
FLAT-FOOT DYNAMIC WALKING VIA HUMAN-INSPIRED

CONTROLLER DESIGN

A Thesis

by

WENLONG MA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Aaron D. Ames
Committee Members, Bryan P. Rasmussen

John Hurtado
Head of Department, Andreas Polycarpou

May 2014

Major Subject: Mechanical Engineering

Copyright 2014 Wenlong Ma



ABSTRACT

This thesis describes a torque control scheme unifying feedback PD control and

feed-forward impedance control to realize human-inspired walking on a novel planar

footed bipedal robot: AMBER2. It starts with high fidelity modeling of the robot

including nonlinear dynamics, motor model, and impact dynamics. Human data is

then used by an optimization algorithm to produce a human-like walking gait that

can be implemented on the robot, which is represented in the form of canonical

walking functions. To realize the bipedal walking, first a PD controller is utilized to

track the optimized trajectory. Next, impedance control parameters are estimated

from the experimental data of a successful walking with AMBER2. Finally, the

unified PD, impedance torque control law is experimentally realized on the bipedal

robot AMBER2. Through the evidence of sustainable and unsupported walking

achieved on AMBER2 showing high consistency with the simulated walking gait,

the feasibility of AMBER2 walking scheme will be verified.
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1. INTRODUCTION∗

Figure 1.1: The bipedal robot AMBER2

Due to the complexity present in achieving bipedal robotic walking, its study

is often split between two extremes: theoretical results aimed at developing torque

controllers (e.g., controlled symmetries [20], geometric reduction [6, 19], inverted pen-

dulum [17, 13]) that are provably correct, and simulation/experimental results guided

∗Portions of this thesis have been reprinted with permission from “Human-inspired Walking
via Unified PD and Impedance Control” by W. Ma, H. Zhao, S. Kolathaya and A. D. Ames, 2014.
IEEE International Conference on Robotics and Automation (ICRA 2014). Copyright 2014 by
IEEE.
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by heuristics (e.g., ZMP methods [23, 24], passivity based control [10, 14], reinforce-

ment learning [15] and the central pattern generators [18]) that, often, provide better

real world behavior than complex nonlinear controllers can achieve. Both of these ex-

tremes are important in the study of robotic walking, yet to achieve truly human-like

robotic walking it is necessary to bridge the gap between these two methodologies.

While gains have been made toward this goal, most notably through the application

of hybrid zero dynamics to achieve robotic walking and running [9, 21, 25], novel

methods are still needed to unify theoretical results with experimental realization.

With the goal of making the first step toward bridging the gap between theoretical

simulation and experimental implementation, this thesis focuses on flat-feet robotic

walking with a planar bipedal robot with feet—AMBER2 (Fig. 1.1) using the human-

inspired optimization and controller design. To introduce the control framework,

this thesis starts with introducing a high fidelity model of AMBER2 in Sect. 2.

In order to ensure agreement between the simulated behavior of this model and the

behavior observed experimentally, this model includes all of the most relevant aspects

of the robot: nonlinear dynamics, models of the motors and boom, and the impact

dynamics. The end result is a hybrid system model for the bipedal robot, for which

the torque command of the motors is the input. Utilizing this particular model, the

human-inspired optimization problem, subject to certain physical constraints (Sect.

3) that provably guarantee robotic walking, is developed (this method has been

successfully applied to other bipedal robots including NAO [5] and AMBER [26] as

well), the end results are the parameters for canonical walking functions [3] that

produce human-like trajectories that are amendable to implementation on physical

robot.

The torque controller for the physical robot is formed by two elements: a feedback

controller, which is a standard PD based torque controller using trajectories from the
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partial hybrid zero dynamics (PHZD) reconstruction obtained via human-inspired

optimization reconstruction; and a feed-forward controller, which is an impedance

controller obtained from fitting impedance parameters to the torque profiles from an

experimental walking gait. This formal unification of applying PD and Impedance

control is what differentiates this approach from others. Feed-forward control is

a widely used strategy in the field of locomotion controller design. While it can

improve the performance and reduce the hysteresis of the system [7], it relies heavily

on knowledge of the system and thus is sensitive to modeling error. However, in

section 4, the utilization of a novel impedance control scheme can avoid the shortages

while keeping the benefits.

The main contribution of this research is the experimental implementation of

the unified PD, impedance human-inspired control approach on the physical robot

and the experimental results achieved with this implementation. With the detailed

introduction of the experiment design in Sect5, the framework of the AMBER2

walking strategy was verified in both simulation and experiment. To highlight the

advantage of the unified PD, impedance controller, we compared these results to

those of AMBER2 walking only with a PD controller. The method for achieving this

walking is outlined through the presented pseudo-code, block diagram of the low-

level controller and a state machine for the logic used. The end result is sustained

and unsupported bipedal robotic walking on AMBER2. These experimental results

are compared against the simulated walking and provide a bridge between the formal

methods and experimental implementation.

3



2. AMBER2 FLAT-FOOT WALKING MODEL

AMBER2 is a 2D bipedal robot with seven links (two calves, two thighs, two feet

and a torso, see Fig. 2.1a). AMBER2 is a second generation bipedal robot and an

expansion upon its predecessor, the non-footed (point foot) bipedal robot, AMBER

(see [26]). Each joint is actuated by a brushless DC (BLDC) motor. In addition, with

motion being restricted to the sagittal plane via a boom shown in Fig. 2.2, which

are configured as parallel four-link mechanism, the boom support structure (4) in

Fig. 2.2 is always horizontal. The boom is fixed rigidly to a rotating mechanism

(see Fig. 2.2), which allows the biped to walk in a circle with minimal friction. In

(a) Sideview of AMBER2.

(b) Configuration
angles.

(c) Outputs.

Figure 2.1: (a) The bipedal robot AMBER2, (b) Robot joint angles, (c) Robot
outputs.
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Figure 2.2: AMBER2 with the boom and electronics. The boom restricts motion
to the sagittal plane. As shown in the figure: (1) Counterweight used to balance
the boom around the pivot, (2) Controller module where the walking algorithm is
running, (3) The boom, (4) Boom support structure which keeps the torso horizontal,
(5) The bipedal robot AMBER2.

addition, counterweights are provided (see Fig. 2.2) to cancel out the weight on the

robot due to the boom weight. The motor H-bridges are located close to the pivot of

the boom along with the other sensing and controller modules supplied by National

Instruments. The modules are remotely connected to the stationary power supply

with the help of slip rings located below the pivot. The joint angles of the robot are

measured by PWM absolute MR encoders and single-ended incremental quadrature

encoders and sent into the FPGA in the controller.

Let (θsa, θsk, θsh, θnsh, θnsk, θnsa) ∈ Q ⊂ R6 be the angles of the stance ankle

(ankle of the stance leg), stance knee (knee of the stance leg), stance hip, non-

stance (of the swing leg) hip, non-stance knee and non-stance ankle respectively (see

Fig. 2.1b). These variables form the configuration space of the robot, and are shown
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in Fig. 2.1b. Lc, Lt are the lengths of the calf and thigh respectively (values are

given in Table. 2.1).

2.1 Continuous Dynamics

Given the configuration θ = (θsa, θsk, θsh, θnsh, θnsk, θnsa )T ∈ Q, and computing

the mass and inertia properties of each link of the robot through a SolidWorks model

allows for the construction of the Lagrangian:

L(θ, θ̇) =
1

2
θ̇TD(θ)θ̇ − V (θ) (2.1)

Explicitly, this is done symbolically through the method of exponential twists [16] in

Wolfram Mathematica.

The AMBER2 model also contains the motors and boom. The way the inertia of

these two elements are included in the model is slightly different. This approach was

first considered in [26], and will be revisited here. Let Ir be the rotational inertia of

the rotor and Ig be the rotational inertia of the gearbox. Due to the large gear ratio,

Ig is small enough to be ignored in the calculation. Similarly, the distance between

the axis of rotation of the rotor and the corresponding joint is small. In addition,

the mass of the rotor is small, resulting in the inertia of the motor w.r.t the joint

Model Parameters
Parameter Mass Length Inertia x-axis Inertia z-axis

g m ×103 g m2 ×103 g m2

Stance foot 204.42 0.07445 139.698 406.384
Stance calf 1119.43 0.34313 9343.395 22211.105
Stance knee 1172.57 0.29845 9004.044 22404.696

Torso 2154.79 0.10401 20342.192 64678.601
Non-stance knee 1172.57 0.29845 9004.044 22404.696
Non-stance calf 1119.43 0.34313 9343.395 22211.105
Non-stance foot 204.42 0.07445 139.698 406.384

Table 2.1: The mass parameters for each link of the robot.
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axis can be approximated to be the inertia w.r.t the rotor axis.

Since the biped end of the boom can move up-down (along z-axis) and forward-

backward (along x-axis), the boom exhibits yaw and roll about the pivot. This would

correspond to the x component and z component of the velocities of the torso. The

center of mass of the boom can be approximated to be at the center of the pivot. If

Iboom is the inertia of the boom, then its mass matrix, Mboom ∈ R6×6, is:

Mboom =

 Iboom
L2
boom

03×3

03×3 03×3

 ,
where Lboom is the distance between COM of the torso and the pivot. Then the new

combined mass inertia matrix, Dcom used in the Lagrangian will be:

Dcom(θ) = D(θ) + diag(0, Im,sk, Im,sh, Im,nsh, Im,nsk, Im,nsa) + J(θ)TMboomJ(θ)

where Im,sk, Im,sh, Im,nsh, Im,nsk correspond to the motor inertia of respective links

and J(θ) is the body Jacobin of the center of mass of the torso. Using the modeling

techniques presented, the Euler-Lagrange equations can be realized in the following

manner:

Dcom(θ)θ̈ +H(θ, θ̇) = B(θ)u, (2.2)

where u ∈ R6 is a vector of torque inputs. Converting the equations of motion to a

first order ODE yields the control system (f, g), which is in the form

ẋ = f(x) + g(x)u, (2.3)
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where x = (θ, θ̇) and,

f(x) =

 θ̇

−D−1(θ)H(θ, θ̇)

 g(x) =

 0

D−1(θ)B(θ)



2.2 Discrete Dynamics

The domain, X, describes the allowable configuration of the system restricted by

the guard function hnsf is given by

X =
{

(θ, θ̇) ∈ TQ : hnsf (θ) ≥ 0
}
,

where, TQ is the tangent space of the configuration space Q. The guard function

specifies that the non-stance foot must be above the ground, i.e., the height of non-

stance foot, hnsf ≥ 0.

The guard is just the boundary of the domain with the additional assumption

that hnsf is decreasing:

S =

{
(θ, θ̇) ∈ TQ : hnsf (θ) = 0 and

∂h(θ)

∂θ
θ̇ < 0

}
.

When the non-stance foot impacts the ground, the angular velocities will change

instantaneously while the joint angle won’t change. Hence we define a reset map

which calculates the post impact velocities in terms of the pre-impact velocities. In

addition, the “stance” and “non-stance” legs are swapped for simplicity. The reset

8



map ∆ is then given by:

∆(θ, θ̇) =

 ∆θθ

∆θ̇(θ)θ̇

 , (2.4)

where ∆θ is the relabeling matrix which switches the stance and non-stance legs at

impact (by appropriately changing the angles). Here, ∆θ̇ determines the change in

velocity due to impact. This thesis forgos the detailed discussion on its computation,

but more descriptions can be found in [11] and [3].
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3. HUMAN-INSPIRED TRAJECTORY CONSTRUCTION

This section reviews human-inspired optimization so as to properly frame the for-

mal results that are utilized to experimentally achieve robotic walking. Specifically,

we review the formal results from [4] (also see [3, 5] for related results in the case of

full actuation) with a view toward torque control.

3.1 Human-Inspired Outputs

To achieve human-like walking, we begin with seeking “outputs” of the human

locomotion data, more detail about the human walking experimental research can be

found in [3]. For this thesis, as it was denoted in Fig. 2.1b, six outputs are considered

for the 6-DOF robot:

1. The linearized x-position of the hip:

δphip(θ) = Lc(−θsf ) + Lt(−θsf − θsk), (3.1)

2. The angle of stance knee θsk,

3. The angle of non-stance knee θnsk,

4. The linearized slope of the non-stance leg mnsl: the tangent of the angle be-

tween the z-axis and the line on the non-stance leg connecting the ankle and

hip, given by:

mnsl = −θsf − θsk − θsh + θnsh +
Lc

Lc + Lt
θnsk, (3.2)
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5. The torso angle from vertical:

θtor(θ) = θsa + θsk + θsh, (3.3)

6. The angle of the non-stance foot w.r.t the horizontal:

θnsf = θsa + θsk + θsh − θnsh − θnsk − θnsa. (3.4)

Analysis of the chosen outputs data indicates that, the linearized hip position is

a linear function of time:

δpdhip(t, v) = vhipt, (3.5)

And the other outputs can be characterized by the solution of a linear mass-spring-

damper system, which we term the canonical walking function (CWF):

yH(t, α) = e−α1t(α2 cos(α3t) + α4 sin(α3t)) + α5, (3.6)

where α1 = c0, α3 = c1 are determined by the initial condition of the system,

α2 = ωd with ωd = ωn
√

1− ξ2 the damped natural frequency, ξ is the damping

ratio, α4 = ξωn, with ωn the natural frequency, and α5 = g. Based on the linear

fashion of the linearized hip position, we parameterized the time as:

τ(θ) =
δpRhip(θ)− δpRhip(θ+)

vhip
, (3.7)

which removes the dependence of time in (3.6) and renders an autonomous system

[25]. Note that, θ+ represents the robot configuration of the beginning of the step.

11



With the autonomous CWF in hand, we define the human-inspired outputs:

yα(θ, θ̇) =

y1(θ, θ̇)
y2(θ)

 =

 ya,1(θ, θ̇)− vhip

ya,2(θ)− yd,2(τ(θ), α)

 , (3.8)

where y1(θ, θ̇) is the relative degree one output, which is the difference between the

actual forward hip velocity ya,1(θ, θ̇) and the desired hip velocity vhip. And y2(θ) are

the relative degree two human-inspired outputs which are the difference between the

actual relative degree two outputs ya,2(θ) and desired relative degree two outputs

yd,2(θ), defined as:

yd,2(t, α) =



yH(t, αsk)

yH(t, αnsk)

yH(t, αnsl)

yH(t, αtor)

yH(t, αnsf )


, ya,2(θ) =



θsk

θnsk

δmnsl(θ)

θtor(θ)

θnsf


, (3.9)

where α = (vhip, αsk, αnsk, αnsl, αtor, αnsf ) ∈ R26 is the vector of the grouped parame-

ters. Note that ya,2(θ) is linear in joint angles, θ, and can be written as ya,2(θ) = Hθ.

3.2 Control Law Construction

To drive y1 → 0 and y2 → 0, this thesis utilized input/output feedback lineariza-

tion controller for simulations. In other words, the goal is to drive the dynamics of

the system to the zero dynamic surface:

Zα = (θ, θ̇) ∈ TQ : y1(θ, θ̇) = 0,y2(θ) = 0, ẏ2(θ, θ̇) = 0)

12



We now differentiate the relative degree 1 once and the relative degree 2 twice, yields:

 ẏ1

ÿ2

 =

 Lfy1(θ, θ̇)

L2
fy2(θ)


︸ ︷︷ ︸

L

+

 Lgy1(θ̇)

LgLfy2(θ)


︸ ︷︷ ︸

A

u (3.10)

with L the Lie derivative, is nonsingular and A the decoupling matrix. Therefore,

we can define the following torque controller:

u = −A−1(θ, θ̇)(

 0

L2
fy1(θ, θ̇)

+

 Lfy1(θ, θ̇)

2εLfy2(θ)

+

 εy1(θ, θ̇)

ε2y2(θ)

).

In other words, we can apply feedback linearization to obtain a linear system on the

human-inspired output. This system is exponentially stable, implying that for ε > 0

the control law u drives y1 → 0 and y2 → 0 as t→∞. Applying the feedback control

law in (3.11) to the hybrid control system H C = (X, u, S,∆, f, g), yields a hybrid

system:

H (α,ε) = (X,S,∆, f (α,ε)), (3.11)

where, X, S, and ∆ are defined as for H C , and

f (α,ε)(θ, θ̇) = f(θ, θ̇) + gv(θ, θ̇)u.

Before the specific method for determining the parameters α that result in robotic

walking is presented, we need to introduce Partial Hybrid Zero Dynamics first. Of

particular interest in robotic walking are the relative degree 2 outputs, y2(θ) =

ya,2 − yd,2. The surface for which these outputs agree for all time is given by the

13



partial zero dynamics surface:

PZα = {(θ, θ̇) ∈ TQ : y2(θ) = 0, Lfy2(θ) = 0}. (3.12)

Importantly, a feedback linearization controller can easily render this surface stable

and invariant for continuous system. However, this may not be true for a hybrid

system with impacts. The goal of partial hybrid zero dynamics (PHZD) is to find

the parameters α that ensure that this surface remains invariant through impact:

∆(S ∩ PZα) ⊂ PZα. This constraint motives the introduction of an optimization

problem that guarantees this condition.

3.3 Human-Inspired Optimization

Having constructed the human-inspired controller, the objective of this section is

to find the controller parameters, α, which deliver provable walking with the robot.

However, in order to implement the results in the robot, physically realizable con-

straints need to be imposed. We will begin with describing each constraint explicitly,

and then present the optimization problem.

Partial Hybrid Zero Dynamics Constraints. As discussed in former section,

in order to realize exponentially stable orbits in hybrid systems, PHZD constraints

need to be imposed on the objective function:

y2,α(ϑ(α)) = 0, (C1)

dy2,α(∆θϑ(α)),∆θ̇(ϑ(α))ϑ̇(α) = 0, (C2)

dhnsf (ϑ(α))ϑ̇(α) < 0, (C3)

where ϑ(α), ϑ̇(α) are the configuration and velocities respectively of the biped at

the beginning of the step, and can be computed purely from the parameters, α

14



(More on the computation of ϑ(α) can be found in [4].) (C1) and (C2) enforce

the PHZD constraints, and (C3) ensures that the non-stance foot strikes the guard

“transversally”. The end results of these constraints, therefore, is PHZD [3].

Torque Constraints. Torques acting on the joints are limited by the capacity

of the motors and the modules. Therefore, constraints were imposed on not just

the maximum torque from the linearizing controller, but also the change in torque

demands due to impacts. In fact, achieving steady state walking was stymied by

the frequent occurrence of current spikes in the non-stance hip and non-stance knee

motors during impacts. Therefore, besides minimizing maximum allowable torques,

constraints were imposed to ensure smooth torque demands in the non-stance knee

and non-stance hip actuators.

max
0≤u(θ(α))

‖u(θe(t, α), θ̇e(t, α))‖ < TorqueMAX (C4)

unsh(ϑ(α), ϑ̇(α), α) = unsh(∆θϑ(α),∆θ̇(ϑ(α)), α) (C5)

unsk(ϑ(α), ϑ̇(α), α) = unsk(∆θϑ(α)),∆θ̇(ϑ(α)), α) (C6)

where TorqueMAX is the maximum torque the motor can supply with the efficiency

consideration and u are the actual torques in the simulation.

Foot Scuffing Conditions. There needs to be sufficient swing foot height clearance

and stride length during the swing phase of walking to prevent scuffing. The clearance

must be sufficient enough to avoid scuffing amidst sensor noise, tracking error, uneven

ground and even imperfection in the mechanical design. Therefore, the following
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constraint is proposed:

max
0≤τ(θ(α))

(hnsf (θ
e(t, α))− hquad(θe(t, α), hmax)) > 0 (C7)

max
0≤τ(θ(α))

lnsf (θ
e(t, α))−MINsteplength > 0, (C8)

where hquad is a quadratic polynomial above which the non-stance foot (hnsf ) must

remain over the course of a step. hquad can be computed from the parameters α and

the user specified peak height of the quadratic (hmax). The stride length lnsf is

constrained to be above a minimum specified stride length, MINsteplength. Simulta-

neously, the strike length is also optimized to guarantee better walking gait.

Human-Inspired Optimization. Having specified all the constraints, we now

consider the human-inspired optimization problem with using the human-data-based

cost function,

α∗ = argmin
α∈R26

CostHD(α) (HIO)

s.t (C1)− (C8) (C)

The cost function (HIO) is the least squares fit between the human experimental

data and the CWF representations [5], i.e., we try to find the α parameters that

best fit human-walking data which enforcing the desired constraints. The end result

of this optimization is that the control law (3.11) results in provable stable robotic

walking for the hybrid system model of AMBER2 (3.11) (see [5] for a proof which

easily extends to the case of AMBER2).
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4. CONTRLLER DESIGN

Having constructed the human-inspired trajectory from optimization, the objec-

tive of this section is to design the appropriate controller that delivers provable walk-

ing with the robot. However, in order to realize robotic walking, State based partial

hybrid zero dynamics (PHZD) reconstruction methodology needs to be introduced

first, and then we will present the unified PD impedance controller.

4.1 PHZD Reconstruction

The idea is to find the desired joint angle and angular velocities of the robot in

every iteration through inverse projection from the PHZD surface. Given the PHZD

surface, the coordinates can be defined as:

ξ1 = δpRhip(θ) := cθ (4.1)

ξ2 = ya1(θ, θ̇) := δṗRhip(θ) := cθ̇

where c is obtained from (3.7). Since ξ1 is the linearized position of the hip, which is

used to parameterize time as (3.7), we can write the desired outputs yd,2(τ(θ), α) =

yd,2(ξ1, α). We can also write the actual outputs as:

η1 = y2,a = Hθ (4.2)

η2 = LfRy2,a(θ, θ̇) = Hθ̇

Then we can use PHZD to obtain an approximation of the solution to the full-order

system. On the partial zero dynamics surface, the actual outputs are equal to the

desired outputs. Therefore we have the following relationship between the desired
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joints angles and velocities and the desired outputs of the robot:

θd(τ) = Ψ(ξ1, α) =

 c

H


−1 ξ1

yd,2(ξ1, α)

 (4.3)

θ̇d(τ) = Φ(ξ1, ξ2, α) =

 c

H


−1 vhip

∂yd,2(ξ1,α)

∂ξ1
ξ2


As a result of the fact that we have fully actuated and completely linearized

dynamics, it follows that the relative degree 1 output evolves according to ẏ1 = −εy1.

Therefore, because of the definition of the partial zero dynamics, the partial hybrid

zero dynamics evolve according to the linear ODE:

ξ̇1 = ξ2 (4.4)

ξ̇2 = −ε(ξ2 − vhip)

Having known ξ1, ξ2, the desired angles and velocities are obtained from (4.3). In

other words, since θd, θ̇d are derived from the outputs y1(θ, θ̇) and y2(τ, α), tracking

these joint angles and velocities in robot is equivalent with tracking the outputs of

the robot. Therefore, the constraints of the dynamics to the partial zero dynamics

surface still maintain.

4.2 Feedback PD Control

Based upon the theoretic methods discussed so far, the PD controller is employed

for tracking joint trajectories obtained from PHZD reconstruction:

ufPD = Kp(θa − θd) +Kd(θ̇a − θ̇d) (4.5)
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where Kp and Kd are proportional and derivative constant matrices respectively

which depend specifically on corresponding motors.

4.3 Feed-forward Impedance Control

Impedance control benefited from its simplicity and passive nature, is one of

the most popular approaches in the prosthesis control field. Attracted by these

advantages, we demonstrate that impedance control can be also applied as a feed-

forward term for bipedal robotic control. In this section, we will introduce the

impedance control first and then discuss the algorithm for impedance parameters

estimation.

Impedance Control. Based on the pioneering work of impedance control by Hogan

[12], the torque at each joint during a single step can be represented in a piecewise

fashion by a series of passive impedance functions [22] in the following form:

u = k(θ − θe) + bθ̇. (4.6)

Inspired by the previous work [2], analysis of AMBER2 experimental walking

data (which is achieved by PD controller alone) shows that one gait cycle can be

divided into two phases based on the knee joints, which are denoted as p = 1, 2.

Specifically, each phase begins at time tp0 and ends at tpf . The phase separation

principle is similar to that in [2], but with values specific to the gait of AMBER2.

The impedance torque for specific joint i during a phase p ∈ {1, 2}, can be represented

by the following equation:

ufi,p = ki,p(θi(t)− θei,p) + bi,pθ̇i(t), (4.7)

where θi(t) and θ̇i(t) denote the angle and angular velocity of the joint i. Impedance
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parameters ki,p, q
e
i,p and bi,p represent the constant stiffness, equilibrium angle and

damping respectively, which are constant during a specific phase p.

Impedance Parameter Estimation. With the phase transitions defined above,

the remaining problem is to identify the control parameters for each sub-phase. From

the work in [2], it was shown that the impedance parameters for a lower-limb pros-

thesis can be learned by the observation from the unimpaired human walkers. The

results have been validated both in the simulation and in an experiment with a

transfemoral prosthetic device. To extend these results to AMBER2, we utilize a

similar method to estimate the impedance parameters by analysis the data of the

best walking steps of AMBER2 achieved by just using the PD controller.

We first define the impedance parameter set as βi,p = {ki,p, bi,p, qei,p} for specific

joint i and sub-phase p. With the recorded walking data {θai,p, θ̇ai,p} and torque data

uai,p obtained by utilizing the PD controller on AMBER2 in experiment, we can form

the least square errors minimization problem as following:

β∗i,p = argmin
βi,p

∫ tpf

tp0

(τ fi,p − τai,p)2dt, (4.8)

where ufi,p is defined as (4.7) and τai,p is the actual experimental input torque on the

joint i at sub-phase p. By solving this minimization problem for all the joints at

different phases, we can obtain the estimated impedance parameters for the feed

forward impedance controller.

4.4 Control Law Construction

Finally, a unified PD-Impedance control approach is presented, where the PD

based feedback controller is used to track the walking gait obtained formally through

the optimization; and impedance control forms the feed-forward controller which
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compensates for the nonlinear dynamics of the robot. This approach yields stable

robotic walking in both simulation and physical experiments. The control law is

defined as:

uf = ufPD(θa, θd, θ̇a, θ̇d, Kp, Kd) + ufi,p(θa, θ̇a, k, b, qe) (4.9)

Specifically, although there are 36 gains used by impedance control and 12 gains for

PD control, satisfactory tracking was achieved without any further gain tuning. In

addition, due to the simplicity of the impedance controller, unlike other feed-forward

methodologies such as nonlinear polynomials, it does not cause significant distortions

in tracking.
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5. EXPERIMENTAL REALIZATION OF FLAT-FOOT WALKING

To realize real world walking on the physical robot AMBER2, we use Lab-

View2011 as our IDE (Integrated Development Environment) to develop the code

and control the robot. The controller for AMBER2 has two levels: high level con-

troller, which is realized by RT (Real Time) control, and low level controller realized

by FPGA (Field-Programmable Gate Array). The objective of this section is to

introduce the control structure of AMBER2.

5.1 High Level Controller

The Real Time control has the following major functionality incorporated:

• Interface with the FPGA, read joint angles and angular velocities, send torque

commands to low level controller, enable/disable motors, logging data.

• Compute the time parameter τ using (3.7).

• Compute torque command based on ud, θd, θ̇d, θa, θ̇a. Then by applying PD

with impedance control law to corresponding motors, the desired torque input

ufin is fed into the FPGA.

Note that for AMBER2, the sample rate and command rate are both 143Hz. Due to

the complexity of the controller itself, labview build-in code is not efficient enough

to control the robot. Instead, the high level controller is coded into customized

shared libraries to interface with C++. The NI9144 EhterCAT Slave chassis is

connected to the cRIO by EtherCAT to extend the capacity of compactRIO. For

this configuration, each chassis is in charge of one leg. The pseudo-code running in

RT is shown in Algorithm 1 and the Labview code is shown in 5.2.
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(a) Outputs of the robot for the linearizing controller.
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(b) Outputs of the robot for the PD controller.
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(c) Limit cycles associated with the walking gaits for the feedback linearizing
controller (left) and the PD controller (right).

Figure 5.1: Simulation results for the feedback linearizing and PD voltage controllers.
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Algorithm 1 Real Time Module

Input: AMBER2 Parameters: Calf Length(Lc), Thigh Length(Lt);
Input: Optimization Parameters: δpRhip(θ+), vhip, α;
Input: Calibration Results: θabs
Input: PD Controller Gain: Kp, Kd

Input: Impedance Parameters: Ki, θi,e, bi, τflag
Input: θLa, θLk, θLh, θRh, θRk, θRa, θ̇La, θ̇Lk, θ̇Lh, θ̇Rh, θ̇Rk, θ̇Ra ;
Input: L/R stance; Encoder Status; Drive Status;
Output: Enable/Disable Motor Drives;
Output: Desired Torque for FOC;
1: Enable Motor Drives;
2: repeat
3: Wait till all motor drives are Enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: Reform θ, θ̇ from Left/Right(θLR) to Stance/nonStance(θSnS);
7: Calculate actual time parameter τa ;
8: Desired τd = τa + δT ;
9: Calculate( ξ1, ξ2);

10: Calculate( yd, ẏd );
11: Calculate( θd, θ̇d );
12: Apply PD Controller:

ufPD = Kp(θa − θd) +Kd(θ̇a − θ̇d);
13: Based on τa and τflag, determine Impedance Phase;
14: Apply Impedance Controller:

ufimp = Impedance(θ, θ̇, K, θe, bi);
15: Control Law Constructed:

uf = ufPD + ufimp;

16: Change uf from Stance/nonStance to Left/Right;
17: Sending Torque Command to FPGA;
18: Log Data into Remote Desktop;
19: end while
20: Disable Motor Drives;
21: Report Errors and Stop the Real Time VI;

5.2 Low Level Controller

The low level controller is coded in Field-programmable Gate Array (FPGA) with

on board clock 40MHz, which is in charge of the following major functionality:

• Angular velocity measurement: Single-ended incremental quadrature encoders

attached to every rotor on the motor end is used to measure angler velocity
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using the following equation:

ω =
2π/(n0r)

T
× n,

where n0 is the total counts per round of the rotor, r is the gear ration from

rotor to joint end, T is the sampling period, and n is the counts measured by

the encoder.

• Joint Angle Measurement: Measure joint angles by using PWM absolute en-

coders mounted on the joint end for home position and integrating velocity

data for angle increment/decrement. In particular, both absolute encoders

and incremental encoders operate at 40MHz. Note that the high value of r of

incremental encoder results in 5 times more precision than absolute encoder.

The angle reading is done by the following manner

θ = θabs +

∫ t

0

ωdt (5.1)

with θabs provided by absolute encoder as home position of incremental encoder.

• Stance foot detection: There are two switches placed on each foot, one is in

front and the other one is in the back. The way the stance and non-stance

phase of each leg is decided is given by the state diagram shown in Fig. 5.4.

• Hardware protection: Execute hardware protection logic when any joint is try-

ing to go beyond its working space, which is done by resetting torque command

to zero.

• Torque control: To realize torque control on the motor level, field-oriented

control (FOC) is employed to control the 6 BLDC motors. As shown in the
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control block diagram in Fig. 5.3, the torque is translated to the desired current

in the manner of:

Id =
τ f

Kt

.

Then the flux angle is computed from the hall sensor and incremental encoder

data, which are initialized by auto-phasing. The flux angles are used in Park

(inverse) and Clarke (inverse) transform, which are transforming the reference

frames of three-phase (u, v, w) system to two-phase (direct-quadrature) system,

more information can be found in [8]. Finally, by applying a PI controller on the

quadrature and direct current, the desired three-phase voltage command are

computed and the motors are actuated accordingly by sending corresponding

PWM signal.
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Figure 5.2: The labview code with controller coded into C++ block diagram (upper)
and the front panel of it (down).
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Figure 5.3: Field-oriented control block diagram

Figure 5.4: State machine showing the foot contact and the logic used to determine
the stance leg.

5.3 Experimental Setup and Data Logging

In addition, other experimental setup is also included:

• The calibration of absolute encoders. By manually setup the zero position of

absolute encoders, we can have the home position for position sensing.
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Algorithm 2 FPGA Module

Input: PWM Pulses from Absolute Encoders ;
Input: Hall Sensor Signal, Incremental Encoder Signal;
Input: Status of Foot Contact Switches;
Input: Auto-phasing results: Hall Angle, Index Angle;
Input: Hardware Setup: Sample Rate, Torque Limitation, FOC Gains;
Input: Enable/Disable Motor Drives;
Input: Three Phase Current From BLDC motors;
Input: Torque Command from RT;
Output: Three Phase PWM Signals to Motor Drives;
Output: θabs, θ̇incremental;
Output: L/R Stance Foot; Encoder Status; Drive Status;
1: loop
2: Absolute Encoder Reading logic(10MHz); // Refer to data sheet of absolute encoder, US

digital MAE3 kit
3: if ( Signal low for 2 periods of encoder pulse) then
4: Encoder Not Working ← 1;
5: else
6: Encoder Not Working ← 0;
7: end if
8: Incremental Quadrature Encoder Reading Logic(40MHz);
9: end loop

10: loop
11: Compute Desired Current from Torque Command from RT;
12: if (Joint Angle exceeds Workspace and Torque Command not trying to stop it) then
13: Reset Desired Current to 0;
14: end if
15: Compute Three Phase Voltage through Field-oriented Control Logic; (shown in Fig. 5.3)

// Operation Frequency: 40MHz
16: PWM signal Generation logic;
17: end loop
18: loop
19: Guard and Stance Leg Detection Logic using foot contact switches (shown in Fig. 5.4);
20: if ( Left Leg stance ) then
21: L/R stance ← 0;
22: else if ( Right Leg stance ) then
23: L/R stance ← 1;
24: end if
25: end loop

• Auto-phasing BLDC Motors. Determine the motor initial setup including the

hall effect sensor phasing values, index angles and step angle increment of

incremental encoders by turning the motor once at a very low speed.

• Data Logging. Remote host computer connected with AMBER2 through Ether-
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CAT cable is in charge of data saving. To avoid data lost, we package data of

every ten sampling period. The data packaging in the real time and unpacking

in the host is shown as Fig. 5.5 .

Figure 5.5: The Labview code for data packaging (upper) and data logging (down).
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6. RESULTS AND CONCLUSIONS

The proposed controller was first verified in simulation. Comparing with the

simulated results of using the human-inspired controller as seen in Fig. 5.1a, we

can see that the unified PD-impedance controller has achieved similar performance

as seen in Fig. 5.1b. The phase portraits of using both methods show that stable

walking in simulation has been achieved with both controllers.

When the suggested control methodology was then applied to the physical robot,

it is shown that AMBER 2 was able to achieve sustainable walking (see [1] for the

video). The gait tiles, Fig. 6.1, show good agreement between theory and simulation,

and the comparison between actual and desired values of different joints are shown in

Fig. 6.3 and Fig. 6.5. The walking achieved experimentally agrees with the walking

predicted in simulation, with a maximum tracking error of 0.12 rad. Experimental

results of waking only with PD controller are also included Fig. 6.2 and Fig. 6.4.

Maximum walking distance only with PD controller is 30 meters on record, whereas

AMBER2 can walk more than 100 meters with the unified controller without any

indication of falling. That being said, the unified controller not only produces better

tracking performance but also better robustness. In fact, after impedance control

was imposed, the walking is more easily repeatable and easier to start up by simply

landing it on the ground and releasing it. It is very important to note that the system

is developed with minimum sensing requirements, foot contact switches, absolute

and incremental encoders. The inherent spring-damper responses imbibed in the

CWF and the methodology of design adopted for the robot facilitated the ease of

applying such simple control laws to realize walking, which also results in low torque

consumption throughout the step. During continuous walking, maximum torque
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Figure 6.1: Comparison of walking tiles of simulated and experimental walking with
the unified PD, impedance control.

input for ankle, knee and hip motors are 5Nm, 5Nm, 10Nm accordingly (Fig. 6.6).

In conclusion, the synchronization between simulated walking and implementation as

shown in the video and the small tracking error shows that the optimization algorithm

and the unified control approach suggested is correct and efficient. In other words,

AMBER2 has fulfilled an important step bridging the gap between theory and real

world implementation.

32



44 44.5 45 45.5 46 46.5 47 47.5 48 48.5 49
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time(s)

A
n
g
le

(r
a
d
)

 

 

θ
a
sa

 

 

θ
d
sa

(a) Stance ankle, e ≤ 0.1rad
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(b) Stance knee, e ≤ 0.2rad
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(c) Stance hip, e ≤ 0.2rad
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(d) Non-stance hip, e ≤ 0.6rad
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(e) Non-stance knee, e ≤ 0.8rad
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(f) Non-stance ankle, e ≤ 0.3rad

Figure 6.2: Actual vs. desired joint angles logged during AMBER2 walking with PD
controller, with e the tracking error.
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(b) Stance knee, e ≤ 0.04rad
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(c) Stance hip, e ≤ 0.04rad
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(d) Non-stance hip, e ≤ 0.09rad
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(e) Non-stance knee, e ≤ 0.12rad
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(f) Non-stance ankle, e ≤ 0.09rad

Figure 6.3: Actual vs. desired joint angles logged during AMBER2 walking with the
unified control law, with e the tracking error.
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(b) Stance knee
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(c) Stance hip
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(d) Non-stance hip

44 44.5 45 45.5 46 46.5 47 47.5 48 48.5 49
−6

−4

−2

0

2

4

6

8

Time(s)

V
el
o
ci
ty

(r
a
d
/
s)

 

 

ω
a

nsk

 

 

ω
d

nsk

(e) Non-stance knee
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(f) Non-stance ankle

Figure 6.4: Actual vs. desired joint angular velocities logged during AMBER2 walk-
ing with PD control.
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Figure 6.5: Actual vs. desired joint angular velocities logged during AMBER2 walk-
ing with PD, impedance control.
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Figure 6.6: Joint torque inputs logged during AMBER2 walking with PD, impedance
control.
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