number of

degrees of freedom are shown on Figure 3.6. The sub-zonal high order resolution of

the Q4 space makes it superior compared to the Q1 space. In Table 3.2 we show L1

convergence rates for velocity computed with finite element spaces of different order.

We observe the expected high order convergence rates.

Figure 3.5: Velocity magnitude on the initial mesh (on the left side), and on the
final mesh (on the right side) computed by Q4 FE spaces on 16× 16 cells for the 2D
Taylor-Green vortex problem.

3.4.2 1D Sod Tube

The goal of this test case is to demonstrate the method’s shock and contact cap-

turing properties. This is a 1D Riemann problem in [0, 1] that develops a rarefaction,

77

Figure 3.6: Final mesh and velocity magnitude for a Q1 simulation on 16× 16 cells
(on the left side), and for a Q4 simulation on 4 × 4 cells (on the right side) for the
2D Taylor-Green vortex problem.

Q1 Q2 Q3 Q4

h0 L1 error rate L1 error rate L1 error rate L1 error rate
1/4 3.48e-1 3.62e-2 1.87e-2 6.25e-3
1/8 7.18e-2 2.27 6.02e-3 2.58 2.51e-3 2.89 2.64e-4 4.56
1/16 1.07e-2 2.74 1.54e-3 1.96 1.71e-4 3.87 1.17e-5 4.49
1/32 1.95e-3 2.45 4.00e-4 1.94 6.70e-6 4.67 8.60e-6 3.76
1/64 4.26e-4 2.19 1.23e-4 1.70 4.54e-7 3.88 6.66e-7 3.69

Table 3.2: L1 velocity errors and convergence rates for the 2D Taylor-Green vortex
problem.

a contact and a shock wave. The initial conditions are:

ρ(x0) =

1.0 x0 ≤ 0.5,

0.125 otherwise,

, u(x0) = 0, p(x0) =

1.0 x0 ≤ 0.5,

0.1 otherwise,

, γ = 1.4.

The final time is 0.2 and we put u · n = 0 on the boundary.

We first discuss the effects of using the Option 2 viscosity coefficients (3.23).

78

On Figure 3.7 we show density field (on the left figure) and the magnitude of the

compression measure µ(x) from equation (3.23) at final time. The simulation uses Q1

FE spaces on a mesh composed of 128 cells. We don’t take the minimum (3.28) for

this simulation. We observe that the Option 2 coefficient provides sufficient diffusion

in the shock region, but almost none in the contact. The reason for this is that the

compression measure µ(x) is based only on velocity gradients, but the velocity is

constant in the contact. The oscillations in density, pressure and energy around the

contact cause some small velocity gradients, but the generated compression is too

small to provide diffusion for those oscillations.

Figure 3.7: Density field (on the left side), and compression measure (on the right
side) resulting from using the Option 2 viscosity coefficients for the 1D Sod tube
problem.

Next we present results obtained by using the Option 1 viscosity coefficients. On

the left side of Figure 3.8 we show simulations that only use the first order coefficients

(3.22) without taking the minimum (3.27). We observe that for both Q1 and Q4 FE

spaces those coefficients provide sufficient diffusion in all regions. Then on the right

79

side of Figure 3.8 we show the corresponding simulations that take into account the

entropy production (3.26) by taking the minimum (3.27). The results are sharper

and there are still no oscillations in the contact region, meaning that the entropy

production provides sufficient diffusion in those regions. On the left figure, where we

use the first order coefficients, we observe that the results for Q1 and Q4 FE spaces are

essentially the same, but on the right side, where we use the non-linear coefficients,

the higher-order simulation is more oscillatory. The presented simulations use 256

cells for Q4 and 1024 cells for Q1. In the case of Q1 FE spaces with non-linear

coefficients, the contact region is diffused in 18 cells, and the shock is diffused in 7

cells. In the case of Q4 FE spaces with non-linear coefficients, the contact is diffused

in 5 cells, and the shock is diffused in 2 cells. On the left side of Figure 3.9 we

compare the L2 projections of the first order coefficient (3.22), which was used to

generate the left side of Figure 3.8, and the entropy production coefficient (3.26)

that was used on the right side of Figure 3.8. We observe that in smooth regions

the active part of the minimum (3.27) is the entropy production coefficient, and in

shocks the active part is the first order coefficient. On the right of Figure 3.9 we

show comparison between pressures obtained by the Option 1 entropy production

based coefficient.

In Table 3.3 we show L1 convergence rates for density computed with Q1, Q2

and Q4 spaces. The table is aligned so that the rates in each row are computed by

approximately the same number of degrees of freedom. We observe that the errors

and rates for all finite element spaces are similar. We are close to the optimal rate

of 1 for discontinuous solutions.

80

Figure 3.8: Density fields computed with the Option 1 first order coefficients (on the
left side), and Option 1 combined with the entropy production based coefficients (on
the right side) for the 1D Sod tube problem.

Figure 3.9: Comparison between the L2 projections of the Option 1 linear and non-
linear viscosity coefficients (on the left side), and pressure fields computed by the
Option 1 non-linear coefficient (on the right side) for the 1D Sod tube problem.

3.4.3 2D Sedov Explosion

The Sedov explosion, introduced in [54], is a standard problem used for testing

shock propagation symmetry. The initial conditions are

81

Q1 Q2 Q4

h0 L1 error rate h0 L1 error rate h0 L1 error rate
1/64 0.02194 1/32 0.02216 1/16 0.02190
1/128 0.01319 0.73 1/64 0.01335 0.73 1/32 0.01264 0.79
1/256 0.00723 0.86 1/128 0.00747 0.83 1/64 0.00701 0.85
1/512 0.00382 0.92 1/256 0.00394 0.92 1/128 0.00383 0.87
1/1024 0.00199 0.94 1/512 0.00204 0.95 1/256 0.00207 0.88

Table 3.3: L1 density errors and convergence rates for the 1D Sod tube problem.

ρ(x0) = 1, u(x0) = 0, e(x0) = δ(0),

∫
Ω0

e(x0)dx0 = Etot, γ = 1.4.

The energy deposited as a delta function at the origin converts from internal into

kinetic, creating an expanding shock wave. The problem is usually run to t = 1.0.

First we discuss results obtained by using Q2 FE spaces on a Cartesian uniform

mesh for Ω0 = [0, 1.2] × [0, 1.2] with 64 × 64 cells. In this case the initial energy is

Etot = 0.25. We put u · n = 0 on the left and bottom boundaries.

On the right side of Figure 3.10 we make a comparison between the exact density

and densities obtained by using the Option 1, see (3.27), and Option 2, see (3.28),

viscosity coefficients. We observe that for this example Option 2 is sharper. The left

side of Figure 3.10 shows the final density and mesh obtained by using the Option

2 viscosity coefficient (3.28). We observe correct mesh motion and proper shock

capturing.

On Figure 3.11 we show the entropy production (3.26) without the scaling with

h2
3, and comparison with a simulation that only uses the first order viscosity (3.23)

without taking the minimum (3.28). We see taking into account the entropy based

viscosity coefficient in (3.28), our solution becomes sharper.

On Figure 3.12 we show the final velocity magnitude and pressure obtained by

82

Figure 3.10: Final mesh and density (on the left side), and density vs. radius com-
parison between exact density and densities obtained by Option 1 and Option 2
viscosity coefficients (on the right side) for the 2D Sedov explosion problem.

Figure 3.11: Entropy production (on the left side), and density vs. radius comparison
between first order and entropy viscosity results (on the right side) for the 2D Sedov
explosion problem.

the Option 2 viscosity (3.28).

Next we consider a Cartesian non-uniform mesh for Ω0 = [−1.2, 1.2]× [−1.2, 1.2].

In this case the initial energy is Etot = 1.0. We have 32 × 64 cells in quadrant #1,

83

Figure 3.12: Final velocity magnitude (on the left side), and pressure (on the right
side) for the 2D Sedov explosion problem.

64 × 64 in #2, 64 × 32 in #3, and 32 × 32 in #4. The purpose of this mesh is to

test preservation of radial symmetry and correct mesh evolution. On Figure 3.13 we

show final density and mesh, and comparison between exact solution and densities

obtained in each quadrant. This simulations uses Q2 FE spaces. The scatter plot

only uses values on the lines |x| = |y|. We observe good radial symmetry preservation

with respect to the shock location.

3.4.4 2D Noh Implosion

The Noh implosion, introduced in [52], is another problem for testing shock prop-

agation symmetry. The initial conditions are

ρ(x0) = 1, u(x0) =
~r

||~r||
, e(x0) = 0, γ =

5

3
.

The initial velocity generates an outward traveling shock wave. The problem is

usually run to t = 0.6.

First we discuss results obtained by using Q2 FE spaces on a Cartesian uniform

84

Figure 3.13: Final density and mesh (on the left side), and density vs. radius com-
parison to exact solution for each quadrant (on the right side), on a non-uniform
mesh for the 2D Sedov explosion problem.

mesh for Ω0 = [0, 1.2] × [0, 1.2] with 64 × 64 cells. We put u · n = 0 on the left

and bottom boundaries. All simulations presented for this test case use the Option

1 viscosity coefficients (3.22), since the results obtained by the Option 2 coefficients

(3.28) are in general more oscillatory.

On the right side of Figure 3.14 we show comparison between the exact density,

density obtained by using the Option 1 first order viscosity (3.22) without taking the

minimum (3.27), and density obtained by using the full Option 1 coefficients (3.27).

By using the non-linear viscosity the result becomes much sharper, but this comes

for the cost of some additional oscillations. The left side of Figure 3.14 presents

the final density and mesh obtained by using the full Option 1 viscosity (3.27). On

Figure 3.15 we show the final forms of the entropy production coefficient (3.26) and

the Option 1 first order coefficient (3.22). Again we observe that in smooth regions

the active part of the minimum (3.27) is the entropy production coefficient, and in

shocks the active part is the first order coefficient.

85

Figure 3.14: Final density and mesh (on the left side), and density vs. radius com-
parison between exact density, first order and entropy viscosity results (on the right
side) for the 2D Noh implosion problem.

Figure 3.15: Entropy production based viscosity coefficient (on the left side), and the
Option 1 first order viscosity coefficient (on the right side) for the 2D Noh implosion
problem.

On Figure 3.16 we show the final velocity magnitude and pressure obtained by

the Option 1 viscosity (3.27).

Next we consider a Cartesian non-uniform initial mesh for Ω0 = [−1.2, 1.2] ×

86

Figure 3.16: Final velocity magnitude (on the left side), and pressure (on the right
side) for the 2D Noh implosion problem.

[−1.2, 1.2]. We have 32× 64 cells in quadrant #1, 64× 64 in #2, 64× 32 in #3, and

32× 32 in #4. The purpose of this mesh is to test preservation of radial symmetry

and correct mesh evolution. On Figure 3.17 we present the final density and mesh,

and comparison between exact solution and densities obtained in each quadrant.

This simulation uses Q2 FE spaces. We observe some motion in the middle of the

domain. This problem is caused by the combination of wall heating, see [52], and

having different cells sizes in the middle of the domain. These result in different

density values for the different quadrants in the middle, which causes the more dense

material to push the less dense material. A way to improve the above situation is to

use a smooth initial length scale h0. The initial length scale we use is shown on Figure

3.18. Although we have applied a smoothing procedure with the very big smoothing

constant ε = 1000.0 in (3.18), we still see that the big h0 gradient in the middle of

the domain causes mesh deformation. Using a uniform initial length scale is also not

appropriate, since it would cause adding too big (or too small) artificial viscosity to

one of the quadrants. The right side of Figure 3.18 shows the final pressure field

87

where we can see the already mentioned wall heating in the middle of the domain.

Figure 3.17: Final density and mesh (on the left side), and density vs. radius com-
parison to exact solution for each quadrant (on the right side), on a non-uniform
mesh for the 2D Noh implosion problem.

Figure 3.18: Initial length scale at final time (on the left side), and pressure (on the
right side), on a non-uniform mesh for the 2D Noh implosion problem

88

3.4.5 3D Noh Implosion and Parallel Performance

Here we demonstrate our method’s ability to perform parallel 3D calculations.

The initial conditions are the same as in the 2D case, namely

ρ(x0) = 1, u(x0) =
~r

||~r||
, e(x0) = 0, γ =

5

3
,

where all quantities are three-dimensional. Again we run to t = 0.6 with Option 1

viscosity coefficients.

On Figure 3.19 we show final density and mesh, and the mesh division between

64 parallel tasks for a simulation with Q2 spaces on a Cartesian uniform mesh with

32 cells in each space direction. The initial domain is Ω0 = [−1.2,−1.2,−1.2] ×

[1.2, 1.2, 1.2].

We test the parallel performance of our algorithm by running the above test case

to time t = 0.1 with Q2 finite element spaces on a Cartesian mesh consisting of

16 cells in each direction (4096 cells in total). This simulation ends after 62 time

steps, the steps are evolved by the RK4 time integrator. Strong scaling results are

presented on Figure 3.20. The scaling rates deteriorate when we have less than

128 cells per MPI task. Communication between different MPI tasks occurs for the

following procedures:

• Computation of the time step (3.29).

• Computation of the global entropy production normalization constant used in

the denominator of equation (3.26).

• Assembly of global matrices for density, velocity and specific internal energy

at each Runge-Kutta sub-stage.

89

• Solving the global linear system for density, velocity and specific internal en-

ergy, and distribution of the new solution to the different MPI tasks at each

Runge-Kutta sub-stage.

Figure 3.19: Final density (on the left side), and 64 MPI tasks division (on the right
side) on 32 cells in each direction for the 3D Noh implosion problem.

3.5 Extensions of the Method

3.5.1 New Viscosity Coefficients

The main idea in this subsection is to define viscosity coefficients that don’t

depend on any constants and don’t use explicit length scales, but the resulting viscous

tensor has the correct scaling. The motivation for this approach is to avoid the

complications that arise with explicit definitions of length scales and tuning constants

that are generally not universal for every test case. This approach has been applied

successfully to scalar conservation laws in [25]. First we switch from scalar viscous

coefficients to viscous tensors: λ→ λJJT , ν → νJJT where J is still the Jacobian of

90

Figure 3.20: Strong scaling test for the 3D Noh implosion problem. Run times with
2k MPI tasks, k = 1...6, compared to perfect scaling.

the transformation x̂ → x. Notice that in these new terms the coefficients λ and ν

must scale like (speed/distance), which would be the scaling of the entropy viscosity

coefficient (3.26) before the multiplication by h2
3. Then the density equation becomes

dρ

dt
= −ρ∇ · u+∇ · (λJJT∇ρ).

The equation for the m-th velocity component um becomes

ρ
dum
dt

= − ∂p

∂xm
+∇ · (νρ[JJT∇u]m) +∇um · (λJJT∇ρ),

where Am is the m-th column vector of a matrix A. Notice that

[JJT∇u]m = (JJT)[∇u]m = JJT∇um.

91

The last term of the velocity equations can be written as

∇um ·(λJJT∇ρ) = λ(∇um)TJ(JT∇ρ) = λ(JT∇um)T (JT∇ρ) = λ(JT∇um) ·(JT∇ρ).

So finally the m-th velocity equation becomes

ρ
dum
dt

= − ∂p

∂xm
+∇ · (νρJJT∇um) + λ(JT∇um) · (JT∇ρ).

The internal energy equation is

ρ
de

dt
= −p∇ · u+∇ · (λρJJT∇e) + νρ(JJT∇u) : ∇u+∇e · (λJJT∇ρ).

Here notice that

νρ(JJT∇u) : ∇u = νρ
d∑

m=1

[JJT∇u]m · ∇um

= νρ
d∑

m=1

(JJT∇um) · ∇um = νρ
d∑

m=1

(JT∇um)2.

Then the internal energy equation becomes

ρ
de

dt
= −p∇ · u+∇ · (λρJJT∇e) + νρ

d∑
m=1

(JT∇um)2 + λ(JT∇e) · (JT∇ρ).

The final system is:

dρ

dt
= −ρ∇ · u+∇ · (λJJT∇ρ), (3.30)

ρ
dum
dt

= − ∂p

∂xm
+∇ · (νρJJT∇um) + λ(JT∇um) · (JT∇ρ), m = 1..d, (3.31)

ρ
de

dt
= −p∇ · u+∇ · (λρJJT∇e) + νρ

d∑
m=1

(JT∇um)2 + λ(JT∇e) · (JT∇ρ). (3.32)

92

3.5.1.1 Mass Viscosity Coefficient λ

The coefficient λ is obtained by imposing positivity of density on discrete level.

We examine a continuous, piecewise linear finite element approximation of the density

equation (3.30). The i-th equation for time tk+1 is

N∑
j=1

ρk+1
j − ρkj

∆t

∫
K⊂Si

ϕiϕj dx = −
∑
K⊂Si

∫
K

(
λK(JT∇ρk)(JTϕi) + ρk∇ · ukϕi

)
dx,

where Si is the support of the basis function ϕi. We lump the mass matrix and the

left-hand side becomes

N∑
j=1

ρk+1
j − ρkj

∆t

∫
K⊂Si

ϕiϕj dx→
N∑
j=1

ρk+1
i − ρki

∆t

∫
K⊂Si

ϕiϕj dx =

=
ρk+1
i − ρki

∆t

∫
K⊂Si

(
ϕi

N∑
j=1

ϕj

)
dx ==

ρk+1
i − ρki

∆t

∫
K⊂Si

ϕi dx =:
ρk+1
i − ρki

∆t
mi.

Then the i-th equation is

ρk+1
i = ρki −

∆t

mi

∑
K⊂Si

∫
K

(
λK(JT∇ρk) · (JTϕi) + ρk∇ · ukϕi

)
dx,

ρk+1
i =ρki

(
1− ∆t

mi

∑
K⊂Si

∫
K

(
λK(JT∇ϕi)2 +∇ · ukϕ2

i

))
dx

−
∑

j∈I(Si),j 6=i

ρkj
∆t

mi

∑
K⊂Sij

∫
K

(
λK(JT∇ϕj) · (JT∇ϕi) + ϕj∇ · ukϕi

)
dx,

where Sij is the common support of the basis functions ϕi, ϕj. The density will stay

positive, if the coefficients of ρkj , j = 1..N are all positive. The coefficient of ρki is

handled by the CFL condition on the time step ∆t. This time step is expected to

be small enough in order to keep the multiplier of ρki positive. However we are more

93

interested in the other term of the above expression. The coefficients of ρkj , j 6= i can

be kept positive by setting the viscosity constant λ to

λK = max
j 6=i∈I(K)

∣∣∣∫Sij ∇ · ukϕiϕj dx∣∣∣
−
∫
Sij

(JT∇ϕj) · (JT∇ϕi) dx
. (3.33)

Here I(K) is the set of indices j so that ϕj has support in K. Another option that

is more convenient for parallel computations is

λK = max
j 6=i∈I(K)

∣∣∫
K
∇ · ukϕiϕj dx

∣∣
−
∫
K

(JT∇ϕj) · (JT∇ϕi) dx
. (3.34)

Notice that λK scales like speed over distance and the Frobenius norm of λKJJ
T

scales like speed times distance as expected.

3.5.1.2 Momentum Viscosity Coefficient ν

In this subsection we try to derive a length-scale independent definition for our

other viscosity coefficient, ν. One way to derive νK is to use a Prandtl number

connection:

P =
λK
νK

, (3.35)

but then the question what is the appropriate P remains open.

Here we show a derivation of ν by imposing the ds
dt
≥ 0 on discrete level. The final

result, however, turns out to be unusable for numerical computations. As before, we

obtain the specific entropy equation by multiplying (3.30) by ρsρ, (3.32) by se and

adding the two resulting equations:

ρ

(
sρ
dρ

dt
+ se

de

dt

)
+∇ · u

��
���

��(
ρ2sρ + pse

)
= ρsρ∇ · (λJJT∇ρ) + se(...),

94

ρ
ds

dt
= ρsρ∇ · (λJJT∇ρ)

+ se

(
∇ · (λρJJT∇e) + νρ

d∑
m=1

(JT∇um)2 + λ(JT∇e) · (JT∇ρ)

)
.

(3.36)

The specific entropy will not decrease, if the right-hand side is non-negative. Al-

though, in our setting, s is not a finite element function, we still introduce a weak

form of (3.36), because we want to avoid computing second derivatives of ρ and e.

As before, we introduce a piecewise linear finite element approximation with lumped

the mass matrix. Then the i-th equation becomes

sk+1
i = ski +

∆t

mi

∑
K⊂Si

∫
K

(
λKρ

ksρ(J
T∇ρk) · (JT∇ϕi) + λKρ

kse(J
T∇ek) · (JT∇ϕi)

+ νKρ
kse

d∑
m=1

(JT∇um)2ϕi + λKse(J
T∇ek) · (JT∇ρk)ϕi

)
dx.

Then νK is defined by

νK =
λK∫

K
ρkse

∑d
m=1(JT∇ukm)2ϕi dx

max
i

(∣∣∣∣∣
∫
K

ρksρ(J
T∇ρk) · (JT∇ϕi)

+ ρkse(J
T∇ek) · (JT∇ϕi)

+ se(J
T∇ek) · (JT∇ρk)ϕi dx

∣∣∣∣∣
)(3.37)

However this expression is not applicable for discrete computations since it is not

well-defined in cases of constant velocity (and this is the usual initial condition for

most standard benchmark problems), zero density, or zero internal energy. Because

of that we have no numerical data for (3.37).

Remark As we saw above, one might consider evolving s, instead of e, as a finite

element variable.

95

3.5.1.3 Combination with Entropy Production

Taking the entropy production into account is trivial, since the entropy produc-

tion D defined in (3.24) has the correct scaling:

λ = min

(
λ, centr

|D|
|Sn − Sn|∞,Ω(tk)

)
,

ν = min

(
ν, centr

|D|
|Sn − Sn|∞,Ω(tk)

)
.

(3.38)

The entropy coefficients, however, still depend on the tunable constant centr.

3.5.1.4 Preliminary Numerical Results

Here we show the application of the new length-scale independent coefficients to

the Sod tube and Sedov problems. We use Q1 finite element spaces. We don’t lump

the mass matrices since it causes blow-ups. The results are obtained by using the

Prandtl number connection (3.35) with P = 0.1.

On Figure 3.21 we show the new coefficients produce the expected result for the

1D Sod tube problem. Again we observe no oscillations in the contact region and

precise shock capturing.

A more complicated example, the 2D Sedov problem, is shown on Figure 3.22.

Unfortunately our results show mesh tangling. Mesh motion can be improved by

increasing the Prandtl number, but this comes for the price of increased diffusion.

3.5.1.5 Summary of the Approach and Open Problems

The new definitions (3.33), (3.35) of the viscosity coefficients (λ, ν) remove the

requirement for explicit definition of length scale, they provide positivity of density on

discrete level, and the coefficients are easy to combine with the entropy production

by equation (3.38). By using these new coefficient we obtain encouraging initial

96

Figure 3.21: Final density and exact solution (on the left side), and L2 projection
of the final piecewise constant coefficient λ (on the right side) for the 1D Sod tube
problem.

Figure 3.22: Final density (on the left side) and the piecewise constant coefficient λ
(on the right side) for the 2D Sedov explosion problem

numerical results. However there are still some problems that must be addressed:

• The definition of the artificial force coefficient ν for the momentum equation is

not clear as discussed after the derivation of equation (3.37).

97

• Using tensor viscosity coefficients of the form λJJT results in losing radial

symmetry on continuous level, see Remark 4 in [36]. The mesh tangling we

observe in the simulation of the 2D Sedov problem is most likely caused by loss

of radial symmetry.

• The discussed approach assumes the use of Q1 spaces. Extensions to spaces of

higher degree are not established. There are ongoing efforts involving the use

of sub-grids and special mass lumpings.

• The discussed approach expects lumped matrices. While this is not an issue

for scalar conservation laws, how to lump matrices for the Euler equations and

obtain stable solutions is not clear at present time.

• For 3D simulations, the denominator of (3.33) may become negative. In order

to avoid that, additional approximations are necessary, see [25].

3.5.2 The Brenner Model

The regularization we present by equations (3.1)-(3.3) is easy to transform into

a model of fluid dynamics proposed by Brenner in [7]. In this subsection we derive

this model and discuss its properties. Our ultimate goal is to achieve pointwise mass

conservation and mass matrices that are constant in time, while retaining all the

properties of our regularization.

The main idea is to introduce additional velocity variable ū which is used to

move the computational mesh. This new velocity is derived by incorporating the

mass diffusion into the mesh motion. In Eulerian frame, our regularized density

equation is

∂ρ

∂t
+∇ · (ρu) = ∇ · (λ∇ρ).

98

This equation can be written as

∂ρ

∂t
+∇ ·

[
ρ

(
u− λ∇ρ

ρ

)]
= 0.

Motivated by this equation, we define our mesh velocity ū and use it to move our

positions x:

ū := u− λ∇ρ
ρ
, (3.39)

dx(x0, t))

dt
:= ū(x, t). (3.40)

Then the material derivative of a scalar / vector function β = β(x(x0, t), t) is

d

dt
β(x(x0, t), t) =

∂β(x, t)

∂t
+ ū(x, t) · ∇xβ(x, t).

Using the new notion of material derivative, the Lagrangian frame density equation

becomes

dρ

dt
= −ρ∇ · ū. (3.41)

The above procedure moved the diffusion term into the mesh motion. A hopeful

guess would be that the new equation (3.41) also diffuses the density field by ex-

panding zones in which we have big density gradients. This, however, is not always

the case. Depending on the signs of u and ∇ρ, by looking at (3.39), one can easily

come up with an example so that we get ∇ · ū < ∇ · u, meaning that the new

mesh velocity ū actually causes more compression than the old velocity u. A way

to resolve this is to introduce a switch in the sign of viscosity coefficient λ, but one

should not forget that the coefficient λ is also used in the thermal diffusion term,

where we must always have a positive sign.

99

3.5.2.1 Pointwise Mass Conservation

Equation (3.41) implies pointwise mass conservation. For completeness we show

the derivation of this statement. By the Reynolds transport theorem and (3.41) we

get

d

dt

∫
Ω(t)

ρ(x, t) dx =

∫
Ω(t)

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)ū(x, t)) dx

=

∫
Ω(t)

dρ(x, t)

dt
+ ρ∇ · ū dx = 0,

hence for any domain Ω(t) that was originally Ω0, we have the equality

∫
Ω(t)

ρ(x, t)dx =

∫
Ω0

ρ0(x0)dx0.

Here we use the mapping Φ◦Φ−1
0 : x0 → x with Jacobian JJ−1

0 from initial to actual

coordinates to obtain

∫
Ω0

ρ(x, t)
∣∣JJ−1

0 (x0, t)
∣∣ dx0 =

∫
Ω0

ρ0(x0)dx0.

Since Ω0 was an arbitrary control volume, at every point x that originates from x0,

we have the pointwise mass conservation:

ρ(x, t)
∣∣JJ−1

0 (x0, t)
∣∣ = ρ0(x0). (3.42)

100

3.5.2.2 New Form of the System

Here we state the final Lagrangian system after taking into account the new mesh

motion (3.40). We start with the velocity equation (3.8) and rewrite it as

ρ

(
∂u

∂t
+ u · ∇u− λ∇ρ

ρ
· ∇u

)
= −∇p+∇ · (νρ∇u),

⇒ ρ
du

dt
= −∇p+∇ · (νρ∇u).

The same procedure applies for the specific internal energy equation (3.9):

ρ

(
∂e

∂t
+ u · ∇e− λ∇ρ

ρ
· ∇e

)
= −p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u,

⇒ ρ
de

dt
= −p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u.

Then the new Lagrangian frame system takes the following form:

d

dt
x(x0, t) = ū(x, t), where ū := u− λ∇ρ

ρ
, (3.43)

ρ(x, t)
∣∣JJ−1

0 (x0, t)
∣∣ = ρ0(x0), (3.44)

ρ
du

dt
= −∇p+∇ · (νρ∇u), (3.45)

ρ
de

dt
= −p∇ · u+∇ · (λρ∇e) + νρ∇u : ∇u. (3.46)

We solve with respect to position x(x0, t), density ρ(x, t), velocity u(x, t), internal

energy per mass e(x, t). The equation of state (1.23) is still p = (γ − 1)ρe. Note

that the density ρ can be computed pointwise, it doesn’t have to be a finite element

function. Also note that we need to introduce a weak form of the equation for the

mesh coordinates x, since the expression for ū is not in the used finite element space.

101

The weak form for equation (3.43) is the following:

For every dimension m = 1...d and every j = 1...N we have

∫
Ω(t)

dxm(x0, t)

dt
ϕj(x, t) dx =

∫
Ω(t)

um(x, t)ϕj(x, t) dx

+

∫
Ω(t)

λ(ln ρ)
∂ϕj(x, t)

∂xm
dx−

∫
∂Ω(t)

λ(ln ρ)ϕj(x, t)nd dx.

The weak forms for velocity u and specific internal energy e are the ones from

(3.12), (3.13) by removing the terms which are moved in the material motion. All

other details of the discrete method are applicable to this new problem.

3.5.2.3 Constant Mass Matrices

Another advantage of this approach is that all resulting mass matrices are con-

stant in time. For example, the left-hand side of (3.13) and the corresponding matrix

are

∫
Ω(t)

ρ(x, t)
d

dt

(
N∑
i=1

ei(t)ϕi(x, t)

)
ϕj(x, t)dx =

N∑
i=1

dei(t)

dt

∫
Ω(t)

ρ(x, t)ϕi(x, t)ϕj(x, t)dx,

(Me)ij =

∫
Ω0

ρ(x, t)ϕi(x0)ϕj(x0)|JJ−1
0 (x0, t)|dx0.

Here ρ(x, t)| det JJ−1
0 (x0, t)| = ρ(x0) holds by (3.42), hence the mass matrix is

constant in time and can be assembled only at initial time.

3.5.2.4 Summary of the Approach and Open Problems

Introducing the mesh velocity ū enables us to derive a system that conserves

mass pointwise and produces time-independent mass matrices. All regularization

102

properties are also valid for this new system. We don’t need to solve a finite element

weak form for the density ρ, since it can be evolved pointwise by using the Jacobian

matrix of the mapping x0 → x, but we need to solve a weak form for the mesh

positions x. All other details of the discrete method can be used for the numerical

solution of the new system. The real problem of the approach is how to define the

coefficient λ, so that the mesh velocity given by (3.39) always results in diffusion

of the density field, and at the same time the definition of λ is appropriate in the

specific internal energy equation (3.46).

103

4. ALE HYDRODYNAMICS IN BLAST

This section presents approaches to problems I faced as part of the BLAST team

in Lawrence Livermore National Laboratory during the summers of 2012 and 2013.

BLAST [41] is a high-order finite element hydrodynamics research code. Its goal

is to improve the accuracy of Lagrangian and Arbitrary Lagrangian-Eulerian (ALE)

simulations for compressible Euler equations, and to provide a viable path to extreme

parallel computing and exascale architectures. Related publications and additional

details about BLAST can be found in [41, 20, 16, 21, 17]. My work was concentrated

in improving the ALE capabilities of BLAST, namely the research and development

of algorithms for parallel mesh relaxation, parallel multi-field advection remap, and

multi-material simulations.

The main differences between the Lagrangian phase in BLAST, and the Entropy

Viscosity method from Section 3, are the viscous regularization, the form of the vis-

cosity coefficients, and the used finite element spaces. BLAST uses the Navier-Stokes

regularization approach, compression based viscosity coefficients, discontinuous finite

element spaces for the thermodynamic variables, and continuous FE spaces for the

kinematic variables. The details of these are discussed in Subsection 3.2 where we

make a general overview of the Lagrangian phase in BLAST.

In this section we introduce the stages of the ALE approach in the context of

BLAST and discuss the connections with the Entropy Viscosity method. The goal

of ALE is to overcome mesh tangling, mesh imprinting, and too small time steps

that usually result from the Lagrangian phase. ALE methods extend the Lagrangian

ones by three additional stages:

1. Mesh optimization - once the mesh quality during the Lagrangian phase deteri-

104

orates, one introduces a better mesh according to some quantities that measure

mesh quality.

2. Solution remap - solution defined on the old mesh is mapped to a solution

defined on the new mesh. The remap algorithms must preserve mass, momen-

tum, kinetic and internal energy, and the functions’ maximum and minimum

values.

3. Multi-material zone treatment - the solution remap step introduces mixed

zones, where a single cell contains multiple materials. In those zones one needs

to come up with appropriate mixing of equations of state or reconstructing an

exact interface in order to compute pressure, sound speed, etc.

Approaches to the above steps are discussed in Subsections 4.2, 4.3 and 4.4, re-

spectively. Throughout this section we stick to the notation established throughout

Section 3 and in particular Subsection 3.3.1.

4.1 Overview of the Lagrangian Phase in BLAST

In this subsection we make a brief overview of the Lagrangian phase in BLAST.

We focus on its differences with the Entropy Viscosity method which is discussed

in Section 3, while concepts that overlap in both methods are omitted. Complete

description of the Lagrangian phase in BLAST can be found in [20].

4.1.1 Viscous Regularization

The Lagrangian phase of BLAST uses the Navier-Stokes regularization approach,

namely the regularized system in Lagrangian frame has the form

d

dt
x(x0, t) = u(x, t), (4.1)

105

dρ

dt
= −ρ∇ · u, (4.2)

ρ
du

dt
= −∇p+∇ · σa, (4.3)

ρ
de

dt
= −p∇ · u+ σa : ∇u, (4.4)

where σa is an artificial stress tensor that depends only on velocity gradients. The

corresponding Lagrangian frame regularization used in the Entropy Viscosity method

is presented in Subsection 3.2. Advantages and disadvantages of both approaches

are already discussed in Subsection 3.1.

BLAST supports four distinct artificial stress types. The symmetric velocity

gradient can be decomposed in the form

∇su =
d∑

m=1

µmsm ⊗ sm, si · sj = 0, µ1 ≤ ... ≤ µd,

where µk and sk are its eigenvalues and eigenvectors, respectively, sorted from small-

est to largest eigenvalue. If we define a measure of compression in some arbitrary

direction s as

∆su := lim
α→0

u(x+ αs)

α|s|
· s
|s|

=
s · ∇u · s

s2
=
s · ∇su · s

s2
, (4.5)

then one can derive that s1 is the direction of maximal compression, while µ1 is the

value of the compression measure (4.5) in the direction s1. Having this in mind, the

four artificial stress types are

σa1 = κs1∇u, σa2 = κs1∇su,

σa3 = κs1µ1s1 ⊗ s1, σa4 =
d∑

m=1

κsmµmsm ⊗ sm,
(4.6)

106

where κs is a direction dependent viscosity coefficient which is explained later. The

tensors σa1 and σa2 are standard, while σa3 is a purely one dimensional viscous stress

that only takes into account the direction of maximal compression. The tensor σa4

can be viewed as a generalization of σa2 and σa3 , since it can handle interactions

of multiple shocks by taking into account multiple directions of strong compression.

Further details about the above artificial tensor stress types and their application to

test problems can be found in [20].

4.1.2 Semi-Discrete Form

BLAST uses the continuous finite element space Qd
k for the kinematic variables

(position, velocity), and a discontinuous FE space Q∗k for the specific internal energy:

Qk = {v ∈ C0(Ω0); v|K0 ◦ Φ0 ∈ Qk,∀K0 ∈ Kh},

Q∗k = {v ∈ L2(Ω0); v|K0 ◦ Φ0 ∈ Qk,∀K0 ∈ Kh}.

The optimal combination for the numerical experiments in BLAST is to take the

discontinuous FE space of order one less than the kinematic space, namely pairs of

the type Qk-Q
∗
k−1. If {φj}Nj=1 and {wj}N

∗
i=1 are the basis functions of Qd

k and Q∗k−1,

respectively, then the semi-discrete form that corresponds to the system (4.1)-(4.4)

is to find ρ ∈ Q∗k−1,u ∈ Qd
k, e ∈ Q∗k−1,x ∈ Qd

k so that the following equations hold

for each j = 1...N and i = 1...N∗:

ρ(x, t)
∣∣JJ−1

0 (x0, t)
∣∣ = ρ0(x0), (4.7)

107

∫
Ω(t)

ρ(x, t)
du(x, t)

dt
· φj(x, t) dx =∫

Ω(t)

p(x, t)∇ · φj(x, t) dx−
∫

Ω(t)

σa : ∇φj(x, t) dx

−
∫
∂Ω(t)

p(x, t)φj(x, t) · n dx+

∫
∂Ω(t)

n · σa · φj(x, t) dx

(4.8)

∫
Ω(t)

ρ(x, t)
de(x, t)

dt
wi(x, t) dx =∫

Ω(t)

−p(x, t)∇ · u(x, t)wi(x, t) dx+

∫
Ω(t)

σa : ∇u(x, t)wi(x, t) dx

(4.9)

d

dt
x(x0, t) = u(x, t), (4.10)

Notice that the density ρ doesn’t have to be a finite element function since it’s evolved

pointwise, and all resulting mass matrices are constant in time (see Subsection 3.5.2).

Boundary integrals were discussed in Subsection 3.3.2, the same comments are valid

for the boundary integrals in equation (4.8). Equation (4.9) is solved locally on each

cell since the FE space for e is discontinuous and the equation doesn’t contain numer-

ical fluxes across the cell boundaries. The semi-discrete form (4.7)-(4.10) guarantees

exact mass, momentum and total energy conservation, see [20]. The corresponding

semi-discrete form used in the Entropy Viscosity method is presented in Subsection

3.3.2.

4.1.3 Viscosity Coefficients

The viscosity coefficient κs in the definition of the artificial stress tensor σa (4.6)

has the form

κs(x) := ρ
(
q2h

2
s|∆su|+ q1ζ0ζ1hscs

)
, (4.11)

where q1 and q2 are linear and quadratic scaling coefficients, respectively; cs is the

speed of sound at x; hs is length scale that measures the perturbation of the initial

108

mesh in the direction s, namely

hs(x(x0, t)) = h0(x0)
|JJ−1

0 (x0)s(x)|
|s(x)|

; (4.12)

the quantity ζ0 is used to suppress the linear term at points where vorticity dominates

the flow

ζ0 :=
|∇ · u|
||∇u||

and ζ1 is a compression switch that makes the linear term inactive at expansion

points:

ζ1 :=

1 if ∆su < 0,

0 if ∆su ≥ 0,

The coefficient (4.11) is very similar to the Option 2 first order viscosity coefficient

used in the Entropy Viscosity method (see Subsection 3.3.5), comparisons with other

viscosity coefficients can be found in Subsection 3.5.

4.1.4 Application of the Entropy Production Based Coefficient

We can apply the entropy production based coefficient (2.50) in BLAST. One

way to do this is to alter (4.11) in the following way:

κs(x) := ρmin
(
q2h

2
s|∆su|+ q1ζ0ζ1hscs, ν

entr
)
, (4.13)

where νentr is defined in Subsection 2.3.5, equation (3.26). By doing this we make

the artificial viscosity go to zero in smooth regions, which is not a property of the

coefficient (4.11). We validate this statement by running the 2D Taylor-Green vortex

problem (see Subsection 3.4.1) with active viscosity that is scaled by the coefficient

(4.13). The simulations use type 1 artificial tensor σa1 and RK4 time integrator. The

109

results are given in Table 4.1. We observe high order convergence rates even with

active viscosity terms.

Q2-Q∗1 Q3-Q∗2 Q4-Q∗3
h0 L1 error rate L1 error rate L1 error rate
1/4 6.28E-2 1.65E-2 5.90E-3
1/8 9.10E-3 2.78 1.65E-3 3.32 4.60E-4 3.68
1/16 2.46E-3 1.88 1.96E-4 3.07 1.71E-4 4.74
1/32 6.52E-4 1.91 2.32E-5 3.04 1.69E-6 3.33

Table 4.1: L1 velocity errors and convergence rates resulting from using the entropy
based viscosity coefficient for the 2D Taylor-Green problem.

Next we verify that the coefficient (4.13) is appropriate for simulations with

shocks. We run the 2D Sedov explosion (see Subsection 3.4.3) on a 20 × 20 mesh

with type 1 artificial tensor σa1 and the pair Q2-Q∗1 FE spaces. Final density field and

viscosity coefficient are presented on Figure 4.1. We observe correct mesh motion

and precise shock capturing.

4.2 Mesh Relaxation

The goal of mesh relaxation is to increase the CFL time step and to avoid mesh

tangling by changing the current computational mesh Ω̃ to a new mesh Ω. In ALE

methods, the mesh relaxation step is usually performed after some fixed number of

Lagrangian steps.

Following the notation from Subsection 3.3.1, let x1
0...xN

0 be the positions of our

finite element nodes that correspond to the position function x̃ of Ω̃. The relaxation

procedure we propose replaces each interior node’s position with a weighted average

110

Figure 4.1: Final density field (on the left side), and entropy viscosity coefficient (on
the right side) for the 2D Sedov explosion problem.

of its neighbors by the formula

xi
n+1 =

∑
j∈Ni

cijxj
n, (4.14)

where Ni is the set of neighbors of node i, cij are some weights so that cij ∈

(0, 1),
∑

j∈Ni cij = 1. The formula (4.14) can be generalized by introducing the

N ×N mesh Laplacian matrix L so that

Lii = 1, Lij = −cij,
N∑
j=1

Lij = 0.

Then solving the system

Lx = 0

with initial guess x0 and eliminated boundary nodes (keeping their positions con-

stant) is equivalent to taking the limit of the iteration (4.14) as N →∞. A precon-

111

ditioner can be applied to obtain the general method

xn+1 = xn + P (0− Lxn), (4.15)

where P is a preconditioner for L. The formula (4.15) is general with respect to the

definition of L. We focus on two choices of L:

1. L1 connects neighboring nodes with equal weights. Neighboring nodes are

determined by the finite element sparsity, namely two nodes are neighbors if

they share a cell. Applying L1 to high-order FE spaces is not a good idea due

to the differences between nodes associated with elements, faces, edges and

vertices.

2. L2 connects neighboring nodes by assembling the stiffness matrix on the refer-

ence cell.

Remark For dimensions d > 1, in (4.15) the mesh Laplacian L is block-diagonal,

having d equal N × N blocks. The position vector x is ordered by dimension com-

ponents first.

4.2.1 Numerical Tests

On Figure 4.2 we show initial and relaxed Q2 mesh in 2D after 5 iterations of

(4.15) with mesh Laplacian L1 and no preconditioner. On Figure 4.3 we show cross-

sections of initial and relaxed Q3 mesh in 3D after 3 iterations of (4.15) with mesh

Laplacian L2 and no preconditioner.

The mesh relaxation algorithms need to be parallel in order to be compatible

with the BLAST framework. Examples of mesh distribution to different MPI tasks

can be seen on Figure 4.4.

112

Figure 4.2: Perturbed 2D mesh(on the left side), and the corresponding relaxed mesh
(on the right side) computed by 5 steps of the L1 smoother.

Figure 4.3: Cross-sections of perturbed (on the left side), and relaxed 3D meshes (on
the right side) computed by 3 steps of the L2 smoother.

4.3 Solution Remap

Let Ω̃ be our starting mesh, and let Ω be the new mesh obtained by relaxing Ω̃.

Having a scalar finite element function υ̃ defined on Ω̃, the goal of the remap step is

to to generate a new FE function υ on Ω. The new function υ must be in the same

113

Figure 4.4: Mesh distribution to different MPI tasks for 2D (on the left side) and 3D
(on the right side) high order meshes.

FE space as υ̃. The remap procedure must satisfy the following properties:

1. Accuracy, i.e. polynomials up to some degree must be remapped with no error.

2. Conservation, namely
∫

Ω
υ =

∫
Ω̃
υ̃.

3. Monotonicity, i.e. the remap procedure must not generate new extrema.

A straightforward way to define a remap would be a simple interpolation of υ̃ on the

FE nodes x1...xN of Ω, namely

υ(xj) = υ̃(xj), ∀j = 1...N,

but this approach does not satisfy any of the required properties. A better approach

is to consider a projection operation, namely

∫
Ω

υψj dx =

∫
Ω

υ̃ψj dx, ∀j = 1...N ⇒∫
Ω

n∑
i=1

υiψiψj dx =

∫
Ω

n∑
i=1

υ̃iψ̃iψj dx, ∀j = 1...N,

114

where ψ and ψ̃ are the basis functions on Ω and Ω̃, respectively. In order to compute

the above integrals, however, one must consider the overlaps between the correspond-

ing old and new cells in Ω and Ω̃. Such computations become difficult for the case

of high-order, curved meshes.

4.3.1 Advection Remap

In this subsection we consider advection based remap. We introduce “pseudo-

time“ τ ∈ [0, 1], and we slightly change notation so that

Ω = Ω(τ), x = x(x̃, τ)

represent intermediate domains and positions, respectively, where Ω(0) = Ω̃,x(x̃, 0) =

x̃, and Ω(1),x(x̃, 1) is the final configuration after the remesh step. We choose to

define intermediate positions (i.e. the mesh motion) by

x(x̃, τ) := x̃+ τ(x(x̃, 1)− x̃). (4.16)

Then, in pseudo-time, we have the mesh velocity

ū(x) =
∂x

∂τ
= x(x̃, 1)− x̃. (4.17)

Notice that the definition of mesh motion (4.16) infers that ū is independent of τ .

We think of our unknown υ as

υ = υ(x(x̃, τ), τ), υ(x(x̃, 0), 0) = υ̃(x̃),

115

and its material derivative in pseudo-time is

dυ

dτ
=
∂υ

∂τ
+ ū · ∇υ.

Ideally, the remap procedure must provide ∂υ
∂τ

= 0, meaning that the unknown func-

tion stays constant while the mesh transitions from Ω̃ to Ω(1). Therefore, our remap

problem reduces to solving the advection equation

dυ

dτ
= ū · ∇υ, υ(x(x̃, 0), 0) = υ̃(x̃), (4.18)

with mesh motion defined in (4.16), and corresponding mesh velocity ū defined in

(4.17).

4.3.2 Multi-Field Remap

Now we go back to the BLAST framework and state the corresponding advection

remap equations for density, momentum and internal energy. Each velocity compo-

nent is remapped independently as a continuous field. For simplicity we focus on the

remap of one component denoted by u. The resulting problems are

dρ

dτ
= ū · ∇ρ, d

dt
(ρu) = ū · ∇(ρu),

d

dt
(ρe) = ū · ∇(ρe). (4.19)

This is a system of equations with respect to ρ, u, e, where the initial conditions for

those variables are given by the solution state before the remesh procedure. Since

the FE space Q∗k that is used for ρ and e is discontinuous, we propose discontinuous

Galerkin weak forms of the density and internal energy equations:

116

• Density - we seek ρ ∈ Q∗k, so that for every j = 1...N∗ we have

∫
Ω(τ)

dρ

dt
wj dx =

∑
K∈Ω(τ)

∫
K

(ū · ∇ρ)wj dx

−
∑

f∈Fi(τ)

∫
f

(ū · nf)JρK{wj} dx−
1

2

∑
f∈Fi(τ)

∫
f

|ū · nf |JρKJwjK dx.
(4.20)

• Internal energy - we seek e ∈ Q∗k, so that for every j = 1...N∗ we have

∫
Ω(τ)

ρ
de

dt
wj dx =

∑
K∈Ω(τ)

∫
K

ρ(ū · ∇e)wj dx

−
∑

f∈Fi(τ)

∫
f

ρ̄(ū · nf)JeK{wj} dx−
1

2

∑
f∈Fi(τ)

∫
f

ρ̄|ū · nf |JeKJwjK dx.
(4.21)

Here Fi(τ) is the set of internal faces, JψK = ψi−ψe is face jump, and {ψ} = 1
2
(ψi+ψe)

is face average, and ρ̄ = {ρ} − 1
2
sgn(ū · nf)JρK is the upwind value. Since the FE

space Qk that is used for u is continuous, we propose the following continuous weak

form for the velocity equation:

• Velocity components - we seek u ∈ Qk, so that for every j = 1...N we have

∫
Ω(τ)

ρ
du

dt
ϕj dx =

∫
Ω(τ)

ρ(ū · ∇u)ϕj dx. (4.22)

In order to handle discontinuous functions in a monotonic way, we can introduce

some diffusion procedures around the jumps or flux limiting. These approaches are

not yet fully established and they are not part of this document. The semi-discrete

forms (4.20), (4.21), (4.22) are discretized in pseudo-time by choosing a fixed number

of time steps (we have a constant mesh velocity), and using a generic Runge-Kutta

time integrator.

117

4.3.3 Numerical Tests

We show some preliminary results for functions without jumps. On Figure 4.5

we use the weak form (4.20) to remap the density field ρ(x̃) = sin(πx) sin(πy). On

Figure 4.6 we use the weak form (4.22) to remap the field u(x̃) = (π
2

+arctan(20(x−

0.5)), π
2

+ arctan(20(y− 0.5))). These simulations use Q2 FE spaces for position and

velocity, and Q∗2 FE space for density on a 32× 32 mesh.

Figure 4.5: Original mesh and density (on the left side), and the corresponding
relaxed mesh and remapped density (on the right side).

In Table 4.2 we show errors and convergence rates for mass, momentum, kinetic

and internal energy for the above examples. The remapped specific internal energy

field is e(x̃) = sin(πx) sin(πy). We use a standard RK4 time integrator that performs

the denoted number of steps in pseudo-time. The convergence rates resolve the time

integrator’s accuracy, implying that the semi-discrete forms (4.20), (4.21), (4.22)

provide exact conservation of all quantities.

The remap algorithms need to be parallel in order to be compatible with the

118

Figure 4.6: Original mesh and velocity field (on the left side), and the corresponding
relaxed mesh and remapped velocity field (on the right side).

h, # steps mass error rate IE error rate KE error rate MOM(x, y) error rate
1/8, 10 1.3E-8 5.7E-7 1.7E-6 (2.0E-8, 2.0E-8)
1/16, 20 8.9E-10 3.86 4.4E-8 3.69 1.0E-7 4.08 (1.4E-9, 1.4E-9) 3.83
1/32, 40 5.6E-11 3.99 2.0E-9 4.45 4.3E-9 4.53 (8.9E-11, 8.8E-11) 3.97
1/64, 80 3.2E-12 4.12 9.8E-11 4.35 1.6E-10 4.74 (4.9E-12, 5.3E-12) 4.18

Table 4.2: Mass, internal energy (IE), kinetic energy (KE) and momentum (MOM)
errors for a remap of jump-free fields.

BLAST framework. Examples of mesh distribution to different MPI tasks can be

seen on Figure 4.7.

4.4 Multi-Material Simulations

The goal of this subsection is to propose methods for computing pressure values

in cells containing more than one material. Such cells result from the ALE remesh

and remap steps.

119

Figure 4.7: Mesh distribution to different MPI tasks for remap of jump-free fields.

4.4.1 Material Indicator Functions

We use the initial material configuration to define ”material indicator functions“,

namely

ηr(x, 0) =

1 if material r is present at x,

0 otherwise.

(4.23)

We choose these functions to be in our thermodynamical (discontinuous) FE space

Q∗k. If we have a material interface that is initially inside a cell, we diffuse those

functions by

∫
Ω0

η∗r(x, 0)ϕ(x) dx+ εh2

∫
Ω0

∇η∗r(x, 0) · ∇ϕ(x) dx =

∫
Ω0

ηr(x, 0)ϕ(x) dx, (4.24)

where ϕ and η∗r are basis functions and solution in the continuous space Qk. We

project η∗r back to Q∗k to get the final diffused indicator function. The constant

ε > 0 controls the amount of diffusion, note that the same constant must be used for

all materials. Once we have the initial indicator functions, we evolve them in time

120

following the mesh motion, namely

d

dt
ηr(x, t) = 0. (4.25)

Notice that (4.23), (4.24), (4.25) imply that at all times we have

∑
r

ηr(x, t) = 1,

hence we can also think of these functions as material fractions.

The presence of a material interface inside a cell at initial time also requires the

diffusion of the density and specific internal energy fields. However this introduces

new difficulties, e.g. consider a jump in ρ and e, so that the pressure stays constant

across the interface. In this case any smoothing of the ρ and e values in the interface

region causes non-constant pressure, because the connection p = p(ρ, e) is non-linear.

We show an example by considering the 2D Triple Point Interaction problem, where

the initial conditions are given on Figure 4.8, and results for material interfaces

aligned with cell boundaries are presented in [20]. We use a mesh with 57× 25 cells,

so that all material interfaces are not aligned with cell boundaries. Diffusing the

initial ρ and e values inside the mixed cells results in wrong initial pressure values,

leading to a spurious wave in the solution at later times. Example of such situation

is presented on Figure 4.8.

4.4.2 Material-Specific Extension Functions

We tackle the above problem by introducing density and specific internal energy

”extension functions“. That is, we break our original ρ and e into material-specific

densities ρr and energies er, r = 1...#materials. The idea behind these functions is

to use them in order to compute correct pressure values. At initial time, they are

121

Figure 4.8: Initial conditions (on the left side), and spurious wave resulting from
wrong initial pressure values (on the right side) for the Triple Point Interaction
problem.

initialized by

ρr(x, 0) =

ρ∗(x, 0) ηr(x, 0) > 0,

0 ηr(x, 0) = 0,

er(x, 0) =

e∗(x, 0) ηr(x, 0) > 0,

0 ηr(x, 0) = 0,

(4.26)

where ρ∗, e∗ are the extended material values within the cell, e.g. if we have a two-

material 1D cell [0, 1] with a material interface at x = 1
2

and densities given by

ρ(x, 0) =

ρL x ≤ 1

2
,

ρR x > 1
2
,

⇒ ρ1 = ρL, ρ2 = ρR,∀x ∈ [0, 1].

Notice that the extension functions are not influenced by diffusion procedures and

they are independent of each other. We use the equations of state for each mate-

rial, together with the material-specific densities and energies, to compute material-

specific pressures pr. Then we define final pressure at a point in one of two ways:

122

• By material mixing:

p(x, t) =
∑
r

ηr(x, t)pr(ρr(x, t), er(x, t)). (4.27)

• By dominant material (”exact“ interface reconstruction):

p(x, t) = pr(ρr(x, t), er(x, t)), r = arg max
i

(ηi(x, t)). (4.28)

Global density and global internal energy are defined as

ρ(x, t) =
∑
r

ηr(x, t)ρr(x, t), ρ(x, t)e(x, t) =
∑
r

ηr(x, t)ρr(x, t)er(x, t). (4.29)

4.4.3 Time Evolution

We evolve the velocity u and the material specific densities and energies ρk, el in

a way that preserves mass and the total energy on semi-discrete level. The material-

specific densities ρk are evolved in time by pointwise mass conservation, namely

ρr(x, t)
∣∣JJ−1

0 (x0, t)
∣∣ = ρr(x, 0).

The material velocity u is evolved by (4.8), where the pressure is computed by (4.28)

or (4.27), and the viscosity coefficient κ from (4.11) is defined as

κs(x) :=
∑
r

ηrρr
(
q2h

2
s|∆su|+ q1ζ0ζ1hs(cs)r

)
, (4.30)

where (cs)r is material-specific sound speed. In order to evolve each ek in time, we

replace the weak form (4.9) by a weak that takes into account the extension functions.

123

That is, we seek er ∈ Q∗k−1 so that for every i = 1...N∗ we have

∫
Ω(t)

ηr(x, t)ρr(x, t)
der(x, t)

dt
wi(x, t) dx =

−
∫

Ω(t)

θrpr(x, t)∇ · u(x, t)wi(x, t) dx+

∫
Ω(t)

(σa)r : ∇u(x, t)wi(x, t) dx,

(4.31)

where θr is given by

θr =

ηr(x, t) in the case of mixed pressure (4.27),

δrl, l = arg maxj(ηj(x, t)) in the case of dominant pressure (4.28),

and (σa)r is a material-specific stress tensor obtained by plugging the viscous coeffi-

cient

(κs)r(x) := ηrρr
(
q2h

2
s|∆su|+ q1ζ0ζ1hs(cs)r

)
. (4.32)

in the chosen case of (4.6).

4.4.4 Numerical Tests

Here we show results for the Triple Point Interaction problem discussed earlier

in this subsection (see Figure 4.8). We define three material indicator functions and

corresponding densities and energy extensions. We use a mesh with 57×25 cells, Q3

FE spaces for u and x, Q∗2 FE spaces for er, ηr, material mixing pressure (4.27), and

the final time is T = 3.0. Final density profiles are shown on Figure 4.9. Example of

initial and final material indicator functions is shown Figure 4.10. Example of initial

and final density extension functions is shown on Figure 4.11.

124

Figure 4.9: Density profiles at time 1.5 (on the left side), and at time 3.0 (on the
right side) for the Triple Point Interaction problem.

Figure 4.10: Example of a material indicator function at initial time (on the left
side), and at time 3.0 (on the right side) for the Triple Point Interaction problem.

Figure 4.11: Example of a density extension function at initial time (on the left side),
and at time 3.0 (on the right side) for the Triple Point Interaction problem.

125

5. CONCLUSION

5.1 Mean Field Games

We have presented a parallel fixed point iteration algorithm that combines a sec-

ond order scheme for the forward Hamilton-Jacobi equation (1.1), and a second order

scheme for the backward convection-diffusion equation (1.2). The second order accu-

racy of the method is confirmed numerically, and our numerical results agree with the

already existing data in the field. The schemes’ simplicity and the method’s parallel

ability allow us to use highly refined meshes. We have eliminated the memory prob-

lems arising from the combination of implicit time stepping and forward-backward

coupling of the equations.

This work can be extended by introducing 2D algorithms that use the same

central schemes approach. This will result in more computations inside a single time

step, hence it will exploit better the parallel abilities of our numerical method. We

expect to achieve similar run times as in 1D, since the 2D methods will do the same

number of time steps while performing more computations per cell.

5.2 Entropy Viscosity Method

We have presented a high-order curvilinear finite element method which combines

non-oscillatory behavior in contacts, sharp shock detection, compatibility with gen-

eralized entropy inequalities (1.19) and minimum principle on the specific entropy

(1.35) on continuous level, and compatibility with the general tensor viscosity re-

quirements from [36]. The method is general with respect to the polynomial degree

of the used finite element spaces and the order of the time integration methods. The

reported results confirm that out coefficients converge to zero for smooth solutions

and we achieve convergence to exact solutions with rate close to the optimal rate of

126

one for standard shock wave problems. We observe proper radial symmetry preser-

vation for uniform and non-uniform initial meshes, robust capturing of the problems’

geometric features, and ability to represent details of the flow within a single zone.

All these features come for the price of adding extra viscosity terms in all equations

and using continuous finite element spaces for all variables, which results in a bit

more dissipative behavior compared to already existing results.

We have presented some preliminary ideas how to extend our method by intro-

ducing length-scale independent artificial viscosity coefficients, and how to achieve

pointwise mass conservation and time-independent mass matrices by incorporating

the mass diffusion into the mesh motion. The method can also be extended by adding

ALE capabilities, namely mesh relaxation, solution remap, and multi-material treat-

ment stages.

5.3 ALE Extensions

We have presented some approaches and preliminary results for the different

stages of ALE simulations. The proposed mesh relaxation uses a harmonic smooth-

ing scheme based on a mesh Laplacian matrix. This algorithm is robust and easy

to parallelize. We have discussed remap algorithms that solve Lagrangian-type ad-

vection equations in pseudo-time. These algorithms are used for all fields and they

have good conservation properties. By introducing some material-specific notions we

have achieved reasonable pressure values in most mixed zones, and we have fixed the

pressure problem at initialization.

The presented work is based on the results obtained during two summer in-

ternships, hence it is by no means complete. Ideas about local mesh relaxation,

solution-dependent mesh relaxation, and other mesh optimization algorithms are be-

ing discussed. Approaches focused on the monotonicity properties of the discussed

127

remap algorithms are also work in progress. The presented multi-material methods

are defined only with respect to the Lagrangian part of BLAST, they must also be

extended to the ALE stages.

128

REFERENCES

[1] Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta, Mean field games:

Numerical methods for the planning problem, SIAM J. Control Optim., 50

(2012), pp. 77–109.

[2] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical meth-

ods, SIAM J. Numer. Anal., 48 (2010), pp. 1136–1162.

[3] Y. Achdou, J.-M. Lasry, P.-L. Lions, and B. Moll, Heterogeneous Agent

Models in Continuous Time, To Appear, (2014).

[4] C. Bardos, A. Y. le Roux, and J.-C. Nédélec, First order quasilinear

equations with boundary conditions, Comm. Partial Differential Equations, 4

(1979), pp. 1017–1034.

[5] A. Barlow, A compatible finite element multi-material ALE hydrodynamics

algorithm, Internat. J. Numer. Methods Fluids, 56 (2008), pp. 953–964.

[6] D. Benson, An efficient, accurate, and simple ALE method for nonlinear finite

element programs, Comput. Methods Appl. Mech. Engrg., 72 (1989), pp. 305–

350.

[7] H. Brenner, Fluid mechanics revisited, Physica A: Statistical Mechanics and

its Applications, 370 (2006), pp. 190–224.

[8] E. Caramana, D. Burton, and M. Shashkov, The construction of compat-

ible hydrodynamics algorithms utilizing conservation of total energy, J. Comput.

Phys., 146 (1998), pp. 227–262.

129

[9] E. Caramana and M. Shashkov, Elimination of artificial grid distortion and

hourglass-type motions by means of Lagrangian subzonal masses and pressures,

J. Comput. Phys., 142 (1998), pp. 521–561.

[10] E. Caramana, M. Shashkov, and P. Whalen, Formulations of artificial

viscosity for multi-dimensional shock wave computations, J. Comput. Phys., 144

(1998), pp. 70–97.

[11] L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conser-

vation laws via Hamilton-Jacobi equations, Math. Comp., 64 (1995), pp. 555–

580.

[12] R. Darlington, T. McAbee, and G. Rodrigue, A study of ALE simula-

tions of Rayleigh-Taylor instability, Comp. Phys. Comm., 135 (2001), pp. 58–73.

[13] X. Ding, G. Chen, and P. Luo, Convergence of the Lax-Friedrichs scheme

for isentropic gas dynamics I, Acta. Math. Sci., 5 (1985), pp. 415–432.

[14] R. J. DiPerna, Convergence of approximate solutions to conservation laws,

Arch. Rational Mech. Anal., 82 (1983), pp. 27–70.

[15] , Convergence of the viscosity method for isentropic gas dynamics, Comm.

Math. Phys., 91 (1983), pp. 1–30.

[16] V. Dobrev, T. Ellis, T. Kolev, and R. Rieben, Curvilinear finite ele-

ments for Lagrangian hydrodynamics, Internat. J. Numer. Methods Fluids, 65

(2011), pp. 1295–1310.

[17] , High-order curvilinear finite elements for axisymmetric Lagrangian hydro-

dynamics, Comput. and Fluids, 83 (2013), pp. 58–69.

[18] V. Dobrev and T. Kolev, GLVis - OpenGL visualization tool.

http://glvis.googlecode.com, 03/18/2014.

130

[19] , MFEM - Modular finite element discretization library.

mfem.googlecode.com, 03/18/2014.

[20] V. Dobrev, T. Kolev, and R. Rieben, High-order curvilinear finite ele-

ment methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34 (2012),

pp. B606–B641.

[21] , High order curvilinear finite elements for elasticplastic Lagrangian dynam-

ics, J. Comput. Phys., 257 (2014), pp. 1062–1080.

[22] J. Dukowicz and B. Meltz, Vorticity errors in multidimensional Lagrangian

codes, J. Comput. Phys., 99 (1992), pp. 115–134.

[23] D. Flanagan and T. Belytschko, A uniform strain hexahedron and quadri-

lateral with orthogonal hourglass control, Internat. J. Numer. Methods Engrg.,

17 (1981), pp. 679–706.

[24] O. Gueant, Mean field games equations with quadratic Hamiltonian: a specific

approach, Math. Models Methods Appl. Sci., 22 (2012).

[25] J.-L. Guermond and M. Nazarov, A maximum-principle preserving linear

finite element method for scalar conservaton equations, To appear, (2014).

[26] J.-L. Guermond, M. Nazarov, and B. Popov, Implementation of the

entropy viscosity method, Tech. Rep. 4015, KTH, Numerical Analysis, Sweden,

Stockholm, 2011. QC 20110720.

[27] J.-L. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method

for nonlinear conservation laws, J. Comput. Phys., 230 (2011), pp. 4248–4267.

[28] J.-L. Guermond and B. Popov, Viscous regularization of the Euler equations

and entropy principles, To appear, (2014).

131

[29] A. Harten, On the symmetric form of systems of conservation laws with en-

tropy, J. Comput. Phys., 49 (1983), pp. 151–164.

[30] A. Harten, P. Lax, D. Levermore, and W. Morokoff, Convex entropies

and hyperbolicity for general Euler equations, SIAM J. Numer. Anal., 35 (1998),

pp. 2117–2127.

[31] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory

schemes, SIAM J. Numer. Anal., 24 (1987), pp. 279–309.

[32] C. Hirt, A. Amsden, and J. Cook, An arbitrary Lagrangian-Eulerian com-

puting method for all flow speeds, J. Comput. Phys., 135 (1997), pp. 198–216.

[33] C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for

Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), pp. 669–690.

[34] S. Jin and Z. Xin, Numerical passage from systems of conservation laws

to Hamilton-Jacobi equations, relaxation schemes, SIAM J. Numer. Anal., 35

(1998), pp. 2385–2404.

[35] P. Kjellgren and J. Hyvarien, An arbitrary Lagrangian-Eulerian finite

element method, Comp. Mech., 21 (1998), pp. 81–90.

[36] T. Kolev and R. Rieben, A tensor artificial viscosity using a finite element

approach, J. Comput. Phys., 228 (2009), pp. 8336–8366.

[37] S. Krushkov, First order quasilinear equations with several independent vari-

ables, Math. USSR-Sb., 10 (1970), pp. 217–243.

[38] A. Kurganov and E. Tadmor, New high-resolution semi-discrete central

schemes for Hamilton-Jacobi equations, J. Comput. Phys., 160 (2000), pp. 720–

742.

132

[39] A. Lachapelle, J. Salomon, and G. Turinici, A monotonic algorithm for

mean field games model in economics, Math. Models Meth. Appl. Sci., 1 (2010),

pp. 1–22.

[40] J.-M. Lasry and P.-L. Lions, Mean Field Games, Jpn. J. Math., 2 (2007),

pp. 229–260.

[41] Lawrence Livermore National Laboratory, BLAST - Object-oriented

high-order finite element shock hydrocode. www.llnl.gov/casc/blast, 03/18/2014.

[42] P. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical

computation, Comm. Pure Appl. Math., 7 (1954), pp. 159–193.

[43] , Shock Waves and Entropy in Contributions to Nonlinear Functional Anal-

ysis, Academic Press, New York, NY, 1971.

[44] C.-T. Lin and E. Tadmor, High-Resolution non-oscillatory central schemes

for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), pp. 2163–2186.

[45] , L1-stability and error estimates for approximate Hamilton-Jacobi solu-

tions, Numer. Math., 87 (2001), pp. 701–735.

[46] P.-L. Lions, Cours du College de France: Theorie des jeux a champs

moyens (video lectures). http://www.college-de-france.fr/site/pierre-louis-

lions/#course, 04/05/2014.

[47] P.-L. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes

for scalar conservation laws and Hamilton-Jacobi equations, Numer. Math., 69

(1995), pp. 441–470.

[48] P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-

dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys.,

228 (2009), pp. 2391–2425.

133

[49] P.-H. Maire, R. Abgrall, J. Breil, and J. Ovadia, A cell-centered La-

grangian scheme for two-dimensional compressible flow problems, SIAM J. Sci.

Comput., 29 (2007), pp. 1781–1824.

[50] A. Majda, Compressible fluid flow and systems of conservation laws in several

space variables, Springer-Verlag, New York, 1984.

[51] H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyper-

bolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408–463.

[52] W. Noh, Errors for calculations of strong shocks using an artificial viscosity

and an artificial heat flux, J. Comput. Phys., 72 (1987), pp. 78–120.

[53] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for

Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991), pp. 907–922.

[54] L. Sedov, Similarity and dimensional methods in mechanics, CRC Press, Boca

Raton, FL, 1993.

[55] D. Serre, Systemes de lois de conservation I: hyperbolicite, entropies, ondes

de choc, Diderot Editeur, Paris, 1996.

[56] M. Shashkov and J. Campbell, A tensor artificial viscosity using a mimetic

finite difference algorithm, J. Comput. Phys., 172 (2001), pp. 739–765.

[57] M. Shashkov, J. Hyman, and J. Campbell, Mimetic finite difference op-

erators for second-order tensors on unstructured grids, Comput. Math. Appl.,

44 (2002), pp. 157–173.

[58] E. Tadmor, A minimum entropy principle in the gas dynamics equations, Appl.

Numer. Math., 2 (1986), pp. 211–219.

[59] J. Von Neumann and R. Richtmyer, A method for the numerical calcula-

tion of hydrodynamic shocks, J. Appl. Phys., 21 (1950), pp. 232–237.

134

[60] M. Wilkins, Methods in computational physics, Academic Press, San Diego,

CA, 1964.

[61] V. Zingan, J.-L. Guermond, J. Morel, and B. Popov, Implementation of

the entropy viscosity method with the discontinuous Galerkin method, Comput.

Methods Appl. Mech. Engrg., 253 (2013), pp. 479–490.

135

