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ABSTRACT

In this dissertation we consider the throughput performance of cognitive radio

networks and derive the optimal sensing and access schemes for secondary users that

maximizes their sum-throughput while guaranteeing certain quality of service to pri-

mary networks. First, we consider a cognitive radio network where secondary users

have access to N licensed primary frequency bands with their usage statistics and

are subject to certain inter-network interference constraint. In particular, to limit

the interference to the primary network, secondary users are equipped with spec-

trum sensors and are capable of sensing and accessing a limited number of channels

at the same time. We consider both the error-free and erroneous spectrum sensing

scenarios, and establish the jointly optimal random sensing and access scheme, which

maximizes the secondary network expected sum throughput while honoring the pri-

mary interference constraint. We show that under certain conditions the optimal

sensing and access scheme is independent of the primary frequency bandwidths and

usage statistics; otherwise, they follow water-filling-like strategies.

Next, we study the asymptotic performance of two multi-hop overlaid ad-hoc

networks that utilize the same temporal, spectral, and spatial resources based on

random access schemes. The primary network consists of Poisson distributed legacy

users with density �(p) and the secondary network consists of Poisson distributed

cognitive radio users with density �(s) = (�(p))� that utilize the spectrum oppor-

tunistically. Both networks employ ALOHA medium access protocols where the

secondary nodes are additionally equipped with range-limited perfect spectrum sen-

sors to monitor and protect primary transmissions. We study the problem in two

distinct regimes, namely � > 1 and 0 < � < 1. We show that in both cases, the
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two networks can achieve their corresponding stand-alone throughput scaling even

without secondary spectrum sensing ; this implies the need for a more comprehen-

sive performance metric than just throughput scaling to evaluate the influence of

the overlaid interactions. We thus introduce a new criterion, termed the asymptotic

multiplexing gain, which captures the e↵ect of inter-network interference . With this

metric, we clearly demonstrate that spectrum sensing can substantially improve the

overlaid cognitive networks performance when � > 1. On the contrary, spectrum

sensing turns out to be redundant when � < 1 and employing spectrum sensors

cannot improve the networks performance.

Finally, we present a methodology employing statistical analysis and stochastic

geometry to study geometric routing schemes in wireless ad-hoc networks. The tech-

niques developed in this section enable us to establish the asymptotic connectivity

and the convergence results for the mean and variance of the routing path lengths

generated by geometric routing schemes in random wireless networks.
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1. INTRODUCTION AND BACKGROUND

1.1 Background

The demand for wireless services has been the fastest growing segment of the

communications industry in the last decade. The extensive use of voice over IP

networks, gaming consoles, PDA’s and Wi-Fi networks has shown that wide-band

wireless communication is becoming more and more popular and demanded as the

last mile connection rather than cable, fiber, etc. Fig. 1.1 shows the devices re-

sponsible for mobile data tra�c growth, based on the Cisco visual networking index

(VNI) global mobile data tra�c forecast [1]. Laptops generate a disproportionate

amount of tra�c today, but smartphones and newer device categories such as tablets

and M2M nodes will begin to account for a more significant portion of the tra�c by

2017. In 2012 alone, global mobile data tra�c grew 70 percent and mobile network

connection speeds more than doubled.

The Federal Communications Commission (FCC) licenses certain frequency seg-

ments exclusively to a particular user in a particular geographic area and prohibits

the transmission of of other unlicensed users in that band. However, with the emer-

gence of personal wireless communications, static spectrum allocation is no longer

reasonable due to economical and technological factors. Therefore, Industrial, Sci-

entific and medical (ISM) bands have been provided to support unlicensed networks

at 900 MHz, 2.4 GHz, and 5.8 GHz; however, due to the recent boom in wireless

technologies, these open channels have become overcrowded with everything from

wireless networks to wireless controllers. Fig. 1.2 shows the NTIA’s chart of fre-

quency allocation [2].

From the chart it appears that almost all usable frequency spectrum has been

1



Figure 1.1: Cisco visual networking index (VNI) global mobile data tra�c forecast:
device diversification.

allocated and we are running out of spectrum. The FCC Spectrum Policy Task

Force published a report in 2002 [3], indicating that there is a spectrum shortage

for further licensing. However, measurements of actual spectrum usage in di↵erent

countries show an ine�cient utilization of the seemingly crowded radio spectrum

mostly in the range of 5% � 50% [3]–[9]. For example, Fig. 1.3 shows the actual

measurements taken in downtown Berkeley, which are believed to be typical and

indicate low utilization, especially in the 3-6 MHz bands [9]. Another example could

be the current television broadcast frequency bands where on average only 8 channels

out of the 68 allocated channels are being used in any given TV market [10], which

suggests utilization factor of about 12%. Therefore the real problem is the ine�cient

spectrum usage due to static spectrum allocations and rigid regulations.

As such, a change to the current spectrum allocation policies is desired. However,
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there is still a strong debate going on among economists about the approaches to

fix this problem. Some suggest that the introduction of a secondary market in the

already existing market could greatly reduce the ine�ciencies in spectrum usage

[11], while others believe that a common band for all the users is the best solution

[12]. They argue that “wireless transmissions can be regulated by a combination

of (a) baseline rules that allow users to coordinate their use, to avoid interference-

producing collisions, and to prevent, for the most part, congestion, by conforming to

equipment manufacturer’s specifications, and (b) industry and government sponsored

standards” [12]. More specifically, in the first proposed approach primary or licensed

users have a higher priority and secondary or unlicensed users have a lower priority in

accessing the spectrum. Therefore the secondary user activity should be transparent

to primary users. In the second proposed approach, all the users are treated equally

and should limit their interference to their neighbors.

From the technological point of view there are still many challenges that need to

be addressed until any one of these two approaches become applicable [9, 13, 14]. In

particular, both approaches require an acute interference management in order for

the users to be able to coexist peacefully along side each other in a shared medium.

In order to limit the interference to the primary users two main approaches have

been suggested.

The first one, spectrum sharing/underlay, is based on controlling the interference

temperature at the primary users and makes use of ultra-wideband signaling. For ex-

ample, secondary users could spread their power over a vast bandwidth to minimize

the interference they cause to the primary users [15]. Essentially in this method, the

secondary users transmit their packages while the channels are occupied by the pri-

mary users but they schedule their transmissions such that the perceived interference

at each primary receiver does not exceed the tolerable threshold, as shown in Fig.

3
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Figure 1.3: Measurement of 0-6 GHz spectrum utilization at Berkeley Wireless Re-
search Center; Power spectral density (PSD) of the received 6 GHz wide signal
collected for a span of 50’s sampled at 20 GS/s.

1.4. However, implementation of this model results in poor performance compared

to the amount of generated interference it can cause to primary users. Hence, this

model has been abandoned by the FCC in 2007 [16].

The second strategy is called opportunistic/dynamic spectrum access, in which

secondary users only make use of locally or temporally unused channels to transmit

their data, as shown in Fig. 1.5. Primary signal detection is of fundamental im-

portance to this strategy. The performance of the sensing scheme and the detector

characteristics highly a↵ect the system performance. In this dissertation we take the

second approach (opportunistic spectrum accessing) and study the performance of

the resulting cognitive radio system with randomized medium access protocols.

In Section 2 these e↵ects will be studied in details. Since in this strategy secondary

users presumably use the vacant channels they can transmit in higher power or bit

5
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rates compared with the first strategy; But they could only use the channel over a

fraction of time or frequency.

1.2 Cognitive Radios

The term Cognitive radio was first coined by Joseph Mitola III as a radio that

is su�ciently intelligent about the radio resources and can identify the user commu-

nication needs in order to provide wireless services most appropriate to user needs

[17, 18]. Mitola’s CR-1 cognitive radio prototype modeled a cognition cycle at the

application layer. His research pointed to the potential use of cognitive radio tech-

nology to enable spectrum rental applications and create secondary wireless access

markets [19]. A more common definition that restricts the radio’s cognition to more

practical sensory inputs is the FCC definition of cognitive radios as “a radio that

can change its transmitter parameters based on interaction with the environment in

which it operates” [20].

The main idea of cognition for a radios is to periodically search the spectrum

for available opportunities (idle frequency bands), dynamically adopts the proper

transmission policy (power, modulation scheme, . . . ) in order to avoid interference

to other users. When we have multiple cognitive radios working together, we have a

cognitive radio network.

To support the cognitive radio idea, the FCC allowed the unlicensed users to

use the un-utilized television spectrum [21]. The IEEE also supported the cognitive

radio paradigm by developing the IEEE 802.22 standard for wireless regional area

network (WRAN) which works in unused TV channels [22].

1.3 Motivation

As mentioned earlier, cognitive radios o↵er a novel solution to overcome the spec-

trum under-utilization problem by allowing an opportunistic usage of the spectrum
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resources. The underlying idea is to let unlicensed users (secondary users) to use

the licensed band as long as they can guarantee low interference to the licensed

users. Although seemingly simple, sophisticated interference management protocols

are needed to meet the expected level of transparency accepted by licensed users.

Essentially, secondary users are allowed to access the spectrum resources of primary

users when the primary users are not using them. The secondary users have to vacate

the occupied channel whenever the primary users become active in that channel. As

such, spectrum sensing plays a key role in successful implementation of cognitive

radio networks not only for exploring opportunities but also for limiting the interfer-

ence imposed to the primary users. Therefore, cognitive radios need to periodically

scan the spectrum for primary users activity. One of the key challenges in this regard

is the design of wide-band detectors [9].

Due to the present practical limitation, secondary users are capable of sensing

and accessing only a limited number of frequency bands at a time. Hence, secondary

users can only obtain partial information about the channel state, which together

with inherent hierarchy in accessing the channels, imposes substantial complications

in identifying transmission opportunities; this di↵erentiates the cognitive medium

access control (MAC) layer from the MAC layer in conventional radios.

Furthermore, due to deployment di�culties, the cognitive schemes that make use

of a central authority to coordinate the action of secondary users are less appealing.

Therefore, recently, distributed techniques for dynamic spectrum allocation, where

no central spectrum authority is required, are being widely studied. Though they are

less e�cient, decentralized approaches require much less cooperation. Some of the

decentralized protocols require control channels as a common medium among locally

adjacent users to negotiate the communication parameters in order to make the best

use of the available opportunities [23, 24]. These protocols face serious challenges:
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How to set up the control channel? What if the control channel is corrupted by

interference? How to negotiate a transition to a new frequency?

Due to aforestated di�culties and the desired autonomous nature of secondary

users, in this dissertation we focus on randomized cognitive MAC protocols, which

need no (or minimal) information to be exchanged among secondary users in order

for them to take an appropriate actions. This fact rids us from the need of control

channels and the complications that they incur.

In additions, the design and deployment of cognitive radio networks necessitate

an understanding of the following fundamental questions:

- What is an appropriate metric to evaluate the performance of cognitive radio

networks?

- What type of performance assurances can secondary users give to primary

users?

- What mechanisms (e.g., spectrum sensing and medium access schemes) can

secondary users employ to honor these assurances?

- What are the optimal values for these parameters to maximize the secondary

users’ throughput while satisfying the primary users’ quality of service (QoS)

requirements?

In this dissertation, with the above issues under consideration, we focus on the

design and analysis of optimal sensing and access schemes that maximize the sec-

ondary network throughput while satisfying the primary network QoS requirements

in : 1) single-hop multi-channel setup and 2) multi-hop single-channel setup. In the

end, we dedicate one section to develop a methodology to characterize the asymp-

totic statistics of geometric routing schemes in wireless ad-hoc networks. Employing
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this method, we can obtain an accurate and more rigorous characterization for the

asymptotic throughput of cognitive radio networks.

1.4 Overview of Contributions

In this dissertation, the analysis and design of decentralized sensing and access

schemes for cognitive radio networks is investigated. We first consider one of the

key issues in design of cognitive MAC which is how to decide which channel(s) to

sense and how to share the idle channels between secondary users in such a way

that maximizes the spectrum utilization while guaranteeing the desired QoS for the

licensed users. We consider a cognitive radio network with access to N licensed pri-

mary frequency bands and their usage statistics, where the decentralized secondary

users are subject to certain inter-network interference constraint. In particular, to

limit the interference to the primary network, secondary users are equipped with

spectrum sensors and are capable of sensing and accessing a limited number of chan-

nels at the same time due to hardware limitations. We consider both the error-free

and erroneous spectrum sensing scenarios, and establish the optimal cognitive MAC

framework for a decentralized cognitive radio network, which integrates a random

spectrum sensing scheme deciding which channel(s) to sense, and a slotted-ALOHA

access protocol to jointly control the inter- and intra-network interferences, and max-

imize the secondary network expected throughput. Specifically, secondary users seek

communication opportunities over a multi-band licensed frequency spectrum while

controlling the probability of collision to the primary users at each channel and max-

imize the secondary expected throughput over all channels. In order to satisfy the

collision constraint, secondary users sense the frequency bands that they intend to ac-

cess, and access them with di↵erent probability depending on whether they are idle or

busy. We show that under certain conditions the optimal sensing and access scheme
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is independent of the primary frequency bandwidths and usage statistics; otherwise,

they follow water-filling-like strategies. Moreover, we show that the performance of

the secondary network depends on the ratio between the “opportunity-detection”

probability and the “mis-detection” probability if the former is larger; otherwise,

it depends on the ratio between the “false-alarm” probability and the “detection”

probability. Finally, we demonstrate a binary behavior for the optimal access scheme

at each channel, depending on whether the opportunity-detection probability or mis-

detection probability is larger in that channel.

So far we have studied the throughput performance of the multi-band cognitive

network when sources and destinations are in one-hop distance from each other.

Next, we study the spatial throughput of multi-hop overlaid ad-hoc networks when

both primary and secondary users share a single frequency band. The primary

network consists of Poisson distributed legacy users with density �(p) and the sec-

ondary network consists of Poisson distributed cognitive radio users with density

�(s) = (�(p))� (� > 0, � 6= 1) that utilize the spectrum opportunistically. Both

networks are decentralized and employ ALOHA medium access protocols where the

secondary nodes are additionally equipped with range-limited perfect spectrum sen-

sors to monitor and protect primary transmissions. We study the problem in two

distinct regimes, namely � > 1 and 0 < � < 1. We show that in both cases, the two

networks can achieve their corresponding stand-alone throughput scaling even with-

out secondary spectrum sensing (i.e., the sensing range set to zero); this implies the

need for a more comprehensive performance metric than just throughput scaling to

evaluate the influence of the overlaid interactions. We thus introduce a new criterion,

termed the asymptotic multiplexing gain, which captures the e↵ect of inter-network

interferences with di↵erent spectrum sensing setups. With this metric, we clearly

demonstrate that spectrum sensing can substantially improve the overlaid cognitive
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network performances when � > 1. On the contrary, spectrum sensing turns out

to be unnecessary when � < 1 and employing spectrum sensors cannot improve the

network performances.

Finally, we present a methodology employing statistical analysis and stochastic

geometry to study geometric routing schemes in wireless ad-hoc networks. In par-

ticular, we analyze the network layer performance of one such scheme, the random

1

2

disk routing scheme, which is a localized geometric routing scheme in which each

node chooses the next relay randomly among the nodes within its transmission range

and in the general direction of the destination. The techniques developed in this sec-

tion enable us to establish the asymptotic connectivity and the convergence results

for the mean and variance of the routing path lengths generated by geometric rout-

ing schemes in random wireless networks. Furthermore, these techniques enable us

to obtain an accurate and rigorous characterization of the asymptotic throughput

performance of large scale wireless ad-hoc networks. In particular, we approximate

the progress of the routing path towards the destination by a Markov process and

determine the su�cient conditions that ensure the asymptotic connectivity for both

dense and large-scale ad-hoc networks deploying the random 1

2

disk routing scheme.

Furthermore, using this Markov characterization, we show that the expected length

(hop-count) of the path generated by the random 1

2

disk routing scheme normalized

by the length of the path generated by the ideal direct-line routing, converges to 3⇡/4

asymptotically. Moreover, we show that the variance-to-mean ratio of the routing

path length converges to 9⇡2/64 � 1 asymptotically. Through simulation, we show

that the aforementioned asymptotic statistics are in fact quite accurate even for finite

granularity and size of the network.
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1.5 Outline

The rest of the dissertation is organized as follows. In Section 2 we consider the

design of the optimal ad-hoc sensing and scheme for cognitive radio networks that

maximizes the secondary network sum-throughput. In Section 2.2, we introduce the

mathematical models, notations, and definitions. In Section 2.3, we consider the

case where the secondary users are equipped with error-free spectrum sensors and

investigate how the primary channel bandwidths, their usage statistics, the secondary

network population, and their ability to sense and access multiple channels, a↵ect the

optimal random sensing and access scheme. In Section 2.4, we extend the analysis

to the case where the spectrum detections are error-prone and investigate the e↵ect

of spectrum detection errors on the optimal sensing and access scheme. Section 2.5

concludes this study.

In Section 3 we derive the asymptotic throughput and optimal sensing and access

schemes for multi-hop overlaid cognitive radio networks in which a primary ad-hoc

network and a cognitive secondary ad-hoc network coexist over the same spatial,

temporal, and spectral dimensions. Section 3.2 introduces the mathematical model,

notations, and definitions. In Section 3.3 we consider the spatial throughput of the

single-tier network. Section 3.4 studies the cognitive overlaid scenario and addresses

the trade-o↵ between the primary and secondary networks by introducing the notion

of asymptotic multiplexing gain (AMG). In particular, we show that both networks

can achieve their corresponding single-tier throughput scaling regardless of the set-

ting for the spectrum sensing range. However, for the case with a denser secondary

network, spectrum sensing can improve the overlaid networks performances; whereas,

for the case with a sparser secondary network, the spectrum sensing turns out to be

redundant and the primary network AMG cannot be enhanced by employing spec-
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trum sensors. Section 3.5 concludes this study.

In Section 4 we present a methodology employing statistical analysis and stochas-

tic geometry to study geometric routing schemes in wireless ad-hoc networks. In

Section 4.2 we introduce the system model and describe the random 1

2

disk routing

scheme. Then we define the notion of connectivity based on generic geometric rout-

ing schemes and state the main results of the section in a theorem regarding the

connectivity and the statistical performance of the random 1

2

disk routing scheme. In

Sections 4.3 and 4.4 we prove the claims made in this theorem. In Section 4.3, we es-

tablish su�cient conditions on the transmission range that ensure the existence of a

relaying node in every direction of a transmitting node for both dense and large-scale

networks. In Section 4.4, we study the stochastic properties of the paths generated

by the random 1

2

disk routing scheme. Specifically, in Section 4.4.1, we prove that the

routing path progress conditioned on the previous two hops can be approximated

with a Markov process. In Section 4.4.2, using the Markovian approximation, we

derive the asymptotic expression for the expected length, and in Section 4.4.3 we

derive the asymptotic expression for the variance of the length of the random 1

2

disk

routing paths. In Section 4.5, we present some simulation results to validate our

analytical results. In Section 4.6, we present some guidelines on how to generalize

the results derived for the random 1

2

disk routing scheme to other variants of the

geometric routing schemes. We conclude the part in Section 4.7.

In Section 5, we present a summary of dissertation accomplishments and contri-

butions. Recommendations for further research and unanswered questions are also

discussed.
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2. JOINTLY OPTIMAL RANDOM SPECTRUM SENSING AND ACCESS

SCHEME FOR MULTICHANNEL DECENTRALIZED COGNITIVE

RADIO NETWORKS

2.1 Introduction

One of the key issues in designing the cognitive MAC is how to decide which

channel(s) to sense and how to share the idle channels among secondary users. A

considerable amount of literature exists on cognitive MAC protocol design, for exam-

ple [25]–[28]. In [25] the authors proposed schemes integrating the spectrum sensing

policy at the physical layer with packet scheduling at the MAC layer. They ana-

lyzed the throughput and the delay-QoS performance of the proposed schemes for

the saturation network and the non-saturation network cases under random and

negotiation-based channel sensing policies, respectively. In [26], the authors pre-

sented two heuristic spectrum sensing policies in which secondary users collabora-

tively sense the licensed channels. The sensing policies are then incorporated into p-

Persistent CSMA to coordinate opportunistic spectrum access for CR network users.

In [27], an optimal strategy for dynamic spectrum access of a single secondary user

is developed by integrating the design of spectrum sensors at the physical layer with

that of spectrum sensing and access policies at the MAC layer, based on a partially

observable Markov decision processes framework. In [28], the authors considered a

similar problem to ours and proposed a heuristic MAC protocol for opportunistic

spectrum access in cognitive radio networks. They considered two channel selection

schemes: uniform channel selection vs. spectrum-opportunity-based channel selec-

tion, where in the latter case, they considered spectrum availability and selected each

channel with di↵erent probabilities based on the estimation of spectrum availabil-
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ity. However, as shown in this section, these schemes are strictly suboptimal. To the

best of our knowledge, none of the existing results provided the design of jointly opti-

mal sensing and access policies for multi-channel, multi-user, decentralized cognitive

radio networks.

We note that the problem of medium access design for multi-channel, decentral-

ized cognitive radio networks is similar to the problem of medium access scheduling

in the traditional multi-channel wireless networks using CSMA protocol, which has

been extensively studied in the literature, for example [29]–[32]. However, the key

di↵erence is that the goal of spectrum sensing in the cognitive setup is to detect and

protect the primary users, where primary users are oblivious to the existence of the

secondary network. Furthermore, the spectrum sensing errors have not been consid-

ered in the traditional multi-channel random access protocols. Recently, distributed

CSMA scheduling with collision has been considered in [33, 34] for single-channel

wireless networks, where the source of collision is not the spectrum detection errors

but the simultaneous access attempts by the users.

In this section, we derive the optimal cognitive MAC framework for a decentral-

ized cognitive radio network, which integrates a random spectrum sensing scheme

deciding which channel(s) to sense, and a slotted-ALOHA access protocol to jointly

control the inter- and intra-network interferences, and maximize the secondary net-

work expected throughput. Specifically, secondary users seek communication oppor-

tunities over a multi-band licensed frequency spectrum while controlling the proba-

bility of collision to the primary users at each channel and maximize the secondary

expected throughput over all channels. In order to satisfy the collision constraint,

secondary users sense the frequency bands that they intend to access, and access

them with di↵erent probability depending on whether they are idle or busy.

The rest of this section is organized as follows. In Section 2.2, we introduce the
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mathematical models, notations, and definitions. In Section 2.3, we consider the

case where the secondary users are equipped with error-free spectrum sensors and

investigate how the primary channel bandwidths, their usage statistics, the secondary

network population, and their ability to sense and access multiple channels, a↵ect the

optimal random sensing and access scheme. In Section 2.4, we extend the analysis

to the case where the spectrum detections are error-prone and investigate the e↵ect

of spectrum detection errors on the optimal sensing and access scheme. Section 2.5

concludes the study.

2.2 System Model

Consider a frequency band consisting of N orthogonal channels with bandwidths

W
j

, j = 1, . . . , N , which are licensed to N time-slotted primary networks. Primary

users in channel j access the channel with probability ✓
j

independent of the users

at other frequency bands. as shown in Fig. 2.1. In order to utilize the spectrum

more e�ciently, the N frequency channels are also made available to an unlicensed

(secondary) network comprised of M secondary users who seek opportunities to ac-

cess the vacant frequency bands while abiding by a certain interference constraints:1

The probability of inter-network interference disturbing primary users in each channel

should be no greater than ✏
j

, with 0  ✏
j

 1, j = 1, . . . , N , where secondary users

interfere with a primary network if they initiate transmission in an already occupied

primary channel.

A secondary transmission in an idle channel j is deemed successful if there are no

other secondary users transmitting in channel j at the time. Here, we assume that

all the secondary users adopt the same physical-layer transmission scheme, such that

1Here we are assuming that there is an ideal control mechanism such that every secondary
receiver knows in which channel its corresponding secondary transmitter is attempting to establish
a connection at any given time [35, 36].

17



θ

Utilization Statistics Frequency

Time

j
W

jθ

Channel 
Selection

Channel 
Sensing

Data Transmission

Time Slot

Figure 2.1: Primary channel configuration and utilization statistics, and the sec-
ondary time-slot structure.

the achievable rate C
j

at channel j only depends on the bandwidth of channel j,

constant across di↵erent secondary users. We leave the cases with per-user adaptive

modulation to a future study. Here we assume that no acknowledgment is required

to complete a packet transmission, and secondary transmitters do not re-transmit

the data lost in the channel. These assumptions are suitable for delay sensitive

applications, e.g., online video or audio streaming and gaming. The interference

constraint thresholds and the spectrum occupancy statistics of primary networks are

assumed to be available to the secondary network. The secondary network is time-

slotted and synchronized with the primary network clock. The basic secondary time

slot structure is illustrated in Fig. 2.1. We assume that the secondary users operate

under a heavy tra�c model, i.e., they always have packets to transmit, to focus on

the maximum usage of spectrum opportunities.
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In order to satisfy the primary interference constraint, the secondary users are

equipped with spectrum sensors. However, due to practical limitations [9], secondary

users are only capable of sensing and accessing a limited number of channels at the

same time. The partial information obtained about the general channel state and

the inherent primary vs. secondary hierarchy in accessing the channels impose sub-

stantial complications in identifying transmission opportunities, which di↵erentiates

the cognitive MAC layer from the MAC layer in conventional wireless networks. In

particular, secondary users need to decide on which channel(s) to sense such that

their aggregate expected throughput is maximized while the inter-network interfer-

ence is limited below the acceptable threshold. To enable autonomous features of the

cognitive radio networks, in this section we focus on the class of random sensing and

access schemes, which are more appealing due to their decentralized nature [25, 24].

Next, we explicitly define our sensing and access scheme in detail.

We define {G
1

, · · · , G
U

} to be the set of all sensing actions available to secondary

users where U is the cardinality of the action set. Assuming secondary users are

capable of sensing 1  S  N channels simultaneously, G
i

corresponds to a specific

subset of {1, . . . , N} with cardinality S. We define the secondary user random sensing

scheme as adopting probability p
i

to sense the channel group G
i

, where we must have
P

U

i=1

p
i

= 1. For example, when S = 1 we have that G
i

is simply the ith channel,

U = N , and p
i

is the probability of sensing channel i.

Intuitively, for each secondary user to maximize its own throughput, it should

sense the channels with highest expected throughput, i.e., S largest C
j

✓
j

’s, where

✓
j

= 1� ✓
j

. However, since all secondary users follow the same strategy, those chan-

nels may become too congested. As such, the optimal sensing scheme should spread

the secondary users properly over di↵erent channels to reduce the intra-network inter-

ference, and strike a balance between individual and aggregate gain of the secondary
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users.

Let H
j0

and H
j1

represent the idle and busy states of channel j. We assume

the Receiver Operating Characteristic (ROC) of the secondary spectrum sensor, i.e.,

the probability of mis-detection ↵
j

and the probability of false-alarm 1� �
j

at each

frequency band are given, where

↵
j

:= Pr(detect H
j0

| H
j1

is true) , (2.1a)

1� �
j

:= Pr(detect H
j1

| H
j0

is true) , (2.1b)

and �
j

is defined as the probability of (spectrum) opportunity-detection in channel

j.

Given group G
i

is chosen for spectrum sensing, in order to control the intra- and

inter-network interferences, the secondary user initiates transmissions according to

the ALOHA protocol with probability 0  q
j0

 1 or 0  q
j1

 1 in channel j 2 G
i

,

depending on whether channel j is detected idle or busy, respectively. We consider

the transmission with probability q
j1

for secondary users in channel j to compensate

for the false alarms of the spectrum sensors, which may conceivably improve the

secondary network throughput. Setting q
j0

= 0 or q
j1

= 0 means that the packet

transmission should be postponed to the next time slot when channel is detected idle

or busy respectively.

In the following sections, we will determine p
j

, q
j0

, and q
j1

such that the secondary

network expected sum throughput is maximized, while the probability of interference

to the primary users is limited by ✏
j

in channel j, j = 1, . . . , N . We will first assume

that the secondary users are equipped with perfect spectrum sensors and we will

later consider erroneous spectrum sensors for secondary users and study how the

spectrum detection errors a↵ect the optimal sensing and access scheme.

20



2.3 Perfect Spectrum Sensors

In this section we consider the scenario where the secondary users are equipped

with error-free spectrum sensors, i.e., ↵
j

= 0 and �
j

= 1, j = 0, . . . , N , and focus

on the question of how the channel bandwidths, their usage statistics, the secondary

network population, and their ability to sense and access multiple channels, a↵ect

the optimal sensing and access scheme. In this case, without loss of generality, we

set q
j1

= 0 for j = 1, . . . , N .

Let us first consider the single-channel sensing and access case as the starting

point, i.e., S = 1. The perfect detection capability of secondary users and the setup

of q
j1

= 0, j = 1, . . . , N , together guarantee collision-free communications for the

primary network. Each secondary user initiates a transmission in channel j with

probability q
j0

p
j

independent of other secondary users if channel j is idle. Hence,

the expected throughput that the secondary network can achieve in channel j equals

C
j

✓
j

Mf
M

(q
j0

p
j

), where f
M

(t) := t(1 � t)M�1. As such, the problem of deriving

the optimal random sensing and access scheme can be formulated as the following

optimization problem (P1):

maximize
NX

j=1

MC
j

✓
j

f
M

(q
j0

p
j

) , (2.2a)

such that
NX

j=1

p
j

=1 , (2.2b)

p
j

�0 , j = 1, . . . , N , (2.2c)

0  q
j0

1 , j = 1, . . . , N . (2.2d)

Note that P1 is not a convex problem and cannot be optimized using conventional

convex optimization methods. In the following theorem we present the random
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sensing and access scheme that optimizes P1.

Theorem 2.3.1. Assume secondary users can sense and access a single channel,

and are equipped with perfect spectrum sensors. The optimal random sensing and

access scheme that maximizes the secondary network expected sum throughput is

(q⇤
j0

, q⇤
j1

, p⇤
j

) =

8
>><

>>:

(N
M

, 0, 1

N

) if N  M

(1, 0, g�1( ⌫

MCj✓j
)+) , otherwise

(2.3)

for j = 1, . . . , N , where t+ := max{0, t}, g(t) := @f
M

(t)/@t = (1 �Mt)(1 � t)M�2,

and ⌫ > 0 is chosen such that
P

N

j=1

p⇤
j

= 1.

Proof. Define x
j

:= q
j0

p
j

, j = 1, . . . , N , and consider the following optimization

problem fP1 that has the same objective function as P1 but with possibly a larger

feasible set.

maximize
NX

j=1

MC
j

✓
j

f
M

(x
j

) , (2.4a)

such that
NX

j=1

x
j

1 , (2.4b)

x
j

�0 , j = 1, . . . , N . (2.4c)

Observe that the optimal value of fP1 is no less than optimal value of P1 and if

we can find p⇤
j

’s and q⇤
j0

’s such that q⇤
j0

p⇤
j

= x⇤
j

satisfying constraints (2.2b)–(2.2d)

then p⇤
j

and q⇤
j0

are the optimal solution of P1.

Moreover, note that for any 1

M

< t  1 with f
M

(t) = c, there exists a 0  t0 < 1

M

such that f
M

(t0) = c (using intermediate value theorem). Hence, given (x⇤
1

, . . . , x⇤
N

)

as the global maximizer for fP1, we can, without loss of generality, assume that

x⇤
j

 1

M

for j = 1, . . . , N (by replacing any x⇤
i

> 1

M

with x0⇤
i

< 1

M

, which also satisfies
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the conditions (2.4b) and (2.4c)). In other words, fP1 should have an optimal solution

lying in 0  x
j

 1

M

, j = 1, . . . , N . In this region, the objective function in (2.4a) is

concave; applying KKT conditions [37] (which are necessary and su�cient conditions

for optimality), we can find the optimal x⇤
j

’s. After some algebraic manipulations,

we obtain the following KKT conditions

g(x⇤
j

)  ⌫⇤

MC
j

✓
j

,

x⇤
j

(g(x⇤
j

)� ⌫⇤

MC
j

✓
j

) = 0 ,

x⇤
j

� 0 ,

for j = 1, . . . , N , and

⌫⇤(
NX

j=1

x⇤
j

� 1) = 0 ,

NX

j=1

x⇤
j

 1 ,

⌫⇤ � 0 ,

where ⌫ is the Lagrangian multiplier associated with (2.4b) and g(t) := @f
M

(t)/@t =

(1 � Mt)(1 � t)M�2. Hence, given N  M , the optimal solution is achieved when

⌫⇤ = 0 as

x⇤
j

= g�1(0) =
1

M
, (2.5)

with
P

N

j=1

x⇤
j

= N

M

 1. However, when N > M , the optimal solution is obtained by

x⇤
j

= g�1(
⌫

MC
j

✓
j

)+ , (2.6)
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with ⌫⇤ > 0 chosen such that
P

N

j=1

x⇤
j

= 1. Furthermore, note that in both these case

x⇤
j

= g�1( ⌫

MCj✓j
)+  1

M

when ⌫ � 0 for all j. Now it is straightforward to verify that

by setting (q⇤
j0

, p⇤
j

) = (N
M

, 1

N

) when N  M and setting (q⇤
j0

, p⇤
j

) = (1, g�1( ⌫

MCj✓j
)+)

when N > M , we satisfy q⇤
j0

p⇤
j

= x⇤
j

and (2.2b)–(2.2d) for j = 1, . . . , N .

Remark 2.3.2. Observe that the function f
M

(t) is quasi-concave over 0  t  1 and

t = 1

M

is its maximizer. Hence, intuitively, to maximize the individual summands

in (2.4a), we need to assign the sensing and access probabilities at each channel in

such a way that their product is as close as possible to 1

M

while satisfying conditions

(2.2b)–(2.2d). When the number of secondary users is larger than the number of

primary frequency bands, this assignment is possible in a manner that is independent

of the primary channel bandwidths and usage statistics, depending only on N and M .

However, when there are fewer secondary users than primary channels, the probability

of sensing channel j should be inversely proportional (via the function g�1) to the

expected secondary achievable-throughput in channel j, i.e., C
j

✓
j

. Furthermore, due

to proper spreading of secondary users in N channels, secondary users should access

the channels with probability one when detected idle.

Next, we assume that secondary users can sense and access up to 0 < S 

N channels simultaneously. Again, perfect detection capability of secondary users

guarantees zero collisions to the primary network. Each secondary user initiates a

transmission in channel j with probability q
j0

P
i:j2Gi

p
i

independent of the other

secondary users if channel j is idle. Hence, the expected throughput that secondary

network can achieve in channel j equals C
j

✓
j

Mf
M

(q
j0

P
i:j2Gi

p
i

). Recall that here p
i

is the probability of sensing channel group G
i

, i = 1, . . . , U , and q
j0

is the probability

of accessing channel j, j = 1, . . . , N , when detected idle. As such, the problem of

deriving the optimal random sensing and access scheme can be formulated as the
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following optimization problem (P2):

maximize
NX

j=1

MC
j

✓
j

f
M

(q
j0

X

i:j2Gi

p
i

) , (2.7a)

such that
uX

i=1

p
i

=1 , (2.7b)

p
i

�0 , i = 1, . . . , U , (2.7c)

0  q
j0

1 , j = 1, . . . , N . (2.7d)

P2 is not a convex problem either; however, we can find its optimal solution in a

manner similar to P1.

Theorem 2.3.3. Assume secondary users can sense and access up to 0 < S  N

channels at the same time and they are equipped with perfect spectrum sensors. The

optimal random sensing and access scheme that maximizes the expected secondary

network sum throughput is

(q⇤
j0

, q⇤
j1

) = (
N

MS
, 0) ,

p⇤
i

=
1

U
, (2.8)

if N  MS, and is

(q⇤
j0

, q⇤
j1

) = (
1

S
, 0) ,

(p⇤
1

, . . . , p⇤
U

)T = S(GTG)�1GT (x⇤
1

, . . . , x⇤
N

)T , (2.9)

otherwise, for j = 1, . . . , N and i = 1, . . . , U , where x⇤
j

= g�1

⇣
⌫

MCj✓j

⌘
+

, G
N⇥U

is

the sensing matrix, i.e., G
ji

= 1 if channel j is in group G
i

and zero otherwise, AT

is the transpose of matrix A, g(t) := (1�Mt)(1� t)M�2, and ⌫ is chosen such that
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P
N

j=1

x⇤
j

= 1.

Proof. Defining x
j

:= q
j0

P
i:j2Gi

p
i

, j = 1, . . . , N , and reformulating P2 with respect

to x
j

, we again obtain the optimization problem fP1 in the proof of Theorem 2.3.1.

Hence, the optimal value of problem fP1 is an upper bound for P2 as well. So, if

we can find p⇤
i

’s and q⇤
j0

’s such that q⇤
j0

P
i:j2Gi

p⇤
i

= x⇤
j

satisfying constraints (2.7b)–

(2.7d), p⇤
i

and q⇤
j0

are then the optimal solution of P1, where x⇤
j

, j = 1, . . . , N , is the

optimal solution for fP1.

Assume (x⇤
1

, . . . , x⇤
N

) is the maximizer of fP1 obtained in (2.5) and (2.6). Now we

need to find appropriate p⇤
i

and q⇤
j0

such that

⇤(q⇤
10

, . . . , q⇤
N0

)G (p⇤
1

, . . . , p⇤
U

)T = (x⇤
1

, . . . , x⇤
N

)T , (2.10)

and satisfy conditions (2.7b)–(2.7d), where ⇤(t
1

, . . . , t
N

) is the matrix with diagonal

elements equal q
j0

, j = 1, . . . , N , and all elements outside the main diagonal equal

zero. From (2.10) and (2.5), we have that if N  MS,

S = S
UX

i=1

p⇤
i

= tr(G(p⇤
1

, . . . , p⇤
U

)T )

=
NX

j=1

x⇤
j

q
j0

=
1

M

NX

j=1

1

q
j0

,

where tr(·) is the trace operator, and the second equality is due to the fact that each

column of G consists of S elements equal to one and the rest equal to zero. Hence,

setting q⇤
j0

= N

MS

 1 and p⇤
i

= 1

U

satisfies (2.10) and (2.7b)–(2.7d). Now, when
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N > MS, if we set q⇤
i

= 1

S

, from (2.10) and (2.6), we must have

1 =
NX

j=1

x⇤
j

=
1

S
tr
�
G(p⇤

1

, . . . , p⇤
U

)T
�

=
UX

i=1

p⇤
i

.

Consequently, setting q⇤
i

= 1

S

and G(p⇤
1

, . . . , p⇤
U

)T = S(x⇤
1

, . . . , x⇤
N

)T satisfies (2.10)

and (2.7b)–(2.7d); we obtain (2.9).

Remark 2.3.4. Based on Theorems 2.3.1 and 2.3.3, it is easy to show that the

secondary network expected throughput is an increasing function over M  N/S,

achieves its supremum at M = N/S, and is slowly decreasing over M > N/S with

value
P

N

j=1

C
j

✓
j

(1� 1

M

)M�1 ! e�1

P
N

j=1

C
j

✓
j

as M ! 1. Consequently, the optimal

number of secondary users that can coexist in the network equals M⇤ = N/S with

the optimal expected sum throughput of
P

N

j=1

MC
j

✓
j

f
M

( 1

M

) ⇡ e�1

P
N

j=1

C
j

✓
j

.

2.4 Erroneous Spectrum Sensors

In this section we consider the scenario where the secondary users are equipped

with erroneous spectrum sensors with mis-detection and false-alarm probabilities ↵
j

and 1 � �
j

, respectively, for j = 1, . . . , N , and investigate the e↵ect of spectrum

detection errors on the optimal sensing and access scheme.

Each secondary user initiates a successful transmission in channel j with proba-

bility p
j

(�
j

q
j0

+(1��
j

)q
j1

) independent of other secondary users if channel j is idle.

Hence, the expected throughput that secondary network can achieve in channel j

equals C
j

✓
j

Mf
M

(p
j

(�
j

q
j0

+ (1� �
j

)q
j1

)). On the other hand, secondary users inter-

fere with primary network in channel j if channel j is already occupied by primary
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users and at least one secondary user initiates a transmission in that channel, which

happens with probability ✓
j

[1� (1�p
j

(↵
j

q
j0

+(1�↵
j

)q
j1

))M ]. As such, the problem

of deriving the optimal random sensing and access scheme can be formulated as the

following optimization problem (P3):

maximize
NX

j=1

MC
j

✓
j

f
M

(p
j

(�
j

q
j0

+ (1� �
j

)q
j1

)) , (2.11a)

such that
NX

j=1

p
j

=1 , (2.11b)

p
j

�0 , j = 1, . . . , N , (2.11c)

0  q
j0

1 , j = 1, . . . , N , (2.11d)

0  q
j1

1 , j = 1, . . . , N , (2.11e)

p
j

(↵
j

q
j0

+ (1� ↵
j

)q
j1

) Z
j

, j = 1, . . . , N , (2.11f)

where

Z
j

:=

8
>><

>>:

1 , if ✏
j

� ✓
j

,

1� M

q
1� ✏j

✓j
, if ✏

j

< ✓
j

.

(2.12)

We obtain the optimal solution of P3 specified by the following theorem in a
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similar fashion to the proof of Theorem 2.3.1. First, let us define

�
j+

:= �
j

1

�j�↵j + (1� �
j

)1
�j<↵j , (2.13)

�
j� := �

j

1

�j<↵j + (1� �
j

)1
�j�↵j , (2.14)

↵
j+

:= ↵
j

1

�j�↵j + (1� ↵
j

)1
�j<↵j , (2.15)

↵
j� := ↵

j

1

�j<↵j + (1� ↵
j

)1
�j�↵j , (2.16)

q
j+

:= q
j0

1

�j�↵j + q
j1

1

�j<↵j , (2.17)

q
j� := q

j0

1

�j<↵j + q
j1

1

�j�↵j , (2.18)

x
j+

:= p
j

q
j+

, (2.19)

x
j� := p

j

q
j� , (2.20)

t
j

:= �
j+

x
j+

+ �
j�xj� , (2.21)

where 1 is the indicator function.

Theorem 2.4.1. Assume secondary users can sense and access a single channel,

and are equipped with erroneous spectrum sensors with mis-detection and false-alarm

probabilities ↵
j

and 1��
j

, receptively, for j = 1, . . . , N . The optimal random sensing

and access scheme that maximizes the expected total secondary network throughput

is

(q⇤
j+

, q⇤
j�, p

⇤
j

) =

8
>><

>>:

(N min{ �j+

↵j+
Z

j

, 1

M

}+, 0, 1

N

) if
P

N

j=1

min{ �j+

↵j+
Z

j

, 1

M

}  1

(1, 0,min{ �j+

↵j+
Z

j

, g�1( ⌫

⇤

MCj✓j
)+}+) , otherwise

(2.22)

for j = 1, . . . , N , where g(t) := (1 �Mt)(1 � t)M�2 and ⌫ > 0 is chosen such that
P

N

j=1

p⇤
j

= 1.
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Proof. Using (2.13)–(2.21), we can rewrite

p
j

(�
j

q
j0

+ (1� �
j

)q
j1

) = p
j

[�
j

(q
j+

1

�j�↵j + q
j�1�j<↵j) + (1� �

j

)(q
j+

1

�j<↵j + q
j�1�j�↵j)]

= p
j

[q
j+

(�
j

1

�j�↵j + (1� �
j

)1
�j<↵j) + q

j�(�j

1

�j<↵j + (1� �
j

)1
�j�↵j)]

= p
j

[q
j+

�
j+

+ q
j��j�]

= �
j+

x
j+

+ �
j�xj�

=: t
j

,

and since we assume Pr(H
j0

) > 0, ↵
j

and �
j

cannot be both zero (please refer to the

definitions of ↵
j

and �
j

). As such, we have �
j+

> 0 for all j and similarly as before,

we can rewrite

p
j

(↵
j

q
j0

+ (1� ↵
j

)q
j1

) = p
j

[↵
j

(q
j+

1

�j�↵j + q
j�1�j<↵j)

+ (1� ↵
j

)(q
j+

1

�j<↵j + q
j�1�j�↵j)]

= p
j

[q
j+

(↵
j

1

�j�↵j + (1� ↵
j

)1
�j<↵j)

+ q
j�(↵j

1

�j<↵j + (1� ↵
j

)1
�j�↵j)]

= p
j

[q
j+

�
j+

+ q
j��j�]

= ↵
j+

x
j+

+ ↵
j�xj�

=
↵
j+

�
j+

(t
j

� �
j�xj�) + ↵

j�xj�

=
↵
j+

t
j

+ [�
j+

↵
j� � �

j�↵j+

]x
j�

�
j+

.

Now, we can reformulate the optimization problem P3 as fP3 with a (possibly)
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larger feasible set:

maximize
NX

j=1

MC
j

✓
j

t
j

(1� t
j

)M�1 , (2.23a)

such that
NX

j=1

t
j

1 , (2.23b)

NX

j=1

x
j� 1 , (2.23c)

t
j

�0 , j = 1, . . . , N , (2.23d)

x
j� �0 , j = 1, . . . , N , (2.23e)

↵
j+

t
j

+ (�
j+

↵
j� � �

j�↵j+

)x
j� �

j+

Z
j

, j = 1, . . . , N . (2.23f)

It is easy to verify that �
j+

� ↵
j+

and �
j�  ↵

j� for all j. Therefore, we

have (�
j+

↵
j� � �

j�↵j+

)x
j� � 0 for all j, and the objective function in (2.23a) is

independent of x
j�’s. Therefore, we can simply put x

j� = 0 for j = 1, . . . , N , while

satisfying the feasibility conditions. As such we can omit conditions (2.23c) and

(2.23e), and simplify (2.23f) to ↵
j+

t
j

 �
j+

Z
j

for j = 1, . . . , N . Now, similar to the

proof of Theorem 2.3.1, we can prove that if P3 has an optimal solution, it must lie in

t
j

 1

M

, j = 1, . . . , N , where in this region, (2.23a) and consequently P3 are convex.

Hence, we can obtain the optimal solution using the following KKT conditions:

g(t⇤
j

)  ⌫⇤

MC
j

✓
j

,

(g(t⇤
j

)� ⌫⇤

MC
j

✓
j

)
�
↵
j+

t⇤
j

� �
j+

Z
j

�
= 0 ,
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t⇤
j

� 0, for j = 1, . . . , N , and

⌫⇤(
NX

j=1

t⇤
j

� 1) = 0 ,

NX

j=1

t⇤
j

 1 ,

⌫⇤ � 0 ,

where ⌫ is the Lagrangian multiplier associated with (2.23b). After some algebraic

calculation we obtain that

t⇤
j

= min

⇢
�
j+

↵
j+

Z
j

,
1

M

�
+

,

if
P

N

j=1

min{ �j+

↵j+
Z

j

, 1

M

}  1, and

t⇤
j

= min

(
�
j+

↵
j+

Z
j

, g�1

✓
⌫⇤

MC
j

✓
j

◆
+

)
+

,

otherwise, with ⌫⇤ is chosen such that
P

N

j=1

t⇤
j

= 1. Together with (2.19)–(2.21), we

can obtain (2.22).

Remark 2.4.2. Note the similarity between (2.3) and (2.22): 1) If the inter-network

interference constraint and the secondary spectrum detector ROC operate in a way

such that �j+

↵j+
Z

j

� 1

M

in all channels, the optimal sensing and access scheme and

the secondary network expected throughput for error-free and erroneous scenarios

will be equal. 2) Similar to the error-free scenario, if the inter-network interfer-

ence constraint and the secondary spectrum detector ROC operate in a way such that
P

N

j=1

min{ �j+

↵j+
Z

j

, 1

M

}  1, the secondary optimal sensing and access scheme is inde-

pendent of the channel bandwidths and usage statistics. 3) Note the binary behavior
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of the optimal access scheme with respect to the primary signal mis-detection prob-

ability ↵
j

and spectrum opportunity-detection probability �
j

: On average, we gain

no throughput enhancement by transmitting in a channel detected as busy when the

probability of opportunity-detection is larger than the probability of mis-detection in

that channel, or by transmitting in a channel detected as idle when the probability of

opportunity-detection is smaller than the probability of mis-detection in that channel.

2.5 Summary

In this section we considered an overlaid network scenario, where N licensed fre-

quency bands are made available to a secondary network, contingent upon adherence

to certain inter-network interference constraints. To limit the interference to the pri-

mary network, secondary nodes are equipped with spectrum sensors and are capable

of sensing and accessing a limited number of channels simultaneously. We considered

both the error-free and the erroneous spectrum detection scenarios and established

the jointly optimal random sensing and access scheme, which maximizes the sec-

ondary network expected sum throughput while abiding by the primary interference

constraint. We have shown that in the case of error-free spectrum detection, when

the number of secondary users times the number of channels that they can access is

larger than the number of primary frequency bands, the optimal sensing and access

scheme is independent of the channel bandwidths and usage statistics; otherwise they

follow water-filling-like strategies. In the case of erroneous spectrum detection, we

have shown similar characteristics for the optimal sensing and access scheme under

slightly di↵erent conditions. Moreover, we derived the optimal number of secondary

users that can co-exist with the primary network, and demonstrated a binary be-

havior for the optimal access scheme at each channel depending on whether the

opportunity-detection probability or the mis-detection probability is larger in that
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channel.
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3. LARGE OVERLAID COGNITIVE RADIO NETWORKS: FROM

THROUGHPUT SCALING TO ASYMPTOTIC MULTIPLEXING GAIN

3.1 Introduction

In this section we study the asymptotic performance of multi-hop overlaid net-

works in which a primary ad-hoc network and a cognitive secondary ad-hoc network

coexist over the same spatial, temporal, and spectral dimensions. In order to limit the

secondary interference to the primary network, we adopt the dynamic spectrum ac-

cess [38] approach, where secondary users opportunistically explore the white spaces

detected using spectrum sensors. In [39], Vu et al. considered the throughput scal-

ing law for single-hop overlaid cognitive radio networks, where a linear scaling law

is obtained for the secondary network with an outage constraint considered for the

primary network. In [40], Jeon et al. considered a multi-hop cognitive network

coexisting with a primary network and assumed that the secondary nodes know

the locations of all primary nodes (both primary transmitters and receivers). They

showed that by defining a preservation region around each primary node and follow-

ing time-slotted deterministic transmission protocols, both networks can achieve the

same throughput scaling law as a stand-alone wireless network, while a vanishing

fraction of the secondary nodes may su↵er from a finite outage probability (as the

number of the nodes tends to infinity). In [41], the authors studied the throughput

scaling and throughput-delay trade-o↵ with the same system model as in [40], ex-

cept that the secondary users only know the locations of the primary transmitters.

By establishing preservation regions around primary transmitters, they showed that

both networks could achieve the throughput scaling derived by Gupta and Kumar

in [42] without outage.
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In all the previously mentioned papers, centralized deterministic schemes are used

to achieve the feasible rates for both primary and secondary networks. Moreover,

results are provided only when the secondary nodes are more densely distributed

than the primary nodes. On the other hand, the desired autonomous feature of

large wireless systems makes the use of a central authority to coordinate the pri-

mary/secondary users less appealing. In addition, in many practical situations, as

the secondary users are opportunistic (or sporadic) spectrum utilizers, it is more

likely that the secondary nodes are less densely distributed.

In the literature, the asymptotic performance of traditional single-tier networks

with distributed random access schemes has been studied, e.g., [43]–[46]. In [43],

the performance of the slotted ALOHA protocol in a multi-hop environment was

studied and the optimum transmission radius is derived to maximize the throughput

for a random planar network. The spatial capacity of a slotted multi-hop network

with capture was studied in [44]. In [45], Weber et al. derived the transmission

capacity of wireless ad-hoc networks, where the transmission capacity is defined as

the product between the maximum density of successful transmissions and their

data rate, given an outage constraint. Baccelli et al. [46] proposed an ALOHA-

based protocol for multi-hop wireless networks in which nodes are randomly located

in an infinite plane according to a Poisson point process and are mobile according to

a waypoint mobility model. They derived the optimum multiple access probability

that achieves the maximum mean density of progress.

In [47], the achievable spatial throughput of a multi-antenna underlay cognitive

radio network is considered, where the primary network model follows the bipolar

network model introduced in [46]. Secondary users concurrently access the channel

along the primary users according to a Slotted-ALOHA protocol, while satisfying

the primary minimum success probability constraint. Authors derived the maximum

36



permissible secondary density together with the optimal secondary medium access

probability that maximizes the secondary spatial throughput. They showed that this

is possible due to employing multiple antennas at the primary user. In [48], authors

considered an overlay cognitive radio network where both primary and secondary

networks follow the bipolar network model introduced in [46]. The cognitive users

follow the policy that a cognitive transmitter is active only when it is outside the

primary user exclusion regions. Authors derived bounds for the inter- and intra-

network interferences and show that the spatial distribution of the secondary users

can be approximated by the Poisson hole process.

In this section we consider decentralized ALOHA-based scheduling schemes for

both primary and secondary networks in an overlaid scenario, where secondary users

can only make use of localized information obtained via spectrum sensing to control

their actions and limit their interferences to primary users. The distributed nature of

ad-hoc networks and the passive property of primary receivers lead to uncertainties

about the primary system state even with perfect spectrum sensing. As such, we

focus on the case where the secondary users are able to perfectly detect the primary

user signals when the primary transmitters are within a certain range. In particular,

we study the asymptotic performance of the two overlaid networks, where we start

with the throughput scaling laws, and then introduce a new metric called asymptotic

multiplexing gain that further quantifies the performance trade-o↵ between the two

networks. We do so under two scenarios, i.e., the secondary network is denser vs.

sparser than the primary network, and identify their key di↵erences.

The rest of this section is organized as follows. Section 3.2 introduces the math-

ematical model, notations, and definitions. In Section 3.3 we consider the spatial

throughput of the single-tier network. Section 3.4 studies the cognitive overlaid sce-

nario and addresses the trade-o↵ between the primary and secondary networks by
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introducing the notion of asymptotic multiplexing gain (AMG). In particular, we

show that both networks can achieve their corresponding single-tier throughput scal-

ing regardless of the setting for the spectrum sensing range. However, for the case

with a denser secondary network, spectrum sensing can improve the overlaid net-

works performances; whereas, for the case with a sparser secondary network, the

spectrum sensing turns out to be redundant and the primary network AMG cannot

be enhanced by employing spectrum sensors. Section 3.5 concludes this study.

3.2 System Model and Definitions

Consider a circular region A in which a network of primary nodes and a network

of secondary nodes share the same temporal, spectral, and spatial resources. Both

primary and secondary nodes are distributed according to Poisson point processes

with densities �(p) and �(s) = (�(p))� (� > 0, � 6= 1), respectively. Let �(p) = {X(p)

i

}

and �(s) = {X(s)

i

} denote the (Cartesian) coordinates of a realization of the primary

and secondary nodes. As mentioned earlier, the primary users are legacy users, and

thus have a higher priority to access the spectrum; the secondary users can access the

spectrum opportunistically (based on the spectrum sensing outcome) as long as they

abide by the primary “interference constraints”, i.e., maximum permissible primary

throughput degradation.

Throughout this section we denote the parameters associated with the primary

and the secondary users with superscripts (p) and (s), respectively. Each primary

receiver tries to decode the signal from its intended transmitter located within R(p)

r

radius and is prone to interference from other primary and secondary transmitters

within R(p)

I

and R(sp)

I

radii, respectively. Likewise, a secondary receiver tries to de-

code the signal from its intended transmitter located within R(s)

r

radius and is prone

to interference from other secondary and primary transmitters within R(s)

I

and R(ps)

I
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radii, respectively. Considering the primary and secondary users’ transmission pow-

ers, it is reasonable to assume that the inter- and intra-network interference ranges

are of the same order and the interference ranges are no less than the transmis-

sion ranges in both networks. In other words, R(ps)

I

= O(R(p)

I

), R(sp)

I

= O(R(s)

I

),

R(p)

I

=
p
1 + l(p)R(p)

r

and R(s)

I

=
p
1 + l(s)R(s)

r

for some constants l(p), l(s) � 0. This

is similar to the protocol model introduced in [42]. Further, secondary nodes are

equipped with perfect spectrum sensors that can reliably detect the primary user

signals (i.e., the existence of transmitting primary users) within R
D

radius. In this

section we only consider perfect spectrum sensors for secondary users to focus on the

e↵ect of spectrum availability uncertainties, caused by the distributed nature of ad-

hoc networks and the passive property of primary receivers, on the cognitive network

performance. We leave the e↵ect of spectrum sensing errors to a future work.

Intuitively, we expect the throughput scaling results presented in this section

to still hold even when considering erroneous spectrum sensors; in the worst case

scenario, the information gathered by the spectrum sensors is completely unreliable

and secondary users might as well access the channel ignoring the spectrum sensors’

outcome. In this case, as shown later, both networks can still achieve their stand-

alone throughput scalings. A detailed analysis of overlaid networks with spectrum

sensing errors is non-trivial due to the complex spatial correlation among primary

and secondary users caused by non-perfect sensing.

Let |A| denote the area of region A and B
R

(·) denote a full disk with radius R

centered at (·), which could be either the polar coordinates in the form of (r,') or the

location of a node X in the form of (X). We interpret B
R

1

(r
1

,'
1

)�B
R

2

(r
2

,'
2

) as the

remaining region of a disk with radius R
1

centered at polar coordinates (r
1

,'
1

) ex-

cluding the overlapping region with another disk with radius R
2

centered at (r
2

,'
2

).

Furthermore, given measurable sets (or events) �
1

and �
2

we denote by �
1

the com-
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plement of event �
1

and denote by �
1

�
2

:= �
1

\ �
2

their intersection.

In addition, f(�) = o (g(�)) means that lim f(�)/g(�) ! 0 as � ! 1, f(�) =

O (g(�)) means that there exist positive constants c and M such that f(�)/g(�)  c

whenever � � M , f(�) = !(g(�)) means that lim f(�)/g(�) ! 1 as � ! 1,

f(�) = ⇥ (g(�)) means that both f(�) = O (g(�)) and g(�) = O (f(�)), f(�) ⇠ g(�)

means that lim f(�)/g(�) ! 1 as � ! 1.

For the transmission protocols in both networks, the time axis is slotted and

both networks are synchronized. The slot duration is defined as the time required

to transmit a packet in the system, where all packets are assumed to be of the same

size. We do not make any explicit assumptions regarding the frame structure of the

networks, since we are comparing the performance of the overlaid networks against

their stand-alone counterparts. The assumptions on the frame structures and their

e↵ects on the network throughput will be the same in both overlaid and stand-alone

scenarios, and consequently immaterial for the comparison. In the following, we

outline the primary and secondary network protocols, both based on the slotted

ALOHA structure.

3.2.1 Primary Network Protocol

Each primary node picks a destination uniformly at random among all other

nodes in the primary network. Communication occurs between a primary source-

destination (S-D) pair through a single-hop transmission if they are close enough,

or through multi-hop transmissions over intermediate relaying nodes if they are far

apart. In this manner, each primary node might act as a source, destination or a

relay, and always has a packet to transmit (which is either its own packet or a packet

being relayed). We assume that each node has an infinite queue for packets where the

first packet in the queue is transmitted with probability q(p) (the ALOHA parameter).
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The selection of relaying nodes along the (multi-hop) routing path is governed by

a variant of geometric routing schemes [43, 49, 50, 51], namely the random 1

2

disk

routing scheme, as discussed in Section 3.2.3.

We choose the random 1

2

disk routing scheme mainly for tractability and simplicity

in mathematical characterization as discussed in Section 4. However, the solution

techniques developed in this section can be used (with some modifications) to study

other variants of geographical routing schemes, such as MFR, NFP, DIR, etc.

3.2.2 Secondary Network Protocol

Similar to the primary network, each secondary node picks a destination uni-

formly at random among all other nodes in the secondary network. Each secondary

node has an infinite queue for packets with the first one in the queue transmitted with

probability q(s), whenever the channel is deemed idle: In particular, each secondary

user senses the channel for primary activities prior to a transmission initiation and

commences the transmission of the first packet in the queue with probability q(s)

whenever there are no primary transmitters detected within R
D

radius. Setting

R
D

= 0 implies that secondary nodes always initiate transmissions with probability

q(s) regardless of the primary channel occupancy status. The secondary network

utilizes the same routing scheme as the primary network.

3.2.3 Random 1

2

Disk Routing Scheme

Since both primary and secondary networks utilize the same routing scheme, in

this section we introduce our routing scheme for a generic wireless ad-hoc network

(omitting the superscripts (p) and (s)). Consider an arbitrary packet b for a source-

destination pair that is h-distance apart. We set the destination node at the origin

and assume that the routing path starts from the source node at X
0

= (�h, 0), where

X
n

is the (Cartesian) coordinate of the nth relay node along the routing path and
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Figure 3.1: Evolution of the random 1

2

disk routing path.

r
n

:= kX
n

k is the (Euclidean) distance of the nth relay node from the destination.

More specifically, the routing path starts at the source node X
0

= (�h, 0) with its

transmission 1

2

disk Db

0

that is a 1

2

disk with radius R
r

centered at X
0

and oriented

towards the destination at (0, 0). The next relay X
1

is selected at random from nodes

contained in Db

0

. This induces a new 1

2

disk Db

1

, centered at X
1

and oriented towards

the destination. Relay X
2

is selected randomly among the nodes in Db

1

, and the

process continues in the same manner until the destination is within the transmission

range.1 Note that at any hop n if Db

n

does not contain any nodes then the route

terminates and the packet is dropped. We claim that the routing path converges (or

is established) in finitely many hops whenever it enters the transmission/reception

1For the operation of the random 1
2disk routing scheme, each node needs to be aware of the

location of itself and its neighbors. Due to the static network configuration, the location information
can be obtained once during the network initialization phase. Furthermore, each packet should
contain the location of its destination. In [52], the authors showed that the performance of the
geometric routing schemes will remain order-wise the same even with imprecise location information
at network nodes.
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range of the final destination, i.e., r
⌫

 R
r

, for some ⌫ < 1. In Fig. 3.1, we illustrate

the progress of a packet towards its destination. We define the progress at the nth

hop of the routing path as Y b

n

:= kX
n

k � kX
n+1

k = r
n

� r
n+1

if there is at least one

node in Db

n

and Y b

n

= �1 otherwise, which amounts to ⌫ = 1.

In Theorem 4.2.1, we showed that the routing paths generated by the random

1

2

disk routing scheme connect any source to its destination in finitely many hops

if the transmission region D of every node in the network looking in any direction

contains at least one relaying node; this condition can be guaranteed asymptotically

almost surely if R
r

= K
p

log �/� for a large enough constant K. In this section we

assume that K and � are su�ciently large and R
r

= K
p
log �/�. Consequently, we

can assume that the transmission region D of every node in the network looking in

any direction contains at least one relaying node, Y b

n

= r
n

� r
n+1

> �1 for all n

and any possible b, and ⌫ < 1 with high probability.

3.2.4 Spatial Throughput

In this section we adopt a notion of throughput similar to mean spatial density

of progress in [46].

Definition 3.2.1. We define the spatial throughput of the network as the mean total

progress of all successfully transmitted packets in the whole network over a single hop.

More specifically, let b be the packet at the head of queue of node X 2 �, Y b

X

be the

progress of packet b at node X, and ⇤b

X

be the event of successful transmission of

packet b at node X. Then the spatial throughput of the network is defined as

C(�) := �|A|E
⇣
Y b

X

1

⇤

b
X

⌘
, (3.1)

where 1 is the indicator function and E() is the expectation operator taken over
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all realizations of the network nodes, S-D pair assignments, and the routing paths

between S-D pairs.2

There are two key di↵erences between our notion of throughput and the mean

spatial density of progress. The first di↵erence lies in the fact that in the mean

spatial density of progress only a typical snapshot of the network is considered and

the progress is computed only for the typical realization of the local neighborhood

of a transmitting node. However, in our notion of throughput we consider the whole

routing path of a packet and compute the mean progress of the packet over a sin-

gle hop along that path. In other words, we are computing the expected progress

of packets over both time and space. The second di↵erence between our notion of

throughput and the mean spatial density of progress stems from the definition of the

progress, where in [46] the progress is defined to be the decrement in the distance

of the packet’s position projected on the line connecting the transmitting node and

the destination, whereas in this dissertation we define the progress to be the decre-

ment in the radial distance of a packet to its destination, as shown in Fig. 3.2. In

order to highlight the di↵erence between these two definitions, consider the following

exaggerated example.

Assume a (very unfortunate) realization of the routing path where at each hop a

node in the upper/lower corner of the transmission 1

2

disk is chosen as the next relay

(e.g., X̃ in Fig. 3.2). Over this path, the packet gets farther away from the desti-

nation at each hop and should never reach the destination; this is an intuitive result

that our definition of progress complies with. However, according to the projected

distance progress definition in [46], at each hop, the packet has made a positive drift

2In this section we ignore the edge e↵ects, i.e., we assume that the location of network nodes
in BR(X) is uniformly distributed irrespective of the location of X. Essentially, we are ignoring
the fact that the portion of disks around edge nodes that fall outside of the network region do not
contain any other nodes.
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~

Figure 3.2: Progress of the packet at the nth hop. Y
n+1

is the decrement in the radial
distance of a packet to its destination and x0

n+1

is the decrement in the distance of
the projection of the packets position on the line connecting the transmitting node
and the destination.

towards the destination and should eventually reach the destination. Furthermore,

based on the projected distance progress, the progress of a packet towards its destina-

tion is i.i.d. over all relay nodes. This means that the packet progress is independent

of the distance from the transmitting node to the destination. However, as we show

later, the packet distance from the destination decreases more (on average), when it

is farther away from the destination, and decreases less as the packet gets closer to

the destination (cf. Eq. (3.7)). This suggests that the packet progress is a function

of its relative position to its destination and the current distance from the packet to

the destination should be considered in evaluating the progress at each hop. In the

next section, we determine the spatial throughput for the stand-alone primary and

secondary networks and provide some interpretations for this metric.
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3.3 Single Network Throughput Scalings

In this section we consider the spatial throughput of a single-tier network when

no other networks are overlaid. This serves as a performance benchmark for the

overlaid case discussed in the next section. The following lemma provides us with

an equivalent definition and a method of computing the spatial throughput for our

system.

Lemma 3.3.1 (Separation Principle). Consider the single-tier version of the wire-

less ad-hoc network defined in Section 3.2. The spatial throughput of such a network

equals the product between the expected number of simultaneously successful trans-

missions in the whole network and the average progress of a typical packet over a

single-hop transmission. Specifically, the spatial throughput of the network can be

obtained as

C(�) = �|A|E
�
Y b

X

�
Pr
�
⇤b

X

�
, (3.2)

where ⇤b

X

and Y b

X

are defined in Definition 3.2.1 and the expectation is taken over

all realizations of the network nodes, S-D assignments, and the routing paths between

S-D pairs.

Proof. Let b be the packet at the head of node X’s queue at an arbitrary time slot.

Note that b and Y b

X

are random variables which dependent on the specific realization

of the network nodes, the S-D assignments, and the routing path establishment with

the random 1

2

disk routing scheme. Assume that X
0

and X
⌫

b
+1

are the source and

destination of packet b respectively, where ⌫b + 1 is total number of hops that b
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traverses over. Let {X
1

, X
2

, . . . X
⌫

b} be the nodes that b hops over. We have

E
⌫

b

⇣
Y b

X

1

⇤

b
X

⌘
= E

⇣
Y b

X

1

⇤

b
X
1{X=Xn:n=0,...,⌫

b}

⌘

=
1

⌫b + 1

⌫

bX

n=0

E
⇣
Y b

Xn
1

⇤

b
Xn

⌘
,

where we define E
X

(Y ) := E (Y | X). Therefore, we can reformulate (3.1) as

C = �|A|E
⇣
E
⌫

b

⇣
Y b

X

1

⇤

b
X

⌘⌘

= �|A|E

0

@ 1

⌫b + 1

⌫

bX

n=0

E
⇣
Y b

Xn
1

⇤

b
Xn

⌘
1

A . (3.3)

Now, consider the transmission of packet b from node X
n

to X
n+1

. Recall that we

assume � and R
r

as large enough such that there exist at least one relay node for every

transmitting node with high probability. Packet b is successfully transmitted/relayed

if:

I) Node X
n

initiates a transmission according to the ALOHA protocol with prob-

ability q (denoted by event ⇤b

1,Xn
).

II) For any node X
n+1

that is selected as the next relay for b according to the

random 1

2

disk routing scheme, we have that neither X
n+1

nor any other nodes

contained in its interference range B
RI (Xn+1

), except for X
n

, initiate a trans-

mission (denoted by event ⇤b

2,Xn+1

).

In other words, ⇤b

Xn
= ⇤b

1,Xn
⇤b

2,Xn+1

as defined above. Note that since we as-

sumed R
I

� R
r

, ⇤b

2,Xn+1

also implies that in the event of successful transmission no

two nodes transmit packets to X
n+1

at the same time. Moreover, ⇤b

Xn
only depends

on the multiple access decisions of X
n

, X
n+1

, and the nodes that are contained in
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the interference range of X
n+1

. All these nodes initiate transmissions independent

of each other and independent of all previous transmission attempts. Together with

the fact that all network nodes always have a packet to transmit, we conclude that

Pr(⇤b

Xn
) only depends on the number of nodes contained in the interference range of

the next relay node. Hence, due to the homogeneity of the underlying Poisson point

process of the network nodes, Pr(⇤b

Xn
) is only a function of the area of B

RI (Xn+1

),

and is independent of the realization of X
n+1

. In other words, {⇤b

Xn
}
b,n

are iden-

tically distributed (but possibly correlated) collection of random variables, and are

independent of X
n

, X
n+1

, and consequently Y b

Xn
. From (3.3) we get

C = �|A|E

0

@ 1

⌫b + 1

⌫

bX

n=0

E
�
Y b

Xn

�
1

APr
�
⇤b

Xn

�

= �|A|E
�
Y b

X

�
Pr
�
⇤b

X

�
.

As a consequence of Lemma 3.3.1, we can derive the spatial throughput of the

network by separately determining the probability of a successful one-hop transmis-

sion and the average progress for a typical packet b at a typical node X. Based on

the proof of Lemma 3.3.1 we have

Pr
�
⇤b

X

�
= E

0

@
X

Xj2Db
X

q(1� q)nXj
+1

n0
X

1

A

= q(1� q)e��q|BRI
|

= q(1� q)e��q⇡R

2

I , (3.4)

where n0
X

⇠ Pois(�|Db

X

|) is the number of nodes in Db

X

and n
Xj ⇠ Pois(�|B

RI |) is
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the number of nodes in the interference range of X
j

(excluding X
j

and X).

In order to derive the average packet progress we need some more nomenclature

and intermediate results. Consider a packet b. To simplify the notation we drop

the superscripts associated with this packet. According to Theorem 4.2.1, we can

(approximately) model the distance {r
n

} of packet b to its destination as a Markov

process solely characterized by its progress {Y
n

}. Let {X
n

} be the set of nodes

that b hops over, and let (x0
n+1

, y0
n+1

) be the projection of X
n+1

�X
n

onto the local

Cartesian coordinates with node X
n

as the origin and the x-axis pointing from X
n

to the destination node as shown in Fig. 3.3. Hence, we have

r
n+1

=
q
(r

n

� x0
n+1

)2 + y02
n+1

. (3.5)

Based on this Markov approximation model (cf. Section 4.4.1), X
n+1

is uniformly

distributed on D
n

for a large enough �; hence {(x0
n

, y0
n

)} is an i.i.d. sequence of

random variables with ranges x0
n

2 [0, R
r

] and y0
n

2 [�R
r

, R
r

] for all n, whenever �

is large enough.

Define ⌫(h)

r

:= inf{n : r
n

 r, r
0

= h}, R
r

 r  h, to be the index of the first

relay node closer than r to the destination when the source and destination nodes

are h-distance apart. Hence, ⌫(h)

Rr
+ 1 represents the length (or hop-count) of the

routing path. In Section 4, we prove that ⌫(h)

Rr
is finite asymptotically almost surely

if R
r

= K
p

log �/� for large enough K. Note that ⌫(h)

r

is a stopping time [53] and

r �R
r

 r
⌫

(h)
r

 r . (3.6)

Furthermore, define g(r, x0, y0) :=
p

(r � x0)2 + y02 � r. Observe that g is a non-

decreasing function over r > R
r

, for fixed (x0, y0), and �x0  g(r, x0, y0)  �x0 + R

2

r
2r
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Figure 3.3: Distance between the next relay and the current node projected onto to
the local coordinates at the current node.

for r > R
r

, |x0|  R
r

, and |y0|  R
r

. Thus, for n < ⌫(h)

r

, we have r
n

> r and

�x0
n+1

 r
n+1

� r
n

= g(r
n

, x0
n+1

, y0
n+1

)

 g(r, x0
n+1

, y0
n+1

)

 �x0
n+1

+
R2

r

2r
. (3.7)

Applying telescopic sum to (3.7) and using (3.6) we have that for a source-

destination pair that is h-distance apart (r
0

= h)

r �R
r

 r
⌫

(h)
r

 h+
⌫

(h)
rX

n=0

g(r, x0
n+1

, y0
n+1

) , (3.8a)

h+
⌫

(h)
rX

n=0

(�x0
n+1

)  r
⌫

(h)
r

 r . (3.8b)
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Together with (3.7) and the fact that Y
n

= �g(r
n

, x0
n+1

, y0
n+1

), we have

E

✓
h� r

⌫(h)

r

+ 1
� R2

r

2r

◆
 E

�
Y b

X

�

= E

0

@ 1

⌫(h)

r

+ 1

⌫

(h)
rX

n=0

Y
n

1

A

= E

0

@ 1

⌫(h)

r

+ 1

⌫

(h)
rX

n=0

�g(r
n

, x0
n+1

, y0
n+1

)

1

A  E

✓
h� r +R

r

⌫(h)

r

+ 1

◆
,

where the expectation is taken over all network, S-D assignment, and routing path

realizations. Now let S
m

:=
P

m

n=1

x0
n

with S
0

= 0, and ⌘(z) := E(ezx
0
n). We know

that exp(zS
m

� m log(⌘(z))) is a positive martingale, with value 1 at m = 0, [53,

Section 10.14]. Hence, recalling (4.9b), we have

E
⇣
ez(h�r)�(⌫

(h)
r +1) log(⌘(z))

⌘
 E

✓
e
zS

⌫
(h)
r +1

�(⌫

(h)
r +1) log(⌘(z))

◆
 1 .

This implies

E
⇣
e�(⌫

(h)
r +1) log(⌘(z))

⌘
 e�z(h�r) . (3.9)

Using Jensen’s inequality and the monotone convergence theorem [53], it is easy
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to show that

1

E
⇣
⌫(h)

Rr
+ 1 | h

⌘  E

 
1

⌫(h)

Rr
+ 1

����h
!

=

Z 1

0

E
⇣
e�t(⌫

(h)
Rr

+1)

⌘
dt


Z 1

0

e�z(h�r)d(log(⌘(z)))

=

Z 1

0

⌘0(u)

⌘(u)
e�u(h�r)du

=

Z 1

0

E
�
x0
n

ezx
0
n
�

ezx0
n

e�z(h�r)dz


Z 1

0

E (x0
n

) e�z(h�r�Rr)dz

=
E (x0

n

)

h� r �R
r

. (3.10)

Finally, choosing r = R
r

(1 +
q

h

Rr
), we can determine the average progress of a

typical packet at a typical node X by

E
�
Y b

X

�
=

4R
r

3⇡
+O

�
R3/2

r

�
⇠ 4R

r

3⇡
, (3.11)

where we have used the facts that E(⌫(h)

Rr
| h) ⇠ h

E(x

0
n)

(cf. [54, Section IV.B]) and

E (x0
n

) = 4Rr
3⇡

(cf. [54, Appendix B]). Substituting (3.4) and (3.11) into (3.2), we

obtain the spatial throughput of the single-tier network as

C(�) ⇠ �|A|E
 

h

⌫(h)

Rr
+ 1

!
Pr
�
⇤b

X

�

=
4|A|
3⇡

�R
r

q(1� q)e��q⇡R

2

I . (3.12)

Observe that based on (3.12), one can show that q = (�⇡R2

I

)�1 maximizes the spa-

tial throughput of the network (when � is large) and q = O (1/ log(�)) is a necessary

condition for C to be asymptotically nontrivial given that R
r

= O
⇣p

log(�)/�
⌘
.
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Recall that R
r

is chosen as such to ensure network connectivity. Consequently, for

q = O (1/ log(�)) we we obtain that

C(�) = ⇥

 s
�

log(�)

!
. (3.13)

Remark 3.3.2. Observe that if the network is stable, the spatial throughput of the

network equals the expected number of packet-meters that the network delivers to the

destinations at each time slot, which is equivalent to the transport capacity defined

in [42]. The network is stable if the rate at which new packets are generated is equal

to the rate at which packets are delivered to their respective destinations. In other

words, the queue length of all network nodes is almost surely finite and packets are

not being stored indefinitely in some nodes in the network. Intuitively, when the

network is stable, there are �|A|Pr (⇤
X

) successful one-hop transmissions occurring

in the whole network in each time slot; however, due to relaying, only E(1/⌫
Rr + 1)

of these successful transmissions (on average) contribute to the throughput and the

rest are only the retransmissions of relayed packets.3

We denote the spatial throughput of stand-alone primary and secondary networks

by C(p)(�) and C(s)(�) respectively; i.e., C(p)(�) (or C(s)(�)) equals the single-tier

spatial throughput expression in (3.12) with primary (or secondary) network param-

eters substituted. We will show in Section 3.4 that even when we have two networks

sharing the same resources and the secondary network accesses the spectrum with-

out sensing (as if the primary tier is not present), both networks can still achieve

the above throughput scaling. This suggests that throughput scaling alone is not

adequate to evaluate the performance of large-scale overlaid networks, as it masks

3The temporal analysis of the system is beyond the scope of this dissertation and is left for a
future work.
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the e↵ect of mutual interference between the two networks. It turns out that the

augmented interference from secondary users only causes a constant penalty to the

primary throughput in the asymptotic sense such that the scaling law by itself cannot

reflect this e↵ect.

To quantify the e↵ect of mutual interference between the two networks, we define

a new measure, asymptotic multiplexing gain (AMG), to characterize the protection

vs. competition trade-o↵ between the two networks. Note that AMG should be a

function of spectrum sensing range and the medium access policy of the secondary

users.

Definition 3.3.3. Assume that the throughput C(�) of a network scales as ⇥ (f(�));

we define the Asymptotic Multiplexing Gain (AMG) of the network as the constant

lim
�!1

C(�)

f(�)

.

Note that the exact AMG value may not be always computable, but its bounds

always are. As such, we can define a partial ordering [55] on the set of all network

throughputs. Specifically, consider two networks N
1

and N
2

with throughputs C
N

1

and C
N

2

, and asymptotic multiplexing gains x
1

 AMG
N

1

 y
1

and x
2

 AMG
N

2



y
2

. We say C
N

1

� C
N

2

if and only if C
N

1

/C
N

2

= o (1), or y
1

 x
2

when C
N

1

/C
N

2

=

O (1). From a di↵erent perspective, if we plot C(�) over f(�) for asymptotically

large �, AMG is nothing but the slope of the throughout scaling curve, hence the

connotation “multiplexing gain”; and it is intuitive to always desire a large AMG.

Accordingly, we can determine the single-tier network AMG in the absence of the

other network as:

G =
4|A|e�1

3⇡2

p
1 + l

, (3.14)

when q = (�⇡R2

I

)�1 and R
I

/R
r

=
p
1 + l.
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3.4 Overlaid Cognitive Network Spatial Throughput

In this section we consider the case where both primary and secondary networks

are present in the overlaid fashion under two distinct scenarios: one with the sec-

ondary network being denser than the primary network (� > 1) and the other with

the primary network being denser (� < 1). As shown later, the impact of each tier on

the spatial throughput of the other tier is materialized in the reduction of expected

number of successful one-hop transmissions.

The distinctive feature of the overlaid cognitive network is that the secondary

users are allowed to transmit only if they detect no primary transmitters within an

R
D

radius. The possible overlap between the detection ranges of secondary users cor-

relates their medium access decisions, which consequently, correlates the successes of

one-hop transmissions with the Euclidean hop-lengths in both primary and secondary

networks. Therefore, in the overlaid scenario, the separation principle (Lemma 3.3.1)

is no longer directly applicable; this makes the characterization of the primary and

secondary network spatial throughputs challenging.

In the following two subsections we derive the spatial throughputs of the overlaid

cognitive radio networks. The analysis closely follows that in the previous section,

however, with proper modifications that take into account the opportunistic access

mechanism adopted by secondary users and the extra inter-network interferences.

3.4.1 Throughput Analysis for the Primary Network

Let ⇤
X

(p)
n

be the event of successful transmission for primary packet b from a

primary node X(p)

n

to the next relay X(p)

n+1

in the presence of the secondary network.

Henceforth, we drop the superscript b for brevity. We have that ⇤
X

(p)
n

happens

if events ⇤
1,X

(p)
n
, ⇤

2,X

(p)
n+1

, and ⇤
3,X

(p)
n+1

all happen. As in the proof of Lemma 3.3.1,

⇤
1,X

(p)
n

denotes the event that X(p)

n

initiates a transmission, ⇤
2,X

(p)
n+1

denotes the event
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that neither X(p)

n+1

nor any primary nodes contained in B
R

(p)
I
(X(p)

n+1

), except X(p)

n

,

initiate a transmission, and ⇤
3,X

(p)
n+1

denotes the event that there are no secondary

transmitters within inter-network interference range R(sp)

I

of X(p)

n+1

.

Recall that we require the secondary network to be transparent to the primary

network. Hence, we assume that primary users utilize the same medium access

probability as if the secondary tier was not present, i.e., q(p) = (�(p)⇡(R(p)

I

)2)�1. On

the other hand, each secondary transmitter initiates transmission with probability

q(s) only if it detects the channel as idle, i.e., when there are no primary transmitters

within R
D

radius. Therefore, if X(p)

n

initiates a transmission, all secondary users in

B
RD(X

(p)

n

) would refrain from transmission. As such, to compute the probability of

successful transmission for the primary network, we only need to consider the possible

inter-network interference from the secondary nodes in B
R

(sp)
I

(X(p)

n+1

) � B
RD(X

(p)

n

).

From this we observe the following two facts:

i) The likelihood of a secondary user interfering with the transmission from

X(p)

n

to X(p)

n+1

decreases as R
D

increases. Thus, the probability of success-

ful transmission for a primary user is an increasing function of R
D

. Setting

R
D

= R(sp)

I

+ R(p)

r

guarantees zero interference from the secondary network

to the primary network since all the secondary nodes in B
R

(sp)
I

of a primary

receiver will detect the corresponding primary transmitter and refrain from

transmission. However, as shown in Section 3.4.2, increasing R
D

deteriorates

the secondary network throughput and if R
D

is too large, i.e., R
D

= !(R(p)

r

),

then the secondary network throughput diminishes to zero asymptotically (cf.

Lemma 3.4.4). Therefore, in what follows, we assume R
D

= O(R(p)

r

) and

R
D

 R(sp)

I

+R(p)

r

.

ii) For a given R
D

 R(sp)

I

+ R(p)

r

, the closer X(p)

n

is to X(p)

n+1

, the lower is the
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likelihood of interference from secondary nodes to X(p)

n+1

. Hence, in the overlaid

scenario, ⇤
X

(p)
n

and Y
X

(p)
n

are no longer independent and the separation principle

does not apply.

In the following, we derive the asymptotic spatial throughput of the primary

network in the presence of a secondary tier. We first consider the � > 1 scenario.

In this case we have R(p)

r

= !(R(s)

r

). In Propositions 3.4.1 and 3.4.2 given below,

we establish that regardless of the secondary spectrum sensing settings (i.e., R
D

=

o(R(p)

r

) or R
D

= O(R(p)

r

)), the primary network can still achieve its stand-alone sum

spatial throughput scaling when � > 1. Furthermore, we derive the primary network

AMG and identify its relation with secondary medium access and spectrum sensing

strategies.

Proposition 3.4.1. Assuming � > 1 and R
D

= o(R(p)

r

), the primary network

throughput is asymptotically independent of the secondary network spectrum sens-

ing and can be obtained as

C(p)

�>1

(�) ⇠ G(p)

�>1

s
�(p)

log(�(p))
, (3.15)

where the primary network AMG in the presence of a secondary network equals

G(p)

�>1

= �↵

1G , (3.16)

when the secondary medium access probability equals q(s) = ↵
1

(�(s)⇡(R(s)

I

)2)�1, with

↵
1

> 0, and � := exp(�(R(sp)

I

/R(s)

I

)2) < 1.

Proof. Refer to Appendix A.

From Proposition 3.4.1, we observe that spectrum sensing cannot improve the
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primary network AMG if R
D

= o(R(p)

r

). However, secondary users can still satisfy

the primary AMG requirement by decreasing their access probability via decreas-

ing ↵
1

at the cost of reducing their sum throughput significantly. Note that as

shown in the next section, the secondary access probability should be chosen as

q(s) = ↵
1

(�(s)⇡(R(s)

I

)2)�1 to ensure an asymptotically nontrivial throughput for the

secondary network. Next, we consider the case where R
D

= O(R(p)

r

), and in partic-

ular assume that R
D

= ↵
2

R(p)

r

, for 0 < ↵
2

 1.

Proposition 3.4.2. Assume � > 1 and R
D

= ↵
2

R(p)

r

with 0 < ↵
2

 1. Then, the

primary network spatial throughput can be obtained as

C(p)

�>1

(�) ⇠ G(p)

�>1

s
�(p)

log(�(p))
, (3.17)

where the primary network AMG in the presence of a secondary network equals

G(p)

�>1

=
�
↵3

2

+ (1� ↵3

2

)�↵

1

�
G , (3.18)

when the secondary medium access probability equals q(s) = ↵
1

(�(s)⇡(R(s)

I

)2)�1, with

↵
1

> 0, and � := exp(�(R(sp)

I

/R(s)

I

)2) < 1.

Proof. Refer to Appendix B.

Observe that based on (3.18), the primary network AMG loss due to secondary

activity can be recovered arbitrarily by decreasing the secondary medium access

probability (through decreasing ↵
1

) or increasing the secondary detection range (by

increasing ↵
2

). As shown in the next section, one can numerically obtain optimal

↵
1

and ↵
2

values that maximize the secondary network AMG while satisfying the

primary AMG constraint.
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Next, we consider primary network spatial throughput when � < 1, where we

have much fewer secondary nodes with much larger interference ranges (than primary

nodes) and R(p)

r

= o(R(s)

r

).

Proposition 3.4.3. Assuming � < 1, the primary network spatial throughput can

be obtained as

C(p)

�<1

(�) ⇠ G(p)

�<1

s
�(p)

log(�(p))
, (3.19)

where the primary network AMG in the presence of secondary network only depends

on the e↵ective medium access probability q̃(s) := q(s) exp(��(p)q(p)⇡R2

D

) of secondary

users:

G(p)

�<1

= e��

(s)
q̃

(s)
⇡(R

(sp)
I )

2

G . (3.20)

Proof. Refer to Appendix C.

3.4.2 Throughput Analysis for the Secondary Network

In this section we derive the spatial throughput for the secondary network when

secondary users try to access the channel opportunistically in the presence of pri-

mary users. The throughput analysis closely follows the methods in Section 3.3 but

with proper modifications to the calculation of successful transmission probability,

which now should take into account the opportunistic access mechanism adopted by

secondary users and the extra inter-network interference from primary users.

Let ⇤̃
X

(s)
n

be the event of successful transmission of a packet b from a secondary

node X(s)

n

to the next relay X(s)

n+1

in the presence of the primary network. Similar

to Section 3.4.1, we have that ⇤̃
X

(s)
n

happens if events ⇤̃
1,X

(s)
n
, ⇤̃

2,X

(s)
n+1

, and ⇤
3,X

(s)
n+1

all happen. Here, ⇤
3,X

(s)
n+1

denotes the event that there are no primary transmitters

within inter-network interference range R(ps)

I

of X(s)

n+1

. ⇤̃
1,X

(s)
n

and ⇤̃
2,X

(s)
n+1

are similar

59



to the events in the proof of Lemma 3.3.1, except that unlike the single-tier network

case, the secondary users initiate transmissions with probability q(s) only when they

detect no primary transmitters within R
D

radius.

We define the e↵ective access probability q̃(s) := q(s) exp(��(p)q(p)⇡R2

D

) and de-

note by ⇤
X

(s)
n

:= ⇤
1,X

(s)
n
⇤

2,X

(s)
n+1

⇤
3,X

(s)
n+1

the event of successful transmission if all

secondary users initiate transmissions with probability q(s) regardless of the spec-

trum sensing outcome. The distinctive feature in the secondary network is that the

transmission initiation is contingent upon the detection of idle spectrum. Thus, the

larger R
D

is, the smaller the likelihood of secondary transmission initiation is. On the

other hand, the larger R
D

is, the smaller the likelihood of intra-network interference

among secondary users is. Therefore, there exists a trade-o↵ between Pr(⇤̃
1,X

(s)
n
) and

Pr(⇤̃
2,X

(s)
n+1

) via the choice of R
D

.

We show in Lemma 3.4.4 that the secondary network sum throughput is asymp-

totically zero regardless of the relative density of the two networks when the sec-

ondary detection range is “too” big.

Lemma 3.4.4. The secondary network sum throughput is asymptotically zero when

R
D

= !(R(p)

r

). Therefore, in order to satisfy the primary network AMG constraint

while achieving asymptotically non-trivial sum throughput for the secondary network,

the detection range should satisfy R
D

= ↵
2

R(p)

r

, with constant 0 < ↵
2

 1 when � > 1

and R
D

= ↵
2

R(p)

r

, with constant ↵
2

> 0 when � < 1.
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Proof. Using (3.3) we have

C(s)

�>1

= �(s)|A|E
 

1

⌫ + 1

⌫X

n=0

E

✓
Y
X

(s)
n
1

˜

⇤

X
(s)
n

◆!

 �(s)|A|R(s)

r

Pr
⇣
⇤̃

1,X

(s)
n

⌘

 �(s)|A|R(s)

r

Pr
⇣
⇤̃

X

(s)
n

| ⇤̃
1,X

(s)
n

⌘
Pr
⇣
⇤̃

1,X

(s)
n

⌘

 �(s)|A|R(s)

r

e
�
�

RD

R
(p)
I

�
2

! 0 ,

as �(p) ! 1. Together with the result in Proposition 3.4.1, the proof of the lemma

is complete.

In the following, we derive the asymptotic spatial throughput of the secondary

network in the presence of a primary tier when the secondary spectrum sensing

range is R
D

= ↵
2

R(p)

r

, with constant 0 < ↵
2

 1 when � > 1 and R
D

= ↵
2

R(p)

r

,

with constant ↵
2

> 0 when � < 1. We first consider the � > 1 scenario. In this

case we have R(p)

r

= !(R(s)

r

). As mentioned before, the medium access decisions

of secondary users are correlated due to their overlapping spectrum sensing regions.

For example, if X(s)

n

initiates a transmission, the probability that the secondary users

located inside B
R

(s)
I
(X(s)

n+1

) initiate transmissions increases, which in turn decreases

the probability of successful transmissions between X(s)

n

and X(s)

n+1

. Furthermore,

as X(s)

n

gets closer to X(s)

n+1

, the probability of intra-network interference to X(s)

n+1

increases, knowing X(s)

n

initiates transmission.

In general, the probability that a secondary node X(s)

i

initiates a transmission is

a non-increasing function of |X(s)

j

�X(s)

i

| if X(s)

j

is transmitting and a non-decreasing

function of |X(s)

j

�X(s)

i

| if X(s)

j

is idling. Similarly, the probability that a secondary

node X(s)

i

idles is a non-decreasing function of |X(s)

j

� X(s)

i

| if X(s)

j

is transmitting
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and a non-increasing function of |X(s)

j

�X(s)

i

| if X(s)

j

is idling.

In Propositions 3.4.5, we establish that the secondary network can still achieve

its stand-alone sum spatial throughput scaling when � > 1. Furthermore, we derive

the secondary network AMG and identify its relation with the secondary medium

access and spectrum sensing strategies.

Proposition 3.4.5. Assume � > 1. The secondary network sum spatial throughput

can be obtained as

C(s)

�>1

(�) ⇠ G(s)

�>1

s
�(s)

log(�(s))
, (3.21)

where the secondary network AMG in the presence of primary network equals

G(s)

�>1

= e
�
�

max{↵
2

R
(p)
r ,R

(ps)
I

}

R
(p)
I

�
2

↵
1

e1�↵

1G , (3.22)

when the secondary medium access probability equals q(s) = ↵
1

(�(s)⇡(R(s)

I

)2)�1 and

R
D

= ↵
2

R(p)

r

, with ↵
1

> 0 and 0 < ↵
2

 1.

Proof. Refer to Appendix D.

From (3.22) we have that q(s) = O
�
1/ log(�(s))

�
is still a necessary condition to

ensure an asymptotically nontrivial throughput for the secondary network. Similar

to the single-tier network case, setting q(s) = (�(s)⇡(R(s)

I

)2)�1 is still the optimal

access probability for the secondary nodes. Observe that setting ↵
1

6= 1 or ↵
2

>

R(ps)

I

/R(p)

r

degrades the secondary network AMG. However, the secondary network

AMG remains una↵ected for ↵
2

< R(ps)

I

/R(p)

r

.

In Fig. 3.4, we compare the optimal secondary sensing radius ↵
2

, access prob-

ability ↵
1

, and AMG G(s)

�>1

as a function of primary AMG requirement G(p)

�>1

for
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Figure 3.4: Optimal secondary sensing radius ↵
2

, access probability ↵
1

, and AMG
G(s)

�>1

as a function of primary AMG loss requirement G(p)
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for di↵erent inter-network
interference parameters.
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di↵erent inter-network interference parameters. In Fig. 3.5, we repeat the same

analysis but with the detection range fixed (↵
2

= 0.8). Observe that the secondary

throughput performance degrades significantly as the primary AMG requirement

increases, when the secondary detection range is fixed. Therefore, to achieve an

acceptable secondary throughput performance when primary AMG requirements is

stringent, high-performance spectrum detectors are crucial. Also it is worth not-

ing the disproportional e↵ect of R(ps)

I

/R(p)

I

and R(sp)

I

/R(s)

I

on the optimal secondary

AMG performance; For any fixed primary AMG requirement, the secondary AMG

improved more by decreasing R(ps)

I

/R(p)

I

rather than R(sp)

I

/R(s)

I

, cf. (3.18) and (3.22).4

Next, we determine the secondary network throughput scaling and AMG when

� < 1. In this case we have R(p)

r

= o(R(s)

r

). In the next proposition, we derive the

secondary network spatial throughput and show that the secondary network can still

achieve its stand-alone sum spatial throughput scaling when � < 1.

Proposition 3.4.6. When � < 1, the secondary network throughput performance in

the presence of primary users resembles the stand-alone secondary network but with

a reduced medium access probability q̃(s). In other words,

C(s)

{�<1}(�) = e
�(

R
(ps)
I

R
(p)
I

)

2

C̃(s)(�) , (3.23)

where C̃(s) equals the single-tier spatial throughput expression in (3.12) with the sec-

ondary network parameters and the e↵ective medium access probability q̃(s) substi-

tuted. The secondary network can achieve a throughput scaling of ⇥
⇣p

�(s)/ log(�(s))
⌘

with the e↵ective ALOHA access probability q̃(s) = O
�
1/ log(�(s))

�
even when the sec-

4Reducing R(ps)
I /R(p)

I and R(sp)
I /R(s)

I can be achieved by employing certain cognitive features,
e.g., by acquiring knowledge about primary messages and utilizing joint encoding techniques to par-
tially mitigate primary interference or employing interference alignment techniques at the primary
receivers.
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ondary nodes are much more sparsely distributed than the primary nodes.

Proof. Refer to Appendix E.

Observe that according to (3.20) and (3.23), the primary and secondary network

throughput performance (i.e., AMGs) depends only on q̃(s) 2 [0, 1] when � < 1.

Therefore, the desired network performances can be achieved by setting q(s) appro-

priately while R
D

= 0. Hence, the spectrum sensing turns out to be redundant

and secondary user should blindly access the channel according to the traditional

ALOHA medium access scheme without resorting to spectrum sensing when they

are much sparser than the primary users. However, as shown in Fig. 3.6, in this

case the secondary network throughput performance degrades significantly for high

primary AMG requirements and employing spectrum detectors cannot improve the

secondary performance degradation neither.

3.5 Conclusion

In this section, we studied the interaction between two overlaid ad-hoc networks:

one with legacy primary users who are licensed to access the spectrum and the

other with cognitive secondary users who opportunistically access the spectrum. We

showed that regardless of the spectrum sensing settings, both networks can achieve

their stand-alone throughput scalings. Furthermore, with the newly defined per-

formance metric, the asymptotic multiplexing gain (AMG), we quantified how the

asymptotic network performances is a↵ected by the mutual interference between the

two networks. In addition, we derived the spatial throughput of an ad-hoc overlaid

cognitive network with exact expressions for the pre-constant multipliers. We showed

that employing the proper spectrum sensing and medium access probability settings,

secondary users can achieve a reasonable throughout performance while satisfying the

primary AMG requirement when the secondary network is denser; However, when
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Figure 3.6: Optimal secondary sensing radius ↵
2

, access probability ↵
1

, and achiev-
able AMG as a function of primary AMG loss requirement G(p)

�<1

for di↵erent inter-
network interference parameters.

the secondary network is sparser, the spectrum sensing cannot improve the through-

put performance of the secondary users. As such, secondary users should satisfy the

primary AMG requirement by appropriate selection of medium access probability,

which results in a significant secondary throughput degradation.
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4. ASYMPTOTIC STATISTICS FOR GEOMETRIC ROUTING SCHEMES IN

WIRELESS AD-HOC NETWORKS

4.1 Introduction

A wireless ad-hoc network consists of autonomous wireless nodes that collaborate

on communicating information in the absence of a fixed infrastructure. Each of the

nodes might act as a source/destination node or as a relay. Communication occurs

between a source-destination pair through a single-hop transmission if they are close

enough, or through multi-hop transmissions over intermediate relaying nodes if they

are far apart. The selection of relaying nodes along the multi-hop path is governed

by the adopted routing scheme.

The conventional method to establish a routing path between a given source-

destination pair is through exchanges of control packets containing the complete

network topology information [56], which creates scalability issues when the network

size becomes large. One way to reduce the overhead for global topology inquiries

is to build routes on demand via flooding techniques [57]. However, such routing

protocols essentially su↵er from a similar issue of large signaling overheads. To deal

with the above issues, Takagi and Kleinrock [43] introduced the first geographical

(or position-based) routing scheme, coined as Most Forward within Radius (MFR),

based on the notion of progress:1 Given a transmitting node S and a destination node

Dst, the progress at relay node V is defined as the projection of the line segment SV

onto the line connecting S and Dst. In MFR, each node forwards the packet to the

neighbor with the largest progress (e.g., node V
2

in Fig. 4.1), or discards the packet

if none of its neighbors are closer to the destination than itself. There are some

1It should be noted that the reduction in complexity comes at the cost of knowing the location
of the neighboring nodes in addition to that of the destination.
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Figure 4.1: Some variants of geometric routing schemes: The source node S has dif-
ferent choices to find a relay node for further forwarding a message to the destination
Dst. V

1

= nearest forward progress (NFP), V
2

= most forward within radius (MFR),
V
3

= compass routing (DIR), V
4

= shortest remaining distance (SRD).

other variants of the geographical routing scheme in the literature [49][50][51], which

are similar to MFR. In [49], the authors introduced the Nearest Forward Progress

(NFP) method that selects the nearest neighbor of the transmitter with forward

(positive) progress (e.g., node V
1

in Fig. 4.1); in [50], the Compass Routing (also

referred to as the DIR method) was proposed, where the neighbor closest to the line

connecting the sender and the destination is chosen (e.g., node V
3

in Fig. 4.1); in

[51], the authors considered the Shortest Remaining Distance (SRD) method, where

the neighbor closet to the destination is selected as the relay (e.g., node V
4

in Fig.

4.1).

Geographical routing protocols might fail for some network configurations due

to dead-ends or routing loops. In these cases, alternative routing strategies, such
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as route discovery based on flooding [58] and face routing [59] can be deployed.

However, it has been shown in [42] that for dense wireless networks, the MFR-like

routing strategies will succeed with high probability and there is no need to resort

to recovery methods such as face routing. In this section we study the network layer

performance of geographical routing schemes in such dense or large wireless networks;

and we expect to observe a similar high-probability successful routing performance

(the proof of this claim is presented in Section 4.4.2).

Below we present a methodology employing statistical analysis and stochastic ge-

ometry to study geometric routing schemes in wireless ad-hoc networks. We consider

a wireless ad-hoc network consisting of wireless nodes that are distributed according

to a Poisson point process over a circular area, where nodes are randomly grouped

in source-destination pairs and can establish direct communication links with other

nodes that are within a certain range. We determine the conditions under which, in

such a network, all source-destination node pairs are connected via the adopted geo-

graphical routing scheme with high probability and quantify the asymptotic statistics

(mean and variance) for the length of the generated routing paths. In particular, we

focus on a variant of the geographical routing schemes, namely the random 1

2

disk

routing scheme, as an example, where each node chooses the next relay uniformly

at random among the nodes in its transmission range over a 1

2

disk with radius R

oriented towards the destination. This scheme is similar to the geometric routing

scheme discussed in [43], in which one of the nodes with forward progress is cho-

sen as a relay at random, arguing that there is a trade-o↵ between progress and

transmission success.

We chose the random 1

2

disk routing scheme mainly for tractability and simplicity

in mathematical characterization. However, the solution techniques developed in this

section can be used (with some modifications) to study other variants of geographical
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routing schemes, such as MFR, NFP, DIR, etc, which will be further discussed in

Section 4.6. Moreover, the random 1

2

disk routing scheme can be used to model

situations where nodes have partial or imprecise routing information and the locally

optimal selection criterion of greedy forwarding schemes fails [52], e.g., when nodes

have perfect knowledge about their destination locations but imprecise information

about their own locations, or when nodes only know the half-plane over which the

final destination lies such that randomly forwarding the packet to a node in the

general direction of the destination is a plausible choice.

There has been a considerable interest regarding the network connectivity and the

average length of the route generated by geographical routing schemes under di↵erent

network settings [52][60]–[63]. The authors in [60] considered a wireless network that

consists of n nodes uniformly distributed over a disc of unit area with each node

transmission covering an area of r(n) = (log n + c(n))/n. They show that this

network is connected asymptotically with probability one if and only if c(n) ! 1

as n ! 1. Although the asymptotic expression that they derived for the su�cient

transmission range is similar to ours, their notion of connectivity is quite di↵erent

from ours. In [60], the network is connected as long as it is percolated, i.e., the

network contains an infinite-order component, where no constraints are considered

for the paths connecting source-destination pairs. However, the routing paths that

we consider in this work have more structure such that we need a di↵erent proof

technique to prove the asymptotic connectivity of the network. Xing et al. showed in

[61] that the route establishment can be guaranteed between any source-destination

pair using greedy forwarding schemes if the transmission radius is larger than twice

the sensing radius in a fully covered homogeneous wireless sensor network. In [51] the

authors derived the critical transmission radius to be
q

�

0

logn

n

which ensures network

connectivity asymptotically almost surely (a.a.s.) based on the SRD routing method,
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where �
0

= 1/(2⇡/3�
p
3/2).

In [62], Bordenave considered the maximal progress navigation for small world

networks and showed that small world navigation is regenerative.2 It is shown fur-

thermore in [62] that as the cardinality of the navigation (or routing) path grows, the

expected number of hops converges, without providing an explicit value for the limit.

Baccelli et al. [46] introduced a time-space opportunistic routing scheme for wireless

ad-hoc networks which utilizes a self-selection procedure at the receivers. They show

through simulations that such opportunistic schemes can significantly outperform

traditional routing schemes when properly optimized. Furthermore, they analyti-

cally proved the asymptotic convergence of such schemes. In [52], Subramanian and

Shakkottai studied the routing delay (measured by the expected length of the rout-

ing path) of geographic routing schemes when the information available to network

nodes is limited or imprecise. They showed that one can still achieve the same delay

scaling even with limited information. Note that the asymptotic delay expression

derived in [52] is similar to the one we derive in this section; however, our proof tech-

nique is more constructive and enables us to derive tight bounds for the mean and

the variance of the routing-path lengths in a network of arbitrary size, together with

the exact expressions for their asymptotes. Moreover, in [52] the authors presumes

that the progress (as defined in [43] and described earlier) at nodes along the routing

path form a sequence of i.i.d. random variables. However, as we show later (cf.

Proposition 4.4.1), this assumption may not hold for Poisson distributed networks of

arbitrary finite sizes as the distribution of nodes contained in the transmission range

of a given node along a routing path depends on the history of the routing path up

to this node, i.e., the progress at each hop is history dependent. Hence, it is neither

independent nor identically distributed; but we show that, as the size of the network

2This routing scheme, unlike ours, assumes nonnegative progress in each hop.
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(either density or area) goes to infinity, the conditional distribution of the progresses

along the routing path given the two previous hops, in fact, depends asymptotically

only on the last hop.

The remainder of this section is organized as follows. In Section 4.2 we introduce

the system model and describe the random 1

2

disk routing scheme. Then we define

the notion of connectivity based on generic geometric routing schemes and state

the main results of the section in a theorem regarding the connectivity and the

statistical performance of the random 1

2

disk routing scheme. In Sections 4.3 and 4.4

we prove the claims made in this theorem. In Section 4.3, we establish su�cient

conditions on the transmission range that ensure the existence of a relaying node

in every direction of a transmitting node for both dense and large-scale networks.

In Section 4.4, we study the stochastic properties of the paths generated by the

random 1

2

disk routing scheme. Specifically, in Section 4.4.1, we prove that the routing

path progress conditioned on the previous two hops can be approximated with a

Markov process. In Section 4.4.2, using the Markovian approximation, we derive the

asymptotic expression for the expected length, and in Section 4.4.3 we derive the

asymptotic expression for the variance of the length of the random 1

2

disk routing

paths. In Section 4.5, we present some simulation results to validate our analytical

results. In Section 4.6, we present some guidelines on how to generalize the results

derived for the random 1

2

disk routing scheme to other variants of the geometric

routing schemes. We conclude the section in Section 4.7.

4.2 System Model

Consider a circular area A over which a network of wireless nodes resides.3 Nodes

are distributed according to a homogeneous Poisson point process with density �.

3The results will carry over, with some minor considerations, to any convex region with bounded
curvature.
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In this work we adopt a continuum model for the network where each node is a

zero-dimensional point in a unit-area disk.4 As such, network nodes can be located

at any geometric locations (x, y) 2 R2 such that x2+ y2  |A|
⇡

, where |A| denotes the

area of region A.

Each node picks a destination node uniformly at random among all other nodes

in the network, and operates with a fixed transmission power that can cover a disk

of radius R = R(�, |A|).5

For a generic geometric routing scheme, when the targeted destination node is

out of the one-hop transmission range R of a given transmitting node, the next relay

is selected (based on some rules) among the nodes contained in the relay selection

region (RSR) of the transmitting node, where the RSR, in general, can be any subset

of a full disk of radius R centered at the transmitting node. For example, the RSR

for all the geometric routing schemes cited in the introduction section is a 1

2

disk of

radius R centered at the transmitting node and oriented towards the destination

(denoted by 1

2

RSR). We define the rule that governs the selection of the next relay in

each node’s RSR as the relay selection rule (RSL). For example, the RSL for MFR

is to choose the node with the largest “progress” towards the destination among the

nodes contained in its 1

2

RSR. We define the progress x0
V

at a relay node V as in [43],

and described in the introduction section.

We define the network to be connected if for any source-destination node pair

in the network, there exists a path constructed by a finite sequence of relay nodes

4This is due to the asymptotic nature of the results presented in this work. Furthermore,
a Poisson point process model for the node locations can be considered on a discrete space of
countably infinite isolated points (for instance, lattices). Adapting such a model does not change
the nature of the results presented.

5As mentioned earlier, we are only interested in the network layer performance of the network;
as such, we do not consider physical layer related issues such as interference. However, as a rule
of thumb (cf. [42]), to minimize the interference among wireless nodes we are interested in the
smallest transmission radius that ensures network connectivity in this section.
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complying with the RSL, with high probability ;6 henceforth, we call such a relay

sequence a routing path. Note that a node can potentially act as a relay only if it is

contained in the RSR of the current transmitting node. For the sake of definition,

we claim that the network is connected if the set of network nodes is empty.

In this section we study a special case of localized geometric routing schemes,

namely the random 1

2

disk routing scheme, where for each transmitting node S in the

network, the next relay V is selected uniformly at random among the nodes contained

in the 1

2

RSR of S. We denote the relay selection rule of the random 1

2

disk routing

scheme by rRSL. Observe that according to our routing scheme, the next chosen relay

might be farther away from the destination than the current transmitting node.

In the following, we present a theorem that summarizes the main results of this

section on the random 1

2

disk routing scheme, regarding i) the su�cient conditions on

R(�, |A|), which ensure the existence of a relaying node in any direction of a particular

transmitting node based on a generalized version of 1

2

RSR; ii) the mathematical

model describing the routing path; iii) the mean asymptotes of the path-lengths

established by the random 1

2

disk routing scheme; iv) the corresponding variance

asymptotes; and v) the asymptotic network connectivity with the random 1

2

disk

routing scheme. For the generalized version of the 1

2

RSR, we assume that the RSR

of a node is a wedge of angle 2⇡⌘ with radius R, where 0 < ⌘  1 (hereafter called

⌘disk or ⌘RSR, interchangeably). Hence, the 1

2

RSR is a special case of the ⌘RSR

with ⌘ = 1/2.

Note that in this section we define the length of a routing path as the number

of hops traversed over the routing path between a source and its destination. For

notational convenience, we let N := �|A| designate the expected number of nodes

6According to this definition, the network is connected if starting from any source and choosing
relays based on the routing scheme, the destination is reachable with high probability.
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in the network region of area |A| and d = d(N) := ⇡R

2

|A| denote the normalized area

of a full disk with radius R relative to the area of the whole region, such that dN is

the expected number of nodes in such a disk. The asymptotic nature of the results

presented in this section is due to N ! 1, which can represent results for either

large-scale networks (i.e., when |A| ! 1 with a fixed �) or dense networks (i.e.,

when � ! 1 with a fixed |A|).

Also, f(n) = O (g(n)) means that there exist positive constants c andM such that

f(n)/g(n)  c whenever n � M , f(n) = o (g(n)) means that lim f(n)/g(n) ! 0 as

n ! 1, f(n) ⇠ g(n) means that lim f(n)/g(n) ! 1 as n ! 1, and f(n) = ⇥ (g(n))

means that both f(n) = O (g(n)) and g(n) = O (f(n)).

Theorem 4.2.1. Consider a Poisson distributed wireless network with an average

node population N deployed over a circular area A. Each node picks a destination

node uniformly at random among all other nodes in the network. Assume all nodes

have the same transmission range R(N) that covers a normalized area d = d(N) and

let x0 be the progress at each node. Choosing R(N) such that ⌘dN + log d ! +1 as

N ! 1, we have

i) the ⌘disk of each node in the network pointing at any direction in which its

targeted destinations may lie contains at least one relaying node asymptotically

almost surely (a.a.s.);

ii) the routing path progress can be approximated to a “second-order” with a Markov

process; more specifically, the conditional distribution of the next hop given the

previous two hops, asymptotically depends only on the last hop.

iii) Using the Markovian approximation, we have that the length ⌫ of the ran-

dom 1

2

disk routing path is asymptotically finite with the asymptotic expected
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value E (⌫) ⇠ 32

15

1p
d

; specifically, the expected length of the random 1

2

disk rout-

ing path connecting a source-destination pair that is h-distance apart satisfies

E (⌫ | h) ⇠ h

E(x

0
)

= 3⇡

4

h

R

as N ! 1;

iv) the variance-to-mean ratio of the routing path length satisfies Var(⌫)

E(⌫)

⇠ Var(x

0
)

E(x

0
)

2

=

9⇡

2

61

� 1 as N ! 1;

v) the network is asymptotically connected with the random 1

2

disk routing scheme

with high probability,

where the expectation is taken over all realizations of the network nodes, source-

destination pair assignments, and the routing paths between source-destination pairs.

Proof. Here we only sketch the outline of the proof and present the respective details

in the following sections. In Section 4.3, we show that for random networks, choosing

R(N) such that ⌘dN + log d ! +1 as N ! 1 guarantees the existence of at least

one relaying node in the ⌘disk of each network node pointing at any directions in

which their targeted destinations may lie a.a.s..7 To this end, we first derive an

upper bound on the probability �(N) that the ⌘disk of some nodes in the network

pointing at some directions is empty. Then we show that choosing d(N) as mentioned

before ensures the asymptotic convergence of �(N) to zero as N ! 1. This ensures

the existence of a relaying node in every direction of a particular transmitting node

and ascertains the possibility of packet delivery to a particular destination from any

direction a.a.s..

In Section 4.4, assuming R(N) satisfies the above condition and N is large enough

such that there exists a relaying node in every direction of a particular transmitting

node with high probability, we prove that the routing path progress conditioned

7A specific node might act as a relay for multiple source-destination pairs.
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on the previous two hops can be approximated with a Markov process. Using the

Markovian approximation, we then derive the asymptotic expressions for the mean

and variance of the routing path length generated by the random 1

2

disk routing

scheme between a source-destination pair that is h-distance apart and show that

they are asymptotic to h

E(x

0
)

= 3⇡

4

h

R

and Var(x

0
)

E(x

0
)

2

E (⌫) =
⇣

9⇡

2

61

� 1
⌘
E (⌫), respectively.

Furthermore, we show that the length of the random 1

2

disk routing path connecting

a source to its destination is finite asymptotically. This shows that starting from a

source and following the random 1

2

disk routing scheme we can reach the destination

in finitely many hops with high probability; hence the network is asymptotically

connected with the random 1

2

disk routing scheme.

4.3 Theorem 4.2.1.i Proof: Uniform Relaying Capability

In this section we derive the su�cient conditions on R(N) that ensures, for any

node in the network, its ⌘disks pointing at any directions over which its targeted

destinations may lie contain at least one potential relaying node. To this end, we

first characterize the upper bound on the probability �(N) that, for some network

nodes, there are certain directions at which their ⌘disks are empty; we then choose

R such that this bound is vanishingly small. In this process, we can distinguish

between two types of network nodes based on their distances to the edge of the

network: Nodes that are farther than R away from the edge of the network, which

we call interior nodes, and nodes that are closer than R to the edge of the network,

which we call edge nodes. For the sake of definition, we assume �(N) = 0 when

N = 0.

For interior nodes, it is clear that the node distribution in their ⌘disks, pointing

at any direction, is the same. Therefore, the existence probability of an empty ⌘disk

for an interior node is independent of its targeted destination direction. However,

77



due to the proximity of edge nodes to the boundary of the network, the existence

probability of an empty ⌘disk for an edge node highly depends on its destination

orientation. For example, the ⌘disks that fall partly outside the network region are

more likely to be empty than the ones that are fully contained in the network region.

Hence, we derive the probabilities of a node having an empty ⌘disk in some direction

separately for the interior nodes and the edge nodes, denoted by �0(N) and �00(N),

respectively.

Recall that a ⌘disk is a wedge of angle 2⇡⌘ and radius R, with 0 < ⌘  1.

Each ⌘disk has an expected number of nodes ⌘dN . As shown in Section 4.3.3,

the existence probability of an empty ⌘disk increases as ⌘ decreases. However, we

can show that the expected length of the routing path connecting a source to its

destination will decrease as ⌘ decreases. Hence, there exist a trade-o↵ between the

existence probability of an empty ⌘disk (i.e., a disconnected node) and the expected

length of the routing path between a source-destination pair parameterized by ⌘. We

leave the study of this trade-o↵ to a future work and only derive (in Section 4.4)

the mean and variance of the path length connecting a source-destination pair when

⌘ = 1/2.

4.3.1 Calculation of �0(N)

Consider an interior node x, fixed for now. Given i � 1 nodes are in the trans-

mission range of x, their directions in reference to x are independent and uniformly

distributed on [0, 2⇡]. The probability that x has an empty ⌘disk in some direction

equals the probability U
i

(⌘) that the angle of the widest wedge containing none of

these i nodes is at least 2⌘⇡. It is not di�cult to give a simple upper bound on U
i

(⌘):

Of the i nodes, without loss of generality (W.L.O.G.), we can assume that (at least)

one is at one edge of an empty wedge with angle of 2⌘⇡, while the other i � 1 are
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distributed independently and uniformly in the remainder of the full transmission

disk, as shown in Fig. 4.2. Hence, we obtain U
i

(⌘)  i(1 � ⌘)i�1, for i � 1. Of

course, if i = 0 the probability is U
0

(⌘) = 1.

x
πη2

disk−η

Figure 4.2: A realization for which the widest wedge between the nodes is of an angle
at least 2⌘⇡.

One can obtain a more precise expression for U
i

(⌘) using results in [64, p. 188]:

U
i

(⌘) =
min{b1/⌘c,i}X

k=1

(�1)k�1

✓
i

k

◆
(1� k⌘)i�1  i(1� ⌘)i�1 ,

for i � 1, where bac is the largest integer smaller than a. This expression is based on

the inclusion-exclusion principle for the probability of the union of events, for which

the first term in the sum provides an upper bound and the first two terms provide a

lower bound.

Averaging over i (number of the nodes in the transmission range of x) and over
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the number of network nodes, we have:

�0(N) 
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◆
. (4.1)

4.3.2 Calculation of �00(N)

So far we have considered the interior nodes that are at least R-distance away

from the boundary of the network region. Now, we consider edge nodes that are

within R of the network edge. Some ⌘disks of an edge node may fall partially (up to

half) outside the region, which increases the chance that they are empty. We refer to

this phenomenon as the edge e↵ect. Since the network region is circular, the number

of such edge nodes equals (2 �
p
d)
p
dN , which is of order ⇥

⇣p
dN
⌘
. We need to

determine how their contribution to �(N) di↵ers from the interior nodes.

Consider an edge node e, (�0R)-distance away from the network edge, with 0 <

�0 < 1. As shown in Fig. 4.3, we take node e as the pole and the ray eu (perpendicular

to the network edge) as the polar axis of the local (polar) coordinates at node e. We

argued at the beginning of this section that, for edge node e, the probability of an

⌘disk being empty, depends highly on its orientation. Let us consider this claim more

closely. Let ' := cos�1(�), as shown in Fig. 4.3, where �R is the distance between
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Figure 4.3: Intersection of the ⌘disk with the network region.

node e and the line passing through the intersection points B and F in Fig. 4.3 with

� = �0 � R

L

1� �02

2(1� �0R
L

)
,

and L :=
p

|A|/⇡ = R/
p
d being the network region radius.

Note that all the ⌘disks are oriented towards the destination node. Hence, for all

⌘disks that are oriented towards an angle in the range (�','), we must have that

the destination is within node e’s transmission range. Therefore, we only need to be

concerned with empty ⌘disks oriented towards an angle in the range (', 2⇡�'). The

⌘disks oriented to an angle in the range (�' � ⌘⇡,�') [ (',' + ⌘⇡) are partially
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outside the network region, as illustrated in Fig. 4.3, and those oriented to any angle

in ('+⌘⇡, 2⇡�'�⌘⇡) are fully contained inside the network region. Note that here,

all the angles are measured relative to the polar axis eu. In both aforementioned

cases, the area of the ⌘disk inside the network region is at least ⌘⇡R2/2. Hence, we

can compute a simple upper bound on �00(N) as follows. Let a
2

:= ⇡(L2 � (L �

R)2)/|A| =
p
d(2 �

p
d) and a

1

:= ⇡(L2 � (L � 2R)2)/|A| = 4
p
d(1 �

p
d) be the

normalized areas of the network edge region and the network extended edge region8

respectively. We have

�00(N) 
1X

l=1

e�a

1

N

(a
1

N)l

l!
l
a
2

a
1

l�1X

i=0

✓
l � 1

i

◆
(
d

2a
1

)i(1� d

2a
1

)l�1�iU
i

(
⌘

2
)

 (2�
p
d)
p
dNe�

1

2

dN + (1�
p
d

2
)d3/2N2e�

⌘
4

dN . (4.2)

A much tighter upper bound on �00(N) can be obtained as follows. First, suppose

that there are no nodes within the transmission range of node e; this event occurs

with probability no greater than

�00(N) 
1X

l=1

e�a

1

N

(a
1

N)l

l!
l
a
2

a
1

(1� d

2a
2

)l�1

= a
2

Ne�a

1

N

1X

l=1

(a
1

N(1� d

2a

2

))l�1

(l � 1)!

 (2�
p
d)
p
dNe�

1

2

dN . (4.3)

Second, suppose that there are i � 1 nodes in the intersection of node e’s trans-

mission range with the network region. If an empty ⌘disk exists and it is completely

contained within the network region, W.L.O.G., there should be a node on its left

edge at some angle ✓ 2 (' + 2⌘⇡, 2⇡ � '). However, for an empty ⌘disk that is

8The extended edge region is the area of the network that is within 2R of the network edge.
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partially contained within the network region there should be, again W.L.O.G., a

node at an angle ✓ 2 ('+ ⌘⇡,'+ 2⌘⇡) or ✓ 2 (�',�'+ ⌘⇡) on the left edge of the

⌘disk (note that, as discussed earlier, no ⌘disks can be oriented towards an angle in

(�',')). Clearly, the existence probability of such empty ⌘disks (that is partially

contained in the region A) increases as either � or |✓| decreases. The area of the

intersection between such an ⌘disk (that is partially contained in the region A) and

the network region A is that of a wedge with angle |✓|� ' (wedge AeB in Fig. 4.3)

plus at least a triangle abutting the right edge of the wedge (triangle BeC in Fig.

4.3). In fact for an arbitrary small ✏, if either � � sin(3✏⇡) or ✓ � ' + ⌘⇡ + 2✏⇡,

the area of the intersection between the ⌘disk and the network region is at least

(⌘/2 + ✏)⇡R2. Otherwise, it is at least ⌘⇡R2/2. Thus, averaging over �, ✓ and the

number of edge nodes, the probability that some edge nodes have empty ⌘disks in

some directions, �00(N), is derived to be no more than

1X
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e�a
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(a
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for arbitrary ✏ � 0. Choosing ✏ = 2 log dN

dN

, together with (4.3), yields a tighter upper

bound for the probability that some edge nodes has an empty ⌘disk oriented in some

direction:

�00(N)  400⇡ (log dN)2p
d

e�
⌘
2

dN

+
16(dN)2p

d
e�⌘dN + 4

p
dNe�

1

2

dN , (4.5)

for large enough dN where the last summand is the probability that some edge nodes

have no other nodes within their transmission ranges, derived in (4.3).

4.3.3 Calculation of �(N)

Finally, summing (4.1) and (4.5), we obtain the bound �(N) on the probability

that some nodes in the network have empty ⌘disks looking in some directions as:

�(N)  400⇡ (log dN)2p
d

e�
⌘
2

dN +
16(dN)2p

d
e�⌘dN

+ 4
p
dNe�

1

2

dN + 4dN2e�⌘dN . (4.6)

This bound on �(N) is asymptotic to 400⇡(log dN)

2

p
d

e�
⌘
2

dN , which goes to zero if

⌘dN + log d ! 1 as N ! 1. Hence, setting d = c logN

N

with c > 1/⌘, we obtain

that every node in the network have at least one relaying node in every direction

over which their targeted destinations may lie with probability approaching one as

N ! 1, which shows the consistency between our result and the ones derived in

[60], [65] and [41] for ⌘ = 1.

Remark 4.3.1. Setting d = c logN

N

is equivalent to setting R(�, |A|) =
q

c

⇡

log �+log |A|
�

for c > 1/⌘. In particular, for the case of dense networks (i.e., � ! 1 with a

finite |A|) and for the case of large-scale networks (i.e., |A| ! 1 with a finite
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�), setting R(�) = K
p

log �/� and R(|A|) = K
p
log |A| respectively, with a large

enough constant K, guarantees the existence of relaying nodes in a “uniform” manner

around each node in the network.

4.4 Theorem 4.2.1.ii–v Proof: Path Length Statistics and Connectivity

Assume R(N) is chosen such that ⌘dN + log d ! +1 as N ! 1 and N is

large enough such that each node in the network has at least one relaying node in

every direction with high probability. We now investigate the question of how long

the path generated by the random ⌘disk routing scheme is, where we focus on the

⌘ = 1/2 case in this section. To answer this question, we need to characterize the

process of path establishment from a given source to its destination by the random

1

2

disk routing scheme.

In the following, we ignore the edge e↵ect for the sake of simplicity in mathe-

matical characterization. In other words, we assume that the 1

2

disks of all network

nodes looking in any direction is completely contained in the network region. Later,

we show (through simulation) in Section 4.5 that the asymptotic results derived in

this section still holds even when considering the routing next to the boundary for

source-destination pairs that are located near the network boundary.

Now consider an arbitrary source-destination pair that is h-distance apart. We

set the destination node at the origin and assume that the routing path starts from

the source node at X
0

= (�h, 0), where X
n

is the Cartesian coordinate of the nth

relay node along the routing path and r
n

:= kX
n

k is the Euclidean distance of the

nth relay node from the destination.

More specifically, the routing path starts at the source node X
0

= (�h, 0) with

its 1

2

RSR D
0

that is a 1

2

disk with radius R centered at X
0

and oriented towards the

destination at (0, 0). The next relay X
1

is selected at random from those contained in
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Figure 4.4: Evolution of the random 1

2

disk routing path.

D
0

(the rRSL rule). This induces a new 1

2

RSRD
1

, also a 1

2

disk but centered atX
1

and

oriented towards the destination. Relay X
2

is selected randomly among the nodes in

D
1

, and the process continues in the same manner until the destination is within the

transmission range. Note that D
n

solely depends on X
n

. We claim that the routing

path has converged (or is established) whenever it enters the transmission/reception

range of the final destination, i.e., r
⌫

 R, for some ⌫ 2 {1, 2, · · · }. In Fig. 4.4, we

illustrate the progress of routing towards the destination.

Define S
n

:= h � r
n

and the routing increment as Y
n

:= S
n

� S
n�1

= r
n�1

� r
n

.

Let �(D
n

) be the number of nodes in D
n

. For the sake of definition, we set Y
i

= 0

for i > n if �(D
n�1

) = 0. In the next subsection we investigate how similar {S
n

}

and consequently {r
n

} are to a Markov process.9

9For an alternative treatment of the problem refer to [66], Section 4.1.
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4.4.1 Theorem 4.2.1.ii Proof: Markov Approximation

In this subsection we investigate how close our Markov approximation model for

{r
n

} is to the actual process of route establishment by the random 1

2

disk routing

scheme. Observe that even though the underlying distribution of the network nodes

is Poisson and the new relays are chosen uniformly at random within each 1

2

RSR,

the increments Y
1

, Y
2

, . . . are neither independent nor identically distributed. This

is due to the fact that the orientations of all 1

2

RSRs are pointing to a common node

(destination) and might overlap, as shown in Fig. 4.4.

More specifically, let k
n

be the number of previous relaying nodes whose RSRs

intersect with D
n

. Assuming �(D
n

) > 0, S
n+1

= S
n

+ Y
n+1

is a Markov process if

the conditional distribution of Y
n+1

given S
i

, n � k
n

 i  n, only depends on S
n

.

Equivalently, r
n+1

= h � S
n+1

is a Markov process if the conditional distribution

of X
n+1

given X
i

, n � k
n

 i  n, only depends on X
n

. However, the overlap of

D
n

with D
j

, n � k
n

 j < n, correlates the spatial distribution of nodes in D
n

(and consequently X
n+1

and Y
n+1

), not only with X
n

, but also possibly with X
j

,

n� k
n

 j < n.10 In fact, given X
i

, n� k
n

 i  n, the nodes contained in D
n

are

no longer uniformly distributed overD
n

as one would expect for a Poisson distributed

network due to the overlap of D
n

with D
j

, n � k
n

 j < n (cf. Proposition 4.4.1).

As such, the process of path establishment by the random 1

2

disk routing scheme,

{r
n

}, is not a Markov process. What is less clear, however, is how close {r
n

} is to a

Markov process.

Tracking the dependence of X
n+1

on all X
j

, n�k
n

 j  n, is extremely tedious.

10This dependence increases as the packet gets closer to the destination due to the fact that
the overlapping area between Dn and Dn�1, Dn�2, . . . increases (stochastically) as the packet gets
closer to the destination. In [66] and its companion papers [67]–[70], the authors looked at hop
length distributions in ad hoc sensor networks with geometric routing schemes, and reported similar
dependencies between hop increments Y1, Y2, . . ..
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As such, in this work we only show how close the routing path progress conditioned

on the previous two hops is to a Markov process, i.e., we show in Proposition 4.4.1

that the conditional distribution of X
n+1

given (X
n

, X
n�1

) is close to that of X
n+1

given X
n

for large N . We show that the error resulted from considering only X
n

and

neglecting the e↵ect of X
n�1

on the distribution of X
n+1

is at most 1/(dN), which

goes to zero as N ! 1.11

Note that, by a method similar to the proof of Proposition 4.4.1, we might show

that the incurred errors in modeling {r
n

} due to higher-order dependencies should

be at most k
n

/(dN), which is relatively negligible if k
n

= o
⇣p

dN
⌘

for large N .

Simulations indicate that k
n

should in fact remain in the order of o
⇣p

dN
⌘
; however,

we could not establish an explicit proof for this claim, which will be left for our future

study.

We emphasize that, in what follows, conditioning on �(D
n

) > 0 means we only

know that there is at least one node in D
n

; however, conditioning on �(D
n

) means

we know the exact number of nodes in D
n

. Furthermore, Let Cc := A � C denote

the complement of C with respect to network region A and 1· represent the indicator

function, i.e., 1· = 1 if the event in the subscript happens and 1· = 0 otherwise.

Now we investigate how similar the distribution of X
n+1

over D
n

is to a uniform

distribution given (X
n

, X
n�1

). Note that given only X
n

, X
n+1

is uniformly dis-

tributed over D
n

. Given X
n

, X
n�1

, �(D
n�1

), and �(D
n

) > 0, the number of nodes in

D
n�1

D
n

:= D
n�1

\D
n

is �(D
n�1

D
n

) ⇠ Binomial
⇣
�(D

n�1

)� 1, |Dn�1

Dn|
|Dn�1

|

⌘
+1

Xn�1

2Dn

and is independent of the number of nodes in Dc

n�1

D
n

, which is �(Dc

n�1

D
n

) ⇠

Poisson(�|Dc

n�1

D
n

|). Moreover, conditioned additionally on the two random vari-

ables �(D
n�1

D
n

) and �(Dc

n�1

D
n

), each collection of nodes (located in D
n�1

D
n

and

11Note that by Theorem 4.2.1, R is chosen such that ⌘dN + log d ! +1 as N ! 1, which
implies that dN ! 1 and d ! 0 for smallest transmission radius [42].
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Dc

n�1

D
n

) is uniformly distributed over the respective areas. This does not, how-

ever, imply that the combined collection of nodes is uniformly distributed over D
n

as shown in the following proposition. The combined points are uniformly dis-

tributed over D
n

only if the (conditional) expected proportion of points in D
n�1

D
n

is E(�(Dn�1

Dn)

�(Dn)
| �(D

n

) > 0,�(D
n�1

) > 0, X
n

, X
n�1

) = |Dn�1

Dn|
|Dn| .

Proposition 4.4.1. Assume the locations of current and previous relay nodes (X
n

, X
n�1

)

are given and �(D
n�1

) > 0. Given �(D
n

) > 0, the distribution of the nodes located

inside D
n

converges to a uniform distribution over D
n

as N ! 1. In particu-

lar, the conditional probability of selecting the next node X
n+1

from D
n�1

D
n

, i.e.,

⇢(X
n�1

, X
n

) := E( �(Dn�1

Dn)

�(Dn)

��� �(D
n

) > 0,�(D
n�1

) > 0, X
n

, X
n�1

) satisfies

✓
1� 2

dN
� ↵

1

(n)e�↵

2

(n)dN

◆
|D

n�1

D
n

|
|D

n

|

< ⇢(X
n�1

, X
n

) <
|D

n�1

D
n

|
|D

n

| , (4.7)

where ↵
1

(n) > 2 and 0 < ↵
2

(n) < 1 are independent of N .

Proof. Refer to Appendix F.

Observe that according to (4.7), given the locations of two previous relay nodes

(X
n�1

, X
n

), it is less likely that the next relay X
n+1

is selected from D
n�1

D
n

as

opposed to the case where the nodes were actually uniformly distributed over D
n

.

Hence, X
n+1

is not uniformly distributed over D
n

given (X
n�1

, X
n

). However, we

have ⇢(X
n�1

, X
n

) ! ⇢(X
n

) = |D
n

D
n�1

|/|D
n

| as N ! 1. Hence, the routing path

progress given the second-order history of the routing path converges asymptotically

to a Markov process. Nevertheless, the routing increments Y
1

, Y
2

, . . . are not identi-

cally distributed and as shown in the next subsection, Y
n+1

is in fact a function of

r
n

. As such, in the following, we proceed as if the process that governs the path
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establishment by the random 1

2

disk routing scheme is a non-homogeneous Markov

process for large N .

4.4.2 Theorem 4.2.1.iii and v Proof: Expected Length of the

Random 1

2

Disk Routing Path and Network Connectivity

Using the Markovian approximation model for the routing path evolution {r
n

},

we now derive the asymptotic statistics for the length of the random 1

2

disk routing

paths. Let X
n

be the nth hop of the routing path and (x0
n+1

, y0
n+1

) be the projection

of X
n+1

� X
n

onto the local Cartesian coordinates with node X
n

as the origin and

the x-axis pointing from X
n

to the destination node as shown in Fig. 4.5. Hence,

r
n+1

=
q
(r

n

� x0
n+1

)2 + y02
n+1

, (4.8)

characterizes the distance evolution of the routing path at the nth hop. Based on

the Markov approximation model, X
n+1

is uniformly distributed over D
n

; hence

{(x0
n

, y0
n

)} is an i.i.d. sequence of random variables with ranges x0
n

2 [0, R] and

y0
n

2 [�R,R] for all n.

Define ⌫(h)

r

:= inf{n : r
n

 r, r
0

= h}, r � R, to be the index of the first relay

node (along the routing path) that gets closer than r to the destination when the

source and destination nodes are h-distance apart. Hence, ⌫(h)

R

represents the first

time the routing path enters the reception range of the destination and ⌫(h)

R

+ 1

quantifies the length of the routing path, where ⌫(h)

R

⇠ ⌫(h)

R

+ 1. Recall that in this

section we define the length of a routing path as the number of hops traversed over

the routing path. It is easy to show that ⌫(h)

r

is a stopping time [71] and

r �R  r
⌫

(h)
r

 r .
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Figure 4.5: Distance between the next relay and the current node projected onto to
the local coordinates at the current node.

Furthermore, let g(r, x0, y0) :=
p

(r � x0)2 + y02 � r. Observe that g is a nonin-

creasing function over r � R, for fixed (x0, y0), and g(r
n

, x0
n+1

, y0
n+1

) = �Y
n+1

. Thus,

for n < ⌫(h)

r

, we have r
n

> r and

�x0
n+1

 r
n+1

� r
n

= g(r
n

, x0
n+1

, y0
n+1

)  g(r, x0
n+1

, y0
n+1

) .

Hence, for a source-destination pair that is h-distance apart (r
0

= h), we have

r �R  r
⌫

(h)
r

 h+
⌫

(h)
rX

n=1

g(r, x0
n

, y0
n

) , (4.9a)

h+
⌫

(h)
rX

n=1

(�x0
n

)  r
⌫

(h)
r

 r . (4.9b)
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Note, as well, that (refer to Appendix G)

�4R

3⇡
= E (�x0

n

) E (g(r, x0
n

, y0
n

)) 

E (g(R, x0
n

, y0
n

)) < �R

4
< 0 . (4.10)

Now, applying Wald’s equality [53] to (4.9a) and (4.9b) and rearranging, we

obtain a bound on the expected value of the stopping time ⌫(h)

r

:

3⇡(h� r)

4R
 E

�
⌫(h)

r

| h
�
 h� r +R

�E (g(r, x0
n

, y0
n

))

 h

�E (g(r, x0
n

, y0
n

))
 4h

R
. (4.11)

Substituting r with R we obtain a general bound for the expected length of routing

path (minus one) between a source-destination pair that is h distance apart as

3⇡

4

✓
h

R
� 1

◆
 E

⇣
⌫(h)

R

| h
⌘
 4h

R
.

This implies that the length of the random 1

2

disk routing path is almost surely (a.s.)

finite when each network node has at least one node in its 1

2

RSR looking in any

direction, which happens with probability no less than 1��(N) as obtained in (4.6).

In other words, when dN/2+log d ! 1 asN ! 1, we obtain that Pr(⌫(h)

R

< 1) ! 1

as N ! 1. This in turn shows that given dN/2+log d ! 1 as N ! 1, every path

starting from any source will reach its destination in finitely many hops a.a.s., which

proves that the network is connected employing the random 1

2

disk routing scheme,

according to the connectivity definition in Section 4.2.

When the ratio h/R (i.e., the ratio between the source-destination distance and

the transmission range) is large, we can obtain a tighter bound on the expected
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length of the routing path between a source-destination pair with h separation. For

the following, we assume h � 2R. Since r
⌫

(h)
r

 r, we must have E(⌫(h)

R

| h) 

E(⌫(h)

r

| h) + E(⌫(r)

R

| r). Thus, by (4.11) and proper substitutions, we have

3⇡

4

✓
1� R

h

◆


E
⇣
⌫(h)

R

| h
⌘

h/R
 R

�E (g(r, x0
n

, y0
n

))
+

4r

h
,

for all R  r  h. Using

�x0
n

 g(r, x0
n

, y0
n

)  �x0
n

+
(y0

n

)2

2(r �R)
, (4.12)

and (G.1b) we get E(g(r, x0
n

, y0
n

))  �4R

3⇡

+ R

2

8(r�R)

. Choose r such that

8(r �R)

R
=

3⇡

4
(

r
h

2R
+ 1) .

We may do so using the intermediate value theorem and the fact that 3⇡

4

(
q

h

2R

+

1)  8(h�R)

R

for R  r  h, h � 2R; this can be easily observed by the following

inequalities:

3⇡

4

 r
h

2R
+ 1

!
 3⇡

2

r
h

2R
?

8(h�R)

R
,

3⇡

16

r
h

2R
+ 1 ?

h

R
,

3⇡

16

r
h

2R
+ 1  (

3⇡

16
+ 1)

r
h

2R
?

h

R
,

3⇡

16

+ 1
p
2

X
r

h

R
.
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Hence, we may determine that

3⇡

4

✓
1� R

h

◆


E
⇣
⌫(h)

R

| h
⌘

h/R
 3⇡

4

1

1�
⇣q

h

2R

+ 1
⌘�1

+
4R

h

 
3⇡

32

 r
h

2R
+ 1

!
+ 1

!

=
3⇡

4

 
1 +

5

2

r
R

2h
+

R

2h

!
+

4R

h
. (4.13)

This implies
R

h
E
⇣
⌫(h)

R

| h
⌘
! R

E (x0
n

)
=

3⇡

4
, (4.14)

or

E
⇣
⌫(h)

R

| h
⌘
⇠ h

E (x0
n

)
=

3⇡

4

h

R
, (4.15)

as h

R

! 1 given that r
0

= h.

Remark 4.4.2. Recall that L =
p

|A|/⇡ and observe that Pr (h  ↵)  ⇡↵

2

|A| . There-

fore, we can obtain that Pr (h  ↵(N)) ! 0 for ↵(N) = o (L) as N ! 1, which

in return implies that Pr (h/R ! 1 | ⌘dN + log d ! 1 as N ! 1) = 1. Hence,

assuming that the conditions in Theorem 4.2.1.i hold, we have h/R ! 1 a.s. as

N ! 1.

Remark 4.4.3. The asymptotic expected length of the routing path established by

the random 1

2

disk routing scheme is 3⇡

4

= R/E (x0
n

) ⇡ 2.36 times greater compared to

the length of the routing path generated by the ideal direct-line routing scheme; in the

ideal direct-line routing scheme we assume that there are relays located on the line

connecting the source and destination with the maximal separation R.

By averaging over all the possible source-destination pair distances h, we can

determine the expected length of a typical random 1

2

disk routing path. Again using
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Pr (h  ↵R)  ⇡

|A|(↵R)2 and (4.13) we have that

E (⌫
R

) = E
⇣
E
⇣
⌫(h)

R

| h
⌘
1

h↵R

+ E
⇣
⌫(h)

R

| h
⌘
1

h>↵R

⌘

 ⇡↵3R2

|A|


3⇡

4

✓
1 +

5p
8↵

+
1

2↵

◆
+

4

↵

�
+

3⇡

4

E (h1
h>↵R

)

R

✓
1 +

5p
8↵

+
1

2↵

◆
+ 4 ,

and

E (⌫
R

) = E
⇣
E
⇣
⌫(h)

R

| h
⌘⌘

� 3⇡

4

✓
E (h)

R
� 1

◆
.

The problem of quantifying E (h) is well studied in the literature [69], with the

following known results for two network regions specifically: If the region is a planar

disc with diameter 2L, we have E (h) = 128L/(45⇡) ⇡ 0.9054L; and if it is a square

with side length L, we have E (h) =
�
2 +

p
2 + 5 log(

p
2 + 1)

�
L/15 ⇡ 0.5214L.

Recalling Remark 4.4.2, we have that h = O (L) = O
�
d�1/2R

�
, then for any ↵ =

o
�
d�1/2

�
we obtain that Pr (h > ↵R) ! 1 asN ! 1. Hence, choosing ↵ = o

�
d�1/6

�
,

we observe that E (h1
h>↵R

) ! E (h) as N ! 1 and

E (⌫
R

) ⇠ 32

15

1p
d
, (4.16)

as N ! 1.

4.4.3 Theorem 4.2.1.iv Proof: Variance of the Random 1

2

Disk

Routing Path Length

So far we have characterized the expected length of the routing paths generated

by the random 1

2

disk routing scheme. However, the expected value alone is not

descriptive enough regarding the individual realizations of the routing path length.
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We need to determine how much the individual realization deviates from the ex-

pected value. Therefore, in this section, we consider the variance of the path lengths

generated by the random 1

2

disk routing scheme. We first show that the variance is

finite almost surely and then we show that asymptotically it grows linearly with the

expected path length:

Var
⇣
⌫(h)

R

| h
⌘

E
⇣
⌫(h)

R

| h
⌘ ! Var (x0

n

)

(E (x0
n

))2
=

9⇡2

64
� 1, (4.17)

as N ! 1. We will frequently use the following well known inequalities

���
p

E (X2)�
p

E (Y 2)
��� 

p
E ((X � Y )2) ,

and
���
p

Var (X)�
p

Var (Y )
��� 

p
Var (X � Y ) .

Consider the i.i.d. sequence {(x0
n

, y0
n

)} as defined in Section 4.4.2, and define the

generalized stopping time ⌫(b)

a

to be ⌫(b)

a

:= inf{n : r
n

 a, r
0

= b} for R  a < b  h.

Observe that {⌫(b)

a

� N} and {x0
n

}
n<N

are independent, and E(⌫(b)

a

) < 1 and

E ((x0
n

)2) < 1 as shown in Section 4.4.2 and Appendix G.

Note first that, by definition,

E

0

@
⌫

(h)
R ^nX

i=1

(�g(r
i�1

, x0
i

, y0
i

))

1

A = E
⇣
r
0

� r
⌫

(h)
R ^n

⌘
 h ,

for any n, where ⌫(h)

R

^ n := min{⌫(h)

R

, n}. Define

U
n

:=
P

n

i=1

(�g(R, x0
i

, y0
i

)). From Wald’s equation, Eq. (4.10), and the fact that
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g(r, x0, y0) is a nonincreasing function over r � R, we have

R

4
E
⇣
⌫(h)

R

^ n
��� h
⌘
 E (�g(R, x0

i

, y0
i

)) E
⇣
⌫(h)

R

^ n
��� h
⌘

= E
⇣
U
⌫

(h)
R ^n

��� h
⌘

 E

0

@
⌫

(h)
R ^nX

i=1

(�g(r
i�1

, x0
i

, y0
i

))
��� h

1

A  h ,

for all n. As shown in the previous section, it follows that

E(⌫(h)

R

| h) = lim
n!1

E(⌫(h)

R

^ n | h)  4h

R
< 1 .

Similarly,

(E (�g(R, x0
i

, y0
i

)))2 Var
⇣
⌫(h)

R

^ n
��� h
⌘
 2


Var

⇣
U
⌫

(h)
R ^n

��� h
⌘

+Var
⇣
(⌫(h)

R

^ n)E (�g(R, x0
i

, y0
i

))� U
⌫

(h)
R ^n

��� h
⌘�

 2


Var

⇣
U
⌫

(h)
R ^n

��� h
⌘
+ E

⇣
⌫(h)

R

^ n
��� h
⌘
Var (�g(R, x0

i

, y0
i

))

�

 2


h2 +

4h

R

R2

4

�
,

for all n, where the second inequality is due to Wald’s identity ([53, p. 398]). Thus,

Var
⇣
⌫(h)

R

��� h
⌘
= lim

n!1
Var

⇣
⌫(h)

R

^ n
��� h
⌘

 32h(h+R)

R2

< 1 . (4.18)

This proves that the variance of path length generated by the random 1

2

disk

routing scheme is finite almost surely. Next we will find some asymptotically tight

bounds on the variance of the routing path lengths.
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Let S
⌫

:=
P

⌫

n=1

x0
n

for a stopping time ⌫ such that {⌫ � N} and {x0
n

}
n<N

are independent and E (⌫) < 1. Then by Wald’s identity ([53, p. 398]) we have

E (S
⌫

) = E (x0
n

) E (⌫) and

Var (⌫E (x0
n

)� S
⌫

) = E
�
(S

⌫

� ⌫E (x0
n

))2
�
= E (⌫) Var (x0

n

) .

As such, we have

����
p

Var (⌫)E (x0
n

)�
p

E (⌫) Var (x0
n

)

���� =
���
p
Var (⌫E (x0

n

))�
p

Var (⌫E (x0
n

)� S
⌫

)
���


p

Var (S
⌫

).

In particular, for ⌫ = ⌫(h)

R

, we have

�������

vuuut
Var

⇣
⌫(h)

R

| h
⌘

E
⇣
⌫(h)

R

| h
⌘ �

s
Var (x0

n

)

(E (x0
n

))2

�������


vuuut
Var

⇣
S
⌫

(h)
R

| h
⌘

E
⇣
⌫(h)

R

| h
⌘
(E (x0

n

))2
. (4.19)

Hence, in order to prove the limit in (4.17), we need to show that

Var
⇣
S
⌫

(h)
R

| h
⌘

E
⇣
⌫(h)

R

| h
⌘
(E (x0

n

))2
⇠

Var
⇣
S
⌫

(h)
R

| h
⌘

3⇡

16

Rh
! 0 ,

as N ! 1. Suppose R  a < b  h and note that

�g(r
n�1

, x0
n

, y0
n

)  x0
n

 �g(r
n�1

, x0
n

, y0
n

) +
R2

2r
n�1

;
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then together with (4.9a), we obtain

b� a 
⌫

(b)
RX

n=1+⌫

(a)
R

(�g(r
n�1

, x0
n

, y0
n

))
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RX
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(a)
R
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R
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RX
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(b)
RX
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(a)
R

R2
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R2

2a
⌫(b)

R

,

where the last inequality is due to the fact that r
n

� a for ⌫(a)

R

 n  ⌫(b)

R

. Therefore,

we obtain

r
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R
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⌘
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R

� S
⌫

(a)
R
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◆
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✓h
S
⌫
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R

� S
⌫

(a)
R
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i
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��� a, b
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vuutE

 
R +

R2

2a
⌫(b)

R

�
2 ��� a, b

!

 R +
R2

2a
E
⇣
⌫(b)

R

| b
⌘
+

R2

2a

r
Var

⇣
⌫(b)

R

| b
⌘

 R +
2Rb

a
+

R

2a

p
32b(b+R)

 6R +
5Rb

a
,

using (4.18) and the fact that E(⌫(b)

R

| b)  4b

R

and Var(⌫(b)

R

| b)  32b(b+R)

R

2

. Finally, we

let a
i

= R
�
h

R

�
i/k

, for k = dlog h

R

e and i = 0, 1, 2, . . . , k, where dlog h

R

e is the smallest
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integer larger than log h

R

. Then we have

r
Var

⇣
S
⌫

(h)
R

| h
⌘


kX

i=1

r
Var

⇣
S
⌫

(ai)
R

� S
⌫

(ai�1

)

R

��� h
⌘

 6kR + 5R
kX

i=1

a
i

a
i�1

= 6kR + 5kR

✓
h

R

◆
1/k

 (6 + 5e)(1 + log
h

R
)R. (4.20)

From this, it follows that

vuutVar
⇣
S
⌫

(h)
R

| h
⌘

Rh
 (6 + 5e)(1 + log

h

R
)

r
R

h
! 0

as N ! 1, which concludes the proof for the limit in Eq. (4.17).

Remark 4.4.4. It is worth noting that the path-stretch statistics can be easily derived

from the hop-count statistics: Let L
⌫

(h)
R

denote the path-stretch of a routing path with

length ⌫(h)

R

connecting a source-destination pair that is h-distance apart, i.e.,

L
⌫

(h)
R

:= kX
1

�X
0

k+ kX
2

�X
1

k+ · · ·+ kX
⌫

(h)
R +1

�X
⌫

(h)
R
k.

Then, it is easy to show that

E
⇣
L

⌫

(h)
R

| h
⌘
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2
h ,

Var
⇣
L

⌫

(h)
R

| h
⌘
⇠ ⇡

12
Rh ,
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as N ! 1. Therefore, in the case of a dense network, L
⌫

(h)
R

! ⇡

2

h a.a.s. since

Var(L
⌫

(h)
R
) ! 0 as N ! 1.

4.5 Simulation Results

In this section we compare our analytical results with some empirical results de-

rived through simulation. In Fig. 4.6, we depict some realizations for the routing

paths generated by the random 1

2

disk routing scheme for an arbitrary source located

at (�1/4,�1/4) and its destination at (1/4, 1/4) with the following network spec-

ifications: |A| = 1, � = 106, and R =
q

2 log �

�

⇡ 5.2 ⇥ 10�3. As illustrated in

this figure, the path realizations do not closely follow the direct line connecting the

source-destination nodes. The lengths of the routing paths are 328, 314, 343 for the

realizations depicted in Fig. 4.6 (a), (b), and (c) respectively. Fig. 4.6 (d) depicts an

ensemble of thirty realizations of the random 1

2

disk routing scheme. Based on (4.13)

we obtain the lower and upper bounds of 314, 370 for the expected path length with

the asymptotic value of 317. (Note that the bounds derived in (4.13) are for the

expected path length; therefore, individual realizations for the path length might

violate these bounds.)

The following empirical path length statistics are obtained by generating 100 re-

alizations of the network via placing N ⇠ Poisson(�) nodes uniformly over a circular

disk with unit area. For each network realization we constructed 100 realizations

for the random 1

2

disk routing path: starting from a fixed source node, we find the

subsequent relaying nodes according to the rRSL scheme until (possibly) reaching

the fixed destination node. Source and destination are set h =
p
2/2 distance apart

and the transmission ranges are chosen as R =
q

2 log �

�

. In Fig. 4.7, we compare the

(normalized) empirical mean, R

h

E(⌫(h)

R

), of the path lengths generated by the random

1

2

disk routing scheme with the analytical bounds derived in Eq. (4.13) for di↵erent

101



(a) (b)

(c) (d)

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.6: Random 1

2

disk routing realizations for � = 106, |A| = 1, and R =
q

2 log �

�

,

when the source is located at (�1/4,�1/4) and its destination is located at (1/4, 1/4).
The lengths of the routing paths depicted in (a), (b), and (c) are 328, 314, 343,
respectively, while (d) depicts an ensemble of thirty realizations of the random 1

2

disk
routing scheme. The dashed circle demonstrates the network boundary.

values of network node density. As shown in this figure, the normalized empirical

mean converges to 3⇡/4 ⇡ 2.3562, and is always bounded by the expressions derived

in Eq. (4.13).

In Fig. 4.8, we compare the empirical variance-to-mean ratio of the random

1

2

disk routing scheme,
q

Var(⌫(h)

R

)/E(⌫(h)

R

), with the analytical bounds derived in

Eq. (4.20) for di↵erent values of network node density. As shown in this figure,

the normalized empirical standard deviation converges to
p

9⇡2/64� 1 ⇡ 0.6228,
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Figure 4.7: Numerical comparison between analytical bounds derived in Eq. (4.13)
and the (normalized) empirical mean of the path length generated by the random
1

2

disk routing scheme when h =
p
2/2, |A| = 1, and R =

q
2 log �

�

.

and is always bounded by the expressions derived in Eq. (4.20). Furthermore, it

can be seen that although the bounds in (4.20) are quite loose for small values of

�, the asymptotic standard deviation derived in (4.17) is very close to the empirical

standard deviation even for small values of �.

In Fig. 4.9, we demonstrate the deviation of the path length realizations from

its asymptotic expected value for di↵erent values of network node density. As shown

in this figure, the deviation of the path length realizations increases as the network

density and consequently the expected length of the routing path increases. However,

all realizations stay relatively close to the value predicted by Eq. (4.15).
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Figure 4.8: Numerical comparison between analytical bounds derived in Eq. (4.19)
and the (normalized) empirical standard deviation of the path length generated by

the random 1

2

disk routing scheme, when h =
p
2/2, |A| = 1, and R =

q
2 log �

�

.

As mentioned earlier, we ignored the edge e↵ect when computing the asymptotic

path length statistics of the random 1

2

disk routing scheme. In Figs. 4.10 and 4.11,

we consider two source-destination pairs that are close to the network edge with

di↵erent distances and investigate whether routing “next to the boundary” has a

considerable impact on the length of the routing paths. We consider a source node S

at (�0.379,�0.379) and two destination nodesDst
1

at (0.3267,�0.4234) andDst
2

at

(�0.315,�0.4336) such that h
1

= kS�Dst
1

k =
p
2/2 and h

2

= kS�Dst
2

k =
p
2/33.

Note that kSk = 0.95L, kDst
1

k = 0.948L, and kDst
2

k = 0.95L. Fig. 4.10 depicts

the empirical mean and Fig. 4.11 depicts the empirical variance-to-mean ratio of
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Figure 4.9: Random 1

2

disk routing realizations for � = 106, |A| = 1, and R =
q

2 log �

�

,

when the source is located at (�1/4,�1/4) and its destination is located at (1/4, 1/4).

paths generated by the random 1

2

disk routing scheme for source-destination pairs

a) S � Dst
1

and b) S � Dst
2

. Comparing these figures with Figs. 4.7 and 4.8,

we observe that given a fixed h, routing close to the network edge does not a↵ect

the asymptotic path statistics. Intuitively, as shown in Remark 4.4.2, the distances

between source-destination pairs will be of order h = ⇥(L) with high probability

where h/R ! 0 as N ! 1. Therefore, for large enough N , it is very unlikely that

a considerable portion of the path connecting a source to its destination traverses

close to the network edge. As such, the e↵ect of the routing close to the boundary

on path statistics is relatively negligible for large network sizes. However, for small
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network sizes (when h and R are comparable), the empirical mean of the path length

is smaller than the value predicted in (4.14).
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Figure 4.10: Numerical comparison between analytical bounds derived in Eq. (4.13)
and the (normalized) empirical mean of the path length generated by the random
1

2

disk routing scheme for source-destination pairs that are close to the network bound-

ary when a) h =
p
2/2 and b) h =

p
2/33. In both cases |A| = 1, R =

q
2 log �

�

, and

kSk = kDstk ' 0.95L.

4.6 Generalization

In the previous sections we derived su�cient conditions for the network to be

connected deploying the random 1

2

disk routing scheme and quantified the mean and

variance asymptotes of the routing path generated the random 1

2

disk routing scheme.

In this section we present some guidelines that generalize the aforementioned results

for some other variants of the geometric routing schemes such as MFR, DIR, NFP,

and the random ⌘disk routing scheme, where the latter one is the generalized version

of the random 1

2

disk routing scheme with an ⌘disk as its RSR.
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Figure 4.11: Numerical comparison between analytical bounds derived in Eq. (4.19)
and the (normalized) empirical standard deviation of the path length generated by
the random 1

2

disk routing scheme for source-destination pairs that are close to the

network boundary when a) h =
p
2/2 and b) h =

p
2/33. In both cases |A| = 1,

R =
q

2 log �

�

, and kSk = kDstk ' 0.95L.

Observe that the results of Section 4.3 were derived for the general ⌘disks re-

lay selection region which encompasses most of the geometric routing schemes such

as MFR, DIR, NFP, and the random ⌘disk routing scheme. Let � be the set of

all nodes (in the RSR of a specific transmitting node) that can be selected as the

next relay by the relay selection rule (RSL) of the geometric routing scheme. For

example, in the cases of MFR, DIR, NFP, and the random ⌘disk routing scheme

we have: �
MFR

:= {(x0
n

, y0
n

) 2 1

2

RSR : x0
n

� x, for all (x, y) 2 1

2

RSR}, �
DIR

:=

{(x0
n

, y0
n

) 2 1

2

RSR : | tan�1(y0
n

/x0
n

)|  | tan�1(y/x)|, for all (x, y) 2 1

2

RSR}, �
NFP

:=

{(x0
n

, y0
n

) 2 1

2

RSR :
p
(x0

n

)2 + (y0
n

)2 
p

(x)2 + (y)2, for all (x, y) 2 1

2

RSR}, and

�
⌘

= {(x0
n

, y0
n

) 2 ⌘RSR}, respectively. Since the nodes in � (if more than one) are

indistinguishable by the RSL, the transmitting node selects one of the nodes in �

randomly as the next relay. Next, we present the generalized results for the network
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connectivity and the mean and variance asymptotes of routing paths generated by

the general geometric routing schemes.

Corollary 4.6.1. Let � be the set of all nodes that can be selected by the relay selec-

tion rule as the next relay. Then the network is connected employing the geometric

routing scheme a.a.s. if E (g(R, x0, y0)1
�

) < 0.

Proof. The proof is immediate due to (4.11).

Corollary 4.6.2. If E (g(R, x0, y0)1
�

) < 0 and E ((y0)21
�

)  RE (x0
1

�

), the ex-

pected length of the routing path generated by the general geometric routing scheme

connecting a source-destination pair that is h-distance apart scales as E (⌫ | h) ⇠

h/E (x0
1

�

) as N ! 1.

Proof. The proof follows directly from (4.12) and noting that if E ((y0)21
�

)  RE (x0
1

�

),

using the intermediate value theorem, we can find r such that 2R(r�h)

E((y

0
)

21
�

)

= R

E(x

01
�

)

(
q

h

2R

+

1), which yields the bound in Eq. (4.13) and hence the desired result.

Corollary 4.6.3. If E (g(R, x0, y0)1
�

) < 0, the variance of the path length gen-

erated by the general geometric routing scheme, normalized by its mean, scales as

Var (⌫) /E (⌫) ⇠ Var (x0
1

�

) / (E (x0
1

�

))2 as N ! 1.

Proof. The proof follows the same steps as in Section 4.4.3.

4.7 Conclusion

In this section, we presented a simple methodology employing statistical analy-

sis and stochastic geometry to study geometric routing schemes in wireless ad-hoc

networks, and in particular, analyzed the network layer performance of one such

scheme named the random 1

2

disk routing scheme. We defined a notion of network

connectivity considering the special local properties of geometric routing schemes and
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determined some su�cient conditions that guarantee network connectivity when each

node finds its next relay in the so-defined 1

2

disk. More specifically, if all nodes trans-

mit at a power that covers a normalized area d and the expected number of nodes in

the network is N , the network is connected a.a.s. if ⌘dN+log d ! 1 when N ! 1.

Furthermore, we proved that the routing path progress conditioned on the previous

two hops can be approximated with a Markov process. Then using this Markovian

approximation, we derived exact asymptotic expressions for the mean and variance

of the path length generated by the random 1

2

disk routing scheme. Furthermore,

we provided guidelines to extend these results to other variants of geometric routing

schemes such as MFR, DIR, and NFP.
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5. CONCLUSION

5.1 Summary of Contributions

In this dissertation, we adopted the opportunistic spectrum access strategy and

studied the throughput performance of a specific type of cognitive radio network,

namely the wireless ad-hoc CRNs, which possesses the following specifications:

• Decentralized, distributed, and Self governed (i.e., Ad-Hoc); this specific net-

work configuration is chosen due to the foreseeable autonomous property of the

secondary users. It is desirable for the secondary networks to be decentralized

due to cost considerations; It is desirable for the secondary networks to be

distributed to retain robustness, i.e., the capability of operation in a way that

does not depend on the presence of a specific type of nodes and nodes be able

to come and go as they please.

• Transparent to the primary network; so that the primary users allow the sec-

ondary users to use their resources.

• Technologically feasible; based on today’s technology, it is extremely challeng-

ing and costly to produce wide-band spectrum sensors. So the system that we

consider has a limited sensing capability.

In this dissertation, We first investigate the e↵ect of spectrum sensing errors

and the benefit of wide-band spectrum sensing and access capability. To this end,

we considered an overlaid network scenario, where N licensed frequency bands are

made available to a secondary network, contingent upon adherence to certain inter-

network interference constraints. To limit the interference to the primary network,

secondary nodes are equipped with spectrum sensors and are capable of sensing
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and accessing a limited number of channels simultaneously. We considered both the

error-free and the erroneous spectrum detection scenarios and established the jointly

optimal random sensing and access scheme, which maximizes the secondary network

expected sum throughput while abiding by the primary interference constraint. We

have shown that in the case of error-free spectrum detection, when the number of

secondary users times the number of channels that they can access is larger than

the number of primary frequency bands, the optimal sensing and access scheme is

independent of the channel bandwidths and usage statistics; otherwise they follow

water-filling-like strategies. In the case of erroneous spectrum detection, we have

shown similar characteristics for the optimal sensing and access scheme under slightly

di↵erent conditions. Moreover, we derived the optimal number of secondary users

that can co-exist with the primary network, and demonstrated a binary behavior for

the optimal access scheme at each channel depending on whether the opportunity-

detection probability or the mis-detection probability is larger in that channel.

The design and deployment of cognitive radio networks mandates an understand-

ing of the following fundamental questions: What is an appropriate metric to evaluate

the performance of cognitive radio networks? What type of performance assurances

can secondary users provide the primary users? and How secondary users can deliver

these assurances?

In Section 3, we studied how the performance of cognitive radio networks scale

for very large network sizes and investigate the question of what is an appropriate

performance metric for cognitive radio networks. We show that the conventional

throughput scaling which has been broadly used in the literature is not su�cient

and to be descriptive enough the constant behind the scaling should also be con-

sidered. In particular, we showed that regardless of the spectrum sensing settings,

both networks can achieve their stand-alone throughput scalings. Furthermore, with
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the newly defined performance metric, the asymptotic multiplexing gain (AMG), we

quantified how the asymptotic network performances is a↵ected by the mutual inter-

ference between the two networks. In addition, we derived the spatial throughput of

an ad-hoc overlaid cognitive network with exact expressions for the pre-constant mul-

tipliers. We showed that employing the proper spectrum sensing and medium access

probability settings, secondary users can achieve a reasonable throughout perfor-

mance while satisfying the primary AMG requirement when the secondary network

is denser; However, when the secondary network is sparser, the spectrum sensing

cannot improve the throughput performance of the secondary users. As such, sec-

ondary users should satisfy the primary AMG requirement by appropriate selection

of medium access probability, which results in a significant secondary throughput

degradation.

Finally, in the last section we introduced a methodology to systematically derive

path statistics for geometric routing schemes in wireless ad hoc networks. These

results are the key enablers for rigorous throughput performance analysis of large

scale wireless networks. We defined a notion of network connectivity considering the

special local properties of geometric routing schemes and determined some su�cient

conditions that guarantee network connectivity when each node finds its next relay in

the so-defined 1

2

disk. More specifically, if all nodes transmit at a power that covers

a normalized area d and the expected number of nodes in the network is N , the

network is connected a.a.s. if ⌘dN + log d ! 1 when N ! 1. Furthermore, we

proved that the routing path progress conditioned on the previous two hops can be

approximated with a Markov process. Then using this Markovian approximation, we

derived exact asymptotic expressions for the mean and variance of the path length

generated by the random 1

2

disk routing scheme. Furthermore, we provided guidelines

to extend these results to other variants of geometric routing schemes such as MFR,
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DIR, and NFP.

5.2 Future Work

In our investigation of the e↵ect of erroneous and wide-band spectrum sensing

we assumed that all the secondary users adopt the same physical-layer transmis-

sion scheme, such that the achievable rate at each channel, only depends on the

bandwidth of that channel, and is constant across di↵erent secondary users. As a

future endeavor, the cases with per-user adaptive modulations can be considered.

Furthermore, we assumed that no acknowledgment is required to complete a packet

transmission, and secondary transmitters do not re-transmit the data lost in the

channel. Moreover, the spectrum occupancy statistics of primary networks are as-

sumed to be known at the secondary users. The secondary network is time-slotted

and synchronized with the primary network clock. We assume that the secondary

users operate under a heavy tra�c model, i.e., they always have packets to transmit,

to focus on the maximum usage of spectrum opportunities. As a future direction,

one can consider the e↵ect that relaxing any of these idealized assumptions have on

the performance of the cognitive radio networks.

In Section 3 we studied how the performance of cognitive radio networks scale for

very large network sizes. However, we only considered the case where the secondary

users were equipped with perfect spectrum sensors. The detailed analysis of over-

laid networks with spectrum sensing errors is non-trivial due to the complex spatial

correlation among primary and secondary users caused by non-perfect sensing. As

part of future research, the analysis and the e↵ect of spectrum sensing errors on the

performance of the cognitive radio network can be investigated. Furthermore, we ob-

served in Section 3.3 that if packets are not being stored indefinitely in some nodes

in the network, the spatial throughput of the network is equivalent to the transport
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capacity defined in [42]. This requires an intricate queuing and temporal analysis of

the system, which is a worthwhile endeavor for a future work, since it can provide a

comprehensive and indepth understanding regarding the behavior of the large scale

cognitive radio networks.

In Section 4 we introduced a methodology to systematically derive path statistics

for Geometric routing schemes in wireless ad hoc networks. We only derived the

mean and variance statistics of the paths generated by the random 1

2

disk routing

scheme. However, we pointed out that there exist a trade-o↵ between the existence

of a disconnected network node and the expected length of the routing path parame-

terized by the angle of the relay selection region. An explicit characterization of this

trade-o↵ can provide us with valuable design guidelines as it highlights the trade-o↵

between the throughput, latency and reliability of the such network. Furthermore, in

the proof of the results presented in this section, we made a key assumption that the

process of route establishment by the random 1

2

disk routing scheme can be asymptot-

ically approximated by a Markov process. We proved that this assumption is correct

if we only consider the history of the routing path up to the two previous relaying

nodes. We also argued that this assumption is correct in general if the number of

the previous relaying nodes that their RSR intersect with the current transmitting

node scales as k
n

= o
⇣p

dN
⌘
. Simulations indicate that k

n

should in fact remain

in the order of o
⇣p

dN
⌘
; however, we could not establish an explicit proof for this

claim, which can be an insightful e↵ort for a future work.
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APPENDIX A

PROOF OF PROPOSITION 3.4.1

Let �
n

denote the event that no primary transmitters fall into B
RD+R

(sp)
I

(X(p)

n+1

)

and let ⇤̂
2,X

(p)
n+1

denote the event that no primary users inB
R

(p)
I
(X(p)

n+1

)�B
RD+R

(sp)
I

(X(p)

n+1

),

except X(p)

n

, initiate transmissions. Note that B
R

(p)
I
(X(p)

n+1

)�B
RD+R

(sp)
I

(X(p)

n+1

) might

be a null area. We have that ⇤
1,X

(p)
n

and ⇤̂
2,X

(p)
n+1

are independent of �
n

, X(p)

n

, and

X(p)

n+1

. In addition, given �
n

, the secondary users located inside B
R

(sp)
I

(X(p)

n+1

) detect

no primary transmitters and initiate transmissions with probability q(s) independent

of ⇤
1,X

(p)
n

and ⇤̂
2,X

(p)
n+1

. Together with (3.3) and (3.12), we have
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where the second line is due to Pr(�
n

) = 1 � exp(��(p)q(p)(R
D

+ R(sp)

I

)2) ! 0 and

the last line is due to

E(Y
X

(p)
n

: |X(p)

n

�X(p)

n+1

| > R
D

+R(sp)

I

) ! E(Y
X

(p)
n
) ,

Pr(⇤̂
2,X

(p)
n+1

) ! Pr(⇤
2,X

(p)
n+1

) ,

as �(p) ! 1 since R
D

= o(R(p)

r

) and R(sp)

r

= o(R(p)

r

). By an abuse of notation, we

abbreviate ⌫
R

(p)
r

and ⌫
R

(s)
r

with ⌫ when the correct form is clear from context. Now

choosing q(s) = ↵
1

(�(s)⇡(R(s)

I

)2)�1 with ↵
1

> 0 and taking �(p) ! 1, we have (3.16).
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APPENDIX B

PROOF OF PROPOSITION 3.4.2

Define �
1,n

:= {|X(p)

n

�X(p)

n+1

|  R
D

�R(sp)

I

}, �
2,n
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D
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}, and �
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}. Given �
1,n

, all secondary users

in B
R

(sp)
I

(X(p)

n+1

) will detect the transmission of X(p)

n

and refrain from transmission. In

this case, X(p)

n+1

does not perceive any inter-network interference from the secondary

network and we can apply the separation principle to compute the conditional spatial

throughput for the primary network. Given �
3,n

, we have that X(p)

n

is out of the

detection ranges of all secondary users in B
R

(sp)
I

(X(p)

n+1

) and consequently, the event

⇤
X

(p)
n

is independent of X(p)

n

and X(p)

n+1

. Also note that in this case, additionally given

⇤
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(p)
n+1

, the secondary users in B
R
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(X(p)

n+1

) detect no primary transmitters (since

R
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 |X(p)
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 R(p)

I

) and initiate transmissions with probability

q(s). Hence, using (3.3) we obtain the primary network spatial throughput as
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where the last line is due to
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APPENDIX C

PROOF OF PROPOSITION 3.4.3

In Proposition 3.4.6, we show that the secondary users initiate transmission with

probability no less than q̃(s) and no greater than q̌(s) (as defined in (E.1b)) when

� < 1. Together with the fact that q̌(s) ! q̃(s) as �(p) ! 1, we obtain that
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APPENDIX D

PROOF OF PROPOSITION 3.4.5

Let us first consider the case where R
D

 R(ps)

I

�R(s)

I

. In this case, given ⇤
3,X

(s)
n+1

,

all secondary users in B
R

(s)
I
(X(s)

n+1

) together with X(s)

n

and X(s)

n+1

detect no primary

users and independently initiate transmissions with probability q(s). Hence, using

the separation principle and (3.3), we have
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Now consider the case with R
D

> R(ps)

I

� R(s)

I

. In this case, observe that
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, where ⇤̂
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denotes the event that

there are no primary transmitters within a R
D

+ R(s)

I

radius of X(s)

n+1
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is independent of the spectrum sensing outcome. Hence, us-

ing the separation principle, we obtain the following lower bound for the secondary
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network sum spatial throughput:
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Next we derive an upper bound for the secondary network sum spatial throughput

when R
D

> R(ps)

I

� R(s)

I

. Assume there are N secondary users {X
1

, X
2

, . . . , X
N

}

located inside B
R

(s)
I
(X(s)

n+1

) including X(s)

n+1

itself and excluding X(s)

n

. Let �
i

denote

the event that X
i

initiates a transmission, �
i

denotes the event that X
i

remains

silent, and ��i

denote the event that at least one of {X
1

, X
2

, . . . , X
N

}\{X
i

} initiate

a transmission. Given ⇤
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(s)
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n
, the probability that X

i

remains idle is no

more than Pr(�
i

)  1 � q̂(s) (i.e., when X
i
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n
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n
, the probability that X
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we have
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Taking expectation over the number of nodes falling inside B
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Hence, we have
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From (D.2), (D.5), and the fact that q̂(s) ! q(s) as �(p) ! 1, we conclude that
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. Finally, together with (D.1), we

obtain (3.22).
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APPENDIX E

PROOF OF PROPOSITION 3.4.6

Similar to the proof of Proposition 3.4.5, assume there are N secondary users

{X
1

, X
2

, . . . , X
N

} located inside B
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I
(X(s)

n+1

) including X(s)

n+1

itself and excluding
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. Define �
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, �
i

, and ��i

as before. Let &
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denote the event that there are no
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). Similar to (D.3), (D.4), and using the

facts that
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when � < 1, we obtain

Pr
⇣
⇤̃

X

(s)
n

⌘
 q̌(s)

⇣
e��

(s)
q̌

(s)
⇡(R

(s)
I )

2

+
h
(1� q̃(s))� (1� q̌(s))e��

(s)
(q̃

(s)�q̌

(s)
)⇡(R

(s)
I )

2

i⌘

e
�(

R
(ps)
I

R
(p)
I

)

2

, (E.2a)

Pr
⇣
⇤̃

X

(s)
n

⌘
� q̃(s)

⇣
e��

(s)
q̃

(s)
⇡(R

(s)
I )

2

+
h
(1� q̌(s))� (1� q̃(s))e��

(s)
(q̌

(s)�q̃

(s)
)⇡(R

(s)
I )

2

i⌘

e
�(

R
(ps)
I

R
(p)
I

)

2

. (E.2b)

Note that q̌(s) ! q̃(s) as �(p) ! 1 since R
D

= O(R(p)

r

) and R(p)

r

= o(R(s)

r

) when
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� < 1. As such, similar to (D.5) we obtain
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APPENDIX F

PROOF OF PROPOSITION 4.4.1

First, let us consider the distribution of a Poisson point process conditioned on

deleting one point. Let � be a homogeneous Poisson point process with intensity �

and assume a fixed region D. If �(D) > 0, one point in D is selected at random and

removed. Let X be the location of that point. The distribution of � on Dc remains

Poisson and independent of � on D, and thus independent of both �(D) and X. Let

�0 be the (point) process with the point at X deleted. (Note that the distribution

of �0 is not the same as the reduced Palm distribution [72] of �, as the location of

node X is random.)

Let A
1

, A
2

, . . . , A
k

be a partition of D. Given �(D) > 0, the points in D are

distributed uniformly. If one point is removed at random, the remaining points are

still distributed uniformly on D. Hence,
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since |A
1

|+ . . .+ |A
k

| = |D|. Therefore, conditional on �(D) > 0, �0 is independent
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of the location of the removed point (X). In particular,

Pr
⇣
�0(D) = n

��� �(D) > 0, X
⌘
=

(�|D|)n+1

(n+ 1)!(1� e��|D|)
e��|D|

= Pr
⇣
�(D) = n+ 1

��� �(D) > 0
⌘
.

Furthermore, given n
1

+ . . .+ n
k

= n > 0, we have
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Thus, for A ✓ D and given �0(D) = n > 0, �0(A) is conditionally Binomial
⇣
n, |A|

|D|

⌘
.

Without knowing �0(D), however, we obtain from (F.1) that
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�0(A) = k
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=

�|D|e��|D|
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where the second equality is due to

1X

j=0

1
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=
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ak+1

Z
a

0

xk+j

j!
dx

=

Z
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0

xk
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=

Z
1

0

ykeaydy .

After the aforementioned preliminaries, we now proceed with the proof of Propo-

sition 4.4.1. Suppose C is a random set that depends only on X.1 The points of �0,

if any, which are in CD := C \D, are uniformly distributed and independent of the

1Note that D and C here correspond to Dn�1 and Dn in Section 4.4, respectively.
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points in CDc, which are also uniformly distributed (if any). The combined points

are uniformly distributed on C only if the expected proportion of points in CD is

|CD|
|C| .

However, the expected proportion of points in CD is strictly less than |CD|
|C| in our

case as we now compute. Given �0(C) > 0, the probability that a randomly selected

point in C is also in D is E(�
0
(CD)

�

0
(C)

�� �0(C) > 0,�(D) > 0, X). Let �

0
(CD)

�

0
(C)

= 0 when

�0(C) = 0. Using (F.2), we have
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so we have
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⌘
 1� e��|C| .
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Using the observation above and (F.2) we obtain
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(F.3)
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Therefore,

E

✓
�0(CD)

�0(C)

�� �0(C) > 0,�(D) > 0, X

◆
<

|CD|
|C| .

Noting that
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and using (F.3), we could derive
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for large enough N such that 1� 1

�|D| �
|C||D|

|CD||Cc
D| exp(�2�|CDc|) > 0. Hence we can

ascertain that
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As such, the selected point is less likely to be in D than the case where we assume

�0 is Poisson on C.
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APPENDIX G

DERIVATION OF INEQUALITY (4.10)

We have (x0
n

, y0
n

)
D

=(Rz cos(✓), Rz sin(✓)), where ✓ ⇠ Uniform(�⇡/2, ⇡/2) and

z ⇠ Beta(2, 1) are independent. Thus, we have
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Also, by first changing x to 1� x and then using polar coordinates, we obtain
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