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ABSTRACT

Adaptive laboratory evolution (ALE) is a powerful tool for strain improvement,

and has been applied successfully to improve a range of desirable phenotypes in

model organisms through continuous cultivation under a selective pressure of interest.

Despite its demonstrable utility, one limiting factor for the effectiveness of ALE

is competition between beneficial mutants that exist contemporaneously within an

evolving population. This phenomenon of clonal interference arises from the fact

that the majority of microbes are obligate asexual organisms that cannot exchange

DNA between cells. Mutants that arise must therefore compete for resources until

the fittest mutant drives the others to extinction. The resulting loss of genetic

information from the population slows the overall rate of adaptation, and decreases

the amount of information that can be extracted from a given ALE experiment.

To overcome these limitations, we have developed a novel in situ mating system

based on the F plasmid to allow continuous DNA exchange between E. coli cells

in liquid culture, allowing mutants to potentially combine their mutations into a

single genetic background. The utility and limitations of an existing recombination

method, genome shuffling, are also explored to demonstrate the advantages of this

new method. The design and initial testing of the in situ mating system is first

validated, and the system is used for a subsequent evolution experiment under os-

motic stress to validate the industrial applicability of the mating system. Adaptive

mutants generated in the course of these experiments are then used to test whether

tolerant mutants can be formed via conjugation. Finally, additional side projects

focusing on strain or population characterization tools are discussed, followed by

recommendations for future work.
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1. INTRODUCTION

1.1 What is Adaptive Laboratory Evolution?

Competition for space and resources is an inherent feature of life. All organisms

seek to maximize their ability to survive and pass down genetic material, either as

individuals or as part of more complex collectives. Although in most cases offspring

will have genomes that are faithful copies of their parent (in the case of asexual

organisms) or a mix of two organisms (for sexually reproducing species), random

errors during DNA replication occur that change the offspring genotype. In most

cases, these errors will have a detrimental effect on the ability of the offspring to

survive, or at best, no effect at all. However, on rare occasions, mutations that

improve fitness will occur, generating an organism that can survive better and re-

produce more frequently in a given environment. Adaptive evolution as a whole is

essentially a cycle of random mutation and selection based on organism fitness that

can be exploited to alter characteristics of complex organisms [321, 322] and rapidly

reproducing microbial organisms [255, 96] as needed. Figure 1.1 describes the basic

process of controlled evolution carried out using two distinct organisms, namely silver

foxes and microbes. Once a desired behavior or property has been identified, such

as docility for foxes or improved growth in the presence of ethanol for fermentative

yeast, the experimenter can artificially apply selection by manually testing foxes for

lack of aggression or continuously growing yeast in the presence of ethanol. After

a sufficient number of generations, individuals within the selected populations will

accumulate mutations that improve their fitness, resulting in an increase in their

frequency. Given sufficient time, these mutants can displace the original background

population and establish themselves as the dominant genotype [300, 110].
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Figure 1.1: Two examples of artificial adaptive evolution. A) Domestication of
silver foxes. The initially feral foxes are selected for breeding based on their in-
teractions with human handlers. Photo credits to Zefram and Dan Child (BBC).
After a sufficient number of generations, many of the foxes behave similarly to do-
mesticated canines. B) Evolution of a microbe in the laboratory. The microbe is
repeatedly propagated under selection (nutrient utilization or chemical inhibitors)
until improved mutants are isolated.

Due to the difficulty of evolving large, slowly reproducing organisms, most evolu-

tion experiments focus on quickly reproducing microbes to study evolutionary the-

ory, structure of evolving populations, and to improve microorganism characteristics

for industrial use. Experimental design for adaptive evolution depends heavily on

whether tolerance (substrate, product, or inhibitor) or enhanced metabolite produc-

tion is the desired end goal. The former is usually accomplished by growing the
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microbe of interest under the relevant selective pressure for several hundred genera-

tions [142, 24, 127, 217, 269, 108, 97]. Growth on non-preferred carbon sources can

also be improved in a similar fashion [151, 179, 5]. The bulk of phenotype improve-

ment appears to occur early during most adaptive evolution experiments, though

fitness will continue to slowly improve afterward as demonstrated by the long term

evolution experiment still being executed in the Lenski laboratory [349]. The rate

of apparent adaptive improvement depends heavily on the number of loci involved

with the phenotype of interest, as polygenic phenotypes will generally improve more

smoothly than those with only a limited number of possible beneficial mutations

[320]. However, since evolution is an inherently stochastic process, it is possible to

have sudden jumps in fitness if beneficial mutations are simultaneously rare and have

large phenotypic effects [320] even after a significant amount of time. Structure of

the underlying fitness landscape [12, 16] therefore has a large impact on the outcome

of evolution experiments by restricting how fitness improvements may accumulate

for various genotypes in the evolving population.

In the context of the biotechnology industry, the execution of these experiments

typically relies on batch or continuous (chemostat) cultivation systems [348] to main-

tain the evolving populations in a state of relatively constant growth under the se-

lective pressure of interest. Ideally the experimental conditions should closely match

those expected during actual production to ensure that any evolved mutants be-

have as expected when utilized downstream. Batch growth requires little invest-

ment in equipment compared to the pumps, reactors, and tubing required for most

chemostats, and as a result, is the cultivation method of choice for most laborato-

ries. One significant disadvantage of batch growth is that the fraction of culture

transferred to fresh media every day exacerbates drift, the random loss of mutant

genotypes from an evolving population [140, 102], slowly the accumulation of adap-
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tive mutants significantly. Continuous systems have much lower levels of drift due to

absence of this large, externally imposed population bottleneck and therefore retain

more newly arisen mutants over a given length of time. Selection also differs be-

tween each system, as growth in batch systems never reaches a steady state similar

to that observed in most chemostats, resulting in the selection of mutations affecting

lag phase length in batch systems and the loss of signaling networks in chemostat

systems [192, 180]. Clearly, the choice of culture system must be considered carefully

to ensure mutants with the desired phenotypes are identified.

Beyond the direct selection for improved growth in unfavorable environments,

adaptive evolution can also be applied to optimize for the production of certain bio-

chemicals. Experimental design to enhance metabolite production is challenging due

to the lack of a direct selection for the phenotype in question. Artificial essentiality

can be engineered for certain metabolites by manipulating redox balancing [55, 160]

or using the product of interest to protect against transient environmental stres-

sors such as oxidative insult [270, 212]; the resulting strains can then be subjected

to growth based selection to increase metabolite production. For other metabolites

lacking pathways suitable for redox rescue or that do not confer tolerance phenotypes,

no general method linking growth to production exists. Increasing the production

of non-growth linked metabolites typically relies upon one of several types of ran-

dom mutagenesis (for a review, see [242]). Mutants are then analyzed to determine

if they produce a statistically significant increase in the product titer compared to

the parent strain followed by additional rounds of mutagenesis and screening if de-

sired [332, 187]. Since production of industrially desirable compounds represents a

diversion of carbon and energy from cell growth, mutations that increase the cellular

growth rate will often result in decreased or no synthesis of the desired product. In

more characterized host organisms such as E. coli and S. cerevisiae, metabolic sim-
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ulations are gaining traction as tools for rational engineering [292]. Efforts have also

been made to create general linkages of metabolite production to mutation rate [65]

to rapidly generate mutants with improved production levels. Given the difficulty in

rational optimization of metabolic pathways, both computational and evolutionary

approaches to improving metabolite production will find increasing use in the near

future.

One of the main factors reducing the effectiveness of adaptive evolution experi-

ments in producing enhanced phenotypes of interest is competition between clonal

populations of microbes with different but beneficial mutations [121, 102, 86, 90].

This phenomenon, known as clonal interference, pits mutants with different beneficial

mutations against one another in a competition for resource assimilation. The im-

portance of clonal interference in shaping evolutionary outcomes is becoming clearer

due to the advent of lower cost and high coverage genome sequencing, which has en-

abled deep sequencing of populations over the course of entire evolution experiments

for the first time [40, 180, 184]. Competition between beneficial mutants and the

dynamics of each genotype are easily observed using this approach, but other more

visual approaches have also confirmed significant clonal interference during asexual

evolution [269, 163]. An example of how population dynamics vary between clonal

populations and those where DNA is exchanged between mutants is shown in Figure

1.2. Due to the lack of a mechanism for sexual recombination in most microbes,

the competition inevitably ends with the fittest clone relative to current background

population achieving a high frequency after several generations, in contrast to the

recombinant genotypes obtained from sexual reproduction [74]. This outcome is per-

fectly optimal from the perspective of the surviving mutant, as it may now dominate

the culture without competition for resources, but from a scientific viewpoint this

loss of genotypic history is a severe impediment to understanding which mutations
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enhance industrially relevant complex phenotypes [244].
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Figure 1.2: Cartoon depicting the evolution of large A) asexual and B) sexual popu-
lations under an arbitrary selective pressure. The genome in this case consists of five
alleles with two possible variants (abcde versus ABCDE ) Clonal interference in the
asexual populations eliminates adaptive mutations that are potentially informative
but have lower fitness than other mutants in the population. Genotypes can also be
combined only through sequential mutation, limiting the pace of adaptation. Sex-
ual populations, in contrast, are able to use genetic recombination to generate new
and varied genotypes competing lineages as they arise. Both populations suffer from
stochastic loss of beneficial mutants (genotype aBCde). Adapted from [74].

1.2 Microbial Sex and Evolution

Attenuating the effect of clonal interference in evolving populations requires a

mechanism for exchanging DNA between individuals, allowing for beneficial muta-

tions to be unlinked from their original genetic background and spread throughout
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the population [70]. Genetic exchange of this sort would effectively abolish the con-

cept of an unbroken lineage linking a given mutant to the unevolved parental strain,

reducing the effect of competition on evolutionary outcomes. While most eukaryotic

organisms have some form of sexual reproduction [30], microbes typically reproduce

by binary fission: every new individual in the population is genetically identical to its

the original parent cell, excepting cases where random mutations occur. However, a

type of sexual genetic exchange occurs in the presence of parasitical episomes known

as conjugative factors [230] which encode machinery for the transfer of DNA from

cell to cell to enable their own propagation. On rare occasions, these episomes can

integrate into the host chromosome by homologous or site-directed recombination,

enabling transfer of host DNA between cells. The details of one such conjugation

system in Escherichia coli, the F plasmid, are discussed below. The existence of

these conjugative factors greatly simplifies the challenge of implementing a form of

microbial sex to reduce the impact of clonal interference on population dynamics

during evolution.

There is substantial theoretical evidence supporting its utility for adaptive labo-

ratory evolution. A recent review of competing models examining the relative benefit

of sexual versus asexual reproduction summarizes the work to date [33]. Some of the

first theoretical studies examining the difference between sexual and asexual popu-

lation dynamics were carried out independently by Fisher and Muller [81, 221, 169],

resulting in the formulation of the Fisher-Muller model that suggested that sex had

two main benefits: the removal of deleterious mutations from the genome and the

efficient spread of beneficial mutations throughout a population. This hypothesis

and its evolutionary implications have been extensively reviewed elsewhere [237].

Crow and Kimura [74] later showed explicitly that adaptive mutations would tend

to approach 100% frequency (fixation) more quickly in sexual populations for mu-
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tations with a given fitness benefit, at least under the conditions modeled. Other

researchers also confirmed the essential correctness of the Fisher-Muller hypothesis

for finite populations [107, 344, 2]. However, the predicted benefit of sexual recombi-

nation varies significantly depending on modeling assumptions, such as the number

of mutable loci, the rate of recombination, and other factors [169, 298, 4, 214, 2].

Simulations with digital organisms have also indicated that sexual recombination is

more effective at adapting to changing environments [218, 219].

In addition to mathematical and computational approaches for investigating sex-

ual population genetics, predictions about the benefit of sex have been experimentally

validated using a variety of experimental systems, including E. coli, S. cerevisae, and

others. Due to current expense of deep sequencing for populations, comparisons be-

tween sexual and asexual adaptive rates are typically made phenotypically, either

by tracking fitness relative to a standard over time or by challenging populations

with progressively higher levels of stress until growth failure occurs. Organisms that

are infected with conjugative plasmids or are naturally sexually competent adapt to

certain types of selective pressures more quickly than comparable asexual organisms

[72, 69, 357, 181, 129, 58, 28, 254]. A recent review by W.R. Rice summarizes older

experimental tests of sexual recombination as well [271]. Sex itself was also associ-

ated with a temporary fitness cost [129], reflecting the energetic costs of maintaining

the necessary molecular machinery for DNA exchange. The success of sexual systems

in a variety of environmental conditions (minimal media, NaCl challenge, thermal

stress) demonstrates the broad utility of a sexual evolution system for adaptive lab-

oratory engineering. Given these numerous successes, it is clear that an effective

mating system would be an useful evolutionary engineering tool for model organisms

like E. coli, but the question of implementation naturally arises. Design of such a

system requires extensive knowledge of the DNA transfer system, the ability to mate
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under typical cultivation conditions (batch, liquid culture), and very high mating

efficiency (i.e. frequent allele exchange). Only one tractable conjugation system in

E. coli is known to fit these design criteria: the F plasmid.

1.3 Conjugation: a Natural Method for Cell-Cell DNA Transfer

One of the first discovered conjugation systems, the F plasmid is a large single

copy plasmid found in F+ E. coli [117]. Strains with chromosomal F integrations

(known as Hfr for high frequency recombination) are capable of transferring chro-

mosomal DNA due to the insertion of the F origin of transfer (oriT ) sequence into

genome. F-mediated conjugation is a four step process summarized in Figure 1.3

[343]. Males use their sex pilus to attach and ratchet F− recipients until their cell

membranes make contact, followed by stabilization of the mating pair. The donor

F plasmid or chromosome (Hfr strains) is then transferred through a DNA secretion

system [185] as single-stranded DNA in a rolling circle fashion along with several

accessory proteins (e.g. primase to allow for dsDNA synthesis) to the recipient.

Transfer is initiated at the origin of transfer (oriT ) and proceeds along the entire

plasmid or host chromosome. Based on known DNA transfer rates of 40,000 bp/min

at 37 ◦C, the F plasmid requires approximately 3 minutes to transfer while 100 min-

utes are needed for the E. coli chromosome. This transfer process is sufficiently

robust to permit mating in liquid culture [155], unlike other conjugation plasmids.

The probability of transfer of a given locus decreases exponentially as distance from

the origin of transfer (m) increases according to the empirical equation 1.1 [297]. The

pre-exponential factor A is usually interpreted as representing the efficiency of mat-

ing pair formation (A ∈ [0.2, 0.5]). DNA transfer can be prematurely terminated by

physical and chemical disruption of the mating bridge or by nalidixic acid treatment

[37]. The main requirement for the recipient strains is that they be recombination
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proficient to integrate DNA into their genome, if mating with a Hfr strain.

Other closely related gram negative bacteria (e.g. Salmonella) can also maintain

F plasmids. F has also acquired numerous transposons over time that have affected

tra regulation, specifically an insertion into the coding sequence of the fertility con-

trol protein FinO [59, 117]. This transposon deactivated the FinO RNA binding

protein that acts to repress tra expression indirectly, effectively depressing the en-

tire tra operon, thus enabling continuous expression of all transfer proteins. The

FinO protein acts to stabilize a RNA-RNA helix of finP and traJ transcripts which

is then subsequently degraded by the host [189]. This mutation was a key factor

in the original detection of the plasmid as without FinO the sex pilus and other

genes required for successful mating are naturally derepressed, allowing for constant

F transfer outside stationary phase [118]. While continuous mating likely represents

a significant burden on cellular resources, it should also make the generation of re-

combinant genotypes containing DNA from two or more cells more frequent than

transient expression of transfer proteins.

f ≈ Aexp (−0.065m) (1.1)

While detailed information about each tra gene product is available, the ”gen-

der” proteins TraS and TraT warrant special consideration, given their central role

in this proposal. The functional roles of these proteins were originally identified by

analyzing the properties of Hfr mutants that lacked a property known as surface

exclusion (sfx ) [296, 1, 120], defined as the apparent inability of F+ (Hfr) cells to

mate with other F+ individuals. Mutants that were sfx− were competent recipi-

ents for other Hfr or F+ cells in any growth phase but tended to suffer reduced

growth rates due to excessive membrane damage [238]. As TraS and and TraT were
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characterized further, their actual biochemical roles became more clear: TraS is a

highly hydrophobic membrane protein that interacts with the transfer protein TraG

to destabilize mating aggregates; TraT on the other hand appears to interact with

membrane porins (OmpA) to prevent mating, though the precise inhibition mecha-

nism is unknown [120]. Despite the possible utility of sexual Hfr strains, no attempt

appears to have been made to utilize surface exclusion deficient mutants for combin-

ing different E. coli lineages though Hfr strains had been used to test the advantage

of sex previously [72]. Disrupting TraS and TraT may therefore increase cell to cell

DNA transfer, resulting in more efficient conjugation and ultimately better transfer

of adaptive mutations between individuals in an evolving population.

Figure 1.3: The process of conjugation between F+ and F− E. coli cells. A. The
F+ cell uses its sex pilus to ”ratchet” the F− cell until contact is made between
their membranes. B. A mating bridge is formed, allowing for DNA transfer to begin
between the cells. C. A single-stranded DNA copy of the F plasmid is transferred to
the recipient, along with primase (required to synthesize the dsDNA plasmid) and
several other proteins. D. The mating pair dissolves, leaving two F+ cells.
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Hfr strains are of particular interest as they are capable of transferring chromo-

somal DNA from the donor to a F− recipient. The process of Hfr mating at its core

involves the formation of a mating bridge between the Hfr donor and F− recipient,

followed by transfer of ssDNA derived from the host chromosome. The recipient has

a high probability of integrating the transferred DNA via homologous recombination

due to the genetic similarity of most E. coli strains [18]. Hfr strains can theoreti-

cally transfer their entire chromosome, but in practice this rarely occurs due to DNA

breakage or disruption of the mating pair. Mating specificity (i.e. gender) controlled

by TraS and TraT efficiently acts to prevent Hfr-Hfr DNA transfer [342, 1, 120];

genetic transfer in a mixed population of Hfr and F− cells is therefore unidirectional.

Creating true bidirectional (i.e. Hfr ⇀↽ Hfr mating) conjugation therefore requires

manipulation of tra expression and the gender proteins to ensure that Hfr-Hfr mat-

ings occur under typical growth conditions. Several studies have shown that F+-F+

and Hfr-Hfr matings are possible if TraS or TraT mutations are present [342, 1].

An Hfr strain with inactive TraST proteins is therefore capable of transmitting and

receiving chromosomal DNA from other individuals in the population, representing

a form of sexual exchange in an otherwise asexual organism.

Though most Hfr strains arise naturally due to chance homologous recombina-

tion events between shared insertion sequence on the E. coli chromosome and F

plasmid, they can also be artificially engineered as well. François et al. [116] cloned

the HindIII fragment of F containing the entire transfer operon of the plasmid into

a randomly integrating temperature-sensitive vector, and were able to generate Hfr

strains with integrations uniformly around the genome. The resulting pseudo Hfr

strains were similar to natural Hfrs in terms of DNA transfer efficiency and rate,

though some integrants did exhibit cryosensitivity that may have resulted from the

use of a temperature-sensitive replicon. These artificial Hfr strains later found use as
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the basis of a novel method to rapidly generate double-knockout strains by conjuga-

tion [324] in one demonstration of the usefulness of conjugation as a tool for strain

engineering. The genetic tractability of the F conjugation system and its ability

to efficiently catalyze DNA transfer under common cultivation conditions, coupled

with the wealth of existing Hfr strains, genetic tools, and experience with evolution-

ary engineering of E. coli, make this conjugation system the ideal basis for a sexual

evolution system.

1.4 Designing a Sexual Evolution System for E. coli

Currently, the only broadly applicable method available for surmounting bacterial

clonal interference is genome shuffling [308], where two cells physically merge together

and produce recombinant progeny via interchromosomal homologous recombination

[250]. Even though this technique has been successfully applied to improve several

desirable complex phenotypes [246, 359, 78, 236, 347], genome shuffling has relatively

low yields of stable recombinants (0.05-0.7%) [79, 347], and many of these individu-

als revert to parent phenotypes [148]. A subtler disadvantage of genome shuffling is

that fusion cannot take place under selective conditions, necessitating additional in-

vestigation to identify isolates with the desired phenotypes. Allowing for continuous

genetic exchange in situ sidesteps this issue by allowing strains with competing ben-

eficial mutations to exchange genetic information while remaining under the desired

selective pressure. Recombinant progeny will ideally accumulate combinations of

beneficial mutations continuously throughout the evolutionary experiment, thereby

leading to largely automatic identification of multiple mutants that exhibit positive

gene epistasis while allowing for the repair of any deleterious alleles.

Based on the hypothesis that increasing cell-to-cell DNA transfer by eliminating

surface exclusion from E. coli Hfr strains will result in less clonal interference, and
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hence faster adaptation during evolution, we proposed to develop an effectively ”gen-

derless” Hfr strain that is competent as a DNA donor and recipient in conjugation

with other genderless cells for use as a platform for evolutionary engineering. A

transfer operon from the F plasmid was integrated into the strain and the TraS and

TraT surface exclusion proteins disrupted, allowing for efficient bidirectional DNA

transfer between individuals in an evolving population. This approach exploits the

ability of Hfr strains to efficiently transfer chromosomal DNA for intrapopulation

recombination between mutants during evolution. Mating occurs continuously un-

der selective conditions without the need for any external intervention. Genetically

heterogeneous populations of genderless cells constantly exchange genetic material,

increasing the rate of adaptation within a population while improving evolutionary

outcomes in terms of increased growth rates. Unlike other methods for recombining

E. coli genomes, genderless mating can occur under a constant selective pressure

without external intervention, reducing the need to screen potential recombinants

generated by other procedures while directly selecting for positive gene interactions

among existing mutations.

1.5 Outline

The dissertation begins with an application of the main existing method for

achieving cell-cell recombination, genome shuffling, by generating interspecific hy-

brids between E. coli and Lactobacillus brevis with improved solvent tolerance. This

study was hampered by known issues with genome shuffling, specifically the low rate

of recombinant formation, that proved difficult to overcome even after method op-

timization. The next section details how this obstacle was overcome through the

initial development and validation of a Hfr-based sexual evolution using evolution

on well-defined fitness landscapes, followed by the use of the sexual evolution system
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to improve the industrially relevant osmotic tolerance phenotype to demonstrate the

broader applicability of the system. An attempt to exploit the conjugation profi-

ciency of these evolved donors is then explored in the following section. Shifting

away from the sexual mating system, two other aspects of strain improvement are

analyzed: transcriptional responses to stress and the expression of heterologous genes

in E. coli, and computational interrogation and generation of evolution data. Con-

clusions from these studies and recommendation for future research in this area are

then discussed.
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2. NOVEL ESCHERICHIA COLI HYBRIDS WITH ENHANCED BUTANOL

TOLERANCE*

2.1 Summary

We successfully generated hybrid strains between Escherichia coli and Lactobacil-

lus brevis via protoplast fusion. Growth kinetics of five hybrid strains and E. coli

were used to evaluate the butanol tolerance of the novel strains under different tem-

peratures and nutritional conditions. The hybrid strains were able to tolerate up to

2% butanol (v/v) compared to the 1% maximum for E. coli. The growth inhibitory

effects of butanol were also significantly less in several of the hybrids compared to

E. coli. These results demonstrate the potential use of protoplast fusion to generate

butanol tolerant strains.

2.2 Introduction

Butanol toxicity is one of the challenges currently facing the microbial production

of biobutanol. Even the native producer, Clostridium acetobutylicum, only tolerates

up to 1-2% of this organic solvent. Butanol tolerance is a complex phenotype, in-

volving multiple loci [241, 172], rendering the engineering of strains for enhanced

resistance to this solvent difficult. Thus far, efforts for enhancing butanol tolerance

have mainly focused on the enrichment of mutants via serial transfers [197, 303].

More recently, mutagenesis of the RNA polymerase in E. coli resulted in a mutant

with enhanced resistance to butanol toxicity from 80% growth inhibition to 50%

growth inhibition in 0.9% (v/v) butanol [172]. These efforts have relied on modifi-

cations of existing machinery in the native organisms, which may limit success. A

*Reprinted with permission from ”Novel Escherichia coli hybrids with enhanced butanol tol-
erance”’ by J. Winkler, M. Rehmann, and K.C. Kao, 2010. Biotechnology Letters, Volume 32, pp.
915-920, Copyright 2010 by Springer.
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recent report surveyed a wide range of microorganisms for their inherent tolerance

to butanol; most organisms analyzed exhibited significant growth inhibition in 1-2%

of butanol with the exception of Lactobacillus brevis (L. brevis), which was able to

sustain growth in 3% butanol [175].

Lactobacillus brevis, a gram-positive bacterium, may be a promising candidate

to be engineered as a biobutanol producer due to its high inherent tolerance to the

product. However, L. brevis lacks many biosynthetic genes and has high nutritional

requirements [209]. In addition, it is not a widely studied organism, and the molec-

ular mechanisms involved in the higher butanol tolerance in L. brevis are unknown.

On the other hand, Escherichia coli (E. coli), one of the most well-studied organ-

isms, is non-fastidious and has relatively low nutritional requirements. Recent efforts

have successfully metabolically engineered E. coli, a non-native producer, to produce

butanol [15, 154]. However, E. coli has low tolerance to butanol (up to 1%). The

ability to generate strains that contain the benefits of both organisms can poten-

tially be useful for engineering biobutanol producers. Protoplast fusion and genome

shuffling have been demonstrated as a useful tool for generating strains with novel

properties [246, 162]. We have successfully fused the genomes of E. coli and L. brevis

to isolate hybrids with enhanced resistance to butanol compared to E. coli and lower

nutritional requirements than L. brevis.

2.3 Methods and Materials

2.3.1 Bacterial strains and media

The bacterial strains used for the present study are Escherichia coli BW25113

and Lactobacillus brevis ATCC 367. E. coli was grown on LB media at 37 ◦C and

L. brevis was grown on MRS (BD) media at 30 ◦C. The hybrids were grown on LB

media unless noted otherwise.
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2.3.2 Protoplast fusion

Cultures of both E. coli and L. brevis were grown to an OD600 between 0.7 and 1.0

from 2% inoculum of overnight cultures. Protoplasts of E. coli were generated using

the protocol previously described on LB soft agar with 0.5 M of sucrose [79]. The

protoplasts of L. brevis were generated using a modified protocol from Cocconcelli

et al. [68]. Briefly, the L. brevis cells were collected by centrifugation, washed once

with 0.01 M Tris-HCl pH 8.0, washed twice with SMM buffer (0.5 M sucrose, 20

mM sodium maleate monohydrate, 20 mM MgCl2, pH 7.1), and the cell wall was

digested with 2 mg/ml of lysozyme (Sigma) and 30 µg/ml of mutanolysin (Sigma)

at 30 ◦C for 20 minutes. A small portion of the digested cells were serially diluted in

sterile water and plated on MRS plates to estimate protoplast formation efficiencies

or in SMM buffer and plated on regeneration medium (RM; MRS, 1.5% agar, 0.5 M

sucrose, 20 mM MgCl2, 2.5% gelatin, 0.5% heat inactivated bovine serum albumin)

plates for estimation of protoplast regeneration efficiencies. The resulting protoplasts

of E. coli and L. brevis were mixed together and DNA from lysed cells was digested

with DNase I (Promega) at room temperature for 10 minutes. The protoplasts were

incubated at room temperature for 10 minutes and centrifuged at 2000g and 4 ◦C for

20 minutes. After centrifugation, the protoplasts were resuspended in PEG buffer

(SMM + 0.4 g/ml PEG 6000, 5% v/v DMSO, 10 mM CaCl2) and incubated at room

temperature for 6 minutes. The protoplasts were centrifuged again at 2000g and 4

◦C for 20 minutes, and then resuspended in SMM buffer, plated on RM plate at

various dilutions, and incubated at 30 ◦C for 3 days.

2.3.3 Measurements of growth kinetics

Cultures were grown overnight in either LB or M9 minimum media supplemented

with 0.5% glucose at either 30 ◦C or 37 ◦C. Growth kinetic measurements for each
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strain in varying concentrations of 1-butanol were taken in 96 well plates with the

Infinite M200 plate reader (Tecan) with shaking and incubating capabilities. The

total volume of the culture in each well was 100 µl. Replicate measurements for

each strain and condition were measured in different wells within the 96 well plate to

ensure that potential differences in oxygen transfer rates did not bias the differences

in the growth kinetic measurements for the different strains. The growth kinetic

parameters of the specific growth rate (µ) and maximum cell density achieved were

calculated for each strain in each condition.

2.3.4 16s rDNA determination

The genomic DNA of all hybrids were purified using the DNeasy kit (Qiagen).

The presence of 16S rDNA sequences for E. coli and L. brevis were determined

via PCR with the purified genomic DNA using the following primer pairs: for the

E. coli 16S rDNA (BW25113 16S for: 5’-GCTTGCTTCTTTGCTGACGAGTG-

3’ and BW25113 16S rev: 5’-TACGCATTTCACCGCTACACC-3’) and for the L.

brevis 16S rDNA (ATCC367 16S for: 5’-TGAAAGGTGGCTTCGGCTATC-3’ and

ATCC367 16S rev: 5’-GCGGAAACCCTCCAACACTTAG-3’).

2.4 Results and Discussion

2.4.1 Generation of E. coli-L. brevis hybrids

Protoplast fusions between two different species were first reported in 1984 by

Gokhale et al. [124]. Since then, the generation of interspecific protoplast fusions

has been successfully used to combine desirable properties from different organisms

[60, 338, 162]. The resulting interspecific hybrids are reported to be stably main-

tained [60, 338], and thus are likely to be haploid recombinants. No interspecific

hybrids between E. coli and Lactobacillus have been reported. Here we report the

generation of hybrids between E. coli and L. brevis using protoplast fusion tech-
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niques. The resulting efficiencies for protoplast formation and regeneration for both

organisms are shown in Table 2.1. For the identification of true fusion products, we

first characterized differential permissive growth conditions for E. coli and L. brevis

by growing each strain on different solid media (LB, MRS, RM, and M9 minimum

medium). The results are shown in Table 2.2. As expected, L. brevis has higher

nutritional requirements compared to E. coli and is not able to grow on LB or M9

minimum medium. On the other hand, E. coli was not able to grow on either MRS

or RM, most likely due to the 5 g/L of sodium acetate present in the medium, as

acetate disrupts intracellular pH and inhibits growth [203]. Based on the results,

the protoplast fusion products selected on regeneration medium were most likely a

combination of pure L. brevis and true hybrids. Thus, true hybrids were identified

as fusants that are able to grow on both MRS and LB media, since neither E. coli

nor L. brevis are able to grow on both. We isolated a total of 70 hybrids and chose

5 (named KKOB2-6) to further characterize.

Step E. coli L. brevis Hybrids
Protoplast formation >99% >98.5%
Protoplast regeneration 1̃0% 30%
Recovery 0̃.3%

Table 2.1: Estimated efficiencies of protoplast formation, regeneration, and hybrid
formation. The efficiency of hybrid formation is estimated based on randomly isolat-
ing 50 colonies from the fusion products after PEG treatment and testing for their
abilities to grow on both MRS and LB.

2.4.2 Hybrid characterization

The primary mechanisms for generating hybrid genotypes through genome shuf-

fling are homologous recombination (if the parental strains are genetically similar)
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Strain LB M9 RM MRS
E. coli + + - -
L. brevis - - + +

Table 2.2: The differential growth of L. brevis and E. coli on several media (+:
growth; -: no growth).

or non-homologous end joining (NHEJ) [312]. Given the significant genotypic dif-

ferences between E. coli and L. brevis, the latter mechanism most likely plays the

dominant role in generating viable hybrids. The genetic heterogeneity of the hybrids

is apparent from the readily apparent morphological differences in the five hybrids

we examined in detail (Table 2.3). The KKOB2 and KKOB6 strains are most similar

to E. coli, while the KKOB3-5 strains are more similar to L. brevis. 16S rDNA inher-

itance of the hybrids was also estimated using E. coli and L. brevis specific primers.

It appears that all 5 hybrids had inherited the E. coli 16S rDNA. No products were

observed with the L. brevis specific primers in any of the hybrids, possibly suggesting

that the hybrid genome is composed of more E. coli than L. brevis sequences.

Strain Morphology
L. brevis Long rods
E. coli Short rods
KKOB2 Short rods
KKOB3 Long rods
KKOB4 Long rods
KKOB5 Long rods
KKOB6 Short rods, circular

Table 2.3: Morphology of hybrid strains compared with E. coli and L. brevis.
KKOB3-KKOB5 appear Gram positive, while KKOB2 and KKOB6 are Gram neg-
ative.
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2.4.3 Butanol tolerance in the hybrids

To establish the butanol tolerance of the hybrid strains generated in this study,

growth kinetics were evaluated in LB medium with the addition of 0-3% (v/v) of

butanol for comparison with the tolerance level of native E. coli. These results are

shown in Figure 2.1. All hybrids grew robustly in LB only media (without butanol),

achieving specific growth rates between 69% to 100% and final optical densities

similar to that of E. coli. Two hybrids (KKOB2 and KKOB6) exhibited the same

levels of butanol tolerance as E. coli, while the other three (KKOB3, KKOB4, and

KKOB5) exhibited increased resistance to butanol. Though E. coli growth was

dramatically inhibited at 1% v/v butanol, the growths of the three hybrids were not

inhibited at 1% butanol at 30 ◦C. At the lower temperature, the hybrids were able to

grow in up to 2% butanol and achieve a final optical density of approximately 66% of

that in 0% butanol (data not shown). After growth in LB with 1.5% (v/v) butanol

at 30 ◦C, the three most butanol tolerant strains (KKOB3-5) maintained their cell

morphology (long rods) and their ability to grow on MRS (data not shown). Increase

in temperature has been shown to enhance the toxicity of butanol [175]. This effect

was observed for all hybrids tested. At 37C, the maximum concentration of butanol

permitting growth in all strains was 1%. However, the hybrids (KKOB3-5) still

exhibited higher tolerance at 37C compared to E. coli at 37 ◦C.

Among the five characterized hybrids, only two (KKOB2 and KKOB6) were able

to grow robustly in M9 minimum medium. Similar to growth on LB, these hybrids

exhibited butanol tolerance very close to that of E. coli. The temperature dependent

tolerance to the organic solvent was also observed in M9 minimum medium. At 30C,

the three strains were able to grow in up to 1% v/v butanol, whereas at 37 ◦C, the

strains were only able to grow in up to 0.7% butanol (data not shown). The growth
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characteristics of the KKOB2 and KKOB6 strains may suggest that they lack the L.

brevis genes that impart the enhanced butanol tolerance seen in the other hybrids.

a

b

Figure 2.1: Inhibition of growth by butanol in LB medium at a. 30 ◦C and b. 37 ◦C.

Values are based on four replicate measurement for each strain at each condition.

Error bars are 95% confidence intervals. Hybrids with growth inhibition levels signif-

icantly less (P < 0.05, Student’s t test) than E. coli at each butanol concentration

are marked with an asterisk. Note that the growth of KKOB6 at 37 ◦C in 1.5%

butanol was only observed in three out of the four replicates.

Interestingly, some samples exhibited growth at a higher concentration of bu-
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tanol (but not at a lower concentration of butanol) in one out of four replicates.

These outlier growths are always accompanied by a long growth lag, suggesting that

growth at these higher concentrations originates from adaptive mutations conferring

improved butanol tolerance. It is unlikely that these instances were the results of

contamination, as no such growth were observed in the negative controls (no cell

controls) included for all butanol concentrations in every run. In addition, two repli-

cates in each 96 well plate were from the same overnight inoculum. Contamination of

the overnight inoculum should therefore result in observed growth in both replicates

within the plate, but in this case growth was only observed in a single replicate. The

reasons for these outlier growths are under investigation.

2.5 Conclusions

This study establishes a system for generating hybrids between E. coli and L.

brevis towards the goal of engineering strains with higher butanol tolerance. Further

improvements in reducing the nutritional requirements and growth in higher butanol

concentrations may be achieved by genome shuffling between the different hybrids

and their parents. Since the genomes of both E. coli and L. brevis are both fully

sequenced, whole genome sequencing of the hybrids can potentially reveal the under-

lying genetic bases for hybrid solvent tolerance and their other observed phenotypes.
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3. HARNESSING RECOMBINATION TO SPEED ADAPTIVE EVOLUTION

IN ESCHERICHIA COLI *

3.1 Summary

Evolutionary engineering typically involves asexual propagation of a strain to im-

prove a desired phenotype. However, asexual populations suffer from extensive clonal

interference, a phenomenon in which distinct lineages of beneficial clones compete

and are often lost from the population given sufficient time. Improved adaptive

mutants can likely be generated by genetic exchange between lineages, thereby re-

ducing clonal interference. We present a system that allows continuous in situ re-

combination by using an Esherichia coli F-based conjugation system lacking surface

exclusion. Evolution experiments revealed Hfr-mediated recombination significantly

speeds adaptation in certain circumstances. These results show that our system is

stable, effective, and suitable for use in evolutionary engineering applications.

3.2 Introduction

Evolutionary engineering encompasses a range of powerful methodologies that

have been harnessed to improve a range of microbial phenotypes of industrial inter-

est [299, 26, 47, 350]. One of the principal challenges that reduces the effectiveness

of adaptive evolution experiments in producing enhanced phenotypes of interest is

competition between clonal populations of microbes with different but beneficial

mutations [121, 102, 86, 300]. This phenomenon, known as clonal interference, pits

*Reprinted with permission from ”Harnessing Recombination to Speed Adaptive Evolution
in Escherichia coli” by J. Winkler and K.C. Kao, 2012. Metabolic Engineering, Volume 14, pp.
487-495, Copyright 2012 by Elsevier.
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mutants with different beneficial mutations against one another in a contest for sur-

vival. Due to the lack of a mechanism for sexual recombination in most microbes, this

competition generally results in the loss of adaptive genotypes from the population

over time. Recombination between these lineages, in contrast, would reduce clonal

interference by allowing multiple lineages to combine beneficial mutations into a sin-

gle background, preventing the extinction of these alleles [74]. The loss of genotypic

history due to clonal interference impedes understanding of industrially relevant com-

plex phenotypes [244] by limiting our knowledge of the underlying molecular mech-

anisms governing the phenotype in question. Beneficial mutations must be acquired

sequentially in an asexual population as well, theoretically limiting the overall pace

of adaptation. Sexual populations avoid this problem by continuously exchanging

beneficial mutations through mating, resulting in increased adaptation rates [169],

reduced mutational load [272], along with many other benefits [87].

Currently, the only broadly applicable method available for inducing recombi-

nation in asexual organisms is protoplast fusion [308], where two cells physically

merge together and produce recombinant progeny via interchromosomal recombi-

nation [250]. Even though this technique has been successfully applied to improve

several desirable complex phenotypes [245, 359, 78, 236, 347, 269], protoplast fusion

generates low yields of stable recombinants (0.05-0.7%) [79, 347] and many of these

individuals revert to parental phenotypes over time [148]. Additionally, genome shuf-

fling cannot be performed under selective conditions; recombinants generated using

this procedure must therefore be recovered and enriched later, which increases ex-

perimental complexity significantly. Allowing for continuous genetic exchange in situ

sidesteps this issue entirely by allowing strains with competing beneficial mutations

to exchange genetic information while remaining under the desired selective pressure.

DNA transfer between Escherichia coli cells is mediated by fertility plasmids such
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as F, originally discovered by Esther Lederberg and colleagues in the early 1950s as a

”sexual factor” that could be physically transferred between different E. coli strains

[53]. F-conjugation is unique in that it supports mating in liquid media, rather than

on filters or agar as required for other conjugative systems [155], making it well-suited

for use in evolutionary engineering. Decades of subsequent work by generations of

scientists uncovered various aspects of F biology, including its occasional integra-

tion into the host chromosome to create high frequency recombination (Hfr) strains,

gene function within the transfer (tra) operon [117], and eventually biotechnological

applications of F such as exploration of genetic interactions or bacterial artificial

chromosomes [324]. Hfr strains are capable of transferring chromosomal DNA from

the integrated F origin of transfer, making these strains useful for strain construc-

tion. Overall, the F plasmid is well characterized and amenable to engineering for

the creation of a sexual recombination system in E. coli. Hfr strains and yeast evo-

lution incorporating mating have also been previously used without modification to

demonstrate experimentally that recombination, in certain circumstances , leads to

improved evolutionary outcomes [72, 128].

High frequency recombination strains are of particular interest as they are capable

of transferring chromosomal DNA from the donor to a F− recipient. The process

of Hfr mating at its core involves the formation of a mating bridge between the

Hfr donor and F− recipient, followed by transfer of single stranded DNA derived

from the host chromosome, as demonstrated in Figure 3.1. The recipient has a high

probability of integrating the transferred DNA via homologous recombination due to

the genetic similarity of most E. coli strains [18]. Hfr strains can theoretically transfer

their entire chromosome, but in practice this rarely occurs due to DNA breakage or

disruption of the mating pair. Mating specificity is controlled by two proteins within

the tra operon (TraS, TraT) which efficiently act to reduce Hfr-Hfr DNA transfer by
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100-300 fold via surface exclusion [342, 1, 120]; genetic transfer in a mixed population

of Hfr and F− cells is therefore unidirectional. Efficient bidirectional (i.e. Hfr ⇀↽ Hfr

mating) conjugation therefore requires manipulation of tra expression and the gender

proteins to ensure that Hfr-Hfr matings can occur under typical growth conditions.

Several studies have shown that F+-F+ and Hfr-Hfr matings can occur if TraS or TraT

are mutated [342, 1]. An Hfr strain with inactive TraST proteins is therefore capable

of efficiently transmitting and receiving chromosomal DNA from other individuals

in the population, representing a form of sexual exchange in an otherwise asexual

organism.

We propose to harness this phenomenon by engineering an effectively ”gender-

less” Hfr strain that is competent as a DNA donor and recipient in conjugation

with other Hfr individuals for use in adaptive evolution. This approach exploits the

well-known ability of Hfr strains to efficiently transfer chromosomal DNA to per-

mit recombination between evolved mutants without external intervention. Mating

occurs continuously under selective conditions without the need for any external in-

tervention. Genetically heterogeneous populations of genderless cells will constantly

exchange genetic material, potentially increasing the rate of adaptation within a

population and improving evolutionary outcomes for improved tolerance or growth.

Unlike other methods for recombining E. coli genomes, mating can occur under a

constant, arbitrary selective pressure, reducing the need to screen potential recombi-

nants generated by other procedures while selecting directly for improved genotypes

composed of multiple, independent adaptive mutations.

28



A

B

C

D

HFR

HFR

HFR

HFR

Figure 3.1: A summary of the general F-mediated conjugation process in E. coli.
A. The pilus of the male (Hfr) strain, which contains an F plasmid integrated into
the genome, latches onto a F− recipient. B. After cell-cell contact is made, a mat-
ing bridge is formed to allow for stable DNA transfer. Note that traS and traT
are thought to inhibit this step by interfering with the mating bridge. C. Single-
stranded DNA is transferred from the donor to recipient from the origin of transfer
on the donor chromosome. D. Once transfer is complete or disrupted in some way
(mechanically, chemically), the donor and recipient separate. Any transferred DNA
may be integrated into the recipient chromosome via homologous recombination.

3.3 Methods and Materials

3.3.1 Strain construction

All strains used for evolution experiments in this study are derivatives of BW25113

(Coli Genetic Stock Center, CGSC). A list of all strains used in this study is given

in Table 3.1. The origin of transfer sequence from X892 (CGSC) was PCR ampli-

fied (Phusion, NEB) and cloned into the Pst1 site of the pKD13 (kan) and pKD32
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(cat) disruption plasmids developed by Datsenko and Wanner [82]. Clones con-

taining origin of transfer (oriT) fragments in the same orientation were used in all

subsequent experiments. Two pseudogenes identified on EcoCyc [166], mbhA (5.39

min) and hyfC (56.08 min), were chosen to be replaced by the oriT cassettes. To

create strains BW25113-A and B containing oriT sites at these locations, the cas-

settes from pKD13 and pKD32 were amplified using previously described procedures

[17] and were then subsequently transformed into BW25113/pKD46. Transformants

were verified with PCR and sequenced (MCLAB, CA) to ensure no mutations oc-

curred in the oriT region. Following this verification step, P1 transduction was used

to transfer the ∆(hyfC )::[oriT cat] marker from strain B to A, creating BW25113

2xOriT. CAG3101 [324] and CAG31031 ∆(traST ))were separately used to introduce

F into the genome of BW25113 2xOriT via conjugation to construct Hfr-2xSFX+

(active surface exclusion) and Hfr-2xSFX- (∆(traST ), surface exclusion deficient).

Both strains were screened to ensure that an additional oriT linked to tetAR was

not transferred as well. The 2xOriT, Hfr-2xSFX+, and Hfr-2xSFX- strains were

then transformed with pCP20 and incubated at 43 ◦C overnight to eliminate the

antibiotic markers in the cassettes. The final strains (hereafter referred to as the

evolution strains) have either no antibiotic resistance cassettes (2xOriT) or are gen-

tamicin resistant (Hfr-2xSFX+,-). Presence and orientation of the cassettes and the

F plasmid in these strains was verified by PCR.

3.3.2 Strain characterization

Microplate assays (TECAN) were used to assess the growth phenotypes of the

evolution strains and to test their sensitivity to several inhibitors (chlorampheni-

col, trimethoprim, butanol, acetate). Growth assays were performed in M9 minimal

media supplemented with 50 µg/ml tryptophan and 0.5% (w/v) glucose. Antibiotic
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Table 3.1: Bacterial strains and plasmids
Strain Description Ref.
BW25113 ∆(araD-araB)567, ∆lacZ4787 λ−, CGSC

rph-1, ∆(rhaD-rhaB)568, hsdR514
BW25113-A BW25113 ∆mbhA::[oriT kan] This work
BW25113-B BW25113 ∆hyfC ::[oriT cat ] This work
BW25113 2xOriT-NF BW25113 ∆mbhA::[oriT kan] This work

∆hyfC ::[oriT cat ]
BW25113 2xOriT Hfr 2xOriT-NF trp::F (genR) This work
BW25113 2xOriT Hfr∆ 2xOriT-NF trp::F[∆traST::kan] (genR) This work
BW25113 2xOriT BW25113 ∆mbhA::oriT ∆hyfC ::oriT
Hfr-2xSFX+ 2xOriT trp::F (genR) This work
Hfr-2xSFX- 2xOriT trp::F[∆traST] (genR) This work
BW25141/pKD13::oriT Template for oriT, kan cassette [82]
BW25141/pKD32::oriT Template for oriT, cat cassette [82]
CAG31031‡ BW25113 trp::F ycdN ::(oriT tetAR) [324]
CAG31031∆(traST)‡ BW25113 trp::F[∆(traST )::kan] [324]

ycdN ::(oriT tetAR)
BW25113/pTB8† BW25113 ampR This work
X892 K-12 prototroph, HFR [278]
X892/pTB10† X892 ampR This work
X∆/pTB10† X892 ∆(traST)::kan ampR This work

∗: Strains used for antibiotic resistance evolution experiments.
†: Strains used to measure the relative conjugation efficiency of the evolution strains
(except the asexual control) using F−, Hfr (sfx+), and ∆(traST ) (sfx−) strains.
‡: Strains used to conjugate the integrated F into the appropriate evolution strains.

tolerance was evaluated in M9 media supplemented with 0-8 µg/ml of drug (chloram-

phenicol (CM), streptomycin (STR), trimethoprim (TM)). Hfr-2xSFX- was slightly

more sensitive to trimethoprim than the other evolution strains and did not initially

tolerate TM concentrations greater than 0.8 µg/ml. Hfr-2xSFX+ was also found to

be approximately 50% more resistant to streptomycin prior to the evolution experi-

ment. The CM tolerances of the strains were similar. These differences could be the

result of jackpot mutations or metabolic changes triggered by the presence of the
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F plasmid in the strains. The chloramphenicol concentration that reduced the final

biomass yield (optical density) by approximately 50%, 3 µg/ml, was selected as the

initial concentration for the evolution experiment. A similar procedure was utilized

to determine trimethoprim and streptomycin evolution starting points (0.8-1.6 and

2-3 µg/ml respectively).

3.3.3 Conjugation efficiency assays

Assessment of conjugation efficiency for the Hfr-2xSFX+, Hfr-2xSFX- strains

(evolution strain donors) was accomplished using standard mating assays [10]. X892

/ pTB10 (Hfr), X∆/pTB10 (Hfr ∆(traST )), and BW25113/pTB8 (F−) served as

recipients for the evolution strain donors. The plasmids pTB8 and pTB10 only served

to provide the ampicillin resistance for the dual selection scheme used for measuring

mating efficiencies. Mating efficiency was assessed by mixing equal amounts of donors

and recipients (both in exponential phase) in LB for 30 min without shaking, and then

plating appropriate dilutions on selective plates (15 µg/ml gentamicin + 100 µg/ml

ampicillin). Based on the expected structure of the integrated F [116], conjugation

from one of the added oriT sites would be necessary for successful transfer of the genR

marker. At least three biological replicates were performed in each case. Conjugation

with an F− recipient (BW25113/pTB8) was also performed to test for possible lethal

zygosis [1] and to assess general transfer efficiency.

3.3.4 Luria-Delbruck fluctuation tests

The mutation rates of the Hfr-2xSFX- and BW25113 2xOriT strains were com-

puted using standard Luria-Delbruck fluctuation tests [356] to determine if the dis-

ruption of traST was mutagenic. Single colonies of both strains were inoculated into

LB. After growth to stationary phase, each strain was diluted 1000-fold into fresh

media (10 replicates per strain) and allowed to grow to stationary phase The entire
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cultures were then concentrated and plate onto LB agar supplemented with nalidixic

acid (20 µg/ml) and incubated overnight. The mutation rate of each strain was then

estimated using a standard maximum-likelihood fitting approach [134].

3.3.5 Evolution experiments

A feedback control scheme was utilized for the evolution experiments. First, six

isogenic replicates of each evolution strain (BW25113 2xOriT, Hfr-2xSFX+, Hfr-

2xSFX-) were inoculated into M9 media (0.5% (w/v) glucose and 50 µg/ml tryp-

tophan) containing the initial concentration of antibiotic (CM, STR, or TM). After

a 24 hour period, the final biomass yield (OD600) was measured. The density of

unchallenged cultures (ODunchal, no antibiotics) was used to determine the level of

antibiotic inhibition in each replicate. Propagation into new media, assuming the

current antibiotic concentration is Cab, was decided using the following decision tree:

1. If (ODfinal/ODunchal > 0.7), increase the antibiotic concentration by 1.5Cab in

fresh media.

2. If (0.15 ≥ ODfinal/ODunchal < 0.7), allow for 24 more hours of growth.

3. If (ODfinal/ODunchal < 0.15), propagate the previous culture into new media

with 0.75Cab

Replicates that fall under categories (2)-(3) are propagated once more at Cab to en-

sure that the observed level of antibiotic resistance is genuine, rather than a result

of antibiotic decomposition in the media. Once the entire dataset is gathered, expo-

nential regressions can be performed on antibiotic concentration data to determine

the parameter α (exp(αt)) so that the antibiotic doubling time may be computed as

follows:
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td,ab =
ln(2)

α
(3.1)

These rules are designed to ensure that the antibiotic concentration increases in a

consistent manner for each strain, depending on the acquisition of mutations con-

ferring resistance. The rate of evolution for each population (or replicate) can then

be quantified simply by observing the rate of improvement in antibiotic resistance,

avoiding the need to individually screen clones and determine their antibiotic tol-

erance level. All replicates were screened by strain specific PCR (Primers 1+3 for

BW25113, 11+12 for Hfr-2xSFX-, and 13+14 for Hfr-2xSFX+ (Table 3.2)) on a

regular basis to detect contamination and verify the presence of F (if applicable).

Table 3.2: Primers used in this study
# Name Sequence
1 ForOriT Pst1 AATCTGCAGATTTAACCCACTCCACAAAA
2 RevOriT Pst1 AATCTGCAGATTCATAATGCAAACAGGGA
3 ForMbhA CAGAAACCTCGGAAATACGC
4 RevMbhA GCATTGCTCACCTCTCAACA
5 ForHyfC GGCTGGCCAAAGAAATACAG
6 RevHyfC AGATCAGCGACAACATGCAC
7 ForKW TGTAGGCTGGAGCTGCTTCG
8 RevKW ATTCCGGGGATCCGTCGACC
9 ForTraST KO GCTAATGTCATTTCTAATAACACAAAAGACAAG

TGAAACACTCACTGCTGATTCCGGGGATCCGTCGACC
10 RevTraST KO GGCCGGTCAGACCAGCCTCCGGAAGATAATCAGA

GAATATTTGCGATTGATGTAGGCTGGAGCTGCTTCG
11 ForTraST Ver TCATGGGGTGGATGATTTTT
12 RevTraST Ver TCCCGCAGATCCATCTTATC
13 ForTraST F+ TTACCAGCATAAAGAATAATC
14 RevTraST F+ GCCTCCGGAAGATAATC
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3.4 Results and Discussion

3.4.1 Strain characterization

Hfr strains used in this work are derivatives of BW25113, with two added oriT

sites to enhance gene transfer from around the chromosome by reducing the average

distance from each gene to an oriT site (see [297] for transfer probabilities), and a

F plasmid integrated into the trp locus to provide the conjugation machinery. The

motivation behind inserting additional oriT sites stems from the exponential decline

in transfer frequency as the distance between a given site and the oriT increase

according to the empirical formula f = Aexp(−0.065m), where m is the distance in

minutes separating the oriT from the target site, and the constant A represents the

efficiency of mating pair formation. The inserted oriT sites act to decrease m for

all sites on the genome, facilitating their enhanced transfer. If the user would like

to transfer particular loci at very high frequency (for instance, genes that are likely

to produce an enhanced phenotype once mutated), then an oriT can be inserted

upstream to theoretically improve their transfer.

The Hfr strain design and the expected direction of DNA transfer from each origin

is shown in Figure 3.2. Following their construction, we sought to determine how the

heterologous oriT sites or the integrated F in Hfr-2xSFX+,- affected host physiology.

Growth in minimal media supplemented with glucose and tryptophan, required by

the Hfr strains due to the F integration in the trp locus [324], is shown in Figure 3.3.

Growth of the BW25113 2xOriT strain appears normal compared to BW25113 in

the same media, indicating that disrupting the mbhA and hyfC pseudogenes is not

deleterious for growth in these conditions. Hfr-2xSFX- does have an extended lag

phase and somewhat lowered growth rate (20%, P = 0.004) compared to the other

strains, and a slightly lower biomass yield. It is likely that disrupting the surface
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Figure 3.2: Basic design of the Hfr strains used in this study. The strain background
is BW25113. Points A and C denote integrated oriT sites with transfer directionality
(arrows) inferred from the orientation relative to the original F plasmid; Point B is
an integrated F conjugated from a BW25113 strain obtained from CAG31031 [324].

exclusion genes in Hfr-2xSFX- leads to excessive membrane damage due to constant

mating within a population, which is the mechanism of F-mediated cell killing (lethal

zygosis) [238]. This effect would likely reduce stationary phase survival, leading to

a lower proportion of viable cells in the inocolum, contributing to the extended lag

phase and observed sensitivity to certain membrane irritants (n-butanol and acetate,

data not shown) as well. The reduced growth rate of Hfr-2xSFX- may also be affected

by the energetic requirements for DNA synthesis and transfer.

The mutation rates of BW25113 2xOriT and Hfr-2xSFX- were also calculated

using a standard fluctuation test [24] and compared to determine if the ∆(traST )

disruption was mutagenic, as a raised mutation rate would generally impact evolu-
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Figure 3.3: Growth of Hfr-2xSFX+, 2xSFX-, BW25113 2xOriT, and BW25113 strain
in M9 minimal media supplemented with 0.5% glucose (w/v) and 25 µg/ml tryp-
tophan. The Hfr-2xSFX- strain grows somewhat more slowly (6-17%) than Hfr-
2xSFX+ and 2xOriT.

tionary trajectories. The estimated mutation rates for both strains, however, are

not significantly different from one another using a 95% confidence interval (2xOriT:

[4.16 · 10−9- 1.92 · 10−8], and Hfr-2xSFX-: [4.91 · 10−9,-2.13 · 10−8]), indicating that

there are no untoward genetic effects caused by eliminating surface exclusion or the

integrated F plasmid in the Hfr strains.

In addition to growth physiology of the strains, the ability of the Hfr strains to

transfer DNA to recipients was assessed to determine how much recombination could

be expected. Both Hfr strains served as donors (sources of DNA) in this assay, and

SFX+,- recipients were utilized (X892 and X892 ∆(traST )) to determine how much

removing surface exclusion impacted overall transfer efficiency. Figure 3.4 shows that
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Figure 3.4: Number of recombinant progeny obtained when using Hfr-2xSFX+,- as
donors to SFX+,- recipients (X892 and X∆). Hfr-2xSFX- was significantly better at
mating with SFX- recipients compared to Hfr-2xSFX+. Note that surface exclusion
on the donor can also disrupt mating, as TraS and TraT interact with recipient
proteins (TraG and OmpA [120]) to prevent Hfr-Hfr matings. When mating with
the X892 Hfr strain, many fewer recombinant progeny are generated by both strains,
though the Hfr-2xSFX- is still more efficient at conjugation in this case.

when mating with either type of recipient, the Hfr-2xSFX- strain is more efficient

than the Hfr-2xSFX+ strain. This result is expected given that surface exclusion

typically reduces Hfr-Hfr (F+-F+) mating by a factor of 100-300 fold [1]. One reason

that Hfr-2xSFX+ is not able to efficiently mate with the surface exclusion deficient

recipient is that TraS and TraT are thought to interact with recipient proteins (TraG

and OmpA) that are always expressed [120]. These results indicate that recombina-

tion should be much more frequent within the Hfr-2xSFX- population compared to

Hfr-2xSFX+. Mating each Hfr strain with F− recipient (BW25113/pTB8), however,

revealed that Hfr-2xSFX+ is more efficient (approximately 25-fold) at producing re-
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combinant progeny than Hfr-2xSFX- (data not shown). This efficiency discrepancy

stems from the fact that surface exclusion deficient strains are deficient at forming

mating aggregates [1], a necessary step in the conjugation process. Despite this dis-

advantage, the size of this effect is small (25 fold versus 100-300 fold) compared to

surface exclusion, leading to an enhancement in the overall frequency of recombi-

nation for ∆traST -∆traST matings. Given that evolving populations are initially

isogenic and not composed of Hfr and F− cells, the poor performance of Hfr-2xSFX-

strain when mating with F− recipients will not impact the utility of the strain.

3.5 Evolution Experiments

The ultimate goal of this work is to develop an evolutionary engineering system

that incorporates continuous recombination to produce improved industrial strains.

Given that most relevant complex phenotypes are poorly understood and involve

unknown genetic mechanisms, we expect our system to expedite the rate of improve-

ment in evolutionary experiments. As a proof of principle, we chose to compare the

ability of the BW25113 2xOriT and Hfr strains to adapt to progressively increasing

levels of antibiotic stress. Three antibiotics were chosen based on the characterized

complexity of their respective adaptive landscapes: chloramphenicol [320], strepto-

mycin [122], and trimethoprim [320, 122]. Chloramphenicol and streptomycin target

different aspects of protein synthesis [103, 304]; a wide range of mutations are avail-

able to improve drug tolerance, ranging from increased expression of drug exporters

to mutation of the appropriate ribosomal protein target site. The adaptive land-

scapes for both drugs likely contain many disparate beneficial mutations that can

be used to improve tolerance. Recombination should be effective at increasing toler-

ance on this type of landscape by combining multiple mutations into a single strain

[169, 271]. Trimethoprim resistance, in contrast, is principally due to a small number
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of highly beneficial mutations in the promoter and coding sequence of dihydrofolate

reductase (DHFR) [320]. Adaptation is accordingly constrained to a single, repro-

ducible path characterized by repeated, rapid fixation of newly generated mutants.

Given the minimal co-existence time of different beneficial mutations, recombination

is not expected to improve the acquisition of trimethoprim resistance meaningfully.

Table 3.3: Summary of evolution experiments
Antibiotic Maximum Cab Fold Inc. Doubling Time (days)
CM
Hfr 2xSFX+ 103.55 (63.06) 34.52 2.64 (0.33)
Hfr 2xSFX- 182.40 (0.0) 60.8 2.15 (0.18)
2xOriT 77.65 (56.85) 25.88 3 (0.56)
TRI
Hfr 2xSFX+ 67.33 (66.55) 42.08 NC†

Hfr 2xSFX- 132.27 (73.16) 82.67 NC†

2xOriT 115.20 (85.29) 72 NC†

STR
Hfr 2xSFX+ 131.43 (47.75) 65.72 2.39 (0.35)
Hfr 2xSFX- 190.91 (81.64) 95.45 1.97 (0.20)
2xOriT 91.90 (27.39) 45.95 2.37 (0.21)

Summary of the evolution experiments performed for this work. Standard
deviations (if provided) are given in parentheses. †: not calculated.

We tested these hypotheses by performing serial batch evolution experiments with

BW25113 2xOriT (asexual), Hfr-2xSFX+ (Hfr, with surface exclusion), and Hfr-

2xSFX- (Hfr, without surface exclusion). Broadly speaking, the results confirm that

recombination does enhance evolutionary outcomes on complex fitness landscapes,

while evolution on mutation-limited landscapes such as trimethoprim resistance see

little benefit when recombination is introduced. No loss of mating efficiency or the

integrated F plasmid was observed (with one exception detailed below) in any of the
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Hfr strains. The specific results for each evolution experiment are detailed below.

Statistical analysis was performed using the Student’s T-test with a 95% confidence

threshold.

3.5.1 Streptomycin

Replicate populations were evolved in minimal media supplemented with increas-

ing amounts of streptomycin for 15 days according to the ramping rules laid out in

the Materials and Methods section. Initially, the Hfr-2xSFX+ strain was less inhib-

ited by streptomycin and required a higher initial STR concentration (3 µg/ml) to

achieve the desired inhibitory effect. The average level of streptomycin over time

for each set of replicate populations is shown in Figure 3.5. Hfr-2xSFX- populations

generally achieved a higher level tolerance than either Hfr-2xSFX+ or BW25113

2xOriT replicates. Summary statistics for each population are provided in Table 3.3.

The differences observed in the final antibiotic concentration between the popula-

tions are primarily due to instances where, following inoculation into media with an

increased antibiotic concentration, a population failed to reach the OD necessary for

subsequent transfer within 24 hours, leading to a temporary plateau in antibiotic

resistance. Growth failures occurred more frequently and at lower STR concentra-

tions for the BW25113 2xOriT replicates, but also occasionally occurred at higher

antibiotic concentrations for both Hfr strains (Figure 3.5). After the conclusion of

the experiment, the mating ability of the Hfr replicates was qualitatively assayed via

spotting on plates following liquid conjugation with a F− recipient. No significant

loss of mating efficiency was observed compared to the parental controls (data not

shown).

A direct method to determine whether these differences in antibiotic tolerance

are significant is to compare antibiotic concentration doubling times using Equation
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Figure 3.5: The average concentration of streptomycin during the serial batch evo-
lution experiment. Six replicates are used per strain. Given that large differences in
replicate antibiotic concentrations correspond to only one or two step-wise increases,
error bars are omitted for clarity. The p-values for doubling time comparisons are:
Hfr 2xSFX+ versus Hfr 2xSFX-: P = 0.21, Hfr 2xSFX+ versus 2xOriT: P = 0.23,
and Hfr 2xSFX- versus 2xOriT: P < 0.01.

3.1; slower adaptation or lower tolerance will increase the antibiotic doubling time,

while a smaller doubling time can be equated to more rapid tolerance acquisition, up

to the limit imposed by the selective pressure increases. The doubling times given

in Table 3.3 reveal that Hfr-2xSFX- has a significantly faster antibiotic doubling

time (P < 0.01) compared to the asexual strain. The larger variance in doubling

time for the Hfr-2xSFX+ strain makes it difficult to distinguish from BW25113

2xOriT or Hfr-2xSFX- (P ≈ 0.23 for both cases). The magnitude of the Hfr-2xSFX-

improvement compared to 2xOriT is relatively small (17%) which may suggest that

streptomycin resistance loci are distant from the origin of transfer or suffer from
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antagonistic interactions. It is also possible that some beneficial mutations conferring

streptomycin resistance have large fitness effects that enable rapid fixation and reduce

time available for recombination between mutant lineages.

Following the conclusion of the evolution experiments, we also attempted to de-

termine if the ramping scheme correlated with actual tolerance by quantifying drug

resistance. In this case, the inhibitory effect ((ODdrug/ODunchal)) of a range of

streptomycin concentrations (generally 1X-4X the concentration used at the time of

isolation) was assessed for population samples revived from frozen stocks after 5, 12,

and 15 days of evolution. Cultures that could only tolerate lower antibiotic concen-

trations during the evolution experiment were consistently identified as being more

sensitive to streptomycin in this assay. This result shows that the slow improvement

for certain replicates in this experiment (and chloramphenicol tolerance; see below)

was not an artifact of the ramping scheme, but actually indicative of insufficient

antibiotic resistance. Cultures that met the criterion for antibiotic concentration

increases without interruption over the course of the experiment were less inhibited

by increased concentrations of streptomycin, as expected. Based on these data, the

ramping scheme provides a strong selective pressure over the course of the experiment

and correlates well with the actual antibiotic resistance of each population.

In this case, the benefit of recombination appears to be small despite the reported

polygenic fitness landscape. In order to better confirm that our system effectively

harnesses recombination to speed adaptation, we performed an additional evolution

experiment evolving for chloramphenicol tolerance to determine if this enhancement

was consistent for another phenotype with a qualitatively complex fitness landscape.
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3.5.2 Chloramphenicol

Asexual populations exposed to chloramphenicol have been demonstrated to in-

crease their antibiotic tolerance in an approximately continuous fashion as they ac-

quired new mutations, suggesting that there are many alleles that have a small,

beneficial effect on CM tolerance [320]. The use of recombination in this case would

be ideal, as lineages carrying weakly beneficial mutations will coexist for extended

periods of time, allowing for extensive recombination. Assuming that the majority

of mutations do not have antagonistic effects, then free recombination should have

a significant effect on the observed evolutionary outcome. The average antibiotic

concentrations for the strains over 14 days, shown in Figure 3.6A, confirm this ex-

pectation; the Hfr-2xSFX- strain improves significantly faster and to a greater degree

than the other strains (Table 3.3). After 8 days, the 50% increases in CM concentra-

tion per step appeared to be insufficient selective pressure; henceforth we double the

antibiotic concentration in the replicates at each step. One Hfr-2xSFX+ replicate

population lost the integrated F during the course of the evolution experiment, but

in all other cases the integrated F appeared to be stable. The doubling times for

each strain (Table 3.3) confirm that the Hfr-2xSFX- strain improves in tolerance

significantly more quickly than either the Hfr-2xSFX+ (P = 0.014, 18.4% faster

adaptation) or BW25113 2xOriT strains (P = 0.012, 28.1% faster adaptation). The

Hfr-2xSFX- strain also improved more rapidly at lower concentrations of CM as well.

This result represents a substantial reduction in the time required to develop the de-

sired level of tolerance. Note that the difference in doubling between Hfr-2xSFX+

and BW25113 2xOriT is not significant (P = 0.214).

Doubling time variance appears to be inversely related to recombination profi-

ciency: the Hfr-2xSFX- replicates tended to have broadly similar antibiotic tolerances
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Figure 3.6: A. The average concentration of chloramphenicol during the serial batch
evolution experiment. Six replicates are used per strain. Errors are omitted due
to the large amount of variation caused by the exponential ramping scheme. B.
Antibiotic concentrations in each replicate. Note that not all replicates are visible
due to overlapping antibiotic concentration curves over the course of the experiment.
P-values for each doubling time comparison are as follows: Hfr 2xSFX+ versus Hfr
2xSFX-: P < 0.014, Hfr 2xSFX+ versus 2xOriT: P = 0.21, and Hfr 2xSFX- versus
2xOriT: P < 0.012.
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and rarely failed to miss growth targets, except at higher antibiotic concentrations,

while BW25113 2xOriT replicates had widely varying antibiotic resistances and fre-

quently required extended growth (i.e. more plateaus (Figure 3.6B)) as the concen-

tration of CM increased. Clonal interference is likely the explanation for this result,

as different beneficial mutations would be generated and lost in each replicate over

the evolutionary time course, leading to disparate antibiotic tolerance levels. Mu-

tants that are fittest at low CM concentrations likely arose in many of the BW25113

2xOriT replicates, but as the antibiotic concentration increased, a significant amount

of time was spent waiting for the next adaptive mutant to arise on these existing

genetic backgrounds based on the number of ”pauses” observed before CM concentra-

tions could be increased. The Hfr-2xSFX- replicates could harness positive epistasis

between distinct mutations through recombination, leading to the observed increased

adaptation rate.

3.5.3 Trimethoprim

Adaptation to chloramphenicol and (to a lesser extent) streptomycin represent

ideal cases where recombination may be harnessed to combine multiple, independent

lineages into a single mutant line. As stated previously, adaptation to trimethoprim

seems antithetical to this ideal: effectively, only a few genes and regulatory regions

appear to be involved [227, 320], and mutations are generally acquired in a particular

order during the course of adaptation [320]. We expect that there will be little to

no advantage to recombination on this type of landscape due to the rapid fixation

of highly beneficial mutations conferring TM resistance, leading all of the strains to

adapt to trimethoprim at a similar rate.

Overall, the data confirmed this hypothesis. Very little difference in average

tolerance was indeed observed among the different strains (Table 3.3). Antibiotic
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Figure 3.7: The average concentration of trimethoprim (TM) during the serial batch
evolution experiment. Six replicates are used per strain. Error bars are also omitted
in this case due to the exponential ramping scheme.

concentration were increased more rapidly than in the previous evolution experi-

ments, as identified mutations appear to increase TM tolerance 10-fold individually.

The average TM concentration for each strain is shown in Figure 3.7 on a log scale

to account for this change. There is little difference among the strains, though Hfr-

2xSFX- was initially slightly more sensitive to trimethoprim and required a lower

initial TM concentration (0.8 µg/ml versus 1.6 µg/ml) than the other evolution

strains. Despite this increased sensitivity, all strains approached the same level of

tolerance on average, showing that fitness defects of this sort are rapidly abolished

and should not limit the applicability of this system. Variation between replicates

for each strain was quite large, indicating that clonal dynamics played a strong role

in shaping the observed evolutionary outcomes by favoring the existence of a sin-
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gle dominant clone in each replicate population. It is unlikely that each population

would contain the same exact adaptive mutant, leading to a wide variation in an-

tibiotic tolerance between replicates. Highly fit clones would also tend to displace

other less fit adaptive mutants through competition and random drift, keeping the

population heterogeneity to a minimum in each replicate. These conditions disfavor

recombination as there is little time to facilitate genetic exchange prior to the extinc-

tion of all but a single, fittest genotype. The similarity in adaptation between the

Hfr and asexual strains dovetails with the expectation that recombination is most

useful when various adaptive mutants can co-exist, as expected.

3.5.4 Implications for evolutionary engineering

These findings support the assertion that if a compatible phenotype is selected

for study, such as one where many small-effect mutations exhibiting positive epistasis

contribute to overall strain fitness, the use of constant recombination under selective

pressure during evolution results in faster improvement than standard serial batch

evolution experiments with asexual E. coli. The success of genome shuffling, despite

the low overall recombination efficiency of the method [79], to generate improved

strains [359, 245, 308, 347, 269] is additional evidence for the utility of recombina-

tion as part of the evolutionary engineering toolbox. In order to further enhance

evolutionary outcomes, whole cell mutagenesis could also be incorporated into this

protocol to increase the genetic diversity of the initial population, providing addi-

tional grist for the evolutionary mill.

There are also situations where this method would likely yield little benefit over

evolutionary engineering with purely asexual strains. For phenotypes with fitness

landscapes conceptually similar to trimethoprim, given the predominance of individ-

ual mutations with large fitness effects in those cases, recombination would probably
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be minimal and limited only to brief periods during population sweeps where genetic

heterogeneity exists. Other methods for engineering complex phenotypes, such as

high throughput promoter engineering [335, 6] or genomic libraries [205, 225, 268],

to improve fitness may be more appropriate in these cases, as they do not depend

on interactions between mutant strains to identify alleles of interest. However, it is

very unlikely that any one method would be objectively superior to all other strain

engineering techniques, no matter the target phenotype, given their fundamentally

different underlying methodologies. All of these techniques have also been success-

fully applied to characterize the molecular mechanisms that govern various pheno-

types of interest or to generate improved strains. The in situ recombination method

developed here best represents a complementary approach to improve adaptive labo-

ratory evolution by attenuating clonal interference, rather than a direct replacement

of these alternative methodologies for complex phenotype engineering.

3.6 Conclusions

These results, taken altogether, support the conclusion that recombination-proficient

E. coli are suitable for evolutionary engineering experiments from both the stand-

points of stability and effectiveness. In the case of the former, only a single loss of the

integrated F was observed for the 36 Hfr replicates used in the evolution experiments.

Even if mutants with impaired or absent mating competency arise during the course

of the experiment, recombination with the remaining mating competent individuals

in the population should reduce the likelihood of defective F fixation. It is likely that

the fitness benefit of mutations conferring tolerance to the phenotype of interest will

fix more rapidly than potential F-disrupting mutations as well. Our attempts to use

a F plasmid (rather than an integrated F), however, did show that the F[∆(traST )]

plasmid is unstable in a host with multiple origins of transfer (data not shown). This
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failure, along with the impact on host physiology detailed previously, does imply that

excision or inactivation of the integrated F is under positive selection in the absence

of surface exclusion. As a result, when performing a long-term evolution experiment,

the Hfr strains developed in this work should be tested periodically to assess mating

efficiency and ensure that the integrated F is still present in the population.

The Hfr-2xSFX- strain developed in this work was able to improve tolerance

17% to 28% more quickly than either control strain in response to streptomycin

or chloramphenicol challenges, representing a significant reduction in time and cost

over conventional evolutionary techniques. It may be the case that these landscapes

are strong mutation/weak selection regimes [300], where various genotypes coexist

for significant periods of time, but deep sequencing of the population is required

to confirm the validity of this hypothesis. Performance of Hfr-2xSFX- on simpler

landscapes, such as the one defined by trimethoprim resistance, was similar to that

obtained from the asexual control. Previous literature suggests that evolution for

trimethoprim resistance best resembles a strong mutation/strong selection regime,

matching theoretical expectations. Taken together, we believe these results demon-

strate that this system is well suited for use in evolutionary engineering to improve

complex phenotypes, such as biofuel tolerance, which have been shown to incorporate

a wide variety of mutations as tolerance improves over time [217]. Future develop-

ment of this system will focus on creating an inducible mating system to control

when recombination occurs and to ameliorate the sensitivity to membrane irritants

triggered by the absence of surface exclusion.

We have harnessed an existing conjugation system capable of mating in well-

mixed liquid cultures to engineer a practical in situ recombination system for E.

coli for the purposes of evolutionary engineering. The developed strains are genet-

ically stable and can be used for evolution experiments easily without any need to
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interrupt adaptive evolution to allow for recombination, representing a significant im-

provement over conventional genome shuffling. Recombination, further enhanced by

the disruption of surface exclusion from the Hfr-2xSFX-, proved beneficial in improv-

ing tolerance to inhibitors (streptomycin and chloramphenicol) that have complex

tolerance mechanisms by allowing beneficial mutations to combine into a single ge-

netic background through conjugation rather than sequential mutation. Whole cell

mutagenesis strategies may also be employed to increase the initial diversity of a

recombination-proficient population before adaptive evolution, increasing the likeli-

hood of recombination between different mutant lineages. Phenotypes involving a

small number of mutations with large fitness effects, such as trimethoprim resistance,

are unlikely to benefit from recombination. This system should prove useful to evo-

lutionary engineers seeking to develop strains with improved industrial phenotypes

such as furfural, acid, and acetate resistance or product tolerance.
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4. UNRAVELING OSMOTOLOLERANCE IN ESCHERICHIA COLI USING A

PSEUDOSEXUAL MODEL SYSTEM

4.1 Summary

Biocatalyst robustness toward stresses imposed during fermentation is important

for efficient bio-based production. Osmotic stress, imposed by high osmolyte con-

centrations or dense populations, can significantly impact growth and productivity.

In order to better understand the osmotic stress-tolerance phenotype, we evolved

sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under

sodium chloride (NaCl) stress. Isolates from each population had significantly im-

proved growth under selection and could grow in up to 0.85 M NaCl, a concentration

that completely inhibits the growth of the unevolved parental strains. Whole genome

resequencing revealed frequent mutations in genes controlling n-acetylglucosamine

catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV ),

and surface fibers (fimA). Possible epistatic interactions between nagC, nagA, fimA,

and proV deletions were also detected when reconstructed as defined mutations.

Transcriptome analysis revealed significant changes in ompACGL porin synthesis,

and activation of sulfonate uptake systems in the adaptive mutants, providing ad-

ditional insight into the genotype-phenotype connection for these strains. These

findings expand our current knowledge of the osmotic stress phenotype and will be

useful for the rational engineering of osmotic tolerance into industrial strains in the

future.

4.2 Introduction

Escherichia coli, an important industrial microorganism for the production of a

wide variety of fine chemicals, fuels, and proteins, has been extensively targeted to
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improve its suitability as a biofactory. Strain development efforts have focused on im-

proving tolerance of feedstocks containing toxic compounds [139, 216, 288, 5] or prod-

ucts [283, 14, 217, 99, 269]. Many environmental variables, including osmotic pres-

sure, can negatively impact biocatalyst performance [293]. Use of non-conventional

waste streams ,such as waste glycerol from biodiesel production or brackish water

sources, to support microbial growth can also reduce process costs [243, 159, 94, 281]

while reducing pressure on fresh water resources; however, these carbon and water

sources generally contain high concentrations of salt that may be inhibitory to micro-

bial growth. Previous studies have attempted to engineer improved osmotic tolerance

in E. coli [183, 54, 280, 259], but overall, knowledge of the genetic mechanisms that

confer tolerance of osmotic stress in general or to specific osmolytes remains limited.

A detailed analysis of E. coli tolerance to osmolytes would therefore shed new insight

into the molecular mechanisms underlying this complex phenotype.

Adaptive laboratory evolution [255, 96] is a promising approach to identify poten-

tially novel osmotic tolerance mechanisms, as this technique requires no assumptions

about the underlying genotype-phenotype relationship. Complex phenotypes such as

enhanced resistance to biofuels [127, 14, 217, 269], lignocellulosic hydrolysates [319,

353, 5], antibiotics [320, 346, 277], and environmental conditions [273, 24, 71, 315, 97]

have all been successfully characterized using this approach. In this study, sodium

chloride (NaCl) was selected as the osmotic inhibitor. A recent evolutionary study

aimed at characterizing cross-adaptation between several different stressors detected

several potential mechanisms in a single evolved NaCl-tolerant isolate [97], but due

to the possible existence of multiple adaptation mechanisms, additional information

is needed to better understand the genetic bases of osmotolerance.

In a typical evolution experiment, isogenic biological replicate populations are

propagated under gradually increasing selective pressure (in this case, osmotic stress)
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to identify mutants with improved growth rates under these conditions. These

mutants can then be analyzed using phenotypic, genetic, and transcriptional ap-

proaches to uncover the causal mutations conferring the phenotype of interest. In

order to expedite this process, we utilize our previously developed evolution system

that leverages horizontal gene transfer (HGT) within evolving E. coli populations

to increase their rate of adaptation to various stressors [346]. This type of sex-

ual exchange (or recombination) reduces competition between beneficial clones in a

population by unlinking beneficial alleles from a single genome [92, 128] and per-

mits additional adaptive paths on some fitness landscapes [339, 220]. The use of a

sexual evolution system may therefore allow for faster improvement in osmotic toler-

ance compared to standard asexual E. coli, as has been shown for other phenotypes

empirically[271, 72, 346, 181] and theoretically [222] in the past. Asexual populations

tend to lose adaptive mutants through drift and competition [111, 300], whereas sex-

ual populations can incorporate mutations from multiple competing lineages into a

single genetic background to avert this outcome [74].

In order to identify novel adaptive mechanisms for osmotic (NaCl) tolerance,

we have utilized adaptive evolution to generate osmotic tolerant mutants of three

distinct E. coli strains: two capable of in situ recombination with different rates of

mating [346] to reduce competition between beneficial clones and another, completely

asexual strain. After being propagated for approximately 150 generations in the

presence of increasing concentrations of NaCl, osmotolerant mutants were isolated,

characterized, and sequenced to identify any genetic changes that occurred during

evolution. The elucidated resistance mechanisms were then explored phenotypically

to better understand their potential impact on E. coli physiology. Transcriptomic

analyses of several mutants were subsequently conducted to better characterize the

genotype-phenotype connection that resulted in enhanced osmotolerance.
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4.3 Methods and Materials

4.3.1 Bacterial strains and growth media

All strains used for evolution in this study (Table 4.1) are previously developed

BW25113 derivatives [346]. Briefly, Hfr-2xSFX(+,-) are conjugation proficient Hfr

strains with an operon of F transfer proteins integrated at the trp locus [324]; surface

exclusion genes are either present (+) or disrupted (-) in the strains, respectively.

2xOriT, an F- strain, was used as an asexual control. BW25113 was used to test

the effect of overexpressed or disrupted genes on osmotic tolerance. Minimal M9

medium supplemented with 0.5% (w/v) glucose, 50 µg/ml tryptophan [324, 346]

was used for routine cultivation and growth assays. Luria-Bertani (LB) broth and

agar plates were used for strain isolation, transformation, and other analyses, as

indicated. Sodium chloride (JT Baker) was utilized to adjust the osmotic strength

of the medium during the evolution and for subsequent growth assays.

4.3.2 Adaptive evolution

Adaptive laboratory evolution was conducted via serial batch transfer experi-

ments to improve the osmotic stress tolerance of Hfr-2xSFX-, Hfr-2xSFX+, and

2xOriT in parallel. Six replicate populations for each strain were inoculated from

independent colonies to initiate the evolution experiment. Every 24 to 48 hours, a

proportion (typically 1-3%, based on cell density) of each replicate population was

diluted into fresh medium to ensure that each population underwent approximately

6-7 generations per transfer. Sodium chloride concentrations were increased in a

step-wise manner over time based on observed population fitness increases. Each

population replicate underwent approximately 150 generations over the course of

the experiment. The fitness (S, Equation 4.1) of the evolving populations relative to

their ancestral parents in 0.6-0.65 M NaCl was determined every 24 generations using
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Table 4.1: Partial list of strains, plasmids used in this study
Strain or Plasmid Genotype Source
BW25113 ∆(araD-araB)567, ∆lacZ 4787(::rrnB -3), λ−, CGSC†

rph-1, ∆(rhaD-rhaB)568, hsdR514
2xOriT BW25113 ∆mbhA::oriT ∆hyfC ::oriT [346]
Hfr-2xSFX- BW25113 ∆mbhA::oriT ∆hyfC ::oriT [346]

trp::F[∆traST ] (genR)
Hfr-2xSFX+ BW25113 ∆mbhA::oriT ∆hyfC ::oriT [346]

trp::F (genR)
pCA24N CmR, used as a control recipient for mating [170]
G1 Isolate from Hfr-2xSFX- Population 1 This work
G2 Isolate from Hfr-2xSFX- Population 2 This work
G3 Isolate from Hfr-2xSFX- Population 3 This work
G4 Isolate from Hfr-2xSFX- Population 4 This work
G5 Isolate from Hfr-2xSFX- Population 5 This work
G6 Isolate from Hfr-2xSFX- Population 6 This work
A1 Isolate from 2xOriT Population 1 This work
A2 Isolate from 2xOriT Population 2 This work
A3 Isolate from 2xOriT Population 3 This work
A4 Isolate from 2xOriT Population 4 This work
A5 Isolate from 2xOriT Population 5 This work
A6 Isolate from 2xOriT Population 6 This work
H1 Isolate from Hfr-2xSFX+ Population 1 This work
H2 Isolate from Hfr-2xSFX+ Population 2 This work
H3 Isolate from Hfr-2xSFX+ Population 3 This work
H4 Isolate from Hfr-2xSFX+ Population 4 This work
H5 Isolate from Hfr-2xSFX+ Population 5 This work
H6 Isolate from Hfr-2xSFX+ Population 6 This work

†: Coli Genetic Stock Center, Yale University. Note that BW25113 was used as the
host for all overexpression plasmids and the control vector pCA24N.

growth assays in microtiter plates to track their rates of adaptation; a logarithmic

model (Equation 4.2) was then fitted to the fitness measurements for each popula-

tion and used to calculate their overall rate of improvement throughout the adaptive

evolution experiment. The constant α is a shape parameter for the logarithmic

curve. The choice of this model is informed by the fact that fitness improvements
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of this form are often observed during adaptive evolution [24]. Potential external

and cross contamination of the experiment was monitored using PCR genotyping

using the mbhA::oriT locus (present in all 3 strains), and growth on LB gentamicin

agar to discriminate between the gentimicin resistant Hfr strains and the sensitive

2xOriT strain. Culture samples from each population were periodically plated onto

non-selective LB to detect any unusual colony morphologies. Mating assays were per-

formed weekly as previously described [346] to detect conjugation competence and

any cross contamination between replicates by identifying any mating competent

subpopulations in nominally asexual replicates.

S =
µi

µ2xOriT

− 1 (4.1)

S(t) = αlog(t) (4.2)

4.3.3 Mutant isolation and screening

One clonal isolate was randomly obtained from each evolved population at the end

of the evolution experiment after streaking the evolved populations onto LB agar for

single colonies. Isolates from the Hfr-2xSFX-, Hfr-SFX+, and 2xOriT populations

are prefaced with G, H, and A respectively. All isolates were propagated in the

absence of NaCl for at least 10 generations prior to any phenotypic analysis to ensure

that any observed phenotypes were the result of mutation, rather than transient

transcriptional or epigenetic adaptation. Following an initial fitness screen in M9

supplemented with 0.5% (w/v) glucose and 0.65 M NaCl at 37 ◦C to ensure that all

isolates exhibited enhanced resistance to NaCl compared to the parental strains, the

fitness of all isolates was analyzed in other osmotic or general stress conditions (excess
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glucose [54 g/L], n-butanol [0.8% v/v], low pH [pH = 6.0], or elevated temperature

[42 ◦C]). Two independent biological replicates were used for each experiment. All

growth assays were performed in 96 well microtiter plates using a plate shaker and

incubator (TECAN Infinite M200) at 37 ◦C (except for thermal stress assays) with

four technical replicas per strain per condition. Relative mutant fitness (S) and

improvement (RI) were respectively calculated for each condition (if necessary) using

Equations 4.1 and 4.3.

RI =
µi,C/µi,U

µ2xOriT,C/µ2xOriT,U

− 1 (4.3)

4.3.4 Fitness distribution analysis

Six randomly isolated clones were obtained by streaking from each of the evolved

Hfr-2xSFX- and 2xOriT replicate populations (for a total of 36 random isolates per

strain). Each colony was inoculated into 2 ml glucose minimal media supplemented

with tryptophan and allowed to grow for 24 hours. The fitness of each isolate (relative

to 2xOriT) was then determined using growth in a microtiter plate under 0.65 M

NaCl challenge, as described previously. Four technical replicates were used per

screened isolate.

4.3.5 Mutation rate under osmotic stress

The mutation rate of Hfr-2xSFX- and 2xOriT were measured using a standard

fluctuation test [356] under osmotic stress to determine if the strains have unequal

mutation rates under osmotic stress, which would influence their relative adaptation

rates. Eight biological replicates of each strain were grown in unchallenged conditions

(glucose minimal media with tryptophan) overnight and diluted 103-fold to reduce

the cell concentration to several thousand cells per ml, reducing the possibility of
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jackpot mutants. 1% of these diluted cultures were inoculated into the same media

with 0.55 M NaCl and incubated for 72 hours at 37◦ C with shaking until reaching

stationary phase. All but 10 µl of each replicate was then pelleted, resuspended in

LB, and plated on LB plates with 20 µg/ml nalidixic acid as done previously [346];

the remaining 10 µl were diluted 106-fold and plated onto LB to measure CFU/ml.

After 24 hours of incubation at 37◦ C, colonies on each plate were counted. FALCOR

[134] was then used to estimate the mutation rate for 2xOriT and Hfr-2xSFX-. For

2xOriT, the mutation rate is 1.43 mutants per 109 cells, 95% confidence interval:

[0.72, 2.31]; for Hfr-2xSFX-, the mutation rate is 1.52 mutants per 109 cells, 95%

confidence interval: [0.71, 2.54]. The difference in mutation rate between the strains

is not statistically significant.

4.3.6 Hyperosmotic shock tests

Single colonies of each isolate (G1-G6, A1-A6, and H1-H6) and the parental

controls were inoculated into glucose minimal media and allowed to grow overnight.

The stationary phase cultures were then diluted in fresh medium and propagated

until mid-exponential phase (OD ≈ 0.3-0.6). The cultures were then normalized

to ensure equivalent optical densities, pelleted, and resuspended in glucose minimal

medium supplemented with 5.45 M NaCl and incubated at 37 ◦C for 2 hours. Each

sample was then serially diluted up to 10000-fold in minimal media, spotted on LB

plates, and incubated overnight at 37 ◦C. The number of colonies in each 1000-

10000X dilution were then counted. Each assay was performed in duplicate with

independent biological replicates.

4.3.7 Genome sequencing and verification

The evolved Hfr-2xSFX- (G1-G6) and 2xOriT (A1-A6) isolates, along with the

unevolved parental strains, were sequenced to discover the genotype underlying the

59



observed sodium chloride tolerance. Genomic DNA was extracted from each iso-

late using the Zymo Fungal/Bacterial Genomic DNA miniprep kit and quantified

using the NanoDrop spectrophotometer. Samples of genomic DNA were analyzed

using gel electrophoresis to check for degradation and RNA contamination. Library

preparation and sequencing were performed by The Texas A&M Genomics Center

for sequencing on the Illumina HiSeq 2000 platform using 100 bp single-end reads.

An average of 286-fold coverage was obtained for each isolate. Reads were assembled

against the MG1655 reference genome and each mutant genome was compared to the

parental sequences to identify any de novo mutations. The approach to mutation

verification depended on the type of mutation; 11 SNPs and deletions were verified

with Sanger sequencing and other large deletions were verified with junction-specific

PCR.

4.3.8 Transcriptional analysis

Two biological replicates of A2, A4, G2, G3, G5, and G6 were used for microarray

analysis. Two colonies of each strain along with the 2xOriT (A parent) and Hfr-

2xSFX- (G parent) were inoculated into glucose minimal media supplemented with

tryptophan and grown overnight at 37 ◦C with shaking. 500 µl of each overnight was

diluted 50-fold (OD≈ 0.02) into 250 ml baffled flasks containing 25 ml of glucose min-

imal media, supplemented with tryptophan and 0.55 M NaCl. Samples were grown

at 37 ◦C and 225 rpm until reaching an OD ≈ 0.5, then harvested by rapid filtration

using Nalgene Analytical filters and immediate resuspension in 10 ml of RNALater

(Sigma). DNA-free total RNA was extracted using the Quick-RNA Miniprep kit

(Zymo Research) according to the manufacturer’s protocol. RNA was quantified

using the Qubit RNA BR assay (Life Technologies), and quality was assessed using

agarose gel electrophoresis. cDNA was then generated from 5 µg of sample RNA us-
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ing Superscript III (Life Technologies) with added 300 µM amino-allyl dUTP (Fisher

Scientific), 200 µM dTTP, and 500 µM of dATP, dCTP, and dGTP (Promega) to al-

low for indirect labeling. Following ethanol precipitation to remove unincorporated

nucleotides, samples were labeled with Cy3 or Cy5 (GE Amersham) as required,

and then hybridized onto E. coli V2 gene expression microarrays (Agilent Technolo-

gies). Microarray slides were washed and scanned (Axon 4200A) as specified by the

manufacturer. Microarray data were then normalized using the LOWESS algorithm

using MIDAS [285] and analyzed for statistical significance using the rank product

method implemented in TM4 MeV [285]. Gene ontology enrichment analysis was

performed using the DAVID software package [89] using the default settings. Mi-

croarray data are deposited in the Gene Expression Omnibus (GEO) under accession

number GSE51611.

4.3.9 Screening genes of interest

Based on genomic data, 15 genes were selected for fitness assays in batch cul-

tures to determine their benefit under conditions closely matching the evolution

experiment. Overexpression plasmids were obtained from the ASKA GFP(-) col-

lection [170], miniprepped from the AG1 host using the Zyppy miniprep kit (Zymo

Research), and transformed into chemically competent BW25113 using standard

procedures. For compensatory assays, NagA, NagC, ProV, and FimA overexpres-

sion plasmids were transformed into mutants with possibly inactivating lesions in

these genes. Knockout strains were procured from the Keio collection [53] as needed.

The kanamycin resistance (kanR) marker on each knockout strain was flipped out

by transformation with pCP20 and incubation at 43 ◦C overnight using the Dat-

senko and Wanner method [83] as needed. Strains with multiple defined knockouts

were generated using serial P1vir transduction (donated generously by Dr. Deborah
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Siegele) and flipping to allow for reuse of the kanR marker. Fitness assays were

conducted in screw-cap tubes with 5 ml of M9 minimal medium, supplemented with

glucose, tryptophan and 0.55 M NaCl. Optical density readings were taken every

two hours until exponential growth had been sustained for at least 3 doublings. Fit-

ness of the overexpression and knockout strains relative to the appropriate references

(empty vector controls for the overexpression strains, BW25113 for knockout strains)

was then calculated using Equation 4.1. Three biological replicates per strain were

analyzed.

4.3.10 Indole measurements

The G2, G3, G5, G6, A2, and A4 mutants, along with the Hfr-2xSFX- and 2xOriT

parental strains, were grown in M9 medium supplemented with 0.55 M NaCl, 0.5%

(w/v) glucose, and 50 µg/ml tryptophan until reaching stationary phase. Extracel-

lular indole concentrations were measured using standard procedures with Kovac’s

reagent [95]. Briefly, 1 mL of each culture was pelleted and the supernatant trans-

ferred to a fresh tube. Kovac’s reagent (10 g p-dimethylaminobenzaldehyde, 50 ml

hydrochloric acid, and 150 ml amyl alcohol) was then added to the supernatant and

allowed to react. 100 µl of the indole layer was then removed by pipetting and di-

luted into 900 µl of HCl-amyl alcohol mixture. The OD540 of each diluted mixture

was read using a Tecan Infinite M200 reader. Indole concentrations were calculated

using a standard curve measured at the same time. Two biological replicates were

used for each measurement, and the experiment was performed twice for a total of 4

biological measurements.
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4.4 Results and Discussion

4.4.1 Adaptive evolution under NaCl challenge

Six replicate populations of 2xOriT, Hfr-2xSFX+, and Hfr-2xSFX- were sub-

jected to gradually increasing NaCl concentration (0.55 M up to 0.75 M) over the

course of approximately 150 generations. Over this time course, significant fitness

improvements were observed in all evolving populations (Figure 4.1) indicating the

successful selection for adaptive mutants in each population. When compared to the

observed rates of fitness improvement in the 2xOriT populations (4.54·10−3/gen), the

improvement in rates in Hfr-2xSFX+ and Hfr-2xSFX- populations are significantly

larger (7.35 · 10−3/gen and 6.70 · 10−3/gen, P < 0.003, Student’s t test). However, it

is possible that due to the initial higher sensitivity of the Hfr strains to NaCl, mu-

tants with larger fitness improvements tended to arise in the sexual populations as

a result of stronger selection, leading to an apparent increase in the adaptation rate

independent of recombination. Interestingly, many of mutant isolates from the Hfr-

2xSFX- populations had higher relative fitness values than those from the 2xOriT

populations, though on average, the difference between the mutant isolates was not

significant. All populations reached similar phenotypic endpoints by the conclusion

of the experiment.

Evolving populations are generally genetically heterogeneous and therefore con-

tain competing mutant lineages that have arisen independently. Clonal interference

will generally reduce this diversity, possibly resulting in a more narrow distribution

of mutant fitnesses within asexual populations. To test this hypothesis, we isolated

random clones from the Hfr-2xSFX- and 2xOriT populations to evaluate the degree

of fitness heterogeneity within each population and to determine whether horizontal

gene transfer had a detectable effect on the population structure. The fitness dis-
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Figure 4.1: Average fitness improvements for the Hfr-2xSFX-, 2xOriT, and Hfr-
2xSFX+ populations, relative to the 2xOriT parent strain during adaptive evolution
in the presence of high sodium chloride concentrations. Fitness is defined as S =
µpop/µ2xOriT − 1 in this case. Error bars are 95% confidence intervals using the
Student’s t distribution.

tributions for these populations, shown in Figure 4.2, show that Hfr-2xSFX- lines

tended to have slightly higher mean relative fitness but with significantly more vari-

ance than the 2xOriT replicates at a high level of significance (P = 1.81 · 10−4,

Kolmogorov-Smirnov test). Genetic diversity within Hfr-2xSFX- lines may therefore

be greater than that of the 2xOriT populations; a likely explanation is that horizon-

tal gene transfer reduces the extinction of beneficial clones due to clonal interference

and drift, resulting in a maintenance of heterogeneity that is less likely to occur in an

asexual system [111, 300]. However, as all populations reached similar fitness end-
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points during the experiment, further adaptation beyond that observed here could

be mutation limited. Overall, all populations increased their growth rate in 0.65 M

NaCl by approximately 40% by the final serial transfer, which compares favorably

with previous examples of NaCl-tolerant E. coli [97]. No loss of mating competence

was observed in the Hfr-2xSFX(+,-) populations over the course of the experiment.
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Figure 4.2: Histogram of relative fitness (to 2xOriT) in randomly screened isolates
from six Hfr-2xSFX- and 2xOriT populations. All isolates were challenged with 0.65
M NaCl. Differences in the underlying fitness distributions in the Hfr-2xSFX- and
2xOriT populations are highly significant (P = 1.81 · 10−4, Kolmogorov-Smirnov
test).

4.4.2 Mutant characterization

At the end of the evolution experiment, a single randomly isolated clone from

each Hfr-2xSFX+ (H1-H6), Hfr-2xSFX- (G1-G6), and 2xOriT (A1-A6) population

was subjected to detailed analyses to identify any novel phenotypes that arose dur-

ing evolution. This isolation procedure ensures independence between the observed

mutations. All mutants had significant improvements in relative fitness under NaCl

(Figure 4.4A), though is it possible that mutations that enhance growth in minimal
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medium [71] are responsible for the apparent tolerance increase. The relative fitness

of each isolated mutant was therefore measured in minimum medium without NaCl

challenge. Several isolates (G3, G4, H4, and H6) did exhibit small improvements

in growth rate versus a 2xOriT reference in the absence of NaCl (data not shown).

When the observed general fitness benefits were accounted for by calculating their

relative improvements under NaCl stress in Figure 4.3, all four mutants remained

significantly more tolerant than the unevolved 2xOriT strain. so these strains likely

acquired mutations beneficial to both growth in minimum medium and in NaCl chal-

lenged conditions. In light of the improved NaCl tolerance of the mutants, we also

examined their ability to withstand prolonged shocks under hyperosmotic conditions

(5.5 M NaCl). While most mutants had no improvements in survival relative to

2xOriT under these conditions (data not shown), G3, G6, and H6 rapidly lost via-

bility, exhibiting a 10-fold or more decrease in shock tolerance. It is possible that

survival under extreme NaCl concentrations versus growth at lower concentrations

requires divergent adaptive mechanisms. However, all of the mutants are capable

of growth at 0.85 M NaCl, a concentration that completely inhibits growth of the

2xOriT and Hfr parent strains.

In an attempt to further improve the observed NaCl tolerance levels of the mu-

tants, we utilized a short-term mating experiment where the G1-G6 isolates were

mixed together to facilitate genetic transfer, and then propagated under NaCl selec-

tion for five days. Surprisingly, analysis of clonal isolates from the mixed G popula-

tion revealed that the fittest clones were no better than the original fittest Hfr-2xSFX-

mutant G6 (data not shown). One explanation for this apparent failure is that the

NaCl tolerant Hfr isolates lost their conjugation proficiency during evolution, but all

Hfr isolates were able to successfully conjugate a chromosomally integrated gentam-

icin resistance gene to a F- recipient. Genome sequencing (discussed in detail below)
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strain, after normalizing for difference in unchallenged growth rates. Error bars are
95% confidence intervals using the Student’s t-distribution.

revealed that many of the G mutants have mutations in close proximity or actually

overlapping in the case of the independent nagC mutations. Recombination events

capable of combining these genotypes are therefore rare [112, 143, 119]. Negative

epistasis between other mutations may have also prevented successful generation of

recombinants.

4.4.3 Osmotic tolerance and other complex phenotypes

Cross adaptation is a phenomenon where a strain evolved for resistance to a

specific stressor also exhibits improved growth in the presence of other inhibitors [97].
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Resistance to osmotic stress is known to affect other phenotypes of industrial interest,

such as n-butanol or low pH tolerance [97, 267] and growth at elevated temperatures

[77]. Growth assays of the mutants growing in the presence of inhibitory levels of

glucose, 0.8% n-butanol, low pH, and thermal stress (Figures 4.4B-E) revealed that

the observed tolerance phenotypes are mostly specific to NaCl resistance alone, at

least based on the tested stressors. The G3, G4, H4, and H6 isolates all exhibit

increased tolerance of glucose levels known to trigger osmotic stress responses in E.

coli [259]. However, G3, G4, and H6 are also significantly more sensitive to thermal

stress. Glucose and thermal tolerance levels of the other isolates were generally

similar to or slightly below that of the wildtype reference, so it is unlikely that there

is a fundamental incompatibility between osmotic tolerance and these phenotypes in

general. The acid tolerance of the mutants varied widely for the Hfr mutants, with

G5 and G6 exhibited large (25-37%) declines in fitness under this stress condition.

Significant but small decreases in relative fitness under acid stress were also observed

in all A mutants. These results imply that there is some degree of antagonistic

pleiotropy between tolerance of high osmotic pressures and acid stress, but additional

investigation is needed to confirm this hypothesis.

Interestingly, no isolate had improved n-butanol tolerance in this case, contrary

to previous examples of n-butanol-osmotic stress cross adaptation [269, 97]. The

reasons for this apparent incompatibility are unclear, especially given that Dragosits

et al. observed a slightly increased level of n-butanol tolerance in an isolate evolved

under continuous 0.3 M NaCl stress [97]. Stronger NaCl selection could disfavor

mutations that also improve n-butanol resistance, as it is reasonable to expect that

different levels of osmotic stress select for distinct adaptive mechanisms. N-butanol

tolerance is also not always associated with improved osmotic stress resistance in

evolved mutants [267], so there are at least some adaptive paths on both the NaCl
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and n-butanol landscapes that lead to divergent tolerance phenotypes. The overall

lack of significant cross adaptation for the isolates in this case indicate that specialist

mutants with adaptations specific only to NaCl tolerance are favored under these

evolutionary conditions.

4.4.4 Genetic patterns of adaptation

In order to better understand the genetic bases for the observed osmotolerance

phenotypes and to compare adaptive mechanisms between the sexual and asexual

populations, we selected the A1-A6 (2xOriT parent) and G1-G6 (Hfr-2xSFX- par-

ent) isolates for genomic sequencing. A complete list of mutated genes, their putative

functions, and structure of each mutation in the isolates is given in Table 4.2. Many

isolates (8/12) harbor likely inactivating frameshifting mutations or large deletions

within the n-acetylglucosamine (NAG) catabolic operon (nag), either in the gene

encoding the transcriptional repressor nagC or the deacetylase nagA. Amino sugar

catabolism may therefore have been altered in these strains. Though this adaptation

has not been previously observed in strains evolved under continual osmotic stress,

NAG forms a crucial component of peptidoglycan [330], and it is readily conceivable

that adaptation to high osmotic stress would involve alterations to cell wall biosyn-

thesis or peptidoglycan recycling. Disabling nag may be an effective way of increasing

intracellular NAG pools for additional peptidoglycan synthesis. Mutations affecting

glucosamine-6-phosphate biosynthesis have also been identified in evolved isobutanol

tolerant E. coli [14], so this may be a common mechanism of adaptation to certain

membrane-disrupting environmental conditions. Given that nagA is essential for the

use of NAG as a carbon and energy source [146], we assayed the mutants along with

defined nagC and nagA deletion strains from the Keio collection [17] for growth on

minimal NAG agar. Mutants A1, A2, and A3, all containing mutations in nagA,
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were unable to metabolize NAG as a sole carbon source, as expected from previous

results in the literature. G4 unexpectedly failed to grow as well, despite the fact that

the strain has no mutations affecting NAG genes; it is possible that this strain has a

large genomic rearrangement affecting nag expression that was not detected in our

analysis.

The independent mutations in nagA, nagC, and nagCD, along with the inability

of G4 to metabolize NAG as a sole carbon source, point toward two distinct adap-

tive routes to improve osmotic tolerance that involve NAG metabolism. Figure 4.5

depicts the functional roles of NagA and NagC in controlling this pathway; NagD is

a general ribonucleotide monophophatase that is not required for NAG catabolism

despite being present in the nag operon. Following the transport of NAG into the

cell via the phosphotransferase system (PTS), NagA deacetylates NAG-6-phosphate

into glucosamine-6-phosphate that can then be used for anabolism or peptidoglycan

synthesis [253, 146]. This reaction is absolutely required for the assimilation of NAG

into peptidoglycan synthesis and central carbon metabolism, so the inability of G4,

A1, A2, and A3 to grow on NAG as the sole carbon source confirms that NagA

activity in these strains has been abolished.

In contrast to the critical role of NagA in assimilating NAG, NagC is the negative

regulator of the nag operon [247]; it is not required for NAG catabolism, and its

inactivation generally results in upregulation of the other nag operon members [252].

While transcriptional analysis of several of these mutants under osmotic stress (see

below) did not detect increased expression of nag genes, the relative ubiquity of

nagC or nagCD mutations in the A and G strains indicates that the inactivation

through large deletions or small indels of nagC may have some fitness benefit under

NaCl challenge. All of the nagC mutants (G2, G5, A4, A5, and A6) are capable of

using NAG as a sole carbon source as well, unlike the NAG(-) mutants (G4, A1, A2,
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Figure 4.5: Summary of n-acetylglucoasmine (NAG) catabolism in E. coli. Path-
way information adapted from Peri et al. [249], Yadav et al. [354], and Eco-
cyc [166]. Metabolite abbreviations: NAG, n-acetylglucosamine, NAG-6P, NAG-6-
phosphate, GlcN-6P, glucosamine-6-phosphate, GlcN-1P, glucosamine-1-phosphate,
UDP-GlcNAc, uridine diphosphate NAG, Fru-6P, fructose-6-phosphate. Protein
abbreviations: NagE, NAG PTS permease, NagA, NAG-6 phosphate deacetylase,
NagB, glucosamine-6-phosphate deaminase, NagC, DNA-binding transcriptional
dual regulator, GlmS, L-glutamine:D-fructose-6-phosphate aminotransferase, GlmM,
phosphoglucosamine mutase, and GlmU, fused NAG-1-phosphate uridyltransferase
glucosamine-1-phosphate acetyltransferase. Arrows indicate chemical or transport
reactions while bars indicate repression of transcription or activity.

and A3). Despite their opposite effects on NAG catabolism, both nagA and nagC

deletions have been shown to affect surface fibers synthesis, including curli [23] and

fimbriae [302] due to the accumulation of intracellular NAG-6-phosphate. Though

fully elucidating the molecular mechanisms of each adaption is beyond the scope

of this work, further investigation into both nagC and nagA mutations and their
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Table 4.2: Mutations identified with genome sequencing
Strain Gene(s) Function Type Location
G1 nmpC /essD outer membrane protein, holin SNP Intergenic

cadB lysine, cadaverine transporter SNP A171A
G2 nagCD NAG metabolism Del. Coding (-715bp)

yhdP Unknown SNP L318R
G3 rpoC ‡ β’ subunit of RNAP Dup. Coding (2x84bp)

treR Trehalose regulator SNP S61S
G4 rpoC ‡ β’ subunit of RNAP Dup. Coding (2x84bp)

hisC ‡ Histidine biosynthesis SNP T170P
G5 nagC NAG metabolism Del. Coding (-1bp)
G6 mrdA‡ Penicillin binding protein 2 SNP Q51L

rpsA‡ 30S protein S1 SNP Q421K
ydjK Predicted transporter SNP P17S

A1 nagA NAG-6P Deacetylase Del. Coding (-1bp)
bcr Multidrug efflux transporter SNP S8A
mreB‡ Actin homolog SNP I336L

A2 nagA NAG-6P Deacetylase Del. Coding (-1bp)
mreB‡ Actin homolog SNP T171S

A3 nagA NAG-6P Deacetylase SNP A203E
proV Glycine betaine transporter IS1 Coding (+9bp)
msrB Methionine sulfoxide repair SNP C118F
fimA Fimbrae A IS186 Coding (+6bp)

A4 nagCD NAG metabolism Del. Coding (-1570bp)
proV Glycine betaine transporter IS1 Coding (+4bp)
yejM ‡ Predicted hydrolyase Dup. Coding (2x9bp)

A5 nagC NAG metabolism Del. Coding (-2bp)
mreB‡ Actin homolog SNP S185F
fimA Fimbrae A IS186 Coding (+6bp)

A6 nagC NAG metabolism Ins. Coding (+1bp)
mreB‡ Actin homolog SNP K96Q
bglB Phospho β-glucosidase Del. Coding (-1bp)
yobF /yebO Stress, predicted protein SNP Integenic

List of mutations found in each strain (G1-G6, A1-A6) relative to their respective
parental genotypes. NAG: n-acetyl-glucosamine. ‡: known essential genes (in
general and in glucose minimal media supplemented with tryptophan specifically).
The rpoC duplication in G3 and G4 duplicates amino acid 370 to 396
(KKMALELFKPFIYGKLELRGLATTIKA) in domain 2 of the protein [258].
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relationship with osmotic tolerance would shed additional light on their roles in this

context.

Besides alterations in NAG metabolism, genes encoding cell shape regulators

are frequently mutated in the evolved strains. Non-synonymous single nucleotide

polymorphisms (SNPs) in the cell shape regulating actin homolog mreB [327] and

the peptidoglycan transpeptidase mrdA genes [157] were identified in five different

mutants, suggesting that changes in cell morphology might also reduce osmotic stress

on the cell. Microscope examination of the affected strains showed no observable

difference in cell shape compared to parental controls (data not shown), however.

It is difficult to speculate on how nag and mreB mutations might interact in the

A1, A2, A5, and A6 mutants, as they affect related but distinct cellular processes;

changes in mreB -chromosomal interactions may result in altered cell division or

chromosomal segregation, which may in turn affect the amount of NAG precursor

generated from peptidoglycan recycling. Based on the presence of mutations in

these genes and NAG metabolic perturbations, changes in regulators of cell shape,

and peptidoglycan synthesis may be important for improving osmotic tolerance at

higher NaCl concentrations.

While both groups of mutants had similar mutation rates (see Methods), transpo-

son insertions in fimA (type I fimbriae) and proV (the ATP binding cassette for the

proVXW glycine betaine transporter) were only observed in the A strains. Fimbrial

components, including fimA, are highly upregulated under osmotic stress [301], and

a mutation that inactivates fimA presumably results in conservation of carbon and

energy. The relationship between nagA, nagC and surface fiber expression may also

play a role in the adaptive benefit of fimA inactivation, as the fimA insertions in A3

and A5 are associated with nag mutations as well. The inactivation of proV is more

peculiar, given its extensively studied role in importing osmoprotectants into the cell
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[202, 165]. Nonsense mutations affecting proV have been previously observed in an

osmotolerant adaptive mutants [97], confirming that proV is under negative selec-

tion in hyperosmotic glucose minimal media. Several mutants do exhibit increased

transcription of one or more proVXW genes relative to 2xOriT under osmotic stress

(Table 4.3), in line with previous reports [337, 25]. Given the lack of glycine betaine

in the evolution media, coupled with the inability of E. coli to synthesize this par-

ticular osmolyte without exogenous choline [311], expression of proV at a high level

should be ineffective in reducing osmotic stress under these conditions. Interestingly,

no mutations in fimA and proV were observed in any of the G strains. Gene ex-

pression data for A2 and A4 revealed high expression of genes encoding IS1, IS3,

and IS186 transposases, which may account for the IS1 and IS186 insertions that

were detected in these genes. At the same time, no significant changes in relative

transposase transcript levels were detected in the G strains. While transposon ac-

tivation is a well-known response to environmental stressors [50, 323], it is unclear

why transposase upregulation would be limited to the A strains.

Mutations in several other genes, while not specifically known to affect osmotic

tolerance, were also detected. The rpoC subunit of RNA polymerase, responsible for

all gene transcription in E. coli, was found to have an 84 bp in-frame duplication in

the G3 and G4 isolates of amino acids 370 to 396. The duplications occur in region 2

of the protein, which is responsible for RNA polymerization [258]. Given the role of

rpoC in promoter recognition and sigma factor binding [166], this mutation should

result in significant transcriptional and ultimately phenotypic alterations. Muta-

tions in rpoC (along with rpoB) have been observed previously in other long-term

evolution studies [71] as well, indicating that a wide-range of phenotypes can be im-

proved via alteration of RNA polymerase components. A small in-frame duplication

was also observed in the essential but uncharacterized hydrolase gene yejM, but the
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effect of this mutation is unclear. A range of SNPs in intergenic regions and the

coding sequences of various other genes were also detected, including a synonymous

substitution in treR, negative regulator of trehalose biosynthesis [166].

In order to better understand the effect of these mutations on osmotolerance, we

performed three tests to quantify the fitness effect of gene overexpression, compensa-

tion, and knockout on an unaltered host strain (BW25113) and the isolated evolved

mutants. Eleven genes (nmpC, yobF, ydjK, mreB, fimA, nagC, nagA, proV, treR,

ydhP, and cadB) were selected for overexpression studies due to their frequency of

mutation or nearby intergenic or synonymous SNPs (results shown in Figure 4.6A).

Of all genes tested, only ydjK overexpression conferred a statistically significant

improvement in osmotolerance. YdjK is annotated as a putative metabolite trans-

porter, and due to the inclusion of tryptophan in the evolution media, we reasoned

that it might be an uncharacterized tryptophan transporter. However, a comparison

between the growth rate of BW25113/pYdjK and an empty control vector with and

without tryptophan (in the absence of NaCl) revealed no growth benefit for the over-

expression strain (P = 0.25, Student’s t-test). The true substrate of YdjK remains

therefore unclear. As expected from their repeated inactivation during adaptive evo-

lution, overexpression of proV, nagC, or nagA is somewhat deleterious under these

growth conditions. Although fimA underwent transposon insertions in several inde-

pendent mutants, its overexpression from the ASKA construct (via promoter leakage

in the absence of IPTG induction) did not have a significant effect on host fitness

under these conditions.

Likely inactivating mutations in a small set of genes, including nagC, nagA, fimA,

and proV, were identified in several of the G and A mutants. Various combinations

of these mutations were found in the adaptive mutants, suggesting the presence of

potential epistatic interactions that affect osmotic tolerance. We tested this hypoth-
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esis by systematically reconstructing double and triple mutants containing defined

nagA or nagC disruptions, along with knockouts in fimA and proV, using the cor-

responding Keio collection strains [53]. Given their proximity on the genome, nagA

and nagC could not be simultaneously disrupted by transduction from the appro-

priate Keio collection mutant [17]. Figure 4.6B shows the relative fitness of these

knockout mutants versus an unmodified BW25113 strain. Of the single mutants,

only the ∆(proV ) strain is fitter than reference. Interestingly, nagA knockout has

a large negative impact on strain fitness, suggesting that the insertion and deletion

mutations identified in the sequenced mutants were not completely inactivating or

the inactivation of nagA has a positive synergistic effect with other mutations in

these mutants. As potential evidence for the presence of synergistic interactions

between mutations, double knockouts of ∆(nagC ) and ∆(proV ), or ∆(nagA) and

∆(fimA) were found to be beneficial in the presence of NaCl challenge. Among the

triple knockout mutants, only the ∆(nagC ) ∆(fimA) ∆(proV ) showed improved os-

motolerance relative to BW25113. These combinations did not occur in the adaptive

mutants, and it is possible structural differences between the defined knockouts and

mutations in the osmotolerant isolates could influence these results. Overall, as was

the case with overexpression analysis, these results confirm that these four genes

affect the E. coli osmotolerance phenotype.

An additional way of confirming that the mutations in nagA, nagC, proV, and

fimA play a role in modulating osmotolerance is to complement (via plasmid trans-

formation) the mutations in the mutated strains, and then reassay their fitness under

osmotic stress. The results of this test are shown in Figure 4.6C-D, and indicate that

the effect of complementation depends heavily on the genetic background of the par-

ticular mutant. Relative fitness of only two nagC mutants (G5 and A4) out of five

are decreased by nagC overexpression, whereas nagA complementation decreased os-
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motic tolerance of A1-A3. The structures of the nagC mutations do vary significantly

between the mutants, which may explain the lack of concordance in complementation

results. Complementing the proV mutations in A3 and A4 had no significant fitness

effect. While fimA overexpression decreased the fitness of A3, it also improved the

fitness of A5 slightly, despite their identical IS186 insertions into the gene. It is likely

that genetic differences between the various mutants and interactions between other

mutations not screened in this assay also play a significant role in determining the

fitness impact of gene complementation.

Though genome sequencing has revealed several novel loci involved with osmotol-

erance, the genotype-phenotype relationship remains unclear. To gain a more com-

plete understanding of how these mutations translate into improved osmotic stress

tolerance, we applied microarray technology to several A and G mutants with dis-

tinct underlying mutations to identify transcriptional perturbations that may result

from their underlying mutations or altered stress responses.

4.4.5 Mutation-induced transcriptional perturbations

Six mutants were selected for transcriptomic analysis: G2, G3, G5, G6, A2, and

A4; these mutants were chosen due to their distinct underlying genotypes and varied

levels of osmotolerance, and therefore likely to have diverse adaptive mechanisms.

The mutants and the parental references were grown under NaCl selection in order

to specifically identify transcriptional changes associated with the osmotic stress re-

sponse. A total of 432 overexpressed and 479 downregulated genes were identified in

at least one mutant. Though each mutant has a unique expression profile, significant

similarities exist between the differentially expressed genes in all strains. Analysis of

gene ontology revealed significant enrichment and depletion of different membrane

related genes (P < 10−6), suggesting that membrane remodeling may contribute to
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Figure 4.6: Batch growth screening of overexpression, knockout, and compensatory
strains to identify their osmotolerance phenotypes in glucose minimal media sup-
plemented with 0.55 M NaCl. A) Fitness of overexpression strains relative to the
empty vector pCA24N control. Only ydjK expression results in a significant im-
provement of NaCl tolerance. B) Fitness of knockout strains relative to BW25113;
strain genotypes are denoted as follows: ∆(nagC ) = C, ∆(nagA) = A, ∆(fimA) =
F, and ∆(proV ) = P. C) Overexpression of NagC, NagA in mutants with possibly
inactivating mutations in these genes; fitness is relative to the corresponding mutant
with pCA24N. D) Overexpression of FimA, ProV in mutants with possibly inacti-
vating mutations in these genes, with the empty vector as a reference. All error bars
are 95% confidence intervals based on the Student’s distribution.

osmotolerance. High expression levels of genes involved with cell envelope mainte-

nance were also observed in G2, G3, G5, and G6, which may indicate an attempt to

counteract NaCl-induced dessication. Because of the improved growth rates of the

mutants under osmotic selection, ribosomal genes were overexpressed in each mutant
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as a result of the known linkage between growth rate and rRNA abundance [228],

and thus were excluded from further analysis.

Genes commonly upregulated in these mutants, along with those representing pos-

sibly novel adaptive mechanisms, are listed in Table 4.3. Several functional clusters

possibly related to osmotic tolerance are immediately evident. The gene encoding

AcrZ, a small protein associated with the AcrAB-TolC efflux pump complex known

to affect AcrB substrate recognition [145], is upregulated in all mutants except A4.

It is unclear how AcrZ may perturb AcrB activity under osmotic stress, but given

the ubiquity of this response, it may be an important transcriptional adaptation.

Sulfonate transport and metabolism genes (tauABC, ssuEADC ) are also frequently

upregulated in the mutants. Ordinarily these proteins are intended to scavenge sulfur

from the environment, but under osmotic stress, they can also import osmoprotec-

tants such as taurine [328]. This upregulation cannot be explained as simple sulfur

starvation as the mutants and references were in exponential growth before RNA har-

vesting. The evolution media used in this study does not contain sulfonates, but it is

possible that these transporters are capable of importing other metabolites into the

cell. The proVXW operon, positively regulated by hyperosmotic conditions [202], is

also overexpressed by G3 and G5, though proX and proW are also overexpressed in

A4, G3, G5, and G6. This expression pattern may explain the fitness benefit of proV

deletion found in A3 and A4 in terms of energy conservation, as discussed previously.

Though the 2xOriT and Hfr-2xSFX- parental strains are for the most part iso-

genic, the latter is a tryptophan auxotroph due to insertion of the tra operon into the

trp locus [324]. These four G strains all exhibited overexpression of the tryptophan

transporter tnaB, presumably in an effort to improve uptake of the amino acid from

the bulk medium to compensate for their tryptophan auxotrophies. The tryptophan

catabolism gene tnaA is also highly upregulated, as has been previously observed in
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Table 4.3: Overexpressed genes of interest
Gene COG Function Strain(s)

acrZ - Cell envelope stress response A4,G2,G3,G5,G6
ssuD C Alkanesulfonate monooxygenase G2,G3,G5,G6
proV E Glycine betaine transporter subunit G3,G5
proW E Glycine betaine transporter subunit A4,G6
proX E Glycine betaine transporter subunit A4,G3,G5,G6
tnaA E Tryptophanase/L-cysteine desulfhydrase G2,G3,G5,G6
tnaB E Tryptophan transporter of low affinity G2,G3,G6
entC HQ Isochorismate synthase 1 G3
acs I Acetyl-CoA synthetase G5,G6
ymdC I Cardiolipin synthase 3 G2
fabF IQ 3-oxoacyl-[acyl-carrier-protein] synthase II G6
nagC KG Repressor of NAG operon A4,G2
arnC M Undecaprenyl phosphate-L-Ara4FN transferase A2,A4
lpp M Murein lipoprotein A2,A4,G2,G3
ompA M Outer membrane porin A G2
ompC M Outer membrane porin C G2,G3,G5,G6
ompG M Outer membrane porin G A2,A4
ompL M Outer membrane porin L A2,A4
ompX M Outer membrane protein X A2,A4,G3,G5
feoB P Fused ferrous iron transporter G5
fepG P Iron-enterobactin transporter subunit G5
fiu P Catecholate siderophore receptor Fiu G3
ssuA P Putative aliphatic sulfonate binding protein G2,G3,G5
ssuC P Putative alkanesulfonate transporter subunit A2,A4,G2,G3,G6
tauA P Taurine transporter subunit G3,G6
tauB P Taurine transporter subunit G2,G3,G6
tauC P Taurine transporter subunit A4,G2,G3,G5,G6
entE Q Enterobactin synthase complex component G3
entF Q Enterobactin synthase complex component G3,G5
entH Q Thioesterase for efficient enterobactin production G3
tauD Q Taurine dioxygenase, 2-oxoglutarate-dependent G3,G6
fadM R Long-chain acyl-CoA thioesterase III G2,G3,G6
ssuE R NAD(P)H-dependent FMN reductase G2,G3,G5,G6
ydcH S Predicted protein G2,G3,G5,G6
yodC S Predicted protein G2,G3,G5,G6
csrA T Carbon source metabolism regulator G2,G3,G5

Overexpressed genes of interest for A2, A4, G2, G3, G5, and G6 as identified with
microarray analysis. The overexpression of these genes is statistically significant at a
P ≤ 0.01 level, as calculated by the rank product method developed by Breitling et al.
[39].
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media containing tryptophan [167]. TnaA converts tryptophan into pyruvate and

indole, the latter being a potent signaling molecule involved with biofilm and cell

cycle regulation [135, 188, 57, 91]. This common upregulation could simply be the

result of the inherent tryptophan auxotrophy of the G mutants coupled with their

increased metabolic activity under osmotically stressful conditions, though previous

evolutionary engineering studies have identified tnaA mutants with improved toler-

ance to other conditions as well [14, 63].

When the indole concentration in stationary phase culture is measured for these

strains (Figure 4.7), only G2, G5, and G6 exhibit statistically significant increases

(P < 0.05, Student’s t-test) in indole accumulation compared to the ancestral Hfr-

2xSFX- parent. A4 produces significantly less indole (P < 0.045, Student’s t-test)

than its 2xOriT ancestor as well. Despite the fact that G3 has roughly equivalent

upregulation of tnaA transcription to these strains, indole production is similar to

wildtype; it could be that the unusual in-frame duplication in rpoC in this strain

results in increased tnaA transcription, but the resulting mRNA is poorly translated

into protein or degraded rapidly due to post-transcriptional regulation. A recon-

structed prototrophic rpoC mutant does have a significantly increased growth rate

in the presence of tryptophan, which suggests that G3 and G4 have acquired muta-

tions that increase their tryptophan uptake rates during adaptive evolution. We also

tested whether exogenous indole supplementation affected the growth of BW25113

in the presence of 0.55 M NaCl. No statistically significant change in growth rate

was found when indole(-) and indole(+) conditions were compared in this case (data

not shown), so indole accumulation in G2, G5, and G6 may be a secondary con-

sequence of osmotic adaption or improved growth, not a primary driver of fitness

improvement.

Beyond metabolite transporters, several genes involved with the iron uptake
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Figure 4.7: Levels of indole, normalized by biomass density, for G2, G3, G5, G6, A2,
and A4 mutants, along with the G parent Hfr-2xSFX- and A parent 2xOriT. Error
bars are standard deviations. G2, G5, and G6 have statistically significant increases
in indole accumulation versus Hfr-2xSFX- (P < 0.05, Student’s t-test).

(entCEFH, feoB, fepG, fiu) were overexpressed in G3 and G5 as well. Increased

expression of iron transport and metabolism genes have been found in evolved mu-

tants with improved osmotic or n-butanol tolerance [269, 97]. Perturbation of iron

metabolism may therefore be a contributor to osmotic tolerance, though interestingly,

the gene encoding the siderophore receptor fiu is also downregulated in G2 and G6.

Other perturbed genes related with metabolism include the upregulation of csrA,

a global regulator for carbon metabolism [316], which may have significant effects

on central carbon metabolism and glycogen accumulation. Genes involved in mem-

brane composition were also upregulated in many mutants, particularly certain outer

membrane porins (ompACGL) along with the ompX gene. These transcriptional
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disturbances may represent an attempt by the mutants to change membrane-sieving

properties in order to reduce osmotic pressure on the cell. The peptidoglycan-outer

membrane tether gene, lpp (murein lipoprotein), was also overexpressed in four dif-

ferent mutants (A2, A4, G2, G3), which may indicate that the peptidoglycan wall

is more strongly attached to the outer membrane in these mutants to harden the

cell against high external osmotic pressure. Several genes that encode hypothetical

or predicted proteins (ydcH, yodC ) are consistently overexpressed in the G mutants,

but no information about their biochemical roles or relationship with osmotolerance

is known.

In contrast to the relative similarities in gene overexpression under osmotic stress

between these six mutants, less similarity is observed for genes repressed relative

to the parental references (Table 4.4). The few commonly repressed genes include

those coding for several hypothetical or conserved proteins (yegR, ydeMN, rtcB) and

the transcriptional activator ydeO, known to regulate acid resistance in concert with

EvgA [206]. Their repression may be associated with the reduced osmotic stress

experienced by the mutants compared to their parents under these conditions, as

these genes are not known to be directly regulated by osmotic stress. Downregulation

of several siderophores and enterobactin transporters was observed in G2, G5, and

G6, including fepA, which was found to be strongly overexpressed in a previously

evolved osmotolerant E. coli strain [97]. Iron metabolic perturbations are likely to

be distinct in this study due to the much higher osmotic stress used during this

evolution experiment (0.6-0.75 M versus 0.3 M), so it is unlikely that the adaptive

mechanisms favored at lower osmotic pressures would be identical to those observed

here. Transcription of RNA polymerase components (rpoB, rpoC ) is also reduced in

A2 and A4, despite their faster growth rates (ordinarily associated with increased

rRNA and mRNA synthesis) under osmotic stress.
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Table 4.4: Repressed genes of interest
Gene COG Description Strain(s)
yegR - Predicted protein A4,G2,G3,G5,G6
rfaZ - Lipopolysaccharide core biosynthesis protein A2,A4
nagB G Glucosamine-6-phosphate deaminase A4,G2,G3,G5
nagE G NAG PTS enzyme: IIC, IIB, IIA components G2,G3,G5
nagA G N-acetylglucosamine-6-phosphate deacetylase G2,G3
ydeO K Transcriptional activator for mdtEF G2,G3,G5,G6
rpoB K RNA polymerase, beta subunit A2,A4
rpoC K RNA polymerase, beta prime subunit A2,A4
rpoE K RNA polymerase, sigma 24 (sigma E) factor A2,A4
kdsB M 3-deoxy-manno-octulosonate cytidylyltransferase A2,A4
mltD M Predicted lytic murein transglycosylase D A2,A4
ompF M Outer membrane porin 1a (Ia;b;F) G3,G6
wbbK M Lipopolysaccharide biosynthesis protein A2,A4
acrA M Multidrug efflux system G6
flgJ MNO Muramidase G5
fimC NU Chaperone, periplasmic G5,G6
fimA NU Major type 1 subunit fimbrin (pilin) G6
fimD NU Puter membrane usher protein G5
fimG NU Minor component of type 1 fimbriae G5
ydeN P Conserved protein A2,A4,G3,G5
fiu P Catecholate siderophore receptor Fiu G2,G6
cirA P Catecholate siderophore receptor CirA G6
efeO P Inactive ferrous ion transporter EfeUOB G6
fecD P Iron-dicitrate transporter subunit G5
fepA P Iron-enterobactin outer membrane transporter G6
ydeM R Conserved protein G2,G3,G5
rtcB S Conserved protein G3,G5,G6

Repressed genes of interest for A2, A4, G2, G3, G5, and G6. The repression of these
genes is statistically significant at a P ≤ 0.01 level, as calculated by the rank product
method developed by Breitling et al. [39].

As was the case for upregulated genes, repression of genes involved with pep-

tidoglycan and membrane biosynthesis were significantly enriched in the mutant

transcriptomes according to gene ontology analysis. NAG catabolism genes, nagA,

nagB, and nagE, were repressed in A4 and several G mutants, potentially resulting

in increased availability of NAG for peptidoglycan biosynthesis, or at least accumu-
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lation of NAG-6-phopshate in the cytoplasm [23]. The expected effect of increased

nag operon expression due to nagA or nagC inactivation [252] was not observed in

this case. Repression of several other aspects of peptidoglycan or outer membrane

related genes was observed in A2 and A4, particularly those genes involved with cell

wall maturation (mltD, murC ) or lipopolysaccharide synthesis (rfaZ, kdsB, wbbK ).

Membrane remodeling may therefore be a significant adaptive response under these

conditions. Reflecting the improved tolerance of the A mutants, the cell envelope

stress sigma factor rpoE was also downregulated in both A2 and A4 compared to the

2xOriT parent, suggesting that level of osmotic stress experienced by these strains

has lessened as a result of their adaptations. Though the precise functional impor-

tance of these membrane related changes is unclear at this time, the enrichment

of membrane and peptidoglycan related genes in both the genomic and transcrip-

tomic data indicates that membrane remodeling is a significant part of the adaptive

response to constant osmotic stress. Fimbriae synthesis and assembly genes were

also repressed in G5 and G6, lending credence to the hypothesis that fimA inacti-

vation may be part of an energy conservation response during laboratory evolution.

Porin synthesis also is perturbed in G3 and G6 by simultaneous repression of ompF

and overexpression of ompC, as is typically observed under high osmotic pressure

[282, 80].

4.5 Conclusions

These results demonstrate that our previously developed in situ recombination

method is suitable for improving industrially relevant strain characteristics. On a

population level, the sexual populations acquired osmotolerance more quickly than

the asexual controls, though the final phenotypic end points for the populations were

similar. All isolates exhibited high levels of osmotolerance, as expected, and an unex-
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Figure 4.8: Summary of observed genetic and transcriptional responses to contin-
ual osmotic stress in the A) cytoplasm and B) the membrane. Overexpressed and
repressed genes are denoted with red and green text, respectively, while genes with
identified mutations are numbered. A detailed examination of how these responses
relate to the observed osmotolerance phenotype is given in the text. Overall, signifi-
cant changes in outer membrane protein expression coupled with altered amino-sugar
and osmoprotectant metabolism, control of cell shape, and sulfonate transporter ex-
pression appear to be major adaptive mechanisms for the mutants. Abbreviations:
NAG, n-acetyl-glucosamine, CCM, central carbon metabolism, IM, inner membrane,
PP, periplasm, PG, peptidoglycan layer, and OM, outer membrane.

pected lack of cross-adaptation to other stressors such as excess glucose, n-butanol,

low pH, and thermal stress. Genomic sequencing of 6 Hfr-2xSFX- and 6 2xOriT iso-

lates revealed novel mutations in genes related to n-acetylglucosamine catabolism,
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cell shape regulation, uptake of osmoprotectants, and global regulators such as rpoC ;

transcriptional analysis of a select group of mutants allowed for exploration of the

genotype-phenotype connection as well. A complete overview of the observed muta-

tions and transcriptional responses of the adaptive mutants is shown in Figure 4.8.

Membrane and peptidoglycan synthesis, porin expression, sulfonate uptake, and iron

metabolism are all significantly perturbed in various adaptive mutants relative to

their parental references, and might be targets of interest for future studies of this

phenotype. A series of overexpression, knockout, and compensation assays confirmed

that many of genes of interest discovered using genetic affect osmotic tolerance in

an unevolved host. Overall, this study further expands our current knowledge of the

E. coli osmotolerance and should contribute significantly to future rational or evolu-

tionary engineering of this phenotype into industrially relevant strains. Future work

will aim to reconstruct the observed mutations in the A and G isolates in industrial

E. coli strains to determine their effectiveness under typical cultivation conditions.

88



5. TRANSCRIPTIONAL RESPONSE OF LACTOBACILLUS BREVIS TO

N-BUTANOL AND FERULIC ACID STRESSES*

5.1 Summary

The presence of anti-microbial phenolic compounds, such as the ubiquitous cell

wall component ferulic acid, in biomass hydrolysates poses significant challenges to

the widespread use of biomass in conjunction with whole-cell biocatalysis or fermen-

tation. Currently, these inhibitory compounds must be removed through additional

downstream processing or sufficiently diluted to create environments suitable for

most industrially important microbial strains. Product toxicity must also be over-

come to allow for efficient production of next generation biofuels such as n-butanol,

isopropanol, and others from low-cost feedstocks. This study explores the high fer-

ulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often

used in fermentation processes, by global transcriptional response analysis. The tran-

scriptional profile of L. brevis reveals that the presence of ferulic acid triggers the

expression of currently uncharacterized membrane proteins, possibly in an effort to

counteract ferulic acid-induced changes in membrane fluidity and ion leakage. In

contrast to the ferulic acid stress response, n-butanol insult induces genes within the

fatty acid synthesis pathway and reduces the proportion of 19:1 cyclopropane fatty

acid within the L. brevis membrane. Both inhibitors also trigger generalized stress

responses. Separate attempts to alter fatty acid synthesis in Escherichia coli by

overexpressing acetyl-CoA carboxylase subunits and deleting the gene cyclopropane

*Reprinted with permission from ”Transcriptional Analysis of Lactobacillus brevis to n-Butanol
and Ferulic Acid Stresses” by J. Winkler and K.C. Kao, 2011. PLoS One, 6(8): e21438. Copyright
2011 by J. Winkler.
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fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indi-

cating that additional components of the stress response are involved in n-butanol

resistance. Overall, this study identified several promising routes for understanding

both ferulic acid and n-butanol tolerance based on the L. brevis gene expression

data. These insights may guide future engineering of model industrial organisms for

better tolerance of these inhibitors.

5.2 Introduction

Lactobacillus brevis, a fastidious heterofermentative lactic acid bacterium often

used in (and contaminating) fermentation processes [351], possesses multiple indus-

trially advantageous complex phenotypes, including tolerance to short-chain alco-

hols such as ethanol and n-butanol [175, 200, 125], to aromatic organic compounds

[133], and to hops [287]. However, because L. brevis has only recently begun to

be extensively characterized [209, 210, 199, 123, 168, 198], little is known about

the molecular mechanisms responsible for the array of environmental tolerances dis-

played by L. brevis. Of particular interest is tolerance of L. brevis to phenolic com-

pounds generated during the preparation of lignocellulosic biomass for downstream

use [240, 109, 251, 216, 224]. Several studies have examined the high phenolic acid

tolerance of lactic acid bacteria involved in wine making or other fermentation pro-

cesses [49, 326, 306, 266, 276] and have consistently identified resistance to these

compounds as important factors. L. brevis, in particular, has been shown to pos-

sess superior tolerance of phenolic compounds [306, 133]. Improved understanding

of phenolic compound tolerance in L. brevis would therefore be an important step

forward in the industrial use of cellulosic biomass.

Because of its toxicity and abundance in plant biomass [177, 213], ferulic acid

is often used to assess phenolic compound tolerance [133, 62, 105]. Chemical or
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enzymatic treatments of lignocellulosic biomass release ferulic acid as a byproduct

of processing [174, 8]. Ferulic acid is one of the most toxic hydroxycinnamic acids

[276, 266], causing complete inhibition of Clostridia beijerinckii growth at 2 g/L

[106]. Phenolic acids may also damage intracellular hydrophobic sites and cause

ion leakage by altering membrane permeability [75, 105, 48]. The use of cellulosic

biomass consequently requires either microbes with intrinsically higher tolerance of

phenolic compounds or extensive downstream processing [201, 223, 286]. Tolerance

of ferulic acid can thus potentially be a useful indicator of how a given organism will

tolerate the phenolic compounds generated during biomass processing.

Although biomass hydrolysates can be used as the feedstock for many biotech-

nological processes, their use in the production of ethanol, n-butanol, and others is

attracting much attention because of low costs and derivation from crops unsuited

for human consumption [331, 190, 67]. The toxicity of the hydrolysates and the var-

ious fuel alcohols themselves renders efficient production of these compounds from

unprocessed biomass challenging [309]. Production of n-butanol is particularly de-

sirable because of its superior energy content compared to ethanol and compatibility

with existing fuel infrastructure [100, 15]. However, n-butanol tends to partition into

lipid membranes due to its low partition coefficient Pow [329, 158], triggering changes

in membrane fatty acid composition [152, 153] and interfering with cell metabolism

due to its chaotropic properties [329]. Previous studies have shown that the 3%

(v/v) n-butanol tolerance of L. brevis exceeds that of most other strains [175]; thus,

understanding the mechanisms that confer n-butanol tolerance in L. brevis may sim-

plify efforts to engineer this phenotype into industrial strains. A strain tolerating

both biomass inhibitors and n-butanol simultaneously would be advantageous for the

economical production of n-butanol from inexpensive feedstocks.

Numerous studies have attempted to address these roadblocks to n-butanol pro-
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duction by characterizing n-butanol tolerance limits and mechanisms in Escherichia

coli [283], Clostridium acetobutylicum [38, 20, 318, 317, 36], and other organisms

[226, 347]. Given its multiplicity of nutrient auxotrophies and slow growth rate,

L. brevis itself is unlikely to serve as a cost-effective host for most bioprocesses de-

spite having been successfully engineered for n-butanol production [31]. However,

understanding the basis of L. brevis tolerance to phenolic compounds and n-butanol

could provide insights on engineering these desirable characteristics in organisms

more amenable for industrial usage.

While L. brevis transcriptional responses to these stressors may identify numerous

potential genomic loci that may affect inhibitor tolerance, there is no convenient to

screen these loci to determine their role in influencing tolerance. Transferring these

genes to other, more industrially tractable, organisms also poses significant challenges

because of differences in codon usage and promoter structure. Previous studies have

shown that it is possible to expand the E. coli transcriptional repertoire can be

expanded to confer recognition of non-native promoters by expressing heterologous

sigma factors [9, 307, 29], an approach that may viable option for rapidly screening

Lactobacillus genes using a genomic library approach. The sigma factor complexed

RNA polymerase controls initial promoter recognition [130, 352, 132, 43, 46], so this

approach directly modifies the host transcriptional program to recognize promoters

from the original organism. Most microbes contain numerous sigma factors expressed

under a variety of stress or environmental conditions [141], although expression of

genes during exponential growth generally depends on the housekeeping sigma factor

σ70 [239]. It has been previously shown that Lactobacillus sigma factors are functional

in E. coli [360], but the extent to which they can supplant the native sigma factor

is unknown.

This work presents the first transcriptional analysis of L. brevis in response to
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the stressors phenolic acid and n-butanol. It also describes an attempt to engi-

neer the transcriptional machinery of E. coli to use native Lactobacillus promoters.

Given that L. brevis is poorly suited to industrial bioprocesses for the reasons pre-

viously outlined, the primary goal of this study is to identify possible mechanisms

for n-butanol and phenolic acid tolerance for subsequent study in other bacteria

that are more amenable to engineering efforts. The transcriptional profiles associ-

ated with each inhibitor share elements of a generalized stress response, including

the production of protein chaperones, increased transcription of genes involved in

energy metabolism, and a general repression of growth-related functions. Several

mechanisms to explain the transcriptional responses are proposed and, in the case of

n-butanol tolerance, tested in two E. coli strains with modified fatty acid synthesis

pathways. In an effort to expedite the screening of Lactobacillus genes in E. coli,

housekeeping sigma factors from two different Lactobacillus strains were expressed

and E. coli and found to alleviate temperature-sensitive defects in the native σ70,

indicating that heterologous sigma factor expression may be an effective tool for

screening heterologous genomic libraries from other bacteria in E. coli.

5.3 Materials and Methods

5.3.1 Sigma factor identification, cloning, and expression

For sigma factor expression in E. coli, putative σ70 growth factors were identified

on the basis of sequence annotation (Lactobacillus plantarum: LP-1926, L. brevis :

LVIS-0756) [7] for study. Alignment using ClustalW2 program (http://www.ebi.ac.uk/Tools/)

revealed highly conserved regions between these putative σ-factors and the native

E. coli σ70 (σ70
Ec) gene. Heterologous sigma factors were placed under the control

of Plac with the native rpoD ribosome binding site to ensure equivalent translation

efficiency. Primers for these sequences were designed from the E. coli -MG1655, L.
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brevis ATCC 367, and L. plantarum WCFS1 strains using Primer-BLAST [7]. Lac-

tobacillus promoters are known to similar to those of E. coli [215], with the -35 site

consensus sequence: TTgaca and -10 site consensus sequence: TAtAAT. A 17-20 bp

spacer separates the sites. Capitalized letters are conserved more in Lactobacillus.

The low copy number pCL1920 plasmid [193] was used to express the σ70-factors

from L. plantarum and L. brevis in E. coli. First, the 300 base pair region upstream of

the native E. coli rpoD gene containing the native RBS was introduced into pCL1920

to create pCL1920-EcS70 (pCLE). Note that the pCLE plasmid does not contain the

rpoD gene. Subsequently, genes encoding housekeeping sigma factors from L. brevis

and L. plantarum were amplified directly from the corresponding genomic DNA and

purified using the Clean and Concentrator kit (Zymo Research). The fragments were

digested with the appropriate restriction enzymes and ligated into the digested pCLE

plasmid using T4 DNA ligase (New England Biolabs) to create pCLE-σ70
Lb (pCLE-

Lb) and pCLE-σ70
Lp (pCLE-Lp). These expression plasmids were then introduced

into E. coli (BW25113 and 285c) by electroporation (BioRad GenePulser XL) and

plated onto selective media. All PCR cloning steps were performed using the Phusion

polymerase (Finnzymes) and the constructs verified by sequencing (MCLAB Inc).

5.3.2 Bacterial strains and growth conditions for sigma factor expression

E. coli (BW25113 and 285c), Lactobacillus brevis (ATCC 367), and Lactobacillus

plantarum (WCFS1) were used. E. coli BW25113 cultures were grown in LB broth

at 37◦ C; 50 µg/mL of streptomycin was added as necessary. The E. coli mutant

strain 285c with a temperature-sensitive defect in its σ70 protein and the parent

strain P9OA5c [156, 137, 196] were generously provided by Robert Calendar (UC

Berkeley) and cultured at 30 ◦C in LB media and 25 µg/ml streptomycin (if needed)

to prevent selection of reversion in the gene encoding the heat shock sigma factor
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σH [131]. For the complementation assay, the E. coli 285c strain was transformed

with empty pCLE vector or plasmids containing L. brevis or L. plantarum σ-factors.

Cultures were grown overnight at 30◦ C in LB media with 25 µg/ml streptomycin.

The growth of the P9OA5c, 285c/pCLE, 285c/pCLE-Lp, and 285c/pCLE-Lb strains

was monitored spectrophotomerically at 42 ◦C using a TECAN plate reader to assess

the complementation effect of the heterologous sigma factors. Batch studies of growth

at 43.5-46◦C were conducted in a shaking water bath at 200 rpm. M9 minimal media

with 0.5% glucose and 0.52 mM arginine (due to an arg− mutation in the 285c strain)

was used to support microbial growth for the transcriptional studies.

5.3.3 Bacterial strains and growth conditions for transcriptional analysis

L. brevis ATCC367 (American Type Culture Collection) and E. coli BW25113

(CGSC) were used in this study. L. brevis cultures were grown at 30 ◦C and 100

rpm unless otherwise noted. E. coli BW25113 cfa::kan was obtained from the Keio

collection [17]. Overnight cultures used to initiate the time-series inhibition experi-

ments were grown in baffled 250 ml flasks with 25 ml MRS media (Difco) to A600 ∼

1.5-1.8. Three 500 ml baffled flasks with 125 ml MRS media were then each inocu-

lated with 3 ml of overnight culture each and grown to OD600 ≈ 0.4 (mid-exponential

phase) for the ferulic acid and n-butanol challenges. Each culture of L. brevis was

challenged with 0.6 g ferulic acid (24 mM) or 1-2% (v/v) n-butanol. Subsequently,

culture samples were harvested by filtration and resuspended in RNALater (Ambion)

after 15, 75, and 135 minutes to track the short-term response and any long-term

adaptations to either inhibitor. Prior to the addition of ferulic acid, a pooled control

culture that was not exposed to chemical insult was created, harvested, and stored

for use as a reference. Cell samples were stored at -80 ◦C for subsequent analysis.

Three biological replicates were used in this study for the ferulic acid and the 1%
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n-butanol (v/v) stressed cultures, while two biological replicates were used for the

2% (v/v) n-butanol stressed cultures.

5.3.4 Extraction of total RNA

Extraction of total RNA was performed with the ZR Fungal/Bacterial RNA

MiniPrep kit (Zymo Research Corp) as follows: For each time point, 1.5 ml samples

stored in RNALater were pelleted at 16000xg for 20 minutes, and the supernatant

removed by aspiration. The bacterial pellet was then processed according to the

manufacturer’s protocol except that one volume of ice-cold ethanol was used to as-

sist the RNA precipitation. DNAse I treatment was performed in-column as specified

by the manufacturer. The resulting RNA was quantified using the Qubit fluorometer

(Invitrogen). Gel electrophoresis was also used to confirm RNA quality. If necessary,

samples were concentrated using ethanol precipitation and resuspended in 14 µl of

molecular biology grade water.

5.3.5 Labeled cDNA generation and microarray hybridization

The SuperScript indirect cDNA labeling system (Invitrogen) was used to generate

cDNA incorporating amino-allyl dUTP. Cy3 and Cy5 (GE Healthcare) or Alexa Fluor

(Invitrogen) dyes were used to label the cDNA samples. Custom cDNA microarrays

(Agilent) containing 15,209 probes (excluding positive and negative controls) were

designed using the software package Picky [64] to maximize probe specificity and sen-

sitivity under hybridization conditions with the following parameters. All probes are

sixty base pair oligomers with 100% similarity to their corresponding target sequence.

The minimum acceptable ∆Tm between the probe target and other sequences was

set at 15◦ C, with a GC content range between 30-70%. The salt concentration in

the hybridization media was set to 750 mM (personal communication with Agilent).

The arrays contain at least three probes per ORF over 100 bp in length (2,157 ORFs
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total) and 1 probe for every 1050 bp of the L. brevis genome [7]. Probes for the 33

protein coding genes located on the L. brevis megaplasmids were not included in this

study; the majority of these genes are related to plasmid maintenance, mobilization,

or partitioning and are therefore not expected to be relevant for stress tolerance.

Labeled cDNA incubated with the cDNA arrays for 18 hours, washed with Agi-

lent Wash Buffers 1 and 2, and then immediately scanned using a GenePix 4200A

reader according to the manufacturer’s protocol as described for Agilent two-color

prokaryotic microarrays.

5.3.6 Microarray data analysis

The local background intensity was subtracted from the recorded signal from each

array spot. Arrays were then subjected to LOWESS normalization individually using

the MIDAS software package (TM4) [284]. The arithmetic average of the replicate

sample and reference signals were used for downstream analysis [283]. Differentially

expressed (DE) genes were identified for each time point using the rank product

method with a critical p-value P < 0.01 [39]. The currently known functional anno-

tations for L. brevis genes were obtained from the US Department of Energy Joint

Genome Institute, and the number of differentially expressed hypothetical mem-

brane proteins was identified by screening all differentially expressed hypothetical

genes with the trans-membrane hidden Markov model TMHMM algorithm [176]. If

required, BLAST [7] was utilized to determine L. brevis-E. coli homologous gene

pairs. The statistical significance of the differentially expressed gene functional dis-

tributions were assessed using a hypergeometric distribution method [98]. The MeV

(TM4) microarray analysis software was used for clustering and other expression

profile analysis. The raw microarray data is available from the Gene Expression

Omnibus (accession no. GSE24944).

97



5.3.7 Transcriptional target screening

To evaluate the effect of upregulated fatty acid synthesis on n-butanol toler-

ance, E. coli strain HB101(DE3) [305], kindly provided by Zhilei Chen (Texas A&M

University), was transformed with the pMSD8 plasmid containing the AccABCD

synthetic operon (generously provided by J. Cronan) [84] via electroporation in a

Gene Pulser XL (Bio Rad). The growth rate of the HB101(DE3)/pMSD8 strain

was then evaluated in M9 minimal media with 0%-2% n-butanol using an TECAN

Infinite M200 plate reader (TECAN) over a period of 24 hours.

5.3.8 Fatty acid methyl ester analysis

L. brevis cultures were grown to A600 ∼ 0.4 for fatty acid content analysis. Con-

trol cultures were pelleted and the supernatant removed immediately, followed by

storage at -80 ◦C until processing. Experimental cultures were exposed to 2% n-

butanol for 75 min and then stored in an analogous manner. Two biological replicates

were used for each condition. Fatty acid analysis was later performed by Microbial ID

Inc. to identify statistically significant changes in membrane composition following

the n-butanol challenge.

5.4 Results and Discussion

The principal goal of this study was to identify mechanisms that contribute to

ferulic acid and n-butanol tolerance in L. brevis through the application of novel

gene expression microarrays. Cultures in mid-exponential growth were separately

challenged with both inhibitors, and the transcriptional response was monitored to

identify genes that respond immediately to each insult or that show long-term adap-

tation over the experimental time course. Comparing the transcriptional responses

allows for the identification of genes that are expressed in immediately and long-
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term response to general stressors (e.g. protein chaperones) and those genes that are

expressed in response to each stress condition.

5.4.1 Transcriptional response to ferulic acid stress

Following the addition of 24 mM ferulic acid, the transcriptional data revealed

an immediate stress response (summarized in Figure 5.1) in the L. brevis cultures.

The combined functional distribution of upregulated genes (corresponding cluster of

orthologous genes (COGs)) at 15 and 135 minutes demonstrated a marked departure

from that of the reference samples. Genes involved in carbohydrate transport and

metabolism (COG G), transcriptional regulation (COG K), and amino acid trans-

port and metabolism (COG E) underwent severe pertubations as L. brevis adjusts its

transcriptional program to respond to the ferulic acid challenge. The relative change

in expression level of genes that appear most critical to the stress response are pre-

sented in Table 5.1. Many up-regulated genes encode proteins involved in the citric

acid cycle or sugar utilization, such as malate dehydrogenase, fumarase, catabolite

control protein A (ccpA), or sugar transporters. Expression of a NADPH-quinone

oxidoreductase may be an attempt to control excess O−2 levels [76] generated within

an aerobic environment. The phenolic acid decarboxylase (LVIS-0213) of L. brevis

is by far the most overexpressed gene, as would be expected, given the role of this

enzyme in degrading phenolic acids. A up-regulated heat shock protein (LVIS-0112),

conserved in many lactic acid bacteria [7], may participate in folding the heat la-

bile phenolic acid decarboxylase [136, 88, 276, 182]; however, this chaperone is also

expressed in response to n-butanol stress so it is likely a general stress response to

protein mis-folding.

Many of the up-regulated genes detected encode hypothetical proteins with poor

or no functional annotation. However, screening these L. brevis hypothetical ORFs
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Figure 5.1: The essential L. brevis stress response to ferulic acid. A. Expression
of many uncharacterized, multi-domained membrane proteins that may function as
ion transporters, ferulic acid, or 4-vinylguaicol exporters, among several possibili-
ties. B. Upregulation of fumarase (fum), malate dehydrogenase (mdh), and malate
permases involved in the citric acid cycle. NADH dehydrogenase and glutathione re-
ducatase may also play a role in NAD+/NADH recycling and superoxide generation.
C. Expression of a small HSP to ensure proper folding of heat labile phenolic acid
decarboxylase (PAD) which converts ferulic acid to 4-vinylguaicol [182]. D. Rep-
resentation of membrane damage and ion leakage triggered by ferulic acid induced
lipid disruption.

using the trans-membrane hidden Markov model TMHMM [176] revealed that 28

of the 55 hypothetical genes up-regulated at either time point possess one or more

transmembrane helices. These data suggest that the proteinaceous content of the
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membrane changes to counteract ferulic acid toxicity. These proteins may act as

membrane stabilizers or ion transporters to counteract the membrane disruption

triggered by ferulic acid, as exposure to n-butanol did not alter expression of these

genes compared to the reference culture. Their expression changes specifically in

response to ferulic acid stress or general phenolic compound stress. Two uncharac-

terized major facilitator superfamily permeases (LVIS-1730 and LVIS-1917) with un-

known substrate specificity were also overexpressed following ferulic acid insult; these

exporters may be involved in the active export of ferulic acid or its decarboxylated

product 4-vinylguaicol. These uncharacterized membrane proteins and transporters

are promising targets for additional studies to unravel the precise genetic basis of

ferulic acid tolerance in L. brevis, especially given their unique occurrence in the

ferulic acid or phenolic compound stress profile.

In contrast to these shifts in energy metabolism and transcriptional regulation,

genes involved in membrane biogenesis (COG M) comprise only 4% of the 195 genes,

indicating that L. brevis may not appreciably alter the lipid composition of cytoplas-

mic membrane or the thickness of the outer peptidoglycan layer in response to ferulic

acid. However, the consistent upregulation of β-ketoacyl-(acyl-carrier-protein) reduc-

tase (fabG, LVIS-0378), a key enzyme in type II fatty acid synthesis [340], suggests

that membrane lipid abundance may be altered as a possible defense mechanism

against ferulic acid induced membrane fluidity. This hypothesis is supported by ob-

served changes in the membrane of the closely related Lactobacillus plantarum when

challenged with caffeic and ferulic acids [279]. No other genes in the fatty acid synthe-

sis pathway are upregulated. Given the similarity between the organisms, membrane

composition changes of L. brevis in response to ferulic acid are very likely to reflect

those observed in phenolic acid-tolerant L. plantarum.

As expected, the slower growth rate of L. brevis in the presence of ferulic acid
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Table 5.1: Expression of select upregulated genes during ferulic acid stress
Locus Gene Description COG(s) 15 min 135 min

LVIS-0076 NADPH-quinone oxidoreductase C 0.12 2.56
LVIS-0714 Fumarate hydratase C 0.95 2.15
LVIS-2203 Malate dehydrogenase C 1.54 2.24
LVIS-1730 MFS permease G 2.88 3.41
LVIS-1917 MFS permease G 2.06 2.74
LVIS-2255 Sugar transport system, permease G 1.39 2.48
LVIS-2256 Sugar transport system, periplasmic G 1.54 2.99
LVIS-0113 Amino acid transporter E 2.10 3.83
LVIS-1879 Amino acid transporter E 1.51 2.78
LVIS-1951 Glycine cleavage system H protein E 0.28 2.60
LVIS-0213 Phenolic acid decarboxylase Q 5.75 4.19
LVIS-0378 FabG IRQ 1.52 2.48
LVIS-0924 Biotin operon repressor H 1.77 0.05
LVIS-0086 Peroxiredoxin O 2.51 2.22
LVIS-0112 Molecular chaperone (sHSP) O 4.18 2.62
LVIS-2147 Catabolite control protein A K 1.51 1.27
LVIS-0031 Hypothetical protein LVIS-0031 S 1.34 1.57
LVIS-0155 Hypothetical protein LVIS-0155 S 0.19 2.13
LVIS-0157 Hypothetical protein LVIS-0157 S 0.93 2.61
LVIS-0212 Hypothetical protein LVIS-0212 S 4.26 3.93
LVIS-0262 Hypothetical protein LVIS-0262 S 1.24 2.36
LVIS-0305 Hypothetical protein LVIS-0305 S 0.86 2.81
LVIS-0314 Hypothetical protein LVIS-0314 S 0.44 2.58
LVIS-0445 Hypothetical protein LVIS-0445 S 1.90 2.23
LVIS-0552 Hypothetical protein LVIS-0552 S 1.32 2.54
LVIS-0712 Hypothetical protein LVIS-0712 S 1.87 0.73
LVIS-1831 Hypothetical protein LVIS-1831 S 1.48 1.73
LVIS-1880 Hypothetical protein LVIS-1880 S 2.84 2.91
LVIS-1881 Hypothetical protein LVIS-1881 S 2.64 2.12
LVIS-2013 Hypothetical protein LVIS-2013 S 0.24 2.22
LVIS-2118 Hypothetical protein LVIS-2118 S 0.66 2.17
LVIS-2201 Hypothetical protein LVIS-2201 S 0.53 2.99
LVIS-0472 ABC-type Mn2+/Zn2+ permease P 0.56 2.08

COG definitions: C: Energy production and conversion, G-Carbohydrate transport
and metabolism, I-Lipid transport and metabolism, K-Transcription,
O-Posttranslational modification, protein turnover, chaperones, P-Inorganic ion
transport and metabolism, Q-Secondary metabolites biosynthesis, transport and
catabolism, and S-Function Unknown. COG S includes hypothetical proteins with
trans-membrane domains identified by TMHMM. Bolded log2 scores indicate
statistically significant overexpression during that time point.
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is reflected in the functional roles of the down-regulated genes over the course of

the challenge. An overview of the genes repressed by ferulic acid stress is given in

Table 5.2. Genes encoding proteins responsible for amino acid and carbohydrate

metabolism, transcription, and translation are strongly repressed, indicating that

a metabolic shift from normal growth has occurred. Repression of several H+ an-

tiporters may be due to a disruption of normal cellular proton gradient caused by fer-

ulic acid-induced membrane damage [51, 295]. A total of 35 genes encoding proteins

without known functional roles were down-regulated, but only 8 of these proteins ap-

pear to contain trans-membrane segments. On the whole, genes repressed during the

ferulic acid challenge are similar to those seen during the n-butanol challenges (see

below), implying that growth and certain types of nutrient assimilation are inhibited

within stressful environments. This result is also consistent with the repression of

two key proteins involved in cell division (LVIS-0848, LVIS-1402) and the observed

growth defects under both stress conditions.

5.4.2 Transcriptional response to n-butanol stress

The transcriptional response of L. brevis to n-butanol insults was tracked over

time to reveal unique resistance mechanisms that could be combined with the insights

gained from the ferulic acid challenges to produce a superior industrial strain. Un-

like the expression pattern observed with ferulic acid challenge, the addition of 1-2%

n-butanol induced profound perturbations in lipid biosynthesis, protection against

excessive oxidative stress and synthesis of protein chaperones. Given the similarity

of the transcriptional profiles in response to 1% and 2% n-butanol, only the latter

will be discussed here. A survey of the L. brevis n-butanol transcriptional response is

provided in Tables 5.3 and 5.4. Putative chaperones or chaperone components such

as dnaJ (LVIS-1328), chaperone LVIS-0112, and ATP-binding subunits (LVIS-762,
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Table 5.2: Expression of select downregulated genes during ferulic acid stress
Locus Gene Description COG(s) 15 min 135 min

LVIS-0199 Na+/H+ antiporter C -2.19 -4.62
LVIS-2211 Na+/H+ antiporter C -0.67 -4.08
LVIS-2141 Na+/H+ and K+/H+ antiporter P -2.01 -0.51
LVIS-0848 Cell division initiation protein D -1.76 -1.32
LVIS-1455 Cell division protein MraZ S -0.39 -2.97
LVIS-1587 Amino acid transporter E -1.95 -3.15
LVIS-2023 Carbamate kinase E -1.84 -1.09
LVIS-2024 Transaminase E -1.94 -0.85
LVIS-2025 Amino acid transporter E -2.23 -1.31
LVIS-2212 Amino acid transporter E -1.01 -4.18
LVIS-2213 Glutamate decarboxylase E -0.74 -3.70
LVIS-0934 Acyl carrier protein IQ -0.24 -2.54
LVIS-0936 Transcriptional regulator K -0.58 -2.66
LVIS-0937 FabZ I -0.59 -2.59
LVIS-0954 Glycerol-3-phosphate acyltransferase I -0.65 -2.24
LVIS-0064 Hypothetical protein S -1.97 -2.29
LVIS-0422 Hypothetical protein S -2.56 -2.52
LVIS-0899 Hypothetical protein S -1.74 -2.68
LVIS-1369 Hypothetical protein S -1.68 -1.97
LVIS-1834 Hypothetical protein S -1.77 -0.83
LVIS-1895 Hypothetical protein S -0.74 -2.46
LVIS-2216 Hypothetical protein S -2.25 -4.64

COG definitions: C: Energy production and conversion, D-Cell cycle control, cell
division, chromosome partitioning, P-Inorganic ion transport and metabolism, and
S-Function Unknown. COG S includes hypothetical proteins with trans-membrane
domains identified by TMHMM. Bolded log2 scores indicate statistically significant
repression during that time point.

LVIS-1554, LVIS-1700) are significantly upregulated during the entire experimental

time course. This pattern of chaperone upregulation was similar to that observed dur-

ing exposure to ferulic acid, suggesting that these proteins are expressed in response

to general environmental stress instead of being evoked by a specific chemical stres-

sor. There are several signs of oxidative stress as well; the upregulation of two peptide

methionine sulfoxide reductases (LVIS-0809 and LVIS-0810), which repair oxidative
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damage to methionine residues in conjunction with thioredoxin, NADPH-quinone

oxidoreductase (LVIS-0076), and one thioredoxin (LVIS-1216). This response is con-

sistent with previous reports of n-butanol-induced oxidative stress in E. coli [283].

Another component of the L. brevis oxidative stress response is the accumulation of

manganese [11, 147], as shown by the high expression of the Mn2+/Zn2+ ion transport

system (LVIS-0451 and LVIS-0452) over the time series.

Expression of genes whose products are involved with amino acid, carbohydrate,

and ion transport and metabolism are significantly altered during the n-butanol

stress response. Several unannotated amino acid transporters are weakly downreg-

ulated only 15 minutes after n-butanol addition (LVIS-0619, LVIS-1789), but no

change in the metabolism of amino acids known to function as osmoprotectants

[93] is seen. Other metabolic functions involved in amino acid biosynthesis (LVIS-

2023-LVIS-2027) are highly repressed as well. The expression of genes encoding

enzymes responsible for the uptake and metabolism of carbohydrates (particularly

pentoses), including phosphopentomutase (LVIS-1594), L-ribulokinase (LVIS-1742),

and β-galactosidase (LVIS-2259) increases continually throughout the experiment,

perhaps as part of a concerted effort to support the energy demanding stress re-

sponse. The strong downregulation of a Na+/H+ antiporter (LVIS-2211) is consis-

tent with with the observed effects of n-butanol on H+ gradients in other organisms

[51, 295]. In addition to these metabolic changes, expression of genes whose prod-

ucts are involved cell wall synthesis is also downregulated immediately following the

n-butanol challenge, though this repression lessens over time.

Although these changes in expression pattern are consistent with a reduced

growth rate during an energy-consuming stress response, repression of genes encod-

ing proteins possibly involved in competing phenotypes is also seen. Genes encoding

the putative homologs of several proteins involved in acid tolerance in E. coli, in-
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Table 5.3: Expression of select upregulated genes during 2% n-butanol stress
Locus Description COG 15 min 75 min 135 min

LVIS-0076 NADPH-quinone oxidoreductase CR 3.05 3.06 2.24
LVIS-0320 NADH dehydrogenase C 1.457 2.02 2.19
LVIS-0811 ADP-ribose pyrophosphatase F 1.32 2.02 2.46
LVIS-1594 Phosphopentomutase G -0.97 1.14 1.82
LVIS-1742 L-ribulokinase (putative) G 2.13 0.77 1.00
LVIS-0187 Acetoin reductase IQ -0.13 1.80 1.84
LVIS-0925 Enoyl-(ACP) reductase I 0.49 1.91 1.82
LVIS-0926 Acetyl-CoA carboxylase α I 0.29 0.54 1.68
LVIS-0927 Acetyl-CoA carboxylase β I 1.26 1.33 1.88
LVIS-0928 Biotin carboxylase I 0.77 1.85 2.41
LVIS-0929 FabZ I 1.049 1.79 2.23
LVIS-0930 Biotin carboxyl carrier protein I -0.22 1.19 1.43
LVIS-0931 FabF IQ 0.62 1.61 3.20
LVIS-0932 FabG IQR 0.68 2.36 2.98
LVIS-0933 (ACP) S-malonyltransferase I 0.74 2.15 2.76
LVIS-0934 Acyl carrier protein IQ 0.36 2.08 2.59
LVIS-0935 FabH I 1.55 2.23 2.62
LVIS-0937 FabZ I 1.203 2.40 2.78
LVIS-0112 Molecular chaperone (sHSP) O 1.96 2.01 1.65
LVIS-0762 ATP-binding subunit of DnaK O 3.51 2.78 1.69
LVIS-0809 Methionine sulfoxide reductase O 1.14 1.97 2.36
LVIS-0936 Transcriptional regulator K 0.91 2.37 2.48
LVIS-1216 Thiol-disulfide isomerase O 1.18 1.6 1.52
LVIS-1328 DnaJ-like molecular chaperone O 1.87 2.21 1.87
LVIS-1554 ATP-binding subunit of DnaK O 1.50 1.73 0.89
LVIS-1700 ATP-binding subunit of DnaK O 1.66 1.56 1.57
LVIS-1701 Repressor of class III stress genes K 2.01 1.63 1.56
LVIS-2091 RNAP sigma subunit, σ24-like S 0.67 -0.52 2.25
LVIS-0116 Cation transport ATPase P 1.64 1.57 0.79
LVIS-0471 Mn/Zn transporter ATPase P 1.64 1.56 0.69
LVIS-0472 Mn2+/Zn2+ transporter P 1.44 1.59 0.85
LVIS-1844 Aldo/keto reductase R 2.30 2.85 2.24

COG definitions: C: Energy production and conversion, D-Cell cycle control, cell
division, chromosome partitioning, G-Carbohydrate transport and metabolism,
I-Lipid transport and metabolism, K-Transcription, O-Posttranslational
modification, protein turnover, chaperones P-Inorganic ion transport and
metabolism, Q-Secondary metabolites biosynthesis, transport and catabolism,
R-General function prediction only, and S-Function Unknown. Each log2 score is
bolded if the gene is significantly overexpressed during that time point.
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cluding glutamate decarboxylase (LVIS-2213) the glutamate acid resistance system

gadC (LVIS-0078) [52], and cyclopropane fatty acid synthase (LVIS-2047) [56], are

downregulated for 2 time points. Other elements of the Lactobacillus acid stress re-

sponse, such as the arginine deiminase pathway (LVIS-2023, LVIS-2026, LVIS-2027)

[85], are also strongly repressed. These responses are curiously similar to the ob-

served antagonism between ethanol tolerance and acid tolerance phenotypes in E.

coli [127], suggesting that the same relationship may exist between the n-butanol

and acid tolerance phenotypes.

Along with oxidative and general stress adaptations that are common to most

organisms exposed to n-butanol, an upregulation of the entire fatty acid synthesis

pathway is clearly evident in the transcriptional data. The FA synthesis pathway

itself is summarized in Figure 5.2. Increased expression of the genes encoding acetyl-

CoA carboxylase subunits (accABCD) shunts additional acetyl-CoA to malonyl-CoA

for dedicated use in the FAS pathway [207, 340, 84]. Subsequently, after the initial

condensation step by catalyzed by FabH, FabFGZI homologs identified with BLAST

in L. brevis (see Table 5.3) continue the process of fatty acid elongation. These fatty

acids are then generally converted into membrane phospholipids by the glycerolphos-

phate acyltransferase system [358]. The expression of the plsX (LVIS-0954) and plsC

(LVIS-1355) genes does not change significantly over the course of the experiment, so

it is possible that expression of enzymes is not limiting for membrane lipid synthesis,

that their activities are regulated post-transcriptionally, or that the fatty acid flux

is diverted elsewhere in the cell. To test whether increased flux through the FAS

pathway affects n-butanol tolerance, the accABCD-overexpression strain developed

by Davis et al. [84] was subjected to a n-butanol challenge. No significant change in

n-butanol tolerance or growth rate was observed with this strain, suggesting that the

increased production of fatty acids per se is insufficient to confer a protective effect.
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Table 5.4: Expression of select downregulated genes during 2% n-butanol stress
Locus Gene Description COG 15 min 75 min 135 min

LVIS-0514 L-lactate dehydrogenase C -0.35 -0.24 -1.49
LVIS-1558 NAD-dependent dehydrogenase R -1.38 -1.29 -1.52
LVIS-2211 Na+/H+ antiporter C -2.07 -1.70 -1.31
LVIS-0078 Glu-aminobutyrate antiporter E -0.95 -1.73 -1.30
LVIS-1712 Amino acid transporter E 0.24 -1.47 -1.18
LVIS-1781 Amino acid transporter E -1.21 -1.26 -0.77
LVIS-2023 Carbamate kinase E -2.10 -1.93 -1.33
LVIS-2024 Transaminase E -2.52 -1.85 -1.18
LVIS-2025 Amino acid transporter E -2.49 -1.59 -0.86
LVIS-2026 Ornithine carbamoyltransferase E -2.66 -1.86 -0.33
LVIS-2027 Arginine deiminase E -3.70 -2.04 -0.89
LVIS-2049 Branched-chain AA permease E -1.29 -1.03 -0.71
LVIS-2213 Glutamate decarboxylase E -2.27 -1.78 -1.17
LVIS-0413 Glycerate kinase G -1.07 -1.05 -1.56
LVIS-0661 Glyceraldehyde-3-P dehydrogenase G -1.61 -1.02 -1.19
LVIS-0689 Glucosamine-6-P isomerase G -1.71 -1.54 -1.38
LVIS-1417 Cell wall-associated hydrolase M -1.78 -1.11 -0.43
LVIS-1419 Cell wall-associated hydrolase M -1.30 -0.93 -0.99
LVIS-1496 Amidase M -1.58 -1.27 -1.28
LVIS-1548 Integral membrane protein S 0.08 -0.96 -1.18
LVIS-1575 Glycosyltransferase-like M -1.78 -1.04 -0.84
LVIS-1809 Cell wall-associated hydrolase M -1.48 -0.33 -0.42
LVIS-2047 Cyclopropane fatty acid synthase M -1.48 -1.14 -0.76
LVIS-1641 Cytochrome bd quinol oxidase C -1.30 -0.89 -0.26

COG definitions: C: Energy production and conversion, D-Cell cycle control, cell
division, chromosome partitioning, G-Carbohydrate transport and metabolism,
I-Lipid transport and metabolism, K-Transcription, O-Posttranslational
modification, protein turnover, chaperones P-Inorganic ion transport and
metabolism, Q-Secondary metabolites biosynthesis, transport and catabolism,
R-General function prediction only, and S-Function Unknown. Each log2 score is
bolded if the gene is significantly repressed during that time point. AA: amino
acid, Glu: glutamate.

n-Butanol and other solvents alter the ratio of saturated and unsaturated mem-

brane lipids in many organisms [152, 153, 262]. Altered gene expression within the

fatty acid synthesis regulon may therefore be partially responsible for the n-butanol
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Figure 5.2: A visualization of the Type II fatty acid synthesis pathway found in most
bacteria [340]. The AccABCD proteins carboxylate acetyl-CoA to form malonyl-
CoA, followed by condensation of malonyl-CoA with acetyl-CoA to form acetoacetyl-
CoA by FabH. Other proteins including FabG, FabZ, FabI and FabF elongate the
acetoacetyl-CoA by two carbons every pass through the cycle. Transcription of each
FAS gene is only slightly upregulated immediately following n-butanol addition but
increases significantly after 75 and 135 minutes.

tolerance of L. brevis. Direct assessment of membrane fatty acid composition of L.

brevis following 75 min of 2% (v/v) n-butanol stress revealed a significant 21.6%

decrease in the abundance of 19:1 cyclopropane fatty acid (19:1-cfa) compared to

unchallenged control cultures (Student’s one tailed t-test, p < 0.04). This fatty acid

comprised only 5.67% f all fatty acids found in the L. brevis membrane during ex-

ponential growth in the unchallenged controls versus 4.46% in cultures subjected to

n-butanol insult. Given the known role of cycloproprane fatty acids in conferring acid
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tolerance [42, 56], this result supports the inference that n-butanol and acid tolerance

are are antagonistic phenotypes. In order to test whether this situation carries over

to other organisms, the growth of a E. coli strain with a cfa knockout strain in 0-2%

n-butanol was compared to the growth of the E. coli BW25113 parent strain. The

growth rate and maximum n-butanol tolerance of the two strains were very similar.

This result could be explained by the lack of cyclopropane fatty acids in the E. coli

membrane during exponential growth, so that knocking out the cfa gene would have

little effect on the actual membrane composition in that growth phase. A decrease

in cyclopropane fatty acid content is also observed in several E. coli strains evolved

for isobutanol tolerance [217]. Additional work is needed to determine the role that

cyclopropane fatty acids play in modulating n-butanol resistance and to understand

opposing patterns of gene expression associated with n-butanol tolerance and acid

tolerance.

Numerous studies have examined the transcriptional programs of C. acetobutylicum

and E. coli in response to n-butanol challenge. We chose to compare the n-butanol-

induced transcriptional responses of L. brevis and E. coli, as E. coli is widely used for

a variety of applications in the biotechnology industry. The recent study by Ruther-

ford and coworkers [283] identified several features of the n-butanol stress response in

E. coli : increased expression of genes involved with oxidative phosphorylation (nuo,

cyo, and sdh operons), an oxidative stress response involving sodA (superoxide dis-

mutase) and yqhD (alcohol dehydrogenase), perturbed amino acid and carbohydrate

transport, and an extracytoplasmic stress response as indicated by cpxP, degP, spy,

and rpoE expression. Although the lack of known functions for many L. brevis genes

hinders a direct comparison between these organisms, the expression of oxidative

stress genes and the disturbances in L. brevis metabolism (in terms of transport and

energy demands to support the n-butanol stress response) agree well with those seen
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in E. coli. While L. brevis may also be under significant extracytoplasmic stress,

the L. brevis rpoE -like sigma factor, which most likely promotes the transcription

of genes whose products respond to this form of cellular stress, is not significantly

upregulated at any time point, though a σ24-like protein is upregulated during late

2% n-butanol stress. No other regulators are apparent from BLAST comparisons

with E. coli genes; however, the dnaJ and LVIS-0112 chaperones along with several

other protein chaperones are upregulated as expected. Strikingly, no statistically

significant upregulation of the E. coli FAS genes was observed in the Rutherford et

al. study [283], in contrast to the increased expression of FAS genes in L. brevis

following n-butanol induction.

5.4.3 Developing a high-throughput screening tool for Lactobacillus genes

One of the main limitations on screening the identified, stress-responsive L. brevis

genes is the lack of a convenient expression method in E. coli. Previous studies

have shown that it is possible to expand the E. coli transcriptional repertoire using

heterologous sigma factor expression [290, 313, 211, 13, 307, 29], which may be

a viable option for rapidly screening Lactobacillus genes using a genomic library

approach. To this end, we asked if the expression of the housekeeping σ70 proteins

from both L. brevis and Lac plantarum could allow for improved transcription of

Lactobacillus promoters in E. coli. L. plantarum is a close relative of L. brevis with

many of the same tolerance phenotypes [173], and so this strain could also be used

as a source of genetic material to improve the tolerance of E. coli to stress.

Our initial attempts to clone the genes encoding Lactobacillus sigma factors us-

ing pUC-based high copy vectors failed to produce stable constructs. Large deletions

were observed in several clones, indicating that expressionof the plasmid-borne genes

were toxic, even in the absence of exogenous inducer. The sigma factor constructs
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Figure 5.3: Growth of all 285c strains and the parent strain at 30 ◦C. Each strain was
inoculated from overnights into LB with 25 µg/ml streptomycin (antibiotic omitted
for P9OA5c) and cultured at 30 ◦C to determine the growth kinetics at the permissive
temperature. As can be seen, the growth rates and the yields of the strains are
similar.

were less toxic at lower expression levels, however, and low-copy plasmids containing

the Lactobacillus sigma factors could be stably maintained over time. These low-

copy plasmids containing the Lactobacillus sigma factors were introduced into E. coli

285c (see Methods and Materials) to test their ability to complement temperature

sensitivity arising from a defective native rpoD gene. The growth kinetics of the

285c/pCLE-Lb, 285c/pCLE-Lp, 285c/pCLE, and the parent strains (P9OA5c) as

shown as a function of temperature in Figure 5.3 are quite similar at the permis-

sive temperature (30 ◦C), indicating that there is no defect in σ70
Ec,ts activity at low

temperatures. However, growth at the non-permissive temperature (42 ◦C) revealed

112



0.08	
  

0.13	
  

0.18	
  

0.23	
  

0.28	
  

0.33	
  

0.38	
  

0.43	
  

0.48	
  

0.53	
  

0	
   200	
   400	
   600	
   800	
   1000	
  

O
D
60
0	
  

Time	
  (min)	
  

285c/pCLE-­‐Lb	
  

285c/pCLE-­‐Lp	
  

285c/pCLE	
  

P9OA5c	
  

Figure 5.4: Complementation challenge at 42 ◦C. Each strain was inoculated from
overnights into LB with 25 µg/ml streptomycin (antibiotic omitted for P9OA5c) and
cultured at 42 ◦C to determine if the heterologous sigma factors could complement
a temperature sensitive defect in the native σ70 protein. Robust growth is observed
for 285c/pCLE-Lb and 285c/pCLE-Lp while the 285c/pCLE strain is not viable at
the elevated temperature.

significant differences in the growth between the strains (Figure 5.4). Little to no

growth is seen in the 285c/pCLE strain, while the 285c/pCLE-Lb and 285c/pCLE-

Lp strains containing the heterologous sigma factors are not only viable, but grow

fairly robustly. The doubling time of the 285c/pCLE-Lb and 285c/pCLE-Lp strains

are significantly greater than that of the parent strain (∼255 min versus 108 min

for P9OA5c), suggesting that σ70
LB and σ70

LP can restore viability at elevated temper-

atures, whereas the growth rate of 285c is severely impaired. These results strongly

support the conclusion that the L. brevis and L. plantarum sigma factors can bind

to the E. coli RNA polymerase and initiate transcription in vivo. A recent study
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by Zingaro et al. [360] has also demonstrated that recognition of L. planatarum

promoters is improved if σ70
Lp is also expressed, though this study is the first, to the

best of our knowledge, to demonstrate that Lactobacillus sigma factors are able to

complement a defective native rpoD.

5.5 Conclusions

This study was aimed at revealing components of the L. brevis stress response

to ferulic acid and n-butanol, two distinct inhibitors of microbial growth that are

of great industrial importance. The results presented here, combined with previ-

ous studies on the mechanisms of phenolic acid toxicity, suggest that alterations in

membrane structure and fluidity play an important role in maintaining cell mem-

brane integrity in L. brevis exposed to ferulic acid. The diverse range of membrane

proteins overexpressed by L. brevis in response to ferulic acid are likely involved

in ameliorating abnormal ion flux across the membrane while enhancing rigidity,

though molecular characterization of the gene products is needed for confirmation.

Introduction of efflux pumps to expel ferulic acid and its decarboxylation product,

along with increased levels of ion pumps to maintain intracellular K+, H+, and Na+

at appropriate concentrations in the presence of ferulic acid, may be promising steps

towards improving the tolerances to phenolic acids in other organisms. A novel

method for expanding promoter recognition in E. coli using heterologous expression

of sigma factors from two Lactobacillus strains was also pursued, with the initial

data indicating that the Lactobacillus sigma factors are compatible with the E. coli

RNA polymerase core enzyme.

In contrast to its response to ferulic acid, L. brevis responds to n-butanol stress

by increasing defenses against oxidative damage, increasing carbon uptake, altering

ion transport, and upregulating of fatty acid synthesis. Direct analysis of L. brevis
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membrane composition revealed a significant decrease in the abundance of 19:1 cy-

cloproprane fatty acid. However, the n-butanol tolerance of an E. coli cfa knockout

strain, which is unable to synthesize cyclopropane fatty acids, was not improved

compared to wild-type, indicating that additional elements of the stress response are

required for tolerance. Neither E. coli nor C. acetobutylicum overexpress the FAS

genes, suggesting that increased fatty acid synthesis in response to n-butanol insult

contributes to n-butanol tolerance in L. brevis. Upregulated fatty acid synthesis may

restore membrane integrity to oppose n-butanol-induced fluidization. Additional bio-

chemical characterization of how L. brevis regulates its FAS response is crucial to

incorporating this desirable phenotype into organisms better suited for industrial

use. The apparent inverse correlation between the acid and alcohol tolerance L. bre-

vis phenotypes, seen in the transcriptional data and fatty acid composition analyses,

suggests that deletions in acid resistance pathways may further improve n-butanol

tolerance.
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6. COMPUTATIONAL IDENTIFICATION OF ADAPTIVE MUTANTS USING

THE VERT SYSTEM*

6.1 Summary

The population dynamics of evolving populations can now be visualized using

the Visualizing Evolution in Real Time (VERT) system, in which isogenic strains

expressing different fluorescent proteins compete during adaptive evolution and are

tracked using fluorescent cell sorting to construct a population history over time.

Mutations conferring enhanced growth rates can be detected by observing changes

in the relative proportions of each different fluorescent marker. Using data obtained

from several VERT experiments, we constructed a hidden Markov-derived model

to detect these adaptive events in VERT experiments. Analysis of annotated data

revealed that the model achieves consensus with human annotation for 85-93% of the

data points. A method to determine the optimal time at which to isolate adaptive

mutants is also introduced. The model offers a new way to monitor adaptive evolution

experiments without the need for external intervention, thereby simplifying efforts to

track population frequencies. Future efforts to construct a fully automated system

to isolate adaptive mutants may find the algorithm a useful tool.

6.2 Introduction

Strain development to improve the utility of microbial strains has been a fo-

cus of industry for decades. Numerous methods to improve the characteristics of

*Reprinted with permission from ”Computational Identification of Adaptive Mutants using the
VERT system” by J. Winkler and K.C. Kao, 2012. Journal of Biological Engineering, Volume 6(3),
pp. 1-8, Copyright 2012 by J. Winkler.
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biocatalysts have been developed, such as random mutagenesis [3, 171], genetic re-

combination [3, 246, 61, 21], serial transfers in the presence of various inhibitors [15],

and others [310, 191, 6, 172, 334, 66]. A novel method to identify the occurrence

and expansion of adaptive mutants within an evolving population was recently de-

scribed by Kao and Sherlock [163]; the population dynamics of strains expressing

different fluorescent proteins competing for the limiting carbon source in a chemo-

stat system were monitored using fluorescence activated cell sorting (FACS). This

approach (VERT, Visualizing Evolution in Real Time) has been applied to eluci-

date the population dynamics of Candida albicans in the presence of an antifungal

agent [149] and to generate Escherichia coli mutants tolerant of n-butanol [269]. The

use of fluorescent labels improves the ability to track various subpopulations in real

time compared to microarrays [41] or quantitative PCR [336]. The VERT method

is therefore ideal for identifying adaptive events more quickly than other techniques

for monitoring adaptive dynamics.

A key aspect of VERT system and other population tracking methods involves

analysis of population dynamics to detect adaptive events, which are subpopulation

expansions triggered by novel adaptive mutants with growth-enhancing mutations.

For example, if a growth-enhancing mutation (such as one that confers drug resis-

tance or more efficient nutrient uptake) arises in a labeled subpopulation, the sub-

population in which that adaptive event occurred will increase in frequency at the

expense of other competing, differently labeled subpopulations. An algorithm for an-

alyzing data on population history method will be consistent and reliable than meth-

ods that visually detect these events. A simple, yet robust, method that can identify

adaptive episodes automatically is the hidden Markov model (HMM) [260, 261],

which involves the computation of the unknown state sequence that is most likely to

produce the observed output (emissions) from the process in question. This technique
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can be applied to determine whether each subpopulation is undergoing an adaptive

expansion by examining the subpopulation ratios and then computing the probabil-

ity of an adaptive event based on the model training data. A HMM based approach

will also be flexible enough to accommodate variations between experiments arising

from species-specific dynamics, data-quality issues, and other factors.

In this work, we introduce a population state model (PSM) that employs a hid-

den Markov model to identify likely adaptive events for several types of chemostat

evolution experiments that employed the VERT tracking system. After showing

that the PSM predictions are comparable to those obtained from human annotation,

properties of several VERT experiments for different species are quantified. Several

utilities have been developed that allow the PSM to analyze raw data and generate

predictions concerning experimental evolutionary dynamics. Finally, the ability of

the PSM to process other types of evolutionary experiments is discussed.

6.3 Methods and Materials

6.3.1 Experimental procedures

The specific experimental procedures for the VERT experiments used in this

study are detailed elsewhere [163, 149]. The first requirement is that the construc-

tion of strains with chromosomally integrated genes encoding fluorescent proteins

(such as RFP, GFP, YFP). The labeled strains must then be assayed to ensure that

expression of fluorescent proteins has no effect on growth rates. Once the neutrality

of expression of fluorescent labels has been established, equal proportions of each

strain are inoculated into a continuous culture system (chemostats) or batch flasks

and sampled daily using a FACS machine to determine the relative frequency of each

labeled subpopulation. The complete series of FACS measurements for a VERT

experiment (see Figure 6.1) can be interpreted as a quantitative measurement of
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population dynamics. These data form the basis of the population state model de-

veloped in this work.
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Figure 6.1: Population dynamics from an yeast population (KK-Large1-2007) se-
lected for growth in glucose limited media.

6.3.2 Computational procedures

All software was implemented in MATLAB R2010a without additional toolboxes

on the Mac OS X 10.6 operating system. Data for model training were annotated

and stored as comma-separated value files. Experimental data were also stored in a

similar format without annotations.

6.4 Results and Discussion

The first step in developing a model to analyze VERT population history is

the examination of the population data to develop a method that can determine
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if the observed proportion of population j at time point i represents a statistically

significant change compared to point i−1. A simple statistical classifier based on data

obtained from neutrality (e.g. no adaptive events) experiments is developed to answer

this question. This classifier is then utilized to determine emission sequences that

represent the statistical significance of changes in population proportion for the entire

set of VERT data. A hidden Markov-based model, trained with human-annotated

data, is then applied to determine whether or not a subpopulation has undergone

an adaptive event based on these emissions. Finally, the error rate, behavior, and

possible alternative applications of the model are considered.

6.4.1 Statistical classification of population dynamics data

We sought to analyze the population dynamics that arise during a chemostat

evolution experiment. In this type of system, a constant-volume bioreactor is in-

oculated with several isogenic microbial populations, each marked with a different

fluorescent protein (or equivalent unique label) and grown for hundreds of generations

in the presence of the desired selective pressure. Adaptive mutants from each labeled

subpopulation that arise during the course of the evolution experiment trigger an ob-

servable increase in the size of the labeled subpopulation, as shown in Figure 6.1.

FACS devices are typically used to track the proportion of each fluorescent strain in

the evolving population over time in a series a discrete measurements (typically 1

measurement/day); obtaining continuous data is usually not possible due to experi-

mental and technical limitations. In this case, we utilize population-dynamics data

obtained from evolving yeast and Escherichia coli.

The population-state model utilizes the rate of population expansion for the jth

subpopulation at time point i (rpe,ij) as the measured variable to detect adaptive

events from FACS data. Since adaptive events are characterized by rapid expansions
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in population frequency, we designed our model to examine rates of subpopulation

frequency change to automatically detect these events. This property may be calcu-

lated directly from FACS data for each time point as follows. First, the proportion

of each labeled subpopulation j of J total subpopulations at time i (Pji) is computed

from each subpopulation:

Pji =
xji

xj,0
∑
j∈J

~xi
(6.1)

where the summation
∑
j∈J

~xi represents the total FACS reading (counts) at the ith

time point. This proportion is divided by xj,0 to set Pj,0 = 1.0 for all subpopulations,

regardless of their initial proportion of the inoculum. Because the time interval

between samples is not necessarily constant, let ti represent the number of generations

that have occurred by the ith sample. Then, ∀ti > t1, rpe,ij :

rpe,ij =
Pji − Pj,i−1

ti − ti−1

(6.2)

The actual time-derivative Ṙj(t) can used in place of Rij if continuous measurements

are available, as the former contains much more information concerning the process

dynamics and will allow more accurate detection of adaptive events.

Estimates for the mean rpe,ij (subsequently µr), representing a collection of slope

measurements for one subpopulation, and its standard deviation (σr) of the same

collection for metastable populations, are needed to draw inferences about which

fluctuations in population proportions are significant. Calibration data in the form of

neutrality experiments, where adaptive events are unlikely to occur, can be leveraged

to obtain these data. In an ideal case, with a perfectly accurate FACS device and

populations with exactly equal fitness, µr = σr = 0 over the entire dataset; the
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population proportions are fixed. In reality, fluctuations affecting both parameters

tend to arise because of jackpot mutations, random stochasticity in the populations,

or technical issues that generate noise in the data. The neutrality datasets are

therefore used to calculate mean and variance of the slope. The values obtained for

these parameters indicated that µr ∈ [−0.005, 0.004] and σr = 0.018 for 64 neutral

measurements. The parameter µr also serves as an indicator of population stability

and is, as expected, indistinguishable from zero at a 95% confidence level.

Generally, µr will be zero for fluorophores that have no fitness effect on their host

strains. Some fluorescent proteins, such as tdTomato, have been observed to decrease

strain fitness (data not shown), resulting in negative values of µr. The parameter

values used here may therefore be unique to specific fluorophores and should be

recomputed for each physically distinct setup.

These properties can be applied to construct a statistical test that will identify

when populations begin to expand or contract more rapidly than is expected under

a neutral regime. In formal terms, we compare the observed slopes with a random

variable Rpe,ij drawn from the t-distribution with estimated mean µr and standard

deviation σr. A t-test can be used to ascertain whether there is a significant dif-

ference between the observed slope and the mean neutral measurement (alternative

hypothesis, Equation 6.4) or if a population is stable (null hypothesis, Equation 6.3).

A Gaussian distribution may also be used in place of the t-distribution if desired;

however, if the number of samples is small (less than 30), the t-distribution is more

appropriate. The statistic T =
rpe,ij−µr
σr/
√
n

is used to determine if the difference between

the observed and expected slopes is statistically significant.

Ho : rpe,ij − µr = 0 (6.3)
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Ha : rpe,ij − µr 6= 0 (6.4)

Each subpopulation of a VERT experiment is analyzed to determine when to reject

the null hypothesis. For slopes that are unlikely to be explained by the null hypothesis

(P < α), the sign of the slope is examined to determine if it represents a population

increase (positive slope, P) or a contraction (negative slope, N). Slopes that fail to

meet the significance threshold, in either direction, are recorded as zero (Z) slopes.

The p-value threshold for significance, selected by empirical observation and based on

model performance, was α = 0.10 unless otherwise stated. These slope classifications

were subsequently used in the population state model described below.

6.4.2 Definition of the population state model

The basic outline of the population-state model (hereafter PSM) exploits the

statistical classifier to detect when one subpopulation of labeled cells undergoes ex-

pansion so that the initiation and termination of the expansion can be pinpointed.

The mutant is assumed to have reached its highest frequency at the latter time

point, allowing easier isolation of the desired mutant. The model itself utilizes two

hidden states: ”N,” which indicates that a subpopulation is not undergoing a pop-

ulation expansion, and ”A,” to indicate that the subpopulation has experienced

an adaptive event. Annotated training data from 8 multicolored yeast chemostats

were used to calculate state transition probabilities within and between the states

(PAA, PNN , PAN , PNA), and the emission probabilities of each symbol (Z, N, and P)

in the respective states (eA(S) and eN(S), where S ∈ {Z,N, P} as defined by the sta-

tistical classifier). This process was performed automatically by the model, allowing

for the facile incorporation of additional data into the training dataset to improve

model accuracy. Training data were not used in any subsequent analyses. Numeric
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values for each of these parameters are calculated only from the training data and

are shown in Table 6.1. State-transition probabilities are adjusted to account for

contiguous positive slopes (CP ) or negative and zero slopes (C!P ) through the use of

an exponential decay penalty function:

PAN = P ◦AN(exp(−CP )) (6.5)

PNA = P ◦NA(exp(−C!P )) (6.6)

where P ◦AN and P ◦NA represent the nominal value of each state transition probability.

Accordingly, PNN = 1− PNA and PAA = 1− PAN as well. These contiguous counts

are reset to zero when symbols outside the considered set (i.e., Z,N for CP ) are en-

countered in the data. This modification represents a divergence from the traditional

formulation of a hidden Markov model, where the state at position i only depends

on position i−1. We used this approach to account for the fact that adaptive events,

once they occur and survive initial drift, expand in a non-random fashion over time.

The exponential decay function represents the decreasing probability of a transition

out of an ongoing change in population proportion (i.e. a long adaptive expansion

or continual decline); many possible forms for this function exist, but the exponen-

tial function seems to correlate well with the observed population dynamics. This

formulation allows for the explicit consideration of the current population state in

the chemostat and dramatically improves the accuracy of the model.

A total of 19 long-term chemostat experiments for E. coli [269], S. cerevisae [163],

and C. albicans [149] were analyzed using the PSM. For a given chemostat experiment

k, the emission sequence Okj is generated for each of the j subpopulations using the

statistical classifier at significance level α = 0.10 (single-tailed). The most likely set
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Table 6.1: Population state model parameters
Parameter Value
State Transition P ◦AN = 0.154, P ◦NA = 0.079
Adaptive Emission PN = 0.102, PZ = 0.150, PP = 0.748
Non-adaptive Emission PN = 0.434, PZ = 0.337, PP = 0.229

An overview of the Markov parameters used by the population state model. The
emission probabilities in the non-adaptive state reflect the symmetry of the slope
distribution in the control data and the adaptive emissions are heavily biased
towards positive slopes as expected. In addition, the state transition probabilities
indicate that entry into and exit from adaptive events is relatively uncommon in
the training data.

of hidden states for the jth subpopulation in the kth chemostat (Xkj) can then be

decoded using the Viterbi algorithm [261] in an iterative fashion:

Xkj = {argmax(Pll · el(Ok,i), Plm · em(Ok,i))∀i} (6.7)

where l denotes the previous hidden state and m the alternative state (e.g. A →

A or N). This process is shown graphically in Figure 6.2. Given that not all pop-

ulations are expand immediately after chemostat inoculation, it is assumed that all

populations are in state N at i = 0. In addition, the final predictions for adaptive

states are translated back one time point (i.e. i→ i− 1) based on the empirical ob-

servation that doing so improves model accuracy. Model validation was accomplished

by comparing the predicted hidden state sequences to human annotation of the 19

chemostats and then computing the number of true positives (Amod = Aann), true

negatives (Nmod = Nann), false positives (Amod = Nann), and false negatives (Nmod

= Aann) within the computational predictions. Despite the use of true and false

designations, the human annotations may not always be accurate representations of

each chemostat population. These error rates can be more accurately interpreted as
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the difference between PSM and human annotations.

Figure 6.2: Decoding of the hidden Markov states for each labeled subpopulation
occurs as follows. (1) The set of emission symbols Ok for a subpopulation is generated
from the statistical classifier for all n measurements. (2) The forward Viterbi decoder
generates the most likely set of hidden states by choosing the path of maximum
likelihood through the system trellis (green lines) based upon the known Markov
parameters and Ok. (3) The output set Xk is assembled from these predictions for
all observations.

The use of a supervised learning approach, although allowing for relatively straight-

forward development and training of the PSM, introduces bias into what is considered

an adaptive event. This effect, in turn, affects the model parameters computed from

the annotated training set. An alternative approach to HMM training involves the

use of unsupervised learning, in which the estimated state-transition and emission

probabilities are computed automatically using algorithms such as Baum-Welch [32].

In essence, this type of HMM training computes the expected number of state transi-

tions and the emission probabilities (in each state) that best fit the provided emission

symbols and updates the model parameters accordingly. This iterative process con-
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tinues until the change in HMM performance is below the user threshold. This type

of training will be explored in future versions of the population-state model.

6.4.3 Properties of the population state model

Using the procedure outlined previously, the PSM is trained using an annotated

dataset from S. cerevisae glucose-limited chemostats [163]. Depending on the species

studied, length of the evolution, and conditions (mutagenic versus non-mutagenic),

different estimates of the Markov parameters given in Table 6.1 may be obtained

depending on the dataset used for model training. However, the calculated probabil-

ities seem reasonable in light of the experimental population dynamics. Non-adaptive

events typically have slopes that are close to zero (P > 0.10), and the remaining

events are split evenly between positive and negative slopes (P < 0.10). Adaptive

events are expected to be weighted towards producing measurements with positive

slopes. The behavior of the PSM is affected most by the state-transition properties

P ◦AN and P ◦NA as these parameters control how quickly the model responds to changes

in chemostat dynamics.

In order to quantify the error rate of the model more precisely, the PSM was

used to generate hidden state predictions for a collection of chemostat evolution

experiments for E. coli, S. cerevisae, and Candida albicans. These predictions were

then compared to human annotations. As can be seen in Table 6.3, the model

achieves a prediction accuracy of 85% to 93% for the data examined. Discrepancies

between the model and the annotated states typically arise from the inability of

the statistical classifier to register positive slopes that do not meet the statistical

threshold for significance; slow adaptive events (subpopulation growth rate < 0.0025

gen−1 at α = 0.10) may therefore be missed by the model. Although these events are

relatively rare and therefore do not substantially impact the accuracy of the PSM,
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slow adaptive events may harbor new lineages or additional mutations relevant to

the condition being evaluated. However, even with this limitation, the chemostat

properties in Table 6.2 calculated using the PSM are not significantly different from

those obtained from human annotation. In addition to these continuous culture

systems, the PSM was also able to annotate VERT data obtained during a batch

serial transfer experiment (data not shown).

Table 6.2: Analysis of population dynamics
System AE/gen-color Rate of PEX† AE Length (s)
Human Annotation
C. albicans 0.015 (0.007) 0.0058 (0.016) 3.26 (2.12)
E. coli 0.017 (0.005) 0.0065 (0.009) 1.80 (0.96)
S. cerevisae 0.008 (0.005) 0.005 (0.005) 4.124 (3.47)
Model predictions
C. albicans 0.016 (0.009) 0.010 (0.015) 3.83 (2.79)
E. coli 0.013 (0.010) 0.005 (0.004) 2.46 (1.62)
S. cerevisae 0.009 (0.005) 0.005 (0.005) 4.33 (3.43)

Properties of adaptive events (AE) are calculated from the human annotated data
and the predictions of the PSM to highlight differences between the annotation
methods. The average value and standard deviation (in parentheses) are provided
for each parameter of interest. There are no statistically significant differences
between organisms (i.e. E. coli versus yeast) at the α = 0.05 level. †PEX:
population expansion, is defined as ∆Pij/∆t (t: generations).

6.4.4 Example application: analysis of a yeast chemostat

An example of the PSM prediction is shown for a yeast chemostat (Large1-KK-

2007) in Figure 6.1. In this system, three fluorescent strains were competing for

access to limited glucose; adaptive events occurred as individual cells acquired muta-

tions that affected the rate of glucose transport into the cell. Upon visual inspection

of the raw data, an experienced VERT user would likely conclude that adaptive
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Table 6.3: Population state model error analysis
System Description TPA=A TNN=N FPA=N FNN=A

C. albicans Fluconazole challenge 0.213 0.598 0.108 0.082
E. coli Butanol challenge 0.167 0.683 0.043 0.108
S. cerevisae Glucose limitation 0.216 0.720 0.044 0.020

Error rates were calculated by comparing the set of hidden states generated by the
PSM to human annotation and then applying the translation method discussed in
the description of the model. Model parameters were calculated with α = 0.10 for
the statistical classifier. Slow adaptive events in the E. coli chemostats account for
the increased proportion of false negatives generated by the model.

events (expansions) occurred several times in each subpopulation and that the mu-

tations conferring the greatest fitness advantage occurred in the yellow population.

Analyzing these population dynamics using the PSM produces the adaptive event

predictions shown in Figure 6.3 as shaded regions within each subpopulation.

Once adaptive events have been identified, adaptive mutants must be isolated

from the chemostat population. Preserved population samples stored at -80◦ C may

be regrown in the selective media, plated, and analyzed to determine which clonal

isolate contains the adaptive mutation. Since any sample can potentially contain

the mutant of interest, an additional tool based on the emission sequence generated

by the statistical classifier and the hidden-state data from the PSM was developed

to guide sampling efforts to identify the sample with the highest proportion of the

adaptive mutants. First, the endpoints of each contiguous series of adaptive events

(”A” states) can be identified using the PSM output. Then, for each distinct adaptive

event the emission sequence for that subpopulation should be examined until a ”N”

symbol (statistically significant negative slope) is found at point i. The sampling

suggestion is then set to i−1 as the time point likely contains the highest proportion of

the mutant cells Applying this procedure to the data in Figure 6.1 yields the sampling
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Figure 6.3: Using the experimental dynamics in 6.1 and the PSM, the timing of each
adaptive event in the chemostat is calculated and displayed for the user as shaded
time points.

predictions highlighted in dark blue in Figure 6.4. The identified sampling points

are either immediately adjacent to each adaptive expansion (if followed shortly by

another expansion in a different subpopulation) or, in the case of the final, high fitness

yellow mutant, some distance away from the calculated adaptive event endpoint. The

latter estimate arises from the fact that the yellow subpopulation essentially overran

the chemostat environment, so that the optimum sampling point coincided with

the final population measurement. Quantitative PCR measurement of the allele

frequency in each population supported this sampling scheme [163]. Altogether,

these sampling suggestions provide an useful and accurate tool to optimize the VERT

experiment and to minimize unnecessary mutant isolation.
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Figure 6.4: Following the identification of adaptive events, estimates of optimal
sampling points, as described in the text, are then computed to assist in mutant
isolation.

6.4.5 Distribution of adaptive events

In addition to the adaptive events themselves, it is also of interest to determine

how these events are distributed between the various evolving subpopulations and

whether there are differences in the initial seed populations or fitness effects of the

fluorescent labels. If one label has a significant detrimental impact upon fitness, it is

unlikely that many adaptive events will be identified in that particular subpopulation.

The PSM was utilized to calculate the number of adaptive events, weighted by length

of the detected adaptive event, per subpopulation for the entire set of available data

(Figure 6.5). A consistent bias toward adaptive events in a particular subpopulation

for chemostats seeded from the same initial inoculum may indicate the presence of a

beneficial mutant that arose prior to exposure to the selective pressure in question (a
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jackpot). A statistical method for identifying this type of biased population dynamics

will be developed to investigate this phenomenon in a rigorous manner.
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Figure 6.5: The relative proportions of adaptive events in each subpopulation, calcu-
lated using the PSM, in the three chemostat systems considered here. The neutrality
of expression of the fluorescent protein implies that there should be no consistent
bias of adaptive events toward any particular color, and this assumption holds here
for all chemostats. Statistically significant differences in the abundance of adaptive
events between the labeled populations would imply the presence of jackpot mutants.
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6.4.6 Application to other evolution systems

Despite using of the VERT system and chemostat data in developing the PSM,

there is no explicit dependence of the PSM on VERT data. Any method that can

generate similar population histories over time (e.g., microarray or qPCR methods)

can also be integrated into the PSM. The only requirement is that comparable neu-

trality experiments and annotated experimental data must be generated using the

proposed alternative so that the PSM can estimate the required HMM parameters.

The current implementation of the PSM automatically calculates all of the necessary

parameters, except for µr and σr, for the new measurements, both of which must be

determined by the end-user, as described previously. After this calibration proce-

dure, the PSM should be able to analyze population histories obtained by alternative

methods.

Another potential application of the PSM is the construction of an automated

system (e.g. autoVERT ) for the observation and isolation of adaptive mutants. Both

batch and continuous culture systems are increasingly automated, and with the ad-

dition of an online FACS device, population histories can be collected continuously.

The second task of an automated system is to identify when adaptive events occur so

that samples of the population can be saved (on solid media or as frozen stocks) for

later analysis. Given that the PSM has been shown to be effective in accomplishing

this task, it may be possible to adapt the model to construct such a system. Addi-

tional work is needed to optimize the PSM for this new type of data forecasting as

the model was primarily constructed for retrospective analysis of VERT experiments.

6.5 Conclusions

The population-state model offers the ability to detect adaptive events within

fluorescent microbial populations easily and without the need for user intervention
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automatically. A variety of VERT experimental properties may also be determined,

enabling a quantitative comparison between the evolutionary dynamics of different

VERT experiments. Comparison to human analysis of VERT experiments revealed

that the PSM produced highly accurate predictions for adaptive events and sampling

time points. This algorithm represents an important new tool for the analysis of

population dynamics over time and will be integral to any VERT system capable of

automatic identification of adaptive mutants.
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7. HARNESSING FLUX BALANCE ANALYSIS FOR SIMULATING

BIOLOGICAL EVOLUTION*

7.1 Summary

Current evolution simulators rely on artificial fitness landscapes that represent a

collection of genotypes generated through random mutations that arise during pop-

ulation growth. Despite the many successes of these tools and other theoretical ap-

proaches that make similar approximations, a representative genome that allows for

direct linkage between metabolism in silico and in vivo as the basis for simulated evo-

lution would provide a powerful new method to predict mutations of interest prior to

experimental evolution. As a first step towards addressing this issue, we have devel-

oped a genetic algorithm that represents individual cells using metabolic flux models,

providing a direct linkage between genotype and metabolic behavior of all mutants

during in silico evolution. After demonstrating the functionality of the simulator

with an example model, gene-expression data for Escherichia coli growing under n-

butanol or isobutanol stress is utilized to identify possible compensatory, non-trivial

metabolic changes that occurred during adaptive evolution. Previously collected ex-

perimental data were found to agree with the simulator predictions, demonstrating

the effectiveness of this approach for strain engineering purposes. These predictions

can be used to develop methods to increase biofuel tolerance.

”Harnessing Flux Balance Analysis for Simulating Biological Evolution,” by J. Winkler and
K.C. Kao (2013), under review at Artificial Life (MIT Press).
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7.2 Introduction

Evolutionary engineering is a powerful tool for strain improvement, especially for

complex phenotypes that are poorly understood [244, 289, 334, 333]. Many attempts

have been made to model the evolutionary process in various contexts using compu-

tational simulators [341, 144, 194, 19] in order to explore properties of adaptation

in different types of populations. These models can also be applied alongside theo-

retical approaches [314, 300, 111, 234, 233]. Algorithm for genetic optimization are

of particular interest because of their use of defined ”genomes” that represent all

possible allelic combinations individuals may possess [22, 115] and their success in

approaching complex optimization problems in a variety of fields. In essence, these

algorithms apply random mutation to a collection of individuals with genomes of

specified length and initial allele frequencies to generate new mutant individuals; the

resulting population is then subjected to a selection to identify the fittest individu-

als. Additional rounds of mutation and selection can be performed until the desired

level of performance is achieved. Avida [231] employs this approach to model digital

lifeforms, and it has been quite useful for the study of evolution in silico. Despite

its utility as a tool for simulating evolution, applying genetic programming to bio-

logical evolution is difficult because of challenges in developing biologically relevant

simulated genomes, and the difficulty in linking mutant genotypes to fitness in a

realistic manner. If both problems can be addressed, investigators will be able to

evolve organisms computationally and then extract biologically meaningful data re-

garding adaptation mechanisms and the population dynamics during the evolution

experiment [102].

Metabolic flux models, by virtue of representing both genomes and metabolic

networks in a single package [257, 265, 229], are a promising choice to model the
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underlying genotype for an evolution simulator. These models, available for many

organisms [232, 235, 208, 294, 138], consist of a reaction network defined by a sto-

ichiometric matrix, reaction constraints derived from thermodynamics and experi-

mental measurements, and genes that produce required enzymes. The utility of these

models is demonstrated by the wide range of metabolic engineering tools built upon

constraint-based modeling to design strains that overproduce various biochemicals of

interest [275, 73, 274, 263, 204, 45]. Constraint-based models have also been shown

to predict optimal evolutionary outcomes for adaptation to different carbon sources

[113, 114], although those studies did not attempt to simulate population dynam-

ics during experimental evolution. Estimates of optimal growth rates, obtained by

maximizing the biomass formation objective function in each model, have therefore

been shown to be quantitative [101, 325].

Strain fitness, in the form of biomass flux or growth rate, can be determined

directly from the structure of the flux model and informed reaction constraints with-

out recourse to arbitrary fitness assignments that are inherent to synthetic fitness

landscapes. Metabolic perturbations due to unfavorable environmental conditions

can also be captured by incorporating experimental flux, gene expression, or pro-

teomic data into the models [195, 362, 294, 161, 186, 34, 355, 150, 264] so that the

inhibitory selective pressures, such as biofuels or lignocellulosic biomass inhibitors,

can be incorporated into the simulation of evolution. Assuming that the necessary

computational resources are available, the use of flux models to represent genomes as

the basis for evolution simulators allows for the determination of the genetic mecha-

nisms of adaptation directly, while also observing changes in population composition

over time to facilitate analysis of evolution experiments.

This work represents a synthetic genome that incorporates a validated metabolic

flux model into a genetic algorithm to simulate laboratory evolution. In this manner,
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a well-defined fitness landscape, based directly on the physiology of the organism of

interest, is coupled with random mutation of reaction constraints to identify optimal

genotypes and track their population dynamics in several types of simulated bioreac-

tors. After introducing the basic algorithms for mutation, recombination, and fitness

assignment, a simple scenario describing adaptation to a novel environment under

batch and continuous cultivation is described using the simulator. Evolution under

n-butanol or isobutanol stress is then explored by incorporating gene-expression data

into the metabolic flux model.

7.3 Methods and Materials

7.3.1 Software packages and data sources

All evolution simulations were performed in Matlab R2011b (Mathworks) on a

Mac OS X 10.6.8. The COBRA toolbox [292] with the default glpk solver and E. coli

core model without regulation [291] were used for all FBA calculations except when

noted. Otherwise, the latest E. coli (iJO1366) [235] full metabolic models were used

to generate estimates of growth rate. Any valid COBRA model should be useable

with the simulator, however, although the use of complex models containing large

numbers of reactions (thousands or more) may be computationally prohibitive to

assess if the mutation rate is high. Microarray data used in this study were obtained

from GEO records of Brynildsen and Liao [44] and Rutherford et al. [283] (195

minute time point); only genes with statistically significant changes in expression for

wild-type E. coli under biofuel stress were used as data inputs. When necessary, the

rank product method [39] implemented in TM4-MeV microarray analysis software

was used to identify significant differences in expression [285]. The GiMME algorithm

[27] was used to integrate high-throughput gene expression data into metabolic flux

models. However, instead of removing repressed genes and their dependent reactions

138



from the model entirely, as is normally done by GiMME, the flux constraints of

deactivated reactions was multiplied by α = 0.01 or α = 0.001 to represent stress-

related flux perturbations. Genes that are expressed at 50% or less of the wild-type

level under each condition of interest are considered repressed in this case as an

initial approximation. Other expression thresholds may also be used depending on

the effect of the stressor in question. It may be possible to identify the optimal

threshold using metabolic flux and gene expression data obtained under the same

stress conditions, but we did not attempt to make such a determination here.

7.3.2 Genotype definition

COBRA models are used here as a simplified representation of an actual genome.

We specifically utilized individual reaction constraints, which limit forward and re-

verse flux through particular reactions, as targets for mutation and recombination.

Individual genotypes were represented as the collections of mutations that affect

reaction boundaries. The genome size corresponding to an individual genotype is

therefore equal to the number of reactions included in the model of interest multi-

plied by two, with upper and lower bounds for each reaction. It was assumed that

mutations affect all reaction constraints with equal probability (i.e., no mutational

hotspots) and that all genotypes can be stably recombined into a single strain using

a technique such as conjugation [230] or protoplast fusion [308, 126]. Optimizations

that preferentially targeted reactions with altered flux or positive reduced costs [257]

after constraint with gene expression data were also utilized where noted. Following

the generation of a new genotype by mutation or recombination, the growth rate of

the new mutant was calculated by applying the specified mutations to the ancestral

flux model and then calculating the optimal rate of biomass formation. Finding the

flux distribution that optimizes biomass formation for each mutated COBRA model
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typically requires computing time on the order of milliseconds; simulator runs re-

quired approximately 10 minutes and 3 hours for the core and full E. coli models,

respectively.

7.3.3 Evolution simulation

Both a turbidostat with a proportional-derivative (PD) controller and batch

serial-transfer cultivation systems were implemented for evolution experiments. The

initial population in each simulation was assumed to be genetically homogenous ex-

cept for Nlabel neutral markers. Growth in the former continuous system obeys the

standard mass balance for a turbidostat, and it is assumed that nutrients are present

in excess to facilitate continued exponential growth; otherwise, the functional depen-

dence of growth rate on nutrient and inhibitor concentrations can be readily included

by expanding the mass balance. In the case of batch simulations, the logistic growth

equation was used with carrying capacity Npop to incorporate the changes in growth

rate seen over the course of typical batch cultivations. Batch serial transfers are per-

formed when the population is greater than 95% of Npop. As mentioned previously,

the growth rate of each genotype was determined by optimizing the corresponding

flux model, incorporating any mutations associated with the genotype, for the for-

mation of biomass. Growth of each genotype was simulated using the forward Euler

method with a time-step of ∆t = 10 minutes, although other, more accurate nu-

merical methods can be used as well. Simulations were run for approximately 2260

steps with 200,000 mutants generated over the simulation and three initial labels

in the population. The results of each simulation were stored in a data structure

containing the genotype, growth rate, label (if desired), and population frequency of

every mutant over the course of the simulation. These data were used for subsequent

analysis.
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Mutant genotypes were generated by random mutation of reactions in the parental

genotype, except targets forbidden by the user. Three types of mutations were

modeled: boundary null (flux boundary set to zero) occurred in 34% of mutations,

boundary decrease (flux constraint multiplied by r ∼ U(0, 1)) occurred in 33% of

mutations, and boundary increase (flux constraint multiplied by r ∼ U(1, 1.5)) for

the remainder. Certain simulations with iJO1366 utilized boundary increase limits

up to 500% (r ∼ U(1, 5)). Other distributions of mutational effect can also be used

if sufficient data is available or if theoretical distributions of fitness are of interest

[104]. If one reaction constraint (lower or upper) was set to zero, then the non-zero

constraint was altered; if neither constraint is zero, then the mutation target was

chosen at random. Recombinant genotypes are generated by randomly selecting two

parents from within the evolving population and then constructing a new genotype

that contains the unique mutations from both parents. In both cases, the resulting

models are solved such that they maximize biomass formation using a modified ver-

sion of the optimizeCbModel function in the COBRA toolbox that does not perform

standard checking of model integrity.

7.4 Results and Discussion

7.4.1 Simulator properties

The simulator used in this work combines a genetic algorithm that perturbs the

”genome” (set of reaction flux constraints) to enhance biomass production with sim-

ulated growth in turbidostat or batch culture. The number of alleles in the genome

for a flux model is simply twice the number of reactions, as each reaction has both

an upper and lower constraint on its flux. Random mutations during the simulation

create new genotypes by altering the flux constraints on any reaction in the net-

work, except those excluded by the user, and may increase, reduce, or eliminate flux
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through the targeted reaction; the optimal biomass formation rate is then computed

for each newborn metabolic model, given its new constraints, to determine the effect

of the new mutation. Successful genotypes have high rates of biomass formation, al-

lowing them to increase in frequency relative to the background population over the

simulated time-course. Mathematical descriptions of these processes and cultivation

systems are given in the Materials and Methods section.

Selection of model parameters, such as the population size, simulation length,

and mutation rate are key parameters that control the results of each simulation.

Population size affects the time required for population sweeps by new, fitter mutants,

and it should be significantly larger than the number of mutants produced per time

step. Similarly, the optimal timespan of each simulation depends on the expected

fitness effect of adaptive mutations. The mutation rate, actually representing a

fixed number of mutations generated per simulation, is perhaps the most important

parameter because it will dramatically influence the observed population dynamics

and the rate of simulated adaption. In this case, the frequency of simulated mutation

is not perfectly analogous to a biological mutation rate, since the mutational space for

a metabolic flux model is far smaller than that for a real organism. For the following

examples, approximately two thousand mutations per reaction were generated in the

course of each simulation, using the 95-reaction core E. coli model. This mutational

depth is probably not feasible for more complete models because the sheer number

of mutant genotypes that must be stored; in these cases, only a few mutants are

generated per reaction, reducing the discovery of potential adaptive mutations.

The most practical method for overcoming this problem is to exclude all reac-

tions from perturbation if they are inactive in the base model or represent trivial

adaptations that are not of interest, such as mutations that affect carbon or nitrogen

uptake fluxes, and to otherwise simplify the model of interest as much as possible.
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Several means of limiting the sequence space (number of reactions) open to muta-

tion are discussed below. Potential adaptive mutations can also be identified with a

smaller model that represents the core metabolism of an organism and then verified

using the model of the full organism through direct modification. However, given

that this work focuses on predicting population dynamics during adaptive laboratory

evolution, these optimizations are not employed unless otherwise stated.

7.4.2 Evolution in non-optimal media

Some of the most common, though sometimes incidental, cases of adaptive evo-

lution appear when an organism grows in a new medium for which it is ill-adapted.

Over time, such a strain acquires mutations that improve its ability to assimilate

the specific cocktail of nutrients in the medium, to tolerate the cultivation temper-

ature, and possibly to alter the relative amount of time spent in different growth

phases. This process can be simulated by generating a maladapted version of the

E. coli core metabolic network through random perturbation of reaction flux con-

straints and then evolving the perturbed network until it achieves the original rate of

biomass production of the unaltered core model. An alternative approach to model

construction is to assess the gene expression changes triggered by non-optimal media

and then constrained the metabolic network according to these data (see below).

Here, however, we elect to use a randomly altered model, because of its simplicity

as a test case to demonstrate the functionality of the simulator. Unless otherwise

mentioned, the perturbed model is identical to the E. coli core model in network

connectivity except that 25 reactions are constrained to 1/100th their original flux

in both directions, resulting in a fitness of 25% relative to the parent network.

The population dynamics during evolution of the perturbed model in continuous

(turbidostat) and batch culture, with and without recombination between genotypes,
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Figure 7.1: A) Turbidostat without recombination, B) Turbidostat with recombina-
tion, C) Serial batch without recombination, and D) Serial batch with recombination.
All simulations were run for 2260 iterations (equivalent to 15 days of experimental
evolution).

are shown in Figure 7.1. All reactions except the requirement for ATP maintenance

can be altered via random mutation or recombination (if applicable). We use the

same representation as VERT [345, 269, 163] to represent the population dynamics as

changes in label frequency within the population. Overall, the speed and frequency

of adaptive events (increases in label proportion) are relatively low, indicating that

there are only a few mutations that have a positive effect on growth rate. A de-

tailed analysis of the acquisition of mutations can be performed using the exported

simulation data if it is desirable to determine the exact order of appearance, effect,
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and frequency of each mutation of interest. This approach enables investigators to

identify single or multiple mutations that collectively contribute to improved strain

fitness. This capability is especially important when simulating evolution on complex

fitness landscapes with multiple possible routes of adaptation [178].

Another useful feature of the simulator is its ability to generate pedigrees (Figure

7.2), a directed network that shows the genotype history for all mutants that reach

at least a minimum frequency in the population (typically > 1%). The pedigrees

for the populations simulated without recombination tended to demonstrate clonal

interference, whereas enabling recombination resulted in more complex patterns of

inheritance and a stable coexistence of multiple genotypes descended from differen-

tially labeled strains, matching theoretical expectations [346, 111, 248, 72].

7.4.3 Evolution under stress conditions

Although a randomly perturbed model is adequate to test the capabilities of

the simulator, predictions concerning adaptive paths under real selective pressures

must be made for the simulator to be truly useful. One possible approach to mod-

eling the effects of arbitrary inhibitors on cellular metabolism is to utilize high-

throughput gene expression or proteomic data to modify the network architecture

of the metabolic model using actual expression levels under the condition of inter-

est. Explicit flux measurements can be used for similar purposes, but they are more

difficult and costly to obtain and will therefore be available less frequently.

In this study, the GiMME algorithm [27], which removes reactions from the

metabolic network based on input data while accounting for model consistency, was

selected for integrating gene expression data into metabolic models because of its

simplicity and because of it is already implemented in the COBRA toolbox. In this

case, instead of being constrained to zero flux, reactions are reduced to a fraction of
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Figure 7.2: Representative inheritance patterns in turbidostats undergoing evolu-
tion A) with and B) without recombination. Directed edges connect parent to child
genotypes. All genotypes are descended from a single initial genotype, and each sim-
ulation is seeded with a specified number (three, in this case) of labeled but otherwise
isogenic strains. Note that clonal interference is attenuated when recombination is
permitted between different mutant lineages.
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their original value by multiplying the upper and lower flux constraints with the pa-

rameter α ∈ (0, 1). Fluxes were constrained to 1% (α = 0.01) unless otherwise noted.

This change to the typical GiMME implementation allows for mutations to restore

flux throughout the network in order to compensate for stress-induced metabolic

perturbations.

Given the interest in understanding the complex phenotypes underlying biofuel

tolerance, we selected two gene-expression datasets under isobutanol [44] and n-

butanol [283] selection for integration into the E. coli core model and subsequent

simulated evolution. The full E. coli model (iJO1366) [235] was utilized as noted for

purposes of comparison. Based on their respective gene expression datasets, GiMME

constrained 13 reactions in the core model under isobutanol stress (44% fitness rela-

tive to the core model), and 8 reactions under n-butanol selection (56% fitness relative

to the core model). In both cases, glucose uptake and ATP maintenance reactions

were removed from the set of mutable reactions to ensure that mutants were adapt-

ing to biofuel-related network changes. Growth of the altered metabolic models in a

turbidostat revealed consistent patterns of mutation among independent simulations

for both biofuels, as discussed below. Population dynamics over the course of the

simulations, summarized in Figure 7.3, populations under isobutanol adapted grad-

ually, whereas simulations incorporating n-butanol stress revealed mutations that

conferred large benefits that resulted in rapid adaption. This result implies that for

two initially isogenic populations propagated under isobutanol or n-butanol stress,

the n-butanol populations will be more heterogenous if mutations for optimizing the

metabolic network are the primary drivers of phenotype improvement.

In the presence of toxic levels of n-butanol (approximately 0.8% (v/v) in min-

imal media), GiMME predicted that only a small number of core metabolic reac-

tions would be inactivated, including succinate and 2-oxoglutarate dehydrogenases,
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Figure 7.3: Representative population dynamics during evolution of the E. coli mod-
els after being constrained with n-butanol and isobutanol gene expression data. A
turbidostat without recombination was used for all simulations. A) Core model,
isobutanol stress; and B) core model, n-butanol stress.

formate metabolic reactions (transport and pyruvate-formate lysase), and ATP syn-

thase. Our initial expectations were that random mutation in the simulator would

act to reverse these deactivations, but the key route for improving fitness appears

to be the overproduction of cytochrome oxidase bd, perhaps as a result of a redox

imbalance. This reaction was not in the set initially constrained based upon the

n-butanol expression data.

Enhanced flux through the cytochrome bd reaction was observed in the fittest

mutant produced in every simulation, and it was an extremely common mutation

within the evolving population as a whole. The operon encoding this multicomponent

enzyme (cyo) is, indeed, significantly upregulated following exposure to n-butanol

[283], confirming that this modification plays an important role in ameliorating the

physiological impact of n-butanol stress. A recent analysis of n-butanol tolerance

identified nuoI overexpression as improving n-butanol tolerance as well [267]. How-

ever, mutations affecting cytochrome expression were not detected in a recent study
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of n-butanol tolerant E. coli mutants [269], suggesting that other routes of adaptation

might be more important in vivo.

A range of other mutations occurred in the fittest mutants within the population

in conjunction with cytochrome bd overexpression, including increased glutaminase

and glutamate transport activity, overexpression of citric acid cycle proteins such

as isocitrate dehydrogenase, and malate dehydrogenase, and several proteins in the

pentose phosphate shunt or glycolytic pathways, including transketolase, ribulose-5-

phosphaste 3-epimerase, and phosphofructokinase. Overall, these mutations appear

to counteract the reduction of metabolic activity, especially carbon assimilation and

amino acid synthesis, typically observed during biofuel stress [109, 99].

There also appears to be a single common mutation that significantly improves

metabolic performance under 1% (v/v) isobutanol stress. Most of the genes repressed

under isobutanol stress, as expected, are involved in the citric acid cycle. In con-

trast to the observed adaptations to n-butanol, a strong selection for enhanced flux

through the NADH dehydrogenase reaction was observed in all simulations, along

with occasional enhancements of fluxes through the ATP synthase, isocitrate lysase,

and glucose 6-phosphate dehydrogenase reactions. All of these reactions were ini-

tially constrained based on the available data for gene expression, indicating that

a reversal of these effects is necessary to restore strain fitness. Mutations affecting

the expression of NADH dehydrogenase were not observed in either of the recent

long-term evolutionary studies for isobutanol tolerance of E. coli [14, 217], although

increased transcription of the nuo operon (encoding NADH dehydrogenase-I) was

induced by n-butanol stress [283]. The same mutations improve fitness of the full

iJO1366 model after it is constrained with the same E. coli gene-expression data

obtained under isobutanol stress. One possible explanation for these results is that

altered activity or deletion of global regulators under these conditions results in
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increased expression of NDH-1 or NDH-2 [44, 35].

Because the core E. coli model contains only a small fraction of the entire E.

coli metabolic network, we also used the full metabolic model (iJO1366) in order to

ascertain whether our results were an artifact of the core model. Unexpectedly, the

full model predicted no drop in growth rate when it was constrained according to

changes in gene expression seen under 0.8% n-butanol stress. This finding contrasts

with previous measurements in E. coli [175], and could indicate that the effects

of butanol toxicity on the metabolic network are overweighted by the core model

because of its lack of redundancy.

Constraining iJ10366 with the isobutanol expression data also resulted in only

a 8% decrease in the expected growth rate when the same parameter values that

were used to constrain the core model. Setting α = 0.001 and re-applying the

gene expression constraints with GiMME revealed larger fitness decrements of 40%

for isobutanol and 3.4% for n-butanol stresses. The discrepancy in fitness costs at

different values of α is most likely a result of the increased flexibility of iJO1366

network compared to the comparatively simple core model. Thus, users will be ad-

vised to test a range of α values in more complex flux models in order to constrain

the models adequately. Attempts to simulate evolution under the isobutanol stress

condition with α = 0.001 failed to identify adaptive mutants because of the signifi-

cantly expanded mutation space associated with the 2261 reactions in the iJO1366

network. The distribution of fitness effects caused by mutation may also have been

inadequate to generate adaptive mutants with the initial α flux constraint. Using

an equivalent number of mutations per reaction with iJO1366, to explore potential

tolerance-conferring genotypes more fully proved to be computationally infeasible.
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7.4.4 Reducing the target sequence space

Given the large number of reactions in the full E. coli model, reducing the size

of the sequence space available for mutation is required to increase discovery of po-

tential adaptive genotypes. In contrast to experimental adaptive evolution, where

mutations occur randomly throughout the genome without dependence on local se-

quences, the use of a flux-based model in the simulation affords additional control

over which reactions can be perturbed by random mutation. A simple, yet logically

appealing, heuristic is to constrain reaction flux limits with GiMME and then target

all these reaction for random mutation. This reaction set includes both the reac-

tions constrained based on the gene-expression data as well as any other reactions

perturbed elsewhere in the metabolic network; approximately 40% of the reactions

in the core model were excluded from the sequence space by this approach when

n-butanol or isobutanol gene expression data is used to constrain the flux distribu-

tion. The mutational outcomes observed under n-butanol or isobutanol selection are

identical to those previously found when any reaction constraint in the flux model

genome could be altered, indicating that this approach does not bias the in silico

evolution results except by avoiding neutral mutations. The practical consequence

of this approximation would be to increase the frequency of adaptive events.

The reduction in sequence space is significantly larger with the iJO1366 model,

with 79% and 74% of the modeled reactions exhibiting no change in flux when the full

metabolic network is constrained by the n-butanol and isobutanol gene expression

data. Although this set of 542 to 672 reactions is large compared to the 95 reaction

core model, the number of mutations per reaction increased by a factor of 3.8 to 4.8,

representing a significant improvement over usage of the entire set of reactions for

the simulated genome. Applying this approximation and simulating evolution with
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iJO1366 constrained with isobutanol gene expression data identified increase flux

though cytochrome bo3 and NADH dehydrogenase reactions as improving fitness, as

one mutation or the other is present in the fittest strains arising in each simulation.

However, the maximum fitness increase in these mutants is quite small, representing

only a 0.77-0.78% increase in growth averaged over all simulations.

Given the tight constraints placed on the networks by setting α = 0.001, it may

be that mutations cannot relax these constraints sufficiently to permit more than

marginal improvements in biomass production. To test this hypothesis, the po-

tential upper bound constraints were increased from a maximum of 50% to 500% to

facilitate more rapid adaptation. With this change, we found that mutations that re-

sulted in increased flux though the malate dehydrogenase (mdh) and malate:quinone

oxidoreductase (mqo) reactions became more frequent, in addition to overexpres-

sion of NADH dehydrogenase. Surprisingly, few mutations increased flux through

the cytochrome bo3 reaction, although manually increasing the maximum permit-

ted flux through that reaction does improve biomass production in the isobutanol-

constrained iJO1366 model. These mutations likely compensate for disruptions in

quinone metabolism in iJO1366, but the identification of mdh as a potentially im-

portant locus for isobutanol tolerance contradicts the consistent pattern of mdh de-

activation observed by Minty et al. [217] in response to continual isobutanol stress.

The reason for this apparent discrepancy between the evolved full model and exper-

imental evolution data is unclear, but it indicates that additional validation of the

genotype-phenotype predictions generated from the simulator is needed. However,

we expect that continued refinement of the E. coli metabolic model and the devel-

opment of more holistic simulations of cell behavior will also increase the accuracy

of the simulator by accounting for a greater range of environmental and metabolic

perturbations.
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In order to determine the set of reactions that could potentially improve biomass

production in the isobutanol-constrained full E. coli model, we examined the set of

reactions that were limiting biomass formation by identifying those with positive re-

duced variable costs [257]. Reactions with negative or zero reduced variable costs are

produced in excess or are exactly optimal, respectively, for biomass production. The

set of reactions with positive reduced variable costs therefore represents the sequence

subspace in which adaptive mutations can occur. Although the simulator can easily

target these reactions for mutation during simulated evolution, there is little corre-

spondence between such simulations and evolution in the laboratory because the vast

majority of mutations are deleterious or neutral with regard to fitness [104]. This

approximation would effectively introduce mutational hot spots in the flux model

genome that are not observed in actual organisms. An approach more explicitly

focused on designing tolerant strains using a genetic algorithm could make use of

this approximation to enhance selection for improved genotypes. For example, only

a small number of reactions, including those previously mentioned along with for-

mate dehydrogenase, catalase, 2-oxogluterate dehydrogenase, and three succinate an-

tiporters for succinate-aspartate, succinate-fumarate, and succinate-D-tartrate have

positive reduced variable costs in the constrained iJO1366 system. This restriction

means that the simulations are effectively searching for only a small number of po-

tentially beneficial genotypes. Because our goal in this study was to demonstrate a

more realistic evolution simulator rather than to design an explicit strain improve-

ment tool, we did not explore this type of optimization further.

7.4.5 Targets for further development

Despite the success of the simulator in identifying biologically relevant adaptive

mutations, there are limitations inherent to the use of flux-based models that pre-
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vent the discovery of all potential adaptive mechanisms. One problem is that E.

coli biomass composition varies with growth rate [256] a factor that is not accounted

for during these evolution simulations. Although this effect could alter the relative

fitness of competing genotypes, and therefore perturb the dynamics during simu-

lated evolution, it is likely to be important only for phenotypes for which large and

sudden changes in fitness are possible (e.g., antibiotic resistance). It should have

less effect on the gradual adaptation observed with most complex inhibitors such

as biofuels, furans, or weak acids. Another issue is that constraint based models

focus on simulating metabolism rather than the totality of cellular activities, unlike

the holistic cell model recently developed for Mycoplasma genitalium [164]. Thus,

mutations are limited to known metabolic activities. An example of a potentially

important non-metabolic adaptation route is the enhancement in biofuel tolerance

through the overexpression of protein chaperones [361]. This effect could not have

been predicted solely using flux-base models. In addition, metabolic reconstructions,

though they make accurate quantitative predictions about cellular growth pheno-

types, are not yet complete even for the best-characterized model organisms, like E.

coli. As flux-based models undergo further refinement and more whole-cell models

become available, the obstacles to accurate prediction of evolutionary dynamics that

encompass both metabolic and non-metabolic adaptations should diminish. Isotopic

measurements of metabolic flux under different stress conditions would also help con-

strain and improve the abilities of the simulation to predict population dynamics.

7.5 Conclusions

Combining metabolic flux models, which provide well-defined fitness landscapes

that accurately represent real organisms, with an efficient genetic algorithm to ex-

plore the mutational space of interest, represents a new approach to predicting geno-
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typic outcomes in laboratory evolution. This approach was used here to identify key

metabolic changes that occur under isobutanol and n-butanol stresses by incorpo-

rating E. coli gene-expression data into the core E. coli metabolic model. In the

case of isobutanol tolerance, core model mutations were found to improve growth of

the full E. coli model constrained using gene-expression data for isobutanol stress,

indicating that the core model is suitable as a base genome for evolution. Previ-

ous results from the literature support the adaptation mechanisms identified in these

simulations, confirming that the identified mutations are biologically relevant. Taken

together, the results indicate that the simulator can be applied effectively and quickly

to generate predictions of evolutionary dynamics and potential adaptive mutations

that may arise during laboratory evolution.

The approach used in this study should be generally suitable for the analysis

of any organism for which a metabolic model has been developed. Because high-

throughput analyses of transcript or protein abundance are routinely generated for

purposes of strain characterization, their incorporation into the metabolic model of

interest should normally be practical. These altered models can also be used as

inputs to the evolution simulator to predict adaptive mutations that are likely to

occur during evolution, providing a computational method to complement experi-

mental tools that are currently used to identify and engineer complex phenotypes

like biofuel tolerance. Despite these advantages, the simulator has several limitations

that stem from its reliance on metabolic-flux models. Foremost of these is the inher-

ent restriction that adaptive mutations can only be identified for components of the

encoded metabolic network. It is likely that this constraint relax over time as more

complete and validated whole-cell models are developed to facilitate analysis of the

complex population structures of the organisms of interest.
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary of Results

This work demonstrates the possible advantages of an evolution system for E.

coli that exploits reciprocal genetic exchange to generate increased diversity in the

genome under selection. Adaptation of an Hfr strain that can undergo reciprocal

genetic exchanges agrees closely with theoretical predictions of the benefit of sexual

recombination on complex (polygeneic) and simple (single allele) fitness landscapes.

This mating system was tested for its ability to improve more industrially relevant

tolerance phenotypes such as osmotic tolerance. The latter study significantly ex-

panded knowledge of osmotic tolerance determinants in E. coli and identified the

nag operon and genes that regulate cell wall synthesis as being key sources of muta-

tions to improve tolerance. Work using conjugation to combine tolerance phenotypes

from tolerant donors into multi-tolerant recombinants is ongoing and holds significant

promise for conducting evolution and adaptation in parallel.

An analysis of L. brevis transcriptional responses to n-butanol and ferulic acid

was also conducted. Hundreds of genes that were differentially expressed after chem-

ical insult were identified, and provide new insight into the stress responses of L.

brevis. Steps were also taken toward the development of a method for screening L.

brevis genes with their native promoters by verifying that the housekeeping sigma

factor from two Lactobacillus species can complement temperature-sensitive defects

in aE. coli σ70 mutant. Two new computational tools were developed to simplify

studies of population dynamics during evolution and to simulate possible evolution-

ary outcomes using a flux balance analysis of fitness landscapes.
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8.2 Recommendations for Further Research

One of the main benefits of a sexual evolution system, in addition to a faster rate

of adaptation across complex fitness landscapes, is the theoretical ability of donors to

transfer selected phenotypes to arbitrary recipients. Using this approach, evolution

experiments could be executed in parallel, followed by mixing of characterized isolates

or populations to generate recombinants with multiple desirable phenotypes. Efforts

in this area have not been successful to date, but several key areas that require

improvement have been identified. These involve adjusting the level of selection

pressure to apply during recombinant selection, choosing time and format (in liquid

or on a solid surface) of the mating between evolved strains, and selecting against

spontaneous parental mutants during the procedure. Given the potential reduction

in time, effort, and cost that this type of parallel evolution offers, this area promises

significant rewards for the biotechnology field.

Because of the decreasing cost of deep population sequencing, it may soon be

feasible to compare genetic dynamics between sexual and asexual populations quan-

titatively without restricting the investigation to a small number of loci. A study of

this type would directly test theoretical assumptions concerning allele fate in each

type of system and could provide a new way of testing theories of population genet-

ics. The large number of variables in each evolution experiment (type of challenge,

selection strength, cultivation system, and others) can be manipulated to see how in

situ recombination affects population dynamics in these regimes. The results would

represent a significant contribution to evolutionary biology and could also be used

to optimize evolutionary engineering protocols to maximize the retention of novel

adaptive mutants.

The work presented utilized E. coli not only to test the mating system but as
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the ultimate host for any novel genetic determinants for selected phenotypes. As

our knowledge of non-model organisms improves, developing a version of the mating

system that can work in other prokaryotic hosts is of interest. Although the F

plasmid is transfers DNA extremely efficiently under typical cultivation conditions,

other conjugative plasmids in the R family have a much broader host range, although

with a lower transfer efficiency, than F. There are substantial challenges to developing

an R-based mating system, such as the requirement for mating to take place on solid

surfaces, the lack of genetic tools to integrate the conjugative plasmid into host

genomes, and a more limited understanding of the biology of R plasmid compared

to the F plasmid. Overcoming these obstacles will require combining fundamental

molecular biology research on R, the development of new techniques to generate and

characterize Hfr strains in a variety of species, and extensive evolutionary engineering

to verify that newly sexual bacterial species derive the expected adaptive benefit of

increased genetic recombination. However, the resulting mating systems would be

an invaluable tool for an evolutionary engineering, especially to expedite adaptation

of slower-growing organisms that possess metabolic capabilities of high industrial

interest.

158



REFERENCES

[1] M. Achtman, N. Kennedy, and R. Skurray. Cell–cell interactions in conjugating

Escherichia coli : role of traT protein in surface exclusion. Proceedings of the

National Academy of Sciences, 74(11):5104, 1977.

[2] S. Ackerman, A. R. Kermany, and D. A. Hickey. Finite populations, finite

resources, and the evolutionary maintenance of genetic recombination. Journal

of Heredity, 101(suppl 1):S135–S141, 2010.

[3] J. Adrio and A. Demain. Genetic improvement of processes yielding microbial

products. FEMS Microbiology Reviews, 30(2):187–214, 2006.

[4] E. Alejandre-Duran, D. de Andres-Cara, and A. Porras. Simulation of the effect

of population size on the evolution of the recombination fraction. Journal of

Theoretical Biology, 128(4):399–405, 1987.

[5] M. P. Almario, L. H. Reyes, and K. C. Kao. Evolutionary engineering of Sac-

charomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic

biomass. Biotechnology and Bioengineering, 110(10):2616–2623, 2013.

[6] H. Alper and G. Stephanopoulos. Global transcription machinery engineer-

ing: a new approach for improving cellular phenotype. Metabolic Engineering,

9(3):258–267, 2007.

[7] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local align-

ment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[8] W. Anderson and D. Akin. Structural and chemical properties of grass ligno-

celluloses related to conversion for biofuels. Journal of Industrial Microbiology

and Biotechnology, 35(5):355–366, 2008.

159



[9] L. Aniskovitch and H. Winkler. Rickettsia prowazekii sigma factor σ73 can be

overexpressed in Escherichia coli and promotes RNA polymerase binding and

transcription. Microbiology, 142(4):901, 1996.

[10] K. Anthony, C. Sherburne, R. Sherburne, and L. Frost. The role of the pilus

in recipient cell recognition during bacterial conjugation mediated by F-like

plasmids. Molecular Microbiology, 13(6):939–953, 1994.

[11] F. Archibald and I. Fridovich. Manganese, superoxide dismutase, and oxygen

tolerance in some lactic acid bacteria. Journal of Bacteriology, 146(3):928,

1981.

[12] S. J. Arnold, M. E. Pfrender, and A. G. Jones. The adaptive landscape as a

conceptual bridge between micro-and macroevolution. Genetica, 112(1):9–32,

2001.

[13] M. Asayama, H. Suzuki, A. Sato, T. Aida, K. Tanaka, H. Takahashi, and

M. Shirai. The rpoD1 gene product is a principal sigma factor of RNA poly-

merase in Microcystis aeruginosa K-81. Journal of Biochemistry, 120(4):752,

1996.

[14] S. Atsumi, T. Wu, I. Machado, W. Huang, P. Chen, M. Pellegrini, and J. Liao.

Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Es-

cherichia coli. Molecular Systems Biology, 6(1):449, 2010.

[15] S. Atsumi, A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynild-

sen, K. J. Chou, T. Hanai, and J. C. Liao. Metabolic engineering of Escherichia

coli for 1-butanol production. Metabolic Engineering, 10(6):305–311, 2008.

[16] E. Baake and W. Gabriel. Biological evolution through mutation, selection,

and drift: an introductory review. Annual Reviews of Computational Physics,

160



7:203–264, 2000.

[17] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Dat-

senko, M. Tomita, B. L. Wanner, and H. Mori. Construction of Escherichia coli

K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular

Systems Biology, 2(1):2008, 2006.
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[277] A. Rodŕıguez-Verdugo, B. S. Gaut, and O. Tenaillon. Evolution of Escherichia

coli rifampicin resistance in an antibiotic-free environment during thermal

stress. BMC Evolutionary Biology, 13(1):50, 2013.

192



[278] I. Roy Curtiss and D. Stallions. Probability of F integration and frequency

of stable Hfr donors in F+ populations of Escherichia coli K-12. Genetics,

63(1):27, 1969.

[279] N. Rozes and C. Peres. Effects of phenolic compounds on the growth and the

fatty acid composition of Lactobacillus plantarum. Applied Microbiology and

Biotechnology, 49(1):108–111, 1998.

[280] K. L. Rozwadowski, G. G. Khachatourians, and G. Selvaraj. Choline oxidase,

a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic

stress in Escherichia coli. Journal of Bacteriology, 173(2):472–478, 1991.

[281] K. Rumbold, H. J. van Buijsen, K. M. Overkamp, J. W. van Groenestijn,

P. J. Punt, and M. J. Van Der Werf. Microbial production host selection

for converting second-generation feedstocks into bioproducts. Microbial Cell

Factories, 8(1):1–11, 2009.

[282] F. D. Russo, J. M. Slauch, and T. J. Silhavy. Mutations that Affect Separate

Functions of OmpR the Phosphorylated Regulator of Porin Transcription in

Escherichia coli . Journal of Molecular Biology, 231(2):261–273, 1993.

[283] B. Rutherford, R. Dahl, R. Price, H. Szmidt, P. Benke, A. Mukhopadhyay,

and J. Keasling. Functional genomic study of exogenous n-butanol stress in

Escherichia coli. Applied and Environmental Microbiology, 76(6):1935–1945,

2010.

[284] A. Saeed, V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, J. Braisted,

M. Klapa, T. Currier, and M. Thiagarajan. TM4: a free, open-source system

for microarray data management and analysis. Biotechniques, 34(2):374, 2003.

193



[285] A. I. Saeed, N. K. Bhagabati, J. C. Braisted, W. Liang, V. Sharov, E. A. Howe,

J. Li, M. Thiagarajan, J. A. White, and J. Quackenbush. TM4 Microarray

Software Suite. Methods in Enzymology, 411:134–193, 2006.

[286] S. Sakai, Y. Tsuchida, S. Okino, O. Ichihashi, H. Kawaguchi, T. Watanabe,

M. Inui, and H. Yukawa. Effect of lignocellulose-derived inhibitors on growth

of and ethanol production by growth-arrested Corynebacterium glutamicum R.

Applied and Environmental Microbiology, 73(7):2349, 2007.

[287] M. Sami, H. Yamashita, T. Hirono, H. Kadokura, K. Kitamoto, K. Yoda,

and M. Yamasaki. Hop-resistant Lactobacillus brevis contains a novel plas-

mid harboring a multidrug resistance-like gene. Journal of Fermentation and

Bioengineering, 84(1):1–6, 1997.

[288] N. R. Sandoval, T. Y. Mills, M. Zhang, and R. T. Gill. Elucidating acetate

tolerance in E. coli using a genome-wide approach. Metabolic Engineering,

13(2):214–224, 2011.

[289] C. Santos and G. Stephanopoulos. Combinatorial engineering of microbes

for optimizing cellular phenotype. Current Opinion in Chemical Biology,

12(2):168–176, 2008.

[290] J. Scaife, J. Heilig, L. Rowen, and R. Calendar. Gene for the RNA poly-

merase sigma subunit mapped in Salmonella typhimurium and Escherichia

coli by cloning and deletion. Proceedings of the National Academy of Sciences,

76(12):6510, 1979.

[291] J. Schellenberger, J. Park, T. Conrad, and B. Palsson. BiGG: a Biochemical

Genetic and Genomic knowledgebase of large scale metabolic reconstructions.

BMC Bioinformatics, 11(1):213, 2010.

194



[292] J. Schellenberger, R. Que, R. Fleming, I. Thiele, J. Orth, A. Feist, D. Zielinski,

A. Bordbar, N. Lewis, S. Rahmanian, J. Kang, D. Hyduke, and B. Palsson.

Quantitative prediction of cellular metabolism with constraint-based models:

the COBRA Toolbox v2.0. Nature Protocols, 6(9):1290–1307, 2011.

[293] J. Shiloach and R. Fass. Growing E. coli to high cell density: a historical

perspective on method development. Biotechnology Advances, 23(5):345–357,

2005.

[294] T. Shlomi, M. Cabili, M. Herrg̊ard, B. Palsson, and E. Ruppin. Network-

based prediction of human tissue-specific metabolism. Nature Biotechnology,

26(9):1003–1010, 2008.

[295] J. Sikkema, J. De Bont, and B. Poolman. Mechanisms of membrane toxicity of

hydrocarbons. Microbiology and Molecular Biology Reviews, 59(2):201, 1995.

[296] R. Skurray, H. Nagaishi, and A. Clark. Molecular cloning of DNA from F

sex factor of Escherichia coli K-12. Proceedings of the National Academy of

Sciences, 73(1):64, 1976.

[297] G. Smith. Conjugational recombination in E. coli : myths and mechanisms.

Cell, 64(1):19–27, 1991.

[298] J. M. Smith. Evolution in sexual and asexual populations. American Naturalist,

pages 469–473, 1968.

[299] K. Smith and J. Liao. An evolutionary strategy for isobutanol production

strain development in Escherichia coli . Metabolic Engineering, 13(6):674–681,

2011.

[300] P. D. Sniegowski and P. J. Gerrish. Beneficial mutations and the dynamics

of adaptation in asexual populations. Philosophical Transactions of the Royal

195



Society B: Biological Sciences, 365(1544):1255–1263, 2010.

[301] J. A. Snyder, B. J. Haugen, E. L. Buckles, C. V. Lockatell, D. E. John-

son, M. S. Donnenberg, R. A. Welch, and H. L. Mobley. Transcriptome of

uropathogenic Escherichia coli during urinary tract infection. Infection and

Immunity, 72(11):6373–6381, 2004.

[302] B. K. Sohanpal, S. El-Labany, M. Lahooti, J. A. Plumbridge, and I. C. Blom-

field. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic)

acid and GlcNAc in Escherichia coli K-12. Proceedings of the National Academy

of Sciences, 101(46):16322–16327, 2004.

[303] P. Soucaille, G. Joliff, A. Izard, and G. Goma. Butanol tolerance and auto-

bacteriocin production by Clostridium acetobutylicum. Current Microbiology,

14(5):295–299, 1987.

[304] B. Springer, Y. Kidan, T. Prammananan, K. Ellrott, E. Böttger, and P. Sander.
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