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ABSTRACT

This dissertation deals with the development and analysis of sub-optimal deci-

sion algorithms for a collection of robots that assist a remotely located operator in

perimeter surveillance. The operator is tasked with the classification of incursions

across the perimeter. Whenever there is an incursion into the perimeter, a nearby

Unattended Ground Sensor (UGS) signals an alert. A robot services the alert by

visiting the alert location, collecting evidence in the form of video imagery, and

transmitting it to the operator.

The accuracy of operator’s classification depends on the volume and freshness of

information gathered and provided by the robots at locations where incursions occur.

There are two competing needs for a robot: it needs to spend adequate time at an

alert location to collect evidence for aiding the operator in accurate classification but

it also needs to service other alerts as soon as possible, so that the evidence collected

is relevant. The control problem is to determine the optimal amount of time a robot

must spend servicing an alert. The incursions are stochastic and their statistics are

assumed to be known.

The control problem may be posed as a Markov Decision Problem (MDP). Dy-

namic Programming(DP) provides the optimal policy to the MDP. However, because

of the “curse of dimensionality” of DP, finding the optimal policy is not practical in

many applications. For a perimeter surveillance problem with two robots and five

UGS locations, the number of states is of the order of billions. Approximate Dy-

namic Programming (ADP) via Linear Programming (LP) provides a way to approx-

imate the value function and derive sub-optimal strategies. Using state partitioning

and ADP, this dissertation provides different LP formulations for upper and lower
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bounds to the value function of the MDP, and shows the relationship between LPs

and MDP. The novel features of this dissertation are (1) the derivation of a tractable

lower bound via LP and state partitioning, (2) the construction of a sub-optimal pol-

icy whose performance exceeds the lower bound, and (3) the derivation of an upper

bound using a non-linear programming formuation. The upper and lower bounds

provides approximation ratio to the value function. Finally, illustrative perimeter

surveillance examples corroborate the results derived in this dissertation.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

This dissertation is motivated by a robotic perimeter surveillance problem. A

collection of robots assists a remotely located human operator in the task of classifi-

cation of an incursion across the perimeter of a protected zone as either a nuisance or

a threat. Incursions are stochastic and have both a spatial and temporal component;

we assume that the statistics of the incursion processes is known.

In order to aid the robot-operator team in the timely classification of incursions,

the perimeter is installed with a set of Unattended Ground Sensors (UGSs) at lo-

cations where incursions can occur; these locations will be referred to as stations or

UGS stations. At the stations, UGS flag incursions, raise alerts and communicate

them immediately to the robots. Subsequently, a robot services the alert by visiting

the UGS stations where it was raised, and transmitting images, video, or other sen-

sory information to the operator using on-board camera and other sensing devices.

The operator performs the role of a classifier based on the information supplied by

the robots. The classification accuracy of the operator depends on the volume and

freshness of information supplied by the robots.

For an accurate classification, the robot should provide as much video or other

evidence about the incursion to the operator as possible. We call these information

achieved by the robots as information gain. Subject to certain limits, the longer a

robot spends at an alert location, the robot supplies a higher volume of information

about the alert it services. However, the freshness of information it can gather about

other unserviced alerts suffers. For timely and accurate classification of incursions,

the service delay time or simply delay time, defined as the time delay between an alert
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signal and the time a robot attends to the alert, should be minimized. Thus, there

are two competing needs: a robot needs to spend more time at an alert location and

it also needs to service the alerts as quickly as possible. A natural question arises:

How long should a robot spend time servicing an alert?

In this dissertation, we discretize the problem spatially and temporally and recast

the optimization problem as follows: Should the robot spend the next time interval

at the current alert location in terms of maximizing the expected, discounted payoff?

The payoff considered herein is an increasing function of the time spent at the alert

site (dwell time) and a decreasing function of the delay in servicing alerts.

This problem can be naturally posed as a Markov Decision Problem (MDP).

However, the number of states runs into billions even for a modest size problem.

For example, if one considers two robots and eight alert locations, with a maxi-

mum allowable delay time of 15 units, the number of states exceeds trillion! Hence,

solving Bellman’s equation to compute the optimal payoff (value function) is com-

putationally intractable. For this reason, we consider a Linear Programming (LP)

based Approximate Dynamic Programming (ADP) solution strategy (see [27]). The

LP based ADP approach provides an upper bound on the optimal value function,

and an a priori estimate of the quality of the resulting sub-optimal policy, e. g.,

see [28, 29]. The quality is estimated by metrizing the deviation between the value

function and its approximation.

The LP based ADP approach seeks an approximation that lies in the column

space of a set of chosen basis vectors; often, finding the basis vectors in itself is a

major challenge. The motivating application in this dissertation seems to suggest

a simple choice for basis vectors that is based on state partitioning. The state is

partitioned into prespecified number of partitions. One can associate a basis vector

with each partition. The basis vectors are binary and indicate whether a state
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belongs to the partition corresponding to the basis vector. There are challenges

associated with ADP using state partitioning, especially with respect to refining the

state partitioning when the approximation to value function is not satisfactory. In

order to enable one to metrize whether an approximate value function is satisfactory

or not, one must develop good lower and upper bounds. There is a significant gap

in the literature in providing both upper and lower bounds to the value function of

a MDP. This dissertation is a first attempt at addressing this gap. Our final goal

is finding a sub-optimal policy guaranteeing certain level of performance when the

policy applies to the process.

This dissertation is organized in the following order; in Section 2, we will provide

preliminaries about MDP, DP, and ADP. In Section 3, two mathematical programs

will be presented: the first is a restricted linear programming (RLP), and the other

is a non-linear programming (NLP). We show that the solutions of RLP and DLP

provide upper and lower bounds to the value function respectively. We also show

that, for each LP, there exists a unique solution for non-negative cost funtion. Based

on this result, we provide an iterative algorithm to efficiently find solution to the

NLP. In Section 4, illustrative perimeter surveillance problems are formulated, and

our LP approaches are applied to these problems. For each problem, a sub-optimal

policy found from the LPs is applied and its effectiveness is corroborated via Monte

Carlo simulations.

1.2 Literature Review

Perimeter surveillance problems arise in a variety of practical applications and

have recently received significant attention in the literature; for example, see [15,

24, 22, 23]. From the point of view of this application area, the results described in

this dissertation and our prior work in [4, 16, 17, 18, 19] differ from the literature
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in addressing the need to balance the information gained by the robots with the

quality of service requirement of attending to alerts raised at the UGS locations

in a timely manner. From an analytical point of view, this dissertation constructs

a sub-optimal policy based on a lower bound to the value function and provides

a performance guarantee of the sub-optimal policy. From the organization point of

view, this dissertation provides a distinction between properties that hold for general

MDPs and those that exploit the structure of the robotic surveillance problem.

The use of LP techniques for solving DP problems was introduced by [21, 5];

the use of aggregation via partitioning and the construction of sub-optimal policies

using approximate value functions was discussed in [25]. The LP based approach

to approximate dynamic programming is discussed in [27, 28, 29]. The results in

this paper differ from the existing literature on two counts: (1) the restricted or

constrained LPs that one obtains for this class of applications are computationally

tractable and hence, there is no need for column generation or random sampling

techniques as in [28, 6], and (2) this work presents a way to construct upper as well

as lower bounds using LPs, a marked departure from prior work in this area, other

than by the co-authored work in [20].
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2. PRELIMINARIES

2.1 Markov Decision Process

The MDP is a stochastic process whose state transition probability only depends

on the current state and action. Consider a stochastic process with state space S.

Let s(t) ∈ S and a(t) ∈ U s(t) denote a state of the process and an action taken at

time t respectively, where U s(t) is a set of available actions(or controls, decisions) at

the current state s(t). It is assumed that the cardinality of each set is finite. In a

MDP, state transition probability only depends on s(t) and a(t) as:

Prob {s(t+ 1) = y | s(0), . . . , s(t− 1), s(t) = x, a(t) = u} (2.1)

=Prob {s(t+ 1) = y | s(t) = x, a(t) = u} (2.2)

=[px,y(u)](t). (2.3)

This means that if a stochastic process is a MDP, then the history of the process

until the process arrives at the current state s(t) = x would not affect the probability

distribution of the next state. We assume that the process is a time-invariant system

such that px,y(u) = [px,y(u)](0) = [px,y(u)](1) = · · · = [px,y(u)](t) for t ≥ 0. Since it

is a probability distribution, it satisfies the following property: for any given x ∈ S

and u ∈ Ux,

∑
y∈S

px,y(u) = 1, and px,y(u) ≥ 0,∀y ∈ S. (2.4)

We assume a cost structure imposed on the MDP. If the process is in state x and

action a is taken, we assume that a known cost r(s(t), a(t)) ∈ < is incurred. In the
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literature, the cost structure is called as one-step reward or pay-off function. If the

reward function represents some profit by taking an action, then one would take an

action maximizing the reward. On the other hand, if it is a pay-off function such

as the distance between two vertices in a traveling salesman problem, then one may

want to choose an action minimizing the pay-off function at each time step. In this

dissertation, we want to find a sequence of actions such that maximizes the total

expected discounted reward for infinite time horizon as following:

V ∗(x) = max
π∈Πh(t),t≥0

E

{
∞∑
t=0

λtr(s(t), aπ(t))

∣∣∣∣∣ s(0) = x

}
,∀x ∈ S, (2.5)

where λ is a discount factor that 0 ≤ λ ≤ 1, and Πh(t) is a set of all history dependent

policies. Let h(t) denote the history of the process until time t, which means, h(t) =

(s(0), s(1), · · · , s(t)). Then a set of all avaiable action sequences corresponding to

h(t) is

Πh(t) = U s(0) × U s(1) × · · · × U s(t).

An element, π ∈ Πh(t) is a sequence of actions such that π = (aπ(0), aπ(1), · · · , aπ(t)).

The objective is to maximize the total expected discounted one-step rewards over all

possible combination of available actions for infinite time horizon.

2.2 Dynamic Programming

One may be interested in determining the value function, V ∗(x), defined by (2.5)

for every initial state x. The value function, V ∗ is a vector of the same dimension

as the number of states and the component corresponding to the state x is given by

(2.5). Finding the value function requires very exhaustive computation and may not

be computationally tractable from Eq. (2.5). However, Bellman in [1] introduced

the DP approach to solve the MDP. From the DP, one can write a Bellman equation
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for (2.5) as:

V ∗(x) = max
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)V ∗(y)

}
, ∀x ∈ S. (2.6)

This Bellman equation satisfies the following properties (see [2] and [26] for de-

tails);

• there is exactly one solution,

• there is a stationary policy that is optimal in the class of all history dependent

policies, and

• for each x ∈ S, let

π∗(x) := argmax
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)V ∗(y)

}
, (2.7)

then the policy π∗ is the optimal stationary policy.

It must be noted that the value function defines the optimal policy as given in the

above equation. A stationary policy π∗(x) is a function of state x ∈ S mapping into

an available action space, Ux. Hereafter we assume that all policies are stationary.

In the following sub-sections, three methodologies to find the value function will

be introduced. Before we discuss about the methods, let us define operators for

convenience.

Definition (DP/Bellman Operator): The DP operator, T , is defined as following;

for ∀x ∈ S,

T V (x) := max
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)V (y)

}
. (2.8)
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Define another DP operator for a given policy π, Tπ, such that

TπV (x) := r(x, π(x)) + λ
∑
y∈S

px,y(π(x))V (y). (2.9)

Lemma 1 (Contraction Mapping). The DP operator, T , is a contraction mapping

such that for any given V,W ∈ <|S|, there exists a λ ∈ (0, 1) satisfying

||T V − TW ||∞ ≤ λ||V −W ||∞,

where ||V −W ||∞ := maxx∈S |V (x)−W (x)|.

Proof. For given V,W ,

T V (x) = max
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)V (y)

}

=r(x,u′(x)) + λ
∑
y∈S

px,y(u′(x))V (y),

where u′(x) := argmaxu∈Ux

{
r(x,u) + λ

∑
y∈S px,y(u)V (y)

}
. Similarly,

TW (x) = max
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)W (y)

}

≥r(x,u′(x)) + λ
∑
y∈S

px,y(u′(x))W (y).

Then,

T V (x)− TW (x) ≤λ
∑
y∈S

px,y(u′(x))(V (y)−W (y))

≤λmax
x∈S
|V (x)−W (x)| = λ||V −W ||∞.
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Similarly,

TW (x)− T V (x) ≤λ
∑
y∈S

px,y(u′′(x))(W (y)− V (y))

≤λmax
x∈S
|W (x)− V (x)| = λ||V −W ||∞,

where u′′(x) := argmaxu∈Ux

{
r(x,u) + λ

∑
y∈S px,y(u)W (y)

}
. Hence,

||T V − TW ||∞ ≤ λ||V −W ||∞

and it is a contraction mapping.

Lemma 2 (Monotonicity). For any given policy π, if V ≥ W componentwise, then

TπV ≥ TπW .

Proof. Assume that V (x) ≥ W (x),∀x ∈ S, then

TπV (x)− TπW (x) =λ
∑
y∈S

px,y(π(x))(V (y)−W (y)) ≥ 0

→TπV (x) ≥ TπW (x),∀x ∈ S

2.2.1 Value Iteration

In [1], Bellman porposed an iterative method to compute the value function as

shown in Algorithm 1.

From the definition of DP operator, we can see that Step 3 to 8 of Algorithm 1

are nothing but the process of the DP operator, which means,

V t+1(x) = T V t(x).

9



Algorithm 1 Value Iteration

1: Initialize t← 0 and V t(x) arbitrarily.
2: do
3: for ∀x ∈ S do
4: for ∀u ∈ Ux do
5: Q(x,u) = r(x,u) + λ

∑
y∈S px,y(u)V t(y)

6: end for
7: V t+1(x) = maxu∈Ux Q(x,u)
8: end for
9: t← t+ 1
10: while until policy is good enough, e.g. ||V t − V t−1||∞ > ε

Using the property of the DP operator, the convergence property of the value

iteration can be shown as follows.

Proof of convergence.

||V 2 − V 1|| =||T (T V 0)− T V 0|| ≤ λ||T V 0 − V 0||

||V 3 − V 2|| =||T (T 2V 0)− T (T V 0)|| ≤ λ||T 2V 0 − T V 0|| ≤ λ2||T V 0 − V 0||
...

By induction,

||V t+1 − V t|| ≤ λt||T V 0 − V 0||.

So, as the number of iteration increases, ||V t+1 − V t|| decreases, and it satisfies the

termination criterion and stops the iteration in finite steps. For the same reason,

lim
t→∞
||V t+1 − V t|| = 0,

10



that is, as t→∞, V t+1 = V t = z where z is a fixed point;

lim
t→∞
T tV 0 = z.

2.2.2 Policy Iteration

Policy iteration is a major alternative to the VI. In the VI, if ε = 0, then the

iteration might run indefinitely because V t = V ∗ when t → ∞. However, Howard

[14] proposed an iterative method complementing the weakness. It is shown in Al-

gorithm 2 and will be terminated within finite number of iteration.

Algorithm 2 Policy Iteration

1: Initialize t← 0 and pick a policy πt arbitrarily.
2: repeat
3: Policy Evaluation: Vπt = [I − λPπt ]−1Rπt .
4: for ∀x ∈ S do
5: for ∀u ∈ Ux do
6: Q(x,u) = r(x,u) + λ

∑
y∈S px,y(u)Vπt(y)

7: end for
8: V t(x) = maxu∈Ux Q(x,u)
9: πt+1(x) = argmaxu∈Ux Q(x,u)
10: end for
11: t← t+ 1
12: until V t−1 = Vπt−1

In this algorithm, Pπ and Rπ are a transition probability matrix and a one-step

reward vector only associating with a given policy π. That is, the (x,y)th element

of Pπ is px,y(π(x)), and Rπ(x) = r(x, π(x)).
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Proof of convergence. For any x ∈ S and t, the following inequality holds;

Vπt(x) =r(x, πt(x)) + λ
∑
y∈S

px,y(πt(x))Vπt(y)

≤max
u∈Ux
{r(x,u) + λ

∑
y∈S

px,y(u)Vπt(y)}

=r(x, πt+1(x)) + λ
∑
y∈S

px,y(πt+1(x))Vπt(y) = V t(x).

If πt is optimal, then Vπt(x) = V t(x),∀x ∈ S and the iteration will be terminated

by the termination criterion. If it is not optimal, then there will exist some x ∈ S

such that

Vπt(x) < r(x, πt+1(x)) + λ
∑
y∈S

px,y(πt+1(x))Vπt(y).

However, from the monotonicity, the following inequality holds;

Vπt(x) < Tπt+1Vπt(x) ≤ T 2
πt+1Vπt(x) ≤ T 3

πt+1Vπt(x) ≤ · · · ≤ Vπt+1(x).

So, in each iteration, there will be improvement which is strictly greater than previous

step for at least one state. Eventually, it terminates with the optimal policy within

|S| iterations.

2.2.3 Linear Programming Approach to Dynamic Programming

In this subsection, a linear program, referred to as exact LP (ELP), will be pre-

sented. The optimal solution of the ELP is also the value function. In order to

describe the constraints of the ELP one requires the following observation: Bell-

man’s equation, Eq. (2.5), suggests that the optimal value function, V ∗, satisfies the
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following set of linear inequalities, referred to as the Bellman Inequalities:

V (x) ≥r(x,u) + λ
∑
y∈S

px,y(u)V (y), ∀u ∈ Ux,∀x ∈ S, (2.10)

or more compactly,

V ≥R(u) + λP (u)V, ∀u. (2.11)

The following lemma shows that any feasible solution of the Bellman Inequalities is

an upper bound to the value function.

Lemma 3. Any feasible solution of the Bellman Inequalities (2.10) is an upper bound

to the value function.

Proof. The Bellman Inequalities (2.10) are feasible. To see that, set all the compo-

nents of V to be equal to maxx,u r(x,u)

1−λ .

Let V be a feasible solution to the Bellman inequalities. Let π be any stationary

policy and let Pπ, Rπ be the associated state transition probability matrix and one-

step reward vector respectively. Then, for every π, the feasible solution, V satisfies

V ≥ Rπ + λPπV,

implying that

[I − λPπ]V ≥ Rπ.

By the non-negativity and contraction of λPπ, the inverse of [I−λPπ] is non-negative
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and has the following power series expansion:

[I − λPπ]−1 = I + λPπ + λ2P 2
π + λ3P 3

π + . . . .

Hence,

V ≥ [I − λPπ]−1Rπ = Rπ + λPπRπ + λP 2
πRπ + λP 3

πRπ + · · · , ∀π.

If the stationary policy π corresponds to an optimal stationary policy, then from the

definition (2.5), the right-hand side of the inequality equals the value function, V .

Hence, every feasible solution V to the Bellman inequalities upper bounds the value

function V ∗.

As a result, for every non-negative cost function, the value function, V ∗, is an

optimal solution of the following LP, referred to as the Exact LP (ELP):

JELP = min
∑
x∈S

c(x)V (x), (2.12)

V (x) ≥ r(x,u) + λ
∑
y∈S

px,y(u)V (y), ∀u ∈ Ux,∀x ∈ S. (2.13)

Formally,

Lemma 4. V ∗ is the value function if and only if V ∗ is optimal for the ELP for

every non-negative c.

Proof. Let VLP be an optimal solution of ELP corresponding to every cost vector

c. The existence of VLP can be asserted from the following observation: If V1, V2

are feasible solutions to the Bellman Inequalities (2.10), then the componentwise

minimum min{V1, V2} of the solutions is also a solution to the Bellman Inequalities
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(2.10). Since all feasible solutions to (2.10) are lower bounded by V ∗, it follows that

VLP := min{V : V satisfies Bellman Inequalities} is well-defined and also satisfies

Bellman Inequalities. Moreover, by construction, every feasible solution to (2.10) is

lower bounded by VLP . Hence, for every non-negative c, VLP is optimal.

From Lemma 1, VLP ≥ V ∗ and by construction V ∗ ≥ VLP as V ∗ satisfies Bellman

Inequalities (2.10). Hence, V ∗ = VLP .

It is remarkable that the family of LPs corresponding to different non-negative

cost functions admit the same optimal solution. This invariance property is useful

in practice as one need not have to concern with the choice of the cost function as

long as it is non-negative.
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3. LINEAR PROGRAMMING APPROACH TO APPROXIMATE DYNAMIC

PROGRAMMING

The construction of optimal policy often requires the computation of value func-

tion. In the previous section, different methodologies for computing the value func-

tion were referred to such as the Value Iteration, Policy Iteration and LP method.

However, one often encounters “the curse of dimensionality” in the application of

Dynamic Programming to determine optimal policies for controlled Markov chains;

essentially, it implies that the computation of value function and the optimal policy

become computationally intractable as the number of states of the associate Markov

Decision Process becomes large. In practice, optimality is traded for computational

tractability to obtain approximate value functions and sub-optimal policies. A natu-

ral question arises: How close is the sub-optimal policy to the optimal policy or how

good is the sub-optimal policy in relation to the optimal policy? Can one estimate

the bounds of sub-optimality of the policy? It is reasonable to expect that a good

approximation to the value function yield good approximation to the optimal policy.

For this reason, one can metrize sub-optimality by the deviation between the value

function and its approximation.

Since value function is difficult to compute, one can estimate bounds on sub-

optimality by computing both upper and lower bounds to the value function. It is

entirely possible that one of the bounds may be very close to the value function, while

the other is quite far leading to a conservative estimate of the quality of the sub-

optimal policy. However, having both upper and lower bounds to the value function

may be useful in refining the bounds at the expense of additional computation.

The focus of this section is in constructing LPs that provide upper and lower
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bounds for the value function. As seen in the previous section, every feasible solution

to the Bellman Inequalities upper bounds the value function. A standard procedure

to construct an upper bound then is to restrict the feasible set of ELP so that an

optimal solution to the RLP is easy to find. This is the approach adopted in this

dissertation. In the first part of the section, additional properties concerning the

RLP and its optimal solution are discussed. In the latter part of the section, the

focus is on the computation of the lower bound using the NLP.

In the construction of upper and lower bounds to the value function, state par-

titioning is adopted. The idea is to partition the set of states into a few partitions

and approximate the value function to be a constant across each partition. These

constraints are linear and are augmented to the Bellman Inequalities of ELP. By

doing so, the number of variables of the augmented or RLP becomes smaller and

the feasible set of the ELP is also smaller because of the additional restriction. The

number of constraints may or may not reduce depending on the structure of the

problem at hand.

In the following subsection, we discuss partitioning and the associated RLP used

in the construction of an upper bound.

3.1 Partitioning

Assume that the cardinality of the state space of a MDP is n such that n =

| S |, then the states can be labelled with integers from one to n with one-to-one

correspondence. For notational convenience, a state x represents a vector of state

variables and also an index of the state. Let the set of all states S be partitioned

into m disjoint sets, Si, i = 1, 2, · · · ,m. We define a General Partitioning Scheme of

S as follows:
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Definition (General Partitioning Scheme): Let n ≥ 1. We will refer to the set

GP = {S1,S2, . . . ,Sm} as a general partitioning scheme of cardinality m if

(i) S1, . . . ,Sm are disjoint subsets of S and their union is S,

(ii) any two states in Si have the same set of allowable controllable actions.

We will call the sets S1, . . . ,Sn as general partitions, or simply partitions.

For a given GP , all states in a partition have same available action set; Ux =

Uy,∀x,y ∈ Si, i = 1, 2, · · · ,m. However, all states with same avaiable action set

do not have to be in the same partition. Let Ui denote the available action set for

the ith partition in GP .

3.2 Upper Bounding Linear Programming

3.2.1 Restricted Linear Programming

Recall the ELP from the previous section:

JELP = min
∑
x∈S

c(x)V (x),

V (x) ≥ r(x,u) + λ
∑
y∈S

px,y(u)V (y), ∀u ∈ Ux,∀x ∈ S.

We restrict the ELP with a given GP such that the value function of states in

a partition have the same value. That is, V (x) = V (y),∀x,y ∈ Si, i = 1, · · · ,m.

Augmenting these constraints to the ELP, one gets the following restricted LP (RLP);

JRLP = min
∑
x∈S

c(x)V (x), (3.1)

V (x) ≥r(x,u) + λ
∑
y∈S

px,y(u)V (y), ∀u ∈ Ux,∀x ∈ S, (3.2)

V (x) =V (y), ∀x,y ∈ Si, i = 1, · · · ,m. (3.3)
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Theorem 1. There exists a solution V ∗RLP to the RLP defined by the cost (3.1) and

constraints (3.2) and (3.3) that is optimal for every non-negative c.

Proof. Let V1, V2 be a feasible solution to the constraints (3.2) and (3.3). Then,

the componentwise minimum, min{V1, V2} also satisfies the constraints (3.2) and

(3.3). Since every feasible solution to (3.2) upper bounds the value function V ∗, it

follows that V ∗RLP := min{V : V satisfies Bellman Inequality constraint (3.2)

and partitioning constraint (3.3) } is well defined and also satisfies constraints (3.2)

and (3.3). By construction, every feasible solution, V , to RLP therefore upper bounds

V ∗RLP , which, in itself, is a feasible solution to RLP; in other words, V ≥ V ∗RLP . Hence,

for every c ≥ 0, cTV ≥ cTV ∗RLP and hence, V ∗RLP is optimal for every c ≥ 0.

Although the dimension of RLP is still same as that of ELP, we can reformulate

the RLP as an LP in smaller number of variables as:

JRLP = min
m∑
i=1

c̄(i)v(i), (3.4)

v(i) ≥r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)v(j), ∀u ∈ Ui, ∀x ∈ Si, i = 1, · · · ,m, (3.5)

where c̄(i) =
∑

x∈Si c(x). We will refer to this LP as Reformulated RLP or RRLP.

Let the solution to RRLP be v∗, so that V ∗RLP (x) = v∗(i),∀x ∈ Si, i = 1, · · · ,m.

Moreover, since V ∗RLP satisfies Bellman Inequalities (3.2), it follows that V ∗RLP (x) ≥

V ∗(x),∀x ∈ S. If m << n, then one can find a upper bound by dealing with an LP

involving smaller number of variables.

We can recast the results of Theorem 1 as it relates to the RLP with smaller

number of variables as:

• There exists a solution v∗ to the RRLP that is optimal for every c ≥ 0 and

every feasible solution, v, to RRLP dominates v∗, i.e., v ≥ v∗.
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• Moreover, it is the unique solution for RRLP for any c̄ > 0.

Theorem 1 is important from the following viewpoints:

• It is well known that the cost function c can be considered as the initial state

distribution of a MDP. If a partition scheme is given, then c̄(i) is the initial

probability of states lying in the partition Si. If the solution to the RRLP

depends on c̄, then it will imply that the solution to the RRLP depends on the

initial probability distribution. If so, one must solve the RRLP every time the

initial state distribution changes, which can be cumbersome computationally.

However, if it is independent of c̄, then one can pick any initial probability

distribution of states so that there is a non-zero initial probability for a state

lying in each partition.

• Theorem 1 also implies that the upper bound for the optimal value function

cannot be improved by changing the cost function from a linear to a non-linear

function or by restricting the feasible set of RLP further since the optimal

solution of RLP is dominated by every feasible solution of RLP.

Hence, a refinement of the upper bound must necessarily involve an enlarge-

ment of the feasible set if one wants to stick to an LP formulation, i.e., it should

include the feasible set of RLP and possibly other tighter upper bounds than

the optimal solution of RLP. Lifting of variables is one way to improve the

bound; in this connection, we show in the following section that neither a gen-

eral lifted LP nor one obtained by including the iterated Bellman inequalities

in the constraint set improves the upper bound.

• The ELP for the original MDP were described described by the objective func-

tion in (2.12) and Bellman Inequality constraints in (2.13). In this case, the
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optimal solution was shown to be independent of the positive cost function, and

it is, in fact, the value function, V ∗. So, a natural question that arises is the

following: Is the optimal solution to the RLP also the optimal value function

correspoding to a MDP of size m and if so, how is this MDP related to the

original problem? To answer this question, we make the following observation.

The constraints in RLP, Eq. (3.4) and (3.5), do not, in general, correspond to

those of an MDP because the transition from one partition to another for a

given control u is not specified unambiguously. This is because different states

in the same partition can transition to different partitions for the same u and

stochastic input. However, Theorem 1 provides a clue that there exists an un-

derlying MDP in the RLP whose value function is an upper bound to the value

function of the original MDP. In Section 3.2.3, we discuss about this in detail.

3.2.2 Lifted Restricted Linear Programming

It may appear that we can get tighter upper bounds than those provided by

the RLP by considering either lifted LPs whose feasible set is larger than that of

RLP or LPs with a different objective function. We will show, in this section, that

unfortunately this is not the case. In general, one can construct a lifted LP (LLP)

of the form:

JLLP = min
m∑
i=1

c̄(i)v(i) + dT z, (3.6)

V (x) ≥r(x,u) + λ
∑
y∈S

px,y(u)V (y), ∀u ∈ Ux, ∀x ∈ S, (3.7)

V (x) =v(i), ∀x ∈ Si, i = 1, · · · ,m, (3.8)

z ≥0. (3.9)
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where z is the additional vector of variables used in lifting so that the feasible set is

not empty. Then, if follows that if (Ṽ, ṽ, z̃) is optimal to LLP, then Ṽ will be feasible

solution to RLP. Consequently, Ṽ ≥ V ∗RLP . In other words, one gets no better bound

via lifting if the constraints (3.7) and (3.8) are included.

One could also use the iterated Bellman inequalities for constructing a lifted LP

(LLP) of the form:

JIB = min
L∑
k=1

c̄Tvk, (3.10)

vk+1(i) ≥r(x,u) + λ
m∑
j=1

px,j(u)vk(j), ∀u ∈ Ux,∀x ∈ Si,∀i, k = 1, · · · , L− 1,

(3.11)

v1(i) ≥r(x,u) + λ
m∑
j=1

px,j(u)vL(j), ∀u ∈ Ux,∀x ∈ Si,∀i, (3.12)

where px,j(u) =
∑

y∈Sj px,y(u), which means, px,j(u) is a transition probability from

state x to partition Sj under influence of action u. Again, it turns out that the above

lifted LP is incapable of providing a better bound, as can be seen from the following

result.

Theorem 2. If vIB = (v1, · · · , vL) is a feasible solution to JIB, then vk ≥ v∗, k =

1, · · · , L, where v∗ is the optimal solution to RRLP.

Proof. The proof follows along the lines of Theorem 1 and its essential steps are:

• Show that every feasible solution is lower bounded.

• Construct a feasible solution to LLP that is the componentwise minimum of

all feasible solutions and show that all its components equal v1, v2, . . . , vL equal

v∗. Then, show that it is optimal to LLP.
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We first observe that the feasible set of LLP is not empty because setting v1 =

v∗, v2 = v∗, . . . vL = v∗ readily satisfies the constraints of LLP as v∗ satisfies the

constraints of RRLP.

Let (v1, v2, . . . , vL) be a feasible solution to the LLP; the solution vk = v∗, k =

1, 2, . . . , L is feasible to the LLP. Then, it is easy to see that the componentwise

minimum of the component vectors, v1, v2, . . . , vL, given by min{v1, v2, . . . , vL} sat-

isfies the constraints of RRLP. Since every feasible solution of RRLP dominates v∗,

it follows that min{v1, v2, . . . , vL} ≥ v∗. Hence, vk ≥ v∗ for k = 1, 2, . . . , L.

Again, due to the non-negativity of the probabilities, the componentwise mini-

mum of any two feasible solutions of LLP is also feasible. Since every solution of

LLP is lower bounded, the componentwise minimum of all feasible solutions of LLP,

say (v∗1,LLP , v
∗
2,LLP , . . . , v

∗
L,LLP ) is well-defined and is a feasible solution to LLP. It is

easy to observe that if (v1, v2, . . . , vL) is a feasible solution to LLP, then any cycli-

cal permutation of (v1, v2, . . . , vL) is also a feasible solution to LLP; for example,

(v2, v3, . . . , vL, v1) and (v3, v4, . . . , v1, v2) are two other feasible solutions. For this

reason, v∗1,LLP = v∗2,LLP = . . . = v∗L,LLP . In other words, the componentwise min-

imum of all solutions can be expressed as (v∗LLP , v
∗
LLP , . . . , v

∗
LLP ) by dropping the

subscript indicating the index.

Since (v∗, v∗, . . . , v∗) is a feasible solution to LLP, by construction, v∗ ≥ v∗LLP . By

observing that v∗LLP is feasible for RRLP, it follows that v∗LLP ≥ v∗. Hence v∗LLP = v∗.

Therefore, if (v1, v2, . . . , vL) is feasible to LLP, then vk ≥ v∗, k = 1, 2, . . . , L.

For any c̄ ≥ 0, clearly, (v∗, v∗, . . . , v∗) is optimal as it is feasible to LLP and

vk ≥ v∗ for every k implies
∑L

k=1 c̄
Tvk ≥

∑L
k=1 c̄

Tv∗.

So, we conclude that lifting through the use of iterated Bellman inequalities does
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not help in finding a tighter upper bound than the RLP optimal solution. Also using

any other non-linear objective function will not improve the upper bound as long

as the iterated Bellman inequlities are included in the constraints set. In the next

section, we focus our attention on the construction of a lower bound for the value

function.

3.2.3 Relationship between Exact Linear Programming and Reformulated

Restricted Linear Programming

As mentioned before, the constraints in RRLP do not correspond to those of an

MDP, because the transition from one partition to another for a given control u is

not specified unambiguously. Suppose we use a random selector to select a state

from a partition, then the specification of u with the random selector tells us which

partition the system would transition to next, from the current partition. A question

is: how does one specify this random selector? To answer this, we consider the dual

problem of the RRLP:

JDRLP = max
m∑
i=1

∑
x∈Si

∑
u∈Ui

µiu(x)r(x,u) (3.13)

∑
x∈Si

∑
u∈Ui

µiu(x)

v(i)− λ
m∑
j=1

∑
y∈Sj

px,y(u)v(j)

 ≤ c̄(i), i = 1, · · · ,m,

µiu ≥ 0.

Recall that, for a given partition index i, the RRLP specifies a constraint on v(i) for

each x ∈ Si and u ∈ Ui; the corresponding dual variable is µiu(x). Let the optimal

dual variable, that solves DRLP, be µ̄iu(x). We show, via the following lemma, that

the so-called “surrogate dual” [8, 9, 7] obtained by aggregating the constraint of

RRLP via the optimal dual variables is equivalent to the RRLP and moreover, is the
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exact LP corresponding to a reduced order MDP, defined over the partitions.

Lemma 5. Consider a surrogate LP (SLP) for the RRLP through the vector of dual

variables given by:

JSLP (µ) = min
m∑
i=1

c̄(i)v(i), (3.14)

∑
x∈Si

µiu(x)v(i) ≥
∑
x∈Si

µiu(x)

r(x,u) + λ

m∑
j=1

∑
y∈Sj

px,y(u)v(j)

 ,∀u ∈ U i, i = 1, · · · ,m.

Then, the surrogate dual problem (SDP) is related to the RRLP is following manner:

JSDP = max
µ≥0

JSLP (µ)

and

JSDP = JRLP .

Proof. Let us define a function φ as following;

φ(v, µ) :=
m∑
i=1

c̄(i)v(i)−
m∑
i=1

∑
x∈Si

∑
u∈Ui

µiu(x)

v(i)− r(x,u)− λ
m∑
j=1

∑
y∈Sj

px,y(u)v(j)

 ,
(3.15)

then Lagrangian function, L(µ), used in the dual problem (LD) to the RRLP is

L(µ) = min
v
φ(v, µ).

The Lagrangian dual is:

JLD = max
µ≥0

L(µ),

respectively. Let F be the feasible set for the RRLP and let F(µ) be the feasible set
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of JSLP (µ). Since F ⊂ F(µ),∀µ ≥ 0,

JRLP ≥ JSLP (µ) = min
v∈F(µ)

c̄Tv ≥ min
v∈F(µ)

φ(v, µ) ≥ L(µ), ∀µ ≥ 0. (3.16)

Since the above inequality holds for all µ ≥ 0, by maximizing over µ ≥ 0, we have

the following inequality:

JRLP ≥ JSDP ≥ JLD.

Note that the primal problem, namely RRLP is feasible; a feasible solution is given

by a vector v with all its components being maxx,u r(x,u)

1−λ . Since the primal problem

is feasible, it satisfies the strong duality condition for LPs, and hence, JLD = JRLP .

Hence, JSDP = JRLP .

Note that there exists an optimal dual variable vector µ̄ such that JLD = L(µ̄).

From the inequality (3.16), it follows that JSLP (µ̄) = JLD = JRLP .

Now consider JSLP (µ) with µ = µ̄; for every partition index i = 1, · · · ,m, there

exists at least one µ̄iu(x) such that µ̄iu(x) > 0. If some i, µ̄iu(x) = 0 for every x ∈ Si

and every u ∈ Ui, then JSLP (µ̄) will not have any constraints lower bounding v(i). It

will then admit solutions for v(i) that are arbitrarily negative and correspondingly,

one can find a direction in which the cost of JSLP (µ̄) decreases without bound.

Howver, this is a constradiction, since JRLP is lower bounded. So, we can rewrite

JSLP (µ) in the following manner:

JSLP (µ̄) = min
m∑
i=1

c̄(i)v(i), (3.17)

v(i) ≥r̄(i,u) + λ
∑
x∈Si

hiu(x)
m∑
j=1

∑
y∈Sj

px,y(u)v(j),∀u ∈ Ū i, i = 1, · · · ,m,
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where, u ∈ Ū i if µ̄iu(x) > 0 for some x ∈ Si and

hiu(x) =
µ̄iu(x)∑

x∈Si
µ̄iu(x)

,

and

r̄(i,u) =
∑
x∈Si

hiu(x)r(x,u), (3.18)

One may interpret the term, hiu(x), as the probability of picking the state x from the

partition Si. By inspection, we see that JSLP (µ̄) is indeed the exact LP corresponding

to an MDP (defined over the partitions) with immediate reward at partition i given

by r̄(i,u) and transition probability between partitions i and j given by,

p̄i,j(u) =


∑

x∈Si
hiu(x)

∑m
j=1

∑
y∈Sj px,y(u), if u ∈ Ūi,

0, otherwise.

(3.19)

So, the optimal solution to JSLP (µ̄) is the optimal value function associated with the

same underlying reduced order MDP.

Remark 1. If one consider the sub-optimal dual variables, µiu(x) = 1
|Si| ,∀x ∈ Si,∀u,

then solving the corresponding surrogate dual, SLP (µ), to obtain an approximate

value function, would result in the so-called “hard aggregation” method (see Sec. 4

of [2]).

Furthermore, in the following theorem, we will show that there exists µ̄ such that

µ̄iu(x) = 1 only at a certain x ∈ Si and u ∈ Ui for each i.

Theorem 3. For the original MDP, if a GP is given, then for each partition, Si,

there exists µ̄, x∗ ∈ Si and u∗ ∈ Ui such that such that µ̄iu∗(x
∗) = 1 and µ̄iu(x) = 0
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for any other x ∈ Si and u ∈ Ui where x 6= x∗ and u 6= u∗.

Proof. Let us define sets Hi for i = 1, · · · ,m as following: for each i,

Hi = Si×Ui = {a = (x,u)|x ∈ Si,u ∈ Ui}. (3.20)

A set Hi is composed of all possible combinations of a state picked from partition

Si and an action chosen from Ui. Let us consider an MDP whose state space is

S ′ = {1, 2, · · · ,m}, and available action set is Hi for each state i, reward function

is r′(i, a),and transition probability from state i to j under influence of action a

is p′i,j(a). Note that an action on this MDP also requires one to select a state x

of ELP for each state in S ′, and the corresponding u of ELP. Then the exact LP

corresponding to this MDP is given as follows:

J ′ELP = min c̄Tw (3.21)

w(i) ≥r′(i, a) + λ
m∑
j=1

p′i,j(a)w(j), ∀a ∈ Hi,∀i ∈ S ′. (3.22)

Let the solution to J ′ELP be w∗, then because it is an MDP,

w∗(i) = r′(i, a∗) + λ

m∑
j=1

p′i,j(a
∗)w∗(j),∀i,

where a∗ is the optimal policy for the MDP as following,

a∗(i) = argmax
a∈Hi

[r′(i, a) + λ
m∑
j=1

p′i,j(a)w∗(j)].

For any a ∈ Hi and i ∈ S ′, there are corresponding reward function and transition
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probability from the original MDP as follows:

r′(i, a) = r(x,u), (3.23)

and transition probability from state i to j

p′i,j(a) =
∑
y∈Sj

px,y(u). (3.24)

With these terms, we can rewrite J ′ELP as following:

J ′ELP = min c̄Tw (3.25)

w(i) ≥r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)w(j), ∀x ∈ Si, ∀u ∈ Ui, i = 1, 2, · · · ,m. (3.26)

Interestingly, this ELP is exactly same as RRLP, Eq. (3.4) and (3.5) implying

w∗ = v∗. Moreover, JRLP = J ′ELP . We can consider another MDP whose state

space is composed of chosen states x∗(i), i = 1, · · · ,m, and its ELP is the following;

J ′′ELP = min c̄Tw (3.27)

w(i) ≥r(x∗(i),u) + λ
m∑
j=1

∑
y∈Sj

px∗(i),y(u)w(j), ∀u ∈ Ui, i = 1, 2, · · · ,m. (3.28)

The solution to J
′′
ELP is the same as RLP, because a∗(i) = (x∗(i),u∗(i)) is the optimal
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policy for MDP(S ′),

w∗(i) =r′(i, a∗) + λ
m∑
j=1

p′i,j(a
∗)w∗(j),∀i, (3.29)

=r(x∗,u∗) + λ
m∑
j=1

∑
y∈Sj

px∗,y(u∗)w∗(j),∀i, (3.30)

≥r(x∗,u) + λ
m∑
j=1

∑
y∈Sj

px∗,y(u)w∗(j),∀u ∈ Ui,∀i. (3.31)

Hence, J
′′
ELP = J ′ELP = JRLP . Moreover, from Eq. (3.30), J ′′ELP can be equivalently

rewritten as follows:

J
′′

ELP = min c̄Tw (3.32)

w(i) ≥r(x∗(i),u∗) + λ
m∑
j=1

∑
y∈Sj

px∗(i),y(u∗)w(j), i = 1, 2, · · · ,m. (3.33)

This LP is a surrogate LP with µ satisfying µ̄iu∗(x
∗) = 1 and µ̄iu(x) = 0 for any other

x ∈ Si and u ∈ Ui where x 6= x∗ and u 6= u∗. Since JRLP = J
′′
ELP , it follows that

JRLP = JSLP (µ̄) = JSDP = JLD and µ̄ is dual optimal.

Recall that the RLP deals with a smaller number of variables, m, but the number

of constraints is of the same order as the ELP of the original MDP. So, solving the

RLP is no less difficult than solving the original ELP! However, an LP with a large

number of constraints can be solved, if there is a computationally efficient scheme to

identify a linear inequality that separates a non-optimal solution from an optimal one

[12]. Otherwise, one has to resort to heuristics or settle for an approximate solution

to the RLP. Heuristic methods include aggregation of constraints, sub-sampling of

constraints [6], constraint generation methods [11, 13]. Other than these approaches,

we reformulate the RLP to an ELP of an MDP whose state space is {1, 2, · · · ,m},

30



available action set for each i is Hi = Si×Ui, during the proof of Theorem 3. Since

it is an MDP, we can use general methods for the Dynamic program, including the

value iteration and policy iteration. However, solving J ′ELP also requires expensive

computation, because there are | Si | × | Ui | number of available actions for each

i ∈ S ′. We will provide some useful properties of the perimeter surveillance problem

to decrease the amount of computation in the next section.

3.3 Lower Bounding Linear Programming

A simple but conservative lower bound for the value function is given by:
¯
V (x) =

miny,u r(y,u)

1−λ ,∀x ∈ S for the following reason: For any stationary policy π,

V ∗ ≥ [I − λPπ]−1Rπ ≥ [I − λPπ]−1rmin =
rmin

1− λ
1 =

¯
V, ∀π ∈ Π, (3.34)

where rmin = miny,u r(y,u). Eq. (3.34) indicates that if one were to pick a policy

π ∈ Π, then a value function associated with the policy will be a lower bound to the

value function of the MDP. Let us call the value function associated with policy π

as the performance value function, Vπ, of the policy π. Then

Vπ = [I − λPπ]−1Rπ, (3.35)

and so Vπ satisfies the following:

Vπ = Rπ + λPπVπ. (3.36)

It is also difficult to compute Vπ if the dimension, |S|, is large. It is therefore

reasonable to compute a lower bound for Vπ, which is, in turn, a lower bound for the

value function V ∗.
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There is a well-known policy so-called “greedy” policy in the literature. For any

appriximate value function Ṽ , one can construct a sub-optimal greedy stationary

policy according to:

π̃(x) = argmax
u
{r(x,u) + λ

∑
y∈S

px,y(u)Ṽ (y)}, ∀x ∈ S . (3.37)

Let us define the improvement in value function,

α(x) := r(x, π̃(x)) + λ
∑
y∈S

px,y(π̃(x))Ṽ (y)− Ṽ (x).

Note that there is no improvement, i.e., α = 0, when Ṽ = V ∗. The expected

discounted one-step reward, Vπ̃, corresponding to the sub-optimal policy π̃, satisfies

the following bound ([25]):

Ṽ (x) +
1

1− λ
min
y∈S

α(y) ≤ Vπ̃(x) ≤ V ∗(x), ∀x ∈ S .

In our experience, the lower bound to the optimal value function provided by the

quantity Ṽ (x) + 1
1−λ miny∈S α(y) is very conservative. If Ṽ is close to V ∗, then Vπ̃

could be a tight lower bound. However, computation of Vπ̃ involves solving a linear

system of equations of size | S |, which would be expensive for a large state-space.

Alternative methods for computing a lower bound to the value function are de-

sirable. In this respect, the optimal solution of following non-linear program (NLP)
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can be used to compute a lower bound:

JNLP = min
m∑
i=1

c̄(i)w(i), (3.38)

w(i) ≥min
x∈Si

{r(x,u) + λ
m∑
j=1

px,j(u)w(j)}, ∀u ∈ Ui, i = 1, · · · ,m. (3.39)

While it is not readily apparent why the optimal solution of NLP should be a lower

bound to the value function, it can be addressed in two steps using the following

lemmas. The first lemma shows that an optimal solution exists and the second

lemma shows that it is a lower bound to the value function.

Lemma 6. There exists a solution w∗ to the NLP given by (3.38) and (3.39) that is

optimal for every c̄ ≥ 0.

Proof. One can observe that the feasible set of RRLP is a subset of the feasible set

of NLP; since RRLP is feasible, NLP is also feasible.

Every solution of NLP is lower bounded by rmin

1−λ 1. This follows from the following

reasons:

• The constraint (3.39) is a disjunction and one can enumerate all the underlying

LPs that constitute this disjunction.

• The feasible set of the NLPs is the union of the feasible sets of the underlying

LPs.

• Since the underlying LPs are finite in number, and since every feasible solution

to the underlying LP is lower bounded by rmin

1−λ 1, it follows that every solution

of NLP is also lower bounded by rmin

1−λ 1 .

As in Lemma 1, one can observe that if w1, w2 are feasible solutions of NLP, then

their componentwise minimum, min{w1, w2}, also satisfies the constraint (3.39) of
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NLP. Hence, the componentwise minimum of all the feasible solutions of NLP exists

because every solution is lower bounded; let this solution be w∗. If w is a feasible

solution, then w ≥ w∗ by construction. Since w∗ is feasible and c̄ ≥ 0, it follows that

c̄Tw ≥ c̄Tw∗ implying the optimality of w∗. Since the construction of w∗ did not

depend on c̄, w∗ is optimal for every c̄ ≥ 0.

The following lemma establishes that w∗ is a lower bound to V ∗:

Lemma 7. Let W (x) := w∗(i),∀x ∈ Si, then W is a lower bound to the solution to

the ELP, V ∗. That is, V ∗(x) ≥ W (x),∀x ∈ S.

Proof. Let us define a vector v∗ such that v∗(i) = minx∈Si V
∗(x), Then if v∗ is

feasible to the NLP, then the claim should hold. Since V ∗ is the solution to the ELP,

it satisfies the follows;

V ∗(x) ≥r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)V ∗(y), ∀u ∈ Ux,∀x ∈ S,

≥r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)v∗(j), ∀u ∈ Ux,∀x ∈ S .

Then for each partition Si, the following should hold;

v∗(i) = min
x∈Si

V ∗(x) ≥min
x∈Si

[r(x,u) + λ

m∑
j=1

∑
y∈Sj

px,y(u)v∗(j)], ∀u ∈ Ui, i = 1, · · · ,m.

This means that v∗ is feasible to the NLP, and so v∗(i) ≥ w∗(i),∀i, from Lemma 6,

as w∗ is the componentwise minimum of all feasible solutions to NLP. Since V ∗(x) ≥

v∗(i) ≥ w∗(i) = W (x),∀x ∈ Si, W is a lower bound to V ∗.
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3.3.1 Iterative Linear Programming for Lower Bounds

Although the solution to NLP is a lower bound to the value function, solving NLP

is not simple due to its non-linear constraints. So we provide an iterative method for

a lower bound. The basic concept of the method is similar to the policy iteration.

PI updates its policy in each iteration until it converges, however, in our approach,

we find and update a set of states in each iteration. The iteration selects m states

from m partitions, one state from one partition. Let us define a set Q such that

Q :=
∏m

i=1 Si, then an element of set Q is a m-tuple vector and the iteration chooses

one element of the set until its convergence.

Algorithm 3 State Iteration

1: Initialize k ← 0 and pick hk ∈ Q arbitrarily.
2: Solve the following LP;

Jk = min c̄Twk (3.40)

wk(i) ≥ r(hk(i),u) + λ
m∑
j=1

∑
y∈Sj

phk(i),y(u)wk(j), ∀u ∈ Ui,∀i.

3: Find zk such that

zk(i) = min
x∈Si

max
u∈Ui

r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)wk(j)

 , (3.41)

and choose a new set of states hk+1 from the following equation;

hk+1(i) = argmin
x∈Si

max
u∈Ui

r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)wk(j)

 .
4: If wk = zk, stop; else, set k ← k + 1 and go to Step 2.
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Lemma 8. Algorithm 3 terminates in finite number of iterations, and its solution is

a lower bound to the value function.

Once one chooses hk, the LP, Eq. (3.40), becomes an ELP for a MDP whose

state space is {1, 2, · · · ,m}, one-step reward of state i under influece of action u is

r(hk(i),u), and its state transition probability from i to j is pi,j(u) =
∑

y∈Sj phk(i),y(u).

This allows us to exploit the properites of Bellman’s equation.

Proof. For any iteration k, wk(i) ≥ zk(i),∀i, because wk is a solution to Eq. (3.40),

it satisfies the following;

wk(i) = max
u∈Ui

r(hk(i),u) + λ
m∑
j=1

∑
y∈Sj

phk(i),y(u)wk(j)

 , (3.42)

and from the definition of zk, Eq. (3.41). So if wk 6= zk, then there must exist at

least one state i such that wk(i) > zk(i).

At the next step, k + 1, the solution to the LP is as following;

wk+1(i) = max
u∈Ui

r(hk+1(i),u) + λ
m∑
j=1

∑
y∈Sj

phk+1(i),y(u)wk+1(j)

 (3.43)

=Thk+1wk+1(i), (3.44)

where Thk+1 is a DP operator associating with hk+1. From the definition of hk+1, zk

can be rewritten as following;

zk(i) = max
u∈Ui

r(hk+1(i),u) + λ

m∑
j=1

∑
y∈Sj

phk+1(i),y(u)wk(j)

 , (3.45)

=Thk+1wk(i). (3.46)
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Since wk(i) ≥ zk(i),∀i and Thk+1 is a DP operator, Thk+1wk(i) = zk(i) ≥ Thk+1zk(i),

which means,

zk(i) ≥ Thk+1zk(i) ≥ T 2
hk+1z

k(i) ≥ · · · ≥ wk+1(i),

and

wk(i) ≥ zk(i) ≥ wk+1(i).

Hence, if wk 6= zk and so there exist some states such that wk(i) > zk(i), then the

value function for those states will strictly decrease at the next iteration,

wk(i) > wk+1(i).

Secondly, assume that the algorithm stops after K iterations. We will show

that wK = w∗ where w∗ is the solution to the NLP, Eq. (3.38) and (3.39). By

construction, wk, k = 0, 1, · · · , K is feasible to the NLP. So, wk(i) ≥ w∗(i), i =

1, · · · ,m, k = 0, 1, · · · , K. If w∗ is the solution to the NLP, then it satisfies the

following;

w∗(i) = max
u∈Ui

r(h∗(i),u) + λ
m∑
j=1

∑
y∈Sj

ph∗(i),y(u)w∗(j)

 ,
where

h∗(i) = argmin
x∈Si

max
u∈Ui

r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)w∗(j)

 .
From the monotonicity,
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wK(i) ≥max
u∈Ui

r(h∗(i),u) + λ
m∑
j=1

∑
y∈Sj

ph∗(i),y(u)wK(j)

 ,
≥min

x∈Si

max
u∈Ui

r(x,u) + λ
m∑
j=1

∑
y∈Sj

px,y(u)wK(j)

 ,
=zK(i)

Since wK = zK , the following equality holds

wK(i) = max
u∈Ui

r(h∗(i),u) + λ
m∑
j=1

∑
y∈Sj

ph∗(i),y(u)wK(j)

 ,
and it means wK is a fixed point. Hence, w∗ = wK .

This algorithm will compute w∗ in a finite number of iterations. The solution of

LP in Step 2 is computationally tractable as the number of variables and constraints

are only of the order of the number of partitions. Step 3 hides the complexity - if Si

is of low cardinality, this is computationally tractable. Otherwise, one must exploit

structure in the problem to compute w∗.

38



4. APPLICATION TO PERIMETER SURVEILLANCE PROBLEM

The perimeter surveillance problem arose from the Cooperative Operations in

Urban Terrain (COUNTER) project at AFRL [10]. In this problem, there is a

perimeter which must be monitored by a collection of UAVs. Along the perimeter,

there are ns alert stations equipped with Unattended Ground Sensors (UGSs) which

detect intrusions or incursions into the perimeter. For the sake of simplicity, we

assume that incursions into the perimeter can only occur at the stations. An incursion

could be a nuisance (false alarm) or a real threat. The UGS raise an alarm or an

alert whenever there is an incursion. The camera equipped UAV responds to an

alert by flying to the alert site and loitering there, while a remotely located operator

steers the gimballed camera looking for the source of the alarm. Here the operator

serves the role of a classifier or a sensor, i.e., the operator must determine, from the

video information, whether the intrusion is a nuisance or a threat. For details on

the perimeter alert surveillance problem and the variants thereof, we refer the reader

to the authors’ prior work [3, 4, 18, 16]. Figure 4.1 shows a typical scenario, where

there are 4 alert stations with the UAV at a station (location 0) with an alert. The

decision problem we solve is the following: Given that the probability of arriving an

alert at a station, what is the optimal time a UAV should spend at a station before

resuming its patrol? We associate an information gain with a UAV loitering and

servicing an alert and we model this gain as a monotonically increasing function of

the loiter/dwell time T .

4.1 Problem Formulation

We discretize the perimeter surveillance control problem spatially and temporally;

nodes on the perimeter partition it uniformly. The distance between adjacent nodes
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Figure 4.1: Perimeter surveillance scenario with UAV loitering at alert station.

on the perimeter is of unit length and the time taken by a robot to traverse between

two adjacent nodes is a unit of time. Let the real vectors xr(t),u(t) denote the states

of nr robots in the collection and their control actions respectively at time t. Let a

real vector xs(t) denote the states associated with the ns UGS locations. Further, let

d(t) ∈ {0, 1}ns denote the vector of disturbances (incursions) occuring at the ns UGS

locations respectively. We intentionally leave out a precise definition of the states xr

and xs, to allow for greater generality and to accommodate application needs, as they

arise later in the article. As an example, one may include the location of a UAV, its

direction of travel around the perimeter in the definition of xr, and the amount of time

they spend (or dwell) servicing an alert at the UGS location, while xs may contain

the delays associated with UGS stations. The control actions of the robots at time

t are captured by the vector u(t); a sample control action indicates whether a robot

should dwell at its current location or continue in the same direction or reverse. The
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disturbance d(t) can take any of the possible L values, namely d1,d2, . . . ,dL with

corresponding probabilities p1, . . . , pL; these probabilities are assumed to be known

a priori. The number of possible values the disturbance d(t) can take depends on

the model of incursion processes; for example, if at most one incursion is allowed at

any time across the ns stations, then L = ns + 1; if, on the other hand, incursions

can occur simultaneously at all the stations, then L = 2ns .

Let the evolution of states xr and xs be governed by the state transiton equations:

xr(t+ 1) = fr(xr(t),u(t)), (4.1)

xs(t+ 1) = fs(xr(t),xs(t),u(t),d(t)), (4.2)

where fr and fs are suitably defined vector fields. For the sake of notational con-

venience, let the state of the system x(t) := (xr(t),xs(t)). The evolution equations

(4.1) and (4.2) can be combined as:

x(t+ 1) = f(x(t),u(t),d(t)), (4.3)

for the augmented vector field f . Additionally, there may be constraints on the state

and control input, of the form:

g(x(t),u(t)) ≤ 0, ∀t ≥ 0, (4.4)

which model the allowable control actions of the robots. For example, the state of

an UGS can only be altered by the action of a robot that has spent a pre-specified

amount of time in its neighborhood.

Let Sr,Ss represent the set of all possible discrete states of robots and stations

respectively. Let S = Sr × Ss be the Cartesian product of the sets Sr and Ss
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and denote the set of all possible states of the system. Let r(x,u) denote the one-

step payoff/ reward associated with the state x and the control input u. Let Ux

denote the set of control actions for state x. Let U be the set of all possible control

actions. We focus our attention on stationary policies, π ∈ Π, where π ∈ Π maps

S into U , i.e., u = uπ(x) ∈ Ux. Consider the stochastic optimization problem:

for a specified discount factor, λ ∈ [0, 1), find a stationary policy, π, such that the

following objective is maximized:

V ∗(x0) := max
π∈Π

E

[
∞∑
t=0

λtr(x(t),uπ(x(t)))|x(0) = x0

]
, (4.5)

where Π is the set of all possible stationary policies. We make the following standard

assumptions about the finiteness of the states and control actions:

• Assumption 1: The robots are identical. Let a set of allowed control actions

for robot i at state x be Aix, and assume Aix is finite, then a set of available

actions for state x is Ux =
∏nr

i=1Aix for each x ∈ S.

• Assumption 2: Since the problem has been discretized, the perimeter is of

finite length and since the disturbances and control decisions are finite, the sets

Sr and Ss are also finite. Hence, the state space S of the system is finite.

As we discussed in Section 2, the value function V ∗ from (4.5) satisfies the fol-

lowing Bellman equation:

V ∗(x) = max
u∈Ux

{
r(x,u) + λ

∑
y∈S

px,y(u)V ∗(y),

}
∀x ∈ S, (4.6)
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or we can write it using the evolution equation (4.3) in the following:

V ∗(x) = max
u∈Ux

{
r(x,u) + λ

L∑
l=1

plV
∗(f(x,u,dl)),

}
∀x ∈ S, (4.7)

where pl = Prob{d = dl}. Both equations are equivalent, and both or either will be

used for explanations in the following sections. For a modest size problem involving

2 robots and 8 stations, the value of |S| can be upwards of 180 billion! For this

reason, the conventional techniques to solving Bellman’s equation, such as value and

policy iteration, are unsuitable. So, our methodologies from previous sections may

be proper to this application.

We use≥ to compare approximations of value functions; in particular, if V1 ≥ V2,

we mean that every component of V1 −V2 ≥ 0. The partial ordering of states may

not obey the same relationship. To distinguish this difference, we use � to compare

two states whenever it is possible.

4.2 Results Exploiting the Structure of the Perimeter Surveillance Problem

Motivated by the perimeter surveillance application, we make the following ad-

ditional assumptions about the structure of the system:

• Assumption 3: For a given xr,d,u, the function fs is monotone in xs, i.e.,

if xs ≥ zs then fs(xr,xs,u,d) ≥ fs(xr, zs,u,d). In the perimeter surveillance

application, we treat the delay in servicing an alert at a location as the state

xs. In this case, the delay increases monotonically until it is reset by the action

of the robots.
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• Assumption 4: We assume the following structure for the one-step payoff

function:

r(x,u) = ψr(xr,u)− ψs(xs), (4.8)

where ψr : Sr × U → <, and ψs : Ss → <+. The function ψr is a monotone

function of xr for every u, while the function ψs is a monotone function of xs.

This structure is motivated by the following consideration: the information

gained by robots depends on how long they dwell at a station, while there is a

penalty associated with tardiness in servicing alerts at other locations. So, ψr

can be considered as the information gain from actions of robots, and ψs is a

penalty function for the tardy responses.

• Assumption 5: Each robot knows the complete state, xs, of all stations.

While this may not be realistic, we make this assumption in order to avoid

complexities that arise from incomplete information.

Assumption 3 motivates the following partial ordering relationship amongst the

states:

Definition : (Partial Ordering of States) Let x,y ∈ S. Then x � y if xr =

yr, xs − ys ≥ 0.

Assumptions 3 and 4 also suggest a partitioning scheme of a second kind, wherein

the one-step reward across all the states in the partition is the same:

Definition: (Constant Reward Partitioning Scheme) A general partitioning

scheme CRP = {S1,S2, . . . ,Sm} of cardinality m is a Constant Reward Partitioning
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Scheme if for every x,y ∈ Si, i = 1, 2, . . . ,m,

xr = yr, ψs(xs) = ψs(ys), ∀x,y ∈ Sk, k = 1, . . . ,m.

We will refer to the subsets Sk, k = 1, 2, . . . ,m, as constant reward partitions or

simply partitions, when the context is clear. It is also clear that for any pair of

states x,y in a constant reward partition, the one-step reward is the same, for the

same control action u:

r(x,u) = ψr(xr,u)− ψs(xs) = ψr(yr,u)− ψs(ys) = r(y,u).

We denote the reward corresponding to any state in a constant reward partition Si

as ri(u). Since it is a general partitioning, Ux = Uy =: Ui, ∀x,y ∈ Si.

The perimeter surveillance also allows for the partial ordering of constant reward

partitions in the following way:

Definition: (Partial Ordering of Partitions) Given a constant reward parti-

tioning scheme {S1, . . . ,Sm}, we define Si � Sj if

1. for every x ∈ Si, there is a z ∈ Sj such that x � z; moreover, there is no s ∈ Sj

such that s � x, and

2. for every z ∈ Sj, there is a x ∈ Si such that x � z; moreover, there is no s ∈ Si

such that z � s.

We require another definition to ensure that ordering of states induces a consistent

ordering of partitions.

Definition: (Consistent Partitioning) A constant reward partitioning scheme

{S1, . . . ,Sm} of order m is consistent if x, z ∈ S and x � z implies one of the

following conditions holds:
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(i) there exist distinct partitions Si,Sj such that x ∈ Si, z ∈ Sj and Si � Sj, or

(ii) there exists a partition Si such that x, z ∈ Si.

We then refer to S1, . . . ,Sm as consistent partitions. The perimeter surveillance

problem allows for the existence of a consistent partitioning scheme. By way of

notation, we define f̄(x,u,dl) = j if f(x,u,dl) ∈ Sj.

Definition : (Maximal/Minimal State) For a given partition Si,

• State x ∈ Si is a maximal state, if there is no y ∈ Si such that y � x. Let a

set S̄i denote a set of all maximal states of Si.

• State x ∈ Si is a minimal state, if there is no y ∈ Si such that x � y. Let a

set S̄i denote a set of all minimal states of Si.

Then, S̄i � S̄i.

We are now ready to state the following theorem which simplifies the computation

of upper and lower bounds:

Theorem 4. Let S1, . . . ,Sm be consistent partitions. Let c be any positive vector.

Then,

1. an upper bound V̄ub of V∗ may be computed from the following upper bounding

LP referred to as UBLP:

Ju = min
m∑
j=1

[
∑
x∈Si

c(x)]w(i),

w(i) ≥ ri(u) + λ
L∑
l=1

plw(f̄(x,u,dl)), ∀z ∈ S̄i,∀u ∈ Ui, i = 1, · · · ,m,

w(j) ≥ w(i), ∀Si � Sj.

Let w̄ denote the solution to UBLP and V̄ub(x) = w̄(i) for all x ∈ Si.
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2. A lower bound V̄lb of V∗ can be computed from the following lower bounding

non-linear LP referred to as LBNLP:

Jl = min
m∑
j=1

[
∑
x∈Si

c(x)]w(i), subject to,

w(i) ≥ min
x∈S̄i

[
ri(u) + λ

L∑
l=1

plw(f̄(x,u,dl))

]
, ∀u ∈ Ui, i = 1, · · · ,m.

Let
¯
w denote the solution to LBNLP and V̄lb(x) =

¯
w(i) for every x ∈ Si.

The proof of this theorem requires the following lemma:

Lemma 9. Let x, z correspond to two different initial states of the system described

by Eq. (4.1) and (4.2), and satisfying assumptions (1) through (5). Let the corre-

sponding trajectories subject to the same input u(t) and disturbance d(t) be respec-

tively x(t) and z(t). If x � z, then

(i) x(t) � z(t) for all t ≥ 0,

(ii) V ∗(x) ≤ V ∗(z) and

(iii) V ∗(f(x(t),u(t),d(t)) ≤ V ∗(f(z(t),u(t),d(t)), t ≥ 0.

Proof. The proof of (i) is by induction. At t = 0, it is readily true from the hypoth-

esis. It suffices to show that if x(t) � z(t), then x(t + 1) � z(t + 1); however, this

readily follows from evolution equations (4.1), (4.2) and the assumption (3).

For the same sequence of inputs u(t),d(t), from (i) and assumption (4), we can

infer that r(x(t),u(t)) ≤ r(z(t),u(t)) for t ≥ 0. Hence, for the same sequence of

inputs u(t),d(t), the total discounted reward associated with the initial state x is

no more than the initial state z. Taking expectation over all the disturbances and

maximizing over all the control actions, one readily obtains V ∗(x) ≤ V ∗(z).
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From part (i), since f(x(t),u(t),d(t)) = x(t + 1) � z(t + 1) = f(z(t),u(t),d(t)),

it follows that V ∗(f(x(t),u(t),d(t)) ≤ V ∗(f(z(t),u(t),d(t)), t ≥ 0.

We now provide the proof of Theorem 4.

Proof of Theorem 4. Since r(x,u) = ri(u) for every x ∈ Si, and px,y(u) = pl if

y = f(x,u,dl), one may express the Bellman inequalities as:

V (x) ≥ ri(u) + λ

L∑
l=1

plV (f(x,u,dl)), ∀x ∈ Si,∀u ∈ Ui,∀i. (4.9)

1. Consider the following minimization problem:

Js = min c ·V, (4.10)

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(x,u,dl)), ∀x ∈ Si,∀u ∈ Ui,∀i, (4.11)

V (y) ≥ V (x), ∀x � y. (4.12)

Given any x ∈ Si, x � y for some y ∈ S̄i. If V satisfies the following strength-

ened version of Bellman inequality for all x ∈ Si, y ∈ S̄i,

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(y,u,dl)),

by part (iii) of Lemma 9, it would automatically satisfy Bellman’s inequalities:

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(x,u,dl)), ∀x ∈ Si.
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Consider the following intermediate LP (ILP):

J = min c ·V,

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(y,u,dl)), ∀x ∈ Si, ∀y ∈ S̄i,∀u ∈ Ui,∀i,

V (y) ≥ V (x), ∀x � y, x,y ∈ S.

Since Bellman inequalities of the ELP are satisfied by the optimal solution, V̄

of ILP, it automatically upper bounds V∗. The LPs ILP and UBLP have the

same optimal value and the optimal solution of one can be used to construct

the optimal solution of the other in the following way:

• Since V̄ub(x) = w̄(i) for all x ∈ Si, we can see that V̄ub readily satisfies the

first set of constraints of ILP. Since S1, . . . ,Sm are consistent partitions,

the last set of constraints is met: if x � y, then either x,y belong to

the same partition or belong to different partitions; in the former case,

the last constraint is readily met. In the latter case, there exist partitions

Si 3 x, Sj 3 y such that Si � Sj. Since w̄(j) ≥ w̄(i) for all Si � Sj,

it follows that V̄ub(y) = w̄(j) ≥ w̄(i) = V̄ub(x). Since V̄ is optimal,

c · V̄ ≤ c · V̄ub =
∑m

i=1[
∑

x∈Si c(x)]w̄(i). By Lemma 1, we additionally

have V̄ub ≥ V̄.

• By the same token, if we set w(i) = V̄ (x), ∀x ∈ Si, we see that it is feasible

for UBLP. Hence,
∑m

i=1[
∑

x∈Si c(x)]w̄(i) ≤
∑m

i=1[
∑

x∈Si c(x)]w(i) = c·V̄.

Since c > 0 and V̄ub ≥ V̄, c · V̄ = c · V̄ub ⇒ V̄ = V̄ub. Since V̄ ≥ V∗, it

follows that V̄ub ≥ V∗.

2. For every x ∈ Si, y � x for some y ∈ S̄i; it follows from part (ii) of Lemma
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9 that V ∗(x) ≥ V ∗(y). Let us define w∗(i) := minx∈Si V
∗(x) and x∗(i) :=

argminx∈S̄i V
∗(x), then, by the definition of S̄i, w∗(i) = miny∈S̄i V

∗(y), and

w∗(i) = V ∗(x∗(i)). Since V∗ satisfies Bellman inequalities, it follows that

w∗(i) = min
x∈Si

V ∗(x) = V ∗(x∗(i))

≥ ri(u) + λ

L∑
l=1

plV
∗(f(x∗(i),u,dl)), ∀u ∈ Ui,

≥ ri(u) + λ

L∑
l=1

pl min
z∈Sf̄(x∗(i),u,dl)

V ∗(z), ∀u ∈ Ui,

≥ ri(u) + λ
L∑
l=1

plw
∗(f̄(x∗(i),u,dl)), ∀u ∈ Ui .

Moreover, x∗(i) is an element in S̄i, so w∗ is feasible to LBNLP. Hence, w∗ ≥

¯
w.

The subsequent remark concerns possible simplifications when there is symmetry

in the problem. Symmetry induces equivalence classes of states.

Remark 2. If Ei is an equivalence class, it is natural that Ei is subset of a consistent

partition. Symmetry also implies that V ∗(x) = V ∗(z) for all x, z ∈ Ei. These

constraints may easily be accommodated in UBLP by setting x � z for all x, z ∈ Ei,

and in LBNLP by requiring Ei to be contained wholly in a consistent partition.

Moreover, if x, z ∈ Ei, we have f̄(x,u,dl) = f̄(z,u,dl) for every u and dl. Hence,

the inequality constraints corresponding to states in an equivalence class of the form

w(i) ≥ ri(u) + λ

L∑
l=1

plw(f̄(x,u,dl)), ∀i,u,
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can be replaced by a single inequality constraints where x is a representative of the

equivalance class. Similarly, the NLP constraint of the form

w(i) ≥ mins∈S̄i [ri(u) + λ
∑L

l=1 plw(f̄(s,u,dl))] ∀i,u,

simplifies in the following way: the minimization on the right hand side of the inequal-

ity will now only need to be carried out among representative states of an equivalence

class contained in the set S̄i.

Remark 3. If for every i, S̄i is a singleton set, i.e., S̄i = {zi}, then LBNLP reduces

to the following simplified LP (LLP):

Jl = min
M∑
j=1

[
∑
x∈Si

c(x)]w(i), ,

w(i) ≥ ri(u) + λ
L∑
l=1

plw(f̄(zi,u,dl)), ∀i,u,

and V̄2(x) = w̄(i) for every x ∈ Si. Solving a LP is considerably simpler than solving

a NLP and hence, there is an associated simplification in computing the lower bound.

4.3 Perimeter Surveillance Problems

We will provide details about the perimeter surveillance problem for several dif-

ferent instances for illustration purposes. The patrolled perimeter is a simple closed

curve with N(≥ ns) nodes which are (spatially) uniformly separated, of which ns

correspond to the alert stations. Let the ns distinct station locations be elements of

the set Ω ⊂ {0, . . . , N − 1}. A typical scenario shown in Figure 4.1 has 15 nodes, of

which, nodes {0, 3, 7, 11} correspond to the UGS. We will consider the elements of Ω

ordered in increasing order so that we can label the stations as the 1st station locates

at node 0, the 2nd one is at node 3, and so on. Let Ω′ denote the index set of the
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station nodes; Ω′ = {1, 2, · · · , ns}. Here, station locations 3, 7 and 11 have no alerts,

and station location 0 has an alert being serviced by the loitering UAV. A perimeter

is “symmetric” if number of nodes between two adjacent stations is idential, other-

wise, “asymmetic” perimeter. In the example, number of nodes between station 0

and 11, 11 and 7, 7 and 3, is all 3. However, the one between station 0 and 3 is 2,

So the perimeter is asymmetric. If the number of nodes between station 0 and 3 is

also 3, then it will be a symmetric perimeter. In this dissertation, we consider only

symmetric perimeter problems. However, even if the perimeter is asymmetric, one

can exploit the structure of symmetric perimeters to achieve the bounds. They will

loose the tightness between upper and lower bounds, but our claims will still hold.

If a UGS detects an incursion, an alert is raised at the location and communicated

instantaneously to the robots. As we briefly mentioned before, the probability of alert

arrivals depends on alerting process. We will consider two types of alerting processes

as follows:

1. Single alert queue: There is a single queue where an alert arrives at the queue

with probability pα. After an alert is queued up, we assume it shows up arbi-

trarily at any one of the ns stations (assuming choice of station is a uniformly

distributed random variable). For this reason, only one alert can arrive at one

of the ns stations at any instant of time. Hence, there are ns+1 possibilities for

the value of the vector of alerts d(t) ∈ {d0,d1, · · · ,dns} =: D where D is a set

of all possible disturbance inputs, with the first one being that there is no alert

at any station and the other ns correspond to an alert at each of the ns stations.

Then Prob{d(t) = d0} = 1− pα and Prob{d(t) = dk} = pα/ns, k = 1, · · · , ns.

2. ns alert queues: Each station has an independent alert queue, then there can

be ns new alerts in the perimeter at a time. So |D| = 2ns and then probability
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that k stations raise an alert at each time step is pkα(1− pα)ns−k.

Consider a perimeter to be monitored with the aid of nr identical robots. Let ak(t)

denote the action of the kth robot at time t, so that a control for the surveillance sys-

tem at time t is a combination of actions of all robot, u(t) = (a1(t), a2(t), . . . , anr(t)).

The set of allowable actions for each robot is {1, 0,−1} with ak(t) = 0 if it dwells

at its current location and equals 1 or −1 respectively if it moves counterclockwise

(CCW) or clockwise (CW). The maximum number of allowable values of u is 3nr .

We will restrict on the action of the robots such that a robot can only dwell at a

UGS location. This is a valid restriction, because there is no benefit for the robot

to dwell at a non-UGS location. So, the allowable actions at a non-UGS location

for the robot is {−1, 1}. The disturbance input d(t) is an element of D, and the set

D depends on the type of alert queue given in the previous section. For notational

conveniences, let δ(·) denote the Kronecker delta function and δ̄(·) = 1− δ(·).

At time instant t, for the kth robot, let `k(t) be the position of the robot on the

perimeter (`k ∈ N ), Tk(t) be the dwell time and τj(t) be the delay in servicing an

alert at location j ∈ Ω. The evolution equations may be expressed as:

`k(t+ 1) = (`k(t) + ak(t)) mod N, k = 1, . . . , nr, (4.13)

Tk(t+ 1) = (Tk(t) + 1)δ(ak(t)), k = 1, . . . , nr, (4.14)

τj (t+ 1) = h(τj(t), `1(t), a1(t), . . . , `nr(t), anr(t), dj(t)),∀j ∈ Ω, (4.15)

where

h(τj, `1, a1, . . . , `nr , anr , dj) := max

{
(τj + 1)σ (τj(t))

[
1− max

i=1,...,nr

{δ(`k − j)δ(ak)}
]
, dj

}
.

The state of the robots is given by xr(t) = (`1(t), T1(t), `2(t), T2(t), . . . , `nr(t), Tnr(t))
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Figure 4.2: Information gain vs. dwell time

and xs(t) = (τj(t), j ∈ Ω). Let x = (xr,xs), then again we can express the evolution

equations compactly as:

x(t+ 1) = f(x(t),u(t),d(t)).

To be consistent with the notation introduced earilier, we shall use S to denote the

set of all system states and x ∈ S to denote a particular state. Every state is unique

on the state space S, so we sometimes consider S is a set of indices of states such

that if x ∈ S = {1, 2, · · · , | S |}, then x denotes a state and an index of the state.

Our objective is to find a suitable policy that simultaneously minimizes the service

delay and maximizes the information gained upon loitering. The information gain,

I, which is based on an operator error model (further details about the information

gain in [17]), is plotted as a function of dwell time in Fig. 4.2. We model the one-step

payoff/ reward function as follows:
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r(x,u) =
nr∑
k=1

[
I(T kx + 1)− I(T kx )

]
δ(ak)−ρ min{τ̄x,Γ}, ∀u ∈ Ux,∀x ∈ S, (4.16)

where T kx is the dwell of robot k associated with state x and τ̄x = maxj∈Ω τj,x is

the worst service delay (among all stations) associated with state x. The param-

eter Γ(>> 0) is a judiciously chosen maximum penalty. If we borrow the expres-

sion form the assumption 4, then ψr(xr,u) =
∑nr

k=1

[
I(T kx + 1)− I(T kx )

]
δ(ak) and

ψs(xs) = ρ min{τ̄x,Γ}. Assume that Eq. (4.16) satisfies the assumption 4. The pos-

itive parameter ρ is a constant weighing the incremental information gained upon

loitering once more at the current location against the delay in servicing alerts at

other stations. From the state definition, we can compute the total number of states

in the MDP to be, if nr = 2 with ns alert queues,

|S| =ns(ns − 1)T 2
max(Γ + 1)ns−2︸ ︷︷ ︸

Both robots dwell

+ 2nsNTmax(Γ + 1)ns−1︸ ︷︷ ︸
One robot dwells

+N2(Γ + 1)ns︸ ︷︷ ︸
Neither dwells

, (4.17)

where Tmax is the maximum loitering time; the robot does not stay more than Tmax

at a station. In a case of a single queue, the number of states is

|S| =N2

ns∑
j=0

(
ns
j

)(
j!

(
Γ

j

)
+

j−2∑
k=0

(
j

k

)
(Γ− 1)!

(Γ− 1− k)!

)

+2nsNTmax

ns−1∑
j=0

(
ns − 1

j

)(
j!

(
Γ

j

)
+

j−2∑
k=0

(
j

k

)
(Γ− 1)!

(Γ− 1− k)!

)

+ns(ns − 1)T 2
max

ns−2∑
j=0

(
ns − 2

j

)(
j!

(
Γ

j

)
+

j−2∑
k=0

(
j

k

)
(Γ− 1)!

(Γ− 1− k)!

)
. (4.18)

Note that, in lieu of the reward function defintion (4.16), we do not keep track

of delays beyond Γ and hence the state space S only includes states x with τj ≤
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Γ,∀j ∈ Ω and so, is finite. We immediately see that the problem size is an nths order

polynomial in Γ and hence solving for the optimal value function and policy using

exact dynamic programming methods are rendered intractable for practical values

of Γ and ns.

There is a natural partitioning of states; where no matter what the delays are

at the other stations, the reward is the same, as long as the maximum delay and

the dwell time of the robot at the station are the same. So, we aggregate all the

states which have the same values for `, T, Aj, ∀j ∈ Ω and τ̄ = maxj∈Ω τj, into

one partition, where Aj indicates whether the jth UGS has an alert and referred

as to alert status of the jth station; any two states x,y ∈ Si implies xr = yr and

ψs(xs) = ψs(ys). Moreover, this parititoning is a constant reward partition scheme,

CRP , and so we can apply the methodologies from the previous sections. By the

aggregations, the number of partitions in the case of nr = 2 with ns alert queues can

be shown to be,

m =ns(ns − 1)T 2
max

[(
2ns−2 − 1

)
Γ + 1

]
+ 2nsNTmax

[(
2ns−1 − 1

)
Γ + 1

]
+N2 [(2ns − 1) Γ + 1]

which is linear in Γ and hence considerably smaller than the total number of states

(4.17). The number of states and partitions is shown in Table 4.1 for several different

problem instances.

This partitioning scheme has the following properties: Let ni =
∑ns

j=1 Aj for

partition Si, then it denotes the number of alerts not serviced yet.

• Single alert queue case:

– For each Si, the number of maximal states is ni!, if τ̄x < Γ, and one, if
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τ̄x = Γ.

– For each Si, the number of minimal states is ni!.

• ns alert queue case:

– For each Si, there exists only one maximal state in the partition. |S̄i| = 1

– For each Si, the number of minimal states in the partition is ni, which is

the number of alerts in the current state.

Currently, we only consider symmetric perimters. As long as the perimeter is

symmetric, one can reduce the number of partition one step further. In the governing

equations, Eq. (4.13) to (4.15), `k(t), Tk(t) respectively denote the current location

of the kth robot and the time it has spent at its current location. Let ls(t) and lr(t)

respectively denote the distance from the first robot to the nearest station and the

second robot in the CCW direction. It is intuitive that states of the robots with the

same ls and lr values are related by cyclic symmetry if the delays at stations are also

correspondingly cylically permuted; in such a case, all states that can be transformed

from each other by a cyclic permutations can be aggregated into a partition. The

state of the two robots is given by xr(t) = (ls(t), lr(t), T1(t), T2(t)).

The governing equations for nr = 2 case may be rewritten as:

ls(t+ 1) = (ls(t) + a1(t)) mod N/ns, (4.19)

lr(t+ 1) = (lr(t) + a2(t)) mod N, (4.20)

Tk(t+ 1) = (Tk(t) + 1)δ(ak(t)), k = 1, 2, (4.21)

τj (t+ 1) = h(τj(t), l1(t), a1(t), l2(t), a2(t), dj(t)),∀j ∈ Ω, (4.22)
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where,

h(τj, `1, a1, `2, a2, dj) := max

{
(τj + 1)σ (τj(t))

[
1−max

i=1,2
{δ(li − j)δ(ai)}

]
, dj

}
.

This new definition of states reduces the number of partitions approximately up to

factor of ns. The last column in Table 4.1 provides the number of new partitions.

As we can see, the number of cyclic partitions is much smaller, and it still holds the

properties of CRP .

4.3.1 Numerical Results

In this part, we provide numerical results of several different problem instances

supporting our claims and methodologies. First, we take a relatively simple problem

so that we can compute the value function V ∗. And then, we will move to a large

problem.

4.3.1.1 Single robot, single alert queue problem

Consider a problem instance shown in the 4th row on Table 4.1; ns = 4, N =

8, Tmax = 5, and Γ = 15. The other parameters were chosen to be: weighing factor,

ρ = .005 and temporal discount factor, λ = 0.9. Based on experience, we chose the

alert arrival rate α = 1
60

. This reflects a rather low arrival rate where we expect 2

alerts to occur on average in the time taken by the UAV to complete an uninterrupted

patrol around the perimeter. This problem includes only 100 thousand states, so the

value iteration or the ELP is applicable to this problem. We utilized VI, and it took

48 iterations to converge to the optimal.

In Figure 4.3, we show results supporting the claim that for partially ordered

states x1 ≥ x2, the corresponding optimal value functions satisfy V ∗(x1) ≤ V ∗(x2).

For this, we plot the value function V ∗ corresponding to states with alert status
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Ax = (1, 1, 0, 0) (alerts on station 1 and 2), dwell d = 0, the UAV located at one of

station 1 (` = 0). The X- and Y -axis represent the service delay time of station 2

and 1, respectively. Each point in the plot represents the value function of a state.

Arrows connecting the points denote the dominating relationship between two states.

If x1 dominates x2 (x1 ≥ x2), then x1 → x2. Naturally, if x1 ≥ x2 and x2 ≥ x3, then

x1 ≥ x3. So, the plot shows only the closest dominating relationship between two

states. We can observe that the value fucntion are non-decreasing in the direction of

any arrow.

In Figure 4.4, we show results supporting the claim that for partially ordered

partitions Si ≥ Sj, the corresponding optimal value functions satisfy minx∈Si V
∗(x) ≤

miny∈Sj V
∗(y). For this, we plot the value functions corresponding to states from

above. The partially ordered partitions demarcated by the dotted grid lines in the

X-axis are non-decreasing from left to right with maximum delay τ̄ varying from 2

to Γ. Within each partition, we plot the value function associated with every state

in the partition and also the least value function in the partition shown as the green

line. One can easily see that the claim above is satisfied.

Now, we shall consider the same example problem and show that the proposed

approximate methodology is effective. For this, we compute the approximate value

functions via the restricted LP formulation and the non-linear LP, and compare

them with the optimal value function. In addition, we also compute the greedy sub-

optimal policy corresponding to the approximate value function and compare it with

the optimal policy in terms of the two performance metrics: alert service delay and

information gained upon loitering. We aggregate the states in the example problem

based on the reward function (CRP). This results in m = 923 partitions, which

is considerably smaller than the original number of states, |S|. We solve both the

UBLP and LBNLP formulations which give us the upper and lower bounds, v∗ and
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Figure 4.3: Monotonicity of the value function (states).
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w∗ respectively, to the optimal value function V ∗; v∗(i) = Vub(x), w∗(i) = Vlb(x)∀x ∈

Si. Since we have the optimal value function for the example problem, we use it for

comparison with the approximations. Note that for higher values of ns and Γ, the

problem would essentially become intractable and one would not have access to the

optimal value function. Nevertheless, one can compute v∗ and w∗ and the difference

between the two would give an estimate of the quality of the approximation.

Figure 4.5 shows the value function and its bounds, Vub and Vlb. The upper

bound Vub is the solution to the UBLP , and the lower bound Vlb is the result from

our iteration, Algorithm 3. From this figure, we can observe the boundness of the

value function.

We give a representative sample of the approximation results by choosing all the

states in partitions corresponding to alert status A = (1, 1, 1, 1) (all stations have

alerts) and maximum delay τ̄ = 4. Figure 4.6 compares the optimal value function

V ∗ with the upper and lower bound approximate value functions, Vub and Vlb for this

subset of the state-space. Interestingly, we notice immediately that the lower bound

appears to be tighter than the upper bound. Recall that our objective is to obtain

a good sub-optimal policy and so, we consider the policy that is greedy with respect

to Vlb:

π(x) = argmax
u

{
r(x,u) + λ

L∑
l=1

plVlb(f(x,u, dl))

}
, ∀x ∈ S . (4.23)

To assess the quality of the sub-optimal policy, we also compute the expected

discounted payoff, Vπ that corresponds to the sub-optimal policy π, by solving the

system of equations:

[I − λPπ]Vπ = Rπ. (4.24)
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Since Vπ corresponds to a sub-optimal policy and in lieu of the monotonicity property

of the Bellman operator, the following inequalities hold:

Vlb ≤ Vπ ≤ V ∗ ≤ Vub.

In Figure 4.7, we compare Vπ with the optimal value function V ∗ and the lower

bound Vlb for the sampled states and note that the approximation is quite good.

One can consider the average percentage error between two value functions as an

approximation rate. If V ∗ and Vπ are available,

%Err∗ =
1

| S |
∑
x∈S

V ∗(x)− Vπ(x)

|Vπ(x)|
, (4.25)

if not,

%Err =
1

| S |
∑
x∈S

Vub(x)− Vlb(x)

|Vlb(x)|
. (4.26)

The smaller percentage error means the better approximation. In this example prob-

lem, %Err = 55.54% and %Err∗ = 3.68%. So we can expect the sub-optimal policy

is close to the optimal policy.

We performed Monte-Carlo simulations in order to test the effectiveness of the

sub-optimal policy, π, to examine the following quantities of practical interest: (a)

average dwell time, (b) average delay time in servicing an alert, (c) worst delay

time, and (d) total information gained. We compare the performance of the sub-

optimal policy π with that of the optimal strategy π∗, apparently π∗ is available

because the value funciton is given. To collect the performance statistics, Monte

Carlo simulations run with alerts generated from a Poisson arrival stream with rate

α = 1
60

over a 60000 time unit simulation window. Both the optimal and sub-optimal
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Policy Mean dwell Mean delay Worst delay Total Info. Gain
Optimal Policy (π∗) 4.4 3.27 8 3.032

Sub-optimal policy (π) 4.5 3.17 8 3.079

Table 4.2: Comparison of alert servicing performance between optimal and sub-
optimal policies (single instance).

policies were tested against the same alert sequence. Figure 4.8 shows histogram plots

for the service delay and the dwell time for all serviced alerts in the simulation run.

The corresponding mean and worst case service delays and the mean dwell time

are also shown in Table 4.2. We see that there is hardly any difference in terms of

either metric between the optimal and the sub-optimal policies. This substantiates

the claim that the aggregation approach gives us a sub-optimal policy that performs

almost as well as the optimal policy itself.

This is to be expected, given that the value functions corresponding to the optimal

and sub-optimal policies are close to each other (see Figure 4.7). Since the false alarm

rate α is fairly low, we see from the right plot of Figure 4.8 that roughly 90% of the

alerts were cleared within ten time steps. Also from the left plot of Figure 4.8, we

see that maximum information was gained (5 loiters completed) on almost 90% of

the serviced alerts. Table 4.2 shows the performance indices mentioned above from

the simulations. The values are closed to each other as expected. According to the

results, the performance of the sub-optimal policy is better than one of the optimal

policy. However, it is due to a specific incursion instance. So we run the same

simulation for 50 different incursion instances, and the results show in Table 4.3. In

this table, the values are closer to each other, and the performance of the optimal

policy is slightly better.
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Policy Mean dwell Mean delay Worst delay Total Info. Gain
Optimal Policy (π∗) 4.56 3.20 10 3.203

Sub-optimal policy (π) 4.56 3.18 11 3.206

Table 4.3: Comparison of alert servicing performance between optimal and sub-
optimal policies (50 instance).

4.3.1.2 Two robots, multiple alert queue problem

If two UAVs are emplyeed for the task, then then the number of states will increase

significantly as shown in Table 4.1. Moreover, as the number stations increases,

the number of states is increasing dramatically. From the result of single robot

problem, we observed that the value funciton is bounded by the solutions to UBLP

and LBNLP. In this section, we take a surveillance problem with two UAVs and

eight stations which originally involves 1.5 trillion states. We consider a problem

with nr = 2, ns = 8, N = 16, Tmax = 5, Γ = 15, multiple alert queue, and

Ω = {0, 2, 4, 6, 8, 10, 12, 14} which are symmetrically located. By adopting the same

partitioning scheme as in the previous example, the number of partitions is 592,942.

This number does not overwhelm us, but it implies that the average number of states

in a partition is approximately 2.5 million. That means, for each partition, there are

2.5 million constraints in UBLP and LBNLP, unless we exploit the structure of

the surveillance problem as given in the previous section.

The exact computation of value function (or the sub-optimal performance corre-

sponding to any sub-optimal policy) for this instance of the problem is not tractable

owing to the number of states. However, using the proposed methods, we computed

the upper and lower bounds for the value function as shown in Figure 4.9. In this

example, percentage error between upper and lower bounds is 69.7%. Theorem 3

assures us that if we were to choose a policy that is greedy with respect to the lower
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bound, we are guaranteed a sub-optimal performance that exceeds the lower bound.

Based on our methodologies, we know that the value function V ∗(x) is laid in

between Vub(x) and Vlb(x) in Figure 4.9. However, it is not easy to show numerically.

So we will introduce another value function, empirical value function, to show the

boundness briefly later.

The Monte Carlo simulation run time was set to 60000 time units with three

different alert rate, α = 1, 2, or 6. For each α, we ran the simulation for 50 different

incursion instances to see the performance of the policy properly. So, all values

shown in this section are mean values of 50 results, except the worst delay time. We

collected the data from the Monte-Carlo simulations and the results are shown in

Figure 4.10 and 4.11, and Table 4.4. During the Monte Carlo simulation interval,

let na, nd and nτ respectively represent the total number of alerts, number of alerts

which were serviced with a dwell time T and number of alerts which have been

serviced after a time delay of τ . If a policy is effective, then all the alerts will be

serviced with reasonable service delays. The dwell time associated with servicing an

alert can be anywhere from 1 to 5 time steps as shown in Figure 4.10. The plot shows

the fraction of times an alert is serviced as a function of the dwell time. Among the

alerts serviced by the robots when they employ the sub-optimal policy, a majority of

the alerts were serviced with the maximum dwell time of 5 units, except the case of

α = 6. If the actual alert rate increases, the robots needs to keep moving to another

station to service alerts after it clears an alert at the current station. So, most of

alerts will be serviced only one unit time by the robots. The average dwell time

associated with the sub-optimal policy can be seen from the Table 4.4.

TheFigure 4.11 provides the information concerning the time delay associated

with servicing an alert. For example, when the robots employ the sub-optimal policy

with α = 2, the highest green bar shows the percentage of alerts, ≈ 30%, that were
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serviced by them after 3 time units after they were raised. As one can see, the sub-

optimal policy enables the robots to service more than 90% of the alerts within 5

units of time. Again, if the actual alert rate increases, the service delay will inevitably

increases too. However, from our experience, α ≤ 2 is a reasonable number for the

alert rate. Furthermore, the percentage of instances of alert where the maximum

delay is more than 7 units of time is quite small. This can also be inferred from the

Table 4.4.

4.3.1.3 Empirical Value Function

Since the value function of the surveillance problem with two robots is not avail-

able to compute, we propose an alternative way to test the effectiveness of the sub-

optimal policy, π. Let Vemp(x) be an empirical value function starting from state

x, which means, Vemp(x) is actual discounted pay-off of the initial state x with the

sub-optimal policy π. For demonstration purpose, we choose 15 partition sets such

that all partition sets have same ls = 0, lr = 2, T1 = T2 = 0, Ā = (1, 0, 0, 1, 0, 1, 0, 1),

but each partition set has different worst delay time, τ̄ is 1 to 15. Because there

are still many states in a partition set, we pick non-dominating and non-dominated

states in each partition set as the initial states. For each initial state, we run Monte

Carlo simulation for 50 unit times; since λ = 0.9, the discounted pay-off for t ≥ 50 is

very small, λt << 1. For each initial state, 200 Monte Carlo simulations with differ-

Alert rate (α) 1 2 6
Mean Dwell Time 4.15 3.32 1.46
Mean Delay Time 3.41 3.86 5.57
Worst Delay Time 18 21 37

Total Info. Gain 0.0157 0.0123 0.0046

Table 4.4: Comparison of alert servicing performance for different alert rates.
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ent stochastic disturbance input instances are performed. We consider the average

value of those result for each initial state as the empirical value function of state x.

Figure 4.12 shows the results. In each partition set, five states are chosen for the

simulations; one for non-dominated state, and four states for non-dominating states.

The X-axis label represents τ̄ , so each seperation line is boundary of partition sets.

As we can see, Vemp(x) for sampled states x ∈ Si are bouned below by Vlb. If we

increase the number of Monte Carlo simuations and simulation duration for each

initial state, Vemp(x) → Vπ(x), where Vπ is the sub-optimal performance function

with the sub-optimal policy π. Hence the result supports our approach.

From two illustrative examples, it is shown that our bounds to the value function

are reasonably tight and the performance value funcion of the sub-optimal policy

is tighter. We solve UBLP and LBNLP for several different surveillance problems

and those results are shown in Table 4.5. As you can see, the percentage error, %Err,

is increasing as the number of states increases. However, the increasing ratio of the

error is much less than one of the number of states. Moreover, %Err∗ is much less

than %Err, which means, actual performance of our sub-optimal policy is closer to

the performance of the optimal policy.
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5. CONCLUSION

In this dissertation, we have provided a state aggregation based restricted LP

method to construct sub-optimal policies for stochastic DPs along with a bound for

the deviation of such a policy from the optimum value function. As a key result,

we have shown that the solution to the aggregation based LP is independent of the

underlying cost function and we do so by demonstrating that the restricted LP is,

in fact, the exact LP that corresponds to a lower dimensional MDP defined over

the partitions. We also provide a novel non-linear program that can be used to

compute a non-trivial lower bound to the optimal value function. In particular, for

the perimeter patrol stochastic control problem, we have shown that both the upper

and lower bound formulations simplify to exact LPs corresponding to some reduced

order MDPs. To do so, we have exploited the partial ordering of the states that

comes about because of the structure inherent in the reward function. It would

be interesting to see if the simplification can be achieved for other problems that

exhibit a similar structure. For the perimeter patrol problem, numerical results

obtained via Monte Carlo simulations show that the sub-optimal policy obtained via

the approximate value functions perform almost as well as the optimal policy. The

literature suggests that, in general, the solution to a restricted LP depends on the

underlying cost function; when the value function is parameterized by arbitrary basis

functions. We have shown that, for the special case of hard aggregation, this is not

true. Surely, there exist other basis functions with the same property and it would

be useful to uncover the class of basis functions, for which the independence result

holds.

We proposed a non-linear programming for the lower bound to the value function.
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The solution to the DLP is independent of the cost function. There exists an m-

dimensional MDP with much less constraints and its value function is the same with

the solution to the NLP. A partition-level policy was proposed and we showed its

performance is guaranteed by the solution to the NLP associated with the policy.

We also provided a partition-level policy which provides better lower bound than

any other partition-level policies.

Based on these approaches, we sucessfully could find a sub-optimal stationary

policy for the perimeter patrol problem.
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