
PARALLEL MARKOV CHAIN MONTE CARLO METHODS FOR LARGE

SCALE STATISTICAL INVERSE PROBLEMS

A Dissertation

by

KAINAN WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Wolfgang Bangerth
Committee Members, Jean-Luc Guermond

Yalchin Efendiev
Helmut Katzgraber

Head of Department, Emil Straube

May 2014

Major Subject: Mathematics

Copyright 2014 Kainan Wang

ABSTRACT

The Bayesian method has proven to be a powerful way of modeling inverse prob-

lems. The solution to Bayesian inverse problems is the posterior distribution of esti-

mated parameters which can provide not only estimates for the inferred parameters

but also the uncertainty of these estimations. Markov chain Monte Carlo (MCMC)

is a useful technique to sample the posterior distribution and information can be

extracted from the sampled ensemble. However, MCMC is very expensive to com-

pute, especially in inverse problems where the underlying forward problems involve

solving differential equations. Even worse, MCMC is difficult to parallelize due to

its sequential nature—that is, under the current framework, we can barely accelerate

MCMC with parallel computing.

We develop a new framework of parallel MCMC algorithms—the Markov chain

preconditioned Monte Carlo (MCPMC) method—for sampling Bayesian inverse prob-

lems. With the help of a fast auxiliary MCMC chain running on computationally

cheaper approximate models, which serves as a stochastic preconditioner to the tar-

get distribution, the sampler randomly selects candidates from the preconditioning

chain for further processing on the accurate model. As this accurate model pro-

cessing can be executed in parallel, the algorithm is suitable for parallel systems.

We implement it using a modified master-slave architecture, analyze its potential

to accelerate sampling and apply it to three examples. A two dimensional Gaus-

sian mixture example shows that the new sampler can bring statistical efficiency in

addition to increasing sampling speed. Through a 2D inverse problem with an el-

liptic equation as the forward model, we demonstrate the use of an enhanced error

model to build the preconditioner. With a 3D optical tomography problem we use

ii

adaptive finite element methods to build the approximate model. In both examples,

the MCPMC successfully samples the posterior distributions with multiple proces-

sors, demonstrating efficient speedups comparing to traditional MCMC algorithms.

In addition, the 3D optical tomography example shows the feasibility of applying

MCPMC towards real world, large scale, statistical inverse problems.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor professor Wolfgang Bangerth

who has been guiding me in every aspect of research. He has also impacted me in

my attitudes towards work, life and family.

I would like to express my thanks to professor Jean-Luc Guermond, professor

Yalchin Efendiev and professor Helmut Katzgraber for kindly serving on my com-

mittee. I thank them for the directions and comments that help shape my doctoral

research.

I am grateful to the whole Bangerth research group. Especially, I would like to

thank Dr. Timo Heister and Dr. Bruno Turcksin for their help on understanding

parallel computing and programming in general.

Last but not least, I am thankful to my family. The support from my parents and

my parents-in-law allows me to concentrate on this research. I want to thank my wife

Wei who has not much to do with mathematics but with every other aspect of my

life. It is her understanding and unconditional support that make this dissertation

come into existence. I owe everything to her.

Part of the work presented herein was supported by the National Science Foun-

dation through Award No. OCI-1148116; and by Award No. KUS-C1-016-04, made

by King Abdullah University of Science and Technology (KAUST).

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Inverse problems . 1
1.2 Deterministic methods . 2
1.3 Bayesian inverse problems . 6
1.4 Introduction to parallel computing 9

2. SOME EXISTING SAMPLING METHODS 12

2.1 Importance sampling methods . 13
2.2 Markov chain Monte Carlo methods 15

2.2.1 Markov chain and its basic properties 16
2.2.2 Metropolis-Hastings algorithm 18
2.2.3 Adaptive proposal for Metropolis-Hastings 22
2.2.4 Diagnostic tests for MCMC algorithms 24

2.3 Existing parallel MCMC algorithms 29
2.3.1 Prefetching MCMC algorithm 30
2.3.2 Parallel tempering method . 32

3. THE MARKOV CHAIN PRECONDITIONED MONTE CARLO METHOD 37

3.1 The MCPMC algorithm . 37
3.2 Implementing MCPMC for multiple processors 42

3.2.1 Discussion on the parallel efficiency 43
3.3 Example: A two dimensional Gaussian distribution 47
3.4 Example: A multi-modal Gaussian mixture distribution 50

v

4. APPLICATION: AN INVERSE PROBLEM WITH ELLIPTIC EQUATIONS 56

4.1 Problem description . 56
4.2 Enhanced error model . 62
4.3 Numerical results . 65

5. APPLICATION: THREE DIMENSIONAL OPTICAL TOMOGRAPHY . 71

5.1 The forward model . 73
5.1.1 The radiative transfer equation and the diffusion approximation 73
5.1.2 Fluorescence enhanced optical tomography 77

5.2 The Bayesian model of the inverse problem 78
5.3 Deterministic inversion and adaptive mesh refinement 79

5.3.1 Deterministic inversion . 80
5.3.2 Adaptive mesh refinement . 84

5.4 Stochastic inversion using MCPMC 84

6. CONCLUSIONS . 96

REFERENCES . 99

APPENDIX A. REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO
METHOD . 106

vi

LIST OF FIGURES

FIGURE Page

1.1 A graphic illustration of a typical distributed memory cluster. 11

2.1 Auto-correlation function for one of the 64 estimated parameters.
Judging from this plot, we may need to use a “thinning” of 10,000
samples, that is, picking every 10,000th sample in the sequence to
compute any estimate. 21

2.2 An illustration of the burn-in period during sampling. In this example,
the true value of the parameter is 1. It is advised to discard the first
104 samples to have a more accurate mean estimator. But this means
we have to abandon 1/3 of the total computing effort. 21

2.3 One single iteration of the prefetching MCMC with 7 processors. . . . 31

2.4 Theoretical speedups and efficiencies of the prefetching algorithm for
different number of processors. Since in the inverse problems the com-
puting time dominates the communication time, these theoretical es-
timates should be close to the data from numerical experiments. . . . 33

2.5 A sequence of (unnormalized) tempered density functions for a mixed
Gaussian distributions. 35

3.1 A graphical illustration of the modified master-slave architecture with
which we implement the MCPMC algorithm. 44

3.2 An illustration of the two dimensional Gaussian distribution problem
where we try to sample the distribution centered at (5, 0) using a
MCPMC with the preconditioning chain being an MCMC sampling
the “approximate” distribution centered at (0, 0). 48

3.3 Convergence comparison of samplers with different perturbation steps.
The x-axis is the total number of perturbation evaluations taken on
the accurate model. So, for the sampler with P = 10, the total num-
ber of samples shown in this plot is 107 because obtaining each sample
requires running a short chain of 10 steps. On the contrary, the sam-
pler with P = 1 has 108 samples shown in the plot. Even so, samplers
with more perturbations demonstrate a better convergence. 51

vii

3.4 Sampling the two dimensional Gaussian mixture distribution: (a)
shows the centers of the ten modes; (b) shows the result of 1000 sam-
ples from an MH sampler; (c) shows the result from the MCPMC with
6 chains and 1000 samples on the sixth chain; (d) shows the sample
paths for the same samples as in (c). 54

3.5 1000 samples from the first chain to the sixth chain of the MCPMC al-
gorithm. The temperature decreases with respect to i, i = 1, 2, · · · , 6.
The i-th chain serves as a preconditioner for the i+ 1-th chain which
fetches samples from the preconditioner and filter samples according
to its own probability distribution. 55

4.1 Generation of the synthetic data. The top left figure shows the ref-
erence coefficient field x(z), the top right figure shows the solution
p(z) using the reference coefficient and the bottom figure shows the
adaptively refined mesh for obtaining the solution. 57

4.2 Four samples from a total variation prior distribution. Pixel values
vary across the range of parameters and the pictures are blocky. . . . 59

4.3 Four samples from a Gaussian prior distribution. Pixel values are
independent of the values of their neighbor. 60

4.4 The meshes used for the approximate model (left) and the accurate
model (right). 62

4.5 Error comparison for a plain MCMC algorithm with either a coarse
grid model or an EEM using one million samples. The x-axis is the
64 pixels, i.e., the components xi of the parameter which appears as
a coefficient in the elliptic equation. The y-axis is the error |x̄i− x∗i |2,
i.e., the square error between the mean estimator and the real value. . 65

4.6 Using the same data as above, the figure shows a comparison of the
histogram approximated density functions for the marginal distribu-
tion of three coordinates: x5, x34 and x51 between the coarse grid, the
fine grid and the enhanced error models. 66

4.7 Left: Conditional mean reconstruction using 106 samples from the
MH sampler on the fine grid. Right: Conditional mean reconstruc-
tion using 106 samples from the MCPMC chain that evaluates on the
accurate model. 69

4.8 Sampling error as defined in (4.3) for the coarse level MCMC (green),
fine level MCMC (blue) and MCPMC (red). 69

viii

4.9 Sampling error plotted as a function of estimated running time for the
coarse level MCMC (green), fine level MCMC (blue) and MCPMC (red). 70

5.1 Left: Mesh that is used for generating the synthetic data. Right:
Diffractive excitation light that illuminates the tissue. 86

5.2 Meshes used in the MCPMC sampling: the top left figure shows the
parameter field discretization, the top right figure shows the coarse
grid for state variables and the bottom figure shows the fine grid for
state variables. 87

5.3 A cross section of the object showing the conditional mean (CM) esti-
mates with coarse chain MH, fine chain MH and MCPMC sampling,
also in comparison with the MAP estimate computed from the deter-
ministic inversion. 89

5.4 Comparison of the range of cells whose standard deviation is above a
certain threshold (0.00125). Left: Standard deviation using samples
from the MH sampler on the fine grid. Right: Standard deviation
using samples from the MCPMC sampler. 90

5.5 Comparison of histograms at pixels which have estimated magnitude
greater than 60% of the maximal magnitude—these are considered as
the target pixels. The histogram from MCPMC is plotted in blue and
that from the fine MH is plotted in red. 92

5.6 Autocorrelation function of randomly selected parameter components
plotted for autocorrelation time up to 3000. In each plot, the red curve
is for the fine MH sampler, green for the coarse MH sampler and blue
for the MCPMC sampler. 95

A.1 Upscaled results for a sample well log: the left two plots are the his-
togram of the boundary locations and the estimated upscaling with a
fixed number of layers; the right two plots are the histogram of the
boundary locations and the estimated upscaling with variable num-
ber of layers and reversible jump MCMC. In the upscaled comparison
plots, the wiggly solid line is the true well log, and the smoother lines
are the mean, 10% and 90% upscaled estimates as indicated in the
plot. Plot obtained from [21]. 110

ix

LIST OF TABLES

TABLE Page

3.1 Average acceptance ratios (AR) in the update stage when using dif-
ferent numbers of chains. The “center distance” column shows the
distance between mean vectors of neighboring distributions. 49

5.1 Comparison of conditional mean (CM) and standard deviation (std-
dev) estimation between MCPMC and fine MH samplers at pixels
which have estimated magnitude greater than 60% of the maximal
magnitude—these are considered as the target pixels. We also com-
pute a relative error defined as (meanMCPMC −meanfine-MH)
/stddevfine-MH, i.e., we compute the difference between the mean es-
timates from both samplers normalized by the standard deviation of
the fine MH sampler. 93

5.2 The integrated autocorrelation time (IACT) and the mean square
jump (MSJ) computed for several components of the parameter vec-
tor. In the table, fine MH is abbreviated as “f” and MCPMC is
abbreviated as “m”. 94

x

1. INTRODUCTION

1.1 Inverse problems

Much of the motivation in applied mathematics stems from the desire to under-

stand the behavior of systems or to make predictions in different situations. We

derive mathematical models—mostly in the form of equations—to achieve this pur-

pose. A mathematical model is usually a general description that arises from our

understanding of a system. For example, Hooke’s law expresses that the force that

stretches or compresses a spring to a certain distance is proportional to that distance.

However, for such a model to be of use, we have to understand quantitatively the

“parameters” that are underlying each system. In the example of springs, different

springs could have different ratios of proportion between the force and the displace-

ment and it is imperative to “measure” that ratio so that we can use Hooke’s law to

predict the forces. In general, we use the term “parameter” to indicate any system

configuration that affects the system’s behavior. Some usual examples of parameters

include equation coefficients (as in the previous example), source terms or boundary

conditions.

The mathematical field of inverse problems studies mathematical techniques to

infer such parameters in a model. One of the goals for the inference is to estimate

the parameters so that predictions produced by such a configured model coincide

with data from physical measurements. With these parameters we will be able to

predict the data in the future by simulating the configured model. Another goal is to

quantify uncertainties of the inference. It has been well understood that uncertainties

lie in every place of the modeling process: the measurements could have errors, the

mathematical model could have been simplified to suit computational needs, and the

1

computer codes may not be completely precise due to the limitations in floating point

precision, storage or computing time. Therefore, we have to address the question of

how much risk there is to use the configured model.

Inverse problems have wide applications in biomedical imaging and geophysical

exploration methods where direct examination of the body interior is infeasible. For

example, optical tomography methods [1,8] use light pattern observations through a

body tissue to infer absorption and scattering coefficients in a mathematical model

that describes photon movements. These coefficients in turn express the variations

inside the tissue and can help detect, for example, the existence of a tumor. Another

example are subsurface modeling/characterization of oil reservoirs and aquifers. In

these problems, people are often interested in estimating the permeability field—a

measure of the ability of a porous medium to allow fluids to pass through it. Since

the permeability varies throughout the entire reservoir which is underneath the earth

surface, it is impossible to measure it directly [54]. In this context, static data such

as core/well logs and dynamic data such as water cut at producing wells are used to

infer the permeability. A flow equation, which is derived from mass conservation and

Darcy’s law, bridges data with the unknown permeability: the unknown permeability

is a coefficient in the flow equation and the state variables, i.e., the pressure and the

saturation, relate to the observed data.

1.2 Deterministic methods

Deterministic methods solve inverse problems by searching for a reasonable pa-

rameter that can produce the model output that matches physical measurements.

There are a variety of ways to formulate and solve deterministic inverse problems,

among which we briefly describe the direct inversion, the singular value decomposi-

tion (SVD) and the Tikhonov regularization methods.

2

Direct inversion methods solve for system parameters through reversing the com-

putation of the forward model. One such example is the layer stripping method in

geophysical inversion [58]. In a horizontally layered media, the plane wave response

on the top can be expressed as an accumulated effect: at each layer, the global re-

flection response can be computed from the physical property of the current layer

in combination of the response computed for a lower layer, and by repeating this

process from bottom up we can compute the response on the top surface—some

datum we are able to observe. This consists of the forward model. In the inverse

problem, starting from the observed data from top layer, we can remove the effect

of each layer to get the response of the next layer, which, together with some prior

information, can be used to deduce the acoustic parameters that correspond to the

physical properties of each layer.

In most inverse problems, the recursive feature that allows for direct inversion

does not exist, and hence we need to consider more general ways of conducting

inversion. Suppose f : H1 → H2 is a compact parameter-to-observation operator on

two Hilbert spaces, the goal of inverse problems can be stated as solving the following

equation for the system parameter x given some observed data y

f(x) = y. (1.1)

This problem may not be well posed, for example, in cases where the dimension of

H1 is larger than that of H2. One way to mitigate this ill-posedness is to make use

of the singular value system (λn, vn, un) of the operator f . It is well known that

{vn}n and {un}n are orthogonal sets in H1 and H2 respectively, the singular values

3

λn decrease to zero and we can always decompose the operator as

f(x) =
∑
n

λn(x, vn)un.

With additional regularity on the data y and the singular system, we may express

the solution as

x = x0 +
∑
n

1

λn
(y, un)vn, ∀x0 ∈ Ker(f).

Though appearing reasonable, the above expression does not make much practical

sense because neither is the solution unique unless f(x) is injective, nor can we in

general compute the infinite sum on the right hand side. Even worse, there is no

guarantee that the observed data y ∈ H2 falls in the range of the operator f in which

cases no exact solution exists. A work-around to these difficulties is to solve instead

of the original equation (1.1), a truncated version

f(x) = Pky, (1.2)

where Pk : H2 → span(u1, u2, · · · , uk) is a projection. If we further restrict the

solution to be orthogonal to Ker(f), then the solution xk is guaranteed to uniquely

exist, and it has a nice expression as

xk =
k∑

n=1

1

λn
(y, un)un.

See [39] for more discussion on this truncated singular value decomposition (TSVD)

way of inversion.

An immediate question for the TSVD would be how to choose the number k of

truncated terms. This is generally difficult to determine. When the singular values

4

decay rapidly, the solution xk would blow up easily. Thus, in order to obtain a more

stable solution, we resort to regularization methods. Formally, the regularization

methods frame the inverse problem as a least squares problem

x∗ = arg min
x
||y − f(x)||2,

namely, instead of an exact inversion, we search a solution that minimizes the differ-

ence between the model prediction and the observation. To impose some control to

the solution x∗, additional knowledge of parameters in the formulation is imposed.

Some examples of such information are the experts’ guess of actual parameter values,

the smoothness of the parameters or how the parameter at one point should con-

nect to its neighbors. In deterministic inverse problems, this additionally imposed

knowledge is called regularization.

Tikhonov regularization is a classical regularization method [62]. It is formulated

as minimizing the following expression

Fδ(x) = ||y − f(x)||2 + δ||x||2.

This formula expresses the idea of controlling the misfit between the predicted and

measured data while controlling the norm of the parameter itself. Therefore, we can

hope to avoid blowing up situations that are likely to be encountered in TSVD. The

use of the additional regularization term guarantees that a unique optimal solution

can be obtained, as is stated by the following proposition:

Proposition 1.2.1. Let f: H1 → H2 be a compact operator with the singular system

(λn, vn, un). Then the Tikhonov regularized solution exists, is unique, and is given

5

by the formula

xδ = (f ∗f + δI)−1f ∗y =
∑
n

λn
λ2
n + δ

〈y, un〉vn,

where f ∗ is the adjoint operator of f .

See [39] for a proof of this proposition.

1.3 Bayesian inverse problems

Bayesian inverse problems belong to the category of statistical inverse problem

methods where all the model variables are considered as random variables. There-

fore, instead of targeting at a single best estimate x∗, statistical inverse problems

aim at estimating a probability distribution from which we can extract informa-

tion. Formally, suppose x ∈ Rl is the parameter to estimate and y ∈ Rm are the

measurements, then the solution to a Bayesian inverse problem is a conditional dis-

tribution π(x|y). By applying the classical Bayes’ rule, this posterior distribution

can be interpreted as follows:

π(x|y) =
π(y|x)π(x)

π(y)
, (1.3)

where π(y|x) is the likelihood between the predictions from any possible parameter

x and the real observation y, π(x) is the prior knowledge such as the support, the

smoothness and the likely values for the parameters. The normalizing constant π(y)

is not straightforward to estimate. Fortunately though, it needs not be computed in

the algorithms we are interested in.

The Bayesian way of modeling inverse problems has advantages in the following

aspects. For single value estimation, it provides us with various estimators. One is

6

the maximal likelihood (ML) estimator

xML = arg max
x

π(y|x), (1.4)

another is the maximal a posteriori (MAP) estimator

xMAP = arg max
x

π(x|y), (1.5)

and the third estimator, the conditional mean (CM) estimator, involves an integral

xCM =

∫
Rn

xπ(x|y)dx. (1.6)

In addition, it provides us with estimators that can be used for estimating uncertain-

ties and the correlation between parameters. The conditional covariance estimator

cov(x|y) =

∫
(x− xCM)(x− xCM)Tπ(x|y)dx (1.7)

is such an estimator.

If the prior and likelihood distributions happen to be Gaussian, the first two es-

timators are identical to the un-regularized and regularized deterministic methods,

respectively. Many existing optimization algorithms [53] can be used to find these

two estimators, most of which require computing derivatives of the operator. The

third estimator uses expectation of the distribution which requires computing an

integral instead of computing derivatives. The fourth estimator estimates the vari-

ance of each component as well as correlations between components. The spread

and correlation information provided by this estimator is of importance in appli-

cations because it quantifies uncertainty of our inference, which is non-existent in

7

deterministic inversion methods. In this sense, Bayesian inverse problems are more

versatile estimation methods that provide a more comprehensive view of the param-

eters. Moreover, the regularization seen earlier in deterministic methods is more or

less arbitrary, whereas in Bayesian inverse problems it naturally appears as the prior

distribution π(x). See [39,61] for introductions on statistical inverse problems as well

as comparisons to deterministic methods.

Bayesian inverse problems also ensure greater flexibility on building models. Dif-

ferent distributions can be adopted for both the prior and likelihood distributions.

We can express the belief in the smoothness of the parameter field with a Gaussian

distribution for derivatives of the parameter, while the faith of a larger chance of hav-

ing outlier data can be expressed with a heavily-tailed student-t distribution [37].

In a Bayesian setting, it is also possible to model the regularization parameter δ

as a hyper-parameter (see, e.g., [11, 63]) so that the weight of importance between

the data misfit and parameter control is itself subject to uncertainty. The hyper-

parameter is updated during the course of estimation automatically so that it is not

affected by subjectivity.

This framework also permits separation of uncertainties. It is feasible to split

physical experiment error, modeling inaccuracy and numerical discretization error

with distinct distributions in the Bayesian methods [40, 41], which does not have

a counterpart in the deterministic inversion where the regularization term serves

merely to retain a mathematical well-posedness rather than depicting uncertainties.

For example, an extra prior estimation can be made specifically for the discretiza-

tion error, and hence producing a more precise model. We will demonstrate such a

modeling example in Section 4.2.

It is worth pointing out that although we describe the settings of Bayesian in-

verse problems under finite dimensional assumption, the Bayesian framework can

8

be extended to infinite dimensional function spaces where densities with respect to

Lebesgue measure are not available. The recent survey [60] gives a theoretical dis-

cussion regarding this topic.

1.4 Introduction to parallel computing

Since this thesis is mainly about building new algorithms applicable to parallel

computing rather than seeking the most efficient implementations, we only briefly

introduce some basics to parallel computing here. For a thorough introduction in

aspects of different architectures, main programming paradigms, classical algorithmic

applications, etc., see, for example, [30].

In general, parallel computing is any type of computing practice that uses a group

of processors to finish the task. It has become an important part of computing from

three reasons. First, to capture more features in a scientific model, a higher accuracy

is usually desired. But higher accuracy demands more complex models, and hence

more computing power to solve within a reasonable amount of time. Many problems

in geoscience, atmospheric science and nuclear engineering are so complicated that

they can only be computed with thousands or even tens of thousands of processors

running together. Secondly, more and more researchers now can have access to

powerful machines that, for example, are in petascale—they can reach over one

petaflops (i.e., 1015 floating point operations per second) at peak time. Furthermore,

the traditional trend of increasing computing power by increasing frequency in single

CPUs has ceased due to the fact that higher frequency computing units consume too

much energy. On personal computers, these days even on portable devices, multiple

cores have become standard. Therefore, studying and developing new algorithms

that are suitable to run in parallel has an increasing necessity.

There are different models that the member processes in a parallel system com-

9

municate with each other. Two prevailing models are the shared memory model and

the distributed memory model. In a shared memory model, all processes can access

the same memory simultaneously. This provides convenience in parallelising read

only instructions because there is no difference between the sequential and parallel

version of such instructions. However, for instructions that write into the shared

memory, it is possible that multiple processes write into the same address simulta-

neously, or the order of different processes writing to the memory can change the

outcome. These possibilities pose potential bugs for executing programs, and one

common way to address such problems is to adopt mutual exclusion. Threading

(e.g., POSIX) and directives (e.g., OpenMP) are popular programming paradigms

on shared memory systems.

In a distributed memory system, each processor can only work on local data, and

explicit communications have to happen whenever they need to access remote data.

This is a common architecture on modern computing clusters. A typical structure of

a distributed memory system consists of multiple computing nodes (see Figure 1.1),

where each node has several processors/cores and a memory that is shared by the

processing units on the same node, i.e., each node can be viewed as a shared memory

system. The communication between different nodes is achieved through a network

such as ethernet or infiniband and via message passing paradigms. In contrast to the

shared memory system, it is important for each process on a distributed memory sys-

tem to know where the data are. The fundamentals of message passing paradigms are

send() and receive() functions as well as the identity of different processes. Message

Passing Interface (MPI) (see, e.g., [33, 59]) is a standardized and portable message-

passing system for writing programs for distributed memory systems.

One major concern in designing message passing algorithms is the performance

overhead given by communication between processes. This is especially important

10

when the number of available processes is huge, or if the amount of computing work

allocated to each process is relatively small. In all of our problems, we always neglect

the time for a message to be passed between processes. This assumption is valid as

long as the computation time on each process dominates, which is the case for the

problems considered in this thesis where the tasks on each processor involve solving

partial differential equations. However, it should be guaranteed that the message

can be sent whenever it is needed. We design and implement our new algorithm

following this idea, see Section 3.2 for a detailed discussion.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Memory Memory Memory

Node 1 Node 2 Node 3

Network

Figure 1.1: A graphic illustration of a typical distributed memory cluster.

11

2. SOME EXISTING SAMPLING METHODS

To compute the conditional mean estimator and the conditional covariance esti-

mators, it is always necessary to calculate integrals

Eπ(h(x)) =

∫
h(x)dπ(x) (2.1)

over the parameter space. In cases where the forward model is complex and the

parameter space is of high dimension, computing such integrals analytically becomes

infeasible. Traditional quadrature rules also cannot apply because the number of

quadrature points grows with dimension. Monte Carlo methods address this issue.

The idea of Monte Carlo is to evaluate the target distribution by repeatedly gener-

ating random samples from this distribution. Aggregated results are then computed

using the ensemble of samples as a discrete approximation of the underlying distri-

bution.

The conventional Monte Carlo method draws identically independent (i.i.d.) sam-

ples directly from a probability distribution, the central limit theorem guarantees the

convergence of the sample expectation value to the real mean value of the sampled

distribution at a rate of O(n−1/2), where n is the number of samples drawn. However,

it is usually infeasible for inverse problems because, in most cases, it is impossible to

derive an analytical form for the posterior distribution with which one can draw in-

dependent samples. Therefore, advanced random sampling techniques are developed

to circumvent the need of sampling directly from the posterior distribution.

In the following sections, we will briefly describe two classes of such algorithms.

The importance sampling uses auxiliary distributions that are easier to sample from

12

to produce independent candidates and then computes a weight for each of these

samples. The generated samples, together with their computed weights, is considered

a quadrature for any integration under this probability distribution. The Markov

chain Monte Carlo (MCMC) uses correlated samples to traverse the sample space

and adopts a rejection scheme so that samples of higher probability can be repeated

in the ensemble. While the importance sampling method is apparently a parallel

algorithm by its nature, it usually performs poorly in practice, especially for complex

cases, due to its inability to adjust itself towards regions of interest. On the other

hand, MCMC type algorithms are shown in applications to provide the capability of

finding the high probability region gradually, but it has to run sequentially to satisfy

its Markov chain property.

We will describe both algorithms, discuss the causes for their advantages and

disadvantages and some practical ways to measure algorithm efficiency. It is these

observations that lead to the idea of our new algorithm in the next chapter, which

can be viewed as a hybrid of importance sampling and MCMC, ensuring sampling

stability while allowing parallel sampling. In addition, we list some existing parallel

MCMC algorithms in Section 2.3.

2.1 Importance sampling methods

The central idea behind importance sampling for a target distribution π(x) is to

use an auxiliary probability distribution g(x) that resembles the target while being

easy to sample from. Once such a g(x) is constructed, we can rely on the simple

change of measure formula for approximation: for any L1 function h(x), we will have

Eπ(h(x)) =

∫
h(x)π(x)dx =

∫
h(x)

π(x)

g(x)
g(x)dx.

In practice, we can continuously generate i.i.d. samples x1, x2, . . . , xn from g(x)

13

and compute the importance weight

ω(xi) =
π(xi)

g(xi)
. (2.2)

Then, we can build a quadrature with the pairs {xi, ω(xi)}: to estimate the integral

of any function h(x) under π(x), we can use

Eπ(h(x)) ≈
∑n

i=1 ω(xi)h(xi)∑n
i=1 ω(xi)

,

where the appearance of the sum in the denominator is justified by the fact that

ω(xi)’s are usually computed up to a normalization constant, and the effect of this

missing constant can be cancelled by also dividing by the sum of ω’s.

It is difficult to accurately measure the efficiency of the importance sampling

algorithms. A “rule of thumb” is to use the effective sample size (ESS) to measure

the discrepancy between the trial distribution and the target distribution. Suppose

a total of n samples is generated using importance sampling, the ESS is defined as

ESS(n) =
n

1 + varg[ω(x)]
,

where varg is the variance of the importance weights. In practice, the variance is

estimated through the coefficient of variation defined by

varg[ω(x)] ≈
∑n

i=1(ωi − ω)2

(n− 1)ω2 ,

where ω is the sample mean of the weights.

The ESS can be interpreted as the number of samples from i.i.d. draws that can

achieve the same accuracy as n importance samples. If the shape of the trial and

14

target distributions are very different, the variance of the weights can be huge, and

thus the ESS can be small, which in turn indicates a poor efficiency in the constructed

sampler.

This also reveals the fact that the key to a successful importance sampling lies in

the construction of the trial distribution. It has to meet two requirements, namely,

it has to be close to the target distribution and we should be able to generate in-

dependent samples distributed according to g(x) directly. Both requirements pose

challenges to finding satisfying trial distributions for the posterior distributions in

Bayesian inverse problems where nonlinearity and high dimensionality are the main

features. Therefore, though appearing as a simple and powerful sampling method,

importance sampling is rarely applied in Bayesian inverse problems directly. How-

ever, its idea of computing the importance weights is borrowed by advanced algo-

rithms such as the sequential Monte Carlo [22, 23]. Our new algorithm in the next

chapter is also partially inspired by this idea.

2.2 Markov chain Monte Carlo methods

Markov chain theory emerges in the Monte Carlo literature in 1953 by Metropolis

[51] to stabilize the parameter space exploration using a random walk dependent on

the current state. In 1970, Hastings [36] extended the range of proposal functions

from random walk to more general functions. See [55] for a historical summary.

Though evidently powerful, Markov Chain Monte Carlo (MCMC) methods did not

prevail until the 1990s, mainly due to the lack of efficient computing technology. The

visionary work [27] opened doors for MCMC to solving a wide range of problems from

biostatistics, physics, geosciences and finance.

15

2.2.1 Markov chain and its basic properties

To state the fundamental properties of MCMC algorithms, let us first briefly

introduce several definitions about Markov chains. A Markov chain is a discrete

stochastic process {Xj} that satisfies the following property:

πXj+1
(B|xj, . . . , x0) = πXj+1

(B|xj),

whereXj is the j-th random variable in the (discrete) process, xj is a realization of the

random variable Xj, B is any measurable set and πX is the probability distribution

defined by the random variable X. Simply speaking, any state of the random variable

Xj+1 in the process depends on the history of the process only through that of its

direct predecessor Xj. A transition kernel P : Rn×B → (0, 1) defines the probability

to move a point x to a Borel set B, and P (x,B) defines a time homogeneous Markov

chain {Xj} with the Markov property defined by

πXj+1
(Bj+1|xj) = P (xj, Bj+1).

It is called time homogeneous because the transition kernel stays the same for any

time index j. In fact, the transition kernel defines the entire process recursively for

each of the random variables Xj, j = 1, 2, . . . in the process, that is:

πXj+1
(B) = πXj

P (B) :=

∫
Rn

πXj
(x)P (x,B)dx.

So in contexts we may freely use P to represent the Markov chain it defines. For a

given Markov chain with a transition kernel P , a probability distribution π(x) that

16

satisfies

π(B) = πP (B) :=

∫
Rn

P (x,B)π(x)dx

is said to be an invariant distribution of P . Later we will demonstrate that a

Markov chain with minimal properties will converge to its invariant distribution.

This property is the backbone of all MCMC algorithms.

Now we introduce several concepts that characterize Markov transition kernels.

A Markov transition kernel P is irreducible with respect to a distribution π if for

all x ∈ Rn and B ∈ B with a positive measure under π, there is a k > 0 such that

P (k)(x,B) > 0 where we define:

P (k)(x,B) =

∫
Rn

P (xk−1, B)P (k−1)(x, xk−1)dxk−1.

Consequently, for any starting point x, and any set B in the support of π, we should

be able to use P to move x to B in finitely many steps.

For an irreducible kernel P , we say P is periodic if there is a set of disjoint

nonempty sets {E1, . . . , Em} ⊂ Rn, m ≥ 2, such that for all j = 1, . . . ,m and any

x ∈ Ej, we have P (x,E(j+1)mod(m)) = 1. That is to say, a periodic kernel will generate

a Markov chain that stays in a loop constantly. We call a kernel that is not periodic

an aperiodic transition kernel.

When a Markov chain with transition kernel P satisfies the irreducibility and

aperiodicity requirements, which is often true in the designed MCMC algorithms, it

has an ergodicity property that is essential to the usability of MCMC:

Proposition 2.2.1. Let π be a probability measure and {Xj} a time homogeneous

Markov chain with an irreducible and aperiodic kernel P that has π as an invariant

17

measure. Then for π−almost all x ∈ Rn,

lim
N→∞

P (N)(x,B) = π(B) for all B ∈ B,

and for all f ∈ L1(π(dx)),

lim
N→∞

1

N

N∑
j=1

f(Xj) =

∫
Rn

f(x)π(dx).

This theorem suggests that to study a probability distribution π(x), we may

simulate a realization, denoted as {x1, x2, . . . , xn, . . .}, of a Markov chain P with

π(x) being its invariant distribution. Then, the probability of any Borel set B ∈ B

can be approximated by the relative number of samples in that set regardless of

the starting point of this chain. Moreover, the expectation value of any function

f(x) over the distribution π can be approximated by the ergodic average of such a

realization, according to the theorem above.

2.2.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an MCMC algorithm that forms the basis

to many advanced methods. At iteration j, a trial sample x∗ is produced using

a proposal function q(xj−1, x
∗) where xj−1 is the previous state. The probability

distribution π(·) is evaluated at x∗. According to an update formula, the Markov

chain chooses to either go to the trial sample (i.e. accept the trial) or merely replicate

the previous state (i.e. reject the trial).

Thus, an iteration of Metropolis-Hastings algorithm will look like:

18

Algorithm 1 Metropolis-Hastings Algorithm

Choose a starting point x0. For iteration j = 1, 2, . . .

• Propose x∗ using q(xj−1, ·),

• compute π(x∗) and compute α(xj−1, x
∗) where α is defined as:

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
,

• draw u ∼ U(0, 1),

If α(xj−1, x
∗) ≥ u

let xj = x∗,

Else

let xj = xj−1.

A commonly used proposal function is the random walk distribution which is a

multivariate normal distributionN (xj−1,Σ). In this cases, the proposal is symmetric,

i.e., q(x, y) = q(y, x), and the update ratio can be further reduced to α(x, y) =

min{1, π(y)/π(x)}. For high dimensional problems, the choice for a fixed covariance

matrix Σ is an art. [57] studies this and proposes that the optimal choice of Σ should

give an acceptance ratio that is close to 0.234.

The Metropolis-Hastings algorithm has been applied in many inverse problems

that require Monte Carlo type samplings. It provides reliable performance thanks

to the prudent proposal and update steps that link the adjacent samples. However,

the algorithm is computationally very expensive. The number of samples needed

to estimate the invariant distribution becomes huge when the parameter space is of

19

high dimension. In the following, we emphasize two features that result in a large

sample number in MH type simulations.

Autocorrelation: Due to the locality of the proposal function q(x, y), consecutive

samples are likely to correlate strongly with each other and hence the ensemble

would only have a representating ability equal to that of a much smaller number

of independent samples. One of the measures for this intra-chain correlation is the

auto-correlation function γj(h) for some function h(x) of interest. It is defined by

γj(h) =
1

(N − j)σ2

N∑
i=1

(
h(xi)− h(x)

)(
h(xi+j)− h(x)

)
, (2.3)

where j is called the lag of the process, σ2 is the sample variance and h(x) is the

mean of h(x) over all samples. One practical strategy is to select every k-th sample

from the chain where the auto-correlation function γj is small for j ≥ k . This

“thinning” procedure can effectively reduce sample correlations and the statistics

computed from this subset of samples can be more accurate. We illustrate such an

auto-correlation function of a single parameter in Figure 2.1. It comes from chapter

4 where a 64 dimensional parameter is sampled with MCMC method.

Burn-in: At the beginning of the sampling process which starts from an area

away from the high probability region, or when the Markov process has not come to

the stationary distribution, it will spend several samples to guide itself towards the

target region. In practice, this initial segment is called burn-in period and samples

in this period are discarded to guarantee a more accurate estimation from the finite

number of samples. See Figure 2.2 for an illustration of the burn-in period during

sampling.

What adds to the problem of needing many samples in MCMC is that in inverse

problems the evaluation of each sample is expensive because the forward model in-

20

0 5000 10000 15000
0

0.25

0.5

0.75

1

Lag

A
u
to

c
o
rr

e
la

ti
o
n

Figure 2.1: Auto-correlation function for one of the 64 estimated parameters. Judg-
ing from this plot, we may need to use a “thinning” of 10,000 samples, that is, picking
every 10,000th sample in the sequence to compute any estimate.

0 1 2 3

x 10
4

0

3

6

9

Samples

x̄

Figure 2.2: An illustration of the burn-in period during sampling. In this example,
the true value of the parameter is 1. It is advised to discard the first 104 samples to
have a more accurate mean estimator. But this means we have to abandon 1/3 of
the total computing effort.

21

volves solving the underlying partial differential equations. For example, in the opti-

mal tomography example in chapter 5, a single evaluation costs about 41.5 seconds,

and it takes us about 29 days to collect 60, 000 samples with MCMC. Although

parallel computing has become an important means of acceleration and many al-

gorithms have been successfully parallelized, the study of MCMC parallelization is

relatively scarce. This is mainly due to the sequentiality of the algorithm where new

samples can not be generated until after the accept-reject decision has been made

for the current sample. This motivates our research to design new frameworks that

enable running MCMC in parallel.

To summarize, in order to make MCMC more tractable for large scale inverse

problems, we need to either increase the statistical efficiency of the algorithm or

modify the algorithm so that it can be run in parallel. In the following section, we

will describe an adaptive MCMC algorithm which could help improve the statistical

efficiency of the algorithm. It is worth noting that this technique can be readily

incorporated in our new framework introduced in Chapter 3.

2.2.3 Adaptive proposal for Metropolis-Hastings

To ameliorate the slow mixing of random walk Metropolis-Hastings, [35] proposes

an adaptive method. In contrast to the plain random walk that always proposes

new samples according to the same normal distribution, this method will adapt the

proposing distribution using the statistics of past samples. Through this adaptation,

we can hope to approximate the shape of the target distribution function around

the current sample, thus increasing the chances to land on a state superior than

the current one. More specifically, suppose the Markov chain has already generated

samples {x1, x2, . . . , xn}, the proposal function for the next sample will be a normal

22

distribution with mean vector

µn =
1

n

n∑
i=1

xi

and covariance matrix Σn which is the sample covariance of all n past samples. Since

Σn is defined as

Σn =
1

n− 1

n∑
i=1

xix
T
i −

n

n− 1
µnµ

T
n ,

we can update this matrix in a fast recursive way through

Σn =
n− 2

n− 1
Σn−1 + µn−1µ

T
n−1 −

1

n− 1
(nµnµ

T
n − xnxTn).

The proposal function is then chosen to be a normal distribution with the covariance

matrix:

Σupdate = sd(Σn + εN (0, 1)Id),

where d is the dimension of the parameter space, sd is empirically chosen to be

(2.38)2/d. The εN (0, 1)Id term is a “safety measure” that prevents the update

covariance matrix from being singular.

We use the following procedure to compute new proposals which should then

give the multivariate normal distribution N (µn,Σupdate): at each iteration, we first

perform a Cholesky decomposition for the update covariance matrix Σupdate to obtain

a lower triangular matrix L where L satisfies

LLT = Σupdate,

and then we generate a random vector Z ∼ N (0, Id). The new sample will have the

23

form X∗ = Xn−1 + LZ. In fact, it is straightforward to check that

E(X∗) = E(Xn−1 + LZ) = Xn−1,

and that

Σ(X∗) = E(LZZTLT) = LLT = Σupdate.

The adaptive proposal has many applications and is adopted to increase sam-

pling efficiencies in Bayesian inverse problems, for example, in [20]. Together with a

delayed-rejection scheme, they constitute the delayed-rejection adaptive Metropolis

(DRAM) algorithm [34]. It has been used as a reference algorithm to compare newly

developed advanced, single chain MCMC algorithms, for example, in [49]. Theo-

retically, since the adaptive proposal incorporates information regarding the entire

history, rather than the most recent sample, it imposes some difficulty in analysis.

It is only until recent years that convergence rates of such adaptive algorithms are

estimated. See [4, 56] for a discussion on the theory of the adaptive algorithm.

2.2.4 Diagnostic tests for MCMC algorithms

The convergence of a Monte Carlo method using independent and identically

distributed random variables is provided by the classical central limit theorem, saying

that the error is bounded byO(1/
√
n), where n is the number of independent samples.

On the other hand, it is much more difficult to estimate whether a Markov Chain

has converged. Correlation between successive samples in a Markov chain introduces

uncertainty, giving difficulty to any attempt of drawing a comprehensive conclusion.

To date, there is yet any theoretical support to give a good estimate over this issue in

general. However, numerous diagnostic tools exist to test the convergence property

of Markov chains in practice. What these examiners do is, rather than assuring that

24

a chain has already converged, telling that a chain has not reached stationarity. As

long as these examiners tell “no” we have to let the chain run longer. In addition, the

diagnostic can also verify the speed of mixing of a chain. If a chain is developed in the

manner that no matter where we start the chain, it could direct itself to stationarity

quickly, the examiner will be able to indicate such a chain as a “good” one. In the

paragraphs below, we will briefly review a few diagnostic methods and then detail

the convergence standard we prefer in our numerical experiments.

A good overview of such diagnostic tools is [19]. Among the different testing

methods, a popular one is the Potential Scale Reduction Factor (PSRF) derived

in [28]. Multiple chains are started from different positions that are far away from

each other (being “overdispersed”). At convergence, the histograms of each variable

from different chains should overlap considerably.

The formal definition of PSRF for a one dimensional variable is as follows. m

chains are started from different points, with each generating 2n samples. The last

n samples are picked, and the within-chain variance W and between chain variance

B/n are computed by

W =
1

m(n− 1)

m∑
i=1

2n∑
j=n+1

(xij − x̄i)2

and

B/n =
1

m− 1

m∑
i=1

(x̄i − x̄)2,

where x̄i is the average of last n samples from chain i and x̄ is the average of all x̄i’s.

Taking both the within chain and between chain variances into account we obtain

25

an estimate of the posterior variance which is defined as

V̂ =
n− 1

n
W + (1 +

1

m
)
B

n
,

and the PSRF factor R̂ is defined through dividing this variance by W :

R̂ =
V̂

W
.

When the chain has converged, the factor will be close to one, which makes it

a nice criterion for monitoring convergence. However, this factor is unidimensional,

namely, it can merely monitor the behavior of a single variable at once. In order

to obtain an integrated view of the convergence of all variables, [15] extended the

criterion to multivariate situations. The Multivariate Potential Scale Reduction Fac-

tor (MPSRF) is defined similarly to its univariate sibling, with scalar values being

replaced by multidimensional vectors, and variances replaced by covariance matrices

W =
1

m(n− 1)

m∑
i=1

n∑
j=1

(xij − x̄i)(xij − x̄i)T

and

B/n =
1

m− 1

m∑
i=1

(x̄i − x̄)(x̄i − x̄)T .

The definition of V̂ as a combination of B and W is as before, whereas the definition

of R̂ becomes a bit different because now we have to define a proper division for

26

covariance matrices. [15] defines it as the generalized Rayleigh quotient

R̂ = max
a

(V̂ a, a)

(Wa, a)

=
n− 1

n
+
m+ 1

m
max
a

(B/na, a)

(Wa, a)

=
n− 1

n
+
m+ 1

m
λmax,

where λmax is the largest eigenvalue of W−1B/n for positive definite matrices W and

B/n.

One feature of the PSRF and MPSRF diagnostics is that multiple chains have to

be run from different starting points and it can be time consuming if an online diag-

nostics is required. Especially, in the context of parallel computing, communication

between these multiple chains is demanded to summarize the statistics, which could

put an overhead to the algorithms. This is avoided in the alternative estimator—the

mean squared error (MSE) estimator [17] that is defined as

MSE(x) = Ex(x− x∗)2

= Varxx+ (Exx− x∗)2,

where Ex means taking the sample average and x∗ is the true parameter. The second

equation indicates that the MSE includes both the variance of estimate and the bias

of an estimator to its true values.

In problems with real data, the true parameter x∗ is in general unknown, and

hence it is impossible to directly apply the MSE formula for estimation. In Bayesian

inverse problems, even if we generate the synthetic data using a reference parameter,

since we also incorporate a prior distribution, the mean value of the posterior distri-

bution may not be the same as the true parameter. Therefore, if MSE were used as

27

a convergence criterion and the error of a sampling scheme did not converge to zero,

it would be difficult to tell whether it stems from a poor converging sampler or from

the modeling bias.

To circumvent this dilemma so that we can merely compare the convergence

performance of different samplers, we make some efforts to exclude the modeling

discrepancy. To achieve this, we may run an MCMC chain for a sufficiently long

time which we believe to have converged. We then compute the sample mean x∗

and the sample covariance Σ out of this long chain. Then, we are able to compute

the error as a weighted mean square error which we call the Empirical Mean Square

Error :

EMSEn(x) = Ex(x− x∗)2
Σ−1

=
1

n

∑n
i=1(xi − x∗)TΣ−1(xi − x∗).

(2.4)

The reference Markov chain is long enough so that we can believe that the x∗ is

as close to the expected value of the posterior distribution as the best of any other

sampler we want to evaluate. Also, the Σ quantifies how much uncertainty there is in

the model itself. For example, if the physical experiment is designed such that we are

only able to observe data from the surface of an object, it is likely that our model may

behave more poorly for inferring parameters deep inside the object which then could

indicate a bigger variance for internal parameters in the covariance matrix Σ. It is

then legitimate to assume that such uncertainty will live in any sampling method as

long as they are sampling the same model. Therefore, by weighing the errors with the

inverse of the covariance matrix, we can hope to eliminate some uncertainties from

modeling and concentrate on the error brought about by the samplers themselves.

Another useful diagnostic test is to compute the integrated autocorrelation time

(IACT) [48] which is defined as (again, for some function h(x) of the random vari-

28

ables)

τ(h) = 1 + 2
∞∑
j=1

γj(h), (2.5)

where γj is the autocorrelation function defined in (2.3). This number is related to

the effective sample size (ESS) defined for correlated samples, which, for a total of

n samples, has the expression

ESS =
n

2τ(h)
. (2.6)

The ESS is a description of the number of independent samples which have similar

estimated statistics as that of the n (potentially correlated) samples. Therefore, the

smaller the IACT is, the larger the ESS is, and hence we may say that the sampler

is possessing a better statistical efficiency. In later chapters, we will show how to

use EMSE and IACT to measure the performance of different samplers. We will

also show that the concept of effective sample size can help us properly quantify the

speedup of an MCMC algorithm in parallel computing.

2.3 Existing parallel MCMC algorithms

The most straightforward strategy to use MCMC in parallel is to generate mul-

tiple chains starting from points that are far away from each other [28]. Samples

are then collected from all the chains to achieve a bigger ensemble of samples than a

single chain could achieve within the same amount of wall time. However, there are

several practical problems with this setting. First of all, there is no clear criterion

to tell whether the starting points have spread far away from each other. It is quite

possible that different starting points soon lead the sampler towards a common re-

gion of interest and each of the multiple chains only manage to sample this region

due to limited number of samples. Samples from different chains are then correlated

across chains and the convergence could be slowed. In contrast, a single long chain

29

might have a better chance of ergodicity. In addition, every chain has to discard the

burn-in period whose length is non-uniform (because of the different starting points)

and hard to estimate. One strategy is to discard a fixed, but large enough, number

of samples for each chain, which means that the number of wasted samples grows

proportionally to the number of chains available. All these could reduce the gains

from the multiple chain implementation. See [29] for a detailed discussion.

In the following, we will discuss two other parallel MCMC algorithms. They

represent two categories of ideas behind the parallelization of MCMC: the single

chain parallelization and the multiple chain parallelization. We discuss both the

improvements they make and the obvious limitations they possess.

2.3.1 Prefetching MCMC algorithm

A single-chain parallelization strategy called the prefetching MCMC was pro-

posed in [13]. When multiple processors are accessible, it is possible to propose, on

the main processor, the candidates for several steps ahead using a computationally

inexpensive random walk type distribution. These candidates are then distributed

to several processors and can be evaluated simultaneously. Once their probability

density function values are computed and sent back to the main processor, the main

processor can then perform a series of accept-reject decisions for acquiring multiple

samples in the Markov chain. We further illustrate the details of the idea by showing

an example of prefetching MCMC that uses a total of 7 processes. In this illustration,

we use a binary tree structure to demonstrate the conceived stages: for each node

in the tree, the left child stands for the new candidate and the chain will go to left

if an “accept” decision is finally made upon it; the right child, on the other hand,

stands for the result of the “reject” decision and hence it is an identical sample as

its parent.

30

Example 2.3.1. At the current sample xj, we use seven processors to extrapolate

three levels at the same time. Firstly, on the main processor, a tree of new samples

are spawned using a random walk type proposal function. Each left child of a node

is a new candidate while the right child is identical to its parent, as is demonstrated

in Figure 2.3. Then, all that needs to be computed is the probability density function

value (expensive step) at the seven nodes on level three except for the rightmost one

on different processors in parallel. Once these values are gathered, on the main

processor, starting from xj, the root, we perform a sequence of Metropolis Hastings

updates and get three new samples xj+1, xj+2 and xj+3. This algorithm is robust in

the sense that we will always obtain three new samples. We still end up with one

single chain that is identical to the original single-processor algorithm. The mixing

rate and the burn-in both remain intact.

Figure 2.3: One single iteration of the prefetching MCMC with 7 processors.

Prefetching MCMC, from a parallel computing perspective, is not efficient as the

31

upper limit of its speed up is log2(P + 1), where P is the number of the processors

available. In Figure 2.4 we show the theoretical speed up and the efficiency, the

ratio of the speed up over the number of processors available. As can be seen from

the plot, the algorithm scales poorly with the number of processors. Besides, the

implementation of this algorithm also relies on a fixed, computationally inexpensive

proposal distribution such as the random walk, as the candidates are all generated

on the main processor and only the evaluation of π(x) is parallelized. For advanced

MCMC algorithms such as the multiple try Metropolis algorithm [47] where the

anchor point for new proposal is undecided until after evaluation is taken place, or

the Stochastic Newton’s method [49] where each new sample is proposed by solving

an optimization problem, the prefetching algorithm cannot be directly applied.

2.3.2 Parallel tempering method

As is discussed above, plainly running multiple chains of MCMC may not be an

ideal solution of algorithm parallelization. In this section, we discuss another multiple

chain strategy, the parallel tempering (PT) algorithm [24], that allows between chain

interactions. These interactions empower Markov chains to jump between states

rather than being trapped in local optima, and they increase statistical efficiencies

in general.

The parallel tempering algorithm deals with a product space X1×X2× . . .×XI ,

with each Xi being an identical copy of the original parameter space X . A joint

probability distribution

π(x1, . . . , xI) =
∏
i∈I

πi(xi)

is assigned to the product space. In implementation, the I chains are run in parallel

and the algorithm is defined as:

32

1 100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

S
p
e
e
d
 U

p

1 100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

Processor Number

E
ff
ic

ie
n
c
y

Figure 2.4: Theoretical speedups and efficiencies of the prefetching algorithm for
different number of processors. Since in the inverse problems the computing time
dominates the communication time, these theoretical estimates should be close to
the data from numerical experiments.

33

Algorithm 2 Parallel Tempering Algorithm

• Let the current state be {x(t)
1 , . . . , x

(t)
I }; draw u ∼ Uniform[0, 1],

• If u ≤ α0, we update each x
(t)
i to x

(t+1)
i by using a Metropolis-Hastings strategy,

• If u > α0, we perform a swapping step, i.e., we randomly choose a neighboring

pair, say i and i+ 1, and swap x
(t)
i , x

(t)
i+1 with probability

min

{
1,
πi(x

(t)
i+1)πi+1(x

(t)
i)

πi(x
(t)
i)πi+1(x

(t)
i+1)

}
.

In parallel tempering, the πi’s are chosen as a sequence of “tempered” distribu-

tions, namely,

πi(x) ∝ exp{log π(x)/Ti} = (π(x))1/Ti , (2.7)

where 1 = T1 < T2 < . . . < TI and π1 is set to be the original distribution. The

above form is similar to the Boltzmann distribution in physics where − log π1(x)

serves as the energy and T as the temperature, the setting is hence named. See

Figure 2.5 for an example of a sequence of tempered mixed Gaussian distributions.

Intuitively, as the temperature increases, the distribution will be more flattened, i.e.,

the barriers between different regions become smaller, thus allowing the sampler to

traverse different areas of the parameter space more easily. When the samples of

the original distribution are trapped around a local peak, those sampling the higher

temperature distributions may have reached another region of interest. The swap

steps in the algorithm permit exchanging information between the states at different

energy levels and help the chain on the original distribution to mix faster.

34

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

π
i(x

)

T=1

T=10/7

T=2

T=5

Figure 2.5: A sequence of (unnormalized) tempered density functions for a mixed
Gaussian distributions.

A practical issue in implementation lies in the tuning of the temperature ladder.

An empirical conclusion is that one should start with choosing the highest tempera-

ture. It should be chosen to allow exploring the whole space rather easily, i.e., with a

high acceptance ratio (α > 0.9). Then the lower temperatures are chosen such that

their histograms overlap to some degree with its closest neighbor, see [48] and [45]

for detailed suggestions. One of the criteria for a good temperature ladder is that

the swapping step should be accepted with a ratio of approximately 50%. A too

small swap rate means an inefficient exchange of information, while a too big swap

rate will interupt the local search very frequently that can result in a much blurred

image of the target distribution.

While the parallel tempering algorithm is able to accelerate MCMC sampling by

increasing the mixing rate, it has a limitation in using multiple processors, namely,

we can only use the number of processors that are equal to the number of chains. To

prevent the swap rates from being too large we have to limit the number of chains in

35

total. It has been advised that fewer than ten chains shall be used. That is to say,

only ten processors can be fully exploited at most.

36

3. THE MARKOV CHAIN PRECONDITIONED MONTE CARLO METHOD

The existing parallel MCMC algorithms explored single chain and multiple chain

parallel schemes, but the efficiency in terms of parallel computing is very limited.

This is due to the sequential nature of MCMC that the proposal of each sample relies

on the information of the previous state. It is then attractive to study the independent

Metropolis-Hastings algorithm which proposes new samples using a distribution q(x)

that does not rely on samples for the target distribution π(x). The main problem

with this idea is that whenever the proposal distribution is not close enough to

the target distribution, the proposed samples are most likely to fall in regions of

low target probability and the acceptance ratio of such algorithms can be extremely

small. This problem becomes more severe when the dimension of the parameter space

is high. In such cases, the high probability regions only fill a very small portion of

the space.

3.1 The MCPMC algorithm

Inspired by the “interacting Markov chain Monte Carlo” in [14], we derive a

new algorithm that is able to remedy this problem. Instead of choosing a proposal

function which has no knowledge of the posterior distribution, we construct it by

using approximation models of the posterior distribution. For example, we may

construct the posterior distribution on a less accurate but much faster solver for the

forward problem. When the forward problem is about solving a partial differential

equation, we may discretize the equation by using a coarser grid. The posterior built

this way will be easier to evaluate, while through a careful treatment we can keep

the distribution built on the coarser grid close enough to the accurate model.

Most times, the constructed approximate posterior distribution is again not re-

37

trievable in an analytic form, therefore we may sample the approximation using some

MCMC method. Sampling this distribution is then much faster than sampling the

real distribution. While the approximation model is sampling, we randomly select

samples from the expanding pool, taking the growing ensemble as a discrete proposal

distribution. As more samples are generated from the proxy model, this ensemble

should resemble the approximate distribution πapprox(x) and the random selection can

be considered as if they come straight from an independent draw from πapprox(x).

Then, proposed candidates are evaluated independently on different processes to

compute an importance weight following equation (2.2)

w(x) =
π(x)

πapprox(x)
.

Comparing the weight of a new proposal and of the current sample, we update

the chain for real posterior distribution following the Metropolis-Hastings algorithm.

Roughly speaking, this step filters out the samples that have a relatively small value

on π(x) and replicates the samples whose weight evaluation are large.

Even though the approximate model can be crafted to be close to the accurate

model, they are not identical. Thus, samples from the approximate model may not

cover the entire high probability regions of the accurate model. Taking this fact

into account, we add a step to the new algorithm which uses a short Markov chain

with invariant distribution π(x) to perturb the samples towards a higher probability

area. The last sample obtained from this short chain then replaces the acquired

sample. The computation of each short chain is expensive because it may incur

several forward model evaluations. But since every such chain can be run entirely in

parallel the additional cost can be effectively controlled with a sufficient number of

processors.

38

It is also noteworthy that the preconditioning can be readily extended to multiple

levels of approximations rather than having only one approximation πapprox(·) and

one accurate model π(·). For example, to guarantee a smoother transition from

the approximate to the accurate, we may insert several intermediate chains whose

density functions are weighted geometric means of the approximate and accurate

models. That is, we can choose intermediate distributions πλ(x) according to

πλ(x) = π1−λ
approx(x)πλ(x), λ ∈ (0, 1).

By carefully choosing a sequence of such temperatures, we will be able to make

neighboring distributions close to each other. Refer to [43] for an example of using

this setup in a sequential Monte Carlo (SMC) sampling.

As the new algorithm is derived from the interacting MCMC, they share a the-

oretical basis. Meanwhile, the new algorithm differentiates itself from the original

in aspects. The interacting MCMC algorithm is built for state space models where

multiple chains are built on parameter spaces with increasing dimensions (i.e., a se-

quence of augmenting spaces). In the state space models, transitions between succes-

sive spaces have already been defined as conditional distributions. In our framework,

however, there is only one parameter space with a fixed dimension across all the

chains. To fit into the same algorithmic framework, we need to build approximation

models and sample the approximate distribution as an auxiliary. Since there is no

natural transition from the approximate to the accurate, we add the Markov kernel

based perturbation step to connect both models. A similar algorithmic modification

appeared in [22, 23]. Therein, the authors modified an SMC method which is origi-

nally designed for general state space models of increasing parameter dimensions to

suit fixed dimension models. Comparing the SMC method in [22,23], our algorithm

39

uses Markov chains instead of relying on independently generated samples, hence we

can expect better asymptotic stability.

Note that in this algorithm, we use a coarse model to guide the simulation on

a fine model, and the Markov chain is mainly used for sampling the approximation

distribution, we realize that the coarse model Markov chain can be viewed as a

stochastic approximation of the approximation distribution which then serves as a

preconditioner for sampling the true distribution. Hence, we name it the Markov

chain preconditioned Monte Carlo method. In the following, we give the formal

description of the algorithm in a general multiple chain version. For conciseness, we

show the algorithm in a synchronous way, that is, we assume that for every iteration

both the preconditioning chain and the target chain produce exactly one sample. In

real implementations, nevertheless, the speed of the two chains depend on factors

such as the number of processors we use and the number of perturbations after each

update.

40

Algorithm 3 Markov chain preconditioned Monte Carlo

Suppose there are n chains with πn(x) = π(x) and πi(x), i = 1, · · · , n − 1 is a

sequence of approximations. At iteration k, do:

• For chain i = 1, update Xk
1 using a traditional MCMC with invariant distribu-

tion π1(x),

• For chain i = 2, · · · , n, do the following steps

– Select : randomly propose a sample Xm
i−1, m ∈ [1, k] from the previous

chain as X∗i ,

– Update: compute the incremental weight wi(X
∗
i) := πi(X

∗
i)/πi−1(X∗i) and

make update decision with probability

αi(X
∗
i , X

(k−1)
i) = min

(
1,

wi(X
∗
i)

wi(X
(k−1)
i)

)

= min

(
1,
πi(X

∗
i)πi−1(X

(k−1)
i)

πi−1(X∗i)πi(X
(k−1)
i)

)
,

– Perturb: move X∗i by a Markov kernel with invariant distribution πi(·) to

Xk
i .

This algorithm is well suited for parallel computing in that sample proposals for

the i-th chain where i ≥ 2 can be done in parallel: it is easy to select multiple

candidates from the previous chain, evaluate them on different processors (expensive

step), make the sequential update decisions and perturb those accepted samples again

in parallel. That is to say, all the expensive steps, the before-update evaluation and

the after-update perturbation, can be completely parallelized. The speed of the

41

sampler is also determined by the preconditioning chain on the approximate model.

If this chain i) resembles the accurate distribution closely enough and ii) samples the

approximate distribution fast, the other chains will acquire good quality candidates

swiftly and the convergence will be improved.

3.2 Implementing MCPMC for multiple processors

The MCPMC is designed specifically for Bayesian inverse problems that have

the following common features: (a) the likelihood function evaluated on the accu-

rate model is very expensive, (b) the approximate model is much faster to evaluate

and (c) yet the evaluation of the approximate model is considerably slower than

the necessary communications. Thus, we adopt a tailored master-slave architec-

ture [30] for implementing this algorithm on multiple processors. In a master-slave

model, the master generates tasks and allocates them to the slave processes. In

particular, suppose there are a total number of N processes, we assign process 1 for

the preconditioned Metropolis-Hastings chain using the approximate model, process

2, 3, · · · , N −1 to be real slaves that repeatedly evaluate samples, using the accurate

model, from and return the evaluations back to the master process, and process 0,

the master process, to coordinate all the remaining tasks which include random se-

lection, update decision, perturbation decision, data structure management and data

communication.

The communication between processes 0 and 1 is one way—only the base chain

has to send new sample candidates to the master process. On the other hand, the

communication between the master and its real slaves are both ways: the master

prepares tasks—it could either send a sample for a single evaluation on the target

model so as to compute the weight of that sample, or it could send a sample for the

perturbation step which is in fact a short path of MCMC on the target model—and

42

continuously checks whether slaves have sent back results for evaluations. Whenever

a slave finishes a task, it will send some feedback—a number—back to the master

and the master will hand a new task over to it. See Figure 3.1 for an illustration of

our implementation for the algorithm model.

The reason for not merging the tasks of process 0 and 1 into one process is that

it is impossible to deal with any communication needs when a process is computing

an approximate model evaluation. In contrast, our design ensures that the master

process is always responsive: all tasks done by this process only take a fraction of the

time of even the approximate model evaluation, therefore whenever a slave process

finishes its current job and demands a new task, the master will be able to make

the designation immediately. Simply put, separating the base chain simulation from

the central commanding avoids the potential communication overhead in the whole

algorithm.

Note also that this design can be generalized in a relatively straightforward way

to multiple chain situations—instead of having one master, we can simply have as

many masters as there are MCPMC chains (not including the base chain). The

only additional layer of communication would be one master sending new samples

continuously to the master of the next chain, which is essentially the same as the

type of communication between processes 0 and 1 mentioned above.

3.2.1 Discussion on the parallel efficiency

We first analyze the scalability of the algorithm in terms of producing fine level

samples. Suppose the time spent for evaluating a sample on the fine model is tf, and

the time for communication, i.e., sending a sample between processors is tcomm. In

most of the cases we are interested in where tf is approximately the time for solving

a partial differential equation on a mesh that is fine enough to resolve certain details,

43

Master Process:
1) Store sample candidates
2) Message management
3) Update samples

SLAVE 1 SLAVE 2 SLAVE 3 SLAVE 4

MASTER

Precondition
Chain

Slave Processes:
1) Evaluate single sample on �ne model
2) Run short perturbation chains on �ne model

Figure 3.1: A graphical illustration of the modified master-slave architecture with
which we implement the MCPMC algorithm.

44

we can always assume that tf � tcomm. If we define the speedup (sp) as the rate of

samples produced by MCPMC divided by the rate using a fine Metropolis-Hastings

algorithm, N as the number of processors available and p as the number of steps

from the short perturbation Markov chain happening at each step, we would then

have N − 2 slaves repeatedly working on the single evaluation for update decision

and the p step perturbation. Therefore, we obtain that

sp =
tserial

tparallel

=
(N − 2)tf
(1 + p)tf

=
N − 2

1 + p
,

and the efficiency (eff) of the algorithm is

eff =
sp

N
=
N − 2

N

1

1 + p
→ 1

1 + p

when N →∞. Recall that the efficiency of the prefetching algorithm is lnN/N → 0,

therefore the MCPMC is guaranteed to outperform the prefetching in obtaining more

samples when many processors are available.

It is however necessary to realize that getting more samples is not always equal

to converging faster to the posterior distribution. An extreme counterexample will

be that if we have N very large that we can simultaneously process many fine level

evaluations when only one coarse level sample is produced, we then are faced with

the situation that all the fine level evaluations are performed only on an identical

sample at the beginning of the sampling process, which is no better than obtaining

only one fine level sample. On the other hand, if the sampler has run long enough and

the preconditioning base chain is close to πapprox(x), the approximating distribution,

the randomly selected samples are then nearly independent samples from πapprox(x).

Henceforth, the speedup can go over the sheer speedup in number of samples because

45

such an independent sampler with certain regularization property between the target

and proposal distributions may bring a faster statistical convergence over the random

walk based Metropolis-Hastings algorithms [50].

To have an estimate of the speedup taking statistical convergence into consid-

eration, we redefine the speedup using the time needed to obtain a certain number

K of equivalent independent samples where statistical independence is defined with

respect to some function h(x):

ŝp =
t̂mh

t̂mcpmc

=
2Kτmh(h)tf

2Kτmcpmc(h)(p+1
N−2

)tf
=

τmh(h)(N − 2)

τmcpmc(h)(p+ 1)
, (3.1)

where, for ∗ = mh or mcpmc, t̂∗’s are the scaled time for getting the number of

samples that are equivalent to K independently drawn samples, τ∗ are the integrated

autocorrelation times that are defined in (2.5), and we have adopted the effective

sample size formula (2.6). Equation (3.1) explains the situations mentioned earlier

well: at the beginning of MCPMC sampling, due to limited size of the preconditioning

chain, most selected samples are identical and hence τmcpmc can be very large, which

leads to a small ŝp, whereas the integrated autocorrelation time can be dramatically

reduced if the base chain is already long enough and the proposal is as if they were

generated independently from the approximating distribution—this is where the ŝp

can grow even larger than sp. As a remark, it is worth noting that equation (3.1) also

hints at the reason that we want the approximating distribution to be close to the

target posterior distribution: if it were not the case, or, equivalently, if the variance

of w(x) = π(x)/πapprox(x) was large, MCPMC would frequently hit some sample

that has a large w(x) and reject many samples after it, resulting in a large τmcpmc

and a small ŝp. As we can show in the two inverse problem cases in the following

chapters, even for relatively high dimensional, complex models, we are able to build

46

the approximating distribution close to the target so that a considerable portion of

the proposed samples get accepted.

Example 3.2.1. As an example, let us compute the speedup ŝp using the data from

the optical tomography example in chapter 5. Without loss of generality, we choose

the function h(x) to be the L2-norm of each sample, and we compute the truncated

version of IACT

τk(h) = 1 + 2
k∑
i=1

γj(h)

in which we chose k = 3000, a lag at which we observe that the autocorrelation for the

Metropolis-Hastings is small. Given the fact that the autocorrelation function drops

much faster for the MCPMC algorithm, our estimate is relatively conservative.

The resulting IACT’s are

τmcpmc = 10.91 and τmh = 72.83.

Also, choosing the number of processors N = 50 and the number of perturbations

p = 5, we can calculate that ŝp = 53.35. Namely, under the measure of obtaining

equivalent independent samples, the MCPMC achieves super linear speedup. As a

remark, we may achieve a larger speedup by using more processors.

3.3 Example: A two dimensional Gaussian distribution

We first study several important details that can guarantee a successful imple-

mentation of MCPMC and make the MCPMC sampler more efficient. In the follow-

ing example, we find that it is imperative to have neighboring distributions “close”

enough to each other, that is, they should have significant overlaps. We also test the

difference of convergence using variable number of perturbations and conclude that

it is beneficial to increase the number of perturbation steps per iteration but only to

47

a certain threshold.

We study the use of MCPMC through a two dimensional Gaussian distribution

example. The target distribution has a mean vector (5, 0) and an identity covariance

matrix. We take another Gaussian distribution with mean (0, 0) and an identity co-

variance as the approximate distribution. The first chain proposes samples depending

on the previous state and updates using a Metropolis Hastings (MH) method. The

subsequent chains use MH as the Markov kernel to perturb samples acquired from

the previous chain.

Figure 3.2: An illustration of the two dimensional Gaussian distribution problem
where we try to sample the distribution centered at (5, 0) using a MCPMC with
the preconditioning chain being an MCMC sampling the “approximate” distribution
centered at (0, 0).

Distribution overlap: It is important that neighboring distributions, i.e., the

48

distributions for adjacent chains be close enough to each other to guarantee ef-

ficient updates. When their modes are distant compared to their variances, the

overlap between them is small. This way, the variance of the incremental weights

w(x) = π(x)/πapprox(x) is significant which then could result in a poor estimate

because the variance of the sample estimate is proportional to 1 + Var (w(x)) [48].

As is shown in Figure 3.2, the approximate Gaussian distribution is separated

from the target distribution. We were unable to directly sample the target from

the approximation after one million samples. The poor statistical property of the

two-chain setting is indicated by the low acceptance ratio at the update steps for

the second chain as is shown in Table 3.1. To improve the situation, we insert N −

2 intermediate chains to narrow the differences between neighboring distributions.

These chains all have normal distributions of the identity covariance matrix and a

center at (5i/(N − 1), 0), for i = 1, · · · , N − 2. These additional chains build a

smooth transition, making it easier to move samples from one distribution to the

other. The increased average acceptance rate, average taken over all N chains in the

update steps with N = 2, 3, 5, 7, 9 and 11 supports this conclusion.

Number of chains Center distance Average update AR
2 5.0 0.002
3 2.5 0.097
5 1.25 0.38
7 0.833 0.56
9 0.625 0.66
11 0.5 0.72

Table 3.1: Average acceptance ratios (AR) in the update stage when using different
numbers of chains. The “center distance” column shows the distance between mean
vectors of neighboring distributions.

49

Number of perturbations: Another factor that determines how fast the sampler

converges is the number of perturbation steps. The perturbation is a short Markov

chain based only on the accurate distribution π(x), which means that such a step

could move the sample towards a higher probability region under π(x). Hence, taking

more steps in the short chain might move the sample further and lead to a better

sampling quality with the same number of samples on the last chain.

Figure 3.3 shows a comparison of convergence using different numbers of pertur-

bation steps at each iteration. When we only use one perturbation at each iteration,

the convergence behavior of the sampler is poorer: the error barely decreases after

twenty million samples. Every unit increment of the number up till four per iteration

has given substantial improvement in convergence. The difference between using four

and ten perturbations becomes much smaller. Considering that these perturbation

steps are sequential and each step evaluates the forward problem, this suggests that

we should not increase the number too much so as not to increase the computational

burden.

3.4 Example: A multi-modal Gaussian mixture distribution

In this multi-modal example, we demonstrate the potential power of the new

algorithm in increasing the sampler’s statistical efficiency. When a probability dis-

tribution has more than one mode, it is possible that a sampler gets trapped at one or

a few of these modes. That is, multi-modal distributions can impede the ergodicity

of a sampler, making it converge extremely slowly. An effective solution to this local

trap problem is to use a sequence of tempered distributions that are defined at (2.7).

For this tempered scheme to work, the sampler needs to have an infrastructure that

runs multiple chains at different temperatures, and there should be a way for these

chains to interact. MCPMC serves these purposes. We can assign the highest tem-

50

1e5 2e7 4e7 6e7 8e7 1e8
10

−4

10
−3

10
−2

10
−1

10
0

Total Evaluation

L
2

 e
rr

o
r

o
f

m
e

a
n

 e
s
ti
m

a
te

P =3

P =2

P =1

P =4

P =10

Figure 3.3: Convergence comparison of samplers with different perturbation steps.
The x-axis is the total number of perturbation evaluations taken on the accurate
model. So, for the sampler with P = 10, the total number of samples shown in this
plot is 107 because obtaining each sample requires running a short chain of 10 steps.
On the contrary, the sampler with P = 1 has 108 samples shown in the plot. Even
so, samplers with more perturbations demonstrate a better convergence.

51

perature to the base chain, such that it can easily sample around the entire sample

space. The subsequent chains will use a ladder of decreasing temperatures, which

helps gradually filter out the over scattered samples.

We design this experiment following the similar experiment in [46]. To illustrate,

we use a mixture of two dimensional Gaussian distributions

π(x) =
N∑
i=1

ωiN (xi, σ
2),

where N = 10, ωi’s, the weights, are all set to be 0.1, xi ∈ R2 are ten centers

randomly drawn from the square [0, 10]× [0, 10], and σ2 are set to be 0.1 for all the

Gaussian modes. We sample this distribution both with a random walk Metropolis-

Hastings (MH) chain and an MCPMC chain, each with 1000 samples. For the MH

chain, we set the random walk step size to be 1.0 for both components, which gives

an acceptance ratio of 0.27, showing that it is reaching optimal performance. For the

MCPMC chain, we utilize a total of 6 chains of decreasing temperature that follows

the formula

Ti = ab(6−i), (3.2)

where Ti is the temperature for the i-th chain and a = b = 1.5 are constants that we

tune such that the neighboring distributions are close to each other. The samples

from the sixth chain (T6 = 1) are taken as the final sampling results.

In Figure 3.4 we show the sampling results from both the MH and the MCPMC

samplers. The MH sampler is trapped at the lower left corner where two Gaussian

modes reside. On the contrary, the MCPMC successfully samples all ten modes.

Though there seems to be fewer samples at the left lower corner modes, it is mainly

due to the small number of samples and we do observe a better balance with more

52

points sampled. Also, in this figure, we plot the sample paths for the sixth chain of

the MCPMC algorithm, from which it is clear that the sampler achieves the ergodicity

not by chance. During its process, the sampler frequently jumps between different

modes of the distribution, thus showing that it has very good mixing properties.

This is somehow straightforward to understand because the random selection step in

MCPMC naturally breaks the confinement of local search, which is typical in pure

random walk type samplers.

We also show the samples from all chains of the MCPMC algorithm in Figure 3.5.

The first chain has largest variance and samples the entire domain relatively easily.

Therefore, it provides a robust ‘preconditioner’—a pool of sample candidates that

covers all regions of interest to feed the subsequent chains. With the help of im-

portance weight updates from each chain to its right neighbor, the sampler is able

to gradually filter out the samples that posses small probabilities in the true distri-

bution. The additional perturbations then further move samples towards important

regions of the true distribution.

53

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x
y

(b)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(c)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(d)

Figure 3.4: Sampling the two dimensional Gaussian mixture distribution: (a) shows
the centers of the ten modes; (b) shows the result of 1000 samples from an MH
sampler; (c) shows the result from the MCPMC with 6 chains and 1000 samples on
the sixth chain; (d) shows the sample paths for the same samples as in (c).

54

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(a) Chain 1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(b) Chain 2

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(c) Chain 3

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(d) Chain 4

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(e) Chain 5

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

(f) Chain 6

Figure 3.5: 1000 samples from the first chain to the sixth chain of the MCPMC
algorithm. The temperature decreases with respect to i, i = 1, 2, · · · , 6. The i-th
chain serves as a preconditioner for the i + 1-th chain which fetches samples from
the preconditioner and filter samples according to its own probability distribution.

55

4. APPLICATION: AN INVERSE PROBLEM WITH ELLIPTIC EQUATIONS

4.1 Problem description

In this chapter, we investigate how to sample the posterior distribution for an

inverse problem with MCPMC. The problem considered herein has an elliptic partial

differential equation as the forward model:

−∇ · (x(z)∇p(z)) = q(z), ∀z ∈ Ω,

p(z)|∂Ω = g(z).

The inverse problem is to infer the parameter field x from observations of the pressure

at several locations in Ω. This forward model has direct applications in nuclear waste

disposal problems [60] and is the basis for problems arising in electrical impedance

tomography [18] and multiphase flow problems [25]. We implement the solver of the

forward problem in the finite element library deal.II [6, 7].

In our experiment, we use a reference coefficient field to generate synthetic data—

data that are taken as reference physical measurements. We use the reference field

xref as shown in Figure 4.1, input it in the forward model, and use an adaptive finite

element method [9] to accurately solve for p which is shown in Figure 4.1. Then, we

evaluate this solution at 361 locations equally distributed in the unit square domain.

These consist of the physical measurements in this example.

We adopt a pixel type discretization for the parameter x(z): we discretize the

parameter field with an 8 × 8 grid and use piecewise constant functions for the

approximation. For the likelihood function, we assume a Gaussian additive noise

56

Figure 4.1: Generation of the synthetic data. The top left figure shows the reference
coefficient field x(z), the top right figure shows the solution p(z) using the reference
coefficient and the bottom figure shows the adaptively refined mesh for obtaining the
solution.

57

model

y = f(x) + ε, ε ∼ N (0,Σd),

where y = {y1, y2, · · · , y361}, f : R64 → R361 is the parameter-to-observation map

that predicts the discrete measurements from solving the elliptic equation with coef-

ficient x, and Σd is the data covariance matrix. We also assume, in all experiments,

that the noise level is 1%, i.e. the standard deviation σ is chosen to be one per-

cent of the maximal magnitude of all the synthetic data obtained from the reference

coefficient:

σ := 0.01
361

max
i=1
|f(xref)i|.

Choosing proper priors for Bayesian inverse problems is an active research area.

One of the frequent options is the Gaussian prior distribution. If the measurement

is also a Gaussian distribution and the parameter-to-observation map is linear, the

posterior distribution is also Gaussian and it is straightforward to compute the mean

and covariance matrix. Another example would be l1 type priors such as the total

variation norm prior or the Besov priors that can promote sparsity and hence are

widely applied in imaging. We show some random samples from the total variation

distribution in Figure 4.2 in which pixels tend to correlate with their neighborhoods.

In Figure 4.3, we show random samples from a Gaussian prior distribution where the

pixels are independent of each other, showing random perturbations from the mean

vector. More advanced Bayesian modeling techniques such as hierarchical modeling

has also been studied for Bayesian inverse problems to achieve autonomous hyper-

parameter selection. In this example, we opt for a simple choice of the prior so

that we can focus on comparing the efficiency of different samplers rather than also

blending it with modeling effects. For the pixel type discretization, we choose the

58

Figure 4.2: Four samples from a total variation prior distribution. Pixel values vary
across the range of parameters and the pictures are blocky.

59

Figure 4.3: Four samples from a Gaussian prior distribution. Pixel values are inde-
pendent of the values of their neighbor.

60

Gaussian prior

πprior(x) ∝ exp

(
−
||x− x0||2Σ−1

m

2

)
,

where x0 is some prior guessed value of the parameter and Σm is the model covariance

matrix. Here, we choose x0 = 0.

Having set up the likelihood and the prior, and by further assuming that

Σd = σdId and Σm = σmIm,

we now have the posterior distribution as

π(x|y) ∝ exp

(
−1

2

||y − f(x)||2

σ2
d

− ||x||
2

2σ2
m

)
.

We solve the forward problem using linear finite elements [12,26] on two meshes

Γh and ΓH . The fine grid Γh for sampling algorithms is chosen to be the uniform

mesh of size 64 × 64 and the coarse grid ΓH is of size 16 × 16, as are shown in

Figure 4.4. The posterior distribution obtained through a forward model on the

fine mesh is considered as the accurate distribution and the posterior distribution

built on the coarse model is the approximating distribution. We sample the fine

distribution with a plain Metropolis-Hastings algorithm and compare the results

to an MCPMC sampling using the coarse grid samples as a preconditioner. Note

that in this computation the difference of two posterior distribution evaluations only

lies in the likelihood function and the choice of the prior in fact does not interfere

with the comparison. Therefore, we choose σm so that the prior distribution is

flattened compared to the likelihood function, hence reducing the impact of the

prior distribution.

61

Figure 4.4: The meshes used for the approximate model (left) and the accurate model
(right).

4.2 Enhanced error model

Some preliminary runs of the experiment indicate that running MCPMC directly

with the coarse grid samples as a preconditioner is inefficient—the update acceptance

ratio of the importance sampling step on the fine chain is below 0.001. As has been

shown in the Gaussian distribution case, a low acceptance ratio associates with poor

overlap between the approximating and the accurate distributions. Admittedly, even

if the approximate model and the accurate model are distant we are able to mend the

system by inserting extra chains with tempered distributions that bridge the ends,

this is however never an optimal strategy because additional chains will demand

extra computing resources. Hence, we seek feasible techniques to narrow the gap

between two distributions so that the two chain scheme can also achieve efficiency.

In the following, we discuss the enhanced error model which achieves this purpose

with little additional computation.

The conventional Gaussian additive noise model [39] constructs a likelihood func-

tion which assumes that differences between ideal predictions f(x) and actual mea-

62

surements y result from an error model of the form

y = fi(x) + ε, ε ∼ N (0,Σd)

for both the fine grid model f2 and the coarse grid model f1. The assumption

underlying it is that the error term ε includes all noise sources such as measurement

errors, model uncertainties or the numerical discretization inconsistency. Though,

surprisingly, this simplification has worked well when solving the inverse problems

on a fixed mesh by using either an optimization method or a stochastic sampling, it

is over simplified as an approximate model which solves the forward problem on a

coarse mesh.

On one hand, the discrepancy between a fine mesh solution and a coarse mesh

solution is not likely to have a zero mean. Nor do the estimate errors between these

two models behave by any means uncorrelated. The conventional model is then

surely inappropriate for this situation. On the other hand, such a discrepancy can

be quantified as long as one can simulate both the coarse and fine grid models.

In previous work [1, 39, 42], this was overcome by splitting the single term noise

into two parts: one represents the discretization error coming from different mesh

resolutions, and the other term still incorporates all other categories of uncertainties.

The new model is defined as

y = f2(x) + ε = f1(x) + (f2(x)− f1(x)) + ε.

In this refined model, the new ε contains all the noise except for the discretization

error between the grids. We can model ε ∼ N (0,Σ) as before, but for the new

uncertainty term η = f2(x) − f1(x) we assign it another normal distribution η ∼

63

N (µ,Σ1). To estimate the mean and covariance for η, we pre-simulate an ensemble

of N samples {xi}Ni=1, put each xi in both the coarse and fine forward solvers to

compute the differences in measurements and summarize an estimation with:

µ =
1

N

N∑
i=1

(f2(xi)− f1(xi)) ,

Σ1 =
1

N

N∑
i=1

(f2(xi)− f1(xi)− µ) (f2(xi)− f1(xi)− µ)T .

The enhanced error model is a nice example of the advantages of statistical in-

verse problems over their deterministic relatives—the uncertainty can be separated

to adapt different types of errors. For those errors that only result from computer

simulations, we are able to quantify them through an offline computation. This

way, the model can have reasonably better accuracy. We demonstrate such an im-

provement through simulations for the elliptic problem. We run MCMC chains with

1,000,000 samples on a 16 × 16 grid using both the coarse approximate model and

the enhanced error model and compare the results with another simulation of the

same number of samples on a 64× 64 grid. Figure 4.5 shows the error between the

mean estimation and the reference (as discussed in Section 4.1) for all 64 pixels. At

most pixels, the enhanced error model is able to obtain a better estimate than the

coarse grid model, indicating that the mean value correction takes positive effect

on the sampling quality. Figure 4.6 shows the histogram estimate of the marginal

distributions at three pixels (x5, x34 and x51). While the histograms from the coarse

grid model deviate from those of the fine grid, the EEM estimation overlap well with

the fine for all three instances.

64

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

10
2

Coefficient Components

E
rr

o
r

Coarse

EEM

Figure 4.5: Error comparison for a plain MCMC algorithm with either a coarse grid
model or an EEM using one million samples. The x-axis is the 64 pixels, i.e., the
components xi of the parameter which appears as a coefficient in the elliptic equation.
The y-axis is the error |x̄i − x∗i |2, i.e., the square error between the mean estimator
and the real value.

4.3 Numerical results

Now let us return to discussing the efficiency of sampling the model inverse prob-

lem. As a reference, we first run a Metropolis-Hastings (MH) chain on the fine level

grid for 2,000,000,000 samples—a large enough sample number with which we believe

that the chain has converged. Out of this reference ensemble, we computed the mean

vector x∗ and the covariance matrix C∗ and compute, for any ensemble of samples

{xi}Ni=1 in later experiments, the weighted error according to the definition in (2.4):

errorN =
1

N

N∑
i=1

(xi − x∗)TC−1
∗ (xi − x∗).

The reason for comparing with the average out of a reference sampler instead

of comparing directly with the synthetic parameter field is that after adopting the

prior distribution we can not expect the reconstruction to be exactly the same as

the synthetic parameters; rather, only a long enough MH sampler can provide the

65

2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

x
5

M
a
rg

in
a
l

Fine

Coarse

EEM

2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

X
34

M
a

rg
in

a
l

Fine

Coarse

EEM

2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

7000

x
51

M
a
rg

in
a
l

Fine

Coarse

EEM

Figure 4.6: Using the same data as above, the figure shows a comparison of the
histogram approximated density functions for the marginal distribution of three co-
ordinates: x5, x34 and x51 between the coarse grid, the fine grid and the enhanced
error models.

66

real mean vector for the posterior distribution. In addition, by weighting the error

with the inverse of the ensemble covariance matrix C∗, we can hope to eliminate the

impact of some components that are not inferable with the sampler. For example,

in the current experiment, the pixels near the center can be estimated very poorly

because the gradient of the velocity is close to zero and a large range of parameter

values at these pixels can lead to the same measurements. While such phenomena are

inherent due to the ill-posedness of inverse problems, we intentionally reduce their

impact so that our comparison focuses more on the efficiency of different sampling

algorithms.

We make comparison between the results with a coarse chain MH, a fine chain

MH and an MCPMC sampling. The coarse discretization has a total of 256 cells

and 289 degrees of freedom (DOFs), while the fine discretization has 4096 cells and

4225 DOFs. To reduce the gap between probability distributions for both chains, we

employ the enhanced error model discussed above by precomputing 3000 samples on

both the coarse and the fine meshes and compute the mean and covariance of the

Gaussian approximation error model with measurements obtained from these sam-

ples. Also, the MCPMC uses ten perturbation steps to increase statistical efficiency.

We show the numerical results obtained from running the MH algorithm on a

single processor and the MCPMC with 12 processors. In Figure 4.7, we plot the

conditional mean estimator for samples from both samplers. Both successfully esti-

mate locations and values of the targets correctly. As is already mentioned earlier,

the observable artifact on the one central pixel may be due to the fact that it is

impossible to infer the value of the coefficient where ∇u is nearly zero, which can

be seen from the solution in Figure 4.1. We plot convergence curves for all three

samplers in Figure 4.8. From the plot it is clear that the MCPMC has the same

accuracy as the fine mesh MH algorithm, whereas the coarse level MH sampler gives

67

a larger asymptotic error, because the coarse level parameter-to-measurement map

f1(x) does not adequately represent the true map. This fact proves the capability

of the MCPMC algorithm to move from the proposal distribution to correctly sam-

ple the posterior distribution. We also estimate the efficiency of both samplers in

terms of computing time. After repeatedly running coarse and fine evaluations for

20 times, each running 100 samples, we obtain that the average evaluation time for

a single sample on the coarse mesh is 0.011 second and is 0.084 second on the fine

mesh. Also, through comparing the sample numbers of both the coarse chain and

the MCPMC chain in the same experiment, we estimate that the fine target chain

is at a speed of about 80% of the coarse base chain in the given combination of

processor number and perturbation steps. In Figure 4.9, we plot the error scaled by

the estimated time of computing. The MCPMC manages to converge faster than the

fine level MH chain at any time, while after about 2000 seconds it shows a better

convergence than the coarse level base chain. It is conceivable that increasing the

number of processors will further increase the convergence speed of MCPMC.

Note that there is no direct comparison between the efficiency of a multiple chain

scheme such as the parallel tempering and the MCPMC because they accelerate the

sampling process in different ways. While parallel tempering increases mixing rate,

the MCPMC allows multiple sample evaluation simultaneously. It is also noteworthy

that the MCPMC can always adopt parallel tempering when sampling the approxi-

mation distribution, or at the perturbation steps. Such a hierarchical scheme should

further increase the sampling speed.

68

Figure 4.7: Left: Conditional mean reconstruction using 106 samples from the MH
sampler on the fine grid. Right: Conditional mean reconstruction using 106 samples
from the MCPMC chain that evaluates on the accurate model.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

number of samples

w
ei

gh
te

d
er

ro
r

Fine MH

Coarse MH

MCPMC

Figure 4.8: Sampling error as defined in (4.3) for the coarse level MCMC (green),
fine level MCMC (blue) and MCPMC (red).

69

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

time(s)

w
ei

gh
te

d
er

ro
r

Fine MH

Coarse MH

MCPMC

Figure 4.9: Sampling error plotted as a function of estimated running time for the
coarse level MCMC (green), fine level MCMC (blue) and MCPMC (red).

70

5. APPLICATION: THREE DIMENSIONAL OPTICAL TOMOGRAPHY

To further illustrate the strength of the Markov chain preconditioned Monte Carlo

algorithm, we apply it to uncertainty quantification to a fluorescence enhanced op-

tical diffusion tomography (FDOT) problem. Optical tomography is an emerging

medical imaging method which recovers the spatially variable tissue properties inside

a subject using measurements of light intensities on its boundary. It has important

applications to breast and cervix cancer detection and staging, lymph node imag-

ing as well as imaging of the brain of newborns through the skull. Compared to

conventional imaging techniques such as X-ray and MRI, optical tomography has

the following advantages: (a) it uses light, usually near infra-red light, to probe the

medium, thus reducing the radiation harm; (b) unlike other methods which infer tu-

mors from secondary effects (for example, X-ray observes calcification of blood vessels

and MRI looks at water content of tissues), it is able to target tumor cells at the

molecular level; (c) optical sources and sensors are well developed and inexpensive

which reduces the cost for using it compared to other tomography modalities.

In traditional diffusion optical tomography (DOT), sinusoidally modulated, con-

tinuous wave or pulsed excitation light is launched at the subject where it will un-

dergo absorption and scattering before it exits the subject. Detectors observe the

exiting lights, and the observation can be used to reconstruct the map of absorption

or scattering properties. Contrast of such properties can then indicate anomalies.

For example, tumors usually have a larger blood supply compared to the surrounding

tissues and different levels of blood associates with different levels of light absorption.

See [10] for a comprehensive review on this method.

It has been noted that the contrast of optical properties between healthy and

71

tumor tissues can be relatively low and the use of fluorescent agents can improve

the contrast. There are different ways that these agents can help with increasing

contrast: some injected fluorophores may prefer to accumulate in diseased tissues

because of larger blood flow around the diseased tissues; some may have different

decay properties in diseased tissues than in healthy tissues, giving another way to

localize the tumor. Moreover, some agents can selectively target receptors specific

to cancer cells, which leads to a substantial improvement in the contrast. One of the

immediate merits of such improvements is that it facilitates early diagnosis when the

difference between healthy and diseased tissues are even smaller [52]. See [2, 3] for

an overview of this topic.

In the following section, we will briefly describe the mathematical models that

we use for the behavior of light. Simplifications (i.e., diffusion approximation, or,

DA) are made under assumptions that are inherent in the media where optical to-

mography is used. Based on the DA model, we outline the system of equations—the

forward model—for the FDOT. The reconstruction of optical properties is modeled

under the Bayesian framework and we attempt to solve a three dimensional problem

with real geometry. In order to give a reasonable resolution both the parameter and

the state discretization are of high dimensions, which makes it difficult for any sam-

pling scheme. Therefore, we utilize a deterministic method to a) locate the maximal

a posteriori estimate which then serves as the starting point of our sampler, and b)

adaptively refine both the parameter and state meshes. The use of adaptive finite

element methods effectively reduces both the dimensionality of parameterization and

the complexity of the model, thus ensuring a saving in computing time. We then

apply our Markov chain preconditioned Monte Carlo scheme to sample the poste-

rior distribution in parallel. Further analysis is conducted based on the generated

samples.

72

5.1 The forward model

5.1.1 The radiative transfer equation and the diffusion approximation

The physics behind optical tomography is the propagation of light through a

material medium which can be modeled through a conservation law that accounts

for gains and losses of photons due to scattering and absorption. In particular,

the light intensity obeys the radiative transport equation (RTE, also: Boltzmann

equation):

1

c

∂I

∂t
+ ŝ · ∇I + µaI + µsI = µs

∫
p(ŝ, ŝ′)I(r, ŝ′)dŝ′, (5.1)

where c is the speed of light in the soft tissue, r ∈ Rn is the position vector, ŝ ∈ Sn−1 is

the direction vector, I(r, s) is the radiance and µa ≥ 0 and µs ≥ 0 are the absorption

and scattering coefficients, respectively. The kernel function p(ŝ, ŝ′) is the scattering

phase function which is a probability density for the radiation to scatter from ŝ to

ŝ′. Therefore, the phase function satisfies

∫
p(ŝ, ŝ′)dŝ′ =

∫
p(ŝ, ŝ′)dŝ = 1. (5.2)

The RTE is generally difficult to solve both analytically or numerically and the

diffusion approximation (DA) is widely used to simplify the model. The DA is

shown to be valid in strongly scattering media where the scattering length ls = 1/µs

is small compared to the distance of propagation (i.e., the mean free path). The

standard method for the approximation is the P1 approximation which first expands

the angular dependence of the intensity and then truncates the expansion at the first

order. Here we adopt another way, namely, the asymptotic expansion following [44].

This method takes higher orders of the spherical harmonics into account and shows

73

that they vanish in a natural way. Moreover, in contrast to the P1 approximation

which does not lead to boundary conditions, the asymptotic expansion yields the

boundary conditions systematically.

For the DA to be valid, we have to assume that the scattering coefficient is large,

the absorption coefficient is small, the domain is close to unbounded and the time is

long enough. These assumptions enable us to use a multi-scale analysis by setting

µs →
µs
ε
, µa → εµa, t→ t

ε
,

after which (5.1) becomes

ε2

c

∂I

∂t
+ εŝ · ∇I + ε2µaI + µsI = µs

∫
p(ŝ, ŝ′)I(r, ŝ′)dŝ′. (5.3)

Now we can use the asymptotic expansion on I(r, ŝ′) to get

I(r, ŝ′) =
∞∑
n=0

εnIn(r, ŝ′).

Insert this expression into (5.3), and compare the same ordered terms on both sides

of the equation gives

µs(1−K)In =

(
µa +

1

c

∂

∂t

)
In−2 + ŝ · ∇In−1, (5.4)

where we define I−2(r, ŝ) = I−1(r, ŝ) = 0, and the integral operator K is defined by

(Kf)(r, ŝ) =

∫
p(ŝ, ŝ′)f(r, ŝ′)dŝ′.

Assume that the phase function is isotropic, namely, p(ŝ, ŝ′) = p(ŝ · ŝ′), then we can

expand p(ŝ · ŝ′) as follows:

74

p(ŝ · ŝ′) =
∞∑
l=0

αl(r)Pl(ŝ · ŝ) =
∞∑
l=0

αl(r)
l∑

m=−l

Ylm(ŝ)Y ∗lm(ŝ′)

where Pl are the Legendre polynomials, Ylm are the spherical harmonics and the

second equality is obtained using an addition theorem. Now we can render the

integral operator as:

(Kf)(r, ŝ) =
∞∑
l=0

αl(r)

∫
Pl(ŝ · ŝ)f(r, ŝ′)dŝ′ (5.5)

or,

(Kf)(r, ŝ) =
∞∑
l=0

αl(r)
l∑

m=−l

Ylm(ŝ)

∫
Y ∗lm(ŝ′)f(r, ŝ′)dŝ′. (5.6)

From this equation, we can immediately tell that the αl(r)’s are the eigenvalues for

the operator K and the corresponding eigenfunctions are Ylm(ŝ), m = −l, · · · , l.

Also, we will be using the following particular cases: when l = 0 we have

P0(ŝ · ŝ) = 1, α0(r) = 1

and when l = 1 we have

P1(ŝ · ŝ) = ŝ · ŝ, α1(r) =

∫
p(ŝ · ŝ′)ŝ · ŝ′dŝ′.

Now let us analyze cases for (5.4) at n = 0, 1 and 2. When n = 0, (5.4) becomes

µs(1−K)I0 = 0.

Note that due to the unity condition (5.2) we deduce that I0(r, ŝ) = I0(r), that is,

I0 is constant in the angular direction. When n = 1, (5.4) gives that

75

µs(1−K)I1 = −ŝ · ∇I0,

from which it is easy to solve for I1:

I1 = − 1

µs(1− α1(r))
ŝ · ∇I0.

Finally, we consider (5.4) for n = 2, which gives

µs(1−K)I2 =

(
µa +

1

c

∂

∂t

)
I0 + ŝ · ∇I1

=

(
µa +

1

c

∂

∂t

)
I0 + ŝ · ∇

(
− 1

µs(1− α1(r))
ŝ · ∇I0

)
.

The solvability of the above equation is that the right hand side integrates to zero

over ŝ. Thus, we end up with:

1

c

∂Φ

∂t
= ∇ ·

(
1

3µs(1− α1(r))
∇Φ(r, t)

)
− µaΦ(r, t), (5.7)

where Φ(r, t) =
∫
I0(r, ŝ)dŝ is the photon fluence field. This equation is the diffusion

approximation for the RTE.

With an additional assumption that the source is time harmonic with modulation

frequency ω, the diffusion approximation can also be formulated in the frequency

domain as

−∇ · (D∇Φ(r, ω)) + (µa +
iω

c
)Φ(r, ω) = 0, (5.8)

where we denote the coefficient in front of ∇Φ(r, t) in (5.7) as D.

Note that the α1(r) is the anisotropic scattering and it is zero when we consider

only isotropic scattering. Note also that l∗ = 1/((1−α1(r))µs) is the transport mean

free path. In the PN approximation method it is derived to be l∗ = 1/((1−α1(r))µs+

76

µa) and since µa = o(µs) it is asymptotically equivalent to the derivation here.

5.1.2 Fluorescence enhanced optical tomography

In fluorescence optical tomography, light at the fluorophore’s excitation wave-

length is introduced to the subject. This gives rise to an excitation field which we

conveniently denote as u. When the excited fluorophore decays to its ground state, it

re-emits light at a longer wavelength or, equivalently, at a lower energy level. In our

notation, the emitted light field is denoted as v. Using the diffusion approximation

(5.8), the photon propagation in the FDOT can be expressed as:

−∇ · [Dx∇u] + kxu = 0, in Ω, (5.9)

−∇ · [Dm∇v] + kmv = βxmu, in Ω, (5.10)

where x stands for excitation and m stands for emission, u, v ∈ H1(Ω) are complex

functions that describe the photon fluence fields , and the coefficients satisfy the

following equations:

D∗ =
1

3(µa∗i + µa∗f + µ′s)
, k∗ =

iω

c
+ µa∗i + µa∗f , βxm =

φµaxf
1− iωτ

,

where ∗ could be either the excitation x or the emission m, µa∗i corresponds to the

absorption coefficient for the endogenous chromophores, µa∗f corresponds to the ab-

sorption coefficient for the exogenous fluorophore, and µ′s is the scattering coefficient

reduced by the anisotropic factor 1 − α1(r) as above. For boundary conditions, we

incorporate the Robin-type condition to model the NIR excitation source:

2Dx
∂u

∂n
+ γu+ S = 0, 2Dm

∂v

∂n
+ γv = 0 on ∂Ω, (5.11)

77

where S = S(r), r ∈ ∂Ω is the spatially variable excitation boundary source, n

denotes the outward normal to the surface and γ is an optical property modeling the

impedance mismatch between air and tissue.

5.2 The Bayesian model of the inverse problem

We now build the posterior distribution under the Bayesian framework. Typi-

cally, the parameters of interest in fluorescent tomography problems are the absorp-

tion coefficient µaxf (r) and the decay coefficient τ(r) where r ∈ Ω. In our discussion,

however, we will only focus on the absorption coefficient and assume all other pa-

rameters are already known. Therefore, the objective of the inverse problem is to

estimate a posterior distribution of the absorption coefficient

q = µaxf

given observations of the excitation light field. In our numerical setting, the field

v(r) is measured at N locations on the top surface Γ of the object, and we denote

the reference measurements as z = {zi, i = 1, 2, · · · , N}. We impose independent

and additive noise model for the data, that is, we assume

zi = vi(q) + ε,

where vi(x) is the pointwise evaluation of the excited light v, the solution of equations

(5.9), (5.10) and (5.11), at the same measurement location as that of zi, and ε is

a white noise with standard deviation σd. Therefore, the unnormalized likelihood

function can be written as

π(z|q) ∝ exp

(
−1

2

∑N
i=1 |vi(q)− zi|2

σ2
d

)
.

78

We also assume a Gaussian prior for the parameter field, namely,

π(q) ∝ exp

(
−1

2

||q||2Ω
σ2
m

)
,

where || · ||Ω represents the L2 norm over the three dimensional domain of interest.

Multiplying the prior distribution with the likelihood function then gives us the

unnormalized posterior distribution:

π(q|z) ∝ exp

(
−
∑N

i=1 |vi(q)− zi|2

2σ2
d

− ||q||
2
Ω

2σ2
m

)
. (5.12)

5.3 Deterministic inversion and adaptive mesh refinement

If we jumped to sampling the posterior distribution immediately, we would have to

face the following difficulties. First of all, we would not know where a good starting

point is. Initiating the Markov chain from a point far from the region of interest

implies a long burn-in period, and it becomes especially intractable in the current

three dimensional problem where each sample evaluation is extremely expensive.

Another problem is that we do not have knowledge about the mesh discretization for

either the parameter field or the state variables to begin with. A fine enough mesh is

naturally preferred for better reconstruction, but it adds more computational burden.

In our three dimensional problem, for a structured mesh, every refinement results

in eight times more cells. Several global refinements will soon render the problem

computationally intractable.

To mitigate the problems above, we adopt a strategy that first computes the

maximum a posterior (MAP) estimator using deterministic inversion. This will al-

low us to obtain the MAP estimator as a starting point for the subsequent sampling

process. If the posterior distribution were a multivariate normal distribution, for

79

example, the MAP would coincide with the conditional mean (CM) estimation, and

hence we could expect an efficient sampling by starting from this point. Even though

our problem is not multivariate normal due to the nonlinearity of the forward model,

we can still expect to capture the significant features of the posterior distribution

much faster by starting from an optimal point. In addition, we use adaptive mesh

refinement [5, 8, 9], for the parameter and state meshes respectively, along the iter-

ations that solve the deterministic inverse problems. This provides a discretization

that is efficient to evaluate while maintaining accuracy. More importantly, we nat-

urally obtain both the approximation model and the full order model by extracting

two refinements along this iterative refinement process. We will show in the fol-

lowing that MCPMC samples efficiently using this setup even without inserting the

approximation error model discussed in Section 4.2.

5.3.1 Deterministic inversion

Modeling the deterministic problem: In deriving the algorithm for the determin-

istic inversion, we follow the exposition previously given in [5,8]. The MAP point is

computed through solving the following optimization problem:

min
q
J(q) =

1

2

N∑
i=1

|vi(q)− zi|2 +
β

2
||q||2Ω, (5.13)

where J(q) = (− log π(q|z)), β = σ2
d/σ

2
m, and v = {v1, v2, · · · , vN} satisfy a weak

variational form of the forward equations (5.9)–(5.11) that is defined as:

A(q; [u v])([φ ψ]) := (Dx∇u,∇φ)Ω + (kxu, φ)Ω +
γ

2
(u, φ)∂Ω +

1

2
(S, φ)∂Ω

+ (Dm∇v,∇ψ)Ω + (kmv, ψ)Ω +
γ

2
(v, ψ)∂Ω − (βxmu, ψ)Ω = 0, (5.14)

80

where φ and ψ are any function from the test space H1, the Sobolev space of functions

having square integrable first order derivatives and parentheses (·, ·)X denote the

inner product in the L2(X) sense. Notice that, with the Bayesian modeling of an

additive noise and a Gaussian prior, the MAP problem (5.13) is exactly the same as

the Tikhonov regularization problem in Section 1.2.

Now, the Lagrangian function of this constrained optimization problem becomes:

L(q; [u v]; [λu λv]) = J(q; v) + A(q; [u v])([λu λv]), (5.15)

where λu and λv are the Lagrange multipliers for the equality constraints. If we

denote θ = (u, v, q, λu, λv), we know that the minimizer will have to satisfy the

optimality condition:

Lθ(θ)(θ
′) = 0, ∀ θ′ = (u′, v′, q′, λu

′, λv
′), (5.16)

which, in its partial derivative forms, is written as

Lu(θ)(u
′) = (Dx∇u′,∇λu)Ω + (Kxu

′, λu)Ω +
γ

2
(u′, λu)∂Ω − (βxmu

′, λv)Ω = 0,

Lv(θ)(v
′) = (v − z, v′)Γ + (Dm∇v′,∇λv)Ω + (Kmv

′, λv)Ω +
γ

2
(v′, λv)∂Ω = 0,

Lλu(θ)(λu′) = (Dx∇u,∇λu′)Ω + (Kxu, λ
u′)Ω +

γ

2
(u, λu′)∂Ω +

1

2
(S, λu′)∂Ω = 0,

Lλv(θ)(λv ′) = (Dm∇v,∇λv ′)Ω + (Kmv, λ
v ′)Ω +

γ

2
(v, λv ′)∂Ω − (βxmu, λ

v ′)Ω = 0,

Lq(θ)(q
′) = β(q, q′)Ω + (Dx,q(q

′)∇u,∇λu)Ω + (Kx,q(q
′)u, λu)Ω

+ (Dm,q(q
′)∇v,∇λv)Ω + (Km,q(q

′)v, λv)Ω − (βxm,q(q
′)u, λv)Ω = 0.

Gauss-Newton-CG method: To solve this set of nonlinear equations, we adopt a

Gauss-Newton-CG method which is an iterative method. The Gauss-Newton method

81

is a modification of Newton’s method which, at each iteration k, seeks an update

direction dθ = (du, dv, dq, dλu, dλv) by solving the equation

Lθθ(θ
k)(dθ, θ′) = −Lθ(θk).

Note that as the Lagrange multipliers are proportional to the misfit ||v−z||2Γ they

should be negligible near the optimal point. Hence we simplify the above second order

derivative by neglecting all the terms that contain either λu or λv. This gives the set

of partial differential equations for the Gauss-Newton method

(Dk
x∇u′,∇dλu)Ω + (Kk

xu
′, dλu)Ω +

γ

2
(u′, dλu)∂Ω − (βkxmu

′, dλv)Ω =− Lu(θk)(u′),

(dv, v′)Γ + (Dm∇v′,∇dλv)Ω + (Kmv
′, dλv)Ω +

γ

2
(v′, dλv)∂Ω =− Lv(θk)(v′),

(Dk
x∇du,∇λu

′)Ω + (Kk
xdu, λ

u)Ω +
γ

2
(du, λu′)∂Ω

+ (Dk
x,q(dq)∇u,∇λu

′)Ω + (Kk
x,q(dq)u, λ

u′)Ω =− Lλu(θk)(λu′),

− (βkxmdu, λ
u′)Ω + (Dm∇dv,∇λv ′)Ω + (Kmdv, λ

v ′)Ω+

γ

2
(dv, λv ′)∂Ω + (Dm,q(dq)∇v,∇λv ′)Ω + (Km,q(dq)v, λ

v ′)Ω =− Lλv(θk)(λv ′),

β(dq, q′)Ω + (Dk
x,q(q

′)∇u,∇dλu)Ω + (Kk
x,q(q

′)u, dλu)Ω

+ (Dm,q(q
′)∇v,∇dλv)Ω + (Km,q(q

′)v, dλv)Ω − (βxm,q(q
′)u, dλv)Ω =− Lq(θk)(q′),

for any vector (u′, v′, q′, λu′, λv ′) in the product of test spaces.

Discretization and solution: To solve this coupled system of equations numeri-

cally, we use the finite element method: for variables u, v, λu, λv, we discretize the

domain with a mesh {Tsk} and with continuous elements; for the parameter field q,

since we expect to detect localized objects (e.g., the tumor), we implement a different

mesh {T qk} with a discontinuous finite element [5]. While it is natural to have the

82

mesh as fine as possible so that the numerical solution meets enough accuracy, a

too fine parameter mesh will however lead to a high dimensional inference problem.

The separate mesh scheme manages the parameter and state variable discretization

separately, hence avoiding such a dilemma. With such a discretization, and if we

group the unknowns to dp = [du dv]T and dλ = [dλu dλv]T , we can express the above

Gauss-Newton equations in the matrix form

M 0 P T

0 R CT

P C 0

dpk

dqk

dλk

 =

F1

F2

F3

 . (5.17)

When the discretization is fine, the linear system (5.17) can be very large, reaching

millions of unknowns. Even worse, the block matrix on the left of equation is usually

indefinite, making the solution process slower by excluding iterative methods such

as the conjugate gradient (CG) methods. Therefore, we adopt an approach based on

the Schur complement. That is, we first use block elimination to obtain the reduced

KKT system:

{R + CTP−TMP−1C}dqk = F2 − CTP−TF1 + CTP−TMP−1F3,

Pdpk = F3 − Cdqk,

P Tdλk = F1 −Mdpk.

Now, in this reduced system, the Schur complement matrix R+CTP−TMP−1C

is generally symmetric and positive definite, thus it can be solved using the CG

method. More importantly, the size of the Schur complement is only the same as the

parameter discretization, which is a far smaller than the original block system.

83

5.3.2 Adaptive mesh refinement

We adaptively refine both the parameter and the state meshes respectively along

the Gauss-Newton-CG iterations. This has at least two benefits. First, we are able

to start from a coarser mesh for the iterations at the beginning where accurate search

direction is not demanded, thus saving substantial computation time. Second, the

adaptive refinements lead to a reasonable parameterization: the parameter mesh

is only refined where the parameter is rough. This way, we mitigate the curse of

dimensionality that could happen later in the sampling without losing the accuracy

of inference. We implement different refinement criteria for the state and parameter

mesh refinements, respectively. The state mesh is refined when either (a) the norm

of the residual Lθ(θk) is reduced by a preset factor from the first iteration on the

same mesh or (b) the line search radius is below a preset threshold. Condition (a)

is an indicator that the iterations have made sufficient progresses and can explore

finer structures, while condition (b) occurs when the iterations get trapped in a local

region and one mesh refinement may help get rid of the trap. Refer to [8] for more

elaboration on this strategy.

5.4 Stochastic inversion using MCPMC

In this section, we present numerical results for a three dimensional problem.

The domain is contained in the rectangular box of size 8cm × 8cm × 4cm with an

irregular top surface obtained from an actual measurement of an animal tissue (i.e.,

a pig groin in this case). A single target model is assumed where the target is set to

be a sphere about 2cm down the top surface and the sphere has a radius of about

0.5cm. We illuminate the top surface with a ring shaped diffractive light pattern.

We generate synthetic data using a very fine discretization of 211,152 cells and

1,014,572 degrees of freedom. This mesh is finer than any other mesh we adopt for the

84

reconstruction, thus avoiding the inverse crime. The reference measurements zi are

then taken from 366 locations on the top surface. See Figure 5.1 for a demonstration

of the geometry, the illumination light and the mesh discretization for computing

the synthetic data.

We take the data noise σd to be 3% of the maximal magnitude of all the mea-

surements, and set σm to be such that σ2
m = σ2

d/β, where the regularization weight

β is computed during the Gauss-Newton iterations, following the method described

in [8].

We use the code developed in [8] for the deterministic inversion. The code is

run for 8 Gauss-Newton iterations, which results in a parameter mesh with 529

cells. Given that we use a piecewise constant element for the parameter field, the

discretized parameter field also has a dimension of 529. Similarly, we obtain a coarse

state mesh with 5,415 cells and 30,544 unknowns. With three additional adaptive

refinements on the coarse mesh, we obtain the fine level mesh with 58,524 cells and

301,880 unknowns. The parameter, coarse state and fine state meshes are shown in

Figure 5.2. Also, we obtain the MAP estimator at this iteration of the Gauss-Newton

method. This MAP vector is then taken as the initial sample for any sampling we

will be conducting.

One constraint inherent to this inverse problem is that as a physical parameter

µaxf should be real and positive. We hence use a log-normal proposal for the samplers

in this experiment. That is, suppose the current sample is qk, we propose a new

sample q∗ through

q∗ ∼ Log–N (ln qk,Σ)

for some covariance matrix Σ. In implementations, we can first propose a new vector

η ∼ N (ln(qk),Σ) and then let q∗ = exp(η). This step guarantees that proposed

85

samples have real and positive components, while the symmetry of log-normal dis-

tributions makes sure that formula for computing the acceptance ratio remain the

same as random walk samplers.

Figure 5.1: Left: Mesh that is used for generating the synthetic data. Right: Diffrac-
tive excitation light that illuminates the tissue.

After testing for several hundred samples on both the coarse and fine mesh, we

obtain that the average run time for each fine evaluation is 41.50 seconds, while the

averaged evaluation time on the coarse mesh is 3.20 seconds. We use a total of 50

processors to run the MCPMC in parallel. Two of these processors are used for the

master processor and the preconditioned coarse chain respectively, and the other 48

processors are used as slave processors that repeatedly evaluate likelihood functions

on the fine mesh. We tune both the preconditioning MH chain and the perturbations

so that they have acceptance ratios of 20% − 30%, which leads us to believe that

these MH updates reach good enough statistical efficiency according to [57].

In the actual experiment, we observe that the acceptance ratio for the updating

86

Figure 5.2: Meshes used in the MCPMC sampling: the top left figure shows the
parameter field discretization, the top right figure shows the coarse grid for state
variables and the bottom figure shows the fine grid for state variables.

87

step is about 22.6%, namely, nearly a quarter of the random selections from the pool

of coarse level Markov chain samples get accepted as new seeds for the fine level

perturbations. While accepting enough new candidates guarantees the variability

of the sampler, rejecting a certain amount of those who come from the coarse level

distribution means that the sampler is effectively transforming from the approximate

model to the true model.

To evaluate the quality of the samples, we let the fine MH chain run for about

30 days and obtain 60,000 samples, out of which we discard the first 20,000 samples

as the burn-in period and use the remaining samples to compute all statistics. At

the same time, we take the same number of samples from the MCPMC. Since the

MCPMC is tuned so that the speed of producing fine level samples is about the same

as the speed of producing coarse samples, the sampling process for getting these many

MCPMC samples only needs about 3 days. In Figure 5.3, cross-section plots of first

order statistic (i.e., sample mean) are presented. It is clear that the mean estimate

from both samplers provides satisfying reconstructions that accurately capture the

location of the target in the x − y plane and stay close to the real target in the z

direction. The overestimate of the target in the z-direction is not uncommon, as

is explained in [38] and the references therein. As an additional comparison, we

also plot the reconstruction from the MAP estimator to demonstrate that MCPMC

has much more similarity to the fine MH chain and has diverged from the MAP

estimator, which was chosen as the starting point for both samplers.

In Figure 5.4, we show the significant region of the second order statistic (i.e.

sample standard deviation) from both samplers, where the threshold for defining the

significant region is chosen to be 50% of the largest standard deviation. Both the

MCPMC and fine MH indicate the same region that has a large uncertainty.

We conduct some local analysis in Figure 5.5, where we plot histograms of eight

88

(a) CM estimator on with fine MH. (b) CM estimator with MCPMC.

(c) MAP estimator.

Figure 5.3: A cross section of the object showing the conditional mean (CM) esti-
mates with coarse chain MH, fine chain MH and MCPMC sampling, also in compar-
ison with the MAP estimate computed from the deterministic inversion.

89

Figure 5.4: Comparison of the range of cells whose standard deviation is above a
certain threshold (0.00125). Left: Standard deviation using samples from the MH
sampler on the fine grid. Right: Standard deviation using samples from the MCPMC
sampler.

parameter components that correspond to the ‘target’ pixels, namely, the pixels

whose magnitude are above 60% of the largest magnitude. For most of these com-

ponents, the two histograms overlap very well, indicating that the MCPMC is at

least providing similar reconstruction and uncertainty quantification. This intuitive

observation is further evidenced by the numeric comparison listed in Table 5.1: all

eight but one of the components have a mean estimation error under a quarter of

their corresponding standard deviation. The only outlier is q528 which has a signif-

icant discrepancy in both histograms and a larger mean estimation error. Noting

that the standard deviation from both samplers for this pixel is relatively large, we

can argue that this component might have a larger uncertainty directly from the

Bayesian model rather than as a result of the sampling process. In addition, the

limited number of samples may indicate a not-yet-convergent situation for this par-

ticular pixel. Even in cases like this, we can see the benefits of using MCPMC which

90

is a much faster sampler that we will be able to generate many more samples in a

short time to test if good convergence has been reached.

To quantitatively compare the statistical efficiency of both samplers we compute

two numeric indicators for both samplers. The first one is the integrated autocor-

relation time (IACT) τ of the parameter field q following the definition in (2.5).

An efficient sampler tends to generate samples that are less correlated with other

samples in the process, and hence should demonstrate a small IACT. In practice, it

is not possible to compute the infinite sum and thus we truncate it at lag t = 3000

and choose the maximal τ as a representation.

The second indicator is the mean squared jump (MSJ) distance [49] that is gen-

erally defined, for samples (q1,q2, · · · ,qN) as

MSJ :=
1

N

N−1∑
i=0

||qi+1 − qi||2.

For a given sampler, a larger MSJ value usually means a faster mixing rate and hence

a better convergence.

We randomly select four components to compute these two indicators, that is,

we define the function h(q) := qi0 where i0 are four random indices. We report

the computed indicators in Table 5.2. We also provide the plots that compare the

autocorrelation functions for different samplers in Figure 5.6. In all these randomly

chosen parameters, it is definitive that MCPMC has a smaller IACT, a larger MSJ

and an autocorrelation curve that drops to zero much faster. These results suggest

that MCPMC can also provide convergence gains in the statistical sense, in addition

to the fact that it produces samples much faster with multiple processors. In example

(3.2.1), we analyze the speedup of this tomography experiment in a quantitative

manner. The speedup is defined by combining the acceleration of sample generation

91

(a) q238 (b) q263

(c) q282 (d) q329

(e) q352 (f) q494

(g) q526 (h) q528

Figure 5.5: Comparison of histograms at pixels which have estimated magnitude
greater than 60% of the maximal magnitude—these are considered as the target
pixels. The histogram from MCPMC is plotted in blue and that from the fine MH
is plotted in red.

92

C
om

p
on

en
t

m
ea

n
(M

C
P

M
C

)
m

ea
n
(fi

n
e

M
H

)
st

d
d
ev

(M
C

P
M

C
)

st
d
d
ev

(fi
n
e

M
H

)
re

la
ti

ve
er

ro
r

q 2
3
8

0.
73

3
0.

73
0

0.
06

56
0.

06
24

4.
8%

q 2
6
3

0.
72

9
0.

73
0

0.
06

70
0.

06
60

1.
5%

q 2
8
2

0.
73

7
0.

72
1

0.
07

43
0.

07
08

22
.6

%
q 3

2
9

0.
52

6
0.

52
5

0.
07

55
0.

08
08

1.
2%

q 3
5
2

0.
49

9
0.

48
4

0.
08

74
0.

07
75

19
.3

%
q 4

9
4

0.
51

3
0.

52
3

0.
24

4
0.

22
6

4.
4%

q 5
2
6

0.
58

6
0.

59
0

0.
21

4
0.

19
0

2.
1%

q 5
2
8

0.
43

8
0.

58
5

0.
24

5
0.

24
0

61
.5

%

T
ab

le
5.

1:
C

om
p
ar

is
on

of
co

n
d
it

io
n
al

m
ea

n
(C

M
)

an
d

st
an

d
ar

d
d
ev

ia
ti

on
(s

td
d
ev

)
es

ti
m

at
io

n
b

et
w

ee
n

M
C

P
M

C
an

d
fi
n
e

M
H

sa
m

p
le

rs
at

p
ix

el
s

w
h
ic

h
h
av

e
es

ti
m

at
ed

m
ag

n
it

u
d
e

gr
ea

te
r

th
an

60
%

of
th

e
m

ax
im

al
m

ag
n
it

u
d
e—

th
es

e
ar

e
co

n
si

d
er

ed
as

th
e

ta
rg

et
p
ix

el
s.

W
e

al
so

co
m

p
u
te

a
re

la
ti

ve
er

ro
r

d
efi

n
ed

as
(m

ea
n

M
C

P
M

C
−

m
ea

n
fi

n
e-

M
H

)
/s

td
d
ev

fi
n

e-
M

H
,
i.
e.

,
w

e
co

m
p
u
te

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

m
ea

n
es

ti
m

at
es

fr
om

b
ot

h
sa

m
p
le

rs
n
or

m
al

iz
ed

b
y

th
e

st
an

d
ar

d
d
ev

ia
ti

on
of

th
e

fi
n
e

M
H

sa
m

p
le

r.

93

Parameter IACT(f) IACT(m) MSJ(f) MSJ(m)
q1 150.86 10.56 1.35×10−14 1.09×10−9

q150 147.17 3.19 1.09×10−10 3.05×10−9

q261 169.85 3.33 1.81×10−40 1.51×10−34

q494 64.86 10.02 1.96×10−8 2.13×10−6

Table 5.2: The integrated autocorrelation time (IACT) and the mean square jump
(MSJ) computed for several components of the parameter vector. In the table, fine
MH is abbreviated as “f” and MCPMC is abbreviated as “m”.

and the improvement of statistical efficiency. From the analysis therein, we can

conclude that the data here demonstrate a superlinear speedup.

To summarize, these numerical results in this section indicate that for a realistic

and complex application, the MCPMC algorithm produces samples that not only

have similar or better statistical properties than a standard Metropolis-Hastings

(MH) sampler, but can be produced at least ten times faster than with the MH

process using the 50 processors we have allocated for this experiment.

94

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

a
u

to
c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n

(a) q1

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

a
u

to
c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n

(b) q150

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

a
u

to
c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n

(c) q261

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

a
u

to
c
o

rr
e

la
ti
o

n
 f

u
n

c
ti
o

n

(d) q494

Figure 5.6: Autocorrelation function of randomly selected parameter components
plotted for autocorrelation time up to 3000. In each plot, the red curve is for the fine
MH sampler, green for the coarse MH sampler and blue for the MCPMC sampler.

95

6. CONCLUSIONS

Bayesian methods provide a sound framework for modeling inverse problems.

The posterior distribution built with such methods can not only provide estimates

of parameters but also the uncertainty of these estimations. However, it requires ad-

ditional techniques to extract information from the posterior distribution. Markov

chain Monte Carlo (MCMC) is a category of well-studied algorithms that can be

used for sampling such distributions, but since they require evaluating the forward

model repeatedly, they can become very slow for large scale inverse problems. In ad-

dition, their sequential nature make them difficult to be parallelized. We construct

a new framework of algorithms, namely, the Markov chain preconditioned Monte

Carlo (MCPMC) methods, for efficiently sampling posterior distributions with par-

allel computing. Through a Markov chain running an approximate model which is

usually much faster to compute, we then are able to randomly select candidates from

this chain for further processing with the target model. While these additional steps

can be computationally expensive, they can be performed at the same time on mul-

tiple processors. This gives enormous saving of time because previous MCMC meth-

ods can only run sequentially on a single processor even if we have tens of thousands

of processors available. In addition, through an example of two dimensional mix-

ture Gaussian distribution—a typical multi-modal example—we demonstrate that

the new sampler can also enhance the statistical efficiency through properly chosen

approximate distributions.

For an MCPMC to run efficiently, it is important to build an approximate distri-

bution that is both close to the target posterior distribution and is fast to sample.

We demonstrate two viable techniques to achieve this through a two dimensional

96

elliptic and a three dimensional optical tomography problem. In the experiment of

the elliptic PDE inverse problem, we adopt an enhanced error model to estimate the

discrepancy between the approximation and the target; in the optical tomography

problem, we utilize a hierarchy of adaptive finite elements where the finer mesh is

used for the target distribution and the coarser for the approximation. Numerical

results show that both techniques can be applied to the framework of MCPMC, and

that the sample estimates from the new sampler match that from a traditional MH

algorithm.

It is worth pointing out that the MCPMC provides an algorithmic structure

that is compatible with any existing MCMC method. Both the sampling of the

approximation model and the perturbations for further correction can take advantage

of any advanced MCMC algorithm for better efficiency. One possibility is to explore

adaptivity of the sampler. A vast literature has contributed to adaptive MCMC

methods where the sampler learns to locate the next sample more and more efficiently

by summarizing the sample history. In MCPMC, we have both the approximate and

the accurate models which will give more information about where we should sample.

We also have both the base chain simulation and the perturbation steps that can

benefit from such adaptivity. Whether to use statistics from the approximate model

or the accurate model to direct either of the aforementioned MCMC steps is currently

still unclear. Also, as the samples are evaluated on both models, it is straightforward

to compute their differences. These differences can improve the modeling of the

enhanced error model discussed in Section 4.2. This additional step costs nearly

nothing, but it should refine the error model effectively as the number of sample

evaluations increase. In general, it will be an important topic to investigate the

possibility of building the approximate model along the sampling process intelligently.

Information obtained from more and more samples may help us better understand

97

which features in the model are of significant importance to narrow the gap between

the approximation and the target distributions. Such understanding may then guide

us to build approximate models that are closer to the target distribution or faster to

sample, either of which can further increase the efficiency of MCPMC.

98

REFERENCES

[1] S. Arridge, J. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tar-

vainen, and M. Vauhkonen. Approximation errors and model reduction with

an application in optical diffusion tomography. Inverse Problems, 22:175–195,

2006.

[2] S. R. Arridge. Optical tomography in medical imaging. Inverse problems,

15(2):R41, 1999.

[3] S. R. Arridge and J. C. Schotland. Optical tomography: forward and inverse

problems. Inverse Problems, 25(12):123010, 2009.

[4] Y. Atchadé, G. Fort, E. Moulines, and P. Priouret. Adaptive markov chain

monte carlo: theory and methods. Preprint, 2009.

[5] W. Bangerth. A framework for the adaptive finite element solution of large

inverse problems. SIAM Journal on Scientific Computing, 30:2965–2989, 2008.

[6] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose

object oriented finite element library. ACM Trans. Math. Softw., 33(4), 2007.

[7] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,

B. Turcksin, and T. D. Young. The deal.II library, version 8.0. arXiv preprint

http://arxiv.org/abs/1312.2266v3, 2013.

[8] W. Bangerth and A. Joshi. Adaptive finite element methods for the solution of

inverse problems in optical tomography. Inverse Problems, 24(3):034011, 2008.

[9] W. Bangerth and R. Rannacher. Adaptive finite element methods for differential

equations. Springer Basel AG, Basel, 2003.

99

[10] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J.

Gaudette, and Q. Zhang. Imaging the body with diffuse optical tomography.

Signal Processing Magazine, IEEE, 18(6):57–75, 2001.

[11] T. Bodin, M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawl-

inson. Transdimensional inversion of receiver functions and surface wave dis-

persion. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B2),

2012.

[12] S. C. Brenner and R. Scott. The mathematical theory of finite element methods,

volume 15. Springer, New York, 2008.

[13] A. Brockwell. Parallel markov chain monte carlo simulation by pre-fetching.

Journal of Computational and Graphical Statistics, 15(1):246–261, 2006.

[14] A. E. Brockwell, P. Del Moral, and A. Doucet. Sequentially interacting Markov

chain Monte Carlo methods. Annals of Statistics, 38(6):3387–3411, 2010.

[15] S. Brooks and A. Gelman. General methods for monitoring convergence of itera-

tive simulations. Journal of computational and graphical statistics, 7(4):434–455,

1998.

[16] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov Chain

Monte Carlo. CRC Press, Boca Raton, 2011.

[17] G. Casella and R. Berger. Statistical Inference. Duxbury Press, Pacific Grove,

2001.

[18] M. Cheney, D. Isaacson, and J. C. Newell. Electrical impedance tomography.

SIAM review, 41(1):85–101, 1999.

100

[19] M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diag-

nostics: a comparative review. Journal of the American Statistical Association,

91(434):883–904, 1996.

[20] T. Cui, C. Fox, and M. O’Sullivan. Adaptive error modelling in MCMC sampling

for large scale inverse problems. Report, Univeristy of Auckland, Faculty of

Engineering, Auckland, 2011.

[21] S. Dadi, R. Gibson, and K. Wang. Velocity log upscaling based on reversible

jump MCMC simulated annealing. in preparation.

[22] P. Del Moral, A. Doucet, and J. A. Sequential Monte Carlo for Bayesian com-

putation. Bayesian Statistics, 8:1–34, 2007.

[23] P. Del Moral, A. Doucet, and A. Jarsa. Sequential Monte Carlo samplers.

Journal of the Royal Statistical Society, Series B., 68(3):411–436, 2006.

[24] D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new

perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

[25] Y. Efendiev, T. Hou, and W. Luo. Preconditioning Markov chain Monte Carlo

simulations using coarse-scale models. SIAM Journal of Scientific Computing,

28(2):776–803, 2006.

[26] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer,

New York, 2004.

[27] A. Gelfand and S. A. F. M. Sampling-based approaches to calculating marginal

densities. Journal of the American Statistical Association, 85:398–409, 1990.

[28] A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple

sequences. Statistical Science, 7(4):457–472, 1992.

101

[29] C. J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7(4):473–

483, 1992.

[30] A. Grama. Introduction to parallel computing. Pearson Education, Harlow,

2003.

[31] P. J. Green. Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711–732, 1995.

[32] P. J. Green and D. I. Hastie. Reversible jump MCMC. Genetics, 155(3):1391–

1403, 2009.

[33] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface, volume 1. MIT press, Cambridge, 1999.

[34] H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: efficient adaptive

MCMC. Statistics and Computing, 16(4):339–354, 2006.

[35] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm.

Bernoulli, 7(2):223–242, 2001.

[36] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[37] B. Jin. A variational Bayesian method to inverse problems with impulsive noise.

Journal of Computational Physics, 231(2):423–435, 2012.

[38] A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-

Muraca. Fully adaptive FEM based fluorescence optical tomography from time-

dependent measurements with area illumination and detection. Medical Physics,

33(5):1299–1310, 2006.

[39] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems.

Springer, New York, 2004.

102

[40] M. C. Kennedy and A. O’Hagan. Predicting the output from a complex com-

puter code when fast approximations are available. Biometrika, 87(1):1–13,

2000.

[41] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

63(3):425–464, 2001.

[42] V. Kolehmainen, M. Schweiger, I. Nissilä, T. Tarvainen, S. R. Arridge, and J. P.

Kaipio. Approximation errors and model reduction in three-dimensional diffuse

optical tomography. JOSA A, 26(10):2257–2268, 2009.

[43] P.-S. Koutsourelakis. A multi-resolution, non-parametric, Bayesian framework

for identification of spatially-varying model parameters. Journal of computa-

tional physics, 228(17):6184–6211, 2009.

[44] E. W. Larsen and J. B. Keller. Asymptotic solution of neutron transport prob-

lems for small mean free paths. Journal of Mathematical Physics, 15:75–81,

1974.

[45] F. Liang, C. Liu, and R. Carroll. Advanced Markov Chain Monte Carlo Methods:

Learning from Past Samples. Wiley, Chichester, 2010.

[46] F. Liang and W. H. Wong. Real-parameter evolutionary Monte Carlo with

applications to Bayesian mixture models. Journal of the American Statistical

Association, 96(454):653–666, 2001.

[47] J. Liu, F. Liang, and W. Wong. The multiple-try method and local optimiza-

tion in Metropolis sampling. Journal of the American Statistical Association,

95(449):121–134, 2000.

103

[48] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York,

2008.

[49] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas. A stochastic Newton

MCMC method for large-scale statistical inverse problems with application to

seismic inversion. SIAM Journal on Scientific Computing, 34(3):A1460–A1487,

2012.

[50] K. L. Mengersen and R. L. Tweedie. Rates of convergence of the Hastings and

Metropolis algorithms. The Annals of Statistics, 24(1):101–121, 1996.

[51] N. Metropolis, A. Rosenblutn, M. Rosenbluth, A. Teller, and E. Teller. Equation

of state calculations by fast computing machines. Technical report, Los Alamos

Scientific Lab.; Chicago Univ., 1953.

[52] A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas,

R. Millane, et al. Fluorescence optical diffusion tomography. Applied Optics,

42(16):3081–3094, 2003.

[53] J. Nocedal and S. Wright. Numerical optimization: Springer series in operations

research and financial engineering. Springer, New York, 2006.

[54] D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum reservoir

characterization and history matching. Cambridge University Press, Cambridge,

2008.

[55] C. Robert and G. Casella. A short history of Markov chain Monte Carlo: sub-

jective recollections from incomplete data. Statistical Science, 26(1):102–115,

2011.

[56] G. O. Roberts and J. S. Rosenthal. Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms. Journal of applied probability, 44:458–475, 2007.

104

[57] G. O. Roberts, J. S. Rosenthal, et al. Optimal scaling for various Metropolis-

Hastings algorithms. Statistical science, 16(4):351–367, 2001.

[58] M. K. Sen and P. L. Stoffa. Global optimization methods in geophysical inversion.

Elsevier, Amsterdam, 1995.

[59] M. Snir. MPI–the Complete Reference: The MPI core, volume 1. MIT press,

Cambridge, 1998.

[60] A. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19:451–

559, 2010.

[61] A. Tarantola. Inverse problem theory and methods for model parameter estima-

tion. SIAM, Philadelphia, 2005.

[62] A. Tikhonov. Solution of incorrectly formulated problems and the regularization

method. Soviet Math. Dokl., 4:1035–1038, 1963.

[63] J. Wang and N. Zabaras. Hierarchical bayesian models for inverse problems in

heat conduction. Inverse Problems, 21(1):183, 2005.

105

APPENDIX A

REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO METHOD

In this appendix, we discuss a generalized version of the Makrov chain Monte

Carlo (MCMC)—the reversible jump Markov chain Monte Carlo (RJMCMC) algo-

rithm. It is now drawing attention from the inverse problem community and the

author of the thesis has also conducted some research using this method.

In all the aforementioned MCMC algorithms, there is one embedded hypothesis:

the dimension of all the samples is known and it is fixed throughout the sampling

process. In the meanwhile, there are Bayesian modeling techniques which pursue

more generality—they allow the dimension of the parameters to also be a parameter!

One of such instances is seen in nonparametric modeling of the Bayesian problem.

For example, in [43], the parameter field is modeled as a weighted sum of different

kernels, and the number of kernels to use is unspecified in the modeling.

Formally, in variational dimension modeling, instead of considering a single pa-

rameter space, we consider a sequence of spaces Xk indexed by k. The complete

parameter space is

X =
⋃
k

{k} × Xk,

on which the augmented posterior distribution is defined as

π(x, k) = π(x)ρ(k),

where ρ(k) is some prior distribution for the number of parameters. To sample the

augmented distribution, [31] developed the reversible jump algorithm which takes

care of the jump between different dimension spaces automatically during the sam-

106

pling process.

The main feature of the reversible jump algorithm is that when it jumps between

spaces of different dimensions, it retains the reversibility of the sampler by supple-

menting the dimensionality difference with artificial spaces. Specifically, suppose

k1 < k2, the current state is xk1 , and one wish to jump to a state of dimension k2,

one can establish a dimension match mechanism by proposing a matching vector

u ∼ qk1→k2(·) such that the new vector (xk1 , u) is of dimension k2. This augmented

vector is then mapped to a new state

xk2 = g(xk1 , u)

through a one-to-one and differentiable mapping g : Xk1 × Xk2−k1 → Xk2 . Once

the new state xk2 is proposed, a Metropolis-Hastings type acceptance probability is

computed as

α([k1 xk1], [k2 xk2]) = 1 ∧ π(xk2)q(k2 → k1)

π(xk1)q(k1 → k2)qk1→k2(u)

∣∣∣∣∂g(xk1 , u)

∂(xk1 , u)

∣∣∣∣ ,
where q(ki → kj) is the probability of jumping from one dimension to another,

and the last fraction is the Jacobian for the map g(xk1 , u) which maintains the

right volume of distributions in different dimensions. To maintain reversibility, the

reversible step from Xk2 to Xk1 is then made deterministic and the acceptance rate

for the reverse proposal is always set to be

α([k2 xk2], [k1 xk1]) = α([k1 xk1], [k2 xk2])
−1.

It is noticeable that when the parameter dimension is fixed, namely, k1 ≡ k2, the

aforementioned formula naturally become the Metropolis-Hastings algorithm. In that

107

sense, the reversible jump algorithm is a more generalized algorithm. For detailed

overview of this algorithm, see the survey [32] or chapter 3 in [16].

The reversible jump MCMC (RJMCMC) is a powerful tool for transdimensional

inverse problems where it is beneficial to make the dimension of parameters flexible

and let the sampler to decide proper dimensions. To illustrate, we give an example

from [21] where transdimensional inversion and a reversible jump MCMC based

simulated annealing is applied to a well log upscaling problem. Well log is a detailed

record of geological formations obtained at a borehole. Once a hole is drilled, it is

almost possible to obtain measurements from any depth that is above the deepest

location of the hole. Therefore, well logs are always of high frequency. In contrast,

surface seismic data are often of low frequency and hence it is of necessity to upscale

the well logs when comparison with the seismic data is conducted. Typical upscaling

techniques divide the domain of full depth into smaller intervals and run averaging

methods such as the Backus average over each interval. One of the difficulties here

is to determine the number as well as the displacements of the boundaries for these

small intervals. In this example, both the number of layers and their depths are

modeled as a part of the parameters and a reversible jump algorithm with birth-

depth move is used to infer these parameters.

In Figure A.1, upscaling results for a well log from using fixed dimensional MH

algorithm and RJMCMC are shown. The two plots on the left show the histogram

of layer boundary locations and the upscaled well log from MCMC sampling with

a fixed number of layers, only allowing layer boundaries to move, whereas the two

plots on the right give the corresponding results from RJMCMC sampling which

allows inserting and deleting layers in addition. It is clear that with the flexibility to

also vary the number of layers, the sampler is able to add additional layers to places

where better resolution is demanded. As a consequence, the upscaled result returns

108

better accuracy by capturing more details especially in greater depths.

109

F
ig

u
re

A
.1

:
U

p
sc

al
ed

re
su

lt
s

fo
r

a
sa

m
p
le

w
el

l
lo

g:
th

e
le

ft
tw

o
p
lo

ts
ar

e
th

e
h
is

to
gr

am
of

th
e

b
ou

n
d
ar

y
lo

ca
ti

on
s

an
d

th
e

es
ti

m
at

ed
u
p
sc

al
in

g
w

it
h

a
fi
x
ed

n
u
m

b
er

of
la

ye
rs

;
th

e
ri

gh
t

tw
o

p
lo

ts
ar

e
th

e
h
is

to
gr

am
of

th
e

b
ou

n
d
ar

y
lo

ca
ti

on
s

an
d

th
e

es
ti

m
at

ed
u
p
sc

al
in

g
w

it
h

va
ri

ab
le

n
u
m

b
er

of
la

ye
rs

an
d

re
ve

rs
ib

le
ju

m
p

M
C

M
C

.
In

th
e

u
p
sc

al
ed

co
m

p
ar

is
on

p
lo

ts
,

th
e

w
ig

gl
y

so
li
d

li
n
e

is
th

e
tr

u
e

w
el

l
lo

g,
an

d
th

e
sm

o
ot

h
er

li
n
es

ar
e

th
e

m
ea

n
,

10
%

an
d

90
%

u
p
sc

al
ed

es
ti

m
at

es
as

in
d
ic

at
ed

in
th

e
p
lo

t.
P

lo
t

ob
ta

in
ed

fr
om

[2
1]

.

110

