

A VIRTUAL PROTOTYPE OF SCALABLE NETWORK-ON-CHIP DESIGN

A Thesis

by

KA CHON IEONG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Rabi N. Mahapatra

Committee Members, Jyh-Charn Liu

 Mi Lu

Head of Department, Nancy M. Amato

May 2014

Major Subject: Computer Engineering

Copyright 2014 Ka Chon Ieong

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79648627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

A Virtual Prototype of Network-on-Chip (NoC) that interconnects IPs in System-

on-Chip is presented in this thesis. A Virtual Prototype is a software model describing

various components of NoC put together for simulation and experiments of large SoCs

(System-on-Chips). It is a practical way to validate interconnection and working of SoCs

with a large number of components in scalable manner. In spite of extensive studies on

NoC design, a virtual prototype of NoC is unavailable to academic community. The

proposed cycle accurate model of NoC is perhaps the first academic virtual prototype of

NoC (VPNoC). The VPNoC can provide similar functionalities as the NoC in the

existing simulators. Furthermore, since it is implemented on Carbon SoC Designer, an

ARM based SoC development tool, it can be applied directly to current/future SoC

design. The proposed VPNoC has been used to demonstrate the design of two SoC

applications. In this study, we have achieved: 1) designs and implementations of the

NoC components and the VPNoC, 2) measurement of throughput and latency for the

VPNoC, and 3) two data intensive applications and their performance analysis.

iii

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Rabi Mapapatra for his guidance

and support throughout the course of this research, and also Dr. Aalap for his inspiration.

Thanks also go to my friends and colleagues of the Embedded Systems &

Codesign Group, Gabriel, Dharanidhar and Biplab, for their valuable suggestions on this

thesis.

In addictions, thanks to Carbon Design Systems for supporting this research with

the required tools.

Finally, thanks to my mother and father for their support and to Jessica for her

love.

iv

NOMENCLATURE

BF Bloom Filter

CF Collaborative Filtering

CNI Core-Network-Interface

EC Execution Controller

FIFO First in, First out

FSM Finite State Machine

HW Hardware

IP Intellectual Property

MNI Master Network Interface

NoC Network-on-Chip

PE Processing Element

RC Recommender Core

RCU Route Computation Unit

RPE Reconfigurable Processing Element

RTL Register-transfer Level

SIF Semantic Information Filtering

SNI Slave Network Interface

SoC System-on-Chip

SW Software

VC Virtual Channel

v

VP Virtual Prototype

VPNoC Virtual Prototype of Network-on-Chip

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

ACKNOWLEDGEMENTS ... iii

NOMENCLATURE .. iv

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES .. xi

CHAPTER I INTRODUCTION ... 1

I.1 Related Work .. 3
I.2 Contribution and Overview of the Thesis ... 3

CHAPTER II NETWORK-ON-CHIP DESIGN ... 6

II.1 Network-on-Chip Architecture .. 6
II.1.1 Processing Element ... 6
II.1.2 Core-Network-Interface .. 7

II.1.3 Router ... 7
II.1.4 Topology ... 8

II.1.5 Flow Control ... 8
II.1.6 Routing ... 8

II.2 Core-Network-Interface Design .. 9
II.2.1 Master-Network-Interface .. 11
II.2.2 Slave-Network-Interface ... 13
II.2.3 Link Controller ... 14
II.2.4 Packet Format ... 15

II.3 Microarchitecture of Network-on-Chip Router ... 18
II.4 Virtual Prototype of Network-on-Chip.. 20

II.4.1 Carbon Tools Set .. 21
II.4.2 Virtual Prototype of Network-on-Chip Development 22

CHAPTER III NETWORK-ON-CHIP EVALUATION .. 26

vii

III.1 Experiment Setup ... 26
III.1.1 Evaluation Platform ... 27
III.1.2 Simulation Parameters ... 27

III.2 Simulation Result ... 29

III.2.1 Comparison of Network Size .. 29
III.2.2 Comparison of Workload .. 35

CHAPTER IV NETWORK-ON-CHIP IN SYSTEM-ON-CHIP DESIGN

CHAPTER IV DATA-INTENSIVE APPLICATION .. 38

IV.1 Reconfigurable Computing Architecture for Data-Intensive Applications 38

IV.2 Semantic Information Filtering .. 40

IV.2.1 Introduction of Semantic Information Filtering .. 40

IV.2.2 SoC Design for Semantic Information Filtering ... 43
IV.2.3 System Performance Analysis ... 47

IV.3 Collaborative Filtering Recommendation Systems.. 49
IV.3.1 Introduction of Recommendation Systems ... 49

IV.3.2 SoC Design for Collaborative Filtering Recommendation Systems 52
IV.3.3 System Performance Analysis ... 56

CHAPTER V CONCLUSION AND FUTURE WORK ... 60

V.1 Conclusion ... 60
V.2 Future Work .. 61

REFERENCES ... 62

viii

LIST OF FIGURES

 Page

Figure 1 4x4 mesh Network-on-Chip ... 7

Figure 2 Block diagram of Core-Network-Interface .. 10

Figure 3 Microarchitecture of Core-Network-Interface ... 11

Figure 4 Example of handshaking mechanism .. 17

Figure 5 Microarchitecture of router .. 19

Figure 6 Carbon component of router with CNI .. 22

Figure 7 Actual view of a 4x4 mesh NoC in Carbon SoC Designer 23

Figure 8 Carbon component of VPNoC ... 24

Figure 9 Development process of VPNoC ... 24

Figure 10 Performance evaluation platform for VPNoC ... 27

Figure 11 Latency with different network sizes under uniform traffic 30

Figure 12 Latency of 4x4 under uniform traffic... 30

Figure 13 Throughput with different network sizes under uniform traffic 31

Figure 14 Latency with different network sizes under matrix transpose 32

Figure 15 Throughput with different network sizes under matrix transpose 32

Figure 16 Latency with different network sizes under hotspot .. 33

Figure 17 Latency of 4x4 mesh network under hotspot ... 33

Figure 18 Throughput with different network sizes under hotspot 34

Figure 19 Throughput of 4x4 mesh network under hotspot ... 34

ix

Figure 20 Latency of 4x4 mesh with different workloads under matrix transpose 35

Figure 21 Latency of 4x4 mesh using quarter workload under matrix transpose 36

Figure 22 Throughput of 4x4 mesh with different workloads under matrix transpose 36

Figure 23 Latency of 4x4 mesh with different workloads under hotspot 37

Figure 24 Throughput of 4x4 mesh with different workloads under hotspot 37

Figure 25 Reconfigurable computing architecture for data-intensive application 39

Figure 26 Tensor example .. 41

Figure 27 Proposed reconfigurable SoC for SIF .. 44

Figure 28 Reconfigurable Processing Element (RPE) for SIF ... 45

Figure 29 BF-Sync module .. 47

Figure 30 Execution time with increasing the number of RPEs 48

Figure 31 Computation process of a collaborative filtering recommendation system 49

Figure 32 m x n item-user matrix ... 50

Figure 33 Prediction computation for user u .. 52

Figure 34 Proposed reconfigurable SoC for CF ... 53

Figure 35 Recommender Core (RC) for CF ... 54

Figure 36 Rearranged data format .. 55

Figure 37 Execution time for different items size on the 32RCs 32 Mem system........... 57

Figure 38 Computation time for different items size on the 32RCs 32 Mem system 57

Figure 39 Communication time for different items size on the 32RCs 32 Mem system . 57

Figure 40 Comparison of ideal result and proposed result (normalized) 58

Figure 41 Execution time for different configurations ... 59

x

Figure 42 Computation time for different configurations .. 59

Figure 43 Communication time for different configurations ... 59

xi

LIST OF TABLES

 Page

Table 1 Packet format .. 15

Table 2 Write request packet format .. 16

Table 3 Read request packet format ... 16

Table 4 Selection of types of packets ... 18

Table 5 Type of payload of feedback packet ... 18

Table 6 Experiment parameters .. 29

Table 7 Simulation speed ... 58

1

CHAPTER I

INTRODUCTION

System-on-Chip (SoC) integrates all essential components of computing

elements or other specific system onto a single chip [1]. According to the International

Technology Roadmap for Semiconductors, it is expected that the number of transistors

grows 10 times from 2008 to 2018. It enables a complex SoC system contains hundreds

of components/subsystems. Efficient communications among components using

traditional bus schemes are infeasible due to clock synchronization, load balance, power

dissipation and area utilization [2]. Network-on-Chip (NoC) is regarded as a feasible

solution to replace the bus communication structure within a complex system on a chip.

It addresses the bus synchronization issue with introduction of Globally Asynchronous

Locally synchronous scheme [3; 4]. In order to meet system performance goals, one way

is to achieve more parallelism. Benini and De Micheli applied the concept of packet

switching on a chip to solve this architecture issue [3]. A typical on-chip network

consists of Core-Network-Interface (CNI) [5], routers and the interconnection network

[6]. A router, like the one used in computer networks, transfers data from source to

destinations. The interconnection network is the way to connect among routers. The

network size and the network topology are basic NoC parameters. The CNI bridges the

processing elements and network. In other words, CNI acts as a translator for processing

units to talk/interact with a chip wide network.

2

Design and verification of complex SoC systems has been a challenge to SoC

community [7]. With the demand of shortening time to market and increasing the

productivity, the design of system is needed to be verified at an early stage of the

development process [8]. Hardware/Software co-design enables the design of complex

systems to be isolated from over-design or under-design, which can save the system

development cost and cycle [8]. During the HW/SW co-design process, Virtual

Prototyping is the stage where SW/HW modules are represented by fully functional

software model called Virtual Prototype (VP) [9]. It enables designers to integrate and

test software in advance of physical hardware built. By applying VP in the device

development projects, it can save as much as 60% developing time [10]. The stand-alone

NoC simulators [11-15] are available for NoC related explorations. Some of these

simulators are able to model an entire system/application with the NoC. However, such

approaches are only applied very late in the system development stage. Virtual Prototype

of NoC is desired to solve pre-silicon design issues for complex SoC applications.

In the commercial environment, Arteris’s FlexNoC [16] is a NoC component in

Carbon SoC Designer [17]. Carbon SoC Designer is an industrial ARM based SoC

development tool. Due to business issue, universal researchers are unable to access the

component level design of the FlexNoC. Carbon MxAXIv2 [17] is another interconnect

component in the development tool. It is an infeasible crossbar IP block. The simulation

of the systems which utilizes MxAXIv2 can’t provide a practical view of system

performance. It causes an inaccurate design evaluation. Moreover, both of them are not

scalable for new complex SoC design. In addition, the NoC research community hasn’t

3

yet developed a virtual prototype of NoC component. Considering the above issues, we

propose to develop a virtual prototype of NoC (VPNoC) component for different levels

studies of NoC in SoC design. Integrating the VPNoC in complex SoCs can drive further

research on SoC design.

I.1 Related Work

 The existing NoC simulators provide various features and functionalities. Noxim

[12] can simulate 2D mesh topology NoC systems. Nostrum [14] is a SoC design

platform with defining a 2D mesh topology NoC. Nirgam [11] is a NoC simulator that

can model mesh or torus topology NoC. Garnet[13] is the simulator which is compatible

with the GEMS [18] framework so that can simulate a full multiprocessor environment.

NoCBench [15] not only provides the network simulation and a full system simulation,

but also is the first simulator to be able to do benchmarking.

The simulation tools mentioned above are mostly used to verify or improve NoC

designs. The NoCs are deeply integrated to the simulators. None of them can be directly

adopted in an earlier stage of any SoC designs. Although some commercial companies

provided on-chip-interconnect solutions, like ARM NIC 400 [19] and Arteris FlexNoC

[16], they are not open-source for the academic community for further NoC researches.

I.2 Contribution and Overview of the Thesis

Routers are prime components in Network-on-Chip (NoC). A five input/output

router has been implemented in RTL using Verilog. Each router uses four I/O ports to

connect to other routers in its neighborhood. The fifth I/O port is used for NoC to

4

communicate with the IP core. Each core communicates with the NoC via Core-

Network-Interface (CNI). Thus, CNI is an interface between a core and a router. We

have designed and implemented CNI containing a master-network-interface (MNI) and a

slave-network-interface (SNI) [20]. MNI transfers the raw data from the IP to the

network. SNI receives and decomposes the incoming packets to the IP. A virtual

prototype of NoC (VPNoC) has been designed and implemented using the router and

CNI using Carbon SoC Designer.

A network evaluation in terms of throughput and latency has been carried out

using various sizes of NoC to demonstrate scalability. We have applied different

injection rates in the experiments and tested them with static XY routing [21].

This way we have demonstrated that the VPNoC can be conveniently utilized in

the complex SoC designs. Two data intensive applications, i.e. Sematic Information

Filtering [22] and Collaborative Filtering [23] recommendation systems, have been

considered for mapping on to the VPNoC. In order to meet the computing requirements

in the above applications, we have proposed detail design of computing elements that

have an IP core connected through VPNoC. We have evaluated both application systems

with the computation time and the communication time.

We believe our cycle accurate model of NoC is the first academic virtual

prototype of NoC. VPNoC can be configured with different NoC specifications as the

NoC in the academic simulators does. Furthermore, since it is implemented in an

industrial development tool, VPNoC can be applied directly in current/future complex

SoC designs.

5

The rest of the thesis is organized as follows: Chapter II provides the details of

design of Core-Network-Interface, design of NoC router and development process of

VPNoC. In chapter III, we present the evaluation of VPNoC. Chapter IV demonstrates

the designs of two SoC systems for data intensive applications with employing VPNoC.

Conclusion and future work can be found in chapter V.

6

CHAPTER II

NETWORK-ON-CHIP DESIGN

II.1 Network-on-Chip Architecture

A typical 4x4 mesh Network-on-Chip (NoC) is shown in Figure 1. The packet-

switch based NoC consists of routers, Core-Network-Interfaces (CNIs) and processing

elements. The routers with 5 pairs of Input/Output ports can be organized in numerous

ways to achieve the optimal system performance. Each router is assigned with a unique

address (x and y coordinates) based on the position within the network. The source

processing element generates the raw information, then, it is processed by the CNI to

become a network packet. Each packet contains fields for source address, destination

address, sequence number, type and payload. The path for the packet traveling from the

source to the destination is computed by a routing algorithm. Namely, the router

computes next hop of the packet. Once it arrives at the destination, the CNI decomposes

the packet into data for the receiver to process.

The following sections introduce the components of NoC in detail.

II.1.1 Processing Element

A processing element (PE) is a communication end-point of the NoC, such as

DSP core, memory etc. A CNI connects a PE with a router. A raw data generated by the

PE is translated by the CNI to make it understandable by the network.

7

(1,0)(0,0) (2,0) (3,0)

(1,1)(0,1) (2,1) (3,1)

(1,2)(0,2) (2,2) (3,2)

(1,3)(0,3) (2,3) (3,3)

CNI

PE

Router

N

S

EW

c

Processing element

Core-Network-Interface

Figure 1 4x4 mesh Network-on-Chip

II.1.2 Core-Network-Interface

 The Core-Network-Interface (CNI) bridges a processing element with the

network. It acts as a translator to convert raw information from the core into network

packets which can be recognized by the network, and vice versa. Section II.2 discusses

the CNI design in detail.

II.1.3 Router

 Similar to standard computer networks, the router is desired to efficiently route

data packets through the network. A router consists of input channels to receive the

network formatted packets, output channels for sending, a virtual circuit network for

8

switching and a routing logic for making routing decision. Section II.3 provides more

information about the microarchitecture of the router.

II.1.4 Topology

 The network topology defines the number of routers and the connectivity among

them. It also provides the basic estimation of network performance and power

consumption. The choice of an appropriate topology relies on the 1)performance

2)requirement, 3)scalability, 4)simplicity, 5)distance span, 6)physical constraints, and

7)reliability and 8)fault tolerance [6].

 Several network topologies like fat-tree [4], mesh [24], torus [25], folded torus

[26], octagon [27] and butterfly fat-tree [28] have been investigated in [29]. The mesh

topology is a two-dimensional architecture. It consists of m columns and n rows.

Due to its scalability and simplicity, we use mesh topology to build our NoC.

II.1.5 Flow Control

 Flow control defines the communication mechanism among routers. It

determines the transmission protocol between two routers in neighbor. It becomes a

critical design parameter, as it affects the resource utilization of the network and the

overall performance. In our design, we employ the scheme that is virtual channel (VC)

flow control [30]. The detailed introduction is presented in section II.3.

II.1.6 Routing

 The routing algorithm computes the path for a given packet from its starting

point to its destination. It does affect the workload balance of the network and the

9

average path length. Hence, it can become a performance bottleneck in a network. In

general, we have two categories of routing algorithms:

1) Deterministic routing: It completely specifies the path from source node to target

node. Its decision is made without the consideration of network condition. Also,

it has low computation overhead and is easy to implement. Dimension-Order

Routing (DOR) [21] is a typical deterministic routing. Most of NoC designs

employ the DOR. For our research purpose, XY routing [21] (a DOR) is

implemented.

2) Adaptive routing: It computes the path based on the workload condition of the

network. However, its implementation is complicated and costly. Minimal

adaptive [31], fully adaptive [31], odd-even [32], etc. are the adaptive routing

algorithms.

II.2 Core-Network-Interface Design

 Core-Network-Interface (CNI) provides a solution for the communication

between processing elements and a network. The architectures of CNI differ in

accordance to various requirements, as shown in [33; 34]. In [5], the Core-Network-

Interface was designed to provide numerous services: 1) protocol translation from a core

to a router (packetization/de- packetization), 2) reliable end-to-end communication, 3)

power management, 4) communication scheduling, 5) fault tolerance, etc. Apart from

providing the desired services, an ideal CNI must bring in low implementation overhead

and low processing latency. Bhojwani and Mahapatra in their study [35] demonstrated

that hardware implementation of packetization scheme has better area efficient and

10

lower latency than the software implementation does. In fact, there is always a trade-off

between availability of the full services and implementation overhead.

The proposed CNI provides the fundamental service: decoupling between

computation and communication. In other words, the CNI only translates the “language”

from a core to a network or reverse. In order to reuse numerous IPs, our CNI supports

Advance Extensible Interface (AXI) protocol [36], an ARM-based bus communication

protocol. Once the CNI receives an AXI transaction from the corresponding core, it

packetizes the AXI transaction and forwards it to the network. If a packet comes from

the network, it will be de-packetized to an AXI transaction to notify the core.

MNI
Link

Controller
(LinkC)

Core Network Interface

ro
u

ter

SNI

AXI
Master

AXI
Slave

AXI
Slave

AXI
Master

PE

Figure 2 Block diagram of Core-Network-Interface

Figure 2 represents the block diagram of the CNI. It consists of 1) Master-

Network-Interface (MNI), 2) Slave-Network-Interface (SNI) and 3) Link Controller

(LinkC). Since IPs are classified into masters and slaves, we have the MNI that has a

AXI slave interface to interact with master cores, and the SNI is used to communicate

with slave cores with AXI master interface. Each time only MNI or SNI can

communicate with the router. Hence, we need the LinkC to arbitrate for them. The

11

design of the CNI is inspired from the simplified CNI architecture mentioned in [5] and

the idea proposed in [33].

The followings section elaborates the design details for each CNI component.

Core Network Interface

Link Controller

MNI

AXI
Slave

MNI
Controller

Address
decoder

de-PACK

PACK

Reorder
table

write data queue

read data queue

MNI out queue

MNI in queue

SNI

AXI
Master

SNI
Controller

de-PACK

PACK

Reorder
table

write data queue

read data queue

SNI out queue

SNI in queue

Arbiter

CNI out queue

CNI in queue

ro
u

ter

Back pressure out

Back pressure in

Figure 3 Microarchitecture of Core-Network-Interface

II.2.1 Master-Network-Interface

 A core actively interacts with a network via Master-Network-Interface (MNI).

The outgoing path of the MNI transfers AXI requests to the network. As shown in

Figure 3, it is composed of a write data queue, a MNI controller, an Address decoder, a

PACK module and a MNI out queue. The reverse path is to receive responses from the

12

network. It is composed by a read data queue, the MNI controller, a Reorder table, a de-

PACK module and a MNI in queue. The followings describe the detail of each module in

the MNI.

1) AXI Slave: It is an AXI Slave interface to connect a master core.

2) Write data queue: It is a FIFO buffer. It temporarily registers the data coming

from the AXI master during an AXI write transaction.

3) Read data queue: When an AXI read request is received at the AXI Slave, the

MNI will wait for the corresponding packet from the network. The read data

queue then store the de-packetized data from the MNI in queue. After that, the

AXI Slave will answer the AXI master with the data to complete the read

transaction. It is also a FIFO buffer.

4) MNI controller: This is the control unit of the MNI. It determines the data flow

and drives the AXI slave, a PACK module, a de-PACK module and a Reorder

table. A finite-state-machine (FSM) is implemented for the controller.

5) Address decoder: It is a pre-defined address mapping unit. An AXI address is

converted into a network address for the routing algorithm of the router. In the

mesh topology, the unit produces a pair of x and y coordinates.

6) PACK: It converts either the data at the write data queue or an AXI transaction

request into a network packet. The network packet contains five parts: source

network address, destination network address, sequence number, type and

payload. More details of the packet format are provided in the later section.

Afterward, the packet is sent to the MNI out queue and ready for transmission.

13

7) De-PACK: It performs the reverse process of the PACK. It takes the data from

MNI in queue and decodes the data so that the MNI controller can determine the

next action for the data.

8) Reorder table: It maintains the order of the received data for one transaction,

specifically for handling an AXI read request. The read request is received at the

AXI Slave and is forwarded to the network after packetization. It may require

several data in one transaction. The destination responses this request with the

desired data using different packets. Not only the packets need to be correctly

transmitted, but also maintaining their order is vital. However, the network

doesn’t keep the order for the packets belonging to the same transaction.

Therefore, a way to reorganize the packets at the data receiving side is

considered. Similarly, there is also a Reorder table in the Slave-Network-

Interface (SNI) for processing the AXI write request sending more than one

packet.

9) MNI out queue: The ready network packets are placed in this FIFO buffer. It

waits for the LinkC forwarding packets to the CNI out queue.

10) MNI in queue: This FIFO buffer keeps the incoming network packets from the

CNI in queue.

II.2.2 Slave-Network-Interface

 A processing element with an AXI slave interface can be accessed by other end

points in a network via the Slave-Network-Interface (SNI). As shown in Figure 3, the

architecture of SNI is almost the same as that of MNI. It contains an AXI Master instead

14

of an AXI Slave. Other modules in the SNI have the identical functionality as that of the

corresponding modules in the MNI. Although the SNI and the MNI are similar, the

directions of data flow are different.

 The SNI gets activated when it receives an incoming network packet. All

incoming packets are classified by the LinkC and are forwarded to either the MNI or the

SNI. First, the packet is placed in a SNI in queue if it is identified belonging to the SNI.

After de-packetization, the SNI controller decides where it should go next, e.g. putting it

to the Reorder table if it is a data for an AXI write request, driving the AXI master if it is

a AXI write/read request. If an AXI write request packet is received from the network,

the SNI will wait for the following write packets. If an AXI read request packet arrives

at the SNI, it results in creating an AXI read request. The SNI’s AXI master issues an

AXI transaction to the AXI slave of a processing element. Once the AXI master receives

the reading data from the processing element, the SNI controller activates the PACK

module, and pushes the packetized data to the SNI out queue.

II.2.3 Link Controller

 While the MNI converts the data from a processing element and issues it to a

network, the SNI receives the data from the network and processes it for the connected

processing element. They work independently, and they may require the network

resource at the same time, e.g. both of them want to send packets. But there is only one

port in a router for the CNI connection. Therefore, we need a 2 to 1 multiplexer in the

CNI to service both MNI and SNI. In our design, Link Controller (LinkC) does that.

15

 The LinkC consists of a CNI out queue, a CNI in queue, and an arbiter, as shown

in Figure 3.

1) CNI out queue: It is the last FIFO buffer for all outgoing ready packets from

both MNI and SNI in the CNI. It directly connects to an input port of a router.

2) CNI in queue: It is the first FIFO buffer in the CNI for all incoming packets.

An output port of a router connects to it directly.

3) Arbiter: A finite-state-machine (FSM) decides the order of accessing the CNI

out queue between MNI out queue and SNI out queue. It also forwards the

packets in CNI in queue to either MNI in queue or SNI in queue according to

the type of packets.

II.2.4 Packet Format

 A network packet consists of payload, sequence number, packet type, destination

and source, as shown in Table 1. The data widths of type and sequence number are fixed.

Here the widths of destination and source are based on a 4x4 mesh network, as known in

Figure 1. The length of payload depends on the data size of AXI protocol [36]. It can be

32bits, 64bits or 128bits. Throughout this thesis, the default data size of AXI protocol is

64bits and the address is 32bits.

Table 1 Packet format

Field payload sequence number type destination source

Bit [77:14] [13:10] [9:8] [7:4] [3:0]

16

1) Payload: It can be AXI write request, AXI read request, AXI write data or AXI

read data. Specifically, if it represents an AXI write/read request, it follows the

format in Table 2/Table 3. Those signals, e.g. AWSIZE etc., are essential to

initialize an AXI transaction request. The one bit signal Is_write indicates the

payload is a write request while it is 1, otherwise it is a read request.

Table 2 Write request packet format

AWID AWPROT AWBURST AWSIZE AWLEN AWADDR Is_Write

[48:45] [44:42] [41:40] [39:37] [36:33] [32:1] [0:0]

Table 3 Read request packet format

ARID ARPROT ARBURST ARSIZE ARLEN ARADDR Is_Write

[48:45] [44:42] [41:40] [39:37] [36:33] [32:1] [0:0]

2) Sequence number: Because of burst mode [36] of AXI protocol, an AXI

transaction may contain several data. They are sent to a network using different

packets. As we mentioned before, we have the Reorder tables in both MNI and

SNI to maintain the order of the packets for one transaction. The sequence

number records the correct order for the packets. It helps the Reorder table to

organize the disordered packets which belong to the same transaction.

3) Type: The purpose of having type is to construct a simple communication

protocol among the CNIs. Considering the situation where several processing

elements try to interact with an identical core simultaneously. Every time a CNI

can only response to another CNI. We need a protocol among the CNIs to solve

17

this problem. Therefore, we design a plain handshaking mechanism. The

mechanism is represented in Figure 4. At the beginning, B sends a write request

to A. After A receives the request, it responses B with a feedback saying A is

ready for receiving data. Then B starts to issue the data to A. Meanwhile, C sends

a request to A. As we know A is now waiting for data from B. Consequently, A

sends a feedback with a rejection to C. Eventually, C will try again after certain

an amount of time. If A is still not available during that period, the rejecting

process will occur again.

A

B

C

1. w
rite

 re
quest

2. re
ady fe

edback

3. w
rite

 1
st data

4. write request5. busy feedback

6. w
rite

 2
nd data

Figure 4 Example of handshaking mechanism

Accordingly, we have defined four kinds of network packets (Table 4):

request packet, feedback packet, write data packet and read data packet. A

request packet shows a packet is either write request or read request. A feedback

packet indicates whether a CNI is busy or not. In such a packet, the payload can

18

only be either 1 or 0 as shown in Table 5. A write/read data packet represents the

payload is the write/read data.

4) Source/destination: They are the representation of the router location within a

network.

Table 4 Selection of types of packets

description request feedback write data read data

type value 00 01 10 11

Table 5 Type of payload of feedback packet

description Ready Not Ready

payload value 0 1

II.3 Microarchitecture of Network-on-Chip Router

Several router microarchitectures, like CLICHE, Octagon, have been proposed in

[6; 24; 27; 37]. Low power consumption, low network latency etc. such ideal desired

features for a router requires complex design and implementation. This research

concerns more about the functionality of NoC rather than the high performance or other

special features. Hence, a regular router microarchitecture [6] has been used here for this

study.

A three stage pipelined virtual-channel router is implemented for our NoC and is

represented in Figure 5. It has 5 pairs of Input/output ports, such as N (North), S (South),

E (East), W (West), and C (Central), also shown in Figure 1. Each input port is assigned

with 6 virtual channel buffers (VCs).

19

Router
N Input

C Input

W Input

E Input

S Input

N Output

C Output

W Output

E Output

S Output

buffer_in

RCU

VC1

VC6

VC2...

Round-
RobinN Input

North Input

North Back
Pressure Out

DM

VC_slot

To C Output

To W Output

To E Output

To S Output
M1

Stage 1 Stage 2

S Output

buffer_out

From N Input

From C Input

From W Input

From E Input

South Output

South Back
Pressure In

Round-
Robin

driverM2

Stage 2 Stage 3

Figure 5 Microarchitecture of router

The following we briefly describe the three pipeline stages:

1) Buffer Assign & Route Compute: An incoming packet of the input port is placed

at a register, the Buffer_in block. The route computation unit (RCU) calculates

the output port for the address of the packet. Then one of the free virtual channel

20

buffers (VC1-VC6) determined by VC_slot is assigned with the value of the

packet along with its output port. The upstream router receives an one bit back-

pressure signal (BP) from this input port to learn the availability of virtual

channel buffer.

2) Output Port Allocation: This stage determines when a packet in the input virtual

channel buffers (VC1-VC6) can pass to a physical channel at the output port. A

Round-Robin algorithm [5] processes the decision in two steps. Let’s look at

Figure 5 as an example. We currently enter the N input channel. First, the Round-

Robin function selects one of the 6 virtual channel buffers (VC1-VC6). Once the

packet passes through M1 from the virtual channel, the S output channel needs to

choose one of the 4 input channels. In fact, other output channels have the same

action as well. The second step begins: M2 apply the Round-Robin algorithm to

make the arbitration for the four input channels. Finally, the packet is written into

the Buffer_out. Meanwhile, the S output channel receives a one bit back-pressure

signal which indicates the unavailability of the virtual channel buffers at the

downstream router. If the signal is low, the Round-Robin logic stops working for

M2.

3) Link Traversal: The packet at the Buffer_out can be sent out through the output

link in this final pipeline stage.

II.4 Virtual Prototype of Network-on-Chip

We have implemented the CNI and router in RTL using Verilog. Their initial

functional verifications have been performed using ModelSim from Mentor Graphics.

21

Taking the codes of CNI and router, a virtual prototype of NoC composed of the CNIs

and routers is able to create using Carbon Model Studio and Carbon SoC Designer from

Carbon Design Systems [17]. This virtual prototype tool set is industry standard in

providing system level modeling and validation for complex SoC design.

II.4.1 Carbon Tools Set

 In our study, we use Carbon Model Studio to generate components for Carbon

SoC Designer from Verilog source codes of the CNI and the router. Carbon SoC

Designer provides the development platform for constructing the system and verifies the

design.

 Carbon SoC Designer: It is a simulation environment for complex SoC systems

design and system verification using C++. It provides high simulation speed and

100% accuracy [17]. Its graphical application allows designers to create SoC

systems or modify existing systems in a graphical representation that shows

components, their ports, and connection among the ports. Its simulator not only

provides extensive debugging features, but also can interact with third party

debuggers. The component library there contains elementary components, such

as AXI compatible memory controller, ARM Cortex-A9, and it is supported by

other companies like ARM, Cadence etc. through an IP exchange platform. Users

can also build their own library.

 Carbon Model Studio: It can generate, validate and execute hardware-accurate

software models. Its compiler converts an RTL hardware model into a Carbon

model or other platform specific component for various simulation platforms,

22

such as Carbon SoC Designer, Synopsis Platform Architect [38] and SystemC

[39].

II.4.2 Virtual Prototype of Network-on-Chip Development

In the previous sections, we have presented the designs of CNI and router, the

two prime components of NoC. Here we are going to introduce the development process

of the virtual prototype of Network-on-Chip (VPNoC).

Figure 6 Carbon component of router with CNI

First, we build a RTL model written in Verilog for a CNI and a router. A top

module is used to connect the CNI and the router; it is named C_router. Second, using

Carbon Model Studio Compiler creates a Carbon model for the C_router. Third, the

Carbon Model Studio generates a Carbon component of the C_router. At this stage, we

23

can use the C_router in the Carbon SoC Designer, like Figure 6. Forth, we develop a

sub-system composed of certain amount of C_routers in Carbon SoC Designer. The

network topology and size determine the connectivity among the C_routers and the

number of components. E.g. A 4x4 mesh NoC requires total 16 C_routers in the sub-

system, as shown in Figure 7. Finally, a new Carbon SoC component is created by

packing the sub-system built in the fourth step. This component is the VPNoC, which

now can be used in SoC designs. In Figure 8, it represents a 4x4 mesh NoC and can be

connected with maximum 16 master cores and maximum 16 slave cores. Figure 9

summarizes the VPNoC development process.

Figure 7 Actual view of a 4x4 mesh NoC in Carbon SoC Designer

(number indicates a router)

24

Figure 8 Carbon component of VPNoC

Figure 9 Development process of VPNoC

create a RTL model for the CNI and the router

compile the model using Carbon Model Studio Compiler

create a Carbon SoC Designer component for the compiled model

create a sub-system in Carbon SoC Designer with the new compoent
according to the network topology and size

pack the sub-system as a new Carbon SoC Designer component

apply VPNoC in SoC designs

25

In this chapter, we first have given the background of Network-on-Chip. The

design of a five ports 3 pipelined stages router for the VPNoC is introduced. According

to the behavior of the router, we have proposed a specialized Core-Network-Interface

(CNI) for processing elements interacting the network. Finally, we have described the

development process of the VPNoC using an industry standard virtual prototype

development platform. In next chapter, we are going to evaluate the performance of

VPNoC with various network sizes and different workloads.

26

CHAPTER III

NETWORK-ON-CHIP EVALUATION

III.1 Experiment Setup

We have used Carbon SoC Designer to evaluate throughput and latency of the

virtual prototype of Network-on-Chip (VPNoC).

 Throughput: It is the rate that packets traversed the network. In [29], we can

calculate throughput using the Equation (1), where total transmitted packets is

the number of packets that successfully reach the destinations, packet length is

measured in bytes, and total running time is the time used in the communication.

() ()

 (1)

 Latency: It is defined as the average time (measured in cycle) to transmit a

packet. Equation (2) shows how to compute latency. transmission time of each

packet refers to the time used by a packet traveling from the beginning node to

the target node. total transmitted packets is the number of packets that

successfully arrive at the destinations.

∑

 (2)

27

III.1.1 Evaluation Platform

We construct a simulation platform that consists of traffic generators, traffic

receivers and an on-chip-network in Carbon SoC Designer. Figure 10 shows the system

for measuring the throughput and latency of the VPNoC. The Main Measure script

manages the simulation process and collects data from the traffic generators and traffic

receivers to compute the throughput and latency. A traffic generator is a processing

element injecting packets to the VPNoC. The Control script defines how and when each

traffic generator produces traffic. All the packets transmitted through the network are

received by the traffic receivers.

VPNoC

Traffic
Generators

Traffic
Receivers

Control
scripts

Main
Measure

script

Data Data

Figure 10 Performance evaluation platform for VPNoC

III.1.2 Simulation Parameters

 In the VPNoC performance evaluation, we measure the throughput and the

latency for three different network sizes. We apply three synthetic traffics for each

28

measurement. Each kind of traffic is generated under various injection rates. We also test

the VPNoC using different workloads.

1) Traffic pattern: It specifies the destination for each packet at each node. Three

synthetic traffics such as uniform traffic, matrix transpose and hotspot are

commonly used to examine a mesh network.

 Uniform traffic: The possibilities of a node communicating to other nodes

follow the uniform distribution.

 Matrix transpose: The packets from the node xn-1, xn-2, …, x1, x0 are sent to

the target xn/2-1, …,x0, xn-1,…, xn/2.

 Hotspot: All the nodes in a network send packets to the same destination

except the destination itself.

2) Injection rate: It is the capability of packets injecting to the network of a node.

The rate is measured in packet per cycle. E.g. 0.1 injection rate is each traffic

generator injects 0.1 packets to the network every cycle. The injection rate is

always converted to the time interval between two packets.

3) Network size: We demonstrate the scalability of the VPNoC by using different

sizes of network: 4x4 mesh, 6x6 mesh, 8x8 mesh and 10x10 mesh.

4) Workload: It indicates the number of active traffic generators injecting packets to

the network. We investigate how the VPNoC behaves using full, half and quarter

workloads. For example, the maximum number of traffic generators of testing a

4x4 mesh VPNoC is 16. The full workload means all of them inject packets to

29

the network. Half of them are activated if it is half. Only one fourth of them are

used in the test if we apply quarter.

III.2 Simulation Result

 The evaluation platform is constructed in Carbon SoC Designer and executed in

Carbon SoC Simulator. We use Microsoft Excel to analyze the data and plot the

diagrams. Table 6 summarizes the simulation parameters for the VPNoC performance

evaluation.

Table 6 Experiment parameters

network size 4x4 mesh, 6x6 mesh, 8x8 mesh, 10x10 mesh

traffic pattern uniform traffic, matrix transpose, hotspot

injection rate various

workload full, half, quarter

III.2.1 Comparison of Network Size

 Four sizes of network are tested under uniform traffic, matrix transpose and

hotspot with full workload. As shown in Figure 11, the latency of all four sizes of

network increases as the injection rate raises. When the injection rate reaches some

certain points (saturation point), a huge change of latency has happened except 4x4 mesh.

Under uniform traffic, the network resource is utilized fairly. Therefore, the latency of

small networks (4x4 mesh, 6x6 mesh) smoothly increases, as shown in Figure 12.

Figure 13 demonstrates that the similar phenomenon happens on throughput. It is

expected that the performance in terms of latency of a large network is worse than a

network of small size. A larger network produces longer average distance for

30

transmitting packets. The chance getting conflicts is bigger than in a small one as well

since we activate all traffic generators. On the other hand, a larger network can consume

more packets during a given period because of great network resources. Therefore, as

shown in Figure 11 and Figure 13, a 10x10 mesh NoC obtains the largest latency but the

greatest throughput.

Figure 11 Latency with different network sizes under uniform traffic

Figure 12 Latency of 4x4 under uniform traffic

0

100

200

300

400

500

0.03 0.12 0.21 0.3 0.39 0.48 0.57 0.66

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle)

uniform traffic

4x4

6x6

8x8

10x10

45

50

55

60

65

0.03 0.12 0.21 0.3 0.39 0.48 0.57 0.66

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle)

uniform traffic

4x4

31

Figure 13 Throughput with different network sizes under uniform traffic

For matrix transpose and hotspot traffics, we obtain similar result as we have for

uniform traffic, as shown in Figure 14 to Figure 19. But this time, the 4x4 mesh has

reached the saturation point as well. Another thing is the injection rates in both cases are

very small. As the destination of each packet is fixed when it is assigned at the source

node, the XY routing only specifies a constant path for a packet. The network resource

has not been utilized completely. Therefore, saturation points are located at the small

injection rates.

In Figure 18 and Figure 19, the throughputs of all networks eventually become

1.6Mbytes/s. Since only one node is receiving packets in hotspot traffic, the throughput

turns out to be the receiving rate of packets of the node. It is obviously that each node

has the identical capability of receiving packets.

0

20

40

60

80

0.03 0.12 0.21 0.3 0.39 0.48 0.57 0.66th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s)

Injection rate(packet/cycle)

uniform traffic

4x4

6x6

8x8

10x10

32

Figure 14 Latency with different network sizes under matrix transpose

Figure 15 Throughput with different network sizes under matrix transpose

0

50

100

150

200

250

300

350

0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle,100x)

matrix transpose

4x4

6x6

8x8

10x10

0

5

10

15

20

25

30

0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1

th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s)

Injection rate(packet/cycle,100x)

matrix transpose

4x4

6x6

8x8

10x10

33

Figure 16 Latency with different network sizes under hotspot

Figure 17 Latency of 4x4 mesh network under hotspot

0

200

400

600

800

1000

1200

0
.0

1

0
.0

5

0
.0

9

0
.1

3

0
.1

7

0
.2

1

0
.2

5

0
.2

9

0
.3

3

0
.3

7

0
.4

1

0
.4

5

0
.4

9

0
.5

3

0
.5

7

0
.6

1

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle, 100x)

hotspot

6x6

8x8

10x10

0

100

200

300

400

500

600

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle,100x)

hotspot

4x4

34

Figure 18 Throughput with different network sizes under hotspot

Figure 19 Throughput of 4x4 mesh network under hotspot

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
.0

1

0
.0

5

0
.0

9

0
.1

3

0
.1

7

0
.2

1

0
.2

5

0
.2

9

0
.3

3

0
.3

7

0
.4

1

0
.4

5

0
.4

9

0
.5

3

0
.5

7

0
.6

1

0
.6

5

th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s)

Injection rate(packet/cycle, 100x)

hotspot

6x6

8x8

10x10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s)

Injection rate(packet/cycle,100x)

hotspot

4x4

35

III.2.2 Comparison of Workload

 A 4x4 mesh network is tested with using different workloads. Activating more

traffic generators, the more packets are injected into the network; the NoC gets

congested in a very short period. We would see that the more workload is applied, the

earlier the network reaches the saturation point.

Under matrix transpose traffic, there are sudden changes in the latency of half

and full workload at 0.241 packet/cycle and 0.111 packet/cycle respectively, see Figure

20. But the latency of quarter workload increases smoothly while the injection rate

increases, as shown in Figure 21. The reason for that is the amount of packets injected to

the network is not large enough to utilize the related buffer resources. In Figure 22, using

full workload can send more packets via high utilization of hardware resources.

Figure 20 Latency of 4x4 mesh with different workloads under matrix transpose

0

20

40

60

80

100

120

140

160

180

200

0.1 5.1 10.1 15.1 20.1 25.1 30.1

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle, 100x)

matrix transpose

quarter

half

full

36

Figure 21 Latency of 4x4 mesh using quarter workload under matrix transpose

Figure 22 Throughput of 4x4 mesh with different workloads under matrix

transpose

45.5

46

46.5

47

47.5

48

48.5

49

49.5

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle)

matrix transpose

0
1
2
3
4
5
6
7
8
9

10

0
.1

2
.1

4
.1

6
.1

8
.1

1
0

.1

1
2

.1

1
4

.1

1
6

.1

1
8

.1

2
0

.1

2
2

.1

2
4

.1

2
6

.1

2
8

.1

3
0

.1

3
2

.1

3
4

.1

3
6

.1

th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s/
u

n
it

)

Injection rate(packet/cycle, 100x)

matrix transpose

quarter

half

full

37

 Under hotspot traffic, the 4x4 mesh network reaches the saturation point in all

workload conditions (Figure 23 and Figure 24).

Figure 23 Latency of 4x4 mesh with different workloads under hotspot

Figure 24 Throughput of 4x4 mesh with different workloads under hotspot

0

100

200

300

400

500

600

0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1

la
te

n
cy

(c
yc

le
s)

Injection rate(packet/cycle, 100x)

hotspot

quarter

half

full

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1 6.7 7.3

th
ro

u
gh

p
u

t(
M

B
yt

e
s/

s/
u

n
it

)

Injection rate(packet/cycle, 100x)

hotspot

quarter

half

full

38

CHAPTER IV

NETWORK-ON-CHIP IN SYSTEM-ON-CHIP DESIGN FOR DATA-INTENSIVE

APPLICATION

 We have applied the VPNoC for data-intensive applications to demonstrate its

valuable capability in SoC design. The NoCs in existing academic simulators are lacking

in flexibility to involve in new practical SoC design, especially at the early design stage.

They are mainly used in studies of characteristics and performance improvement of NoC

systems. Although the commercial on-chip interconnect provides the transparency of

communication within the system, it is necessary to access the component level of the

interconnection to obtain the optimal system performance. In other words, people are

able to specialize the interconnect network for their systems.

The following sections show how to integrate the VPNoC into the complex

system designs for Semantic Information Filtering and Collaborative Filtering

Recommendation Systems.

IV.1 Reconfigurable Computing Architecture for Data-Intensive Applications

 As the amount of digital information continues to grow [40], it consumes more

time for people doing search and the search result is unsatisfactory [41]. The traditional

data centers employ distributed computing framework to solve these problem through

coarse grained task parallelism. However, it brings in new energy inefficient and

resource intensive issues. People in computer architecture community realize that many-

core integrated on a single chip can achieve higher performance than the traditional

39

processors. In addition, it is more realistic than higher clock speeds of CPU [42; 43].

Therefore, it is a common recognition that many-core System-on-Chips will become the

compute engines for future datacenters.

Inspired from coarse grained reconfigurable arrays (CGRAs) [44], we have

proposed a reconfigurable computing platform for data-intensive applications in our

previous study [22]. Figure 25 illustrates the overall architecture of the platform at a high

level. It contains an Execution Controller (EC), a large amount of Reconfigurable

Processing Elements (RPE), a Core-Core interconnect network and a Memory-Core

interconnect network.

1) Execution Controller (EC): The EC takes care of initialization for RPEs,

synchronize the RPEs and distributes tasks to RPEs. It helps the host CPU (e.g.

RISC processor) to manage the RPEs.

DRAM Bank1

M
e

m
o

ry
-C

o
re

 I
n

te
rc

o
n

n
e

c
t

N
e

tw
o

rk

DRAM Bank2

DRAM Bank3

DRAM Bank4

DRAM Bank5

DRAM Bank r

RISC Processor HDD Controller DMA Controller

System BUS

Core-Core Interconnect Network

E
x
e

c
u

ti
o

n
 C

o
n

tr
o

lle
r

Reconfigurable

Processing

Element(RPE)

Configuration

Registers

Specialized

Functional

Unit

Figure 25 Reconfigurable computing architecture for data-intensive application

40

2) Reconfigurable Processing Elements (RPE): A RPE is an application specific

computing unit. It can contain various computing logics for different

applications. It is configurable based on the instruction from the EC. The RPEs

are designed to independently execute application logic. Each of them is able

to read and write memory banks.

3) Core-Core/Memory-Core interconnect network: Memory-mapped crossbar or

Network-on-Chip can be used as the interconnect network. Core-Core network

provides service for the communication among the RPEs. Memory-Core

network enables RPEs to interact with off-chip memory blanks. DMA

controller will fill the memory blanks if it is needed.

IV.2 Semantic Information Filtering

IV.2.1 Introduction of Semantic Information Filtering

 Semantic Information Filtering (SIF) is an information retrieval technique for

huge amounts of data. People are facing the increasing amount of information generated

by the Internet today. They process more data than before. The infinite growing number

of data makes search difficult and time consuming [41]. Information filtering techniques

have been carried out to effectively decrease the information overload. Search engines

typically provide string matching based searches service. The strings are represented and

compared by vector-based models without considering semantics. For example, two

phases: “Chinese man likes Indian food.” and “Indian man likes Chinese food.” are

consider 100% similar. The reason is they contain the same keywords. Obviously, they

represent distinct concepts. It is the drawback of using vector-based models to describe

41

strings. Meanwhile, users desire the searching service is able to handle more

sophisticated semantic (meaning based) operation [45]. To solve this problem, tensors

method has been proposed by the semantic computing community. It represents

composite meaning by multi-dimensional vectors. And it successfully computes

differences between complex concepts. However, this technique results in exponentially

growth of the problem size [46-48].

Term1

Term2

Coeff1

Coeff2

Termp Coeffp

Tensor1

Term1

Term2

Coeff1

Coeff2

Termq Coeffq

Tensor2

Figure 26 Tensor example

 Given the profiles of an item-user pair (Item1, User1), we use semantic

techniques to compute similarity among them. At first, the profile is converted to a

concept tree by semantic processing. The leaves of the concept tree represent terms, and

structure of the tree refers to meaning. Then those trees are used to generate the tensors

following the rules described in [48; 49]. The corresponding tensors are defined by a

large table of terms and coefficients where the terms represent distinct concepts (called

basis-vectors) and the coefficients indicate the relative importance of each concept in the

tensor [22], as shown in Figure 26. We use 64-bit MD5 Hash form numbers to represent

basis-vectors and 32-bit numbers for the coefficients. Accordingly, the size of the tensor

42

can become extremely large [46]. More details can be found in our previous published

work [22].

 The similarity between every pair of user-item profiles represented as tensors is

computed in three steps using Semantic Information Filtering. Figure 26 shows two

tensors (T1 and T2) of size p, q. The computation of semantic similarity (s12) between T1

and T2 follows: 1) identify common terms in T1 and T2 (say total k); 2) multiply the

corresponding coefficients of the every common terms to produce k products; and 3) sum

all the k products to yield s12.

 If the computation of s12 has high performance and energy efficiency, it produces

large economic benefit and better user experience as web data centers and users are

using similar technique. A traditional sequential processor computes the semantic

similarity in O(pq) time, if applying binary search tree it can become O(plogq). In fact,

people have achieved a time complexity of O(p+q) using Bloom filter [50] technique. A

Bloom filter (BF) is an n-bit long bit-vector. It provides a probabilistic method to fast

compute the intersection of two sets. Hence, the common k terms of T1 and T2 can be

identified quickly using BF. We construct two phases to look for common terms in two

tensors. The first phase called BF set is to insert “1” to m positions in an empty BF based

on the given indices. The term values of one tensor pass throughput several independent

hash functions respectively to obtain those indices. Once the insertion completes, the

second phase, BF test, takes each term values in another tensor to compare its

corresponding positions in BF whether or not are “1”. The positions are also generated

using the same hash functions. If all are “1”, we consider the corresponding term value is

43

common between the two tensors. The BF set and BF test can be performed in parallel

(every processing element processes different term values) using a shared BF. Once the

common terms are identified, the products and sum operations of semantic similarity can

be computed easily.

IV.2.2 SoC Design for Semantic Information Filtering

 In last section, we discuss the computation process of Semantic Information

Filtering (SIF). This section describes how we use the proposed reconfigurable

computing platform to parallelize the SIF process.

 As shown in Figure 27, our SoC design for SIF contains an ARM Cortex A9, an

Execution Controller, RPE matrix with 128 units, a BF-Sync module with 32 AXI Slave

interfaces, a RPE-BF interconnect network, Memory-core interconnect network, CAM-

core interconnect network, RAM units and CAM units.

 The ARM Cortex A9 is a low-power RISC processor. In our system, its clock

runs at 1GHz. It initializes the operation of the system, distributes data to the RAM and

CAM units, handles the interrupts from the Execution Controller (EC) and performs the

final sum operations. The input tensor data (Tensor1 and Tensor2) are partitioned into the

RAM units via the DMA Controller. Only the terms of Tensor1 is loaded into the RAM

units whereas the entire Tensor1 is load into the CAM units. The terms and coefficients

of Tensor2 both are written to the RAM units following the Tensor1’s data. At the

moment when all the operations of participating RPE complete, the CPU gets activated

by receiving an interrupt from the EC. It then fetches the partial sums from the RPE and

44

computes the s12 (similarity between Tensor1 and Tensor2) via accumulating the received

sums.

DRAM Bank1

M
e

m
o

ry
-C

o
re

 I
n

te
rc

o
n

n
e

c
t

N
e

tw
o

rk

E
x
e

c
u

ti
o

n
 C

o
n

tr
o

lle
r

DRAM Bank2

DRAM Bank3

DRAM Bank4

DRAM Bank5

DRAM Bank r

ARM Cortex A9 HDD Controller DMA Controller

System BUS

CAM Bank1

C
A

M
-C

o
re

 I
n

te
rc

o
n

n
e

c
t
N

e
tw

o
rk

CAM Bank2

CAM Bank3

CAM Bank4

CAM Bank5

CAM Bank s

BF-Sync

AXI Master

RPE0

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE-BF Interconnect Network

RPE1

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE63

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE64

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE65

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE66

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE127

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

RPE128

AXI Master 1

AXI Master 2

AXI Master 3

AXI Slave

AXI Master

AXI Master

AXI Master

RPE0

RPE1

RPE128

RPE0

RPE1

RPE128

RPE0 RPE1 RPE128

Figure 27 Proposed reconfigurable SoC for SIF

 The Execution Controller (EC) configures RPEs, monitors RPE’s computing

process, and notifies the host core when RPEs complete the desired tasks. First, it

initializes RPEs with the BF set phase configuration so that the RPEs execute the BF set

logic (details are provided in the latter description of RPEs). A complete signal is

received if RPEs finish the execution. Second, the EC sends the BF test phase instruction

45

to the RPEs. This time they enther the BF test phase. The EC waits for the complete

signals for the BF test phase from the RPEs. Finally, it retrieves all the partial sums from

the terminated RPE and then generates an interrupt to the host processor.

RPE State Registers

AXI Master

subcomponent

(Port 1)

To Interconnect 2

Memory Bank

AXI Slave

subcomponent

1.Load processing data

Config Registers

Operation done

To BF-Sync module

From BF-Sync module

32

To Interconnect 3

BF-Sync module

2. Calculate BF index

3.Set Bloom Filter

4. Test Bloom Filter

5. Calculate local SUM s12

Test_success

Test_valid

AXI Master

subcomponent

(Port 2)

AXI Master

subcomponent

(Port 3) To Interconnect 4

CAM Bank

Figure 28 Reconfigurable Processing Element (RPE) for SIF

A Reconfigurable Processing Element (RPE) contains 5 computation logics for

two phases: BF set and BF test. The logics are shown in Figure 28 which is an overview

of a RPE. It has 4 communication ports: one AXI Slave interface and 3 AXI Master

interfaces. The operation 1, Load processing data, loads data from the RAM units via

Port 1. The operation 2, Calculate BF index, generates the indices for BF using 7

independent hash functions for a given input. The operation 3, Set Bloom Filter, sends

the generated BF indices through an AXI Master (Port 2) to the BF-Sync module. The

operation 4, Test Bloom Filter, asks BF-Sync module to check whether a new group of

generated BF indices is presented in the BF. This request is also carried by the Port 2.

46

But the test result is directly given by Test_success and Test_valid from the BF-Sync

module. Test_valid indicates the result is ready and Test_success means we find a term

match. The operation 5 is associated with the operation 4. Once a RPE receives a

positive answer from Test Bloom Filter, the RPE looks for the corresponding coefficient

of Tensor1 in the CAM units. The last AXI Master (port 3) involves in this

communication. During the BF set phase, each RPE executes 1, 2 and 3 serially. Once

the set phase of all RPEs completes, operation 1, 2, 4 and 5 are executed serially.

BF-Sync module (Figure 29) consists of the Bloom Filter (an n-bit vector), the

control logic, 32 AXI Slave interfaces, and 128 pairs of Test_valid and Test_success.

The control logic performs the insertion of the BF and the test of presence using the data

from the AXI Slave ports. It is noticed that the number of AXI Slave ports of the module

may be less than the number of RPEs. Hence, a network is required to enable the

communication between RPEs and BF-Sync. Our VPNoC is the solution. Without the

VPNoC, we are not able to complete the SoC design of the application. Obviously, the

number of AXI Slave interfaces can be determined according to the performance

requirement and the power & area limitation.

RPE-BF interconnect network is our virtual prototype of Network-on-Chip

(VPNoC) component. The network employs static XY routing algorithm and mesh

topology.

Memory-Core interconnect network and CAM-Core interconnect network are

simple crossbar network. As each RAM unit and CAM unit are assigned to a single RPE,

47

using crossbar can reduce the complexity of the system development, and doesn’t affect

the correctness of the evaluation.

1 1 1 0 0 1 1 1 0 0

1 1 1 0 1 1 0 1 0 0

1

1

0

1
...

...

...

BF-Sync

Control logic

BF

Test_success
1

Test_valid
1

Test_success
128

Test_valid
128

.....

AXI

Slave 1

AXI

Slave 32

Figure 29 BF-Sync module

IV.2.3 System Performance Analysis

 Because of the need to observe the RPE in the context of a data-intensive

application and its complexity, we have created a full SoC virtual prototype using

Carbon Model Studio and Carbon SoC Designer. We measure computation time,

communication time and overall execution time for the SIF design on Carbon SoC

Designer simulator. The experiments focus on a single semantic comparison. For the

demonstrative purpose, the computing platform has used three different numbers of

RPEs, e.g. 32, 64 & 128, to process Tensor size of 160k. The similarity is 10%.

In the previous sections, we have mentioned that there is set phase and test phase

in the SIF algorithm. Figure 30 shows the averaged overall and two phases execution

time. Core Active (Set) refers to the time a RPE doing the actual computation during the

set phase; Core Active (Test) is for test phase. Core Stall (Mem read) indicates the

48

communication latency of the memories. Core Stall (wait to set BF/wait for test result)

means the communication latency of the BF-Sync module.

Figure 30 Execution time with increasing the number of RPEs

We can observe that the communication latency dominates the entire execution

time. The latency comes from traveling the RPE-BF interconnect network (the VPNoC).

It shows that communication within the system becomes the performance bottleneck.

However, one of the advantages of using VPNoC is that we learn the entire structure and

detail of the component. It can configured by changing the topology, routing algorithm,

microstructure of router, etc. in order to achieve the optimal performance of SIF. Other

interconnect components in the tool don’t provide such flexibility. The actual execution

time of SIF algorithm (Core Active (Test) & Core Active (Set)) reduces when the number

of RPEs increases.

0

50000

100000

150000

200000

250000

300000

s
e
t

te
s
t

to
ta

l

s
e
t

te
s
t

to
ta

l

s
e
t

te
s
t

to
ta

l

32 64 128

E
c

e
c

u
ti

o
n

 T
im

e
 (

c
y
c

le
s

)

Number of Cores αβ(with N=160k,sim=10%,r=32,s=32)

Overall Execution Time

Core Active(Test)

Core Active(Set)

Core Stall(Mem read)

Core Stall(wait to set
BF/wait for test result)

49

IV.3 Collaborative Filtering Recommendation Systems

IV.3.1 Introduction of Recommendation Systems

 Nowadays, recommendation systems are widely used in many websites such as

YouTube, Amazon, Netflix, etc. It can follow the steps of its user, observe the interests

of a group of similar users and pick items that best suit the user based on either items the

user liked (content-based filtering) or implicit observations of the user’s

followers/friends who have similar tastes (collaborative filtering). Most of

recommendation systems today employ collaborative filtering (CF) approach as it is

domain-free and easy to collect new user-item relation from user history (e.g.

preferences, ratings etc.) [51]. On the other hand, addition information is required for

content-based filtering. And it may not be found in every application domain.

Figure 31 Computation process of a collaborative filtering recommendation system

CF approach is described in 4 stages, as shown in Figure 31. First, user

preference information is explicitly and implicitly collected by those operating

recommendation systems. Explicit data collection may let a user to rate for the items he

has seen/bought. Implicit method may use the data from items placed on a wish list,

items seen, search made etc. A profile of user-preferences can be built on the data

collected in a recommendation system. In our study, we use generated data, (uID, iID,

collect user
perference

calculate item-
item pair
similarity

compute
predictions for

a user

identify top-k
recommended

items

50

rate), as the collected information, where uID is the unique id of a user, iID is the id of

an item and rate represents the rating of the item given by the user. rate is in the range of

1 to 5.

ru2

rui

1 2 u.. .. v n..

1

2

i

..

j

m

..
..

rvj

Users

It
e

m
s

unrated rated
users rated

both items i & j

Figure 32 m x n item-user matrix

Second, CF approach calculates the similarity between all item-item pairs. Given

a set of n different users , a set of m distinct items ,

rui represents the rate that user assigns for the item . In a realistic situation, it

is very likely that users do not rate for all items. Therefore, if a user does not rate for an

item, we still regard this item is rated by this user, but with a rate of 0. Figure 32 visually

shows the relationship between u, i, and rui using a matrix. We compute the

similarity between two items using Pearson’s correlation coefficient [23]. It can

be defined as Equation (3) where sij denotes the similarity metric, Uij is the subset of

users who have rated for item i and item j, and ̅ (̅) refers to the average rating of the

51

item i (j). It is obvious that . indicates that all users who have rated

both item i and j have the same opinion, and when they always disagree with

each other. All sij forms a similarity matrix as known in Figure 33. Since each sij can be

independently computed, we easily parallelize this step via assigning computations of sij

to numerous processing units.

∑ (̅)(̅)

√∑ (̅)
 √∑ (̅)

(3)

Third, the predictions for the unrated items of a user are computed in this stage.

Given an item i that user u has not seen, the prediction pui that the rating u will give i is

calculated using the multiplication of row i of the similarity matrix and column u of the

item-user matrix. Figure 33 shows the above computation process.

Finally, the top “K” entries among the predicted items are selected to present to

the user.

In this section, we have discussed the computation process of Collaborative

Filtering (CF). The next section describes how we use the proposed reconfigurable

computing platform for CF recommendation system.

52

sij

1 2 i.. .. j m..

Items

1

2

i

..

j

m

..
..

It
e

m
s

1

2

i

..

j

m

..
..

It
e

m
s

u

1

2

i

..

j

m

..
..

It
e

m
s

u

=X

unrated

rated

predicted

similarity matrix

pui

Figure 33 Prediction computation for user u

IV.3.2 SoC Design for Collaborative Filtering Recommendation Systems

People have study CF problem applying MapReduce scheme on traditional

clusters [52; 53] . In [23], they designed a CF recommender with MapReduce

programming paradigm on Intel SCC platform, an experimental 48-core on chip

architecture, and obtained ~2x speedup as compared to those clusters. As the successful

experience of applying the proposed architecture (mentioned in IV.1 section) for

Semantic Information Filtering, can we also take advantages of the architecture in CF

problem? To the best of our knowledge, it is the first time to apply Network-on-Chip for

the design of CF recommendation system.

 As shown in Figure 34, our SoC design for CF contains an ARM Cortex A9, an

Execution Controller, Recommender Core (RC) matrix, a Memory-Core interconnect

network, and DRAM units.

53

DRAM Bank1

M
e

m
o

ry
-C

o
re

 I
n

te
rc

o
n

n
e

c
t

N
e

tw
o

rk

E
x
e

c
u

ti
o

n
 C

o
n

tr
o

ll
e

r

DRAM Bank2

DRAM Bank3

DRAM Bank4

DRAM Bank5

DRAM Bank r

ARM Cortex A9 HDD Controller DMA Controller

System BUS

AXI Master

RC1

AXI Master 1AXI Slave

RC2

AXI Master 1AXI Slave

RCn/2-1

AXI Master 1AXI Slave

RCn/2

AXI Master 1AXI Slave

RCn/2+1

AXI Master 1AXI Slave

RCn/2+2

AXI Master 1AXI Slave

RCn-1

AXI Master 1AXI Slave

RCn

AXI Master 1AXI Slave

AXI Master

AXI Master

AXI Master

RC1

RC2

RCn

Figure 34 Proposed reconfigurable SoC for CF

 The ARM Cortex A9 is a low-power RISC processor. In our system, its clock

runs at 1GHz. It initializes the operation of the system, distributes data to the DRAMs,

handles the interrupts from the Execution Controller (EC) and retrieves the top-K

recommended items for users from the DRAMs. The data contained numerous entries

formatted (uID, iID, rate) are partitioned into the RAM units via the DMA Controller.

At the moment when all the operations of participating RCs complete, the CPU gets

activated by receiving an interrupt from the EC. It then fetches the recommended items

for a user from the DRAMs.

The Execution Controller (EC) configures RCs, monitors RC’s computing

process, and notifies the host core when RCs complete the desired tasks. The entire

computation process involves in 4 stages: group operation, correlation coefficient,

matrix multiplication and sort (more details can be found in the latter introduction of

54

RCs). The EC initializes RCs with the corresponding instruction at the beginning of each

stage. A complete signal is received if a RC finishes an execution.

A Recommender Core (RC) is a Reconfigurable Processing Element and

contains 4 computation logics. The logics are shown in Figure 35 which is an overview

of a RC. The AXI Slave subcomponent receives instructions from EC and writes to the

Config Registers. Then the RC State Registers indicate an operation that the RC is going

to execute. The data required at each operation comes from the DRAMs via the AXI

Master subcomponent. The following introduces the intention of each operation.

RC State Registers

AXI Master

subcomponent

To Interconnect

Memory Bank

AXI Slave

subcomponent

Execution

Controller
1. group operation

Config Registers

Operation done

32
2. correlation coefficient

3. matrix multiplication

4. sort

Figure 35 Recommender Core (RC) for CF

 At the very beginning, we only know the number of entries of the data needed to

process. The group operation first computes the number of users and number of

items. It then rearranges the data as known in Figure 36. If a user does not rate

for an item, we will assign the rating of 0.

55

 The correlation coefficient is the stage to calculate the similarity between two

items using the Equation (3). It will first compute the average rate for item i and j

(̅ and ̅). The square root computation and division computation are completed

to get the sij.

 The matrix multiplication achieves the prediction of unrated items for every user

through computation, as shown in Figure 33.

 The last operation sort gets the top 4 items (in our case) and rates for all the users

and writes back to the DRAMs for the host CPU.

User1 Item1 rate11

User1 Item2 rate12

User1 Itemm rate1m

..
.

User2 Item1 rate21

User2 Item2 rate22

Usern Itemm-1 ratenm-1

Usern Itemm ratenm

..
.

..
.

..
.

..
.

..
.

Figure 36 Rearranged data format

The Memory-Core Interconnect Network adopts the VPNoC described in this

thesis. Static XY routing algorithm and mesh topology are employed in the network.

Each RC needs to access all the DRAMs as we distributed the data equivalently to the

memory blanks. In addition, the number of RCs may not be the same as the number of

DRAMs. Moreover, the scalability of commercial components in the library of the

56

simulation tool does not allow the system to achieve the expected behavior. Considering

the above reasons, VPNoC is the best suitable interconnection component in our

simulation environment.

IV.3.3 System Performance Analysis

 In this section, we have conducted the experiments to evaluate the performance

of our proposed architecture. We can change (1) size of the input data, (2) number of

RCs and number of memory blanks in the evaluation of the system. Our goal is to

demonstrate that the reconfigurable computing platform can perform collaborative

filtering using a traditional approach and obtain the speedup and energy saving with

reference to the state-of-the-art.

 The system has been developed and tested in Carbon SoC Designer. It ran at

500MHz clock speed. We applied various sizes of dataset using 32 RCs and 32 memory

blanks. The configurations of (16 RCs, 16 memory blanks) and (64 RCs, 64 memory

blanks) were tested also respectively with 128 users and 256 items dataset. To verify that

our architecture works on practical datasets, the Movielens [54] consisting of 100k

ratings was used in the system configured with 8 RCs and 8 memory blanks, as in [23]

their result was performed using 8 cores.

 We measure communication time and computation time for each experiment.

Figure 37 - Figure 39 shows the times for the system configured with 32RCs and 32

memory blanks using a synthetic dataset while increasing number of items. Since we

used brute-force algorithm to compute CF, it is possible to calculate the relationship

57

between number of items and execution time. As shown in Figure 40, our result is

almost the same as the ideal curve.

Figure 37 Execution time for different items size on the 32RCs 32 Mem system

Figure 38 Computation time for

different items size on the 32RCs 32

Mem system

Figure 39 Communication time for

different items size on the 32RCs 32

Mem system

0
100
200
300
400
500
600
700
800

64I 128I 256I 512I

64U 64U 64U 64U

Ti
m

e
(m

s)

#Item #User

Execution time

0

2

4

6

8

10

12

14

64I 128I 256I 512I

64U 64U 64U 64U

Ti
m

e
(m

s)

#Item #User

Computation time

0

100

200

300

400

500

600

700

64I 128I 256I 512I

64U 64U 64U 64U

Ti
m

e
(m

s)

#Item #User

Communication time

58

Figure 40 Comparison of ideal result and proposed result (normalized)

 Figure Figure 41 – Figure 43 demonstrates the performance of different hardware

configurations for 128 Users and 256 Items synthetic dataset. Using more hardware

resource, we were able to gain the speedup accordingly. We cannot go beyond 64RCs

and 64 Memory blanks due to the slow simulation speed, as shown in Table 7.

Table 7 Simulation speed

 16 RCs 16 Mems 32 RCs 32 Mems 64 RCs 64 Mems

speed (cycles/sec) 1500 750 350

 Applying the practical Movielens-100k dataset (1000 distinct users and 1700

distinct items) on 8 RCs 8 Mems system, it took 273s to complete the computation of

similarity of all item-item pairs, which is better than the result from the state-of-the art.

Intel’s SCC needed 350.2s and cluster service that employed Hadoop required 800s [23].

Both of them were configured with 8 cores and used MapReduce scheme.

0

10

20

30

40

50

60

70

64I 128I 256I 512I

64U 64U 64U 64U

A
xi

s
Ti

tl
e

#Item #User

ideal

proposed

59

Figure 41 Execution time for different configurations

Figure 42 Computation time for

different configurations

Figure 43 Communication time for

different configurations

0

100

200

300

400

500

600

16 RC 32 RC 64 RC

16 Mem 32 Mem 64 Mem

Ti
m

e
(m

s)

#cores #memory

Execution time

0

2

4

6

8

10

12

14

16 RC 32 RC 64 RC

16 Mem 32 Mem 64 Mem

Ti
m

e
(m

s)

#cores #memory

Computation time

0

100

200

300

400

500

600

16 RC 32 RC 64 RC

16 Mem 32 Mem 64 Mem

Ti
m

e
(m

s)

#cores #memory

Communication time

60

CHAPTER V

CONCLUSION AND FUTURE WORK

V.1 Conclusion

The increasing complexity of SoC design requires the verification of system

architecture as early as possible during the development process to avoid over-design or

under-design to meet system specification. As the number of component placed on a

single chip continues to grow, handling communication among them becomes a

challenge. Although researchers have proposed Network-on-Chip to solve the on chip

communication issue, designers are not able to use their result directly at the early design

stage. In this thesis, a virtual prototype of scalable NoC for complex SoC design has

been developed to address the above issues. First, RTL model of NoC components

including the router and the CNI have been implemented using Verilog. Then, a virtual

prototype of mesh NoC is constructed in an industrial standard SoC development

platform. A performance evaluation system of NoC is also given to measure the

throughput and latency for different sizes of network under various traffic patterns with

different injection rates. We have applied several workload conditions as well.

 The simulation result has demonstrated the scalability of the VPNoC. By

changing the sizes of network, the packets in a larger network experience larger latency.

And a larger network can deliver more packets. We have obtained the consistent result

using all traffic patterns. Moreover, the VPNoC has behaved properly while changing

the workload (number of traffic generators).

61

 Finally, we have applied the VPNoC for two data intensive applications. We are

able to complete the proposed reconfigurable computing platform because of utilization

of VPNoC. The interconnect component plays an essential role in the system. For the

collaborative filtering recommendation system, we have demonstrated the system is

scalable and it can achieve a better performance compared with current literature. In

addition, the VPNoC can help us to evaluate the SoC design more precisely as it is a

feasible cycle accurate component.

V.2 Future Work

 The next goal of this study is to develop a Fast Model of NoC. A fast model has

better simulation speed but sacrificing the accuracy. In the evaluation of the network, the

simulation time of a bigger size network has increased significantly. Therefore, a

balance between speed and accuracy is needed especially when it is employed to a

complex SoC design.

 We also can optimize CNI design and add more service on it (e.g. security, fault

tolerance, etc.). The designers will know the impact to the system after adding new

service at the early development stage of SoC design. It is desired to have the

implementations of adaptive routing algorithms and different topologies.

 For the CF application, although we currently only use a brute-force method to

compute the recommended items for users using the proposed reconfigurable

architecture, we still have obtained a promising result. It will be interesting to see if we

map the MapReduce scheme to our platform for CF.

62

REFERENCES

1. Edenfeld, D., Kahng, A. B., Rodgers, M., & Zorian, Y. (2004). Technology

roadmap for semiconductors. Computer, 37(1), 47-56.

2. Bjerregaard, T., & Mahadevan, S. (2006). A survey of research and practices of

network-on-chip. ACM Computing Surveys (CSUR), 38(1), 1-51.

3. Benini, L., & De Micheli, G. (2002). Networks on chips: a new SoC paradigm.

Computer, 35(1), 70-78.

4. Guerrier, P., & Greiner, A. (2000). A generic architecture for on-chip packet-

switched interconnections. In the Proceedings of the Conference on Design,

Automation and Test in Europe, Paris, France (pp. 250-256).

5. Bhojwani, P., & Mahapatra, R. N. (2006). Core Network Interface architecture

and latency constrained on-chip communication. In the Proceedings of the 7th

International Symposium on Quality Electronic Design, San Jose, CA (pp. 358-

363).

6. Duato, J., Yalamanchili, S., & Ni, L. M. (2003). Interconnection networks: an

engineering approach. San Francisco, CA: Morgan Kaufmann.

7. Silburt, A., Perryman, I., Bergeron, J., Nichols, S., Dufresne, M., & Ward, G.

(1995). Accelerating concurrent hardware design with behavioural modelling and

system simulation. In the Proceedings of the 32nd ACM/IEEE Design

Automation Conference, San Francisco, CA (pp. 528-533).

8. De Michell, G., & Gupta, R. K. (1997). Hardware/software co-design.

Proceedings of the IEEE, 85(3), 349-365.

9. Holzer, M., Knerr, B., Belanovic, P., Rupp, M., & Sauzon, G. (2004). Faster

complex SoC design by virtual prototyping. In the International Conference on

Cybernetics and Information Technologies, Systems, and Applications, New

Orlando, FL (pp. 305-309).

10. Schutter, T. D. (2013). The power of developing hardware and software in

parallel: how virtual prototypes reduce risk in a high-stakes game. Available

from http://www.design-reuse.com/articles/31951/the-power-of-developing-

hardware-and-software-in-parallel.html

11. Lavina, J. (2010). Nirgam. Available from http://nirgam.ecs.soton.ac.uk

12. Palesi, M., Patti, D., & Fazzino, F. (2010). Noxim. Available from

http://noxim.sourceforge.net/

http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://nirgam.ecs.soton.ac.uk/
http://noxim.sourceforge.net/

63

13. Kumar, A., Agarwal, N., Peh, L.-S., & Jha, N. K. (2008). A system-level

perspective for efficient NoC design. In the IEEE International Parallel and

Distributed Processing, Miami, FL (pp. 1-5).

14. Lu, Z., Thid, R., Millberg, M., Nilsson, E., & Jantsch, A. (2005). NNSE: nostrum

network-on-chip simulation environment. In the Processing Swedish System-on-

Chip Conference, Tammsvik, Sweden (pp. 1-4).

15. Mandal, S. K., Gupta, N., Mandal, A., Malave, J., Lee, J. D., & Mahapatra, R.

(2009). NoCBench: a benchmarking platform for network on chip. In the

Workshop on Unique Chips and Systems, Boston, MA.

16. Arteris Inc. (2013). Arteris FlexNoC interconnect IP. Available from

http://www.arteris.com/flexnoc

17. Carbon Design Systems. (2002). Carbon SoC designer. Available from

http://www.carbondesignsystems.com/

18. Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M.,

Alameldeen, A. R., . . . Wood, D. A. (2005). Multifacet's general execution-

driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer

Architecture News, 33(4), 92-99.

19. ARM Ltd. (2013). ARM CoreLink NIC-400 network interconnect. Available

from http://www.arm.com/products/system-ip/interconnect/axi/

20. Jung, E. B., Cho, H. W., Park, N., & Song, Y. H. (2006). Sona: an on-chip

network for scalable interconnection of amba-based ips. In the International

Conference on Computational Science, Reading, Berkshire, United Kingdom (pp.

244-251).

21. Dally, W. J., & Seitz, C. L. (1987). Deadlock-free message routing in

multiprocessor interconnection networks. Computers, IEEE Transactions on,

100(5), 547-553.

22. Tripathy, A., Ieong, K. C., Patra, A., & Mahapatra, R. (2013). A reconfigurable

computing architecture for semantic information filtering. In the IEEE

International Conference on Big Data, Santa Clara, CA (pp. 212-218).

23. Tripathy, A., Patra, A., Mohan, S., & Mahapatra, R. (2012). Designing a

collaborative filtering recommender on the single chip cloud computer. In the

High Performance Computing, Networking, Storage and Analysis, Salt Lake City,

UT (pp. 838-847).

http://www.arteris.com/flexnoc
http://www.carbondesignsystems.com/
http://www.arm.com/products/system-ip/interconnect/axi/

64

24. Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., . . .

Hemani, A. (2002). A network on chip architecture and design methodology. In

the IEEE Computer Society Annual Symposium on VLSI, Pittsburgh, PA (pp.

105-112).

25. Dally, W. J., & Towles, B. (2001). Route packets, not wires: on-chip

interconnection networks. In the Proceedings of Design Automation Conference,

Las Vegas, NV (pp. 684-689).

26. Dally, W. J., & Seitz, C. L. (1986). The torus routing chip. Distributed

computing, 1(4), 187-196.

27. Karim, F., Nguyen, A., & Dey, S. (2002). An interconnect architecture for

networking systems on chips. Micro, IEEE, 22(5), 36-45.

28. Pande, P. P., Grecu, C., Ivanov, A., & Saleh, R. (2003). Design of a switch for

network on chip applications. In the Proceedings of the International Symposium

on Circuits and Systems, Bangkok, Thailand (pp. 217-220).

29. Pande, P. P., Grecu, C., Jones, M., Ivanov, A., & Saleh, R. (2005). Performance

evaluation and design trade-offs for network-on-chip interconnect architectures.

Computers, IEEE Transactions on, 54(8), 1025-1040.

30. Dally, W. J. (1992). Virtual-channel flow control. Parallel and Distributed

Systems, IEEE Transactions on, 3(2), 194-205.

31. Dally, W. J., & Towles, B. P. (2004). Principles and practices of interconnection

networks. San Francisco, CA: Morgan Kaufmann.

32. Hu, J., & Marculescu, R. (2004). DyAD: smart routing for networks-on-chip. In

the Proceedings of the 41st annual Design Automation Conference, San Diego,

CA (pp. 260-263).

33. Daneshtalab, M., Ebrahimi, M., Liljeberg, P., Plosila, J., & Tenhunen, H. (2012).

Memory-efficient on-chip network with adaptive interfaces. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 31(1), 146-

159.

34. Radulescu, A., Dielissen, J., Pestana, S. G., Gangwal, O. P., Rijpkema, E.,

Wielage, P., & Goossens, K. (2005). An efficient on-chip NI offering guaranteed

services, shared-memory abstraction, and flexible network configuration.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 24(1), 4-17.

65

35. Bhojwani, P., & Mahapatra, R. (2003). Interfacing cores with on-chip packet-

switched networks. In the Proceedings of the 16th International Conference on

VLSI Design, New Delhi, India (pp. 382-387).

36. ARM Ltd. (2003). AMBA AXI Protocol Specification. Available from

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

37. Mullins, R., West, A., & Moore, S. (2004). Low-latency virtual-channel routers

for on-chip networks. ACM SIGARCH Computer Architecture News, 32(2), 188-

197.

38. Synopsys Inc. (2013). Synopsys platform architect. Available from

http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.

aspx

39. Panda, P. R. (2001). SystemC-a modeling platform supporting multiple design

abstractions. In the Proceedings of the 14th International Symposium on System

Synthesis, Montréal, Québec, Canada (pp. 75-80).

40. Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC iView, 1-12.

41. Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition.

In the ACL, Columbus, OH (pp. 236-244).

42. Oracle. (2008). Oracle information architecture: an architect's guide to big data.

Available from http://www.oracle.com/technetwork/topics/entarch/articles/oea-

big-data-guide-1522052.pdf

43. IBM Systems and Technology Group. (2011). Dealing with the massive data

generated by many-core systems. Available from

http://www.bscmsrc.eu/sites/default/files/media/bsc-workshop-grice.pdf

44. Kim, Y., Mahapatra, R. N., Park, I., & Choi, K. (2009). Low power

reconfiguration technique for coarse-grained reconfigurable architecture. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 17(5), 593-603.

45. Juan Carlos Perez. (2009). Google joins crowd, adds semantic search capabilities.

Available from

http://www.computerworld.com/s/article/9130318/Google_joins_crowd_adds_se

mantic_search_capabilities_

46. Tripathy, A., Mohan, S., & Mahapatra, R. (2011). Optimizing a semantic

comparator using CUDA-enabled graphics hardware. In the 5th IEEE

International Conference on Semantic Computing, Palo Alto, CA (pp. 125-132).

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf
http://www.bscmsrc.eu/sites/default/files/media/bsc-workshop-grice.pdf
http://www.computerworld.com/s/article/9130318/Google_joins_crowd_adds_semantic_search_capabilities_
http://www.computerworld.com/s/article/9130318/Google_joins_crowd_adds_semantic_search_capabilities_

66

47. Biswas, A., Mohan, S., & Mahapatra, R. (2009). Search co-ordination by

semantic routed network. In the Proceedings of 18th Internatonal Conference on

Computer Communications and Networks, San Francisco, CA (pp. 1-7).

48. Biswas, A., Mohan, S., Panigrahy, J., Tripathy, A., & Mahapatra, R. (2009).

Representation of complex concepts for semantic routed network. In the

Distributed Computing and Networking, Innsbruck, Austria (pp. 127-138).

49. Biswas, A., Mohan, S., Tripathy, A., Panigrahy, J., & Mahapatra, R. N. (2009).

Semantic key for meaning based searching. In the 3rd IEEE International

Conference on Semantic Computing, Berkeley, CA (pp. 209-214).

50. Broder, A., & Mitzenmacher, M. (2004). Network applications of bloom filters: a

survey. Internet Mathematics, 1(4), 485-509.

51. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender

systems: an introduction. Cambridge, NY: Cambridge University Press.

52. Schelter, S., Boden, C., & Markl, V. (2012). Scalable similarity-based

neighborhood methods with mapreduce. In the Proceedings of the 6th ACM

Conference on Recommender Systems, Dublin, Ireland (pp. 163-170).

53. Jiang, J., Lu, J., Zhang, G., & Long, G. (2011). Scaling-up item-based

collaborative filtering recommendation algorithm based on hadoop. In the IEEE

World Congress on Services, Washington, D.C. (pp. 490-497).

54. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic

framework for performing collaborative filtering. In the Proceedings of the 22nd

International ACM SIGIR Conference on Research and Development in

Information Retrieval, Berkeley, CA (pp. 230-237).

