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ABSTRACT 

 

In this dissertation we address practical issues in designing weather insurance 

contracts for risk management in developing countries in three different scenarios. First, 

we develop an innovative contract design strategy based on agronomic considerations 

that can be implemented in situations where only short and/or aggregate data series are 

available. We attempt to mitigate both the aggregate nature of yield data and the need for 

data-demanding analysis by looking at areas sharing the same growing conditions and 

using agronomic requirements to specify contract parameters. We find that the proposed 

contracts do not achieve the same degree of risk reduction as the contracts that can be 

constructed using no data limitations, but they do provide meaningful risk protection and 

typically at lower premiums. The implication is that the proposed methodology can be 

used to design weather derivatives for developing countries, where paucity of data often 

renders the conventional design approaches unworkable. 

The second essay aims to derive a general-form optimal payoff of an index 

contract that takes into account potentially nonlinear dependence between the index 

underlying the contract and the loss that is insured. We find that the quasi-linear contract 

payoff structure may not be the optimal choice if the dependence between the index and 

the yield/revenue is nonlinear. The implication is that the proposed methodology can 

help to improve risk-reducing capabilities of weather derivatives particularly in 

situations where the effect of weather on yield is complex and not obvious. 
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The third essay analyzes the use of weather derivatives in managing water supply 

risk arising in making water allocation decisions. The specific application is developed 

for the Alto Rio Lerma Irrigation District (ARLID) in the state of Guanajuato in Mexico. 

We argue that incorporation of weather derivatives in water allocation decisions can 

improve overall well-being of producers and allow shift water allocations from the wet 

to the dry season with the assumption that the wet season farmers can cope with the risk 

of water shortages by using weather derivatives. We find that use of weather derivatives 

does lead to better water allocation policies that allow the representative farmer to reach 

higher levels of utility. The implication is that introduction of weather derivatives can 

help to improve water management decisions in developing countries where agriculture 

heavily depends on irrigation and can be severely affected by extreme weather events. 
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1. INTRODUCTION 

 

Adverse selection and moral hazard has been cited as the main reasons of failure 

of private crop insurance markets. As a result, insurers may not be able to provide any 

type of crop insurance in developing countries where the problem is compounded by the 

fact that the insurance markets may be incomplete or missing due to poor contract 

enforcement mechanisms and government inability to support crop insurance programs.  

In the last years, there has been extensive research on the advantages of weather 

derivatives relative to traditional crop insurance (Skees and Barnett 1999); however, 

demand for these weather instruments has been lower than expected. While partly 

attributable to lack of familiarity with the products, the problem can be also traced back 

to the issues of contract design (Skees and Barnett 2006; Skees 2008; Miranda and 

Farrin 2012). This dissertation deals with practical issues arising in designing weather 

derivatives for risk management in developing countries in three essays. 

The first essay attempts to deal with the yield data limitations by introducing a 

semi-naïve contract structure based on agronomic considerations and identification of 

homogeneous production regions. The approach is much less data-intensive than the 

design methods previously used in the literature and can be implemented in situations 

where only short and/or aggregate data series are available. In particular, we look at 

production areas sharing the same soil conditions rather than just the ones encompassed 

by arbitrary administrative boundaries. We use a simple index (one weather variable) 

and determine the parameters of the contract by using agronomical considerations. In 
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order to evaluate the effectiveness of this simple semi-naïve approach to index 

construction, we use Arkansas soybeans as a test case. The extensive historical yield data 

available for this crop and region allows us to compare the performance of both the 

conventional contract designs and the ones developed in the essay. Given the similarities 

between growing conditions in Arkansas and South America, it is expected that the 

results would transfer to the case of soybean production in that region as well. 

The research objective of the second essay is to derive an optimal form of payoff 

of an index contract that takes into account potentially nonlinear dependence between 

the index underlying the contract and the loss that is insured using the contract. Most of 

the existing papers on weather derivatives use a “standard” piecewise-linear contract to 

define the payoffs structure of the analyzed contracts. However, these contract payoff 

structures may not be the optimal choice if the dependence between the index and the 

yield/revenue is nonlinear. This framework is illustrated using weather insurance 

contracts for Arkansas soybean as a case study. The results are then compared with those 

obtained in the first essay. 

In the third essay, we look at potential improvements in water allocation 

strategies that could be achieved by using weather derivatives. In many Latin American 

countries, the changes in temperature and shifts in precipitation patterns could affect the 

water supply, thus making the water allocation a major problem for agriculture.  

A particularly interesting situation arises when there are two growing seasons, 

each characterized by different rainfall patterns but both dependent on irrigation. 

Weather derivatives can then incentivize adoption of allocation patterns that shift water 
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allocations to the dry season from the wet season with the assumption that the wet 

season farmers can cope with the risk of water shortages by using weather derivatives. 

These financial instruments might also induce an inter-temporal reallocation of water in 

irrigation districts, increasing the efficiency of water use in the long term. The essay 

applies the analytical model to the Alto Rio Lerma Irrigation District in the state of 

Guanajuato in Mexico. 
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2. PRACTICAL APPROACHES TO DESIGNING WEATHER DERIVATIVES 

UNDER YIELD DATA LIMITATIONS 

 

In the last 10 years, methodological advances in designing weather-based 

insurance instruments have increased expectations for their performance, mainly in rural 

areas of developing countries (World Bank 2005; Hazell et al. 2010). Pilot programs 

have been developed for Mexico, India, Malawi, China, Nicaragua, India, Morocco, 

among others. For the exception of Mexico and India, demand for these weather 

instruments have been lower than expected (Hess 2003; Barnett and Mahul 2007; Giné 

and Yang 2009; Giné et al. 2010)1. 

Factors like the lack of appropriate formal insurance markets, the absence of 

institutional framework to support trading between international and local institutions, 

potential basis risk, no consensus between farmers and insurers on which weather 

variables affect yields, and the lack of agreement over a common pricing model are the 

most typical explanations for that behavior given in the literature (Dischel 2002; 

Richards et al. 2004). In this context, basis risk emerges as the prevalent contract design 

problem, which affects the reliability of protection that index insurance contract may 

offer to small famers (Miranda 1991; Doherty and Richter 2002; Cummins et al. 2004; 

Barnett and Mahul 2007). 

                                                 
1 Depending on the context, weather-based insurance instruments can be treated either as insurance 
contracts or as options written on realization of the index. However, there is no difference between these 
two frameworks from the standpoint of contract design and risk-reducing efficiency. For the rest of this 
essay the weather-based risk management instruments will be referred to as weather derivatives or index 
insurance contracts interchangeably. 
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Basis risk arises when a policyholder receives an indemnity payment that does 

not match the actual loss (Varangis et al. 2003). The aggregate nature of yield data, 

complex relationship between weather measurements and actual loss, and spatial 

variability of weather conditions are the most commonly cited sources of basis risk 

(Manfredo and Richards 2005). This risk can be reduced through product design (Skees 

2008), with several approaches available. The existing literature primarily concentrates 

on finding the most accurate relationship between weather and losses. Other approaches 

consider limiting index insurance to low-frequency, high-impact events such as 

hurricanes or extreme droughts. It is thought that, under such extreme conditions, 

farmers’ losses may be better correlated to the underlying weather variable. 

Basis risk can be magnified even more in developing countries where data are 

often limited and unreliable. In such situations, insurance companies use aggregate data 

to develop insurance products whose payments are contingent upon indices presumably 

correlated with individual loss (Goodwin and Mahul 2004). The shortness of data series 

also contributes to the basis risk, since the available data is insufficient for establishing 

weather-loss relationship using the conventional econometric methods. 

The design methodology presented in this essay attempts to circumvent the 

limitations of available yield data and reduce the basis risk inherent in the contracts. 

First, the contracts are designed for homogeneous production areas with the expectation 

that yield variability in the area is comparable to that on a single farm. In this case, the 

available aggregate yield data can be considered as more accurately representing the 

distribution of yields of individual farms in the area. In particular, we look at production 
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areas sharing the same soil conditions rather than just the ones encompassed by arbitrary 

administrative boundaries. Furthermore, instead of constructing the indexes based on 

econometric models, we use a simple index (one weather variable) and determine the 

parameters of the contract based on agronomic considerations.  

The research objective is not to develop a new or better way of constructing 

index insurance contracts, but rather to evaluate the effectiveness of a simple semi-naïve 

approach to index construction that can be implemented in situations where only short 

and/or aggregate data series are available. While the potential of this approach can be 

mostly appreciated in developing countries, we use Arkansas soybeans as a test case. On 

the one hand, long and reliable data series are available for this crop and location, which 

allow us to validate this approach. On the other hand, there are similarities between 

soybean productions in Arkansas and Latin America, which would allow us to transfer 

the results to that region.  

The rest of the chapter is organized as follows. Literature on index insurance 

contracts is reviewed first, with particular attention to various design procedures. We 

then briefly explain the growth process of soybean plants, identify environmental 

conditions required for optimal growth, and determine soil types best suited for soybean 

production. The second subsection presents the methodology used to design the 

proposed weather derivative contracts and evaluate their effectiveness as a risk reduction 

tool. The third subsection describes characteristics of soybean production in Arkansas, 

data collection process, and identification of homogeneous production zones. The fourth 
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subsection presents and discusses the results. The final subsection concludes and 

discusses directions for future research. 

2.1 Literature Review 

2.1.1 Risk Management in Developing Countries 

Unfavorable weather conditions are one of the main risk factors affecting agricultural 

production and agri-business (Dercon 2002). These factors have a significant impact on 

farmers’ decisions related to production and investment, on their ability to service debts, 

and on their standards of living. Traditionally, farmers have utilized nonmarket 

institutions2 such as family, local, or community lending institutions as informal risk 

transfer mechanisms in rural areas (Ellis 2000). Informal loans, diversification of income 

sources, and crop diversification have also been mechanisms used by rural household to 

smooth consumption (Morduch 1995; Fafchamps and Pender 1997; Zimmerman and 

Carter 2003). However, when an extreme weather event occurs, these nonmarket 

institutions fail as risk management tools because of their limited capacity to spread 

correlated risks affecting farmers in the same area at the same time (Skees et al. 1999). 

The extreme weather events such as drought, floods and windstorms strangle 

rural household economy which owns few assets. Due to high risk exposure, rural 

household become more risk averse and adopt low risk investment strategies associated 

with low return, which is not enough to allow rural households to escape of the poverty 

trap (Carter and Barrett 2006). 

                                                 
2 Besley (1995) used this term as a catch-all for many different arrangement. 
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Insurance companies are often reluctant to conduct business in rural areas due to 

poor contract enforcement mechanisms. Because of the asymmetric information 

problems, insurance companies have to invest in monitoring mechanisms, require 

tradable collaterals, and impose high deductibles and co-payments (Hess et al. 2002). 

Since losses are spatially correlated across farmers, an extreme event could increase the 

number of defaults among farmers which in turn would represent additional liquidity 

problems (Skees and Barnett 2006; Skees et al. 2007). All these factors increase 

premiums and thus reduce demand for crop insurance. 

Countries respond to weather-related risks by taking action both before and after 

the extreme weather events. As ex-ante strategy, governments have supported a variety 

of crop insurance programs. All of these have relied on government subsidies and 

yielded mixed results (Goodwin and Smith 1995). As ex-post strategy, governments 

often redirect resources used usually in activities such as education or health to cover 

damage caused by natural disaster. Because of these programs, farmers would not 

internalize the costs of weather risks and would be more dependable on public relief 

(Skees et al. 1999). In general, both governments and rural household of developing 

countries have not been effective in managing risk transfer neither ex-ante nor ex-post of 

a shock (Hazell 1992; Barnett et al. 2008). 

2.1.2 Reinsurance and Securitization 

Weather insurance was first conceived for the purposes of reinsurance of 

systemic risks. Extreme weather risks represent an enormous financial problem for the 

insurance companies because thousands of claims have to be paid within a relatively 
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short period. In order to deal with these losses, insurance companies traditionally looked 

to unload weather risk using reinsurance as an ex-ante funding source.  It allowed the 

insurer to raise its capital in the aftermath of the natural disasters by hedging its risk 

exposure with reinsurance companies which, in turn, diversified their portfolios by 

taking risks in other regions.  

In spite of the advantage of reinsurance, insurance companies could not always 

transfer their risk exposure to reinsurers. Froot (2007) gave several explanations for this 

result, such as lack of reinsurance supply, market power of reinsurers, the price of the 

reinsurance contracts, and asymmetric information between insurer and reinsurer3. 

Securitization could be a natural way to introduce market efficiency and to 

provide an affordable insurance for weather-related risks.  Securitization pools certain 

types of assets and repackage those into interest-bearing securities (Simmons 2003). In 

case of weather risks, these were tied to a specific weather event and were divisible so as 

to allow an investor to buy any amount of risk exposure.  

The literature on catastrophe securities provides a number of arguments in favor 

of this approach (Lewis and Davis 1998). In particular, insurance companies could get 

sufficient capital to cover their exposure to catastrophe risk from the financial market. 

Since weather risks are not related to the performance of capital markets, insurers could 

get cheaper source of funds. 

 

 

                                                 
3 Also see Skees (2000) 
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2.1.3 Weather Insurance 

 Weather insurance contracts were proposed in the literature as a natural extension 

of weather-linked reinsurance arrangements to primary insurance markets, in particular 

to deal with risks of agricultural production (Miranda 1991; Miranda and Vedenov 2001; 

Hess et al. 2002). 

These insurance contracts are typically modeled as options whose payoffs are 

linked to realizations of specific weather variables such as number of heating or cooling 

degree days, rainfall level, etc. Most of the literature structures these contracts as a put 

(call) option with payoff triggered by a specific weather variable falling below (rising 

above) a pre-specified level. These payoffs can also be triggered by realizations of an 

index, which correlates losses and weather. The latter can be constructed based on an 

econometric relationship between weather and yield (Martin et al. 2001; Turvey 2001; 

Vedenov and Barnett 2004). 

The key advantages of these insurance contracts over the traditional insurance 

products usually mentioned in the literature are as follows (Miranda and Vedenov 2001; 

Barnett and Mahul 2007):  

 The contract structure is simpler than that of traditional insurance.  

 The weather variables or indices are measured objectively and transparently and 

do not depend on actions of either farmers or insurers. Neither farmers nor 

insurers have better information about the future realization of the index or the 

dependence relationship between losses and the index. 

 Farmers do not need to be classified according to their risk exposure 
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 Operating costs are low due to lack of asymmetric information or moral hazard.  

The major disadvantage of index insurance is the so-called basis risk. It arises when 

farmers’ losses are poorly correlated to the index used in designing a weather-based 

contract. In this case, a farmer could receive an indemnity payment that does not match 

the actual loss (Varangis et al. 2003). 

There are three potential sources of basis risk. First, specific relationship between 

weather and yields is rather complex and not fully understood. Most of the approaches to 

designing indexes are based on econometric estimation of weather-yield relationship 

function which is then used as an index (Martin et al. 2001; Turvey 2001; Vedenov and 

Barnett 2004). This method, however, requires adequate data series, which may be a 

problem in developing countries. 

The second potential source of basis risk is the yield data used for such 

estimations is typically aggregated over a larger production area (e.g. a county), which 

could also affect the performance of the insurance contracts. Ideally, farmers would 

prefer contracts written on a weather index designed for their individual farms, but farm-

level data are rarely available especially in developing countries. Contracts based on 

weather measured at a specific farm maybe less attractive to outside investors and would 

affect the possibility of risk transfer to capital markets. These insurance contracts are 

often designed based on more easily available area yields. The downside of this 

approach is that the variability of aggregate yields is typically lower than those of 

individual farmers.  
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Third, the spatial variability of weather conditions affects the reliability of 

weather contracts. Given that the underlying weather variables are measured at specific 

locations, the impact of this measure can be diluted as one moves away from the weather 

station (Manfredo and Richards 2005). 

All these problems can hurt the performance of the weather insurance product; 

however, the basis risk can be reduced through product design (Skees 2008). 

2.1.4 Application of Weather Derivatives to Agricultural Risks 

Turvey (2001) examined if weather derivatives could provide a hedge against 

production risk in Ontario. The relationship between crop productivity and weather 

events was estimated assuming a 2-input production function (rain and degree-day heat). 

The quadratic and Cobb-Douglas production functions were considered, although the 

goodness of fit was low. Given that no other specifications were explored and the limited 

evidence provided for these function, contract parameters based on this estimations 

could be inconsistent. The author’s approach relies on daily data, which could be a 

challenge to obtain in developing countries. In addition, the author also assumed that 

farmers know what weather events to be insured against because he allowed farmers to 

choose contract parameters.  

His concluded that farmers could reduce risk exposure to weather events 

purchasing these instruments. His models however, did not consider specifics of crop 

growth which could affect the performance of the weather derivatives. The author 

pointed out the need to minimize basis risk. 
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Martin et al. (2001) considered European put options on precipitation. These 

contracts start paying when the index falls below a specified strike. Once the index falls 

below a limit, the payoff “maxes out” at the maximum indemnity level. When the index 

falls between the strike and the limit, the contract pays a proportion of the maximum 

indemnity.  This type of contract is completely designed once the values of strike, limit 

and maximum indemnity are specified. The authors used cumulative daily precipitation 

for September and October in Stoneville, Greenville and Cleveland counties in 

Mississippi as the index. Farmers were allowed to choose the parameters of the contract 

according to their risk management needs. Using extended time series of weather data, 

the authors estimated expected loss cost from the simulated historical loss costs. They 

used a gamma distribution to model cumulative precipitation. Their results encourage 

the use of weather derivatives within the US agriculture. 

Vedenov and Barnett (2004) evaluated the efficiency of weather derivatives 

constructed as put or call options. Similar to Martin et al., these contracts start paying 

when the index ߝ falls below/exceeds a specified strike ߝ∗. Once the index falls 

below/exceeds a limit ߝߤ∗, the insured receives the maximum indemnity ݖ. When the 

index falls between the strike and the limit, the contract pays a proportion of the 

maximum indemnity. A formal payoff schedule for the put option can be written as 
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,ݖ|ߝሺܫ (2.1) ,∗ߝ ሻߤ 	ൌ ݖ	 ൈ

ە
ۖ
۔

ۖ
ۓ

0 ݂݅ ߝ ൐ ,∗ߝ

∗ߝ െ ߝ
ሺ1∗ߝ െ ሻߤ

∗ߝߤ		݂݅ ൏ ߝ ൑ ,∗ߝ

1 ݂݅ ߝ ൑ ,∗ߝߤ

  

 

where the parameter  varies between 0 and 1, with the limiting case of 0 corresponding 

to the conventional proportional payoff with deductible, and 1 corresponding to a “lump-

sum” payment once the contract is triggered regardless of the severity of the shortfall. 

The payoff for the call option can be written in a similar way with obvious changes. 

The authors used district level yield data for corn, soybeans, and cotton in major 

respective production areas in the U.S. in order to construct weather indexes. They found 

that constructed weather derivatives may provide risk reduction for the considered 

crop/district combinations. Though they estimated models with complex combinations 

of weather variables, they obtained relatively low goodness of fit (36% at most). They 

used an ad hoc selection of weather variables (e.g. monthly average temperatures and 

cumulative monthly rainfalls) The weather derivatives were designed for relatively large 

geographic areas in order to avoid problems such as weather data availability and allow 

for risk transfer to capital markets, but this came at a cost of added basis risk.  

Since the late 1990s, a number of studies considered implementation of index 

insurance for agriculture in developing countries (Hazell 1992; Miranda and Vedenov 

2001; World Bank 2005). The majority of these papers relied on availability of extended 

series of weather and crop yield data, which is often not the case in developing countries. 

For instance, Skees et al. (1999) examined the performance of rainfall insurance  in 



 

15 

 

Nicaragua, which is affected by insufficient or excess rainfall. In order to ensure the 

sustainability of such an insurance scheme, they recommended the development of 

extensive crop yield data sets to design and price the insurance.  

Linear dependency between crop yield and the index has been usually assumed 

in literature (Skees et al. 2001; Turvey 2001; Hess 2003; Deng et al. 2008). These 

approaches may reduce the effectiveness of index insurance contracts, since they only 

rely on the strong monotonic dependence between crop yield and the index rather than a 

linear dependence. 

Except for Vedenov and Barnett (2004), the authors typically assume that 

farmers have a complete knowledge about what type of weather instrument satisfy their 

requirements. Finally, there is no information on specifics of plant growth incorporated 

in the design of weather contracts. 

2.2 Modelling Approach  

We assume that we are presented with a short yield data series (20 years or less) 

averaged over an area such as a county or a comparable administrative unit. We propose 

to mitigate the problems with data by designing weather insurance contracts in the 

following way. 

First, based on agronomic criteria such as soil pH, soil texture and drainage, we 

identify the composite types of soils best suited for the production of crop under 

investigation. Then, we use the developed classification to detect homogeneous 

production areas among the administrative units for which we have data. Specifically, 

we try to identify counties with a single or a predominant soil type. We expect that the 
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variability of yield aggregated over these areas is comparable to that of any given farm 

within the area. We perform the analysis looking at areas sharing the same soil 

conditions rather than just the ones encompassed by arbitrary administrative boundaries. 

Second, we select indexes based on growing requirements for the crop during 

each phenological stage and for the entire growth season. 

Third, we determine the parameters of the contract by using agronomical 

considerations, viz. the minimum and maximum requirements of the weather variable 

chosen as an index. 

In order to illustrate the proposed methodology, we apply it to the design of 

weather derivatives to Arkansas soybeans.4 In particular, we use rainfall as an index and 

construct cumulative daily rainfall variables for each stage of soybean growth and the 

entire crop season.  We consider both the excess and lack of water to be equally 

detrimental. Therefore, the designed contract is set to trigger when the rainfall falls 

outside of the optimal range suggest by agronomist. We call the proposed contract the 

agronomic contracts. 

In order to evaluate the effectiveness of the agronomic contract, we compare it 

with the contracts designed according to the methodology proposed by Vedenov and 

Barnett (2004). 

 

 

                                                 
4 As pointed earlier, while this case does not represent the situation with data we are trying to address, 
availability of long data series allows us to evaluate the performance of the proposed contracts against the 
benchmarks established in the literature. 
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2.2.1 Overview of Soybeans Production 

 The most comprehensive reference on soybean production is published by The 

Center for Agricultural Bioscience International (Singh 2010). The latter describes 

factors affecting soybean growing —geography, climate, land and soil. Other 

comprehensive sources include Heatherly and Hodges (1999) and Arkansas Soybean 

Handbook which describe phenological growth stages of soybeans and how various 

aspects such as soil texture affect soybean production. A comprehensive manual on crop 

water needs is written by Brouwer and Heibloem (1986). The remainder of this section 

presents summary of relevant information contained in these sources. 

2.2.1.1 Phenology of the Soybean Plant 

 Soybeans are classified as a short-day plant, because the duration of darkness 

regulates the flowering. The cumulative water requirement from planting to harvest is 

between 450 and 700 mm, with daily consumption that varies as the crop develops. 

Soybean production requires good drainage as standing water can increase the incidence 

of diseases. Well-planned drainage provides better soil aeration, higher soil 

temperatures, better impact of herbicides, better soil structure and higher yields. Poor 

drainage increases the chance of plant diseases and insects/pests because herbicides 

cannot reach the soybean root zone. 

Soybean plant develops over three distinct sequential stages (vegetative, 

reproductive and mature) that influence each of the three yield components —the 

number of pods per plant, the number of seeds per pod and seed size.  
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The vegetative stage begins when seed are exposure to moisture and soil 

temperature of 55 to 60F. Usually in the first 15 days after planting, the cotyledon 

emerges above the soil surface and nodes appear on the main stem with fully developed 

leaves during the next 36 days. The water demand is around 15-26% of the total water 

requirement and needs to be applied at uniform rates during the 51-day period. Short-

term excess water during the early vegetative stages can cause yield reductions 

depending on soil texture.  

The reproductive stage begins when a soybean plants blossom and lasts until 

pods and leaves are developed. The process takes about 64 days to complete, during 

which seeds reach their full size. The water need at this stage is around 55-64% of the 

total water requirement. Water stress reduces number of pods per plant and affects grain-

filling.  

The maturity stage begins when pods on the main steam have reached their 

mature color and lasts 18 days. During this time, dry weather is required to reduce the 

moisture content in soybeans. The water need on this stage is approximately 10-20% of 

the total water requirement. At this stage, drain decisions may be critical. Early drainage 

speeds up the harvest but can negatively impact the grain filling, which in turns, affect 

the soybean weight.  

The growth of soybean plants can also be negatively affected by critical 

temperatures (below 55F and above 95F) across different growth stages. Table B-1 

summarizes the water requirement and the duration of each stage. 
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2.2.1.2 Soil Characteristics 

Soybean productivity also depends greatly on soil characteristics. Soil texture 

determines the amount of water available to plants, how well-aerated the soils are, and 

the rate at which water moves to roots. Based on the proportion of various particle sizes 

present in soils, their texture is classified as fine, medium, or coarse. Fine-textured soils 

are dominated by tiny clay particles, while coarse-textured are characterized by larger-

size sand particles. Medium-textured soils contain various proportions of clay, sand and 

silt. Coarse-textured soils such as loamy sand and silt loam are better suited for soybean 

growing than clay and medium-textured soils because the former maintains well-

balanced nutrient levels, reduces erosion, moves air and water to the roots and supports 

rapid growth.  

Soybean plants also require a right balance of acidity for high quality yield and 

healthy crops. The soil pH is a measure of acidity or alkalinity in soils and affects the 

ability of soil organisms to survive, which in turn transform organic matter into plant 

nutrients. Soybean can grow in soils with a wide range of pH, from 5.8 (slightly acid) to 

7 (neutral). Soils with pH above 7 are considered marginal and not suitable for soybean 

production. High pH levels are detrimental for soybeans, because nutrients such as 

phosphorus, calcium and nitrogen are unavailable in such soils. Yields are also 

negatively affected when soil becomes too acidic (low pH), although this can be 

mitigated by adding liming materials before fertilizing. 
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2.2.1.3 Proposed Soil Classification 

Based on the information above, we attempt to identify the composite types of 

soils best suited for soybean production. 

We designate the optimally suited soil as Soil Type I. The latter is characterized 

by coarse texture, pH level 5.8 to 7 and good drainage. As mentioned above, coarse-

textured soils are more fertile than fine-textured because the former has a relatively high 

amount of water available to plants. Also, coarse-textured soils do not require much 

attention because they can maintain a steady pH level so that farmers would not need to 

reduce soil acidity. The pH level between 5.8 and 7 guarantees the availability of soil 

nutrients to plants and avoid damage to rotational crops. These characteristics together 

with good drainage enable soybean cultivation.  

Fine texture soils regardless of pH level and soil drainage are designated Soil 

Type III because it is the least suitable type for soybean production. Fine-textured soils 

have small amount of water available to plants because of their small-sized particles. 

Large economic losses can occur when soybeans are cultivated on fine-textures soils 

because of the Phytophthora diseases. 

All other combinations of soil characteristics are grouped as Soil Type II. The 

latter combine coarse and medium texture and pH level less than 7 regardless of soil 

drainage. The properties of all constructed soil types are summarized in figure A-1. 

2.2.2 Contract Design and Analysis 

 We follow the general contract design approach of Martin et al. (2001) and 

Vedenov and Barnett (2004), with necessary modifications to accommodate out 
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modeling strategy discussed above. In particular, cumulative rainfall over a specific 

phenological stage is used as an index. The contract is set to trigger only when the 

rainfall falls outside of the optimal range since both the excess and lack of water can be 

equally detrimental to plan growth. In other words, the contract has two triggers 

suggested by agronomic criteria. Formally, the contract indemnity (expressed in units of 

yield) can be presented as: 

 

,௠௜௡ݔ|ݔሺܫ (2.2) ,௠௔௫ݔ ,ߚ ,ߩ ሻߙ 	ൌ ߚ ൈ ߩ ൈ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ

௠௜௡ݔߙ ݔ	݂݅ ൑ ሺ1 െ ௠௜௡ݔሻߙ

௠௜௡ݔ െ ݔ ݂݅	ሺ1 െ ௠௜௡ݔሻߙ ൏ ݔ ൑ ௠௜௡ݔ

0 ௠௜௡ݔ	݂݅ ൏ ݔ ൏ ௠௔௫ݔ

ݔ െ ௠௔௫ݔ ௠௔௫ݔ		݂݅ ൑ ݔ ൏ ௠௔௫ݔ ൅ ሺ1 െ ௠௜௡ݔሻߙ

௠௜௡ݔߙ ݂݅ ݔ ൒ ௠௔௫ݔ ൅ ሺ1 െ ௠௜௡ݔሻߙ

 

 

where ݔ is the cumulative rainfall level over a specific period, the trigger points ݔ௠௜௡	 

and ݔ௠௔௫ correspond to the minimum and maximum water requirement during the 

period based on agronomic recommendations, ߩ is a conversion factor between the units 

of rainfall and units of yield5. The parameter ߙ ൑ 1 is used to cap the contract payoff for 

                                                 
5 We define this as the ratio of average crop yield and average cumulative rainfall during the entire crop 
season. 
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tractability purposes.6 Since index contracts are subject to basis risk, the buyer is also 

allowed to increase or decrease the amount of insurance protection by the scale factor ߚ, 

similar to the Group Risk Plan (GRP) offered in the U.S. (Deng et al. 2007). The scale 

factor adjusts the indemnities so that those could better track actual losses. The 

indemnity schedule (2.2) is illustrated in figures A-2 and A-3. 

 Figure A-2 shows payoffs of two contracts with the scale factor of 100 percent 

and the cap factors of 80 and 150 percent. Figure A-3, shows two contracts with the cap 

factor of 100 percent and scale factors of 75 and 100 percent. 

2.2.2.1 Measuring Risk Reduction 

The effectiveness of the designed contracts in reducing risk is measured within 

the expected utility framework. The analysis is performed from the standpoint of an 

economic agent who is not necessarily directly involved with the production, but is 

involved with the economic activity directly affected by the agricultural production risks 

(i.e. a “risk aggregator”). For example, county cooperatives that give loans to farmers are 

directly affected by the farmers’ losses because the latter affect the probability of 

payoffs. The rationale behind this approach is that the index insurance contract protect 

better against systemic risks rather than idiosyncratic risks of individual producers. A 

portfolio of risks aggregated over a properly defined area would diversify away such 

                                                 
6 For the tractability of this contract, its payoff must be at least constrained on the excess side where it can 
be potentially infinite. Since the payoff is naturally limited on the deficiency side (at ݔ ൌ 0), this provides 
for a convenient overall cap which corresponds to ߙ ൌ 1. Values of ߙ ൏ 1 are considered to allow for a 
possibility of a cap set at a fraction of the maximum payoff on the deficiency side. The latter is similar to 
the maximum payoff constraint parameter utilized in Vedenov and Barnett (2004). 



 

23 

 

idiosyncratic risks, but would still be exposed to the area-wide risks typically associated 

with the extreme weather events (e.g. droughts, floods, hurricanes, etc.). 

We assume that there is one such "risk aggregator” in a given county/region, that 

aggregator’s choice of insurance is driven by expected utility maximization motives, and 

that its preferences over risky alternatives can be represented by a utility function ݑሺ∙ሻ7 

defined over the total revenues expressed in units of yield.8 

If no insurance is available, the aggregator utility is simply 

 

௪௜௧௛௢௨௧ܷܧ  (2.3) ൌ   ሻݕሺݑܧ

 

where ݕ is crop yield, and the expectation is taken over its distribution. If we assume that 

a random variable ݔ (weather index) can communicate information about ݕ (crop yield), 

and an insurance contracts on ݔ is available, then the utility becomes  

 

௪௜௧௛ܷܧ (2.4) ൌ ݕሺݑܧ ൅ ሻݔሺܫ െ ܲሻ  

 

where the indemnity function ܫሺݔሻ is as in equation (2.2), ܲ is the contract premium9, 

and the expectation is taken over the joint distribution of the index ݔ and yield ݕ. 

                                                 
7 This aggregator derives utility from the county-level yield, but the nature of that utility depends on the 
nature of the aggregator. For purpose of this analysis, we do not specify the latter. 
8 This assumption can be relaxed in a trivial way if prices are fixed and nonrandom. Stochastic prices can 
be accommodated within the same framework, although practical application would require additional 
historical price data, which may or may not be available. 
9 Both the indemnity and premium are expressed in terms of yield. 
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Without loss of generality, we assume that the premium is actuarially-fair and is equal to 

the expected payoff of the contract10, i.e.  

 

(2.5) ܲ ൌ ݔሺܫܧ ,ߙ| ,ߨ ௠௜௡ݔ ,   ௠௔௫ሻݔ

 

where all parameters are the same as in equation (2.2) and the expectation is taken over 

the distribution of the index ݔ.  

Under these conditions the agent would decide to buy the insurance contract if 

the expected utility of revenue with the contract is greater than the expected utility 

without the contract. For illustrative purpose the expected utility can be conveniently 

represented by the certainty equivalent levels (Schnitkey et al. 2003), namely:  

 

ܧܥ (2.6) ൌ   ሺ∙ሻሿܷܧଵሾିݑ

 

The risk reduction due to the weather derivative can be then computed as Δܧܥ ൌ

௪௜௧௛ܧܥ െ  ௪௜௧௛௢௨௧. The contract has a value to the aggregator and reduces its riskܧܥ

exposure if Δܧܥ ൐ 0. 

2.2.2.2 Estimation of Distributions 

In order to compute premiums and certainty equivalent revenues in equations 

(2.5) and (2.6), the joint distribution of yield and rainfall	݄ሺݕ,  ሻ and the marginalݔ

distribution of rainfall ݄௫ሺݔሻ are required. 

                                                 
10 Loaded premiums can also be considered within the same framework. 
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A typical approach here is to assume a parametric functional form and then 

estimate the unknown parameter(s) based on historical data. Given the shortness of data 

series and the lack of valuable prior information about the underlying data generation 

process of yield and the index, parametric estimations can be unreliable. 

The alternative is to use nonparametric methods, which impose fewer 

assumptions and rely on data to determine the shape of the distributions.  In particular, 

we use kernel-density method (Wand and Jones 1994) to estimate the marginal 

distributions of rainfall and yield, viz. 

 

(2.7) ݄కሺߦሻ ൌ
1
కߜܶ

෍ܭቆ
ߦ െ ௝ߦ
కߜ

ቇ

்

௝ୀଵ

 

 

where ߦ is the random variable of interest (either the index ݔ or the yield ݕ), ܭሺ∙ሻ is a 

kernel function, ߜక is the degree of smoothness, and ൛ߦ௝ൟ௝ୀଵ
்

 are the observations 

(historical realizations) of interest. 

Following Charpentier et al. (2007), we estimate non-parametric copula density 
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where ܭሺ∙ሻ is a bivariate kernel function, ߜ௬ and ߜ௫ are the degrees of smoothness (Li 

and Racine 2011), and ܪక,் is the empirical distribution functions defined as 
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ሻߦక,்ሺܪ (2.9) ൌ
1

ܶ ൅ 1
෍ঌሺߦ௜ ൑ ሻߦ
்

௜ୀଵ

 
 

 

where the indicator function ঌሺܣሻ takes the value of one if the condition ܣ is satisfied 

and zero otherwise.  The marginal distributions (2.7) and the copula estimator (2.8) are 

combined to construct the joint probability distribution using the Sklar’s theorem (Sklar 

1959). The latter postulates that any joint distribution can be decomposed into its 

marginal distributions and a copula function which captures the dependence structure 

between variables, namely, 

 

 (2.10) ݄ሺݕ, ሻݔ ൌ ܿ൫ܪ௬,   ሻݔሻ݄௫ሺݕ௫൯݄௬ሺܪ

 

2.2.2.3 Efficiency Analysis  

 In order to evaluate the effectiveness of the agronomic contract, we compare its 

risk-reducing capability with the benchmark contract designed according to the 

methodology in Vedenov and Barnett (2004). In addition, we analyze variations of the 

agronomic contract constructed both for the entire season and for each stage. We also 

consider agronomic contracts written on the excess of water, the lack of water or both. 

All variations of the agronomic contracts and the Vedenov and Barnett (2004)’ contracts 

are constructed based on the same data set. 

We express the risk reduction in terms of the certainty-equivalent payouts of 

these contracts. The goal is not to obtain the best contracts (by construction there are 
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not) but rather to see how close the performance of the optimal contracts can be 

approached by  the agronomic contracts in the situations when one cannot rely on 

extended data series or when data aggregation may create potential problems. 

2.3 Application: Arkansas Soybean Production 

Soybean production in Arkansas has characteristics similar to those found in South 

America, especially in Argentina, Brazil, Bolivia and Paraguay. Many producers plant 

soybean on marginal lands without irrigation, especially in the lower Mississippi River 

valley. The increasing value of water together with the reduced amount of inputs 

required make farmers increase the amount of acreage devoted to non-irrigated 

soybeans. Under these conditions, the effects of drought or flood could increase the 

variability in soybean production.   

Arkansas, located about 35N of the equator, has temperatures influenced by the 

Mississippi River and the Ozark and Ouachita mountains. Argentina and Brazil, the 

biggest soybean producers in South America, have temperatures more stable than 

Arkansas. Argentina soybeans are grown in temperate regions (35S of the equator) with 

rainfall during the growing season. Brazil, with soybeans regions closer to the equator, 

has a wetter climate and higher rainfall than Arkansas.  

Arkansas soybean growers apply various production systems under different tillage 

regimes which may or may not include irrigation. Under non-irrigated system, farmers 

can stabilize yield from year to year when they combine high-yielding varieties with 

different maturity date (Ashlock, Mayhew, et al. 2000). 
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2.3.1 Soil Structure 

 In order to apply the classification suggested in figure A-1, we combined the 

Arkansas maps of landforms, soil texture, pH level and soil drainage provided by Soil 

Survey Staff, et al. The resulted map was combined with the soybean area map provided 

by USDA/NASS Cropland Data Layer and USDA/SSURGO.  

We identified counties that are composed mostly of a single soil type or 

combination of at most two types. Six counties selected for analysis are listed in table B-

2 along with the distribution of soil types in each. 

 Independence County mostly has Soil Type I (63.1 percent), while Jackson 

County is predominantly Soil Type II (78.6 percent). Crittenden mostly has soil type III 

(78.6 percent). Phillips and Saint Francis Counties have a mixed soil composition — a 

combination of soil types II and III. Finally, Pulaski County combines all identified soil 

types. Mixed soil type counties are included in the analysis in order to verify the 

conjecture that agronomic contracts are more effective when constructed for areas with 

similar (homogeneous) growing conditions. Figure A-4 shows the location of selected 

counties. 

2.3.2 Weather Data 

 Daily precipitation and temperature data recorded at the weather stations nearest 

to the selected counties were collected from the NOAA/NCDC. Locations of the weather 

stations are shown in figure A-4. The data were used to construct cumulative rainfall 

variables by stage and for the entire growing season. Since Arkansas farmers use 

different soybean varieties with different growing periods, it was impossible to 
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determine specific planting dates and stage durations for each individual producer or the 

county as a whole. Instead, we used average planting dates and average stage durations 

reported in Ashlock and Purcell (2000) (see table B-1). 

Average temperatures by stage and for the entire season were generated in a 

similar fashion. Tables B-3 and B-4 show descriptive statistics of both cumulative 

rainfall and average temperature by stage, assuming June 15 as planting date (Ashlock, 

Klerk, et al. 2000). Data show that daily temperatures in selected counties do not fall 

outside of the agronomic requirement, for that reason temperature was excluded from 

our analysis. However, availability of rainfall is critical and it is the main constraint 

during the crop season. 

2.3.3 Yield Data 

Historical county-level yield data for non-irrigated soybean production in the 

selected counties for 1972-2012 were collected from USDA/NASS. The descriptive 

statistics of the yields are listed in table B-5. These selected counties accounted for 63.6 

percent of Arkansas non-irrigated soybean production in 2012. 

KPPS test, Dickey-Fuller and Phillip-Perron tests were performed to detect 

whether yields have stochastic trends. All these tests agree that yield series are trend 

stationary.11  

New disease-resistant and high-yielding soybean varieties have been introduced 

in Arkansas over time. These improvements make soybean yields incomparable across 

years. To address this problem, yields series were detrended following Vedenov et al. 

                                                 
11 Unit root results are available upon request. 
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(2006). In particular, a piecewise log-linear trend equation was fitted for each yield 

series. The general form of the estimated equation is 

 

(2.11) lnሺݕ௧ሻ ൌ ܽ଴ ൅ ܽଵݐ ൅ ܾଵሺݐ െ ଵሻ݀ଵݐ ൅ ܾଶሺݐ െ ଶሻ݀ଶݐ ൅ ⋯൅ ܾ௞ሺݐ െ ௞ሻ݀௞ݐ ൅  ݑ

 

where lnሺݕ௧ሻ is the natural logarithm of yield in year ݐ ;ݐ௜, for ݅ ൌ 1,… , ݇, represent the 

years at which the slope of the trend line changes, ݀௜ are dummy variables which are 

equal to 1 for all observations such that ݐ௜ ൑   .is the error term ݑ and 0 otherwise and ,ݐ

 We used a nonlinear least square procedure to estimate model (2.11). This 

method allowed us to find the points ݐ௜  that result in the best fitting model. Table B-6 

shows the best fit models and their statistics for selected counties.  

Based on these estimations, the detrended yields were then calculated as: 

 

௧ݕ (2.12)
ௗ௘௧ ൌ ௧ݕ

ଶ଴ଵଶݕ
௧௥

௧ݕ
௧௥   

 

where ݕ௧
௧௥ is the trend predicted for year ݐ. 

2.3.4 Simulation Parameters 

Epanechnikov kernel was used to estimate both the marginal CDFs and PDFs for 

yield and rainfall. The same kernel was also used to estimate the copula function. The 

rule of thumb was used to estimate the bandwidth (Li and Racine 2011). CRRA power 

utility function  
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,ݓሺݑ (2.13) ሻߛ ൌ
ଵିఊݓ

1 െ ߛ
  

 

was used to reflect the preferences, with the risk aversion parameter  ranging from 1 to 

3 (as per Myers (1989) and Wang et al. (1998)). 

The expected utilities in equations (2.3) and (2.4) were integrated numerically 

using Simpson’s quadrature method (Miranda and Fackler 2002) on a 501 ൈ 501 grid 

over the ranges of yield and rainfall distributions. The trigger points ݔ௠௜௡ and  ݔ௠௔௫ for 

each stage were set according to table B-1. The range of cap factor ߙ in equation (2.2) 

was set from 70 to 100 percent and the scale factor ߚ from 85 to 150 percent, both in 5% 

increments. The conversion factor ߩ was set equal to the ratio of average yield and 

average water needed in the entire season. The risk reduction of agronomic contract 

specified in equation (2.2) was evaluated for situations when the risk aggregator is 

allowed to purchase contracts on excess of rain, lack of rain or both. 

The effectiveness of the agronomic contracts was compared with that of the 

contract designed according to Vedenov and Barnett (2004). The weather index ߝ was 

constructed using parametric regressions between soybean yield and cumulative 

precipitation for each growth stage. Table B-7 shows the “best fit” models and their 

statistics. 

Indices estimated by these models were then used to calculate payoffs of the 

standard contracts in equation (2.1). The optimal values of the strike ߝ∗, the limit ߤ and 
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the maximum indemnity ݖ were determined so as to maximize the expected utility with 

the contract. The risk reduction was calculated following equation (2.6). 

2.4 Results 

The risk-reducing effectiveness of agronomic contracts varies both across 

counties (or soil types) and stages. Figures A-5 through A-10 show the estimated joint 

distributions of soybean yield and rainfall for each growth stages for selected counties. 

The vertical lines indicate the minimum and maximum water requirements in each stage. 

The horizontal line represents the average soybean yield. Numbers in bold represent the 

joint probability of drawing a rain-yield from the respective ranges of rain and yield. 

Unclear dependence between crop yield and rainfall were found for the 

vegetative stage regardless of soil types (except for Phillips and Pulaski Counties) 

suggesting a substantial amount of basis risk (see figures A-5 – A-10). This pattern 

continues in the maturity stage as well. However, there appears to be a more pronounced 

dependence between yields and rainfall in the reproductive stage. In particular, the 

probability of obtaining low yields when the rainfall is outside of the optimal range is 

higher at this stage than at any other. Finally, the joint distributions of yields and rainfall 

for the entire season exhibit a stronger dependence structure than the individual stages. 

  Tables B-8 and B-9 summarize parameters and risk reduction effectiveness of the 

best agronomic contracts for each combination of soil type, contract type (excess, lack, 

or both), and growth stage. 

The cap and scale factor parameters turned out to be the same for all 

combinations and equal to the lower bounds of their respective range. This result 
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confirms the presence of the basis risk indicated by the distribution plots, with the risk 

aggregator attempting to reduce the former by selecting lower coverage levels and 

scaling down the payments. 

Nevertheless, for most counties, agronomic contracts can provide at least some 

degree of risk reduction. The best results as seen in table B-8 are obtained with the 

contracts written on lack of water during the reproductive stage for the counties with soil 

types I and II (Independence and Jackson counties). This seems to confirm the 

conjecture that the weather insurance contracts perform better when written for areas 

with similar growing conditions. An interesting result is that the risk reduction for soil 

type II is higher than that for soil type I. A possible explanation is that soil type II is less 

suitable for soybean growth, and therefore plants are more sensitive to variations in 

weather. At the same time, the agronomic contracts seem to be making no difference for 

the soil type III (Crittenden county), which could be due to the poor overall growing 

conditions provided by this soil type. 

Results for counties with a mixture of soil types are less consistent, but it appears 

as if contracts written on lack of water during the reproductive stage are performing 

reasonably well for the mixture of soil type II and III (Phillips and St. Francis). The 

contracts written on the entire season’s rainfall appear to be rather ineffective for the 

homogeneous growing areas, but do provide some risk reduction in the counties with the 

heterogeneous soils (Phillips and St. Francis counties). 

Efficiency analysis was also carried out for the “optimal” contracts in the sense 

of V&B. As expected, the “optimal” contracts would offer risk reduction for all soil 
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types (see table B-10), with the levels of reduction generally higher than those offered by 

the agronomic contracts. However, these higher levels of risk reduction come at the price 

of much higher premium rates (up to 88%). Furthermore, no connection between the 

degree of risk reduction and soil quality is reflected in these results. The contract for 

Jackson County achieved the highest risk reduction (2.71%) although with the premium 

rate above 60%. 

2.5 Conclusions 

 A simple semi-naïve approach to designing weather insurance contracts is 

proposed in this study. The potential of this approach lies primarily in its low yield data 

requirements, which is a typical situation in developing countries. Lack of long, reliable 

farm-level yield data series is a major hindrance in applying the conventional methods of 

designing weather contracts outlined in the literature. Weather data, on the other hand, 

are usually more readily available and more objectively measured. In such 

circumstances, the proposed methodology allows one to design practical instruments that 

still provide some degree of risk protection. The two key points of the presented 

methodology are (a) the use agronomic information in order to set contract parameters, 

and (b) construction of contracts for homogeneous production areas. 

Soybean production in Arkansas is used as the case study in order to test the 

validity of our approach. In order to mitigate the aggregate nature of the available yield 

data, we attempt to look at areas sharing the same growing conditions rather than simply 

located within the same administrative boundaries. To that end, we design classification 

of soils to reflect their suitability for soybean production, which then allows us to 
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identify counties that are composed mostly of a single soil type or are combinations of 

soil types. We also attempt to avoid the need for data-demanding analysis of weather-

yield relationship by using agronomic requirements in order to specify parameters of 

weather insurance contracts. 

The risk reduction of thus constructed weather index contracts, called agronomic 

contracts in this study, are evaluated and compared with the performance of the 

“optimal” contracts suggested in the literature. While the agronomic contracts do not 

achieve the same degree of risk reduction as the “optimal” contracts, they do provide 

meaningful risk protection and typically at lower premiums. As expected, the agronomic 

contracts perform better in homogeneous production areas. Furthermore, the best risk 

reduction is achieved when the contracts are written on rainfall during a specific stage of 

plan growth rather than the entire season. Finally, the agronomic contracts seem to 

provide the highest risk reduction on second-best soils, which could be explained by 

higher sensitivity of production on such soils to weather. 

Future research should investigate the inclusion of additional weather variables 

to measure their influences on the risk reduction in each stage.  Further research could 

address the potential for reducing basis risk by defining homogenous production areas at 

higher definition. Also, future research could use spatial smoothing on weather 

measurements. Soil-crop simulation model could help to define specific trigger points 

for each soil type. 
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3. OPTIMAL CONTRACT STRUCTURE FOR WEATHER DERIVATIVES 

 

Many of the existing papers on weather derivatives use a “standard” piecewise-

linear structure to define the payoffs of the analyzed contracts (Turvey 2001; Vedenov 

and Barnett 2004; Collier et al. 2009; Giné et al. 2010). It is commonly claimed that 

these contracts provide sufficient flexibility to construct different instruments. The 

intuition behind this claim goes back to the seminal work of Arrow (1974) who showed 

that the optimal payoff on an insurance contract is proportional to the loss. However, 

Arrow’s result is derived under the condition that the insurance contract is written on the 

actual loss. 

In case of index contracts (e.g. weather derivatives), the payoff of the contract 

depends on realization of a random variable that is related to the loss but not exactly 

equal to it. Therefore, the piecewise-linear contract payoff structure may not be the 

optimal choice if the dependence between the index and the yield/revenue is nonlinear. 

The research objective of this essay is to derive an optimal payoff of an index contract 

that takes into account potentially nonlinear dependence between the index underlying 

the contract and the loss that is insured using the contract. 

This framework is illustrated by constructing index insurance contracts for the 

case of Arkansas soybean considered in Essay 1. The results are then compared with 

those presented in Section 2.4, which utilizes the standard (quasi-linear) contracts with 

the goal of measuring the improvements in risk reduction that can be obtained by using 

the optimal contract payoff structure. 
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The rest of the essay is organized as follows. The first subsection reviews 

literature on contract design. The second subsection presents the theoretical model of the 

optimal index contract and the numerical solution procedure. The third subsection 

briefly describes the specific application and data collection. The fourth subsection 

presents and discusses the results. The final subsection concludes and discusses 

directions for future research. 

3.1 Literature Review 

Literature on index insurance contracts and their applications for agricultural 

production was already reviewed in Sections 2.1.1 and 2.1.2 (Miranda 1991; Martin et 

al. 2001; Miranda and Vedenov 2001; Turvey 2001; Hess et al. 2002; Vedenov and 

Barnett 2004). The common feature of these papers is that they model index insurance 

contracts as options whose payoffs are linked to realizations of specific index variables 

such as area yield, number of heating or cooling degree days, rainfall level, etc. 

The theory of the optimal contract design goes back to the seminal works of 

Arrow (1974). Arrow derived a Pareto optimal insurance policy within the complete 

market framework and showed that it necessarily has to include elements of coinsurance 

and deductibility. Raviv (1979) expanded on Arrow’s results by identifying the form of a 

Pareto optimal insurance contract under fairly general assumptions. He also found that 

the optimal contract structure has a deductible and coinsurance of losses above the 

deductible. 

The main problem in applying the results of Arrow and Raviv to the case of 

index contracts stems from the fact that, unlike the conventional insurance, the payoff of 
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the index contract depends on realizations of a random variable that is not the same as 

the loss. Therefore, the deductible-with-coinsurance structure may no longer be optimal. 

 Mahul (1999) attempted to design an optimal insurance contract for the case 

where the indemnity depends on an aggregate yield of a specific area. However, in order 

to obtain a closed-form expression for the optimal contract and make conclusions similar 

to those of Arrow, he had to assume a linear relationship between the farm yield and area 

yield, with all of dependence between the two captured by the linear correlation. Under 

these restrictive assumptions, Mahul found was that the optimal insurance contract 

structure conforms to that of Arrow, with the payoff depending on the ratio of the 

covariance of the farmer’s yield and area yield to the variance of the area yield. 

 Mahul and Wright (2003) investigated the design of optimal contract when 

farmers face joint yield and price risk under an incomplete market framework. However, 

they also specify farmers’ price and yield as linear functions of single price and yield 

index in order to derive the optimal contract structure. Under these conditions, they do 

obtain the Arrow’s results but only under the assumption of linear dependence between 

the loss and the index. 

3.2 The Model 

 Consider an economic agent who receives a risky income ݕ from an economic 

activity12. We assume that agent’s decisions are driven by the expected utility 

                                                 
12 The derivations in this subsection follow the general approach of  Raviv (1979) but extends it to the case 
of an index contract. 
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maximization motives and her preferences can be represented by a conventional utility 

function ݑሺݕሻ with ݑ′ሺݕሻ ൐ 0 and ݑ′′ሺݕሻ ൏ 0 for all ݕ. 

The agent has an opportunity to purchase an insurance contract with a payoff 

contingent on an observable random variable ݔ, which, in turn, can potentially 

communicate information about ݕ. For the purposes of this essay, we refer to ݔ as an 

index13. 

The insurance contract is described by a pair ሾܫሺݔሻ, ܲሿ, where ܫሺݔሻ is the 

indemnity payment made by the insurer and ܲ is the premium, which is the price paid by 

the insured. This contract should satisfy certain feasibility conditions, viz. (1) the 

indemnity function ܫሺ∙ሻ is nonnegative for all realization of ݔ, and (2) for any indemnity 

schedule ܫሺ∙ሻ, a premium ܲ can be determined. If this type of insurance contract is 

available, the economic agent could purchase it to cope with, for instance, weather-

related risks. 

Specifically, the economic agent would purchase the insurance contract ሾܫሺݔሻ, ܲሿ 

if her expected utility with the contract is greater than the expected utility without it, 

 

ݕሺݑܧ (3.1) ൅ ሻݔሺܫ െ ܲሻ ൒  ሻݕሺݑܧ

 

where the expectation is taken over the joint distribution of the index ݔ and income ݕ on 

the left hand side, and over the probability distribution of ݕ on the right hand side. 

                                                 
13 In the crop insurance context, this can be, for example, a weather variable, an aggregate yield, or any 
other variable that had a dependence relationship with the yields or revenues. 
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We assume that the insurer is a risk-neutral agent with an initial wealth ଴ܹ, who 

is willing to offer the contract under a competitive environment. Let ݒሺ∙ሻ be his utility 

function defined over his final wealth such that ݒ′ሺ∙ሻ ൒ 0 and ݒ′′ሺ∙ሻ ൌ 0. Without loss of 

generality, we can assume that 

 

ሻݖሺݒ (3.2) ൌ ݖܽ ൅ ܾ 

 

Provision of insurance is costly due to administrative cost and other expenses. In 

general, the insurance cost ܿሺ∙ሻ defined over the indemnity schedules ܫ is increasing 

(ܿᇱሺ∙ሻ ൒ 0) and convex (ܿᇱᇱሺ∙ሻ ൒ 0) for all indemnity schedule ܫ. In practice, the 

insurance cost is usually set to be directly proportional to the indemnity, i.e. set equal to 

the indemnity multiplied by a so called load factor. We adopt this approach for the 

purposes of this essay14 and define the cost function ܿሺ∙ሻ as  

 

(3.3) ܿሾܫሿ ൌ  ܫߠ

 

where ߠ ൐ 0 is a load factor and ܿሺ0ሻ ൒ 0. If the insurance company offers the contract 

ሾܫሺݔሻ, ܲሿ and the realization of ݔ represents a loss to the agent, the final wealth of the 

insurer is ଴ܹ ൅ ܲ െ ሻݔሺܫ െ ܿሺܫሻ. In this case, a necessary condition for the insurance 

company to offer such a contract is 

                                                 
14 More general forms of the cost function can be incorporated in the presented framework in a 
straightforward fashion. We use a simpler form primarily for the reason of tractability. 
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൫ݒܧ (3.4) ଴ܹ ൅ ܲ െ ሻݔሺܫ െ ܿሺܫሻ൯ ൒ ሺݒܧ ଴ܹሻ 

 

Proposition 1. If insurer exhibits risk-neutral preferences (equation 3.2) and the 

insurance cost follows the structure of equation (3.3), then under (3.4) the constraint on 

the insurance contract ሾܫሺݔሻ, ܲሿ is  

 

(3.5) ܲ ൒ ሺ1 ൅  ሻ൯ݔሺܫ൫ܧሻߠ

(after Raviv (1979)). 

Proof: Given the linearity of the utility function (3.2), the condition (3.4) 

becomes 

 

(3.6) ܽ ቀ ଴ܹ ൅ ܲ െ ሻ൯ݔሺܫ൫ܧ െ ሺ1 ൅ ሻ൯ቁݔሺܫ൫ܧሻߠ ൅ ܾ ൒ ܽ ଴ܹ ൅ ܾ 

 

Solving for ܲ results in (3.5).                                                                         ∎ 

The optimal insurance contract is formed by the pair ሾܫ∗ሺݔሻ, ܲ∗ሿ that maximizes 

the expected utility of the economic agent while at the same time not decreasing the 

expected utility of the insurer. Formally, 

(3.7) 

∗ܫ ൌ argmax
ூ

න ݔ݀ න ݕሺݑ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ, ݕሻ݀ݕ
௦௨௣௣ ௬௦௨௣௣ ௫

 

 

s.t. (3.5) and ܫሺݔሻ ൒ 0 
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where ݄ሺݔ,  This .ݕ and income ݔ ሻ is the joint probability density function of the indexݕ

is a calculus of variations problem with the optimal solution ܫሺ⋅ሻ being a function rather 

and just a single point (Chiang 1999). 

3.2.1 Optimality Conditions 

Raviv (1979) showed that the constraint in (3.5) is binding at the optimum. 

Therefore the problem in (3.7) can be solved rewritten as: 

 

(3.8) 

ሻݔሺ∗ܫ ൌ argmax
ூሺ௫ሻ

න ݔ݀ න ݕሺݑ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ, ݕሻ݀ݕ
௦௨௣௣ ௬௦௨௣௣௫

 

Subject to: 

ܲ ൌ ሺ1 ൅ ሻߠ ׬ ݔሻ݀ݔሻ݄௫ሺݔሺܫ    and    ܫሺݔሻ ൒ 0 

 

where ݄௫ሺݔሻ is the probability density function of the index ݔ. The corresponding 

Hamiltonian can be written as: 

 

ܪ ൌ නݑሺݕ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ, ݕሻ݀ݕ െ ߣ ൤ሺ1 ൅ ሻනߠ ݔሻ݀ݔሻ݄௫ሺݔሺܫ െ ܲ൨ 

 

Since the latter does not depend on ܫ′ሺݔሻ ≡ డூሺ௫ሻ

డ௫
, the optimal solution is 

determined by the Euler-Lagrange conditions. 
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(3.9) 

ܪ߲
ܫ߲

ൌ න ݕᇱሺݑ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ, ݕሻ݀ݕ
௦௨௣௣	௫

െ ሺ1ߣ ൅ ሻݔሻ݄௫ሺߠ ൌ 0 

ܪ߲
ߣ߲

ൌ ሺ1 ൅ ሻනߠ ݔሻ݀ݔሻ݄௫ሺݔሺܫ െ ܲ ൌ 0 

 

 The conditions expressed in equation (3.9) define a set of index values ܺ over 

which the contract pays an indemnity. Arrow (1974) and Raviv (1979) demonstrated that 

this set is a continuous interval ܺ ൌ ሾ0,  ሿ in the case of a traditional insurance contractݔ̅

where the payoff is determined by the realization of a loss. However, in the case of an 

index contract this result does not necessarily hold true. In fact, any meaningful 

statements regarding this interval can be only made by making specific (if rather limited) 

assumptions about the utility function. For example, the result of Mahul (1999) follows 

from equation (3.9) under the assumption of quadratic utility. 

Integrating the first condition (3.9) with respect to ݔ and taking into account that 

ሻݔ௫ሺ݄׬ ൌ 1, gives 

 

ߣ (3.10) ൌ
1

1 ൅ ߠ
ඵݑᇱሺݕ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ,  ݕ݀ݔሻ݀ݕ

 

Together, the conditions (3.9)-(3.10) indirectly define the optimal contract 

indemnity ܫ∗ሺݔሻ. 
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While these equations do not have closed-form solutions, they can be solved 

numerically for any given choice of the utility function ݑ and the joint distribution 

function ݄ሺݔ,  .ሻݕ

3.2.2 Algorithm for Solving the Euler-Lagrange Equations 

 The first order conditions expressed in equations (3.9)-(3.10) can be solved 

iteratively using the following algorithm. For convenience, denote 

 

ሻݔሺܣ (3.11) ൌ නݑᇱሺݕ ൅ ሻݔሺܫ െ ܲሻ݄ሺݔ,  ݕሻ݀ݕ

 

 Then the optimality conditions (3.9)-(3.10) can be rewritten as 

 

ሻݔሺܣ (3.12) െ ሺ1 ൅ ሻݔ௫ሺ݄ߣሻߠ ൌ ሻݔሺܨ ൌ 0  at all  ݔ 

 

and 

 

ߣ (3.13) ൌ
1

1 ൅ ߠ
නܣሺݔሻ݀ݔ 

 

From the numerical standpoint, equation (3.12) represents a set of nonlinear 

equations problems that need to be satisfied at all values of the index ݔ, while equation 

(3.13) is a cumulative condition on the whole indemnity function. Newton methods and 

function iteration method are commonly used to find solutions to nonlinear equations 
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(Miranda and Fackler, 2002). Newton methods are generally considered faster, however 

they require calculation of derivatives and are best suited for continuously differentiable 

function. In our case, the indemnity function is expected to be equal to zero on one or 

several intervals, which would result in discontinuity of first derivatives. Therefore, we 

opt for the function iteration method in order to ensure convergence. 

 In order to use function iteration, the root-finding problem in equation (3.12) is 

recast as a fixed-point problem 

 

ሻݔሺܫ (3.14) ൌ ሻݔሺܫ െ ݈ܵܿܽ݁ ∙  ሻݔሺܨ

 

where ݈ܵܿܽ݁ is scaling factor used to regulate the speed of convergence and ensure 

stability of the iterative process. The solution algorithm then can be written as follows.  

Step 0: Select an initial guess for the indemnity function ܫ଴ሺݔሻ.  

Step ݇: Use ܫ௞ିଵሺݔሻ to 

 Compute the premium ௞ܲ ൌ ሺ1 ൅ ሻߠ ׬  ݔሻ݀ݔሻ݄௫ሺݔሺ௞ିଵሻሺܫ

 Update ܣ௞ሺݔሻ ൌ ݕᇱሺݑ׬ ൅ ሻݔ௞ିଵሺܫ െ ௞ܲሻ݄ሺݔ,  ݕሻ݀ݕ

 Compute ߣ௞ ൌ ሺ1 ൅ ሻିଵߠ   ݔሻ݀ݔ௞ሺܣ׬

 Calculate ܨ௞ሺݔሻ ൌ ሻݔ௞ሺܣ െ ሺ1 ൅  ሻݔ௞݄௫ሺߣሻߠ

 Stop if ‖ܨ௞ሺݔሻ‖ ൑  is a chosen tolerance level. Otherwise, update ߝ where ,ߝ

ሻݔ௞ሺܫ :ሻ asݔ௞ሺܫ ← ሻݔ௞ିଵሺܫ െ ݈ܵܿܽ݁ ⋅  .ሻݔ௞ሺܨ

 At all points ݔ where the updated value of ܫ௞ሺݔሻ turns out to be negative, set 

ሻݔ௞ሺܫ ൌ 0. 
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 Repeat the above as needed 

Generally speaking, the first order conditions equations (3.9)-(3.10) have to be satisfied 

at all ݔ, i.e. at an infinite number of points. For practical purposes, a grid of 1001 nodes 

in the domain of ݔ is used to provide a reasonably accurate approximation of the optimal 

contract payoff function. 

3.3 Application Procedure and Data 

 In order to illustrate the presented method for constructing the optimal index 

insurance contract, we use the case of Arkansas soybeans introduced in Section 2.2. In 

particular, we design rainfall insurance contracts for representative farmers for a subset 

of counties and phenological growth stages discussed in Section 2.2.1. Table B-11 shows 

the counties and the growth stages selected. 

The general approach is to use the cumulative rainfall during a specific period as 

an index ݔ, and the per-acre yield as a measure of the income ݕ in equation (3.7). 

Without loss of generality, the indemnity ܫሺݔሻ and premium ܲ of the insurance contracts 

are assumed to be denominated in units of yield. The distribution ݄ሺݔ,  ሻ then reflectsݕ

the joint distribution of rainfall and yields for the area and growth stage considered. 

As in Section 2, we assume that the representative farmer’s preference is 

described by the CRRA power utility function  

 

,ݖሺݑ (3.15) ሻߛ ൌ
ଵିఊݖ

1 െ ߛ
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where ߛ is the risk aversion parameter ranging from 1 to 3 (as per Myers (1989) and 

Wang et al. (1998)). For purposes of this Essay the load factor 	ߠ	is set equal to 0, i.e. the 

premiums are assumed actuarially-fair. 

3.3.1 Estimation of Distributions 

 We use the kernel-density method to estimate the marginal distribution of index 

and yield, viz (Wand and Jones 1994). 

 

(3.16) ݄కሺߦሻ ൌ
1
కߜܶ

෍ܭቆ
ߦ െ ௝ߦ
కߜ

ቇ

்

௝ୀଵ

 

 

where ߦ is the random variable of interest (either the index ݔ or the yield ݕ), ܭሺ∙ሻ is a 

kernel function, ߜక is the degree of smoothness, and ൛ߦ௝ൟ௝ୀଵ
்

 are the observations 

(historical realizations) of interest.  

We estimate the joint probability distribution using the copula method (Sklar 

1959), namely 

 

(3.17) ݄ሺݕ, ሻݔ ൌ ܿ൫ܪ௬,  ሻݔሻ݄௫ሺݕ௫൯݄௬ሺܪ

 

where ݄௫ሺݔሻ and ݄௬ሺݕሻ are the marginal densities from equation (3.16) and ܿ൫ܪ௬,  ௫൯ isܪ

the copula density function evaluated at corresponding CDFs. Following Charpentier et 

al. (2007), we estimate the non-parametric copula density 
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(3.18)  ܿሺݑ, ሻݒ ൌ
1

௫ߜ௬ߜܶ
෍ܭቆ

ݑ െ ௜ሻݕ௬,்ሺܪ

௬ߜ
,
ݒ െ ௜ሻݔ௫,்ሺܪ

௫ߜ
ቇ

்

௜ୀଵ

 

 

where ܭሺ∙ሻ is a bivariate kernel function, ߜ௬ and ߜ௫ are the degrees of smoothness and 

 క,் is the empirical distribution functions defined asܪ

 

ሻߦక,்ሺܪ (3.19) ൌ
1

ܶ ൅ 1
෍ঌሺߦ௜ ൑ ሻߦ
்

௜ୀଵ

 

 

where the indicator function ঌሺܣሻ takes the value of one if the condition ܣ is satisfied 

and zero otherwise. The overall joint distribution is estimated on a 1001 ൈ 1001 grid 

over the ranges of yield and index distributions, respectively. 

Epanechnikov kernel was used to estimate the marginal PDFs for yield and 

index. The same kernel was also used to estimate the copula function. The rule of thumb 

was used to estimate the degree of smoothness, or bandwidth (Li and Racine 2011). 

3.3.2 Initial Guess for Indemnities Function 

The numerical algorithm used to solve the optimal control problem in (3.7) 

requires an initial guess of the indemnity function. For the purposes of this essay, we 

used the “standard” contracts designed based on methodology in Vedenov and Barnett 

(2004) (see Section 2.1.3). Recall that the “standard” contract starts paying when an 

index ߝ falls below a specified strike ߝ∗. Once the index falls below a limit, the insured 

receives the maximum indemnity ݖ. When the index falls between the strike and the 
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limit, the contract pays a proportion of the maximum indemnity. A formal payoff 

schedule can be written as 

 

,ݖ|ߝሺܫ (3.20) ,∗ߝ ሻߤ 	ൌ ݖ	 ൈ

ە
ۖ
۔

ۖ
ۓ

0 ݂݅ ߝ ൐ ,∗ߝ

∗ߝ െ ߝ
ሺ1∗ߝ െ ሻߤ

∗ߝߤ		݂݅ ൏ ߝ ൑ ,∗ߝ

1 ݂݅ ߝ ൑ ,∗ߝߤ

  

 

where the parameter  varies between 0 and 1, with the limiting case of 0 corresponding 

to the conventional proportional payoff with deductible, and 1 corresponding to a “lump-

sum” payment once the contract is triggered regardless of the severity of the shortfall15. 

 The index ߝ is constructed by regressing crop yields on a set of relevant weather 

variables (e.g. rainfall). 

3.3.3 Weather and Yield Data 

Table B-12 shows descriptive statistics of cumulative rainfall for the stages and 

counties selected, and table B-13 displays the descriptive statistics of the soybean 

yields16. 

3.4 Results 

 Figures A-11 through A-13 show probability distribution of yield and rainfall for 

the selected counties. The marginal distributions of soybean rainfall and yield are shown 

                                                 
15 The described contract protects against a shortfall of the index. With trivial modifications, the contract 
can be also constructed to protect against an excess of the index. 
16 For more details about data description refers to section 2. 
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in panels (a) and (b), respectively. The contour plots of the joint probability distributions 

of these variables are shown in panels (c). The estimated joint distributions reflect 

different degrees of dependence from a fairly pronounced in Pulaski to almost 

nonexistent in Phillips and Saint Francis.  

 The scatter plots of data and the index fitted following the approach of Vedenov 

and Barnett (2004) are shown in panels (d). In particular, the weather index was 

constructed using the parametric regressions between the soybean yield and the 

cumulative precipitation received during the corresponding phenological stages (table B-

11). Insignificant variables were dropped from all models, and models with the highest 

adjusted R2 were used to derive the weather indices for each county. The selected 

models and their corresponding statistics are presented in table B-14. 

 The goodness of fit of selected models ranges from 7% (Phillips and Saint 

Francis) to 20% (Pulaski). Linear models turned out to be the best in describing the 

relationship between the yields and cumulative rainfall. The parameters of the standard 

contracts constructed for the risk aversion parameter equal to 2 are reported in table B-

15. 17 The corresponding indemnity functions were then used as initial guesses for the 

optimal contracts. 

 Shown in figures A-14 through A-16 are indemnities of the standard and optimal 

contracts for the selected counties and growth stages for the risk aversion parameter 

equal to 2. The optimal contracts have more irregular payoff structure, which 

                                                 
17 The parameters calculated using risk aversion parameter  of 1.5 and 3 turned out to be fairly similar and 
did not lead to qualitative changes in the results. 
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presumably better reflect the dependence between the yields and the rainfall. For each 

county, optimal contracts start paying indemnities earlier than do the standard contracts. 

In other words, the “strikes” of the optimal contracts are higher than those of standard 

contracts. Results suggest that the indemnities of optimal contracts are higher than those 

of standard contracts for any precipitation level.  

The risk-reducing effectiveness of the standard and optimal contracts are 

compared in table B-16, which also reports premiums and liabilities for each contract 

under different risk aversion parameters. Results suggest the variation of certainty 

equivalent (CER) is positive for both contracts, meaning that both reduce the risk 

exposure to lack-of-water- event. By construction, optimal contracts provide higher risk 

reduction than the standard contracts. 

 Results show that optimal contracts would offer higher levels of risk reduction 

than those offered by the standard contracts across counties. For instance, percentage 

change of CER between both contracts varies 0.35 to 0.80 percent when  equal to 2 (see 

table B-16). It seems that counties (Pulaski) with higher degree of dependence between 

crop yield and rainfall (see figures A-11 through A-13) reach higher risk reduction than 

otherwise. 

Results suggest that the optimal contracts also provide higher risk protection than 

that provided by the standard contracts when the risk aversion parameter increases. In 

fact, due to this higher protection, the indemnities of optimal contracts are higher than 

those of standard ones. As results, the former exhibits higher premiums and maximum 

indemnities. This pattern is hold across counties. 
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3.5 Conclusions 

 This essay proposes a procedure for deriving the optimal payoffs of index 

insurance contracts. We formulate the expected utility maximization problem with 

insurance à la Raviv (1979), where the indemnity function is conditional on realization 

of an index related but not equal to the actual loss. The solution to the problem is given 

by the Euler-Lagrange equations, which does not have a closed-form solution but can be 

solved numerically. 

Soybean production in Arkansas is used as case study in order to test the validity 

of our approach. We apply the methodology for selected counties and phenological 

growth stages of soybean plant. We use the “standard” contracts in the sense of Vedenov 

and Barnett (2004) as a benchmark. 

As expected, we find that the risk reduction provided by the optimal contracts is 

better than that of the standard contracts. The degree of improvement varies from county 

to county and seems to be affected by the dependence structure between the index and 

yield. We find that the optimal contract remains attractive to the insured under different 

risk aversion parameter. Although the optimal payoff structures can be derived for 

different risk aversion parameter, results cannot be generalized across counties.  

Future research should concentrate on analyzing the behavior of the optimal 

contract payoffs under as general conditions as possible. Furthermore, the effect of 

different loading factors and preference specifications can be considered. 
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4. USING WEATHER DERIVATIVES IN WATER ALLOCATION DECISIONS: 

A CASE OF GUANAJUATO, MEXICO18 

 

Extreme weather events such as droughts could affect the water supply, thus 

making the water allocation a major problem for agriculture. Although water markets 

can increase the efficiency of water use, the implementation of a price system for water 

is not always feasible because of its institutional, social and political connotations. In 

contrast, because of network externalities, water is typically managed as a natural 

monopoly and is underpriced by regulatory authorities. 

In this essay, we look at potential improvements in water allocation strategies 

that could be achieved by using weather derivatives. A particularly interesting situation 

arises when there are two growing seasons, each characterized by different rainfall 

patterns but both dependent on irrigation. Weather derivatives can then incentivize 

adoption of allocation patterns that shift water allocations to the dry season from the wet 

season with the assumption that the wet season farmers can cope with the risk of water 

shortages by using weather derivatives. In other words, these financial instruments could 

not only smooth farmers’ income, but might also induce an inter-temporal reallocation of 

water in irrigation districts, increasing the efficiency of water use in the long term. 

                                                 
18 This section was part of the project “Effectiveness of Weather Derivatives as a Cross-Hedging  
Instrument against Climate Change: The Cases of Reservoir Water Allocation Management in Guanajuato, 
Mexico and Lambayeque, Peru” co-authored with Miriam Juarez-Torres and supported by the Inter-
American Development Bank and the Latin American and Caribbean Environmental Economics  
Program. 
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The analytical model is applied to the Alto Rio Lerma Irrigation District 

(ARLID) in the state of Guanajuato in Mexico. Precipitation variability is of particular 

concern in this area. In the early 1970s, the average return period of extreme events was 

12 years, in the early 2000s it was estimated to be 5 years (Groisman et al. 2005). Heavy 

rainfall events have increased during the rainy season, followed by more severe droughts 

in the dry season  

By 2030 the population growth in Central Mexico is expected to place additional 

pressure on the hydrological regions of Lerma-Santiago-Pacifico and Valle de Mexico 

(Comision Nacional del Agua (National Water Commission) 2010). In fact, this system 

could collapse if precipitation levels in the main basins declines by 7 and 12% as the 

Mexican Institute of Water Technology expects and river flows diminish (Martínez 

Austria 2007). This situation may affect the way the Mexican water authority allocate 

the irrigation water for agricultural districts19. 

This section attempts to provide a modeling support for this task and incorporates 

an analysis of current legal and institutional framework, water tariff system, and 

irrigation infrastructure management based on water rights.  

The rest of the section is organized as follows. The next subsection reviews the 

literature on water allocation and applications of weather derivatives in this context. 

Then, we describe the organization of irrigation districts in Mexico, current allocation 

policies, and agricultural activities of the region under consideration. The third 

subsection presents the general modeling approach proposed in this study. The fourth 

                                                 
19 Ibid. 
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subsection describes data and model parameterization. Subsection 4.5 discusses the 

results, and assesses the effect of weather derivatives on water allocation patters. The 

last subsection concludes and discusses directions for future research. 

4.1 Literature Review 

Developing countries tend to be more vulnerable to extreme weather events such 

as intense rainfall or droughts because they are more dependent on agriculture (Barnett 

et al. 2008). Losses due to extreme weather as a proportion of GDP in these countries 

have been historically higher than in developed countries (Linnerooth-Bayer et al. 2005). 

In order to deal with the effects of the disasters, governments often have to redirect 

resources that would be otherwise used in activities such as education, health, etc. 

(Barnett et al. 2008).  

An approach that emerged in recent years uses index insurance products as a way 

to alleviate the effect of weather events in developing countries (Barnett and Mahul 

2007). Since the early 2000s, numerous cases have demonstrated possible benefits of 

weather index insurance in transferring weather risk to financial markets (Miranda and 

Vedenov 2001; World Bank 2005). These instruments can quickly provide financial 

resources to people at risk of natural disasters because loss assessment is not required.  

High variability of precipitation and temperature in irrigation districts could 

exponentially increase competition for water among users (Valera and Institute 1992; 

Pereira et al. 2002). There is evidence that water authorities already have problems 

managing water supply, given the inflexibility of irrigation infrastructure and the 

instances of high and diversified demand (Brown and Carriquiry 2007) 
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In basins where irrigation districts are typically located, drought is a phenomenon 

that builds slowly over time based on shortages of runoffs from daily rainfall. Weather 

derivatives can transfer the additional costs associated with the provision of water during 

contingency situations to the financial markets.  

There have been a few previous attempts to introduce the weather derivatives to 

the problem of water allocation. Zeuli and Skees (2005) designed a rainfall index 

contract for correcting the inefficiencies produced by water management systems in a 

drought situation. According to the authors, this instrument might reduce the uncertainty 

in supply and demand associated with the extremely conservative estimations of 

available water, which create inefficiencies in the allocation. The paper demonstrates 

that the index insurance creates an incentive for the authority to more accurately estimate 

the availability of water supply and demand sides. The authors did not investigate the 

effect of weather derivatives on water demand. 

 Leiva and Skees (2008) designed a financial instrument based on river flows 

accumulations as a market-based alternative to administrate water supply risk. Using the 

Rio Mayo irrigation system in northwestern Mexico as case study, the authors developed 

a stochastic model that incorporated water release rules and plating response functions. 

This model was used to evaluate the effectiveness of the proposed insurance scheme. 

The authors concluded that the insurance is a viable option from both the demand and 

supply sides, and it could be cost effective for mitigating water supply risk. 

Block et al. (2008) observed that although river inflows are a direct measure of 

the available water in single-reservoir systems, it could be a poor option for hydrological 
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systems with multiple reservoir systems and significant diversion of upstream flows. 

Systems of the latter type are predominant in Mexico and other Latin America countries, 

where irrigation districts are located within hydrological basins.  

 Brown and Carriquiry (2007) proposed an index insurance based on reservoir 

inflows to cover the financial needs of water supplier in situations where droughts are 

persistent20. They suggested that inflows have advantages over storage levels, because 

inflows to reservoir represent integration over space and time of the rainfall in a basin, 

while reservoir storage levels can be manipulated by the water authority.  

Although the previous studies provide a useful insight on application of index 

insurance to water management and allocation problems, their value is somewhat limited 

in developing adaptation strategies for climate change. In particular, they do not 

incorporate the water allocation decision into a dynamic programming framework, 

where central planner makes intertemporal decisions. 

The contribution of this essay is to incorporate new dimensions and challenges to 

the problem initially formulated by Leiva and Skees (2008). The district studies in this 

chapter currently allocates water collected during the rainy season across the wet and dry 

season farmers, but a rainfall shortfall could lead to insufficient allocations in both 

seasons to a particular detriment of dry season farmers. Addition of weather derivatives 

can improve the efficiency of water allocation by redirecting more water from wet to dry 

                                                 
20 The authors based their study on the Angat reservoir in Manila, Philippines. 
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season and by managing wet farmers’ increased risk exposure using weather 

derivatives21. 

4.2 Irrigation Districts in Mexico 

CONAGUA22, a technical and consultative agency, manages water resources in 

Mexico and carries out its functions through 13 river basin organizations. These 

organizations are defined according to the limits of the country’s catchments23 

(Comision Nacional del Agua (National Water Commission) 2008) 

By the second week in September of each year, CONAGUA determines water 

supply based on calculated basin’s runoff generated from previous November to August 

and forecasted rainfall for September and October (Comision Nacional del Agua 

(National Water Commission) 2006). Once the annual volume of restitution run-off is 

calculated, CONAGUA provides water needed to carry our planting activities to 

irrigation districts. CONAGUA also determines fees based on the allocated volume of 

water and receives part of these fees as a recuperation payment (Kloezen and Garcés-

Restrepo 1997).  

The Lerma-Chapala river basin system, one of the river basin organizations, 

covers an area of 54,451 km2 (around 3% of Mexico’s territory) and crosses five states: 

Queretaro, Guanajuato, Michoacán, Mexico and Jalisco. It also serves nine irrigation 

districts and it is a source of water for 11 million people (Mestre 2001). The total runoff 

                                                 
21 While Skees and Leiva (2005) include two productive cycles completely dependent on irrigation water, 
this paper more broadly considers two seasons in the case of Mexico: a Fall-Winter season totally 
dependent on irrigation and a Spring-Summer season depending mainly on rain, with minimum irrigation 
requirements. 
22 CONAGUA stands for Comisión Nacional del Agua (National Water Commission). 
23 The area drained by a river or body of water. 
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of this basin is 4,740 million cubic meters, of which on average 43% is available to the 

irrigation districts (Kloezen et al. 1997). 

4.2.1 The Alto Rio Lerma Irrigation District (ARLID) 

Among the nine irrigation districts, ARLID is the largest and accounts for 

approximately 44% of total water stored. The district receives an average rainfall of 670 

mm during the wet season (from May to October) and 80 mm during the dry season 

(from November to April). Farmers within ARLID, which has an average temperature 

between 18 and 20°C and favorable soils, competitively produces a wide range of crops 

including grains, perennials and vegetables for export (Comision Nacional del Agua 

(National Water Commission) 2010). 

Four dams provide surface water to ARLID. Tepuxtepec with 538 million cubic 

meters (Mm3), Solis (1,217 Mm3) and lake Yuriria (188 Mm3) are interconnected by the 

Lerma river. The Purisima dam (196 Mm3) is fed independently from the other three 

dams. All these dams provide a combined storage capacity of 2,138 Mm3 serving 77,697 

hectares.  

For the sake of the operation and management, ARLID is organized into 11 

modules, each managed by an individual water user association (WUA)24 and its 

operations are based on a water rights system which awards property rights and assigns 

                                                 
24 The 11 modules are: Acambaro, Salvatierra, Jaral del Progreso, Valle de Santiago, Cortazar, Salamanca, 
La Purisima, Irapuato, Abasolo, Corralejo, Huanimaro, and Pastor Ortiz. 
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detailed roles and responsibilities to modules.25 Each module is entitled to a proportional 

share of water available for the irrigation district. These modules are also in charge of 

carrying out the final water allocation to its users and collecting fees from them.  

A limited liability company (LLC) operates, manages, conserves, and maintains 

the irrigation network of ARLID — which includes primary canals, secondary canals, 

and drainage — and coordinates and monitors modules. The LLC plans delivery of 

water resources to the modules on a weekly basis and checks ditch tender reports at each 

module. Due to a growing water shortage and low average efficiency in transmission (65 

percent), ARLID provides irrigation water for only 70 percent of the registered physical 

surface, where the property rights to water are concentrated. 

ARLID’s irrigation cycle starts in early November (when the hydrological cycle 

of the basin begins) and encompasses two production cycles (seasons). The dry season 

(mid-October to April) has been the priority of ARLID because it depends only on 

irrigation water. The wet season (May to mid-October) depends on both rainfall and 

irrigation for satisfying crops’ water requirements.   

4.2.2 The Allocation of Water for Irrigation 

 The volume of water that every module receives is based on an irrigation plan, 

which is the result of negotiations among the CONAGUA, the LLC and the modules 

(Kloezen et al. 1997). The water demand is projected based on the intended planting 

                                                 
25 The water-rights system requires the concessionaire to pay for the volume of extracted water. The 
payment is set in relation to shortages in every region of the country and with different rates for every use. 
Industry and services pay more than urban users, while water for agriculture and farm-related activities is 
free. Thus, the fees that water users pay are related to the cost of operation fee for the irrigation district 
infrastructure and for the use of the main infrastructure (dams, channels, etc.) that CONAGUA operates. 
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estimates that LLC submits to CONAGUA. The latter makes up the difference between 

water demand and supply in this period, which is estimated based on the amount of 

water available at the end of the previous period.  

This section will focus on the module Valle de Santiago (Valle), located in the 

Municipality of Valle de Santiago — the center of ARLID. The module is the third 

largest in terms of irrigated area and was selected because it is the most efficient (the 

transmission rate is 92 percent). Valle de Santiago has a well-organized ownership 

structure, which is extremely useful for the functioning of insurance schemes.  

Valle has two main crop activities mainly irrigated by gravity and each one is 

carried out during different seasons. The farmers grow barley during the dry season and 

cultivate sorghum in the wet one.  

4.3 General Modeling Approach 

For the sake of the analysis, it is assumed that the same representative farmer 

cultivates both crops within the Valle module. This assumption has powerful 

implications because the irrigation districts are water rights systems that provide water 

users in the module with the allocation determined by their non-transferable water rights, 

established by law and linked to a particular piece of land property. While somewhat 

circumventing the issue of property right, this assumption simplifies the problem to an 

intertemporal reallocation of the same volume of water, which allows us to concentrate 

on improvements in the efficiency of water use.26  

                                                 
26 Since water rights are non-transferable, the introduction of insurance does not automatically affect 
those. However, this assumption can be relaxed for a deeper analysis of the issue.   
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For the purposes of this study, the representative farmer is composed of the 

aggregate of all farmers located in the module Valle. This approach conceptualizes all 

producers located in the same region as a single farmer who makes production decisions 

and has water rights. 

The analysis is carried out in two stages. The first stage considers a baseline 

scenario, which solves the dynamic water allocation model under uncertainty originally 

developed by Miranda and Fackler (2002). Based on stochastic prediction of the rainfall, 

the model characterizes authorities’ optimal water allocation between the two crop 

seasons for a single representative farmer. 

The second stage introduces a weather insurance contract that can compensate 

the farmer for precipitation shortfall (the contract payoff is tied to the amount of rainfall 

received during wet season). The optimal allocation strategy is now calculated by the 

authorities under the assumption that weather derivatives can partially substitute for 

decreased water allocation.  

Farmer’s welfare is evaluated in both scenarios by simulating multiple water 

consumption paths over the planning horizon and averaging the utilities over each path. 

4.3.1 Baseline Water Allocation Model  

Consider a water authority who acts as a central planner and allocates reservoir 

water among modules. The central planner makes decisions based on how much water is 

available, how many hectares will be planted, and how much water is needed per 

hectare. It is assumed that the central planner knows the structure of representative 
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farmers’ profit functions to the extent necessary to determine the amount of water 

needed for the farmer27 to maximize his profits. 

We assume that a representative farmer cultivates barley and sorghum. Barley is 

cultivated in the dry season and depends only on water allocated by the central planner. 

Sorghum, which is raised during the wet season, has two sources of water — rainfall and 

water allocated from the reservoir. Furthermore, we assume that each crop is only grown 

in its respective season, i.e. the farmer uses the same land for different crops in different 

seasons. 

 Let ݏ௧ be the amount of water available for a given module at the beginning of 

the year ݐ. This water is held in an upstream reservoir and the water authority decides to 

release the amount ݓ௧
ௗ௥௬ of water during the dry season and ݓ௧

௪௘௧ during the wet season 

so that 0 ൑ ௧ݓ
ௗ௥௬ ൅ ௧ݓ

௪௘௧ ൑  ௧. During the rainy season, the reservoir levels areݏ

replenished by random inflows ߝ such as rainfall. Water available to the module at the 

beginning of period ݐ ൅ 1 is then represented by a controlled Markov process 28  

 

௧ାଵݏ (4.1) ൌ ௧ݏ െ ௧ݓ
ௗ௥௬ െ ௧ݓ

௪௘௧ ൅ ߙ  ௧ାଵߝ

 

where ߙ is a proportion of rainfall water attributable to this module. Thus, the 

distribution of the next period’s state (the transition probability matrix), conditional on 

                                                 
27 Henceforth, the terms “farmer” and “representative farmer” will be used interchangeably. 
28 Markov process is a random process in which the probability of any outcome in a given period depends 
only on the events in the previous period (no long-term memory). A controlled Markov process is a 
Markov process in which the outcome is also affected by a deterministic decision made each period. 
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all currently available information, depends on the current state (amount available to the 

module), the water allocated to the farmer, and the rainfall at the reservoir, namely, 

 

௧ାଵݏ൫ݎܲ (4.2) ൌ ௧ݏ	|ᇱݏ ൌ ,ݏ ௧ݓ
ௗ௥௬ ൌ ,ௗ௥௬ݓ ௧ݓ

௪௘௧ ൌ ,௪௘௧ݓ αε୲൯ ൌ ሺε୲ݎܲ ൌ  ሻߝ

  

where the right hand side refers to a probability of a particular rainfall level that would 

result in ݏᇱ in the next period, given that the level of reservoir in the current period is ݏ 

and that the authority has allocated ݓௗ௥௬ and ݓ௪௘௧. 

We assume that the representative farmer is risk-averse and his preferences can 

be represented by a utility function ݑሺ∙ሻ defined over the profits ߨ, which in turn depend 

on the total water received for crop production. 

In particular, 

 

௧ߨ (4.3)
ௗ௥௬ ൌ ௗܲ௥௬ݕ௧

ௗ௥௬ െ ௪ܲݓ௧
ௗ௥௬ 

  

௧ߨ (4.4)
௪௘௧ ൌ ௪ܲ௘௧ݕ௧

௪௘௧ െ ௪ܲݓ௧
௪௘௧ 
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where ܲሺ∙ሻ represents the output prices for the wet and dry-season crops29, and the price 

of irrigation water is denoted by ௪ܲ. This price represents the cost of water allocation 

that must be paid by the farmers and is assumed to be constant over time.30  

We assume that the farmer uses a divisible technology to produce ݕ௧
ሺ∙ሻ, which is 

characterized by a quadratic production function. For the purposes of this analysis, we 

assume that the crop production functions ݕ௧
ሺ∙ሻ depend explicitly only on the total amount 

of water received either from irrigation or from rainfall. Thus, we consider both sources 

of water as perfect substitutes. Specifically, the production functions are described by  

 

௧ݕ (4.5)
ௗ௥௬ ൌ ܽ଴ ൅ ܽଵݓ௧

ௗ௥௬ ൅ ܽଶ൫ݓ௧
ௗ௥௬൯

ଶ
 

  

௧ݕ (4.6)
௪௘௧ ൌ ܾ଴ ൅ ܾଵሺݓ௧

௪௘௧ ൅ ௧ሻݔ ൅ ܾଶሺݓ௧
௪௘௧ ൅  ௧ሻଶݔ

 

                                                 
29 Each farmer is assumed to be small enough so that input and output prices are not affected by farmer’s 
decisions. 
30 If it were not constant, it would be a decision variable for the planner. In that case the profit 
maximization problem for each farmer would give us water demand as a function of water price. Thus, the 
dynamic optimal allocation would depend on the optimal path of the water price established by the 
planner. Analysis of such a model can be carried out within the presented framework, but is outside of the 
scope of this Essay. 
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where ݔ௧ is the rainfall level observed in the module. Because the dynamic model 

evaluates the marginal effects of water on crop yields, we assume that the farmer has 

already decided on the amount of other inputs31. 

The objective of the central planner is then to seek the optimal water allocation 

strategy ൫ݓ෥௧
ௗ௥௬, ෥௧ݓ

௪௘௧൯ that prescribes the actions ݓ௧
ௗ௥௬ ൌ ෥௧ݓ

ௗ௥௬ሺݏ௧ሻ and ݓ௧
௪௘௧ ൌ

෥௧ݓ
௪௘௧ሺݏ௧ሻ that should be taken in each state at each point in time so as to maximize the 

total expected discounted value of farmer’s utility over an infinite lifetime. Namely, we 

solve  

 

(4.7) max
௪೟
೏ೝ೤;	௪೟

ೢ೐೟
	 ௧ݓሺߨ൫ݑ௧ൣߜ଴෍ܧ

ௗ௥௬ሻ൯ ൅ ௧ݓሺߨሺݑ
௪௘௧ሻሻ൧

ஶ

௧ୀ଴

 
 

 

subject to the transition equation (4.1), where ߜ is the discount factor. This is a discrete 

time, discrete state Markov decision problem and can be analyzed using dynamic 

programming methods based on Bellman’s Principle of Optimality (Miranda and Fackler 

2002).  

In particular, this principle implies that the problem in equation (4.7) can be 

rewritten as a condition that the value function ܸሺݏሻ, which specifies the maximum 

                                                 
31 The constant terms in equations (4.5) and (4.6) may represent conventional inputs (e.g., labor and 
capital) evaluated at “optimal” levels. However, the input usage depends on the weather because of pest 
intensity. Thus, it could be the case that input costs increase over time, especially if extreme weather 
events occur. In this study, we are not considering how this input issue affects the farmer’s profit and 
welfare. 
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attainable sum of current and expected future rewards given that the current reservoir 

level is ݏ, should satisfy the Bellman equation 

 

(4.8) ܸሺsሻ 		ൌ max
௪೏ೝ೤;	௪ೢ೐೟

൛ ௧ݓሺߨ൫ݑ
ௗ௥௬ሻ൯ ൅ ௧ݓሺߨሺݑܧ

௪௘௧ሻሻ ൅  	ൟ	ሺs′ሻܸܧߜ

 

where ݏᇱ ൌ 	ݏ െ	ݓௗ௥௬ െ ௪௘௧ݓ 		൅  as per (4.1). Note that equation (4.8) includes the ′ߝߙ

expected value of the current-period utility of wet season profits, because the latter 

depends on random rainfall during the season. 

4.3.2 Incorporating Weather Derivatives 

 Literature on weather derivatives utilizes a variety of indexes such as cumulative 

rainfall over a defined period, heating degree days, or cooling degree days (Brockett et 

al. 2009). Most contracts are structured as put (call) options which pay an indemnity if a 

specific weather variable falls below (rises above) a pre-specified level (Martin et al. 

2001; Turvey 2001). 

For purposes of this study, we use a contract structure based on V&B. Namely, 

we define the contract as a put option without imposing any limits on contract payoff 

(the “fully proportional” contract of V&B).  This contract pays nothing as long as the 

index is in the acceptable range and pays a proportional indemnity whenever the index 

falls below a specified strike.  

The cumulative rainfall in the module is used as the index, and the strike is set 

equal to the expected rainfall,	ܧሺݔሻ, in the module multiplied by the coverage level ߠ, 

viz. 
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݁݇݅ݎݐݏ (4.9) ൌ  ሻݔሺܧߠ

 

The profit at the strike  

 

ഥ	ߨ (4.10) ൌ ௪ܲ௘௧ ሾ ܾ଴ ൅ ܾଵ݁݇݅ݎݐݏ ൅ ܾଶ݁݇݅ݎݐݏଶ	ሿ 

 

is then used to set the level of protection provided, so that for a given amount ݓ௪௘௧ of 

water allocated, the contract pays an indemnity according to the schedule 

 

,ߠ	|	ݔሺܫ (4.11) ௪௘௧ሻݓ ൌ ቐ
തߨ െ ௪௘௧ሻݓሺߨ ݂݅ ݔ ൑ ݁݇݅ݎݐݏ

0 ݂݅ ݔ ൐ ݁݇݅ݎݐݏ
 

 

Figure A-17 illustrates the indemnity function in equation (4.11). Without loss of 

generality, we assume that the premium is actuarially-fair and is set equal to the 

expected payoff of the contract32  

 

(4.12) ܲሺݓ,ߠ௪௘௧ሻ ൌ ݔሺܫሾܧ | ,ߠ  .௪௘௧ሻሿݓ

 

                                                 
32 Loaded premiums can also be considered within the same framework. 
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Figure A-18 shows the total profits of the wet-season farmer with and without the 

weather derivative, with the vertical distance between both functions representing the 

indemnity payment. 

The insurance payment modifies the profit in the wet season, but otherwise the 

water allocation model in equation (4.7) remains the same. The optimal water allocation 

policies ݓ෥௧
ௗ௥௬ሺݏሻ and ݓ෥௧

௪௘௧ሺݏሻ in the presence of insurance can be again calculated by 

solving the Bellman equation (4.8) with the appropriate modifications.  

4.3.3 Numerical Solution of Bellman Equation  

Generally, the Bellman equation (4.8) does not have a closed form solution, but 

can be solved numerically. In order to do so, we assume that the reservoir level ݏ takes 

only discrete value in the state space ܵ, which enumerates all the states attainable by the 

system. Similarly, the action space ܹ enumerates all possible (discrete) actions or water 

allocations ݓௗ௥௬and ݓ௪௘௧ that may be taken by the water authority. Both spaces are 

assumed to be finite and the water allocation decisions should satisfy the conditions 

 

ௗ௥௬ݓ (4.13) ൑  ݏ

  

௪௘௧ݓ (4.14) ൑ ݏ െ  ௗ௥௬ݓ

 

The probability distributions of rainfall ݔ ∈ ܺ in the module and the total annual 

precipitation ߝ ∈ Η at the reservoir are also discretized over the respective domains. 
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Assuming the infinite horizon, the Bellman equation (4.8) can be then expressed as a 

functional fixed-point equation 

 

(4.15) ܸሺݏሻ ൌ max
௪೏ೝ೤;	௪ೢ೐೟

൝	ݑሺߨሺݓ௧
ௗ௥௬ሻሻ ൅෍݌௑ሺݔሻݑሺߨሺݓ௧

௪௘௧ሻሻ
௫∈௑

൅ ,ݏ|ᇱݏ෍ܲሺߜ ,ݓ ሻ′ݏሻܸሺߝ
ఌ∈୿

ൡ 

 

where the expectations in equation (4.8) are replaced by their discrete form. If the 

discount factor ߜ is less than one and the utility functions for both wet and dry seasons 

are bounded, then by the Contraction Mapping Theorem, this Bellman equation 

possesses a unique solution.  

The policy iteration algorithm (Miranda and Fackler 2002) can be used to solve 

equation (4.15) numerically. To implement this iteration process, we recast the Bellman 

fixed-point equation as a root finding problem 

 

(4.16) 

ܸሺݏሻ 	െ max
௪೏ೝ೤;	௪ೢ೐೟

൝ ௧ݓሺߨሺݑ
ௗ௥௬ሻሻ ൅෍݌௑ሺݔሻݑሺߨሺݓ௧

௪௘௧ሻሻ
௫∈௑

൅ ,ݏ|ᇱݏ෍ܲሺߜ ,ݓ ᇱሻݏሻܸሺߝ
ఌ∈ா

ൡ ൌ 0. 

 

By the Envelope Theorem, the derivative of the left-hand side with respect to ܸ 

is ܫ െ  ሻ, which leads to the iteration ruleݓሺܲߜ
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(4.17) ܸ ← ሾܫ െ ሻሿିଵݓሺܲߜ ൥ݑሺߨሺݓ௧
ௗ௥௬ሻሻ ൅෍݌௑ሺݔሻݑሺߨሺݓ௧

௪௘௧ሻሻ
௫∈௑

൩ 

 

The solution steps would then involve making a guess as to the initial value of ܸ, 

solving the optimization problem in equation (4.15) to find the optimal ݓௗ௥௬ and ݓ௪௘௧ 

for the current value of ܸ, and updating ܸ as per equation (4.17). The solution is found 

when the convergence is achieved. Since the total number of states is finite, the total 

number of admissible policies is also finite. The policy iteration algorithm will terminate 

after finitely many iterations with an exact optimal solution. 

4.3.4 Dynamic Simulation Analysis 

The optimal policy functions ݓௗ௥௬ and ݓ௪௘௧ provide rules as to how the water 

authority should allocate water given the reservoir level. The dynamics of the model can 

be then studied using the dynamic path and the steady-state analysis. 

The dynamic path analysis evaluates the expected path followed by both the 

reservoir level and the optimal irrigation policy over time starting from an initial value 

of the reservoir level. The expectation is taken by averaging a large number of paths 

generated by the Monte Carlo method based on the optimal probability transition matrix, 

the optimal policy, and the vector of initial reservoir levels. 

The steady-state distribution is obtained as the limit of the transition probability 

matrices ܳ௧ ൌ ሺε୲ݎܲ ൌ ݐ ሻ asߝ → ∞. 

 

 



 

72 

 

4.4 Data and Problem Parameterization 

 Before calculating the optimal policies, we need to specify the functional forms 

of the utility, parameterize the profit and productions functions (4.3)-(4.6), and discretize 

the distributions of the rainfall at the module and at the reservoir. 

4.4.1 Utility Function 

 We assume that the representative farmer’s preference is described by the 

Constant Relative Risk Aversion (CRRA) utility function 

 

,ݖሺݑ (4.18) ሻߛ ൌ
ଵିఊݖ

1 െ ߛ
 

 

 

where ߛ is the risk aversion parameter that reflects producers’ willingness to forgo a 

certain amount of risk-premium in exchange for elimination of uncertainty. Financial 

and economics literature suggest the use of CRRA to represent the agent’s preferences 

(Boulier et al. 2001; Cairns et al. 2006). Brandt et al. (2009) pointed out that CRRA 

possesses desirable properties such as double differentiability and continuity that 

increases the efficiency of numerical optimization algorithms, while incorporating 

preferences toward higher-order moments in a simpler way. 

4.4.2 Yield Data 

 Historical module-level yield series were collected from the SIAP (2013)33. They 

represent data on sorghum and barley crops in module Valle from 1985 to 2011. 

                                                 
33 SIAP stands for Sistema de Información Agropecuaria y Pesquera (Information System for Agricultural 
and Fisheries). 
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Historical water allocations for both crops were provided by Comision Nacional del 

Agua (National Water Commission) (2010). Table B-17 displays the range of available 

data, and descriptive statistics for both crop yields and irrigation water. The average 

barley and sorghum yields during the analyzed period were 5.06 and 6.66 tons/ha, 

respectively. Historically, barley farmers have received more water than sorghum 

farmers (5.77 versus 2.92 TCM/ha)34. 

Several unit root tests such as KPPS test, Dickey-Fuller and Phillip-Perron were 

performed to detect whether yields and historical water allocations have stochastic 

trends. All these tests agree that yield series are trend stationary, while all other series 

are stationary.35  

New barley and sorghum varieties have introduced in Valle de Santiago over 

time. These improvements make crop yields incomparable across years. To address this 

problem, yields were detrended following Vedenov et al. (2006). In particular, a 

piecewise log-linear trend equation was fitted for each yield series. The general form of 

the estimated equation is  

 

(4.19) lnሺݕ௧ሻ ൌ ܽ଴ ൅ ܽଵݐ ൅ ܾଵሺݐ െ ଵሻ݀ଵݐ ൅ ܾଶሺݐ െ ଶሻ݀ଶݐ ൅ ⋯൅ ܾ௞ሺݐ െ ௞ሻ݀௞ݐ ൅  ݑ

 

                                                 
34 TCM stands for Thousands of Cubit Meter. 1 TCM is equivalent to 100 mm per hectare. 
35 Unit root results are available upon request. 
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where lnሺݕ௧ሻ is the natural logarithm of yield in year ݐ ;ݐ௜, for ݅ ൌ 1,… , ݇, represent the 

years at which the slope of the equation changes, ݀௜ are dummy variables which are 

equal to 1 for all observations such that ݐ௜ ൑   .is the error term ݑ and 0 otherwise and ,ݐ

We used a nonlinear least square procedure to estimate model equation (4.19). 

This method allowed us to find the points ݐ௜  that yield the best fitting model. Table B-18 

shows the best fit models and their statistics. 

Results suggest that both barley and sorghum yields exhibit two trend breaks 

over the time period analyzed. Based on these estimations, the detrended yields were 

then calculated as: 

 

௧ݕ (4.20)
ௗ௘௧ ൌ ௧ݕ

ଶ଴ଵଵݕ
௧௥

௧ݕ
௧௥   

 

where ݕ௧
௧௥ is the predicted trend in year ݐ. Figure A-19 and A-20 display historical and 

detrended yields for barley and sorghum, respectively. Barley yields exhibit an overall 

upward trend, while sorghum seems to have a period of downward trend between 1994 

and 2000. 

4.4.3 Rainfall Data 

We collected daily precipitation data from the National Meteorological System in 

Mexico (2011) for two weather stations corresponding to module Valle (municipio of 
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Valle de Santiago) 36 and dam Solis (municipio of Acambaro)37. Table B-19 displays the 

descriptive statistics for monthly precipitation data at both stations. Unit root tests 

suggest that all series are stationary.38 Data show that precipitation at dam Solis has a 

higher mean and lower variability than that at Valle. 

The policy iteration algorithm requires the computation of expectations in a 

numerically practical way. The expected value of wet-season utility (see equations 4.15 

and 4.17) requires estimating the probability distribution ݌௫ሺݔሻ of rainfall in Valle. 

Given that sorghum is grown throughout the wet season (planted mainly in April and 

harvested in June), we calculated the cumulative rainfall over this period. The 

continuous distribution was replaced by a discrete approximant using the gamma 

quadrature. In particular, we fit gamma distribution to the observations of the cumulative 

rainfall for module Valle and then used the estimated parameters to generate quadrature 

nodes and weights.  Figure A-21 shows the estimated probability distribution and the 

histogram of the data. 

In a similar way, the discretized distribution of total annual precipitation ࢿ at dam 

Solis was obtained by fitting a gamma distribution to the cumulative precipitation 

observed from November in year ݐ through October ݐ ൅ 1. The estimated parameters 

were then used to determine the quadrature nodes and weights. The latter were used in 

                                                 
36 Municipio is an administrative division in Mexico similar to county in USA. 
37 Rainfall data were collected from weather station 11079 for Valle de Santiago and from 11076 for Dam 
Solis. 
38 Unit root results are available upon request. 
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constructing the transition probability matrix ܲሺݏᇱ|ݏ, ,ݓ  .ሻ in equations (4.15) and (4.17)ߝ

Figure A-22 shows the estimated probability distribution and the histogram of the data. 

4.4.4 Parameterization 

Table B-20 summarizes all parameter values used in the analysis. The collected 

data were used to parameterize the functional forms in equations (4.3)-(4.6). Parameters 

of the production function were estimated using the OLS procedure. For barley 

production function, we ran the regression between barley yields versus water allocated 

during the dry season (see equation 4.5). Results suggest that all parameters were 

statistically significant at 2% level, except for the constant term. 

 For sorghum production function (see equation 4.6), we ran the regression 

between sorghum yield and water allocated during the wet season plus precipitation 

received from April to June. Results suggest that all parameters are statistically 

significant at 8% level, except for the constant term.  

The prices of crop yields were set equal to their levels in 2010, the last data 

available, and expressed in pesos per tons. We allow ݏ௧ ∈ ሾ0, ܵ̅ሿ, where ܵ̅ is the 

maximum possible allocation level set to 10 TCM/ha. The proportion of rainfall water 

attributable to module Valle ߙ is set equal to 0.11, which is the water right assigned by 

ARLID to module Valle. The risk aversion parameter ranges from 1 to 3 (as per Myers 

(1989) and Wang et al. (1998)). We set the coverage level ߠ equal to 100% and the 

expected rainfall in module Valle was calculated using the corresponding probability 

distribution. The profit at strike level was calculated using equation (4.10). Finally, all 

prices are expressed relative to price of barley.  
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4.5 Results and Sensitivity Analysis 

4.5.1 Water Allocation Strategies 

 Figure A-23 shows the optimal water allocation policy without insurance for both 

crops: barley (dry season) and sorghum (wet season). The results suggest that regardless 

of water available, central planner allocates more water to the dry-season farmers than to 

the wet-season farmers. Furthermore, when there is not enough water to satisfy farmers’ 

needs in both seasons, it is optimal not to allocate water to wet season farmers. As 

expected, the more water is available, the more water is allocated in both seasons. These 

policy functions prescribe the optimal action to be taken at a given reservoir level.  

Figure A-24 displays the expected paths of the reservoir level and the optimal 

water allocation levels simulated over a 50 year horizon from the initial reservoir level 

equal to zero. Results suggest that in the long-run the reservoir level averages 1.41 

TCM/ha and this level is reached in 10 years. Given that level, the optimal water 

allocation policy in the long-run is around 0.6 and 0.3 TCM/ha for the dry and wet 

season. The steady-state distribution also suggests that in the long-run the most common 

state (i.e. the most frequent reservoir level) would be around 1.4 TCM/ha (figure A-25). 

Figure A-26 shows the optimal irrigation policy with insurance for both crops: 

barley (dry season) and sorghum (wet season). Here, the central planner still allocates 

more water to dry season farmers than to wet season farmers regardless of the level of 

reservoir. The dry-season farmers receive more water with the insurance than without it. 

The situation is completely different for the wet-season farmers. Not only the central 

planner forgoes the needs of the wet-season farmers when there is not enough water, he 
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now does not starts allocating water to them until the reservoir reaches higher levels than 

in the scenario without the insurance. 

In the long-run, the inclusion of the weather index insurance has also an impact 

on the expected path followed by the reservoir water and the optimal irrigation policy 

(figures A-27 and A-28). While the steady-state reservoir level remains relatively 

unchanged (1.42 TCM/ha vs. 1.41 TCM/ha without the insurance), the steady-state 

allocations are redistributed from wet- to dry-season farmers. The former receive only 

0.05 TCM/ha vs. 0.20 TCM/ha without insurance, while the latter receive 0.76 TCM/ha 

vs. 0.65 TCM/ha without insurance.  

Given a rather small change in the steady-state level of the reservoir from one 

scenario to the other, it seems that the availability of weather derivatives induces a 

substitution effect between the two seasons in the sense that the central planner now 

allocates an additional amount of water to dry season farmers — the amount that 

previously was a part of wet season farmers’ allocation. 

 Note that despite redistribution of water allocation, the overall welfare of the 

farmers increase. Figure A-29 shows the value function with and without the insurance. 

This value function represents the maximum sum of current and expected future rewards 

attained by both wet- and dry- season farmers, given a specific reservoir level. Results 

suggest that regardless of water available, both wet-and-dry season farmers reach higher 

rewards when the central planner provide the weather index insurance to wet season 

farmers. As expected, the more water is available, the higher the reward is.  
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The availability of weather index insurance results in a better water allocation 

policy. The exchange of water between both seasons allows the representative farmer to 

reach higher levels of utility. In order to verify the robustness of this result, we perform 

sensitivity analysis by varying some of the model parameters. 

4.5.2 Sensitivity to Coverage Level 

 Figure A-30 shows the optimal water allocation for dry and wet season farmers 

with different coverage levels. Regardless of the coverage levels, the substitution effect 

is still present albeit at a diminishing scale. Intuitively, coverage levels below 100% do 

not fully protect wet-season farmers against rainfall shortfall, and therefore the central 

planner reallocates smaller proportion of their water share to the dry-season farmers. 

The overall welfare of both farmers is still higher with insurance than without it even at 

the coverage levels below 100% (figure A-31). As expected, the higher the coverage 

level is, the higher the benefit of the insurance. 

4.5.3 Sensitivity to Prices 

 Next, we compare the optimal water allocation policies with and without 

insurance for different ratios ௪ܲ௘௧/ ௗܲ௥௬	 between the prices of sorghum (wet season) and 

barley (dry season). The baseline case corresponds to the ratio of 1.15 (table B-20), 

which we varied up and down by 25%. Figures A-32 and A-33 show the resulting 

optimal water allocation policies and figure A-34 the value functions. 

 Results suggest that higher relative prices of wet-season crop result in a 

reallocation effect either with or without the weather derivative. The central planner 

allocates less water to wet-season farmers than to dry- season farmers when relative 
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prices of wet-season crop increases (see figure A-32 and A-33), as losses of the dry-

season crop have higher impact on the overall welfare. In fact, the relative price of wet-

season crop increases the overall welfare, represented by the value function, increases 

(see figure A-34).  

 As expected, when the dry-season crop is relatively more profitable, the opposite 

holds true. 

4.5.4 Effect of the Relative Risk Aversion Parameter 

Next, we compare the optimal water allocation policies with and without 

insurance for different the risk aversion parameter ߛ. Figure A-35 through A-37 show 

the resulting optimal water allocation policies and corresponding value functions for 

values of risk aversion parameter ranging from 1.5 to 2.5 

Results suggest that when farmers are more risk averse, the central planner tends 

to allocate less water to dry-season crop than to wet-season crop. In this case, the central 

planner would keep the wet-season farmer’s share, since they prefer certain allocation 

from the reservoir to the uncertainty of the rainfall even with the insurance (see figures 

A-35 and A-36). The opposite hold true when the farmers become less risk averse. 

Figure A-37 shows the overall welfare under different risk aversion parameter.  

4.5.5 Sensitivity to Distribution of Rainfall 

Finally, we consider the effect of changes in precipitation pattern on the water 

allocation policies. Namely, we vary the shape parameters ߙ of the gamma distributions 

used to model the rainfall in module Valle and dam Solis. Figure 38 displays variations 

in the corresponding distributions when the shape parameter decreases by 50% relative 
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to the maximum likelihood estimator (table B-20). The scale parameter β is kept 

constant at its estimated. Generally speaking, lower values of the shape parameter shifts 

the rainfall distributions to the left thus increasing the probability of low precipitation 

levels. 

Figures A-39 and A-40 shows the optimal irrigation policy for both seasons 

assuming that the shape parameter of the rainfall distribution in module Valle decreases 

by 50%. This corresponds to the situation when the farmers receive less rainfall, even 

though the amount of water at reservoir remains the same. Without insurance, the central 

planner increases water allocation to the wet-season farmers, since they no longer can 

rely on rainfall to meet crop water needs. When the insurance is available, central 

planner increases the amount of water allocated to dry season farmers, but does not 

change the amount assigned to wet-season farmers. In this case, the weather insurance 

effectively compensates the wet-season farmers for the loss of rainfall. 

Similarly, figure A-41 shows the optimal irrigation policy for both seasons 

assuming that the shape parameter of the rainfall probability distribution at dam Solis 

decreases by 50%. This corresponds to the situation of normal precipitation, but lower 

overall amount of water available for irrigation. As expected, when the precipitation 

level at dam Solis is low, the central planner allocates less water in both seasons relative 

to the baseline scenario. Availability of the proposed insurance scheme, makes it optimal 

to allocate no water at all to wet season farmers while increasing the overall welfare. 
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4.6 Conclusions 

 This essay introduces a weather-based insurance contract as a tool for managing 

water supply risk in the Alto Rio Lerma Irrigation District (ARLID) in the state of 

Guanajuato in Mexico. The analysis is performed from the standpoint of a central 

planner allocating water for irrigation between the representative farmers operating 

during dry and wet season. 

We look at the potential improvement in water allocation strategies that can be 

achieved using such an insurance tool. The results suggest that these financial 

instruments can incentivize the adoption of new allocation patterns which considers 

more generous allocations for dry-season farmers while providing reduced allocations 

for wet-season farmers. The latter are assume to be able to cope with the risk of rainfall 

shortages by using the derivatives. At the same time, the overall welfare of the farmers 

increases. 

As expected, higher coverage levels result in higher amounts of water reallocated from 

the wet- to dry-season farmers, although higher degree of risk aversion reduces the 

attractiveness of the insurance. An interesting result is that the weather derivatives can 

help to mitigate the effect of lower water availability (e.g. due to less frequent rainfall at 

the reservoir) as long as the distribution of the rainfall at the farmer location remains the 

same. 

While the analysis is based on a somewhat stylized model, it can be expanded in 

a straightforward way to incorporate more realistic features. For instance, crop 

productivity may depend on other factors (e.g. labor, capital) rather than total water 
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received only. The insurance scheme can also be designed for both lack and excess 

rainfall.  

This is an exploratory study about how a new insurance scheme could improve 

water allocation policies. We assume that farmers have water rights, but it is the central 

planner that manages them in order to maximize the total welfare. In reality, the 

proposed insurance scheme would require modifications of the legal arrangements 

underlying these rights.  

Nevertheless, the adoption of water allocation policies supported by weather 

derivatives can be an effective strategy of water allocation that could be utilized in 

irrigation districts. Modules of irrigation districts are potential targets for deployment of 

these instruments. Governments could support the operations of this scheme as an 

integral strategy against emergencies and disasters. Also they could assist modules in 

developing the institutional features needed for weather insurance such as legal and 

regulatory framework, data collection and management, training of insurance suppliers 

and consumer education. Once weather insurance is working, it is likely to be an 

effective tool in improving water management in irrigation districts.   
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APPENDIX A: FIGURES 

 

Figure A-1. Suggested classification of soil types for soybean production 

 

 

pH level

Texture Fine Medium Coarse Coarse Medium Fine Texture

Well-drained soilPoor Soil Drainage

Soil Type I

Soil Type II

Soil Type III

Others

5.8 - 7.0

4.0 - 5.8

> 7.0



 

96 

 

Figure A-2. Payoff structure of the agronomic contract with different cap factor   
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Figure A-3. Payoff structure of the agronomic contract with different scale factor  
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Figure A-4. Locations of counties selected for analysis and corresponding weather 

stations in Arkansas state 
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Figure A-5. Joint probability distributions of rainfall and soybean yields, Independence County 
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Figure A-6. Joint probability distributions of rainfall and soybean yields, Jackson County 
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Figure A-7. Joint probability distributions of rainfall and soybean yield, Crittenden County 
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Figure A-8. Joint probability distributions of rainfall and soybean yield, Phillips County 

 

Rainfall (mm)

Y
ie

ld
 (

B
u/

ac
)

0.235 0.148 0.117

0.137 0.171 0.192

Panel (a): Vegetative Stage

0 100 200 300 400

10

20

30

40

50

Rainfall (mm)

Y
ie

ld
 (

B
u/

ac
)

0.431 0.064 0.005

0.392 0.098 0.009

Panel (b): Reproductive Stage

0 100 200 300 400 500

10

20

30

40

50

Rainfall (mm)

Y
ie

ld
 (B

u/
ac

)

0.456 0.035 0.010

0.402 0.073 0.024

Panel (c): Maturity Stage

0 50 100 150

10

20

30

40

50

Rainfall (mm)

Y
ie

ld
 (B

u/
ac

)
0.410 0.088 0.003

0.332 0.161 0.006

Panel (d): Whole Season

0 200 400 600 800

10

20

30

40

50



 

103 

 

Figure A-9. Joint probability distributions of rainfall and soybean yield, Saint Francis County 
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Figure A-10. Joint probability distributions of rainfall and soybean yield, Pulaski County 
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Figure A-11. Joint and marginal probability distributions for rainfall and soybean yields, Phillips county, maturity 

stage 
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Figure A-12. Joint and marginal probability distributions for rainfall and soybean yields, Saint Francis county, 

maturity stage 
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Figure A-13. Joint and marginal probability distributions for rainfall and soybean yields, Pulaski county, vegetative 

stage 
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Figure A-14. Payoff structure of the standard and optimal contract, Phillips county 
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Figure A-15. Payoff structure of the standard and optimal contract, Saint Francis county 
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Figure A-16. Payoff structure of the standard and optimal contract, Pulaski county 
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Figure A-17. The profit functions π of the wet-season farmers with and without weather derivatives 
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Figure A-18. Payoff structure of the weather derivatives contract 
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Figure A-19. Barley (dry season) yields in module Valle de Santiago, Mexico, 1989-2010 
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Figure A-20. Sorghum (wet season) yields in module Valle de Santiago, Mexico, 1989-2005 
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Figure A-21. Relative frequency distribution of cumulative rainfall (from April to June) in the municipality of Valle de 

Santiago, Mexico, 1942-2010 
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Figure A-22. Relative frequency distribution of cumulative rainfall (from November to October, next year) at the dam 

Solis, Mexico, 1961-2011 
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Figure A-23. Optimal water allocation policy without insurance 
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Figure A-24. Optimal state path without insurance 
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Figure A-25. Steady state distribution without insurance 
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Figure A-26. Optimal water allocation policy with insurance 
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Figure A-27. Optimal state path with insurance 
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Figure A-28. Steady state distribution of water level in the reservoir with insurance 
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Figure A-29. Optimal value function 
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Figure A-30. Optimal water allocation policy with insurance for different coverage levels 

 

Note: coverage level is measured as percent of expected rainfall in the module
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Figure A-31. Optimal value function for different coverage levels 
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Figure A-32. Water allocation decisions under different ratios of wet- and dry-season crop prices without weather 

derivatives 
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Figure A-33. Water allocation decisions under different ratios of wet- and dry-season crop prices with weather 

derivatives 
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Figure A-34. Value functions for different ratios of wet- and dry-season crop prices 
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Figure A-35. Water allocation decisions under different relative risk aversion parameter without weather derivatives 
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Figure A-36. Water allocation decisions under different relative risk aversion parameter with weather derivatives 
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Figure A-37. Value functions for different relative risk aversion parameter  
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Figure A-38. Comparison of gamma probability distributions with different shape 

parameters α 
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Figure A-39. Water allocation decision without weather derivative when the shape parameter  of the rainfall 

distribution for Valle and Solis decreases 50%  
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Figure A-40. Water allocation decision with weather derivative when the shape parameter  of the rainfall distribution 

for Valle and Solis decreases 50%  
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Figure A-41. Value functions when the shape parameter  of the rainfall distribution for Valle and Solis decreases 

50% 
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APPENDIX B: TABLES  

 

Table B-1. Water requirements and duration of each stage of soybean growth 

 

  Water (mm) 
Days 

Stages Minimum Maximum 
Vegetative 119 184 51 
Reproductive 291 452 64 
Maturity 41 64 18 
Entire Season 450 700 133 
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Table B-2. Distribution of soil type across counties selected for analysis 

 

County Soil Type I Soil Type II Soil Type III Other 
Production 

Area 
(%) (acres) 

Crittenden 0.4 18.9 78.6 2.1 171,042 
Independence 63.1 27.8 9.2 0.0 25,266 
Jackson 4.8 78.6 15.2 1.4 134,917 
Phillips 0.3 46.8 49.8 3.1 161,460 
Pulaski 22.8 30.3 26.9 20.0 25,465 
St. Francis 0.3 50.7 49.0 0.0 136,357 
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Table B-3. Descriptive statistics of precipitation and temperatures for single soil-type counties 

 

  Precipitation (mm)   Temperature (°C) 
Variables\Stages Mean Std.Dev C.V. Min Max   Mean Std.Dev C.V. Min Max 
  Independence (soil type I) - station code: 30460 
                        
Vegetative 154.3 77.7 0.5 24.8 405.8   26.3 3.9 0.2 19.5 34.1 
Reproductive 185.2 85.0 0.5 24.4 412.5   25.4 3.9 0.2 18.1 34.3 
Maturity 54.6 49.8 0.9 0.0 236.8   19.0 4.6 0.2 10.1 27.1 
Whole season 394.0 135.8 0.3 132.0 672.4   24.9 3.9 0.2 18.5 32.5 
  Jackson (soil type II) - station code: 35186 
                        
Vegetative 170.1 81.9 0.5 29.4 377.7   23.3 2.3 0.1 19.2 29.7 
Reproductive 183.1 82.0 0.5 27.0 413.5   24.9 2.5 0.1 21.2 31.3 
Maturity 54.4 50.7 0.9 0.8 230.4   20.2 3.0 0.2 14.9 26.6 
Whole season 407.6 134.7 0.3 192.4 872.8   23.7 2.3 0.1 20.0 28.9 
  Crittenden (soil type III) - station code: 37712 
                        
Vegetative 164.2 79.0 0.5 37.6 375.2   25.6 3.3 0.1 20.7 31.1 
Reproductive 174.2 77.7 0.5 19.5 341.0   27.4 3.4 0.1 22.1 34.2 
Maturity 53.4 47.0 0.9 0.0 232.7   23.4 4.2 0.2 16.6 31.5 
Whole season 391.8 115.0 0.3 122.7 728.9   26.1 3.4 0.1 21.5 32.1 



 

139 

 

Table B-4. Descriptive statistics of precipitation and temperatures for mixed-soil counties 

 

  Precipitation (mm)   Temperature (°C) 
Variables\Stages Mean Std.Dev C.V. Min Max   Mean Std.Dev C.V. Min Max 
  Phillips (soil types II & III) - station code: 33242 
                        
Vegetative 155.4 80.0 0.5 13.8 415.0   25.2 2.9 0.1 19.2 33.4 
Reproductive 162.1 76.8 0.5 13.3 366.6   24.1 3.1 0.1 18.3 31.2 
Maturity 48.3 48.5 1.0 0.0 198.5   17.2 4.0 0.2 11.0 26.5 
Whole season 365.8 132.5 0.4 78.1 663.4   23.6 3.0 0.1 18.1 30.8 
  Saint Francis (soil types II & III) - station code: 34528 
                        
Vegetative 160.5 80.0 0.5 36.8 351.8   20.7 0.1 0.01 20.2 21.6 
Reproductive 175.6 73.1 0.4 7.4 359.4   22.7 0.3 0.01 20.7 23.7 
Maturity 46.7 44.4 1.0 0.0 216.0   18.4 0.7 0.04 15.2 20.7 
Whole season 382.8 117.0 0.3 155.8 665.4   21.3 0.2 0.01 20.5 22.5 
  Pulaski (soil types I, II, and III) - station code: 34010 
                        
Vegetative 145.1 62.6 0.4 21.6 310.7             
Reproductive 188.1 96.8 0.5 19.2 403.8             
Maturity 47.2 43.2 0.9 0.0 185.2             
Whole season 380.4 122.6 0.3 130.3 664.3             
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Table B-5. Descriptive statistics of soybean yields for selected counties 

 

County 
Soil 

Type(s)39 
Mean 

(Bu/ac) 
Std.Dev 
(Bu/ac) 

C.V. Min Max 

Independence  I 24.4 5.0 0.206 12.5 35.6 
Jackson II 20.0 4.8 0.238 10.7 31.6 
Crittenden III 32.3 6.5 0.201 17.6 48.1 
Phillips II-III 33.3 6.8 0.205 18.0 48.6 
Saint Francis II-III 29.1 7.1 0.244 13.5 42.7 
Pulaski I-II-III 17.5 4.1 0.236 8.6 26.6 

 

                                                 
39 See figure A-1 for the definition of soil types. 
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Table B-6. Estimated yield trend models 

Dependent variable: soybean yield (Bu/ac) 

Coefficients40 
Independence Jackson Crittenden Phillips Saint Francis Pulaski 

Soil type I Soil type II Soil type III Soil types II-III Soil types II-III Soil types I-II-III 

       

a0 2.783 2.956 2.447 2.126 2.331 4.714 
  (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

a1 0.00963   0.0252 0.0340 0.0252 -0.0470 
  (0.507)   (0.104) (0.038) (0.198) (0.142) 

b1 -0.0434 -0.0605 -0.0574 -0.110 -0.0490 0.184 
  (0.199) (0.254) (0.314) (0.115) (0.210) (0.397) 

t1 1983.0 1987 1986 1987.0 1984 1997.0 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

b2 0.0982 0.149 0.101 0.167 0.103 -0.507 
  (0.380) (0.254) (0.196) (0.068) (0.442) (0.094) 

t2 1994.0 1994 1992 1992.5 1994 1999.7 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

b3 -0.0775 -0.0891 -0.0720 -0.107 -0.0973 0.372 
  (0.479) (0.458) (0.211) (0.077) (0.462) (0.076) 

t3 1997.2 1998 1998 1998.3 1998 2002.1 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       

N. of observ. 41 41 41 41 41 41 
Adj. R-square -0.055 0.020 0.103 0.197 -0.063 0.001 
Note: Numbers in parentheses are p-values. 

                                                 
40 See equation (2.11). 
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Table B-7. Estimated rainfall-yield models41 

 

Dependent variable: detrended yield (Bu/ac) 

Variables Independence Jackson Crittenden Phillips Saint Francis Pulaski 
  Soil type I Soil type II Soil type III Soil types II-III Soil types II-III Soil types I-II-III 
Rainfall vegetative 0.082 0.093 0.142 0.132 0.147 0.034 
  (0.017) (0.003) (0.022) (0.027) (0.011) (0.003) 
              
Rainfall vegetative square -0.0002 -0.0003 -0.0004 -0.0003 -0.0004   
  (0.035) (0.003) (0.037) (0.029) (0.017)   
              
Rainfall reproductive 0.098 0.058 0.024 0.015 0.031 0.011 
  (0.003) (0.002) (0.074) (0.200) (0.030) (0.121) 
              
Rainfall reproductive square -0.0002 -0.00007         
  (0.018) (0.031)         
              
Rainfall maturity       0.03 0.032   
        (0.223) (0.096)   
              
Constant 6.334 6.593 17.046 18.843 11.192 11.196 
  (0.171) (0.032) (0.000) (0.000) (0.023) (0.000) 
Number of observations 41 41 41 41 41 41 
Adj. R-square 0.288 0.379 0.176 0.161 0.257 0.227 
Note: Rainfall vegetative/reproductive/maturity is in millimeters and represent the cumulative daily precipitation during the respective 
stage. Numbers in parentheses are p-values. 

                                                 
41 The procedure used to estimate these models is based on (Vedenov and Barnett 2004). 
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Table B-8. Parameter of the best agronomic contracts for single soil-type counties 

 

Stages Contract 
Cap 
(%) 

Scale 
(%) 

Premium 
(Bu/ac) 

Liability  
(Bu/ac) 

Premium 
Rate (%) 

CER with  
(Bu/ac) 

CER w/o  
(Bu/ac) 

ΔCER 
(%) 

Independence (Soil type I) 
                    
Vegetative lack of water 70 85 0.76 4.43 17.16 22.96 22.97 -0.03 
Reproductive lack of water 70 85 3.91 9.21 42.45 23.10 22.97 0.58 
Maturity excess of water 70 85 0.12 3.41 3.52 22.99 22.97 0.09 
Entire season excess of water 70 85 0.03 17.05 0.18 22.99 22.97 0.09 

Jackson (Soil type II) 
                    

Vegetative lack of water 70 85 0.84 3.89 21.59 18.34 18.28 0.28 
Reproductive lack of water 70 85 4.05 8.07 50.19 18.40 18.28 0.62 
Maturity excess of water 70 85 0.08 2.99 2.68 18.30 18.28 0.11 
Entire season excess of water 70 85 0.15 14.94 1.00 18.23 18.28 -0.31 
                    

Crittenden (Soil type III) 
                    

Vegetative lack of water 70 85 0.95 5.91 16.07 30.78 30.71 0.20 
Reproductive excess of water 70 85 0.10 12.28 0.81 30.71 30.71 -0.01 
Maturity excess of water 70 85 0.10 4.55 2.20 30.72 30.71 0.02 
Entire season excess of water 70 85 0.13 22.74 0.57 30.70 30.71 -0.04 
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Table B-9. Parameter of the best agronomic contracts for mixed-soil counties 

 

Stages Contract 
Cap 
(%) 

Scale 
(%) 

Premium 
(Bu/ac) 

Liability  
(Bu/ac) 

Premium 
Rate (%) 

CER with  
(Bu/ac) 

CER w/o  
(Bu/ac) 

CER 
(%) 

Phillips (Soil types II & III) 
                    

Vegetative lack of water 70 85 1.22 6.43 18.97 31.46 31.43 0.13 
Reproductive excess of water 70 85 0.04 13.36 0.30 31.45 31.43 0.09 
Maturity lack of water 70 85 3.21 4.95 64.85 31.50 31.43 0.23 
Entire Season excess of water 70 85 0.02 24.73 0.08 31.46 31.43 0.12 

Saint Francis (Soil types II & III) 
                    

Vegetative lack of water 70 85 1.03 5.58 18.46 26.77 26.69 0.30 
Reproductive excess of water 70 85 0.01 11.59 0.09 26.74 26.69 0.19 
Maturity lack of water 70 85 2.66 4.29 62.00 26.81 26.69 0.45 
Entire Season excess of water 70 85 0.01 21.46 0.05 26.74 26.69 0.19 
                    

Pulaski (Soil types I, II, and III) 
                    

Vegetative lack of water 70 85 0.57 3.42 16.67 16.16 16.09 0.41 
Reproductive excess of water 70 85 0.05 7.10 0.70 16.11 16.09 0.07 
Maturity excess of water 70 85 0.11 2.63 4.18 16.09 16.09 -0.02 
Entire Season excess of water 70 85 0.08 13.15 0.61 16.09 16.09 -0.03 
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Table B-10. Parameters of the “optimal” contracts based on econometric models42 

 

      Limit             

County Soil type(s) 
Strike 

(Bu/ac) 
Absolute 

value 
% of 
strike 

Max. liab 
(Bu/ac) 

Premium 
(Bu/ac) 

Premium 
rate (%) 

CER with 
(Bu/ac) 

CER w/o 
(Bu/ac) CER % 

Independence  I 30.35 21.25 0.70 7.77 4.80 61.80 23.27 22.97 1.28 
Jackson II 24.85 17.40 0.70 7.86 4.88 62.14 18.78 18.28 2.71 
Crittenden III 69.00 27.60 0.40 27.31 24.05 88.04 30.86 30.71 0.48 
Phillips  II - III 35.57 30.23 0.85 6.61 2.87 43.36 31.66 31.43 0.74 
Saint Francis II - III 33.21 24.91 0.75 7.33 3.61 49.21 27.10 26.69 1.54 
Pulaski I - II - III 20.77 16.62 0.80 5.56 3.75 67.45 16.44 16.11 2.08 

                                                 
42 The procedure used to calculate these parameters is based on Vedenov and Barnett (2004) 
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Table B-11. Counties selected for analysis in Essay 2 with their soil types and phenological growth stages 

 

Counties Soil types Stages 
Phillips II-III Maturity 
Saint Francis II-III Maturity 
Pulaski I-II-III Vegetative
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Table B-12. Descriptive statistics of precipitation (in millimeters) for selected counties 

 

County 
Phenological 

stages 
Mean Std. Dev. C.V. Min Max 

Phillips  Maturity 48.3 48.5 1.0 0.0 198.5 
Saint Francis Maturity 46.7 44.4 1.0 0.0 216.0 
Pulaski Vegetative 145.12 62.63 0.43 21.6 310.7 
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Table B-13. Descriptive statistics of soybean yields for selected counties 

 

County 
Mean 

(Bu/ac)
Std. Dev. 
(Bu/ac) 

C.V. Min Max 

Phillips 33.3 6.8 0.205 18.0 48.6 
Saint Francis 29.1 7.1 0.244 13.5 42.7 
Pulaski 17.5 4.1 0.236 8.6 26.6 
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Table B-14. Estimated rainfall-yields models 

 

Dependent variable: detrended yield (Bu/ac) 
Variables Phillips Saint Francis Pulaski  
        
Rainfall 0.049 0.041 0.036 
  (0.052) (0.054) (0.002) 
        
Constant 30.64 26.44 12.83 
  (0.000) (0.000) (0.000) 
        
N. of observations 41 41 41 
Adj. R-square 0.07 0.07 0.2 
Growth stage Maturity Maturity Vegetative 
Note: Rainfall is in millimeters and represent the cumulative 
daily precipitation during the respective growth stage. 
Numbers in parentheses are p-values. 
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Table B-15. Parameters of the standard contracts for selected counties 

 

  Phillips 
Saint 

Francis Pulaski 
Growth 
stage 

Maturity Maturity Vegetative

Strike (mm) 80.57 110.56 221.27 
Limit (mm) 0.00 0.00 106.09 
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Table B-16. Comparison of the “standard” and optimal contracts for the selected counties 

 

  Phillips  Saint Francis  Pulaski 
   = 1.5  = 2  = 3   = 1.5  = 2  = 3   = 1.5  = 2  = 3 
  No contract 
CER (Bu/ac) 31.94 31.43 30.35  27.34 26.69 25.26  16.50 16.09 15.20 
Expected utility -1.12 -0.32 -0.05  -1.21 -0.37 -0.08  -1.56 -0.62 -0.22 
                      
  Standard contract 
Max. Liability (Bu/ac) 3.81 3.43 2.93  3.84 3.80 3.42  5.26 5.26 5.26 
Premium (Bu/ac) 1.81 1.63 1.02  2.12 2.10 1.89  3.30 3.30 3.30 
Premium rate (%) 47.39 47.39 34.59  55.28 55.29 55.28  62.77 62.79 62.77 
Expected utility -1.12 -0.32 -0.05  -1.21 -0.37 -0.08  -1.55 -0.61 -0.20 
CER (%)  0.23 0.32 0.40  0.39 0.50 0.81  1.29 1.81 3.06 
                      
  Optimal contract 
Max. Liability (Bu/ac) 4.11 4.05 2.98  4.43 4.28 3.91  6.18 5.90 5.78 
Premium (Bu/ac) 2.51 2.40 1.48  2.87 2.70 2.43  4.32 4.14 4.19 
Premium rate (%) 61.09 59.26 49.50  64.87 62.97 62.27  69.93 70.19 72.52 
Expected utility -1.12 -0.32 -0.05  -1.20 -0.37 -0.08  -1.54 -0.61 -0.20 
CER (%)  0.57 0.67 0.80  0.79 0.93 1.31  2.04 2.62 4.08 
                      
 Percentage change of CER: Optimal and Standard contracts 

 0.34 0.35 0.39  0.40 0.42 0.49  0.79 0.80 0.99 
            
Note: CER stands for certainty equivalent. CER is the certainty equivalent variation with respect to no-contract 
case. Premium rate is the ratio between premium and maximum liability. 
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Table B-17. Descriptive statistics of crop yields and water allocation in module Valle 

 

Variables Mean Std. Dev. CV Min  Max Range of data 
Yield (Tons / ha) 

Barley 5.065 0.871 0.172 3.380 6.500 1985-2011 
Sorghum 6.662 1.285 0.193 4.408 10.650 1985-2005 

Allocated water (TCM/ha ) 
Barley 5.776 0.347 0.060 4.663 6.201 1989-2011 
Sorghum 2.920 0.687 0.235 2.081 5.003 1989-2011 

CV stands for coefficient of variation TCM/ha.  
TCM/ha stands for thousands of cubic meters per hectare. 
Barley s the dry-season crop, and sorghum is the wet-season crop 
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Table B-18. Trend models for barley (dry season) and sorghum (wet season) 

 

Coefficients 
  

Barley yield 
(Ton./ha)   

Sorghum yield 
(Ton./ha) 

          

a0   0.375   1.018 

    (0.004)   (0.097) 
          

a1   0.0666   0.0661 

    (0.000)   (0.138) 
          

b1   0.199   0.167 

    (0.097)   (0.033) 
          

t1   1991   1994.5 

    (0.000)   (0.000) 
          

b2   -0.0592   -0.149 

    (0.000)   (0.052) 
          

t2   2009   1999.5 

    (0.000)   (0.000) 
          
N. of observ.   22   17 
Adj. R-square 0.301   0.209 
Note: Numbers in parentheses are p-values. 
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Table B-19. Descriptive statistics of precipitation at module Valle and dam Solis 

 

  Mean  
mm 

Std. Dev  
mm 

Coef. 
Variation 

Min  
mm 

Max 
mm   

      
Module Valle (station 11079) - data range 1942-2010 

 
January 14.50 25.23 1.74 0.00 112.00 
February 9.30 19.47 2.09 0.00 138.50 
March 5.33 8.46 1.59 0.00 40.00 
April 9.51 14.76 1.55 0.00 71.00 
May 34.11 30.24 0.89 0.00 115.00 
June 113.36 59.86 0.53 0.00 264.00 
July 146.44 69.85 0.48 0.00 353.40 
August 146.45 61.54 0.42 20.50 371.40 
September 113.05 62.92 0.56 9.30 294.50 
October 48.49 36.43 0.75 0.00 173.00 
November 12.60 15.89 1.26 0.00 58.60 
December 7.42 12.85 1.73 0.00 79.20 
      

Dam Solis (station 11076) - data range 1961-2011 
      
January 12.44 19.21 1.54 0.00 95.00 
February 5.62 8.63 1.54 0.00 31.70 
March 7.24 11.39 1.57 0.00 61.30 
April 9.54 12.82 1.34 0.00 64.60 
May 42.76 35.57 0.83 0.00 146.30 
June 121.66 52.90 0.43 24.20 246.70 
July 166.43 59.85 0.36 44.00 314.80 
August 157.82 61.19 0.39 38.40 291.50 
September 134.25 69.57 0.52 23.70 413.60 
October 51.60 38.33 0.74 0.00 152.50 
November 8.61 9.49 1.10 0.00 35.40 
December 6.88 10.87 1.58 0.00 51.50 
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Table B-20. Parameters used in the dynamic model of water allocation 

 

Parameter  Value  Units/Description 

ܵ̅  10 TCM/ha (maximum reservoir level) 

  0.11 Share of rainwater attributable to Valle  

  1 to 3 Risk aversion coefficient 

ௗܲ௥௬  3,900 Pesos/tons (price of barley) 

௪ܲ௘௧  4,500 Pesos/tons (price of sorghum) 

௪ܲ  160 Pesos/TCM

 percent 5  ݎ

  0.952 It is equal to 1/ሺ1 ൅  ሻݎ

ܽଵ  0.4353 Linear coefficient of barley production function  

ܽଶ  -0.000377 Quadratic coefficient of barley production function 

ܾଵ  0.0983 Linear coefficient of sorghum production function 

ܾଶ  -0.000095 Quadratic coefficient of sorghum production function

  100% Coverage level 

 ሻ  117.74 Expected rainfall in module Valle in mm݊݅ܽݎሺܧ

 ௏௔௟௟௘ߙ  3.55 Shape parameter of gamma distribution for Valle43 

 ௏௔௟௟௘ߚ  33.20 Scale parameter of gamma distribution for Valle44 

 ௌ௢௟௜௦ߙ  10.25 Shape parameter of gamma distribution for Solis45 

 ௌ௢௟௜௦ߚ  70.86 Scale parameter of gamma distribution for Solis46 

 

                                                 
43 Confidence interval: [2.58, 4.88]. 
44 Confidence interval: [23.56, 46.78]. 
45 Confidence interval: [6.97, 15.07]. 
46 Confidence interval: [47.72, 105.22]. 


