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ABSTRACT

Advances in high-throughput, high-volume microscopy techniques have enabled

the acquisition of extremely detailed anatomical structures on human or animal

organs. The Knife-Edge Scanning Microscope (KESM) is one of the first instruments

to produce sub-micrometer resolution (∼1µm3) data from whole small animal brains.

We successfully imaged, using the KESM, entire mouse brains stained with Golgi

(neuronal morphology), India ink (vascular network), and Nissl (soma distribution).

Our data sets fill the gap of most existing data sets which have only partial organ

coverage or have orders of magnitude lower resolution. However, even though we have

such unprecedented data sets, we still do not have a suitable informatics platform to

visualize and quantitatively analyze the data sets.

This dissertation is designed to address three key gaps: (1) due to the large volume

(several tera voxels) and the multiscale nature, visualization alone is a huge challenge,

let alone quantitative connectivity analysis; (2) the size of the uncompressed KESM

data exceeds a few terabytes and to compare and combine with other data sets

from different imaging modalities, the KESM data must be registered to a standard

coordinate space; and (3) quantitative analysis that seeks to count every neuron in

our massive, growing, and sparsely labeled data is a serious challenge.

The goals of my dissertation are as follows: (1) develop an online neuroinformat-

ics framework for efficient visualization and analysis of the multiscale KESM data

sets, (2) develop a robust landmark-based 3D registration method for mapping the

KESM Nissl-stained entire mouse data into the Waxholm Space (a canonical coor-

dinate system for the mouse brain), and (3) develop a scalable, incremental learning

algorithm for cell detection in high-resolution KESM Nissl data.
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For the web-based neuroinformatics framework, I prepared multi-scale data sets

at different zoom levels from the original data sets. And then I extended Google

Maps API to develop atlas features such as scale bars, panel browsing, and transpar-

ent overlay for 3D rendering. Next, I adapted the OpenLayers API, which is a free

mapping and layering API supporting similar functionality as the Google Maps API.

Furthermore, I prepared multi-scale data sets in vector-graphics to improve page

loading time by reducing the file size. To better appreciate the full 3D morphology

of the objects embedded in the data volumes, I developed a WebGL-based approach

that complements the web-based framework for interactive viewing. For the regis-

tration work, I adapted and customized a stable 2D rigid deformation method to

map our data sets to the Waxholm Space. For the analysis of neuronal distribution,

I designed and implemented a scalable, effective quantitative analysis method using

supervised learning. I utilized Principal Components Analysis (PCA) in a supervised

manner and implemented the algorithm using MapReduce parallelization.

I expect my frameworks to enable effective exploration and analysis of our KESM

data sets. In addition, I expect my approaches to be broadly applicable to the

analysis of other high-throughput medical imaging data.
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1. INTRODUCTION

The connectome is a complete collection of the neural connections of a whole brain

[87, 86, 85]. Obtaining the connectomes of individual brains and their structural anal-

ysis provide critical information for understanding brain structures and their func-

tions as well as the structural causes of brain dysfunction such as schizophrenia and

autism. While the human connectome has been available for analysis at a centimeter

resolution using non-invasive tools, high-throughput, high-volume microscopy tech-

niques for small animal brains have enabled the description of connectivity at the

scale of individual neurons and synapses [21].

The Knife-Edge Scanning Microscope (KESM) is one of the first instruments to

produce sub-micrometer resolution (∼1µm3) data from whole small animal brains

[55]. We successfully imaged, using the KESM, entire mouse brains stained with

Golgi (neuronal morphology) [16], India ink (vascular network) [57], and Nissl (soma

distribution) [14] at 0.6 µm × 0.7 µm × 1.0 µm resolution. These KESM data sets

fill the gap of most existing data sets between having only partial organ coverage

and having orders of magnitude lower resolution [55, 62, 59, 60, 61].

It is an important task to develop frameworks for disseminating and analyzing

such full-scale neural and vascular microstructures of the mouse brain. My disserta-

tion aims to tackle the challenges of developing these frameworks.

1.1 Motivation

KESM data sets can contribute greatly to neuroscience research because they

provide high-resolution neuroanatomical structures of whole small animal brains.

However, their dissemination, registration, and quantitative analysis are primary

challenges.
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KESM high-volume image data with sub-micrometer resolution can easily exceed

a few terabytes. We can use online cloud systems to upload and share the KESM

data sets, but users need to have their own high-capacity hard disk to download

and save them. Moreover, it is physically and computationally expensive to render

the volume data in 3D. Rendering large volumes in 3D becomes difficult without

high-end graphics cards and extensive graphics memory. These challenges hinder

public sharing of these large, high resolution data sets, thus posing major obstacles

for collaboration amongst neuroscience researchers.

The KESM data sets are unique in their detail and extent compared to other

currently available data sets. Submicrometer voxel size across entire small animal

brains from KESM (or similar approaches) can fill the critical gap between large-scale,

lower resolution methods like diffusion MRI [8, 27, 76, 94] on the one hand and small-

scale, higher resolution methods like SBF-SEM [18] on the other hand. So, mapping

our KESM data sets to a standard coordinate system for the mouse brain provides

deeper understanding of the mouse brain by across referencing different mouse brain

atlases. Also, due to the limitation of our neuroanatomy data sets without the

neural activity information, mapping the KESM data sets to the functional atlas of

the rat brain will help to compare anatomical structures with neural activities in

their regions.

Analysis of neuronal distributions in the brain plays an important role in the

understanding to organization and in the diagnosis of disorders of the brain. The

KESM Nissl data set enables detailed studies of cortical and subcortical distribution

of neuronal cell bodies. However, a quantitative analysis that seeks to count every

neuron in our high-resolution Nissl data set is faced with a serious challenge.
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1.2 Approach

There are several mouse brain atlases available, with data from different imaging

modalities, but their resolution is not high enough in one or more of the x , y , or z

axis to show the morphological detail of neurons or microvasculatures [90, 65, 98, 53].

To disseminate our high-resolution whole brain KESM data sets, I have devel-

oped a light-weight web-based 3D rendering approach, only using standard HTML,

Javascript, and Cascading Styling Sheets (CSS) to achieve a quick, effective, and

resource-efficient web-based interface.

The first version of the web-based KESM brain atlas (or KESMBA v1) extended

the Google Maps API (https://developers.google.com/maps/) to include brain

atlas features such as scale bars and panel browsing.

A challenging issue arises due to the 3D nature of the KESM data, in contrast

to the 2D maps in Google Maps. In Google Maps, 2D image sets for different zoom

levels are stored at the server side, and those are requested on-demand by the client.

However, the client cannot just display 2D images from the KESM image stack. They

need to view it in 3D somehow but that can cause a huge memory and computational

overhead, regardless of whether it is done at the client side or the server side. Also,

single 2D images may not be informative.

A good compromise would be to use transparency (alpha channel) in the stored

images, so that clients can request multiple images from a stack and display it as an

offset overlay to give a 3D effect. KESMBA v1 consists of tile images with improved

contrast and added alpha channel. The client can control how many images to

stack up. These overlays can be done with straight-forward HTML, Javascript, and

Cascading Styling Sheets (CSS).

Efficient navigation requires multiple resolutions of the data and to reduce com-
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munication bandwidth, data sets at different zoom levels need to be pre-generated

and stored in our data server. KESMBA v1 supports not only original zoom level

tiles, but the tiles of down-scaled data sets.

Although Google Maps API provides many functionalities for manipulating brain

atlases, the API is licensed commercially. Because of that, we cannot locally store

the API library and need to be connected the networks for using the API library.

To solve these issues, I adapted the OpenLayers API (http://openlayers.org/)

instead of Google Maps API for its mapping features as the second version of KESM

brain atlas (or KESMBA v2). OpenLayers API is comparable to Google Maps API,

but it is open source, a JavaScript library available under the GNU GPL license.

Due to this, we can maintain a local, customized copy of the whole API library in

our server.

Moreover, the addition of alpha channel increased the file size of individual tiles.

Besides using the open source library, I was able to greatly reduce the file size of

each tile by converting the original data to Scalable Vector Graphics (SVG) data,

which is an XML-based vector image format, while retaining the complete structural

information. Besides, the SVG format does not need to fill in its background, so I

do not require an additional alpha channel to the individual tiles.

Furthermore, KESMBA v1 only supports the native orientation of the data sets:

the Golgi data sets were obtained in horizontal sections; and the India ink and

Nissl data sets were in coronal sections. Restricting to a single orientation hampers

exploration and understanding of the data. To minimize bringing up unit volumes

for fully interactive 3D inspection, a good alternative is to provide all three standard

orientations: horizontal, coronal, and sagittal. KESMBA v2 has a pull-down menu

to choose between these three standard orientations.

KESMBA v1 and v2 are ideal for surveying large volumes of data. However, since
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the viewpoint is fixed, it can be hard to appreciate the full 3D morphology of the

objects embedded in the data volumes. In order to overcome this, I have developed

a WebGL-based approach that complements the KESM brain atlas for interactive

viewing. Due to limits in computational power and memory of a typical personal

computer, only a small volume of data can be loaded in a web browser and inspected

at a time.

Besides the dissemination of KESM data sets, to enhance interoperability between

the KESM mouse brain atlas and other mouse brain atlases, I have transformed our

KESM Nissl data set into the Waxholm space (WHS), a new standard coordinate

space for rodents [30]. The benefit of this step is mutual. We can pull detailed

annotations at no cost from existing resources which include target volumes and

over fifty 3D data sets in the WHS [30]. In turn, our high-resolution KESM data

can provide rich anatomical data to other atlases.

As a WHS registration workflow, the KESM has unique noise characteristics, so

my first task was to suppress noise in the KESM data set, adapting a Fast Fourier

Transform (FFT)-based denoising algorithm. Then, in order to map the cleaned

Nissl data set to WHS, I have developed a landmark-based 3D registration frame-

work, extended a stable 2D rigid deformation method, for fine registration. This

framework produces a high resolution mouse brain atlas that leverages on a large set

of preexisting annotations in the WHS.

In addition to the WHS, the Allen Brain Atlas (ABA) website provides Allen

Reference Atlases (ARAs) in the coronal and the sagittal plane to complement a

genome-wide map of gene expression in the mouse brain. The reference atlases are

a web-based systemically organized taxonomy of mouse brain structures and they

also allow users to download full-color references of mouse brain structures in SVG

format, which do not contain the titles of each structure.
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I have developed a crawling tool to extract titled full-color references of mouse

brain structures in SVG format from the ARAs. Once I have 132 SVG references

and 21 SVG references in the coronal and sagittal plane, I manually mapped the

Allen SVG references to our KESM mouse brain atlases and overlayed the Allen

SVG references on KESMBA v2. This overlay plays a crucial role in annotations of

our high-resolution moue brain data.

Accurate estimation of neuronal count and distribution is central to the under-

standing of the organization and layout of cortical maps and subcortical nuclei in

the brain, and changes in the cell population induced by brain disorders. To conduct

such a quantitative analysis of the neuron distribution, I have developed a scalable,

incremental learning algorithm for cell body detection. This algorithm is computa-

tionally efficient (linear mapping, non-iterative) and does not require retraining (un-

like gradient-based approaches) or retention of old raw data (unlike instance-based

learning).

I have tested my algorithm on our rat brain Nissl data set, showing superior

performance compared to an artificial neural network-based benchmark. I have also

demonstrated robust performance in a scenario where the data set is rapidly growing

in size. The algorithm is also highly parallelizable due to its incremental nature, and

I have demonstrated this empirically using a MapReduce-based implementation of

the algorithm.

Putting all the above together, I expect my frameworks to enable effective ex-

ploration and analysis of our KESM data sets. In addition, I expect my approaches

to be broadly applicable to the analysis of other high-throughput medical imaging

data.
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1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I discuss

background information of my frameworks including the brain maps and atlases,

machine learning, image noise removal, and spatial registration in bioinformatics.

Chapter 3 introduces the Knife-Edge Scanning Microscope (KESM) and its data

sets.

In the following chapters, I explain my approaches of exploration, registration,

and analysis for the KESM data sets in details.

In Chapter 4, Chapter 5, and Chapter 6, I cover my exploration of the KESM

data sets, presenting two versions of KESM Brain Atlas and a unit volume viewer

to compensate the limitation of KESM Brain Atlas.

In Chapter 7, I deal with the registration of our KESM Nissl data set, introducing

my 3D registration workflow to map the KESM data set into the Waxholm space.

In Chapter 8, I discuss the analysis of our KESM Nissl data set with a novel in-

cremental learning approach for cell counting, showing superior results in comparison

with current approaches.

Finally, Chapter 9 discusses the contributions of my frameworks and future work

followed by Chapter 10 which concludes my dissertation.
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2. BACKGROUND: RELATIONSHIP TO SIMILAR RESOURCES

Imaging technologies for generating massive, high resolution biological data sets

are actively being developed. In this section, I survey existing data sources based on

such technologies and algorithms for the visualization and analysis of such data.

2.1 Brain Maps and Atlases

A diversity of web-based high-resolution brain atlases are available. Below is a

selected list of such web-based brain atlases.

The Allen Brain Atlas (ABA; http://www.brain-map.org/) provides web-based,

publicly accessible datasets of over 20,000 genes expressed in the C57BL/6J mouse

brain. The ABA archives millions of images from the mouse brain sectioned at a

resolution of 0.95µm/pixel on the x- and y-axis and 25µm/pixel on the z-axis, and

provides extensive annotation, which is semi-automatically generated by 3D regis-

tration. The ABA uses Adobe Flash web atlas in order to zoom and pan the data.

The ABA provides human and non-human primate brain data sets. Recently, the

ABA also added a high-resolution map of neural connections in the mouse brain

[44, 38, 68, 90].

NeuroMorpho.Org is a neuroinformatics resource, providing thousands of digitally

reconstructed neurons. It contains neuronal morphologies from different brain regions

of rat, mouse, human, cat, monkey and so on. This portal provides a search service

under diverse criteria such as categories, metadata, and morphometric measures.

Searching by these criteria enables comparative morphological analysis [4].

Edinburgh Mouse Atlas Project (EMAP; http://genex.hgu.mrc.ac.uk/intro.

html) uses optical projection tomography, a non-destructive scanning technique, to

construct full 3D data of mouse embryos at the resolution of 2µm×2µm×2µm and
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4µm×4µm×7µm on the order of hundred MB in size. Since their focus is mainly on

embryonic studies, this medium-resolution suffices. Using the 3D datasets, EMAP

presents 2D gene expression images in multiple orientations (transverse, sagittal, and

coronal). They provide Java Atlas Browser using Java Applet to allow web access

to the embryo datasets [7, 97].

BrainMaps.org contains digital brain atlases of various species including, but not

limited to, primates, rodents, and avians. BrainMaps.org contains over 10 million

megapixels of scanned data, with a typical resolution of 0.46µm/pixel with the section

thickness of a minimum of 40µm. They provide AJAX online atlas, which enables

zooming and panning of the pyramidal tiles of the image datasets, where label texts

are overlaid on the image slides. For a 3D display, BrainMaps.org reconstructed some

of the brain images into a VRML format, which requires a third party 3D display

application [65].

The Mouse Atlas Project at UCLA (MAP; http://map.loni.ucla.edu/) con-

tains an atlas viewer for human, monkey, and mouse brain datasets. They provide

the option to choose amongst multiple volume data (an MRI volume, a block-face

imaging volume, a Nissl-stained volume, and an anatomic delineation volume) sec-

tioned at a coarse resolution of 70×50×70µm3 or 40×40×40µm3 for MRI volume and

1×1×50µm3 for the Nissl volume. Also, they provide an option to choose among dif-

ferent orthogonal orientations (transverse, sagittal, and coronal). However, the MAP

atlas viewer does not allow navigating within an image (zooming/panning). There

are many other atlases on the MAP archive, where the viewer is basically a “slice

viewer,” showing single-image planes at a time [48].

The Mouse Connectome Project (MCP; http://www.mouseconnectome.org/)

at UCLA plans to collect high-resolution, multi-fluorescent connectivity atlases from

the whole mouse brain using a double coinjection tracing method [32]. At their
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project website, they allow users to access their connectivity data through a 2D in-

teractive tool, iConnectome. Currently, they provide different regions of the mail

olfactory bulb (MOB) connectivity data. Besides MOB data, they aim to gradu-

ally assemble the connectivity data of the accessory olfactory bulb (AOB), anterior

olfactory nucleus (AON), and other olfactory cortical areas.

The Mouse Brain Architecture Project at the Cold Spring Harbor Laboratory

(http://mouse.brainarchitecture.org/) aims to provide complete circuit map-

ping data in a whole mouse brain [66]. They used systematic injections of four

different tracer types (two anterograde and two retrograde) at 262 grid locations in

the mouse brain to characterize the circuits and cytoarchitecture. The project web-

site allows users to access these preliminary data sets as well as auxiliary data sets

with cytoarchitectonic markers.

The High Resolution Mouse Brain Atlas (HRMBA; http://www.hms.harvard.

edu/research/brain/index.html) contains 572 coronal sections from C57BL/6J

specimens. Each section is 20µm thick and treated in Nissl stain and Loyez method

alternatingly. Consecutive image sections in a single stain are 40µm apart. They

interpolated the consecutive sections to match the 40µm z-axis resolution to the 10µm

x- and y-axis resolution. The 2D atlas of the HRMBA has an option to present each

of the Nissl and myelin-stained sections separately or altogether. However, they

do not allow navigational functions for the presented section images. They also

reconstructed image sections for the cell clusters and grow dendrites to simulate

axons and their synaptic connections in 3D.

Collaborative Annotation Toolkit for Massive Amounts of Image Data (CAT-

MAID; http://fly.mpi-cbg.de/~saalfeld/catmaid/) is more focused on sharing

of gigantic datasets. CATMAID uses the serial section Transmission Electron Mi-

croscopy (ssTEM) datasets of the drosophila first instar larval brains at a resolution
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of 4nm/pixel. Inspired by GoogleMapsTM, the lightweight CATMAID web inter-

face allows decentralized image data storage and thus avoids duplication of massive

datasets. Also, it provides basic navigational functions and allows collaborative anno-

tation. Similar to the online atlas of BrainMaps.org, CATMAID also uses a pyramid

of tiles for rapid browsing at multiple scales [77, 98].

The Biomedical Informatics Research Network project is a national initiative to

share and mine data for biomedical research (BIRN; http://www.birncommunity.

org/). This project’s main goal is to create an integrated collaborative environ-

ment to share massive multiscale data collected across different advanced imaging

modalities. Particularly, the Mouse BIRN provides magnetic resonance data (Duke),

histological data (UCLA), diffusion tensor data (Caltech), and high-resolution elec-

tron tomography data (UCSD) for the mouse models. Also, a real-time multi-photon

laser-scanning microscope at UCSD has generated multi-wavelength 4D datasets. To

disseminate these huge multi-resolution datasets (that are multiple terabytes in size

per data set) to biomedical researchers, the BIRN project is in need of a light-weight

online interface [52, 19, 54, 53].

All of the above mentioned web-based atlases have attempted to solve the ac-

cessibility and visualization requirements. However, neither of the problems are

sufficiently addressed. Not enough navigational functions are offered in some atlases

(EMAP, MAP, and HRMBA), while some of them require additional software to

be installed (ABA, EMAP, and BrainMaps.org). Moreover, none of them support

a 3D view of the data at the resolution as high as their 2D versions. Visualization

in 3D can greatly enhance the utility of these resources. However, the 3D views of

ABA, BrainMaps.org, and HRMBA are too coarse, mainly because their datasets

have poor z-axis resolution. Even though the ssTEM data that CATMAID uses is

at the highest available resolution, at the nanometer scale [79, 78], 3D views are not
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addressed.

More mouse brain atlases are available (not reviewed here), with data from differ-

ent imaging modalities, but resolution for the whole mouse brain is not high enough

to show neuroanatomical structures in detail.

2.2 Image Noise Removal

In medical imaging, noise suppression is an essential process to enhance the visi-

bility of the objects of interest. A large number of techniques have adapted mathe-

matical transforms for noise removal because such transforms help reduce noise while

preserving structures in images. A variety of wavelet-techniques have been proposed

and improved in the context of image processing to remove noise [101, 22, 9]. Starck

et al. [88] employed the ridgelet and curvelet transforms to compensate for the limita-

tions of wavelet methods that cause large wavelet coefficients at fine scales. Robinson

et al. [75] extended a Fourier-wavelet deconvolution and denoising technique for ef-

ficiently generating high-quality images with enhanced contrast.

However, KESM has unique noise characteristics due to its use of physical sec-

tioning coupled with simultaneous imaging, so a customized noise removal method

is necessary. Particularly, tiny defects at the knife edge cause streaks. Moreover, the

cutting process induces irregular marks due to vibration of the knife, which is called

“chatter”.

2.3 Brain Image Registration

Brain image registration is an important preprocessing step to investigate the

intra-subject and inter-subject anatomical variability in brain mapping studies. With

volumetric data sets exceeding a few terabytes like the KESM data sets, spatial

registration into a standardized space is a further challenge.

The Talairach space, one of the most widely used common coordinate spaces for
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the human brain, has provided a standard for describing locations of human brain

structures with detailed anatomical labels in functional brain mapping studies [91].

In case of the mouse, Franklin and Paxinos [24] detailed stereotaxic coordinates in the

three sectioning planes (coronal, horizontal, and sagittal) for the adult mouse brain

atlas. These common coordinate spaces have allowed the alignment and comparison

of various types of data acquired from different specimens.

The International Neuroinformatics Coordinating Facility (INCF) recently devel-

oped a canonical coordinate system for the rodent brain called the Waxholm Space

(WHS) in 2008, for effectively integrating the rapidly growing rodent brain data.

WHS is a rodent equivalent of the Talairach space for humans. WHS will provide

facilities for standardization and comparison between rodent specimens [30].

So, to make our high-resolution and high-quality data broadly available and use-

ful, I will register our Nissl volume data to the Waxholm space.

2.4 Machine Learning Approaches

Neuron counting serves as an important metric for early diagnosis of brain disor-

ders, because the loss of neurons causes dysfunction in neuronal activities [95, 36, 26].

Hodneland et al. [33] introduced a unified framework for 3D segmentation of surface-

stained living cells from fluorescent images. The authors used Hessian ridge en-

hancement and ridge enhancement by curvature for background subtraction. Based

on the preprocessed images they ran watershed segmentation followed by level set

segmentation for cell classification.

Jain et al. [35] emphasized the superior performance of machine learning for image

segmentation. An initial algorithm takes images as input and when it produces seg-

mentation output, they train the computer to learn to search a better algorithm that

optimizes good performance. Jurrus et al. [39] used a series of Artificial Neural Net-
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works (ANNs) to more accurately detect neuron membranes in Electron Microscopy

(EM) images. At the beginning the first ANN uses raw image data as input, and

then the following ANNs take the input vectors which the first ANN used, adding

the output of the previous ANNs. [56] introduced a multi-layer feed-forward neural

network model to perform cell detection in raw KESM data. To enhance the compu-

tational performance of their algorithm, they used constant memory on the Graphics

processing units (GPUs).

These approaches assume that the intensity values of cell bodies are clearly dis-

tinct from backgrounds. Moreover, ANNs require a robust training set of manually

classified samples. Due to these reasons, huge Nissl volume data from KESM, in

which the shapes of cell bodies are diverse, is not able to simply use the current

approaches.
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3. IMAGING WITH THE KNIFE-EDGE SCANNING MICROSCOPE

The Knife-Edge Scanning Microscope (KESM, US patent #6,744,572) [13, 43, 58,

62, 59, 61] has been designed at Texas A&M University (TAMU) in recent years with

support from the National Science Foundation (MRI award #0079874; McCormick,

PI), the Texas Higher Education Coordinating Board (ATP award #000512-0146-

2001; Keyser, PI), and the National Institute of Neurological Disorders and Stroke

(Award #1R01-NS54252; Choe, PI).

3.1 Knife-Edge Scanning Microscope (KESM)

The instrument, shown in Fig. 3.1A, is capable of scanning a complete mouse

brain (∼ 310 mm3) at 300 nm sampling resolution within 100 hours when scanning

at its full capability. The instrument comprises four major subsystems: (1) precision

positioning stage, (2) microscope/knife assembly, (3) image capture system, and (4)

cluster computer. The specimen, a whole mouse brain, is embedded in a plastic

block and mounted atop a three-axis precision positioning stage. A custom diamond

knife, rigidly mounted to a massive granite bridge overhanging the three-axis stage,

cuts consecutive thin serial sections from the block.

Unlike block face scanning, KESM concurrently cuts and images (under water)

the tissue ribbon as it advances over the leading edge of the diamond knife. A

white light source illuminates the rear of the diamond knife, and in turn illuminates

the brain tissue at the leading edge of the diamond knife with a strip of intense

illumination reflected from the beveled knife-edge, as illustrated in Fig. 3.1B. The

microscope objective, aligned perpendicular to the top facet of the knife, images

the transmitted light. A high-sensitivity line-scan camera repeatedly samples the

newly cut thin section, imaging a stripe 20 µm wide across the tissue ribbon and

15



A. KESM B. KESM operation

Figure 3.1: The Knife-Edge Scanning Microscope and its Operation. A. The Knife-
Edge Scanning Microscope and its main components are shown: (1) high-speed line-
scan camera, (2) microscope objective, (3) diamond knife assembly and light col-
limator, (4) specimen tank (for water immersion imaging), (5) three-axis precision
air-bearing stage, (6) white-light microscope illuminator, (7) water pump (in the
back) for the removal of sectioned tissue, (8) PC server for stage control and image
acquisition, (9) granite base, and (10) granite bridge. B. The imaging principle of
the KESM is shown. See [15] for details.

just beyond the knife-edge, prior to subsequent deformation of the tissue ribbon after

imaging. Finally, the digital video signal is passed through image acquisition boards

and stored in a dedicated cluster computing system. A custom software developed

in-house at Texas A&M is used to control the stage movement and imaging process

in a fully automated manner.

3.2 KESM Data Sets

We successfully imaged, using the KESM, entire mouse brains stained with Golgi

(neuronal morphology), India ink (vascular network) [57], and Nissl (soma distribu-

tion) [14].

In 2008, we first imaged Golgi and India ink data sets from whole mouse (genotype

C57BL/6J) brains. This Golgi data set did not include the left frontal lobe, part of
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the left temporal lobe, and part of the right frontal lobe due to a misconfigured frame

buffer that truncated the images, although the entire brain was sectioned using the

KESM.

In 2010, we imaged Nissl and the second Golgi data sets from the KESM. Both

data sets spanned the entire brain. The first Golgi data set, although partly in-

complete, includes less noise than the second Golgi data set. Fig. 3.2 shows the

screenshots of the KESM data sets. All data sets had a voxel resolution of 0.6 µm

× 0.7 µm × 1.0 µm.

3.3 Summary

In this section, I introduced our Knife-Edge Scanning Microscope (KESM) and its

data sets. Such a high-resolution mouse brain 3D volume data from KESM is a crucial

resource in thoroughly understanding of the brain microstructures. Accordingly, in

my dissertation, I will provide efficient and optimized frameworks for the unique

KESM high-resolution data sets.
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(a) Neuron close-up (b) Block view (part) (c) Horizontal (part) (d) Sagittal (part)

(e) Vascularture close-up (f) Saggital (←A, →P) (g) Horizontal (←A, →P) (h) Coronal (↑D, ↓V)

(i) Nissl volume (j) Saggital (←A, →P) (k) Horizontal (←A, →P) (l) Coronal (↑D, ↓V)

Figure 3.2: KESM Data. Volume visualizations of KESM data stacks are shown for
the neuronal data set (top row, Golgi stain), the vascular data set (middle row, India
ink stain), and the Nissl data set (bottom row, Nissl stain). (a) Pyramidal cells from
the visual cortex. Width ∼ 100 µm (b) A large sub-volume from the Golgi data set.
Fine details are washed out. (scalebar = 1.44 mm) (c) A thin slab from (b) reveals
intricate circuits (horizontal section). (scalebar = 1.44 mm) (d) A thin slab from
(b) reveals intricate circuits (sagittal section, scalebar = 1.44 mm). (e) Close-up
of the vascular data. Width ∼ 100 µm. (f-h) Three standard views of the whole
mouse brain vasculature (subsampled from high-resolution data, width ∼ 10mm).
(i) Nissl-stained tissue volume (∼ 300 µm3). The dark donut-shaped objects are the
cell bodies labeled by Nissl. White ovals are unstained regions representing blood
vessels. (j-l) Three standard views of the whole Nissl mouse brain (subsampled from
high-resolution data, width ∼ 10mm).
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4. KESMBA V1: THE KNIFE-EDGE SCANNING MICROSCOPE BRAIN

ATLAS USING GOOGLE MAPS API∗

Connectomics is the study of the full connection matrix of the brain. Recent

advances in high-throughput, high-resolution 3D microscopy methods have enabled

imaging of whole small animal brains at a sub-micrometer resolution, potentially

opening the road to full-blown connectomics research. One of the first such in-

struments to achieve whole-brain-scale imaging at sub-micrometer resolution is the

Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now in-

clude Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular

networks).

KESM data can contribute greatly to connectomics research, since they fill the

gap between lower resolution, large volume imaging methods (such as diffusion MRI)

and higher resolution, small volume methods (e.g., serial sectioning electron mi-

croscopy). Furthermore, KESM data are by their nature multiscale, ranging from

the subcellular to the whole organ scale. Due to this, visualization alone is a huge

challenge, before we even start worrying about quantitative connectivity analysis.

To solve this issue, I developed a web-based neuroinformatics framework for ef-

ficient visualization and analysis of the multiscale KESM data sets. The design

requires that the framework is: (1) not dependent on high-end computer hardware

(e.g., expensive graphics cards), (2) not dependent on custom 3D viewing applica-

tions or plug-ins, and (3) browsable within any standard web browser.

Our web-based neuroinformatics framework called KESM Brain Atlas (KESMBA)

∗Reprinted with permission from “Multiscale Exploration of Mouse Brain Microstructures Using
the Knife-Edge Scanning Microscope Brain Atlas” by Chung, Sung, Mayerich, Kwon, Miller, Huff-
man, Keyser, Abbott, and Choe, 2011. Frontiers in Neuroinformatics, 5:29, the Frontiers copyright
line c© 2011 under Creative Commons Attribution License.
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v1 has been designed and implemented to allow the widest dissemination of KESM

mouse brain data and to enable fast visualization.

4.1 Basic Idea: Transparent Overlay with Distance Attenuation

The basic idea I used to meet the requirements listed above is transparent overlay

of images with distance attenuation [20]. Figure 4.1 shows the concept. Single

images may not be informative (Figure 4.1A). Overlaying an image stack containing

two intertwining objects to get minimum intensity projection (Figure 4.1B) results

in the loss of 3D information. A good compromise would be to use transparency

(alpha channel) in the stored images, so that clients can request multiple images

from a stack and display it as an offset overlay to give a 3D effect (Figure 4.1C).

This is similar to the artistic use of haze to achieve depth effect in a 2D medium (cf.

[40]). In practice, raw images containing data already have semi-opaqueness in the

background once made transparent, so simply overlaying them results in the same

kind of effect. This simple approach, when combined with a Google MapsTM-like

zoomable web interface, results in a powerful browsing environment for large 3D

brain data. In fact, we customized and extended the Google Maps API (version 2)

to construct the KSEMBA.

4.2 Image Processing and Adding Transparency

With the raw image data sets acquired from the KESM, three additional im-

age processing steps were performed to enhance the image quality suitable for the

web atlas. First, to enhance visibility, I inverted the original images with black

foreground and white background to have white foreground and black background.

Next, because the inverted images do not have enough luminance contrast, I per-

formed Gamma correction with a sigmoidal non-linearity to expand the luminance

contrast between foreground and background pixels within each image. The pixel
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A. Raw (synthetic) data slices

B. Overlay without distance attenuation C. Overlay with distance attenuation

Figure 4.1: Transparent Overlay with Distance Attenuation. A. An image stack
containing two intertwined objects is shown. B. Simple overlay of the image stack
in (A) results in loss of 3D perspective. C. Overlay with distance attenuation helps
bring out the 3D cue.

count histograms in Fig. 4.2 show increased luminance contrast between foreground

and background, with Gamma correction. Finally, I turned the background color of

the image to be transparent, for a 3D view. One way to achieve image transparency

on the web browser is to use the opacity feature of GoogleMaps APIs, which does not

require further image processing. However, the opacity feature changes the trans-

parency of all pixels in an image, so the foreground pixels that I want to keep opaque

become as much transparent as the background pixels. Therefore, I performed one

more image processing step to make the image pixels transparent according to their

graylevel value. The processed images were stored in PNG format, which supports

alpha channel transparency. The contrast factor and contrast center values (25 and

50) used in the graylevel transparency process were empirically selected. The follow-

ing is the actual ImageMagick script for inversion, Gamma correction, and graylevel

transparency:
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convert <input_file.jpg> -negate \

-sigmoidal-contrast 25,50% \( -clone 0 \) \

-alpha off -compose copy_opacity - <output_file.png>

Results after each image processing step is shown in Fig. 4.3.
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(a) Original (b) Gamma Corrected

Figure 4.2: Gamma Correction Result. Gamma correction is applied to a randomly
selected image and the histograms of the graylevel intensity of (a) the original and
(b) the Gamma corrected images are plotted. The foreground (near 160 intensity)
and background (near 110 intensity) pixels are close together in the original. After
Gamma correction, they are stretched to both ends.

Subsequently, pyramidal tiles, each of which is 256×256 pixel size, are generated

by using ImageMagick. Each tile in GoogleMaps consists of pixels. The pyramidal

structure of the GoogleMaps tiles in different zoom levels is shown in Fig. 4.4.

Our Golgi data has 8 columns, each of which is 2,400×12,000 pixel images, making

19,200×12,000 pixels altogether. With them, I prepared tiles for 6 different zoom

levels compatible with the GoogleMaps API’s zoom level from 2 to 7. The number

of tiles required at zoom level z is 2z × 2z. Therefore, the Golgi data set requires
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(a) Original (b) Inverted (c) Gamma-Corr. (d) Transparent

Figure 4.3: Effects of Image Processings. Transformation of an image after each
image processing step is shown.

...

...

......

... ...
...

... Zoom Level N-1

Zoom Level N
(width=height=256x2N pixels)

(0, 0) (1, 0) (2N-2, 0) (2N-1, 0)

(2N-1, 1)(1, 1)(0, 1) (2N-2, 1)

(2N-2, 2N-2) (2N-1, 2N-2)

(2N-2, 2N-1) (2N-1, 2N-1)

(0, 2N-2) (1, 2N-2)

(1, 2N-1)(0, 2N-1)

(2(N-1)-1, 2(N-1)-1)
(0, 2(N-1)-1)

(0, 0) (2(N-1)-1, 0)

(0, 0)

...

Zoom Level 0

Figure 4.4: Tile Pyramid Compatible with GoogleMaps. Quad-tree pyramid of tiles
and the xy coordinate indexing convention are depicted. Each tile has 256×256
pixels. Zoom level ranges from 0 to 17, and zoom level N has 2N×2N tiles. Following
this tiling convention automatically enables various map functions including zoom
in/out.

∑7
z=2 2z × 2z = 21, 840 tiles for each section, and 121,692,480 tiles for all 5,572

sections, theoretically. Fortunately, the actual number of tiles I created is 4,892 per
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section and 27,258,224 overall because each image section is not square-shaped and

I only had to create tiles containing tissue data. Fig. 4.5 shows the example of the

tiles I created for the minimum zoom level 2 (i.e., lowest resolution). In the example,

I had to create only 8 tiles out of 16 possible ones because I had no use for empty

tiles. Preparing a tile pyramid requires extra storage, time and effort. Assuming that

the above mentioned PNG transform did not increase the file size, in our Golgi data

set, the tile pyramid (4, 892× 256× 256× 5, 572 = 320, 002, 112) causes about 39%

increase in the file size compared to that without tiles (19, 200 × 12, 000 × 5, 572 =

230, 400, 000). However, once they are generated, they contribute to saving image

download time. For example, KESMBA v1 has a map area of

width:80\%;height:600px;

specified in a Cascading Style Sheet (CSS). The actual size of KESMBA v1 on

clients’ screens will be between 1536×600 and 820×600. This means that the number

of 256×256 sized tiles concurrently displayed on a client web browser is only 28

at the maximum zoom level, which is less than 1% of the original image section

(19,200×12,000 pixels).

Each tile is named to be consistent with GoogleMaps tile specification. For exam-

ple, a tile name 1 2 3.png denotes zoom level=1, x-coordinate=2, and y-coordinate=3.

4.3 GoogleMaps-based Web Atlas

To enable 3D visualization, I customized the GoogleMaps API. GoogleMaps API

provides extensive functions, required for a geographical atlas. In addition to the

essential navigational functions of zooming and panning, GoogleMaps API offers use-

ful features such as zoom scale bar, double-click zoom-in, overlaying various objects

including image, text, marker, and polygon. GoogleMaps provides an extensive API

specification and there exist a large number of private developers seeking and sharing
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256x4=1,024 pixels

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1)

(0, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

1,024 pixels 375 pixels

600 pixels

Figure 4.5: Example of Actual Tiles. The maximum zoom level of the Golgi image
section (19,200×12,000 pixels) is 7 (= argminx(256 × 2x ≥ max(19200, 12000))).
The minimum zoom level is set to 2. This particular example shows how the original
image is tiled and how the tiles are named at zoom level 2. The dark image in the
middle is the image section halved down 5 times (600×375 pixels) to fit in zoom level
2 (1,024×1,024 pixels). After putting the downsized image at the center, transparent
image patches (gray dashed area) are added to fill the incomplete tiles so that every
tile can have the same 256×256 pixels size. Because there is no need to generate
empty tiles, only 8 tiles are created out of 16 possible ones.

solutions for customizing the API. Fig. 4.6 shows how I customized and extended

the existing GoogleMaps API V2.

4.3.1 GoogleMaps Javascript API Customization

I generated a custom map type instance of the “GMapType” class to call the map

tiles from the Google database to feed in the custom tiles we generated. Multiple

tiles from subsequent image sections are overlaid to create a 3D effect. Below is the
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GoogleMaps
TM

 

Javascript API V2

Customization

New Features

· Custom Tile
· Custom Overlay
   - Overlay Number
   - Overlay Interval
   - Zoomable Annotation
· Redraw

· Information Panel
· Scale Bar
· Map Capture
· Z-axis Navigation

Figure 4.6: Extension of GoogleMaps API V2. Existing API functions are cus-
tomized to fit the purpose of KESMBA v1. This customization includes: embedding
custom tiles; tile overlays; user options to select the number and interval of the tile
overlays; overlaying zoomable annotation; and map redraw function. The API is
further extended to include: information panel; scale bar; map capture button; and
z-axis navigation controller.

Javascript code for the map tile overlay customization:

[[overlay.js]]

...

// 1. Create a tile layer.

customLayer=[new GTileLayer(...)];

// 2. Generate a custom tile URL.

customLayer.getTileUrl=customGetTileUrl;

// 3. Create an overlay instance of the GTileLayerOverlay class.

customOverlay=new GTileLayerOverlay(customLayer);

// 4. Create a map type instance of the GMapType class.
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customMap=new GMapType(...);

// 5. Create a map instance of the GMap2 class.

var myMap=new GMap2(document.getElementById("map"),

{mapTypes:[customMap]});

// 6. Add predefined custom map type into the map instance.

myMap.addMapType(customMap);

// 7. Add a custom tile layer into the map instance.

cMap.addOverlay(overlays);

...

Users can select the number of tiles to overlay and the interval between two over-

lays, so that they can have freedom to generate the 3D view of their preference. On

top of the image tile overlays, I added another optional overlay for text annotation.

This annotation can change at different zoom levels, so that it can show more global

description at a distant view and detailed description at close-up. Lastly, I added

a “redraw” function so that when a user changes any of the above options (overlay

size, overlay interval, and annotation on/off) and the map needs to be redrawn, it

does not refresh the entire page but redraws only the map area. This is achieved by

using the Javascript “arguments.callee” property, with which an executing function

can recursively refer to itself. Below is the script for the map redraw function:

[[index.html]]

<body onload=‘load();’>

[[overlay.js]]

...

var loadFcn; // global function pointer
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function load() {

map=newMap(arguments.callee, ..);

// arguments.callee is the load() function itself

...

}

function newMap(caller, ...) {

loadFcn=(caller) ? caller:function(){location.reload()};

// Call loadFcn when the map needs to be reloaded.

// caller is the original load() function

...

}

...

When “loadFcn” is called to redraw the map, it re-invokes the original “load” func-

tion. Redrawing the map in this way does not have to resume the entire page, and

thus is faster.

4.3.2 Extended Features

Since the GoogleMaps API is created solely for 2D geographical maps, some fea-

tures necessary for the 3D brain atlas are missing or do not allow user customization.

I attached a horizontal menu bar on top of the map to include the main functions

that are necessary for browsing KESMBA v1. Most of the new features are achieved

by using various properties of the Document Object Model (DOM). In the menu, I

added a z-axis navigation function with a drop-down menu (navigation step size) and

buttons (“+” and “-” for moving in/out). Also, users can choose whether to display

the annotation layer by clicking on a checkbox. To facilitate capturing the current
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view on the atlas, I added an image capture button. When the button is clicked,

it opens the print.html file using the windows.open method. In print.html, it gets

the map area information of index.html by the “window.opener” property. Then, it

copies whatever is on the map area of index.html to generate the page content of

print.html using the “innerHTML” property:

[[index.html]]

...

<input id=‘print’ type=‘button’

onclick=‘window.open("print.html");’ />

...

<div id=‘mapArea’></div>

...

[[print.html]]

...

<div id=‘container’>

<script type=‘text/javascript’>

var content=window.opener.document.getElementById(‘mapArea’);

document.write(content.innerHTML);

//

</script>

</div>

...

Since scale bar is one of the uncustomizable features of GoogleMaps, I attached

the scale bar onto the map. I created a <div> object using “createElement” method.
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It was appended to the map div (<div id=‘mapArea’>) by using “getContainer” and

“appendChild” methods. To make KESMBA v1 more informative, I also created a

panel to display the information of the current view. In the panel to the right,

KESMBA v1 displays the information about the specimen, stain type, current plane

of view, dimension of the image section, and the z-range of the layers in the current

view. An area to display the above information dynamically is first encapsulated by

<span id=‘xx’>...</span> tags, and its contents are updated using the “firstChild”

and “data” properties. This way, contents of the information panel are automatically

updated as the user navigates or switches between the atlases using the top menu

bar. Fig. 4.7 shows the interface of KESMBA v1 containing all the above mentioned

features. For more detail, please see the caption for Fig. 4.7.

4.4 Results

Here, I will present the results of our two KESM Golgi data sets and a KESM

India Ink data set from applying the KESMBA v1 framework to these data sets.

4.4.1 KESM Golgi Data Sets

The first Golgi brain was sectioned and imaged in 2008 (from July 7 to August

8, 2008). These results were first reported in [1]. The first Golgi data set did not

include the left frontal lobe, part of the left temporal lobe, and part of the right

frontal lobe due to a misconfigured frame buffer that truncated the images, although

the entire brain was sectioned using the KESM. The second Golgi brain was sectioned

and imaged in 2010 (from June 8 to August 4, 2010). The second data set contained

the entire brain. The first Golgi data set, although partly incomplete, includes less

noise than the second Golgi data set, so we decided to make available both data sets

within the KESMBA v1 framework. These results are shown in Figures 4.8 to 4.10.

All data sets had a voxel resolution of 0.6µm × 0.7µm × 1.0µm, so at maximum
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Figure 4.7: KESM Brain Atlas v1 Interface. A screenshot of KESMBA v1 running
in a web browser is shown. Red markers and text were added on top for the purpose
of explanation, below. A. Navigation panel: panning and zoom-in/zoom-out. B.
Data set selection. Golgi, Golgi2, IndiaInk are available in the pull-down menu. C.
Sectioning plane orientation. Three standard planes supported (planned). D. Depth
navigation. Amount of movement (unit = 1 µm) in the z direction and forward
(deeper, [+]) or backward (shallower, [-]) can be controlled. E. Overlay count. How
many images to overlay can be selected here. F. Overlay interval. Overlaying evenly
spaced at n µm intervals helps visualize thicker sections. G. Information window
containing specimen meta data and current location information. H. Scale bar that
automatically adjust to the given zoom level. I. Main display. Note that Google logo
on the bottom left is shown due to the use of Google Maps API, and it by no means
indicate any connection between the KESM data and Google.
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zoom, the data are quite detailed, as shown in Figure 4.11.

4.4.2 3D Rendering through Image Overlays

All results shown in Figures 4.8 to 4.11 were from direct screenshots of KESMBA

v1. The 3D effect is most notable in Figure 4.11. To highlight the z-axis resolution

of the KESM data sets, and to show the effectiveness of our overlaying technique,

we prepared views of a fixed region in the KESM data set by varying the number of

overlays (Figure 4.12A–C). As we can see from this figure, overlays are effective in

rendering 3D content, all within a standard web browser without any dedicated plug-

in. Another technique that we implemented that is especially helpful when viewing

with a larger field of view (i.e., zoomed out) is to overlay images at a certain interval.

For example, overlaying 20 images at an interval of 5 would visualize a 100-µm-thick

volume (compare Figure 4.12D and E).

4.4.3 Multiscale Nature of the KESM Data

One of the main advantages of KESMBA v1 is that it is very easy to navigate

through the data, both within a certain scale and across multiple scales. In fact,

this capability assisted greatly in producing the figures in the very article. Here, we

will present the multiscale nature of the KESM data and show the effectiveness of

the KESMBA v1 framework in handling such multiscale data. In Figure 4.13, we

show successive snapshots of KESMBA v1 while zooming from the largest scale to

the smallest scale. Each step of zooming in doubles the resolution, so the final panel

has 32× higher resolution than the first panel.

4.4.4 Neuronal Circuits: Local and Global

Finally, we examine the relevance of the KESM data sets to connectomics re-

search. Although it is true that with Golgi-Cox only ∼1 % of the entire population
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of neurons are stained and thin myelinated axons are not stained reliably, we can still

gain valuable insights from this whole-organ level data at a microscopic resolution.

KESM Golgi data sets can help advance connectomics research in two ways, (1)

locally and (2) globally. At the local scale, we can investigate the basic circuits [83].

Although exact connectivity cannot be established, the repeating pattern can help

us refine our basic circuit model, and also use the data to validate synthetic circuits

constructed based on a theoretical generative model (see e.g. [42, 96]). Having access

to these basic circuits from all regions in the brain is also a great benefit, as shown

in Figure 4.14. This figure shows neurons from the cerebellum, inferior colliculus,

thalamus, and hippocampus.

At the global scale, certain fiber tracts show up prominently in the KESM Golgi

data. For example, various commissures in the frontal lobe and dense fiber bundles

in the striatum are prominently visible (Figure 4.15). Similar fiber tracts can easily

be identified, such as the hippocampal commissure in the posterior part of the brain.

4.4.5 Download Performance

The above results confirm the effectiveness of KESMBA v1’s 3D view method

using image overlays. However, the additional image overlays mean longer download

time, and it will have limited utility if the download time exceeds waiting time

tolerable for the users. Fig. 4.16 shows the result of download time analysis of

KESMBA v1. Download time and download data size were measured in two modern

web browsers (Internet Explorer 8.0.6 and Mozilla Firefox 3.6.8) using HttpWatch

7.0.26, a browser plugin to monitor http traffic. Expectedly, the download time

and data size were proportional to the number of overlays. Notably, Firefox took

extraordinarily long with large variance, while downloading 20 overlays. The Intranet

and the Internet download times for 20 overlays reached above 22 seconds and 44
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seconds respectively with Microsoft Internet Explorer, and 53 seconds and 52 seconds

respectively with Mozilla Firefox. Literature on the tolerable waiting time for a web

page download presents discordant thresholds between 4 and 41 seconds [82, 25],

but none of them used a web page with as much graphical content as KESMBA v1.

Considering the unique graphics-rich nature of KESMBA v1, we believe the above

download times are within the tolerable threshold.

4.5 Summary

In this section, I presented KESMBA v1, a web-based mouse brain atlas us-

ing Google Maps API with improved accessibility and enhanced 3D visualization.

KESMBA v1 was designed to facilitate the sharing of the massive high-resolution

mouse brain data acquired from the KESM. The multiscale tiles allowed quick and

consistent downloading time and the 3D method enabled effective 3D visualization.

Moreover, KESMBA v1 allows access from any Internet devices because it min-

imizes the client-side computation and is implemented using standard Javascript

library. KESMBA v1 can serve as an effective and efficient informatics framework

for delivering large image volumes to the neuroscience research community.
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Figure 4.8: Golgi Data Set 1. A fly-through of the Golgi Data Set 1 is shown.
The data were obtained by sectioning in the horizontal plane (upper right corner:
anterior, lower left corner: posterior). This is the full extent of the data that was
captured. We can see that part of the left temporal lobe, left frontal lobe, and part
of the right frontal lobe are cut off. Scale bar = 1 mm. Each image is an overlay
of 20 images in the z direction. The z-interval between each panel is 600 µm. The
numbers below the panels show the ordering. These are cropped screenshots from
KESMBA v1. This data set, obtained in 2008, is the first whole-brain-scale data set
of the mouse at sub-micrometer resolution.
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Figure 4.9: Golgi Data Set 2. A fly-through of the Golgi data set 2 is shown. The data
were obtained by sectioning in the horizontal plane (left: anterior, right: posterior).
Scale bar = 1 mm. Each image is an overlay of 20 images in the z direction. The
z-interval between each panel is 800 µm, except for the last where it was 200 µm
(so that data from near the bottom of the data stack can be shown: otherwise it
will overshoot into regions with no data). The numbers below the panels show the
ordering.
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A. Coronal B. Sagittal

Figure 4.10: Golgi Data Set 2, Coronal and Sagittal Views. The coronal and sagittal
views of the data set in Figure 5.5 are shown. Scale bar = 1 mm. These views show
the superior z-axis resolution of the KESM data sets.

Figure 4.11: Details from Golgi Data Set 1. Details from the Golgi data set 1 are
shown at full resolution. This panel shows an overlay of 20 images, thus it is showing
a 20 µm-thick volume. Scale bar = 100 µm. The arrow heads, from left to right,
point to (1) the soma of a pyramidal cell in the cortex and (2) its apical dendrite,
and (3) a couple of spiny stellate cells. Other pyramidal cells and stellate cells can
be seen in the background. At this resolution, we can see dendritic spines as well.
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A. Overlay = 1 (int. = 1) B. Overlay = 5 (int. = 1) C. Overlay = 20 (int. = 1)

D. Overlay = 20 (int. = 1) E. Overlay = 20 (int. = 5)

Figure 4.12: Effectiveness of Image Overlays. The effect of an increasing number of
overlays is shown. Scale bar is 100 µm and int. means interval. The data is from
the same region as that from Figure 4.11. A. Since each KESM image corresponds
to a 1-µm-thick section, a single image conveys little information about the neuronal
morphology. B. Five overlayed images, corresponding to a 5-µm-thick section, begin
to show some structure but it is not enough. C. With twenty overlayed images,
familiar structures begin to appear. D–E. At a zoomed-out scale, skipping over
images can be an effective strategy to view the circuits more clearly. In D, 20
overlays at an interval of 1, representing a 20-µm-thick volume, are shown. In E, 20
overlays at an interval of 5 is shown, representing 100 µm. The dense dendritic arbor
in the hippocampus (left), fiber tract projecting toward the hippocampal commissure
(middle, top) and the massive number of pyramidal cells and their apical dendrites
(right) are clearly visible only in E.
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1× (scale bar = 1 mm) 2× (scale bar = 1mm)

4× (scale bar = 100 µm) 8× (scale bar = 100 µm)

16× (scale bar = 100 µm) 32× (scale bar = 100 µm)

Figure 4.13: Multiscale View of KESMBA v1. A multiscale view of KESMBA v1 is
shown (Golgi data set 1), by gradually zooming into the hippocampus (the numbers
below the panels show the zoom-in sequence). All panels show an overlay of 20
sections. The first four panels are shown with an overlay interval of 5 and the last
two with an interval of 1. Axons emerging from the hippocampal neurons are clearly
visible (arrow head, last panel).
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A B

C D

Figure 4.14: Different Types of Local Circuits. Different types of local circuits from
the KESM Golgi data set 1 are shown. A. Cerebellum. B. Inferior colliculus. C.
Thalamus. D. Hippocampus (also see Figure 4.13). See Figure 4.11 for circuits in
the neocortex. Scale bar = 100 µm.
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A (scale bar = 1 mm) B (scale bar = 100 µm)

C (scale bar = 100 µm) D (scale bar = 100 µm)

Figure 4.15: System-Level Fiber Tracts in the KESM Golgi Data Set 2. A. Horizontal
section at the level of the anterior commissure (the ”)”-shaped fiber bundle) is shown
(left: anterior, right: posterior). Massive fiber tracts in the striatum can also be
observed. B&C. Zoomed in view showing the anterior commissure near the middle.
D. Close-up of the fiber bundles in the striatum can be seen. A large number of
apical dendrites in the adjoining cortex can also be seen.
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Figure 4.16: KESMBA v1 Download Performance Analysis. Average of 10 download
trials for each setting (browser type and overlay size) is plotted (error bars indicate
standard deviation). IE = Internet Explorer, FF = Firefox. Except for the case of
Mozilla Firefox downloading 20 overlays, both the Intranet and Internet downloading
times increased proportionally with the overlay size.
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5. KESMBA V2: THE KNIFE-EDGE SCANNING MICROSCOPE BRAIN

ATLAS USING OPENLAYERS API

To disseminate our high-resolution whole mouse brain data sets to the neuro-

science research community, I designed and implemented a web-based brain atlas us-

ing Google Maps Javascript API (KESMBA v1 http://www.kesm.org/). KESMBA

v1 provides 3D visualization by customizing Google Maps API, not requiring high-

performance graphics cards or any web browser add-ons.

However, because Google Maps API is governed by a commercial license, cus-

tomization, extension, and mirroring of the library remain limited. Furthermore,

Google Maps API requests an API key from Google for every single page view, so

KESMBA v1 needs to be connected the networks at all times. Moreover, the added

alpha channel to image tiles for transparency to create a 3D effect increased the size

of each tile images. Because of the increased size of each tile image, multiple over-

lays lead to the loading time being very long (e.g., loading to overlay 50 images takes

more than one minute). KESMBA v1 also only supports the native orientation of

the data sets: the Golgi data sets were obtained in horizontal sections; and the India

ink and Nissl data sets were in coronal sections. Restricting to a single orientation

hampers exploration and understanding of the data.

To build a better web-based neuroinformatics framework, I adapted an open

source JavaScript library for displaying map data, the OpenLayers API. OpenLayers

API supports geographic navigation available in Google Maps API such as panning,

zooming, and overlaying. Because this API uses an open-source license, I can directly

download the recent version of the OpenLayers library at http://openlayers.org/,

customize the library, and adapt extensions of other developers. It does not require
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API key, so I can run this framework locally. I call this framework KESM Brain

Atlas (KESMBA) v2.

Furthermore, to reduce page loading time, I decreased the file size of the tile

images by converting our bitmap-based mouse brain data sets to XML-based vector

graphics format, Scalable Vector Graphics (SVG), while preserving the information

content. On top of that, to minimize bringing up unit volumes for fully interactive 3D

inspection, a good alternative is to provide all three standard orientations: horizontal,

coronal, and sagittal. KESMBA v2 has a pull-down menu to choose between these

three standard orientations.

KESMBA v2 allows open-ended innovation and an offline service. It also enables

much faster and more orientations of visualization compared to KESMBA v1.

5.1 Image Processing and Converting Bitmap to Vector Graphics

We used the KESM for sectioning and imaging tissue blocks of the mouse brain.

The actual imaging was performed by a DALSA CT-F3 high-sensitivity line-scan

camera capturing the transmitted light, and these images were stored in the desig-

nated storage. Noise due to the knife-edge misalignment, defects in the knife blade,

and knife chatter were removed through image processing algorithms including light

normalization [58]. The KESM controller also employed a stair-step cutting algo-

rithm because of limited field of view and width of the knife [43]. After preliminary

image processing for noise and distortion removal, TIFF formatted original raw files

were compressed into high quality JPEG format and stored for further processing.

We imaged horizontal sections from the Golgi stained and coronal sections from the

India ink stained brain.

Once we prepared JPEG image data, I reduced the graylevel images to binary

image using Otsu’s threshold clustering algorithm [69]. Comparing to other threshold
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clustering approaches such as maximum entropy, isodata, and mean, Otsu’s threshold

method preserved as much as the tissue structure of raw image data. Once the binary

images were generated, multiscale tiles were generated, each of which consisted of

256 × 256 pixels as in KESMBA v1.

To generate multiscale tiles from the binary image data sets, first I calculated the

number of possible tiles along both x- and y-axes by dividing the each image size by

the tile size 256 × 256 pixels. If the number of tiles along each axis was not even,

I made the number of tiles even by adding one. Then, I calculated the number of

possible zoom levels by applying the logarithm of base 2 to each tile count. Next, I

calculated the number of required tiles at the maximum zoom level. If the number of

tiles is less than the required number, the differences between the number of tiles and

the required number along each axis was used to compute the number of padding

tiles around the data tiles. The following Python code describes this computation.

This is the code for generating the tiles from the original image data and for the tiles

of the down-scaled images. I scaled down the raw images first and generated the

corresponding tiles in the same manner. Each tile was named following the Google

Maps tile naming convention because OpenLayers also supports this convention (e.g.,

1 2 3.png showing zoom level = 1, x-coordinate = 2, and y-coordinate = 3).

////////////////////

// File: tile_gen.py

////////////////////

...

// Calculate the number of possible tiles

tile_x_num = math.ceil(img_x_pix / 256)

tile_y_num = math.ceil(img_y_pix / 256)

// Make tile numbers even
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if(tile_x_num % 2 != 0): tile_x_num += 1

if(tile_y_num % 2 != 0): tile_y_num += 1

// The number of possible zoom level

zoom_num = math.ceil(math.log(tile_x_num,2))

// The number of required tiles at the maximum zoom level

max_tile_num = math.pow(2,zoom_num)

// The number of pad tiles

pad_x_num = max_tile_num - tile_x_num

pad_y_num = max_tile_num - tile_y_num

...

Once I had prepared PNG tiles, I used Potrace [81] to generate Scalable Vector

Graphics (SVG) vector image data from the multiscale bitmap tiles. Potrace is an

open source tool which transforms bitmaps into vector graphics. Compared to Auto-

trace (http://autotrace.sourceforge.net/) – an open source vector-converting

tool, Potrace produces superior graphical outputs, reducing processing time and file

size. See [81] for a detailed comparison between the Potrace and Autotrace.

I used Potrace version 1.11 (http://potrace.sourceforge.net/), and changed

backend svg .c code in the Potrace source distribution, which generates SVG files

from the bitmap tracing results. In the original code, the backend svg .c code gets

the width and height of bitmaps, and using the information, sets the width and

height of the SVG format. However, because the code adds pt unit, which measures

the height of a font, after the values of the width and height, the size of the original

view is changed by the point unit. The code below solves this problem by taking

away the pt unit, that is, it assumes the unit is a pixel.
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////////////////////

// File: backend_svg.c

////////////////////

...

// The original code line

// fprintf(fout, " width=\"%fpt\" height=\"%fpt\" viewBox=\"0 0 %f %f\"\n",

// bboxx, bboxy, bboxx, bboxy);

// The updated code, which removed pt units.

fprintf(fout, " width=\"%f\" height=\"%f\" viewBox=\"0 0 %f %f\"\n",

bboxx, bboxy, bboxx, bboxy);

...

When I transformed the bitmap tiles to SVG vector image data using Potrace,

the format of our bitmap tiles was BMP, because Potrace only supports PBM, PGM,

PPM, or BMP format. Potrace provides multiple options for better tracing of bitmap

images such as suppressing speckles, curve optimization, and corner thresholding. It

also has the options of generating SVG files such as grouping related paths and a

single path for whole image. I only used the option of suppressing speckles in the

Potrace and traced our bitmap tiles, converting them to SVG data. Here is the

command line in the Linux system when I run Potrace for the conversion.

// -t n - suppress speckles of up to this size (default 2)

// -s - SVG backend (scalable vector graphics)

// -o filename - write all output to this file

>potrace tile_input.bmp -t 0.1 -s -o svg_output.svg

5.2 Web Atlas Based on OpenLayers

To enable 3D visualization, I customized the OpenLayers Javascript library re-

leased as open-source software. OpenLayers provides an extensive range of functions
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required for geographic information rendering. Besides the main navigational func-

tions of zooming and panning, OpenLayers supports useful features such as zoom

scale bar, double-click zoom-in, and overlaying various objects including images,

text, markers, and polygons. On top of these functions, the open library can be

directly edited and customized by the user.

5.2.1 Customizations

Existing library functions were customized to fit the purpose of KESMBA v2.

This customization included the use of custom SVG tiles, tile overlays, user options

to select the number and interval of the tile overlays, and overlaying zoomable an-

notation. The library was further extended to include information panel, scale bar,

and z-axis navigation controller.

OpenLayers consists of two components: map and layer. An instance of the

OpenLayers map stores basic information about the boundary, the number of zoom

levels, the default projection, units, and controls of the map frame. Data information

is displayed by adding a layer to the map instance. To create a map instance, I used

the OpenLayers.Map constructor. OpenLayers provides different subclass groups of

Layer such as Web Map Service (WMS), Tile Mapping Service (TMS), Vector and

so on. I used the OpenLayers.Layer.TMS constructor to create a layer because the

TMS constructor supports SVG tiles by designating the tile image type ‘svg’.

Inside the Map instance, the first layer instance is the base layer for the map

frame. On top of the base layer, multiple layers from subsequent image sections can

be overlaid to create a 3D effect. The code summary below provides an overview of

how this is achieved using OpenLayers.

////////////////////

// File: svglayers.js
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////////////////////

...

// 1. Create the map frame.

g_map = new OpenLayers.Map( ‘svgmap’, {

maxExtent: new OpenLayers.Bounds(-80150033.3568,-80150033.3568,

80150033.3568,80150033.3568),

numZoomLevels:g_zoom,

maxResolution:156543.0339,

units:‘m’,

projection: ‘‘EPSG:900913’’,

displayProjection: new OpenLayers.Projection(‘‘EPSG:4326’’),

controls: [

new OpenLayers.Control.PanZoomBar(),

new OpenLayers.Control.Navigation(),

new OpenLayers.Control.Attribution(),

new OpenLayers.Control.KeyboardDefaults()

]

});

// 2. Add the base layer to the map frame.

var new_url = g_url_add + fiveDigitize(g_curr_depth) + ‘‘/’’;

var b_layer = new OpenLayers.Layer.TMS(‘‘BaseLayer’’, [new_url], { type:‘svg’,

getURL:get_kesm_url, opacity: g_valOpacity});

g_map.addLayer(b_layer);

// 3. Add more layers to the map frame.

if(g_numOverlay > 1)

{
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var overlays=[];

for(var idx = 0; idx < g_numOverlay-1; idx++) {

new_url = g_url_add+fiveDigitize(g_curr_depth+g_intOverlay*(idx+1))+‘‘/’’;

overlays[idx] = new OpenLayers.Layer.TMS(‘‘Name’’, [new_url], { type:‘svg’,

getURL:get_kesm_url, opacity: g_valOpacity,

isBaseLayer: false, transparent: true });

g_map.addLayer(overlays[idx]);

}

}

...

In my case, users can generate a 3D view of volumetric data by overlaying different

number of layers and by adjusting the interval between successive image sections.

On top of the data layers, users can also add an annotation layer.

The OpenLayers has a scale bar library for topography data and the constructor

of this library is OpenLayers.Control.ScaleBar. I adapted this library to add

the scale bar feature to our brain atlas. In the library source code, I changed the

measurement property to match that of our brain atlas. At the zoom level 0 (i.e.,

the original data resolution) the 100-pixel scale bar corresponds to 100 µm in the

brain tissue and at successfully higher zoom-out levels the corresponding length of

the tissue doubles. The modified code is shown below.

////////////////////////////////////////

// File: OpenLayers-2.12/lib/OpenLayers/Control/ScaleBar.js

////////////////////////////////////////

...
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measurementProperties: {

kesm: {

units: [’micrometers’, ’millimeters’, ’micrometers’],

abbr: [eval("String.fromCharCode(956)")+’m’, ’mm’, ’m’],

inches: [393700.7874, 39.370079, 0.393701]

}

},

...

In order to generate an instance of the scale bar and add the scale bar instance

to the map frame, I added the code below in the map initialization code.

////////////////////

// File: svglayers.js

////////////////////

...

// scale bar

var scalebar = new OpenLayers.Control.ScaleBar();

scalebar.divisions = 1;

scalebar.subdivisions = 1;

scalebar.singleLine = true;

scalebar.abbreviateLabel = true;

scalebar.displaySystem = "kesm";

// g_map is the map frame instance

g_map.addControl(scalebar);

...
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5.2.2 Extensions

I also added new features for the 3D brain atlas which are not provided by

OpenLayers. A z-axis navigation feature was added that could be controlled by

a drop-down menu (for selecting the next depth size) or two keys (“-” and “+” for

moving backwards/forward). Users can also activate an annotation layer by checking

a checkbox.

Besides these brain atlas features, I created an information panel to display the

status of the current view. This panel includes specimen type, stain type, orientation

of the current brain atlas, dimension of the current overlay view (width × height ×

depth), and actual depth range of the current overlay view. Fig. 5.1 shows the

interface of KESMBA v2 containing all the above mentioned features. For more

detail, please see the caption for Fig. 5.1.

5.3 Results

In this section, I will present results of the KESMBA v2 framework highlighting

the two KESM Golgi data sets. Although both data sets were obtained from whole

brains using the KESM, one does not have the left frontal lobe, part of the left

temporal lobe, and part of the right frontal lobe due to a misconfigured frame buffer

that truncated the images during sectioning and imaging. The other contains the

entire brain, but has more noise.

Both data sets are available within the KESMBA v2 framework. The results

of the KESMBA v2 framework are shown in Figures 5.2 to 5.5. Besides the whole

sections of two Golgi data sets in the horizontal plane, I generated the coronal and

the sagittal views for the data sets. Figure 5.3 is the whole sections in the coronal

plane and Figure 5.4 the sagittal plane. The original data sets have a voxel resolution

of 0.6 µm × 0.7 µm × 1.0 µm, so I fixed the voxel ratio to be 1 µm on each axis.
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Figure 5.1: KESM Brain Atlas v2 Interface. A screenshot of KESMBA v2 running
in a web browser is shown. Red markers and text were added on top for the purpose
of explanation, below. A. Navigation panel: panning and zoom-in/zoom-out. B.
Data set selection. Golgi, Golgi2, IndiaInk are available in the pull-down menu. C.
Sectioning plane orientation. Three standard planes supported (planned). D. Depth
navigation. Amount of movement (unit = 1 µm) in the z direction and forward
(deeper, [+]) or backward (shallower, [-]) can be controlled. E. Overlay count. How
many images to overlay can be selected here. F. Overlay interval. Overlaying evenly
spaced at n µm intervals helps visualize thicker sections. G. Opacity. The opacity of
layers can be adjusted. H. Information window containing specimen meta data and
current location information. I. The input parameters of the volume viewer and the
Render button to request opening the volume viewer. See Chapter 6 for details. J.
Scale bar that automatically adjust to the given zoom level. K. Main display with
OpenLayers.
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5.3.1 3D Rendering through Image Overlays

The 3D structures in the data are most notable in Figure 5.6. Overlays are

effective in rendering 3D content, all within a standard web browser without any

dedicated plug-in. To show the effectiveness of the overlaying technique, Figure

5.6A–D show a fixed region by varying the number of overlays. Also, to overcome

the limited number of overlays (up to 80), KESMBA v2 can show thicker tissue

sections by adjusting the overlay interval size. For example, overlaying 80 images at

the interval of 2 would visualize a 160-µm-thick volume, compared to a 80-µm-thick

volume at the interval of 1 (Figure 5.6D and E).

5.3.2 Multiscale Nature of the KESM Data

KESMBA v2 supports easy navigation through the data, both within a certain

scale and across multiple scales. Figures 5.7–5.8 show the multiscale nature of the

KESM data and the effectiveness of KESMBA v2 framework in handling such mul-

tiscale data. Figure 5.7 shows successive snapshots of the horizontal plane from

KESMBA v2 by gradually zooming into the hippocampus from the largest scale to

the smallest scale. Figure 5.8 shows successive snapshots of the sagittal plane from

KESMBA v2 by gradually zooming into the cerebellum. Each step of zooming in

doubles the resolution, so the final panel has 16× higher resolution than the first

panel.

5.3.3 Transform KESMBA Data to Support All Three Standard Views

KESMBA v1 only supports the native orientation of the data sets. The two

Golgi data sets we have were obtained in horizontal sections. However, restricting to

a single orientation hampers exploration and understanding of the data. To minimize

the need to download unit volumes for full 3D inspection, a good alternative is to

54



provide all three standard orientations: horizontal, coronal, and sagittal. KESMBA

v2 provides all three standard orientations of one of the Golgi data sets: See Figure

5.2 for horizontal, Figure 5.3 for coronal, and Figure 5.4 for sagittal. Figure 5.9 shows

details of the hippocampus and the cerebellum from multiple orientations. Whole

structures of Purkinje cells can be better appreciated from these three standard

orientations. KESMBA v2 has a pull-down menu to choose between these three

standard orientations.

5.3.4 Download Performance

I used HttpWatch 9.2 tool (http://www.httpwatch.com/) with Firefox 27.0.1

browser to measure the page download time at different overlay numbers in KESMBA

v1 and v2 to evaluate their performances. Fig. 5.10 shows two measurements: one

is the size of sum of the tiles and the other is the page download time at different

overlay numbers. As I expected, the download size of the PNG tiles in KESMBA

v1 are more than five times as much as that of the SVG files in KESMBA v2. The

decreased tile size in KESMBA v2 caused to highly reduce the page loading time

compared with KESMBA v1 (Fig. 5.10B). The reduced file size also allows increasing

overlay numbers up to 80 in KESMBA v2. However, the highly decreased size of the

tiles in KESMBA v2 does not cause losing structure information.

To estimate the SVG conversion error, I checked the pixel-wise mismatch between

the original PNG and the converted SVG tiles in the Golgi data set. For this, I

selected 10 layers at an interval of 500 µm along the axial direction. In each layer, I

compared all tiles (PNG vs. SVG) at zoom level 0, the highest resolution, and counted

the number of mismatched pixels (after thresholding). The average percentage of the

mismatched pixels was only 0.7 %, and the standard deviation 0.2 %.
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5.4 Summary

KESMBA v2 using OpenLayers allows faster navigation and deeper visualization

of KESM data sets compared to KESMBA v1. SVG tiles of KESM data are no-

ticeably decreased in size compared to PNG tiles used in KESMBA v1. Because of

the reduced file size, the tiles into KESMBA v2 is not only rendered faster, but also

enables overlays of up to 80 layers. The transition from Google Maps API to Open-

Layers API allows open-ended customization and maintenance. Both Google Maps

and OpenLayers fundamentally catered toward 2D data, so I developed an overlay-

based 3D rendering approach. The approach was also very light-weight, only using

standard HTML and Javascript to achieve a quick, effective, and resource-efficient

web-based 3D visualization of massive volume data. Furthermore, KESMBA v2 sup-

ports all three standard orientations (horizontal, coronal, and sagittal) to minimize

the need to download unit volumes for full 3D inspection. I expect the KESMBA v2

framework to accelerate neuroscience research.
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Figure 5.2: Golgi Data Set 1 in the Horizontal Plane. A fly-through of the Golgi data
set 1 in the horizontal plane is shown (left: anterior, right: posterior). This is the
full extent of the data that was captured. We can see that part of the left temporal
lobe, left frontal lobe, and part of the right frontal lobe are cut off which was due
to a misconfigured frame buffer during imaging. Scale bar = 2 mm. Each image
is an overlay of 80 images in the z direction. The z-interval between each panel is
about 700 µm. The numbers below the panels show the ordering. These are cropped
screenshots from KESMBA v2.
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Figure 5.3: Golgi Data Set 1 in the Coronal Plane. A fly-through of the Golgi
data set 1 in the coronal plane is shown. Scale bar = 1 mm. Each image is an
overlay of 80 images at an interval of 2, representing a 160-µm-thick volume. The
z-interval between each panel is about 500 µm. The numbers below the panels show
the ordering. These are cropped screenshots from KESMBA v2.
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Figure 5.4: Golgi Data Set 1 in the Sagittal Plane. A fly-through of the Golgi
data set 1 in the sagittal plane is shown. Scale bar = 1 mm. Each image is an
overlay of 80 images at an interval of 2, representing a 160-µm-thick volume. The
z-interval between each panel is about 500 µm. The numbers below the panels show
the ordering. These are cropped screenshots from KESMBA v2.

59



1 2

3 4

5 6

7 8

Figure 5.5: Golgi Data Set 2. A fly-through of the Golgi Data Set 2 is shown.
The data were obtained by sectioning in the horizontal plane (left: anterior, right:
posterior). Scale bar = 2 mm. Each image is an overlay of 80 images in the z
direction. The z-interval between each panel is 700 µm. The numbers below the
panels show the ordering.
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A. Overlay 1 B. Overlay 10 C. Overlay 30 D. Overlay 80

E. Overlay 80 (interval 1) F. Overlay 80 (interval 2)

Figure 5.6: Effectiveness of Image Overlays. A–D. The effect of an increasing num-
ber of overlays is shown at the interval of 1. Scale bar = 100 µm. A. Since each
KESM image corresponds to a 1-µm-thick section, a single image conveys little in-
formation about the neuronal morphology. B. 10 overlayed images, corresponding
to a 10-µm-thick section, begin to show some structure but they are not enough.
C. With 30 overlayed images, familiar structures begin to appear. D. 80 overlayed
images, showing the circuits more clearly. E–F. In E, 80 overlays at an interval of
1, representing a 80-µm-thick volume, are shown. In F, 80 overlays at an interval of
2 are shown, representing 160 µm. Even though D shows the clear dendritic arbor
in the hippocampus (left), the massive number of pyramidal cells and their apical
dendrites (right) are more densely visible in E.
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1× (scale bar = 2 mm) 2× (scale bar = 1 mm)

4× (scale bar = 500 µm) 8× (scale bar = 200 µm)

16× (scale bar = 100 µm) 16× (scale bar = 100 µm)

Figure 5.7: Multiscale View of the Hippocampus in the Horizontal Plane. A multi-
scale view in the horizontal plane from KESMBA v2 is shown (Golgi data set 1), by
gradually zooming into the hippocampus. The numbers below the panels show the
zoom-in scale. All panels show an overlay of 80 layers with an interval of 1.
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2× (scale bar = 1 mm) 4× (scale bar = 500 µm)

8× (scale bar = 200 µm) 16× (scale bar = 100 µm)

Figure 5.8: Multiscale View of the Cerebellum in the Sagittal Plane. A multiscale
view in the sagittal plane from KESMBA v2 is shown (Golgi data set 1), by gradually
zooming into the cerebellum. The numbers below the panels show the zoom-in scale.
All panels show an overlay of 80 layers with an interval of 2. The panel of the scale
16 shows the structures of Purkinje cells within the Purkinje layer in the cerebellum.
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A. H-Horizontal B. H-Coronal C. H-Sagittal

D. C-Horizontal E. C-Coronal F. C-Sagittal

Figure 5.9: Comparison of Different Orientations. Change in the orientation reveals
more intuitive details. A–C. The hippocampus, seen from multiple orientations.
Overlaying 80 layers with scale bar 200 µm at an interval of 1. D–F. Cerebellar
Purkinje cells. In the different orientations, a batch of Purkinje cells located in
different orientations were captured. Overlaying 80 layers with scale bar 100 µm at
an interval of 2.
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A. Data size comparison B. Download performance comparison

Figure 5.10: Download Performance Comparison Between KESMBA v1 and v2 Data.
A. This graph shows the download data size comparison between KESMBA v1 (or-
ange) and KESMBA v2 (red) with different numbers of overlay. B. This graph
shows the download performance comparison between KESMBA v1 (orange) and
KESMBA v2 (red) with different numbers of overlay. Average of 10 download tri-
als for each setting (browser type and overlay size) is plotted (error bars indicate
standard deviation).
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6. INTERACTIVE 3D-VOLUME VISUALIZATION AND RECONSTRUCTION

OF SMALL UNIT VOLUMES

KESMBA (KESM Brain Atlas) is ideal for surveying large volumes of data, but

since the viewpoint is fixed, it can be hard to appreciate the full 3D morphology of the

objects embedded in the data set. In order to overcome the limitation of KESMBA

and to complement it, I developed a web-based interactive 3D-unit-volume viewer,

capable of providing an interactive view and analysis of the volume data. Besides

interactive volume visualization, the volume viewer includes a volume reconstruction

feature by calculating the centerlines and diameters of the filamentary objects (e.g.,

vascular segments). Through the web-based 3D volume viewer, neuroscientists can

not only have interactive access to the full 3D morphology of the objects, but also

perform quantitative analysis of a region of interest in 3D objects real-time.

First, the intensities of voxels in a series of 2D SVG tiles or PNG tiles is generated

as an input to the volume viewer at the server side. Next, the centerlines are extracted

from the intensities of voxels using a thinning algorithm [71]. Based on the extracted

centerlines, connected centerline voxels are grouped to form separate segments. The

diameters of the structures are measured using a ray casting approach [100]. Then,

the voxels of the input volume and the centerlines, formed segments, and diameters

are transferred to the client. At the client side, the input volume using its voxels and

its reconstruction results based on the segment results and diameters are visualized.

The volume viewer utilizes Three.js (http://threejs.org/) built on top of WebGL

and dat.gui (https://code.google.com/p/dat-gui/, a graphical user interface

JavaScript library). WebGL is natively supported by most modern web browsers.
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6.1 Methods

6.1.1 Conversion of a Tile Stack into a Byte Array

Users can choose PNG tiles or SVG tiles as an input. An image stack from the

PNG tiles needs to be binarized to segment vessels from the background. Among

various thresholding approaches, I used Otsu’s method which is an effective thresh-

olding method. An image stack from the SVG tiles is rasterized using the transcoder

API provided by the Apache Batik library. I stored the binary results of the PNG

tiles or the rasterized results of the SVG tiles into a byte array.

6.1.2 Thinning Process

Accurate segmentation of vascular structures from 3D volumetric data is a crit-

ical task for the analysis of vascular morphology. Lesage et al. [45] developed an

algorithm to trace neurovascular networks from 3D volume data. Another effective

approach is the vector tracing method [23, 11, 2, 47]. Frangi et al. [23] proposed

surface snakes represented by tensor product B-spline surfaces that employ a vessel

discriminant filter, which enhances tubular structures and simultaneously decreases

other morphological structures while suppressing noise.

Sun [89] introduced an automated algorithm for identifying vessel contours in

coronary arteriograms using the spatial continuity property of the vessel centerline

points. Wink et al. [100] presented an iterative procedure, which tracks the central

vessel axis, computing the minimum diameter of the vessels. In order to determine

the vessel center, they computed the maximum center likelihood by casting rays

from a seed point. A new plane perpendicular to the vessels is computed based on

a vector made of the last two points on the current central vessel axis. Aylward et

al. [6] presented an intensity ridge traversal technique for extracting the centerlines of

tubular objects and then included multi-scale heuristics and optimal-scale measures

67



to make the algorithm robust to the effects of intensity variations due to noise,

discontinuities, and singularities in the medical images.

Sofka et al. [84] introduced the use of likelihood ratio to measure the “vesselness”

for extracting vessels in retinal images. The likelihood ratio measure employed multi-

scale matched-filter responses, combining vessel boundary measures. Manniesing et

al. [50] proposed an evolving surface technique under the skeleton of the intermediate

segmentation results for tracking 3D vessel axes in computed tomography angiogra-

phy (CTA) data.

However, these problem-based approaches have limitations as a universal ap-

proach for recent high-resolution biomedical image data because of the intensity

variations, artifacts, and singularities in such data.

A skeletonization (thinning) approach diminishes an object maintaining its topol-

ogy. There are several skeleton algorithms to use a set of data points in a 3D volume

data or surface patches as an input. To use these algorithms for our data, we need

to generate surface patches from our data. I adapted a 3D curve-thinning algorithm

[71], which does not require such surface patches. This thinning algorithm extracts

geometrically and topologically preserved skeletons.

Palagyi et al.’s algorithm [71] first classifies each voxels as border points, line-end

points, and simple points based on their local neighbor voxels (the 26-neighbors, the

3 × 3 × 3 neighborhood of each voxels). A simple point is a point whose removal

does not alter the topology of the object. A point is a border point if it is a simple

point and not a line-end point. Each sequential object reduction process consists of

six sub-iterations based on the six surfaces (up, down, left, right, front, and back) in

3D. This algorithm repeats the sequential process until there is no remaining border

points.
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The detailed thinning steps are as follows:

1. Create a hash map of voxels in the volume, using a HashMap<Voxel> data

structure.

2. For each voxel in the hash map, check if the voxel satisfies the simple point con-

dition. To check the simple point condition, instead of checking if each voxel’s

26 neighbors are in the condition, I used a pre-calculated lookup table (226)

having all possible configurations of 26 neighbors weather each configuration is

in the simple point condition or not.

3. If the voxel is a simple point and not a line-end point, I removed the voxel in

the map then checked whether its neighbor voxels become surface voxels. If

the neighbors are surface voxels, they are added to the map.

4. Repeat steps 2–3 until there are no more simple points.

6.1.3 Labeling Centerlines and Calculating Diameters of Vessels

Based on the extracted centerline of the vessels, separate vessel segments can

be labeled by searching adjacent voxels in the centerlines using the Depth First

Search (DFS) algorithm. First, a voxel is randomly selected and its neighbors on

the centerlines are traced until there is no more adjacent neighboring voxels of the

initial voxel. To label the other vessel segments, an unvisited voxel is randomly

selected again and the process is repeated. This process repeats until there is no

more unvisited voxels on the centerlines. All voxels on a connected vessel are given

the same labels. Based on the lengths of each labels, unwanted short side branches

are pruned.

Furthermore, the diameters of vessels are calculated for reconstructing the geo-

metrical vessels. First, 26 projections are generated at each voxels on the centerlines
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and they are sent towards the boundary of the vessels. 26 projections can be evenly

scattered in 3D for not causing any angular bias although the angles are not uni-

formly spaced. Figure 6.1 shows an example of the 26 projections radiating from

a voxel on the centerline. The black cylinder is a vessel and the spheres are voxels

of centerlines. Among the spheres the red sphere is the point where the diameter

is to be estimated and the 26 projections are generated from this voxel. The 26

generated projections are sent towards the boundary of vessel. Once they meet the

boundary, they stop. Based on these projections, I calculated the shortest distance

as the diameter of the vessel at that center voxel. All voxels of the centerlines are

visited and the diameters calculated in the same manner.

Figure 6.1: Sending 26 Projections from a Selected Voxel. Calculating the diameter
of the selected voxel. In the vessel (a black cylinder volume), among the voxels
(spheres) of the centerline, a voxel (a red sphere) was selected. The selected voxel
has 26 projections (arrows) to calculate its diameter based on the vessel boundary.
The red arrows indicate the projections on the XY plane at the selected voxel and
the orange arrows the projections towards the up and down planes at the selected
voxel.

70



6.1.4 Data Compression

To transfer the reconstruction results to the client, the visualization framework

converts the voxels of the volume and centerlines with labels and diameters to Java

Script Object Notation (JSON) format, which is a lightweight plain-text data struc-

ture. Google Gson was used for the actual implementation. I compressed the voxels

by converting the voxels to an array of pairs, because the vascular network volume

data consists of a large number of consecutive zeros or ones. While a vascular volume

of 256 × 256 × 400 pixels generates about 56 MB JSON file from an array of voxels,

an equivalent JSON file is only 8 MB, a factor of 7 reduction. The reduced size of

the file decreases the data transmission time across the network.

6.1.5 Data Transmission and Visualization

For data transmission, I used the Representational State Transfer (REST) web

service that retrieves JSON data from the server statelessly. The client uses HTTP

GET (a data-producing method) to request JSON data using the following parame-

ters: column number, row number, starting layer number, ending layer number, and

zoom level. Once the server generates JSON data, the client retrieves the JSON data

using asynchronous JavaScript and XML (AJAX).

JSON data contains two data groups: 1) the sequences of zeros and ones repre-

senting the voxels of the data volume and 2) the voxels of the centerlines and the

segment labels and diameters corresponding to each voxel. To visualize the JSON

data, I used Three.js built on top of WebGL.

First, I added all voxels of the volume into the vertices in THREE.Geometry ob-

ject. Then, I used the THREE.ParticleSystemMaterial object to define the geome-

try object properties. The properties included color, transparency, and size. To bind

these two objects together, I created a particle system using THREE.ParticleSystem
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object, and then I added the instance of the THREE.ParticleSystem object into the

scene, the THREE.Scene object. For all voxels of the centerlines and their labels and

diameters, I used the same manner to visualize them.

The volume viewer provides multiple options such as the color, the point size, and

transparency using dat.gui which is a lightweight graphical user interface library.

6.2 Results

In this section, I will present the results of the web-based volume viewer with the

KESM Golgi and India ink data sets. Our web server hosts the SVG tiles and PNG

tiles of entire Golgi and India ink data sets. The web-based volume viewer provides

both SVG and PNG tiles as an input. From an image stack, the proposed viewer

visualizes the volume or the geometric reconstruction of the input volume, displaying

the reconstruction result.

Figure 6.2 shows a screenshot of KESMBA v2 interface and a screenshot of the

web-based volume viewer interface. In order to open the volume viewer, a user needs

to input the location and image stack range information in the KESMBA v2 browser

window. As the user clicks a tile on the view panel of KESMBA v2, the information

panel shows the location and the zoom level of the selected tile. Once the user

clicks the Volume View button, all input boxes which are required for the volume

viewer are displayed. After the user finishes typing in the parameters and clicking

the Render button, the volume viewer transfers the parameters to the KESMBA

web server and requests the centerlines of the volume and their labels and diameters.

Based on the results, the volume viewer on the client side shows the input volume

and the reconstruction results.

In the Figure 6.3, the procedures of the reconstruction are shown. In order to

geometrically reconstruct a given volume, first, we need to extract the centerlines of
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A. KESMBA v2 Interface B. The Volume Viewer

Figure 6.2: The Web-based Volume Viewer Interface. The screenshots of KESMBA
v2 and the volume viewer are shown. Red markers and text were added on top
for the purpose of explanation. A. The KESMBA v2 interface: (a) A selected tile
(location) to render a 3D volume. (b) The volume View button to activate all text
boxes related to input parameters of the volume viewer. (c) All text boxes of the
input parameters of the volume viewer and the Render button to request opening
the volume viewer. The volume viewer needs five input parameters – the location
information (column number, row number, and zoom level number) of the selected
tile and the stack information (start and end layers). B. The volume viewer interface:
(d) The view panel. (e) The control panel. The panel consists of a check box for
showing reconstruction results, a check box for showing the selected volume, a scale
bar to adjust the size of the volume voxels, a scale bar to adjust the volume opacity,
a color table to select the volume color, and a check box for overlaying the coordinate
axes.

the volume (Figure 6.3B). Then, separate vessels are labeled by searching through

unvisited center voxels using DFS (Figure 6.3C). Finally, the calculated diameters of

the vessels at each center voxels using a projection method are used to reconstruct

the volume (Figure 6.3D).

Figure 6.4 shows the comparison between PNG and SVG volumes from the Golgi

and India ink data. The volume views from the PNG image stack provide a slightly

better view compared to the SVG image stack, due to minor loss in information due

to the bitmap to vector to bitmap conversion.

Figures 6.5–6.6 show comparisons between the 3D views from KESMBA v2 and
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A. India ink Vol. B. Centerlines C. Labeling D. Reconstruction

Figure 6.3: The Reconstruction Results from a Volume. A. A screenshot of the
volume viewer showing an India ink volume of 100-image stack. B. The centerline
result from the India ink volume (A). C. The labeled result from the India ink volume
(A) based on the centerline result (B). D. The reconstruction result from the India
ink volume (A), adding the vessel diameters of each voxels based on the labeled
centerline result (C).

the volume views of the same regions in the volume viewer. While KESMBA v2

enables the overlay of only 80 image layers, the volume viewer provides stacking

of over 200 images as well as different angles of view by interactively rotating the

volume.

6.3 Summary

In this section, I introduced a web-based volume viewer capable of interactively

visualizing unit volumes as well as geometrically reconstructing the unit volumes.

The visualization of the volumes is a function that complements the overlay-based

rendering of KESMBA v2. The volume viewer also provides the following features

for enhancing the view: (1) adjust voxel size, (2) adjust opacity, and (3) change color.

On top of these features, it provides the geometrical reconstruction feature from a

given volume and visualize the reconstruction results.
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A. Golgi PNG B. Golgi SVG C. India Ink PNG D. India Ink SVG

Figure 6.4: A Comparison Between PNG and SVG Volumes. A. 100-PNG-image
stack of the Purkinje cells in the cerebellum from the Golgi data. B. 100-SVG-image
stack of the same region with A. C. 100-PNG-image stack in the hippocampus area
from the India ink data. D. 100-SVG-image stack of the same region with C.
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A. Golgi 1 B. Golgi 2 C. Golgi 3

D. Golgi 1 Volume E. Golgi 2 Volume F. Golgi 3 Volume

Figure 6.5: A Comparison Between KESMBA v2 and the Volume Viewer in the
Golgi. A–C. The structural views at the different zoom levels in the cerebellum
of the Golgi data from KESMBA v2, using 80 overlays and 2 µm interval between
overlays. A. A structural view of the cerebellum at two-time zooming-out level (4
times reduced), the scale bar 500 µm. B. A structural view of the cerebellum at
one-time zooming-out level (2 times reduced), the scale bar 200 µm. C. A structural
view of the cerebellum in the original size, the scale bar 100 µm. D–F. The volume
views at the different zoom levels in the cerebellum of the Golgi data from the volume
viewer, using 100-image stack. D. A volume view of the same region with A. E. A
volume view of the same region with B. F. A volume view of the same region with
C.
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A. India ink 1 B. India ink 2 C. India ink 3

D. India ink 1 Volume E. India ink 2 Volume F. India ink 3 Volume

Figure 6.6: A Comparison Between KESMBA v2 and the Volume Viewer in the India
Ink. A–C. The structural views at the different zoom levels in the hippocampus of
the India ink data from KESMBA v2, using 80 overlays and 2 µm interval between
overlays. A. A structural view of the hippocampus at two-time zooming-out level (4
times reduced), the scale bar 500 µm. B. A structural view of the hippocampus at
one-time zooming-out level (2 times reduced), the scale bar 200 µm. C. A structural
view of the hippocampus in the original size, the scale bar 100 µm. D–F. The volume
views at the different zoom levels in the hippocampus of the India ink data from the
volume viewer, using 100-image stack. D. A volume view of the same region with A.
E. A volume view of the same region with B. F. A volume view of the same region
with C.
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7. MAPPING KESM DATA TO THE WAXHOLM SPACE

In this section, I address two major challenges: (1) coping with the unique

source of noise in the KESM data sets, and (2) increasing the usefulness of our

high-resolution, high-quality data (Nissl-stained, showing neuronal cell bodies). Our

approach is to (1) use a localized- and global-FFT-based denoising algorithm to

remove noise that is characteristic of the KESM modality, and (2) registering our

mouse brain data (with a landmark-based rigid transformation method using Moving

Least Squares) to a standard atlasing space (Waxholm space, a new standard coor-

dinate space for rodents [30]) so that we can import valuable annotations (such as

boundary of anatomical substructures or gene expression data) from existing mouse

brain atlases.

7.1 Image Noise Removal

A variety of noise removal techniques exists for medical images such as wavelet-

based [101, 22, 9], ridgelet- and curvelet-based [88], and Fourier-wavelet-based [75]

approaches.

However, KESM has unique noise characteristics due to its use of physical sec-

tioning coupled with simultaneous imaging, so a customized noise removal method

is necessary. For example, tiny defects at the knife edge cause streaks. Also, the

cutting process induces irregular marks due to vibration of the knife, which is called

“chatter”. Fig. 7.1 shows the typical noise patterns observed in KESM images. To

address these issues, previously we developed an approach based on normalization

and localized mean filter [58], but the approach was not able to scale up to whole

brain data sets.
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(a) Raw Nissl image (b) Raw Nissl volume

Figure 7.1: Raw Nissl Data. (a) Single image. The red arrow indicates a vertical
streak and the yellow arrow knife chatter. Scale bar = 47 µm. (b) A 1.05 mm cube
(cerebellum).

7.1.1 Methods

For denoising, sequentially apply (1) localized frequency domain filtering to re-

move noise due to knife chatter and (2) global frequency domain filtering to remove

streaks due to defects on the knife edge.

Localized FFT: First, in order to process the knife chatter noise as a periodic noise

pattern, we subdivide the original image into small subimages where the chatter

marks show a regular pattern in the frequency domain. We apply the notch reject

filter to all subimages to remove the knife chatter noise (cf. the noise removal tech-

nique used in [46]). Fig. 7.2 shows the localized frequency domain filtering process

and the results of the process.

The procedure we followed was as follows. First, from the image I(x, y) of size
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Figure 7.2: Removal of Knife Chatter Noise. (a) From a cropped original image
in the lateral septal nucleus, we determined a small window size so that the small
window (the red square) could contain periodic chatter patterns that could be easily
detected in the frequency domain. The red arrow indicates a vertical streak and
the yellow arrow knife chatter, scale bar = 144 µm. (b) The Fourier spectrum from
the red square region in (a). The knife chatter noise can be seen as peaks along
the y-axis. (c) A notch reject filter for denoising, applied to (b). (d) All knife
chatters disappeared from the original image after applying the notch reject filter to
all subimages.

M ×N , its 2D FFT F (u, v) is calculated:

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

I(x, y)e−2πi(
ux
M

+ vy
N

),

where u = 0, 1, ...,M − 1 and v = 0, 1, ..., N − 1. Next, we shift the zero frequency

component to the center of F :

Fs(u, v) = F (u− M

2
, v − N

2
).

Then, using a notch reject filter B(u, v), Fig. 7.2(c), block out the zero frequency

component in Fs:

Fs,d(u, v) = Fs(u, v) ∗B(x, y).

Note that we are convolving (“∗”) the shifted Fourier spectrum Fs with B to denoise

Fs. Finally, shift back the zero frequency component of Fs,d(u, v) to the original
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position and inverse-FFT the result:

Fd(u, v) = Fs,d(u− M

2
, v − N

2
)
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N−1∑
v=0

Fd(u, v)e2πi(
ux
M

+ vy
N

)

(a) (b) (c) (d)

Figure 7.3: Removal of the Streak Artifacts. (a) The knife chatter was suppressed,
but streak artifacts remained. (b) The Fourier spectrum of (a). (c) A notch reject
filter for denoising. (d) The final result of notch reject filtering is displayed.

Global FFT: Next, in order to remove the remaining streak artifacts due to defects

in the knife edge, we adopt a global frequency domain filtering approach with a notch

reject filter.

First, we apply FFT on the input image I(x, y). We can see the streak artifacts

show up along the horizontal axis. Next, we generate a notch reject filter to suppress

the region where the periodic streak artifacts are located in the Fourier spectrum.

After multiplication of the FFT coefficients with the notch reject filter, we finally

acquire the denoised image via inverse Fourier transform. Fig. 7.3 shows the global

FFT procedure step by step.
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7.1.2 Denoising Results

Fig. 7.4 shows the localized FFT and the global FFT denoising results. When

the localized FFT results from neighboring windows were stitched together, artifacts

could appear at the boundary. To avoid this artifact, we used slightly overlapping

windows before applying the localized FFT filter, and cropped off the boundary (10

pixels) from the results. We also tried the combined wavelet-FFT filtering approach

[67] instead of the global FFT and the results were almost identical. Fig. 7.5 is a

denoised version of the raw data shown earlier in the Fig. 7.1. In all cases, we can

see that the periodic noise is effectively removed.

(a) Raw image (b) Localized FFT (c) Global FFT

Figure 7.4: Denoising in Two Steps Using Localized- and Global-FFT. (a) A cropped
raw image from the cerebellum. The red arrow indicates a vertical streak and the
yellow arrow knife chatter. Scale bar = 300 µm. (b) Localized FFT filtered result.
We used 150 × 150 window size, where the full image itself was 4602 × 6334. (c)
The final result after applying the global FFT filtering.
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(a) Denoised result of the Nissl (b) Denoised result of the Nissl volume

Figure 7.5: Denoised Nissl Data. Denoised version of data in Fig. 7.1. See Fig. 7.1
caption for details. Bright horizontal bands are missing data.

7.2 Registration to the Waxholm Space

Standard coordinate spaces for brain atlases have served a very important role in

brain research. A standard coordinate space exists for the human brain, the Talairach

space, [91]. In case of the mouse, Franklin et al. [24] provides detailed stereotaxic

coordinates. However, a unifying standard has been lacking for the mouse brain. The

International Neuroinformatics Coordinating Facility (INCF) developed a canonical

coordinate system for the mouse brain called the Waxholm space (WHS) to address

this gap [30]. For our work, we used the WHS target volumes reported in [37].

Mutual information-based approaches have been used successfully to register mul-

timodal medical image data [73]. However, the approach does not work well when

the image intensity variance is high, and overlooks structural information in the im-

ages. Due to these issues, the approach is not suitable for raw KESM data. To

preserve local structural properties, a “rigid-as-possible” deformation technique is
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needed so that the mapping minimizes distortion (relative shape is maintained). A

“rigid-as-possible” deformation method, initially introduced in [3], was simplified by

[34], triangulating the source image. However, triangle meshes tend to have poor

smoothness.

Based on the above considerations, we adopted a landmark-based 3D registration

framework that includes a stable 2D rigid deformation method using Moving Least

Squares (MLS) [80]. Initial registration is done through affine transformation (trans-

lation, scaling, rotation), and fine-grained registration is done using the MLS-based

approach.

7.2.1 Methods

Rigid MLS deformation applies local deformations that satisfy global constraints

(user-defined control points) [80].

The formulation below closely follows [80]. Given a set of control points p and

their deformed positions q, an optimal deformation function lv(·) (a rigid transfor-

mation mapping p to q) is estimated. Note that the function is defined at every pixel

v in the source image. Given a point v in the KESM image, functions lv(p) that

minimizes the following is found:∑
i

wi |lv(pi)− qi|2 ,

where pi and qi are vectors and the weights wi have the form wi = 1
|pi−v|2α

(| · | is the

Euclidean distance).

The weight wi is dependent on the evaluation point v, thus, this method is called

“Moving Least Squares minimization”. See [80] for a full derivation of the solution to

this optimization problem. We first designated corresponding anatomical landmarks

between the two data sets as control points/deformation points. The landmarks in

the source data set will then be interpolated onto the corresponding landmarks in
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the target data set. Based on the corresponding anatomical landmarks, we estimate

the deformation parameters between the source and the target images. Once the

parameters are determined, we can reuse them in the deformations of all subsequent

source images because the images share the same morphological properties.

We aligned the denoised KESM Nissl data set (Sec. 7.1), to the Nissl-stained

optical histology atlas in the WHS (http://software.incf.org/). Our landmark-

based 3D registration framework takes the following steps:

1. Obtain coronal slices from the KESM mouse brain Nissl data.

2. The image stack is scaled, rotated, and shifted in order to coarsely match the

coronal slices from the WHS. We scale down the KESM data by a factor of 20

in each dimension.

3. Next, we identify anatomically corresponding locations between the KESM

data and the WHS atlas. We use these locations as control points/deformation

points.

4. In the deformation step, the corresponding locations between the KESM and

WHS data are completely interpolated because 2D rigid deformations using

MLS provide the interpolation property.

5. Repeat steps 2-4 with horizontal slices.

7.2.2 Registration Results: 2D and 3D

Fig. 7.6 (a)-(b) show the anatomical landmarks in the KESM atlas and their

corresponding locations in the WHS atlas (coronal view). First, based on the images

and their landmarks, we estimated the parameters for 2D rigid MLS deformations.

With those parameters, we ran the 2D rigid MLS deformations algorithm on the

entire set of KESM images (coronal slices) to register them to the WHS. Fig. 7.6 (c)

shows a deformed KESM image. Next, we aggregated the deformed coronal KESM
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images into a 3D volume, and resliced the volume data set into horizontal slices.

Before we deformed these horizontal slices, we removed illumination irregularity along

in the planar direction using our FFT-based denoising algorithm because intensity

of each coronal slice varied. Finally, we applied the same deformation procedure

to acquire the final results. Fig. 7.6 (d)-(e) show the same information as Fig. 7.6

(a)-(b) for the horizontal view. Fig. 7.6 (f) shows an example of deformed KESM

image (horizontal view).

Once we deformed all KESM horizontal slices, we reconstructed a 3D volume from

the slices. Fig. 7.7 shows a comparison of denoised 2D KESM data registered to the

WHS and the corresponding 2D WHS data in the coronal plane. In Fig. 7.7 (a1)-(a3)

and (b1)-(b3), the folds of the cerebellum is most visible. In Fig. 7.7 (a4) and (b4),

the cortices of the two hemispheres are shown as flanking the brainstem structures in

the middle. In Fig. 7.7 (a5)-(a6) and (b5)-(b6), dark folds of the hippocampus can

be seen in both hemispheres. In Fig. 7.7 (a7) and (b7), the round mass embedded

near the center of each hemisphere is the striatum. Finally, in Fig. 7.7 (a8) and

(b8), the olfactory bulb can be easily seen (the two structures near the bottom with

ringed layers). KESM has a much higher resolution than the WHS standard atlas,

so detailed cellular structure can be observed.

Furthermore, Fig. 7.8 shows comparisons of the (a&d) raw KESM data, (b&e)

the denoised and registered KESM data, and (c&f) the WHS data. We can see that

the global properties (e.g., aspect ratio) are well aligned. Due to the high-resolution

of the KESM data, fine details such as the complex convolutions in the cerebellar

cortex are also visible (b&e, toward the bottom of the image).
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7.3 Summary

In this paper, we proposed denoising and 3D registration algorithms customized

for high-resolution mouse brain data from the Knife-Edge Scanning Microscope

(KESM). Denoising was based on observed noise characteristics in the KESM data:

localized and global FFT-based denoising. Registration in 3D was achieved by the

use of a 2D, as-rigid-as-possible deformation that uses Moving Least Squares (MLS).

The algorithms were used to register our KESM mouse brain Nissl data set to the

rodent standard Waxholm space. Once registered to the standard atlas, we can im-

port a large number of annotations such as the boundary information and text labels

of cortical areas and subcortical nuclei, gene expression data, and scientific citation

information associated with the specific brain region. Furthermore, high-resolution

data from our KESM atlas can also map back to existing atlases, serving as an

invaluable resource for neuroscientists.
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(a) KESM slice (b) WHS slice (c) Deformation

(d) KESM slice (e) WHS slice (f) Deformation

Figure 7.6: Deformation in the Coronal (Top) and Horizontal (Bottom) Planes with
a Uniform Grid. The orange dots in the (a) KESM and (b) WHS slices are the
corresponding landmarks. (c) Deformation result of the KESM slice (left) shown with
the corresponding WHS slice (right). The grid in the foreground is the estimated
deformation grid. Also, the orange dots in the (d) KESM and (e) WHS slices are
the corresponding landmarks. (f) Deformation result of the KESM slice (left) shown
with the corresponding WHS slice (right).
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(a1) (b1) (a2) (b2)

(a3) (b3) (a4) (b4)

(a5) (b5) (a6) (b6)

(a7) (b7) (a8) (b8)

Figure 7.7: Comparison of Denoised KESM Data Registered to the WHS Vs. the
Corresponding WHS Data (Coronal Sections). (a1)–(a8): KESM. (b1)–(b8): WHS.
See text for details.
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(a) Raw KESM (b) Registered KESM (c) WHS

(d) Raw KESM (e) Registered KESM (f) WHS

Figure 7.8: 3D Visualization for Qualitative Comparisons. (a&d) The raw KESM
volume stained with Nissl. (b&e) The denoised and registered KESM volume. (c&f)
The Nissl-stained optical histology WHS volume. The detailed convolutions in the
cerebellar cortex (bottom of the image) can only be seen in our high-resolution KESM
atlas.
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8. AUTOMATED CELL DETECTION VIA INCREMENTAL LEARNING†

Analysis of neuronal distributions in the brain plays an important role in the

understanding the organization and in the diagnosis of disorders of the brain. For

example, cytoarchitectonics provides deep insights into the cortical map organization,

and abnormal growth or reduction in the number of neurons can indicate disorders

in the region.

Recent advances in high-throughput 3D microscopy techniques have opened the

way to a fully quantitative investigation of neuronal distributions at the whole-brain

scale [64, 74, 93, 31]. The Knife-Edge Scanning Microscope (KESM) [16, 55] is one

of the first instruments to produce sub-micrometer resolution (∼1µm3) data from

whole small animal brains. Among our successfully imaged two Golgi (neuronal

morphology) [55, 15, 16], India ink (vascular network) [57], and Nissl (soma distri-

bution) [15, 14] data sets, the Nissl data set in particular enables detailed studies of

whole-brain cortical and subcortical distribution of neuronal cell bodies.

However, a quantitative analysis that seeks to count every neuron in such high-

resolution data is faced with a serious challenge. In this project, I introduce a

scalable, effective quantitative analysis method for neuron detection using supervised

machine learning. An effective learning in such a situation (huge, rapidly growing

data) requires: (1) low computational cost (e.g., linear mapping), (2) non-iterative,

(3) no accumulation of data points, (4) no retraining, and (5) sufficient accuracy.

Mainstream machine learning techniques in the broader category of instance based

learning or gradient-based approaches do not meet one or more of these requirements.

†Reprinted with permission from “Scalable, Incremental Learning with MapReduce Paralleliza-
tion for Cell Detection in High-Resolution 3D Microscopy Data” by Sung, Woo, Goodman, Huff-
man, and Choe, the International Joint Conference on Neural Networks (IJCNN), 2013, the IEEE
copyright line c© 2013 IEEE.
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Online learning with stochastic gradient descent addresses most of these issues but

it cannot scale up to extremely large data sets.

Here I propose a highly scalable incremental learning algorithm that does not

need retraining or retention of old raw data. This algorithm uses Principal Compo-

nents Analysis (PCA) on its own for classification (i.e., not using other supervised

algorithms on top of it; cf. [49], and the Discussion section) to analyze soma distribu-

tion in the KESM Nissl-stained three-dimensional (3D) rat brain data set, illustrated

in Fig. 8.1. We are able to estimate the true cell density in our data set because

every cell should be stained. Synaptic connections cannot be detected because Nissl

stain only highlights cell bodies in the brain, whereas the size of individual cells in

our high-resolution data set can be used as a possible feature for classification of cell

type (e.g., neurons vs. astrocytes).

The main concept of this algorithm is to separate the labeled data set into class-

specific subsets and run PCA separately on each subset. This will result in class-

specific eigenvector matrices. Given a novel test data, the different eigenvector sets

are used to project and in reverse reconstruct the novel data. The class label associ-

ated with the eigenvector set that gave the best reconstruction determines the labels

of samples in the novel data. This approach is highly scalable, since only the eigen-

vector matrices need to be stored, and they are orders of magnitude smaller than the

raw input data. No retraining is necessary either, since voting or averaging can be

used to classify new data samples based on the stored eigenvector matrices. I tested

my approach on our KESM rat Nissl data set, showing superior performance com-

pared to an ANN-based benchmark, and scalable learning capabilities. Furthermore,

the algorithm is highly parallelizable on both the training and the testing side, thus

is easily implementable in parallel data processing frameworks such as MapReduce

[17, 72].
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A. Nissl image B. Nissl volume

Figure 8.1: KESM Nissl Data. Nissl-stained tissue data from KESM are shown (rat
somatosensory cortex). A. A single image (300 µm wide). B. A 300 µm cube. The
dark donut-shaped objects are the cell bodies labeled by Nissl. White ovals are
unstained regions representing blood vessels. The voxel resolution was 0.6 µm × 0.7
µm × 1.0 µm.

8.1 PCA-based Supervised Learning

My proposed algorithm is illustrated in Fig. 8.2.

Fig. 8.2A shows the training process. The labeled training set X, each row of

which is an input vector, is separated into two subsets: cell center class (+) and

off-center class (−). PCA is run separately on the class-specific subsets (X+ and

X−), resulting in two eigenvector matrices, V+ and V−.

Fig. 8.2B shows the testing process. For the testing of novel data, each data

vector x is first projected using the two PCA eigenvector matrices, giving projections

y+ and y−. From these projections, we attempt to reconstruct the original input

vector, using the inverse of the eigenvector matrices (V+T and V−T ), producing x̃+

and x̃−. The class associated with the more accurate reconstruction (||x−x̃+|| vs.
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Figure 8.2: PCA-based Supervised Learning. A. Training. The training set X
is separated into two subsets based on the class of each input, and PCA is run
separately on these class-specific subsets. B. Testing. For the testing of novel data,
the data vector x is first projected using the two class-specific eigenvector matrices
and reconstructed using the inverse of these matrices.

||x−x̃−||) determines the label for the new data vector. Not all the eigenvectors need

to be used or stored (only a fraction may be necessary), thus making this process

computationally cheap. Furthermore, this approach can be implemented with any

dimensionality reduction algorithm that allows an inverse mapping, thus it is not

limited to PCA.

My approach does not require an iterative learning (e.g., learning rules based

on gradient descent) or relearning process since knowledge from earlier batches of

data is encoded and stored in the collected eigenvector matrices that are several

orders of magnitude smaller than the raw data. Furthermore, our algorithm can be

implemented as a sum of convolutions, rendering it ideal for parallelization, and is

thus highly scalable. The algorithm can also be implemented for GPGPU and it

would scale nicely (i.e., linearly) even when the size of the input vectors is increased.

8.2 MapReduce Parallelization

My algorithm is highly parallelizable due to its incremental nature. To exploit

this property, we developed a MapReduce-based implementation of the algorithm.
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The MapReduce framework divides parallel data processing tasks into the map phase

and the reduce phase, where during the map phase, tasks are divided and results are

emitted, and during the reduce phase, the emitted results are sorted and consolidated

[17]. MapReduce is a highly effective and popular framework for big data analytics.
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Figure 8.3: MapReduce Model of PCA-based Supervised Learning. A. Training. The
k labeled training sets arrive all at once as input, and the map function parallelizes
PCA computations of the individual training sets. This process does not require a
reduce function (reduce is the identity function). B. Testing. Based on the output
files of the training process, the map function projects and in turn reconstructs the m
splits of the novel data set in parallel. The reduce function groups the reconstruction
errors by voxel and averages them, producing the voted class results of n data vectors
from all voxels.

Fig. 8.3A shows an overview of our MapReduce-based training process. In or-

der to parallelize PCA computations of multiple training sets, we designed a map

function. The k labeled training sets, each including data vectors from two classes

(cell-center [+] and off-center class [-]), are fed as the input files for the map function.

In the map function, we parallelize PCA computations of the class-specific subsets

from the training sets, generating two eigenvector matrices per training set: V+ and

V−. The output files are the eigenvector matrices from the training sets, producing
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tuples of the following form:

〈(test set split ID, training set ID, class), eigenvec. matrix〉.

Because MapReduce sorts the map output values by their keys, we use multiple

attributes as a key for grouping in the later stage. For the training process, we

do not need a reduce function because we already have the eigenvector matrices

calculated from the map phase (reduce is the identity function).

Fig. 8.3B shows an overview of our MapReduce-based testing process. The map

function of the testing process uses the output files from the training process as the

input. To check if a data vector from each voxel in a novel data volume is in the cell-

center class, we need to prepare all data vectors from all voxels in the data volume.

Instead of collecting data vectors for all voxels of the data volume into a single data

set, our map function in the testing stage generates one data set per one xy slice

in the data volume (i.e., all voxels at a specific depth in z). We call this data set

a “split”. With each split, we project, reconstruct, and calculate the error using all

eigenvector matrices collected in the training stage. This map phase produces a long

list of tuples of the format

〈(voxel coordinate), training set ID, class, reconst. error〉

and stores them as intermediate files on the local disks. Then, our reduce function

takes these intermediate files as an input and groups the results in parallel by their

voxel coordinate IDs and averages the class-by-class reconstruction errors of each

data vector for each voxel coordinate. Based on the averages of the reconstruction

errors, the reduce function finalizes the classification of the data vector from each

voxel.
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Figure 8.4: Cell Body Reconstruction. Reconstruction of 11 µm cubes: top row
= cell center (center proximity value = 0.9/1.0), bottom row = off-center (center
proximity value = 0.1/1.0). xy, yz, and xz are the three orthogonal cross-sections
through the middle of the small volumes enclosing the labeled position. We can see
that the reconstruction based on the matching class is more accurate.

8.3 Experiments and Results

8.3.1 Incremental Learning and Results

I used data acquired with our Knife-Edge Scanning Microscope (KESM). The

imaging resolution was 0.6 µm × 0.7 µm × 1.0 µm. The particular data set used in

this paper was from the rat cerebral cortex stained with Nissl. From the Nissl data

set, we made ten subvolumes (200 × 200 × 100 voxels each, subsampled down to 100

× 100 × 50 voxels for faster computation). Each subvolume contained an average of

200 cell bodies.

For my training set, I labeled the center voxels of the individual neurons and the

voxels in off-center regions in selected subvolumes. Then we determined the diameter

d (= 11) of the sphere that fits around most cell bodies. Once we figured out the

diameter, we extracted three orthogonal cross-sections of size 11 × 11 (xy, yz, and

xz) centered at the labeled voxels to construct the input vectors (Fig. 8.4, left-most

column).
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From the training data subvolumes we ran PCA separately on the cell center

class and the off-center class to obtain two sets of eigenvectors. We took the first

five PCs from the eigenvector set of the cell center class. For the off-center class, we

chose three PCs from its eigenvector set. In both cases, the cut-off was determined

by the variance accounted for by these PCs.

Given a novel data subvolume, we extracted the cross-sections from all voxel

locations to construct new input vectors. These extracted input vectors were pro-

jected using both PCA eigenvector matrices (V+ and V−) from the training data

sets and were reconstructed using the inverse of these matrices. The class label of

the eigenvector matrix that gave the best reconstruction was assigned to the novel

input vectors. We used Euclidean distance as a reconstruction error metric. Fig. 8.4

shows a reconstruction result of the cross-sections from a cell body.

Fig. 8.5 (a) shows the results from a synthetic data (spheres, green) and the

predicted cell centers (yellow), showing a near-perfect match. Fig. 8.5 (b) displays

the Nissl data of the test subvolume (blue) and the predicted cell centers (yellow),

and Fig. 8.5 (c)-(f) illustrate the details of the Nissl results, sweeping through the

volume for an easier visual inspection. Again, the results show a close match.

To quantify the accuracy of the algorithm, we tested all voxels in the test data

volume with high proximity values (cell center regions) and with low proximity values

(off-center regions), and plotted their reconstruction errors (Euclidean distances).

The results are shown in Fig. 8.6 (a). The plot shows the ||x−x̃+|| − ||x−x̃−||,

thus a negative value would indicate cell center (close to cell center and far from

off-center) and a positive value would indicate off-center (far from cell center and

close to off-center).

We also evaluated the classification performance of the algorithm on the test

data set. Fig. 8.6 (b) shows the quantitative comparison for the performances of our
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(a) Synthetic Block (b) Nissl Block (c) frame 1

(d) frame 2 (e) frame 3 (f) frame 4

Figure 8.5: Experimental Results. (a) A synthetic volume containing spheres. An
overlay of the original data (green) and the predicted cell centers (yellow) shows a
near-perfect match. (b) An overview of the cell detection results on the Nissl tissue
data (block size = 50 µm cube). Blue displays cell bodies and yellow inside cell
bodies the detection results. (c)-(f) Sweeping through the volume with a thin (10
µm) slab shows a close match.

approach against an Artificial Neural Networks (ANN) benchmark [56] using the Re-

ceiver Operating Characteristic (ROC) curve. The Area Under Curve (AUC) of the

ROC curve data from our approach was 0.9614, compared to 0.8228 from the ANN

benchmark. In [56], the ANN approach was found to be superior to Hough-transform

and LoG-based blob detection, thus our approach is expected to outperform those

as well.

Furthermore, to demonstrate the scalability of our incremental learning algo-
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Figure 8.6: Accuracy Analysis. (a) The two plots show Euclidean distance distribu-
tions of 173 cell center (proximity value > 0.9/1.0) and 310,643 off-center (proximity
value < 0.2/1.0) data points. The distances were computed by ||x−x̃+|| − ||x−x̃−||,
thus, a negative value would indicate cell center and a positive value off-center. The
box-whisker plot shows the median, upper and lower quartile, and standard deviation,
with outliers. Note the smaller variance in the cell center class due to the stereotyp-
ical shape of neurons. (b) The graph shows a comparison of the ROC Curves for the
testing data from our approach against that of an ANN-based approach (AUC: our
approach = 0.9614, ANN = 0.8228).

rithm, we measured the test results, adding training data sets incrementally. The

results are shown in Fig. 8.7. Given three training subvolumes, we first measured the

test results with one training subvolume and obtained the AUC of the ROC curve,

0.9584 (green curve, Inc. 1). The training performances of the other two subvol-

umes were similar to the first set (AUC = 0.9477 and 0.9580). Next, we averaged

the Euclidean distances based on the eigenvector matrices obtained from the first

and the second training subvolumes. Using the average as a distance measure, we

got higher performance (AUC = 0.9652, blue curve, Inc. 2). As expected, when we

added results from a third training subvolume (the third subvolume), we found an

increased AUC value, 0.9667 (red curve, Inc. 3). Interestingly enough, the AUC of
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Figure 8.7: Scalability Experiment. ROC curves (left: a full ROC curve, right:
zoomed in ROC curve) were computed on a test subvolume to demonstrate the
scalability of our incremental learning algorithm. Full: train with 3 subvolumes
combined, Incr. 1: train with 1 subvolume, Incr. 2: incrementally learn with 2 sub-
volumes, Incr. 3: incrementally learn with 3 subvolumes. AUC values were: Full =
0.9526, Incr. 1 = 0.9584, Incr. 2 = 0.9652, Incr. 3 = 0.9667. See text for a detailed
discussion.

the test results from training with all three subvolumes together in a single run was

0.9526 (olive curve), and this performance could not go beyond that of Inc. 3 case

(red curve), because the performance, at most, reaches the highest AUC value among

the training subvolumes. However, Inc. 3 overcame this limitation.

We also experimented with three different training subvolumes that give widely

different performances: 0.9681, 0.8497, and 0.8213 in AUC values (some of which

may be due to varying levels of noise in the data set caused by the cutting process).

Expectedly, when we added training subvolumes incrementally and averaged the

test results, the AUC values stayed close to the highest performance (AUC = 0.9422

and 0.9344), even though the AUC values of the two training subvolumes were not

high enough. When we trained with the three subvolumes as a single training set, we

obtained a better performance (0.9538) compared to the incremental cases. Although
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these are mixed results, our approach shows that incremental learning can maintain

adequate performance even when certain data batches are of poor quality.

8.3.2 MapReduce Parallelization and Results

Our rat brain Nissl image data set is unstructured and is huge, which is a primary

property of big data. Thus, it motivates us to develop our highly scalable algorithm

in MapReduce manner which is a major framework for big data analysis. Our exper-

imental results show that our MapReduce approach greatly reduces the computing

time while maintaining the same accuracy of the reconstruction.

Our MapReduce algorithm was implemented on Apache Hadoop and we tested

our algorithm under Amazon’s Elastic Compute Cloud (EC2). Apache Hadoop

project has built the Hadoop Distributed File Systems (HDFS) and the Hadoop

platform to implement MapReduce. Amazon Web Service (AWS) provides readily

available computing nodes where Apache Hadoop platform can be used. Because

of such an availability, developers and scientists are able to run their own map and

reduce functions on inexpensive distributed AWS nodes.

For the training process, we used three training volumes (each 100 × 100 × 50

pixels), in each of which the number of data vectors for each class was about 200

(i.e., 200 labeled voxels per class). The input files for the map function in this

process consisted of the file system paths to the directory containing the training

volumes. Once we ran PCA on the class-specific subsets in each volume, we obtained

eigenvector matrices of the class-specific subsets. Three sets of eigenvector matrices

were generated; a total of six matrices.

For the testing process, we implemented a map function and a reduce function.

First, we prepared the input files for the testing process based on the result from

the training process. The input files included the eigenvector matrices, test set split
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ID (depth in z in the data volume), and the class associated with the eigenvector

matrix. The input files consisted of 300 tuples (50 splits × 6 eigenvector matrices).

We used these input files for the map function. Based on the testing set split IDs, the

function could directly access the depth of the testing volume corresponding to each

ID and extracted 10,000 data vectors from all voxels at that depth (= 100 × 100).

Next, it calculated the projection and in turn reconstruction of the data vectors using

the eigenvector matrices in the input files. Finally, it calculated the reconstruction

errors, writing them into intermediate files on the disk. The total number of tuples

in the intermediate files were about 3,000,000.

In the reduce phase, the reduce function took the intermediate files as an input,

and grouped the reconstruction errors (six per each voxel, corresponding to the six

eigenvector matrices from the training phase) by the voxel coordinates. Next, the

reduce function averaged the class-by-class reconstruction errors and finalized the

class assignment of each data vector.

We set up three cluster configurations using Amazon cloud computing EC2

(http://aws.amazon.com/): one master node and one slave node; one master node

and five slave nodes; and one master node and ten slave nodes. In order to configure

the clusters, we equipped the Apache Whirr 0.8.1 libraries. We also used the Apache

Hadoop 1.1.1 libraries to run our map and reduce functions in parallel. For each

physical node of EC2, we chose the Ubuntu 12.04 LTS 64-bit operating system, each

having quad-core 2xIntel Xeon X5570 CPU and 23.00 GB memory (EC2 instance

API name: cc1.4xlarge, http://aws.amazon.com/ec2/instance-types/). Besides

the difference in the number of physical nodes, we assigned a specific number of tasks

for each job.

Fig. 8.8A shows the comparison of training process performance under different

cluster configurations. We ran the map function with 5 tasks in each job. As we

103



A B C D
0

5

10

15

20

25

Cluster Configuration

T
im

e 
(S

ec
on

d)

 

 

A: Single Node
B: One Master, One Slave
C: One Master, Five Slaves
D: One Master, Ten Slaves

A B C D
0

50

100

150

200

250

300

Cluster Configuration

T
im

e 
(S

ec
on

d)

 

 

A: Single Node
B: One Master, One Slave
C: One Master, Five Slaves
D: One Master, Ten Slaves

A. Training Performance B. Testing Performance

Figure 8.8: MapReduce Parallelization Performance Comparison. A. The bar plot
displays the comparison of training MapReduce process performances under different
cluster configurations. The olive bar represents the performance for a single node,
the green bar for one-master-and-one-slave nodes, the blue bar for one-master-and-
five-slave nodes, and the red bar for one-master-and-ten nodes. Except for the single
node case, we ran 5 map tasks per job (note that we do not need any reduce task).
B. The bar plot shows the comparison of testing MapReduce process performances
under different cluster configurations. The color keys are the same as A. Except for
the single node case, we ran 35 map tasks and 10 reduce tasks in each.

expected, compared to the performance result under the single node configuration,

when we increased the number of physical nodes, the performance of our MapReduce

approach improved. However, the performance gain was small, which was expected,

because we only had three training sets and the parallelization was only over these

three sets.

Fig. 8.8B shows the comparison of testing process performance under different

cluster configurations. We ran the map function with 35 tasks and reduce with 10

tasks in each job. As we expected, compared to the performance result under single

node configuration, when we increased the number of physical nodes, the performance

improved. Unlike the training process, we noticed that the performance of the testing

MapReduce approach was greatly improved (nearly 10 times for the 10 slave node
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case) compared to serial computation (Fig. 8.8B). Furthermore, each increment in

the number of physical nodes gave consistent improvement in performance.

8.4 Summary

In this paper, we presented a novel scalable incremental learning algorithm for

fast quantitative analysis of massive, growing, sparsely labeled data from a high-

throughput 3D microscope (the Knife-Edge Scanning Microscope). The approach is

based on PCA used on its own for classification: class-specific projection and recon-

struction. Our algorithm showed high accuracy, 0.9614 (the AUC of the ROC curve

on a test set), compared to an ANN-based benchmark (AUC = 0.8228), demon-

strating the scalability of the algorithm by pooling results from a growing data set.

Furthermore, we implemented our incremental learning algorithm with MapReduce

parallelization to greatly increase the performance in a multiple cluster configuration.

We expect our approach to be broadly applicable to the analysis of high-throughput

medical imaging data.
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9. DISCUSSION

9.1 Exploration

KESMBA provides an effective solution to the visualization and accessibility

problems that high-resolution brain atlases confront. The multi-section overlays

produce a 3D view to display the structural information of the data, while keeping

the computational overhead low by limiting the number of image tiles to download,

and enabling a quick identification of the region of interest for full local volume

download. This general-purpose property yields broad applicability to other types

of data sets from array tomography [63], confocal (and multiphoton) microscopy, or

electron microscopy.

To generate a single pre-overlay layer of tiles from multiple sections of tiles is

a possible solution to enhance KESMBA loading time. Reducing tile numbers by

combining multiple layers will greatly influence the display time. The pre-overlay

layer, which has a geometric property itself, supports the identical pseudo 3D view

of multiple section overlays, except for coarser z-axis navigation. Fortunately, if

such a pre-overlay layer is created at each z-depth, this navigation challenge will be

overcome. A simple ImageMagick script can compress multiple tiles into one, using

the “composite” command.

To better serve the purpose of information sharing, KESMBA needs to provide

richer annotations. For this, allowing a collaborative annotation by experts in various

domains will be greatly beneficial. This can be done by combining KESMBA with a

wiki system, similar to Wikimapia (http://wikimapia.org/). Again, we can benefit

from the intrinsic features of GoogleMaps or OpenLayers. They support various types

of overlay objects which are tied to the map tiles with the latitude and longitude
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coordinates. The types of overlay objects include icons, polygons, polylines, and

markers. These overlay objects can provide various means to facilitate collaborative

user annotations. Fig. 9.1 shows preliminary results of enabling marker and polygon

drawing in KESMBA. The annotation can be saved in an XML file whose coordinate

values link to the related image tile.

(a) Maker Annotation (b) Polygon Annotation

Figure 9.1: Examples of Graphical Annotation.

Each annotation that a user creates can be visible only to the annotator, to

a group or to everyone. With user registration, we can develop a ranking system

for users to maintain integrity where each user is assigned a rank and the rank is

recorded for every annotation made by the user. User ranking can be managed with

a trust-based method where users recognized as experts and those trusted by experts

can get assigned higher ranks. We can also provide a filter capable of dynamically

selecting more reliable annotations at higher rank levels.

9.2 Registration

The main contribution of our work is (1) the discovery of KESM-specific noise

characteristics and a customized denoising algorithm based on localized/global FFT,
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and (2) the use of an as-rigid-as possible deformation method based on MLS for the

registration of high-resolution brain atlases to the rodent standard WHS. The techni-

cal novelty of our approach, compared to prior works in the field, is the application of

FFT-based denoising at two domain-specific spatial scales, and the two-pass (coronal

and horizontal) processing of MLS-based deformation for 3D volume data.

Several future directions remain open. First, we need to find slice-by-slice land-

marks so that possible local deformations in the tissue (due to the dehydration and

polymer embedding process) can be ironed out. Also, additional anatomically cor-

rect landmarks need to be selected by an expert neuroanatomist. Furthermore, my

landmark-based 3D registration framework cannot provide local region mapping even

with a large number of landmarks. Klein et al. [41] surveyed fourteen nonlinear defor-

mation algorithms applied to brain image registration, each of which was applied at

least 2,168 times. The authors evaluated these algorithms using 8 different error mea-

sures and found that symmetric diffeomorphic registration (SyN) [5] and automatic

registration toolbox (ART) packages (http://www.nitrc.org/projects/art/) give

consistently high-ranking results. In this evaluation study, they also found that the

relative performances of the registration methods are little affected by the choice of

subject population and labeling protocol. So, even though our brain data modal-

ity is different from theirs, I expect SyN and ART to be applicable to KESM data

registration.

Furthermore, a neuroinformatics platform needs to be set up to import existing

annotations from other mouse brain atlases. With the annotation framework in place,

we can utilize existing annotations in the Waxholm Space (WHS) data volumes and

in Allen Brain Atlas data volumes. As the KESM data was registered with the

WHS as part of my dissertation, we expect this step to be straight-forward. A main

research issue is to reciprocate this back to the WHS atlases and to the Allen Brain
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Atlas. We can develop compatible API calls so that those using the WHS atlases

and Allen Brain Atlas can import anatomical data from our KESM brain atlas.

The Allen Brain Atlas (ABA) website provides Allen Reference Atlases (ARAs)

in the coronal and the sagittal plane to complement a genome-wide map of gene

expression in the mouse brain. I developed a crawling tool to extract annotated full-

color references of mouse brain structures in SVG format from the ARAs. Once I

obtained 132 SVG references and 21 SVG references in the coronal and sagittal plane,

I manually mapped the Allen SVG references to our KESM mouse brain atlases and

overlayed the Allen SVG references on KESMBA v2. Fig. 9.2 and Fig. 9.3 show the

mapped results in KESM Nissl coronal and India ink coronal and sagittal atlases.

This overlay plays a crucial role in annotations of our high-resolution moue brain

data. We can develop a registration algorithm to map our KESM data to the ABA

instead of my manual approach. For automated registration, I expect that the ITK

registration framework (http://www.itk.org/) can be a possible solution.

A. Zoom level 3 B. Zoom level 4 C. Zoom level 5 D. Zoom level 6

Figure 9.2: Registration of Allen Reference Atlases (ABAs) to KESM Nissl Coronal
Atlas. A SVG Allen coronal reference mapping to the multi-scale layers in the KESM
Nissl coronal atlas is shown. They are gradually zooming into the Corpus Callosum.
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A. ABA over India ink coronal B. ABA over India ink sagittal

Figure 9.3: Registration of Allen Reference Atlases (ABAs) to KESM India Ink
Coronal and Sagittal Atlases. A SVG Allen coronal reference mapping to the KESM
India ink coronal atlas and a SVG Allen sagittal reference mapping to the KESM
India ink sagittal atlas are shown.

9.3 Analysis

Our approach is related to Linear Discriminant Analysis (LDA) [51], but unlike

LDA, it does not consider different classes together (between-class scatter matrix).

Dimensionality reduction algorithms commonly use reconstruction error as a learning

metric but they are not used in a supervised manner because often they do not allow

inverse mapping, e.g. Isomap [92]. The approach is also related to committee learning

in the sense that the final classification is based on voting, but in our case, we do

not have a fixed committee: the committee is continually growing.

Watanabe [99] first introduced a subspace method called Class-Featuring Informa-

tion Compression (CLAFIC) for pattern classification. To assign new test samples to

a class, the CLAFIC method projects the new samples onto class-specific eigenspaces,

and the samples are assigned to the class which gives the maximum norm value. Our

approach, however, projects and in reverse reconstructs new samples using the class-

specific eigenvectors and classify the samples based on the reconstruction errors.

Malagón-Borja and Fuentes [49] used the same PCA reconstruction technique for

110



supervised classification, but not in the context of scalable, incremental learning for

massive, growing data.

Several incremental learning methods for eigenspace models have been proposed

[10, 12, 29, 28, 70]. All these approaches compute an eigenspace by updating a

single eigenspace model as new training samples are made available. In our case,

we calculate separate eigenspaces for different batches (subvolumes), but instead of

updating a single eigenspace, we keep all the eigenspaces and use them to project

and reconstruct new input samples, based on which we take a vote to decide the

class.
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10. CONCLUSION

In my dissertation, I presented KESMBA, a new web-based mouse brain atlas

with improved accessibility and enhanced 3D visualization. KESMBA was designed

to facilitate the sharing of the massive high-resolution mouse brain data acquired

from the KESM. The multiscale tiles allowed quick and consistent downloading time

and the 3D method enabled effective 3D visualization. Moreover, KESMBA allows

access from any Internet devices because it minimizes the client-side computation

and is implemented using standard Javascript library. KESMBA can serve as an

effective and efficient informatics framework for delivering large image volumes to

the neuroscience research community.

On top of KESMBA, since the viewpoint of KESMBA is fixed, to better appre-

ciate the full 3D morphology of the objects embedded in the data volumes, I have

developed a WebGL-based approach that complements the KESM brain atlas for

interactive viewing. It provides not only the geometrical reconstruction feature from

a given volume, but also allows users to interactively access the different angles of

view of an image volume.

Furthermore, I explained denoising and 3D registration algorithms customized for

high-resolution mouse brain data from the Knife-Edge Scanning Microscope (KESM).

Denoising was based on observed noise characteristics in the KESM data: localized

and global FFT-based denoising. Registration in 3D was achieved by the use of

a 2D, as-rigid-as-possible deformation that uses Moving Least Squares (MLS). The

algorithms were used to register our KESM mouse brain Nissl data set to the rodent

standard Waxholm Space. Once registered to the standard atlas, I can import a large

number of annotations such as the boundary information and text labels of cortical
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areas and subcortical nuclei, gene expression data, and scientific citation information

associated with the specific brain region. Furthermore, high-resolution data from our

KESM atlas can also map back to existing atlases, serving as an invaluable resource

for neuroscientists.

Lastly, I introduced a novel scalable incremental learning algorithm for fast quan-

titative analysis of massive, growing, sparsely labeled data from the Knife-Edge Scan-

ning Microscope. The approach is based on PCA used in a supervised manner: class-

specific projection and reconstruction. The algorithm showed high accuracy, 0.9614

(the AUC of the ROC curve on a test set), compared to an ANN-based benchmark

(AUC = 0.8228), demonstrating the scalability of the algorithm by pooling results

from a growing data set. Furthermore, I implemented my incremental learning al-

gorithm with MapReduce parallelization to greatly increase the performance in a

multiple cluster configuration.

I expect my frameworks to enable effective exploration and analysis of our KESM

data sets. In addition, I expect my approaches to be broadly applicable to the

analysis of other high-throughput medical imaging data.
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