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ABSTRACT 

 

Cotton (Gossypium hirsutum L.) is subject to stress and yield reducing factors 

throughout the growing season.  The loss of Delta and Pine Land 555 Bollgard® 

Roundup Ready® (DPL 555 BR) cotton in September 2009 removes a variety from the 

commercial market that proved to be a useful tool for farmers.  This true full-season 

variety gave producers in regions of the U.S. Cotton Belt, where long growing season 

windows are established, the opportunity to take full advantage of extended growing 

days until harvest.  The potential to delay the maturity of a mid-full season upland cotton 

variety, to that of the established full season variety, DPL 555 BR, may be possible 

through the determent of stress with fungicides.   

A two-year field study was conducted at the Texas AgriLife Research Farm in 

Burleson County in 2008 and 2009.  The study evaluated the impact of pyraclostrobin, 

Headline®, and azoxystrobin, Quadris®, fungicides and their effect on yield and maturity 

after application to a mid-full season upland cotton variety, Stoneville 4554 Bollgard II® 

Roundup Ready Flex® (STV 4554 B2RF).  These fungicides, along with commercially 

available tank-mix compounds, were applied to the study area at two defined growth 

stages: Early Bloom (EB), and Early Bloom +14 days (EB+14).  Data analyzed over the 

years of both studies indicated statistical and numerical differences for fungicidal 

treatments.  

Statistical differences were noted in measurements throughout the years of both 

Study 1 and Study 2.  Final plant mapping measurements and fiber properties for both 
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studies failed to show improvements of increased nodes or plant height, as well as the 

measurements obtained from HVI analysis, due to the additions of either pyraclostrobin 

or azoxystrobin compounds. Combining these strobilurin fungicides with the labeled 

compounds of mepiquat chloride or mepiquat chloride did not yield results detrimental 

to plant characteristics measured in these studies.  The treatment timing of EB+14 that 

contained the pyraclostrobin compound increased lint yield versus the untreated control 

by 213 kg ha-1.   
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1.  INTRODUCTION 
 

Cotton (Gossypium hirsutum L.) is a cash crop for farmers in the Southern 

United States.  Cotton is a perennial, sub-tropical, and indeterminate maturing plant.   

Cotton is primarily the world’s major fiber used in almost half of all textiles, apart from 

the seed also being used as a source of food (Sharma and Bambawale, 2008).  Through 

breeding and selection cotton has been developed into cultivars that are managed for 

their yield potential within a single growing season.  After harvest of seed cotton has 

been completed, the plants are destroyed through mowing, tillage, or chemical 

destruction.  

 Cotton production acreage has been reduced significantly throughout the United 

States over the last four years, except in Texas (D. Albers, personal communication, 

April 1, 2008).  Subsequently the need to produce large amounts of fiber for export 

throughout the world must now be met on an all-time historically low amount of acreage 

(Boman, 2010).   

The remaining acres of cotton production throughout the south and in Texas have 

been primarily occupied by one cultivar, Delta and Pine Land 555 BGRR (DPL 555).  

DPL 555 is the staple among growers in regions that have the potential to grow a full-

season variety which can maximize lint yield potentials by reducing stress that is 

induced at varying periods (D. Albers, personal communication, April 1, 2008).  
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DPL 555 is the historical leader for production acres planted to cotton and is 

considered the marker, within the maturity scale, of true full-season varieties. This 

variety was among the first cultivars released with Bollgard I Roundup Ready® 

technology genetics. In the fourth quarter of 2007, Monsanto Company, the proprietary 

owner of this variety and genetic modification, was notified by the Environmental 

Protection Agency (EPA) that the Bollgard I gene would not have its label renewed as of 

September 2009 (Golden, 2009).    

Ongoing breeding programs of the major companies, who release germplasm for 

commercial availability have failed thus far to produce a replacement for this variety.  

The loss of this cultivar has spurred the investigation and research for a replacement to 

fill, in maturity and yield potential, the void created in the market.  Through their entire 

life cotton plants are subjected to a variety of stresses (Cothren, 1999).  Plants have the 

ability to adapt to stress in various ways, such as reorienting leaves in response to high 

light intensity, osmotic adjustment and changes in the metabolic processes (Cothren, 

1999).  DPL 555 contained the growth potential to endure fruit loss from drought and 

insect damage and still maintain high yields.  

1.1 Literature Review 

1.1.1 NAWF and Maturity 

Cotton plants progress towards maturity based on environmental conditions to 

which they are exposed, and not necessarily to the number of calendar days (Silvertooth, 

1995).  Cotton growth proceeds from vegetative to reproductive stages, with a linear 

increase in heat unit accumulation (Fry, 1983).  Nodes above white flower (NAWF) is 
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used as a monitoring system for the growth of a cotton plant.  A NAWF value gives an 

insightful measurement of the growth status of the crop from mid- to late- season 

(Oosterhuis, 1991).  NAWF and heat units are highly correlated in linear fashion to the 

relative maturity of a cotton plant (Bourland et al., 2001). The NAWF value is related to 

variation in canopy photosynthesis, which implies that growth activity of the crop can be 

assessed by monitoring nodes above white flower (Bourland et al., 1992).  The 

uppermost first position white flower is often used to describe the balance between fruit 

set and rate of terminal growth (Bourland et al., 2001).  White flowers located in the first 

position on sympodia, grow progressively closer to the apex as the plant nears maturity 

(Oosterhuis, 1991).   

Nodes above white flower can be used to calculate the maturity and length of 

time until harvest of cotton crops (Bourland et al., 1992).  The appearance of white 

flowers in the apex is indicative of flower cessation and is precluded by termination of 

nodal extension; this event is known as cutout (Guinn, 1979).  The point at which this 

occurs is set at NAWF=5 and is therefore noted as the last effective flower population 

(Bourland et al., 1992), as well as being an indication that the crop is mature at this 

point.  Several factors affect the growth, maturity, and yield of commercially available 

cotton varieties: extreme temperatures (Reddy et al., 1999; Zhao et al., 2005); moisture 

deficits (Pettigrew, 2004); poor fertility (Hake et al., 1989b); drought stress (Guinn, 

1982; Hake et al., 1992; McMichael, 1979a; McMichael and Jordan, 1973); and 

pathogenic pressure during key growth stages (Stewart et al., 2001).  In order to achieve 

full maturity and maximize yield potential, abiotic and biotic stress found in production 
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field environments must be monitored and managed throughout the growing season.   

1.1.2 Strobilurin Fungicides 

 Plant diseases are of significant concern in crop production due to the intimate 

relationship between plant health and the welfare of people, animals, and the 

environment (Brimner and Boland, 2003).  Sales of the strobilurin and related fungicides 

totaled approximately $620 million in 1999, which represented over 10% of the global 

fungicide market (Bartlett et al., 2002).   

Cotton is affected by a number of foliar diseases viz., Alternaria macrospora 

(leaf spot), Myrothecium roridum (leaf spot), Cercospora gossypina (leaf spot) and 

Colletotrichum gossypii (Anthracnose: pink boll rot or seedling disease) (Sharma and 

Bambawale, 2008).  The strobilurins are an important class of agricultural fungicides, 

the discovery of which was inspired by a group of natural fungicidal derivatives of β-

methoxy-acrylic acid (Bartlett et al., 2002).  Strobilurins are natural substances isolated 

mainly from mushrooms (basidiomycetes) (Balba, 2007).  This class of fungicide 

inhibits the respiration of fungal mycoflora found in many environments (Gullino et al., 

2000).   

The breakdown of organic molecules (i.e. sugars, fats, proteins) provides energy 

for the survival of living systems (Leroux, 1996).  Through the destruction of sugars, 

fats, and proteins, energy is regenerated and captured through the phosphorylation of 

inorganic substances in order to store energy in the form of chemical bonds.  The 

pathway for capture of this stored energy is through respiration (Waard et al., 1993).  

The strobilurins bind to one specific site in the mitochondria, the quinol oxidation (Qo) 
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site (or ubiquinol site) of cytochrome b and thereby stops electron transfer between 

cytochrome b and cytochrome c.  This disruption of electron transfer halts reduced 

nicotinamide adenine dinucleotide (NADH) oxidation and adenosine triphosphate (ATP) 

synthesis (Balba, 2007) .  The presence of the electron transport chain and the need for 

respiration under high heat conditions in cotton fields has led to the investigation of 

strobilurin fungicide’s potential action on plant physiology and its impact in production 

settings. 

1.1.3 Strobilurin and Plant Physiological Interaction  

 After the launching of strobilurins, and with the evolution of this group of 

chemical products, the concept of disease control gained new perspectives, especially 

when considering the advantages obtained by the action of positive physiological effects 

on plants (Venancio et al., 2003).  Ammerman et al., (2000) stated that the most 

important contribution provided by the pyraclostrobin molecule to agriculture is derived 

from its wide range of fungicidal activity.  During the last decade of intense research on 

the fungicidal properties of strobilurins, the evidence for their direct influence in 

physiological processes of plants that were not infected or threatened by pathogens was 

strengthened (Venancio et al., 2003).  Apart from its fungicidal effect, the strobilurin 

BAS 490F was found to induce physiological and developmental alterations in wheat 

(Triticum aestivum) (Grossmann and Retzlaff, 1997).   

 As noted previously, the strobin fungicides directly inhibit respiration by acting 

in the mitochondria on the quinol oxidation (Qo) site (or ubiquinol site) of cytochrome b 

(Balba, 2007; Bartlett et al., 2002; Gullino et al., 2000).  Pyraclostrobin, a fungicide of 
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the strobilurins group acts by inhibiting mitochondrial respiration by blocking the 

transfer of electrons in the III complex (bc1) of electron flow for mitochondria 

(Ammerman et al., 2000).  Since the bc1 complex persists in all eucaryotae, at least one 

partial inhibition in the transportation of electrons would also be expected in plant cells 

after absorbing the fungicide (Venancio et al., 2003).  Although the strobilurins’ effects 

in plants have been studied for more than seven years, there is no evidence of any direct 

interaction of pyraclostrobin with enzymes of receptor systems other than mitochondrial 

respiration (Koehle et al., 2003) 

 Retardation of senescence by strobin fungicides in plant tissue has been shown in 

previous research (Koehle et al., 2003).  The rate reduction in desiccation and maturity 

of a plant species has received attention in recent years.  After exposing wheat leaf discs 

to pyraclostrobin for 48 hours, the loss of chlorophyll, measured as a parameter of the 

progression of senescence, was inhibited by an increasing concentration of 

pyraclostrobin (Grossmann and Retzlaff, 1997).     

 Unfavorable environmental stress stimulates the formation of radicals, especially 

of reactive oxygen and increases the oxidative potential in plant tissues (Bartosz, 1997). 

Active oxygen species (AOS) have been proposed as a central component of plant 

adaptation to both biotic and abiotic stresses (Dat et al., 2000).  Resistant plants respond 

to oxidative stress with an increase in the activity of antioxidative enzymes, such as 

superoxide dismutase, catalases, and peroxidases (Larson, 1997).  Zhang et al. (2010) 

stated that azoxystrobin does not affect the chlorophyll content in winter wheat, however 

it application delayed the increase of AOS, the delaying the senescence of wheat and 
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prolonging the duration of flag leaf photosynthesis.  

 Harsh environments that are encountered during plant growth may be deterred by 

the use of a strobin fungicide. Koehle et al. (2003) stated that winter barley (Hordeum 

vulgare) treated with pyraclostrobin showed less visual symptoms than the untreated 

control.  When the activity of peroxidases in the flag leaf was evaluated, the plants 

treated with pyraclostrobin showed almost double enzymatic activity, which can 

contribute to stress tolerance (Koehle et al., 2003).  The most remarkable change was the 

inhibition of ethylene biosynthesis by the reduction of the activity of ACC synthase 

(Koehle et al., 2003).  Together with the increase in endogenous auxin, this change in 

hormonal balance would explain the retarded senescence of leaves and enhancement in 

the tolerance to stress (Koehle et al., 2003).  Also pyraclostrobin stimulated the levels of 

ABA, and the authors believe that this might favor tolerance to cold and adaptation to 

conditions of water shortage (Venancio et al., 2003).  The proper timing, in crucial stress 

periods within a crop’s life, is key for the benefits of this compounds activity to deter 

stress (Waard et al., 1993).  However, the toxicity and the pollution generated by 

fungicides cannot be neglected.  The toxic effect of a given pesticide on seeds depends 

on its distribution, persistence, metabolism, its active form, and its concentration (Petit et 

al., 2012). 

1.1.4 Timing of Fungicide Application 

 Cotton is most susceptible to stress during periods of fruiting and high water 

needs (McMichael and Jordan, 1973).  A cotton crop is most sensitive to deficit 

replacement of water when this stress is imposed during the flowering period (Cetin and 
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Bilgel, 2002).  Evapotranspiration, water loss through the plant and from the soil, for 

cotton in a production field is approximately 0.25 inches of water a day during the first 

two weeks of the blooming period (Iersel and Oosterhuis, 1995).  As water availability 

in the soil profile decreases, stress increases in a linear relationship within the plant 

(McMichael et al., 1973).  Loss of larger fruiting structures proves to be more 

detrimental to a plant’s ability to compensate for the reproductive loss due to either 

water stress or insect pressure (Stewart et al., 2001).   

 Although the flowering period has been firmly established as the greatest time of 

moisture need within a cotton growing season, many times the pathogenic pressure in 

this time window is overlooked.  Seed formation, and thus lint yield potential, is most 

vulnerable during the bloom stage (Osekre et al., 2009).  Fusarium hardlock of cotton, 

associated with Fusarium verticilliodes, is the failure of the fiber to fluff as the boll 

opens at maturity (Osekre et al., 2009).  Some insect species have been associated with 

hardlock; notable among these are thrips (Franklinella bispinosa and Franklinella 

occidentalis) and stink bugs (Nezara viridula) (Osekre et al., 2009).  Thrips are 

hypothesized to increase hardlock by carrying Fusarium to the flowers or creating 

entrance wounds in the course of feeding; and these wounds can then serve as points for 

Fusarium to infect. Stink bugs can also contribute to hardlock by direct feeding on 

developing seed, often transmitting microorganisms in the process (Bell, 1999).  Species 

in the family Pentatomidae are some of the most important crop pests, and they also are 

important transmitters of many different pathogens in the crop production world.  

Economic losses are difficult to calculate due to the minimum amount of information 
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known on the exact volume of pathogen inoculums being carried by these species (Butt 

and Brownbridge, 1997).  Knowledge of potential stressing agents within the growing 

season is crucial for optimal placement of a stress alleviating compound.  Paul et al. 

(2011) found in their investigation, that one cannot recommend fungicides when foliar 

disease is low.  At least part of the reason that calendar-based fungicide application is 

not profitable is apparently the very low yield response in disease-free environments 

(≈0.13 Mg ha-1) (Weisz et al., 2010). 

1.2 Objectives 

The primary objective of these studies was to determine the potential for foliar 

application of strobilurin containing fungicides to delay maturity of upland cotton 

varieties and whether this translates to a potential for improving lint yield.  The practice 

of mixing commercially compatible compounds has been widely adopted by cotton 

farmers to reduce production costs associated from several applications made to a 

production field.  Mixing of the strobilurin compounds with commonly applied products 

over these timings was included solely for the purpose of confirming or negating any 

potential impacts on an actively growing cotton crop. 

 These studies will help determine the benefit, if observed, as well as the 

appropriate timing of strobilurin containing fungicides on cotton in south central Texas, 

in order to optimize lint yield and fiber quality.  Results from this study should aid in 

broadening the understanding of the use of these compounds and their effects on cotton 

production. 
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2.  MATERIALS AND METHODS 

A two-year study was conducted in 2008 and 2009 to determine the benefits and 

appropriate timing of strobilurin compounds in south central Texas.  In both years, field 

plots were located at the Texas A&M AgriLife Research Farm in Burleson County, 

Texas.  Field plots were located in the Brazos River Bottom on a Weswood silt loam 

(fine-silty, mixed, superactive, thermic, Udifluventic Halpustepts), having a pH of 8.2.   

Plots were plowed and received deep tillage before being bedded on 1.11-m 

centers.  Fertilization consisted of 135 kg ha-1 of urea ammonium nitrate (UAN) applied 

in furrow.  In both years, cv. Stoneville 4554 B2RF (STV 4554 B2RF) was seeded at 

128,440 plants ha-1, using a John Deere 1700 MaxEmerge Plus vacuum planter.  In 2008 

and 2009 plots were planted on April 9 and April 11, respectively.  Plots were four 1.11-

m rows that were 10.66 m in length. Low pressure furrow irrigation was applied as 

needed at approximately 7.5 cm of water, with each irrigation.  The crop was managed 

by recommendations made for local production to prevent disease, control insects, and 

manage weed populations.  The only physiologically needed mepiquat chloride 

application was applied following extension recommendations shortly after the pinhead 

square growth stage of development in both years.  It was applied uniformly across the 

two study areas, in year one and two. 

In both years, plots were arranged as a randomized complete block design with 

four replications.  There were ten total treatments applied to the STV 4554 B2RF 

variety.  STV 4554 B2RF was planted through the entire field, while the ten treatments 

were replicated and kept separate by fungicidal compound in order to reduce 
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contamination.  Study 1 contained all compounds and combinations being compared and 

incorporated with the pyraclostrobin compound (Headline®).  Study 2 contained the 

same compounds and combinations of Study 1, while using the azoxystrobin containing 

fungicide (Quadris®).  All treatment applications were made as a foliar spray with 93.7 

L ha1 of water using a compressed air small plot sprayer equipped with Tee Jet®

 

(Spraying Systems Inc.) XR 8002 VS flat fan nozzles at 51-cm spacing.  The respective 

treatments are listed in Table 1 for Study 1, while the treatments for Study 2 are listed in 

Table 2.  The compounds used in this study were commercially available and labeled 

fungicides applied at recommended rates.   

Of the four rows, plant growth data was only obtained from row one or four, and 

rows two and three were machine-harvested using a John Deere 9910 high drum, two-

row spindle picker, to determine lint yield.  Weather data was obtained from a nearby 

USDA weather station.   

Prior to harvest aid application, ten plants per plot were removed and plant 

mapped to determine final height, total number of nodes, and final NAWF, if present.  

Height measurements were taken from the cotyledonary node to the terminal of the 

plant.  Total and first fruiting nodes were determined from the cotyledonary node to the 

terminal of the plant, with the cotyledonary node considered as node zero.   

A tank-mix of thidiazuron (Dropp SC®) (0.15 kg ha-1), thidiazuron/ diuron 

(Ginstar EC®) (0.07 L ha-1), and ethephon/ cyclanilide (Finish Pro 6®) (1.75 L ha-1) was 

applied to the plot area when the cotton plots reached 60% open boll load.  Harvest aid  
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Table 1. Treatment identification for pyraclostrobin comparisons (Study 1), 2008-2009. 

 Application Specifications† 

Treatment -Active Ingredient
£
- -Applied Rate

µ
-
 

-Timing of Application§- 

1. Untreated Control (UTC) N/A N/A N/A 

2. Pyraclostrobin (Headline®) 252.8 290.2 EB 

3. Mepiquat Chloride (Compact®)          4.194 117.4 EB 

4. Glyphosate (Roundup WM®) 660  1608 EB 

5. Pyraclostrobin 252.8 290.2 EB 

      Mepiquat Chloride          4.194 117.4  

6. Pyraclostrobin 252.8 290.2 EB 

      Glyphosate 660 1608  

7. Pyraclostrobin  252.8 290.2 EB+14 

8. Pyraclostrobin 252.8 290.2 EB+14 

      Mepiquat Chloride         4.194 117.4  

9. Pyraclostrobin 252.8 290.2 EB+14 

      Glyphosate 660 1608  

10. Pyraclostrobin  252.8 290.2 EB, EB+14 

† All compounds were delivered in a water/solution volume of 93.55 L ha-1 

§ EB= Early bloom treatment, defined as appearance of first flower in plant canopy 
   EB+14= Early bloom +14 days after Early Bloom (EB) treatment  
£Active Ingredient (A.I.) given in gram liter-1 
µApplied Rate given in mL ha-1 
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Table 2. Treatment identification for azoxystrobin comparisons (Study 2), 2008-2009. 

 Application Specifications† 

Treatment -Active Ingredient
£
- -Applied Rate

µ
-
 

-Timing of Application§- 

1. Untreated Control (UTC) N/A N/A N/A 

2. Azoxystrobin (Quadris®) 252.8 290.2 EB 

3. Mepiquat Chloride (Compact®)         4.194 117.4 EB 

4. Glyphosate (Roundup WM®) 660 1608 EB 

5. Azoxystrobin 252.8 290.2 EB 

      Mepiquat Chloride         4.194 117.4  

6. Azoxystrobin/Glyphosate 252.8 290.2 EB 

      Glyphosate 660 1608  

7. Azoxystrobin  252.8 290.2 EB+14 

8. Azoxystrobin/Mepiquat Chloride 252.8 290.2 EB+14 

      Mepiquat Chloride         4.194 117.4  

9. Azoxystrobin 252.8 290.2 EB+14 

      Glyphosate 660 1608  

10. Azoxystrobin  252.8 290.2 EB, EB+14 

† All compounds were delivered in a water/solution volume of 93.55 L ha-1 

§ EB= Early bloom treatment, defined as appearance of first flower in plant canopy 
   EB+14= Early bloom +14 days after Early Bloom (EB) treatment  
£Active Ingredient (A.I.) given in gram liter-1 
µApplied Rate given in mL ha-1

1
3
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chemicals were applied with 93.5 L ha-1 of water using a compressed air small plot 

sprayer with Tee Jet® (Spraying Systems Inc.) XR 8002 VS flat fan nozzles at 51-cm 

nozzle spacings.  

In both years, the two middle rows were machine picked 14 DAT with defoliant 

compounds.  Seed cotton yields were determined, and 150-g sub-samples were collected 

from each plot for ginning to determine percent turnout and lint yield.  Each sample was 

ginned using a ten-saw hand-fed, portable gin.  After ginning, 50-g fiber samples from 

each plot were subjected to High Volume Instrument (HVI) classing at the International 

Textile Center in Lubbock, Texas.  Classification was based on physical attributes: 

micronaire, length, strength, uniformity.  Micronaire is a measure of fiber fineness and is 

influenced by moisture, temperature, plant nutrients, sunlight, nutrition, and extremes in 

plant or boll population.  Fiber length is determined by the length of the longest one half 

of the fibers in the sample.  Length is based on the variety of cotton and is influenced by 

the plant’s exposure to extreme temperatures, water stress, and nutrient deficiencies.  

The uniformity of length is also measured in a sample by a ratio of mean length and the 

upper half mean length of the fiber.  Fiber strength is measured as the force required to 

break a bundle of fibers one tex (weight in grams of 1,000 m of fiber) in size.   

Results from HVI classing were utilized to calculate the Commodity Credit 

Corporation (CCC) loan value for each treatment.  These monetary values were retained 

in standard units.  

Statistical analysis was conducted on all appropriate data presented in this 

document. The data sets were analyzed using SAS® 9.2 statistical software (SAS, 2007-
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2008).  Data was subjected to the General Linear Model Procedure with degrees of 

freedom estimated using the Satterthwaite approximation (Satterthwaite, 1946).  Means 

were separated using the Tukey-Kramer procedure to determine statistical differences at 

the 5% significance level.  Linear regression analysis was conducted using the 

Regression Procedure at the 0.1 level (Pr>f).  Data for 2008 and 2009 were combined 

over years in the absence of year x treatment interaction. 

 



 

16 
 

3.  RESULTS AND DISCUSSION 

3.1 Timing of Fungicide and Tank Mix Applications 

Cotton, a native of tropical regions, requires warm days and relatively warm 

nights for optimum growth and development (Gibson and Joham, 1968).  In both 2008 

and 2009, temperatures during the early portion of the growing season were cooler than 

the seven-year average. After the pinhead square growth stage, in 2008, temperature and 

heat units began to reach levels greater than the seven-year average (Figure 1).  Daily 

HU accumulation in 2008 started slower compared to the seven-year average, but began 

to plateau approximately 50 DAP, and remained fairly constant and at a higher level for 

the remainder of the growing season (Figure 1).  Daily HU accumulation in 2009 (Figure 

2) did not begin to plateau until 70 days after planting, while the value of heat units 

maintained a larger scale of accrual .  Calendar dates, number of days following 

planting, and HU accumulations corresponding to the two designated nodal stages and 

the initiated treatments are found in Table 3.  Prior to the first bloom growth stage, the 

plot area received uniform cultural treatments that were consistent with local 

recommendations.  With the exception of growth regulators and insecticides, which must 

be applied above the plant, all compounds were delivered underneath the crop with the 

use of a RedballTM 420 Lay-By Hooded Sprayer.  At first bloom, application of fungicide 

and compatible compound treatments were initiated.  Under optimal conditions, cotton 

plants should possess a minimum of eight sympodia at first bloom (Bourland et al., 

1992).  In both years of the study, the average NAWF value at early bloom (EB) was  
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Figure 1. Historical weather averaged over seven years, maximum and minimum 
temperatures throughout the growing season and the corresponding accumulated heat 
units, 2008 
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Figure 2. Historical weather averaged over seven years, maximum and minimum 
temperatures throughout the growing season and the corresponding accumulated heat 
units, 2009. 
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Table 3.  Date of fungicide application and accumulated heat units at each corresponding application, 2008-2009. 

 
Growth Parameters 

Study 1 and 2 

Treatments 
___

EB 2008
___

 
___

EB+14 2008
___

 
___

EB 2009
___

 
___

EB+14 2009
___

 

 Date DAP‡ HU§ Date DAP‡ HU§ Date DAP‡ HU§ Date DAP‡ HU§ 

1 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

2 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

3 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

4 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

5 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

6 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

7 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

8 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

9 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

10 17-Jun 70 1103 1-Jul 84 1428 20-Jun 71 1154 4-Jul 85 1540 

‡ DAP corresponds to days after planting. 
§ HU refers to accumulated heat units from planting when growth parameter was reached to initiate treatment. 
 1103 vs 1154 for EB in 2008 and 2009, respectively. 
 1154 vs 1540 for EB+14 in 2008 and 2009 respectively. 
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approximately ten.  Fourteen days after the initial application of treatments, the second 

application of compounds were imposed on the plot area.  HU accumulation from 

planting to the first flower growth stage was slightly dissimilar between years, thus 

resulting in a difference between initiations of treatment applications (Table 3).  Once 

the applications were initiated, EB+14 parameters were rigorously followed for final 

application of treatments in both studies.  Once 60% of the open boll maturity was 

reached in the untreated plot, harvest aid compounds were applied and harvest was 

initiated 14DAT with defoliants. 

3.2 Study 1 Plant Height at Harvest 

 Final plant heights were determined by the end-of-season plant mapping of Study 

1 (Table 4).  Plant heights, for the treatment set of pyraclostrobin compounds, yielded a 

mean of 66.44 cm with a coefficient of variance equivalent to 7.89.  Though statistically 

significant in analysis, this range of 7.67 cm is considered of non-importance over 

production scale agronomics.   

Within Study 1, the untreated control was not statistically different in height from 

the pyraclostrobin applications made at the early bloom or early bloom +14 treatments.  

The tandem application of pyraclostrobin at EB and EB+14 was numerically taller than 

the untreated control over the study and was taller than treatment with pyraclostrobin at 

EB+14.   
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Table 4. Final plant heights at harvest (Study 1), 2008-2009. 

 Plant Height† 

  2 Year 

Treatment Timing of Application _______
height (cm) plant

-1_______ 

1. Untreated Control (UTC) N/A 70.3 ab§ 

2. Pyraclostrobin (Headline®)                 EB 68.6   b 

3. Mepiquat Chloride (Compact®) EB   71.6   ab 

4. Glyphosate (Roundup WM®) EB 68.2   b 

5. Pyraclostrobin/Mepiquat Chloride EB 68.7   b 

6. Pyraclostrobin/Glyphosate EB 66.9   b 

7. Pyraclostrobin  EB+14 66.6   b 

8. Pyraclostrobin/Mepiquat Chloride EB+14  70.7   ab 

9. Pyraclostrobin/Glyphosate EB+14 68.4   b 

10. Pyraclostrobin  EB, EB+14 74.2   a 

Pr > f ‡  0.0001 

† Final plant heights were taken from ten consecutive plants in one of the outer two rows of the four row plot, which were 
unharvested. 
§ Plant height values within a single column followed by the same letter are not different at a 0.1 probability level. 
‡ Probability of the ANOVA. 

  

  



 

22 
 

The comparisons of mepiquat chloride containing applications yielded 

nonsignificant results.  Treatment three, with mepiquat chloride at EB, was numerically 

taller than the applications of mepiquat chloride at EB plus pyraclostrobin or EB+14 

DAT in combination with pyraclostrobin, but was not found statistically different.   

Glyphosate treatment comparisons for height yielded no separation in the final 

analysis.  The numerical range was 1.46 cm over the course of the study.  The 

glyphosate control application, applied at EB, was found to be in the middle of the 

observed range for treatments containing glyphosate. 

3.3 Plant Nodes at Harvest  

Final total plant nodes were determined by end-of-season plant mapping (Table 

5).  Total plant nodes for Study 1, in 2008, averaged 20.19 nodes plant-1 across 

treatments with a coefficient of variance equivalent to 9.12.  In 2009, the mean total 

node value was 18.67 with a variance of 5.59.  With the 2009 year, higher heat 

experienced by the plot area, coupled with longer periods without measurable rainfall, 

imposed a different growing environment than for 2008.  These measurements were 

analyzed independently due to high levels of interaction between year and treatment 

(Table 5). 

The first year of Study 1 showed statistical difference when comparing the UTC 

to the corresponding pyraclostrobin compound treatments.  The application of 

pyraclostrobin at EB+14 had a statistically higher value compared to pyraclostrobin at 

EB and treatment ten, of two applications of the fungicide.  No significant difference 
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Table 5.  Final total nodes and NAWF pre-harvest measurement (Study 1), 2008–2009. 

 
  End of Season Plant Measurement† 

   2008 2009 2008 2009 

  Nodes 
 

NAWF 
 

Treatment 
Timing of 

Application 
___________

 plant
-1___________

 
__________

 plant
-1__________

 

1. Untreated Control (UTC) N/A    22.50    a  18.30 ab 1.07  ab 1.07  ab 

2. Pyraclostrobin  EB 19.45 cde 18.85 ab 1.25    a 1.00  ab 

3. Mepiquat Chloride EB 19.80 bcd 18.75 ab 0.82 abc 0.30    c 

4. Glyphosate EB 16.82     e 19.00 ab 0.30    d 1.32    a 

5. Pyraclostrobin                EB 17.55   de 18.15 ab 0.82 abc 0.72 abc 

    Mepiquat Chloride      

6. Pyraclostrobin EB 20.60 abc 19.50   a 1.00  ab 0.82  abc 

    Glyphosate      

7. Pyraclostrobin EB+14 21.2   abc 17.55   b 0.47   cd 1.00   ab 

8. Pyraclostrobin EB+14 22.20   ab 19.00 ab 0.65 bcd 0.82  abc 

    Mepiquat Chloride      

9. Pyraclostrobin EB+14 22.15   ab 19.47   a 0.47   dc 0.82  abc 

    Glyphosate      

10. Pyraclostrobin EB, EB+14 19.65  bcd 18.12 ab 1.00   ab 0.30     c 

Pr > f ‡  .0041 .0907 .0088 .0635 

†Nodes and NAWF values within a single column followed by the same letter are not different at a 0.1 probability level. 
‡ Probability of the ANOVA
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was shown between the UTC and the strobin compound, treatment seven.  In 2009, the 

UTC was not significantly adjusted from application of pyraclostrobin at EB, EB+14, or 

the sequential application at EB and EB+14.  The growing conditions of year two 

produced shorter plants, on average, within Study 1. 

The mepiquat chloride comparisons in 2008, between the application of mepiquat 

chloride at EB and the early bloom applications in combination with pyraclostrobin at 

EB or EB+14 showed no difference for total plant nodes.  Mepiquat chloride applied at 

EB did separate with a lower numerical value for total plant nodes than pyraclostrobin 

with mepiquat chloride at EB+14.  Year two of the study showed no statistical 

differences between the mepiquat chloride treatments for total plant nodes. 

Glyphosate applications in combination with pyraclostrobin at EB and also at 

EB+14 DAT led to more nodes, statistically, than their comparison treatment of 

glyphosate alone at EB in 2008.  The early bloom application, in the first year of study 

one, had the lowest value and statistical classification among this study’s treatments.  

These treatments containing the glyphosate compound, in 2009, showed no statistical 

separation in total final node counts prior to harvest (Table 5).  

3.4 Study 1 Final NAWF 

 The node above white flower (NAWF) measurement was included for 

verification of potential effects on maturity (Table 5).  A NAWF value gives an 

insightful measurement of the growth status of the crop from mid- to late- season 

(Oosterhuis, 1991).  The fewer the nodes above the upper most first position white 

flower, the more mature a crop is observed to be. Oosterhuis found that the expected 
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flowering interval between a reproductive structure on a node and another reproductive 

structure at the same position, but one branch higher, would be three days.  The NAWF 

measurement for Study 1 was analyzed by year due to the interaction of treatment x 

year.  The mean of NAWF for all treatments in 2008 was 0.78 white flowers per plant at 

prior to defoliation application.  The variance for this year was 43.98.  In the second year 

of Study 1, the mean NAWF value was 0.80.  The variance was 57.14.  The low mean 

values of these two years, in Study 1, show a small difference in total white flowers 

present prior to harvest.   

In 2008 for final NAWF, the untreated control and pyraclostrobin applied at 

either EB or at both EB followed by a second application at EB+ 14 were not 

significantly separated.  The application of pyraclostrobin at EB yielded the highest 

numerical value for NAWF.  The application of pyraclostrobin alone, at the early bloom 

growth stage, yielded lower numerical values as compared to the untreated control.  In 

year two of Study 1, pyraclostrobin containing treatments applied at EB or EB+14 were 

not statistically different from the UTC for final NAWF.  The double application of the 

pyraclostrobin treatment was statistically lower for final NAWF than the untreated 

control, showing a value of 0.30 NAWF versus 1.32 NAWF for the untreated control. 

 The 2008 and 2009 comparison of mepiquat chloride, applied as a single 

compound, versus in combination with pyraclostrobin did not separate statistically.  The 

potentially detrimental effects of tank mixing these compounds proved to be of no 

consequence on the NAWF measurement.  
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 In the first year of Study 1, glyphosate applied at EB yielded the lowest 

numerical value for the node above white flower parameter.  Glyphosate and 

pyraclostrobin applied in combination at early bloom yielded a higher NAWF value than 

the glyphosate applied alone at EB.  This value did not differ from the later application 

at the fourteen days after early bloom application of pyraclostrobin with glyphosate. 

 Treatment results for NAWF did not align across years.  Factors contributing to 

these confounding results are attributed to higher temperature in 2009 and the reduction 

of in-season rainfall.  The variance in abiotic stress, between the growing seasons, had a 

larger effect on the results of this particular measurement.  The NAWF assessment is an 

indicator of season long duration of stress and growing conditions.  

3.5 Study 1 Yield Parameters 

The analysis of yield parameters; seed cotton ha-1, lint turnout percentage, and 

lint yield ha-1, resulted in insignificant treatment x year interaction.  Thus data was 

combined over the years that Study 1 was conducted (Table 6).  The mean values for the 

data points of seed cotton ha-1, lint turnout percentage, and lint yield ha-1 for the two 

years of Study 1 were 2337.2, 41.65, and 975 respectively.  The seed cotton results 

maintained a coefficient of variance showed a value of 12.97.  Lint turnout percentage 

had a c.v. 2.93 over the two years of Study 1.  The range for lint turnout percentage, 

1.7% difference, was extremely narrow, and was typified by numerically higher values 

than the values for this trait found in commercial ginning.  Lint yield ha-1 preserved a 

variance of 14.16 over both years.  
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Table 6.  Lint yield as affected by pyraclostrobin treatments (Study 1), 2008-2009. 

 
 Yield Parameters 

Treatment 
Timing of 

Application 
__

seed cotton yield kg ha
-1__

 
__

lint turnout 

percentage
__

 
__

lint yield kg ha
-1__

 

1. Untreated Control N/A 2019 b† 41.1     d 831 b 

2. Pyraclostrobin EB 2239 ab 41.1     d 919 ab 

3. Mepiquat Chloride EB 2388 a 41.2   cd 987 a 

4. Glyphosate EB 2370 a 41.5 bcd 984 a 

5. Pyraclostrobin EB 2311 ab 42.7     a 988 a 

    Mepiquat Chloride     

6. Pyraclostrobin EB 2401 a 41.3   cd 994 a 

    Glyphosate     

7. Pyraclostrobin EB+14 2457 a 42.6    ab 1044 a 

8. Pyraclostrobin EB+14 2316 ab 41.0      d 954 ab 

    Mepiquat Chloride     

9. Pyraclostrobin EB+14 2481 a 42.3   abc 1053 a 

    Glyphosate     

10. Pyraclostrobin EB, EB+14 2390 a 41.7   bcd 996 a 

Mean  2337.2 41.7 975 

Pr > f ‡  .0157 .0597 .0261 

c.v.  12.97 2.93 14.16 

† Yield parameter values within a single column followed by the same letter are not different at a 0.1 probability level. 
‡ Probability of the ANOVA. 
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In comparing seed cotton ha-1, the treatments containing pyraclostrobin showed 

significantly higher yield values for the treatments applied during the later growth stage, 

EB+14, than the untreated control with the exception of the pyraclostrobin and mepiquat 

chloride combination at EB.  Pyraclostrobin at EB did not separate significantly from the 

UTC, although it was numerically higher.  Lint turnout percentage for the UTC was 

numerically and statistically alike with the early bloom application of pyraclostrobin and 

the sequential application of pyraclostrobin at EB followed by an additional treatment at 

EB+14.  Pyraclostrobin applied at EB+14 was statistically higher compared to the 

untreated control in turnout percentage.  Lint yield ha-1, however, the untreated control 

one was not pointedly different from the early bloom application of pyraclostrobin at 

EB.  Treatments with pyraclostrobin at EB+14 and pyraclostrobin at EB followed by an 

additional application at EB+14 were found to be statistically greater than the untreated 

control. 

Treatments containing mepiquat chloride showed no statistical differences in 

comparison to the untreated control, relative to seed cotton returns.  The mepiquat 

chloride treatment alone was numerically higher than the applications containing the 

pyraclostrobin mixture with the growth regulator, mepiquat chloride.  Turnout 

percentage showed statistical differences between treatments, although the actual values 

ranged from 41.1% to 42.7%.  This small difference in range showed that the turnout 

percentage for the UTC was separated from the values returned for the pyraclostrobin 

and mepiquat chloride applied at EB, with the combination treatment having a higher 

value.  Separation was not apparent between the later growth stage application with 
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pyraclostrobin at EB+14, the UTC.  The mepiquat chloride application at EB, 

pyraclostrobin and mepiquat chloride applied at EB, and pyraclostrobin with mepiquat 

chloride applied at EB+14 did not statistically separate for the measurement of final lint 

yield.  

Glyphosate comparisons applied through differing timings yielded the highest 

level of recorded seed cotton yields within the two years of the study.  The evaluation of 

glyphosate applied at EB, was not statistically altered from the application of this 

compound in conjunction with pyraclostrobin of Study 1.  Values for the glyphosate 

treatments did not disperse in the measurement of lint turn out and final lint yield. 

3.6 Study 1 Major Fiber Properties  

 

Significant year x treatment interaction was not observed for micronaire values, 

fiber length, fiber strength, and fiber uniformity (Table 7).  High Volume Instrument 

(HVI) classing, at the International Textile Center in Lubbock, Texas was performed on 

the lint 150 gram samples from Study 1 in both years of the testing.  The fiber 

measurements analyzed for Study 1 showed statistical significance, except for the 

micronaire values, but failed to show statistical separation where numerical significance 

was noted.   

Strength, measured in g tex-1, also showed statistical significance in analysis.  

Statistical separation was not apparent between the untreated control and pyraclostrobin 

applied at EB, EB+14 or the application in tandem at EB followed by EB+14 DAT 

within Study 1.  Within the mepiquat chloride comparisons for strength, again no 

separation was noted between the mepiquat chloride applied alone at EB, pyraclostrobin 



 

30 
 

Table 7. Major fiber properties from pyraclostrobin treatments (Study 1), 2008-2009. 

  

High Volume Instrument Testing† 

Strength Length Micronaire Uniformity 

Treatment Timing of Application 
__

g tex
-1__

 
_
100

ths
 of an inch

_
 

___
value

___
 

__
percent

__
 

1. Untreated Control N/A 30.28 a 1.07 a 4.90  82.27 a 

2. Pyraclostrobin EB 30.36 a 1.08 a 4.93  82.15 a 

3. Mepiquat Chloride EB 29.43 a 1.07 a 4.98  82.28 a 

4. Glyphosate EB 29.76 a 1.07 a 4.95  82.71 a 

5. Pyraclostrobin/Mepiquat Chloride EB 30.03 a 1.06 a 4.95  82.32 a 

6. Pyraclostrobin/Glyphosate EB 29.83 a 1.08 a 4.87 82.53 a 

7. Pyraclostrobin EB+14 30.03 a 1.08 a 4.98  82.76 a 

8. Pyraclostrobin/Mepiquat Chloride EB+14 29.66 a 1.07 a 4.98  82.83 a 

9. Pyraclostrobin/Glyphosate EB+14 29.95 a 1.06 a 4.90  82.62 a 

10. Pyraclostrobin EB, EB+14 30.21 a 1.07 a 5.06  82.10 a 

Pr > f ‡  .0001 .0006 .2286 .0001 

† HVI values within a single column followed by the same letter are not different at a 0.1 probability level. 
‡ Probability of the ANOVA. 
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and mepiquat chloride applied at EB, or pyraclostrobin with mepiquat chloride at 

EB+14.  The comparison of glyphosate applied at EB with pyraclostrobin and 

glyphosate applied at EB or at the timing of EB+14 resulted in the absence of statistical 

separation.  

The length factor, measured in 100ths of an inch, showed statistical significance.  

Although significance was noted in the model, the length values of the untreated control 

paralleled to treatments of pyraclostrobin applications at EB, pyraclostrobin applied at 

EB+14, and the application of pyraclostrobin at EB then followed again at EB+14 did 

not separate statistically.  Measurements for mepiquat chloride applied at EB, the 

combination of mepiquat chloride with pyraclostrobin at EB, and the treatment of 

mepiquat chloride in conjunction with pyraclostrobin at EB+14 failed to yield statistical 

separation in analysis.  Glyphosate application at EB was not statistically separated from 

the application of pyraclostrobin and glyphosate at either timing of EB or EB+14.   

Micronaire values for Study 1 resulted in a p-value of .2286.  Results at this level 

were statistically classified together, though insignificant, at this level of confidence.  

The untreated control versus comparisons with pyraclostrobin applied at EB, the 

application of pyraclostrobin at EB+14, or pyraclostrobin applied at both EB and then 

followed by EB+14 DAT yielded no statistical significance and a minute numerical 

separation.  The comparisons made between applications containing pyraclostrobin and 

mepiquat chloride versus the EB application of mepiquat chloride alone were 

insignificant.  Treatments containing glyphosate yielded no statistical significance or 

numerical separation for the micronaire fiber property measurement.  These comparisons 



 

32 
 

were made between the application of glyphosate at EB, pyraclostrobin and glyphosate 

applied at EB, and pyraclostrobin and glyphosate in combination applied at EB+14 in 

both years of the study. 

Uniformity of the samples processed for the untreated control failed to show 

statistical separation when compared to the pyraclostrobin compounds applied as a 

standalone application, though statistically significant.  This measurement maintained 

the same results for the applications being compared to the mepiquat chloride 

compound.  The percentage of uniformity for glyphosate applied at EB, in conjunction 

with pyraclostrobin at EB, and tank-mixed with pyraclostrobin at EB+14 was 

statistically similar as previously discussed on this point of data collection. 

3.7  Study 2 Plant Heights at Harvest 

Final plant heights were determined by the end-of-season plant mapping of Study 

2 (Table 8).  Statistical separation, in the absence of treatment x year interaction, was 

noted.  Plant heights, for the treatment set containing azoxystrobin compounds yielded a 

mean value of 66.92cm and a coefficient of variance value of 7.63.  The numerical 

range, from 61cm to 72.54cm, for treatment means returned was 11.54cm.   

The double application of azoxystrobin, contained in treatment ten at EB and 

EB+14, resulted in a significantly higher value for height than for the untreated control 

in Study 2.  The treatment of azoxystrobin at early bloom and the treatment of 

azoxystrobin at early bloom +14DAT did not separate from the UTC.   
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Table 8. Final plant heights at harvest (Study 2), 2008-2009. 

  Plant Height† 

  2 Year 

Treatment 
Timing of 

Application 
_______

height (cm) plant
-1_______ 

1. Untreated Control (UTC) N/A 61.2    d§ 

2. Azoxystrobin (Quadris®) EB 64.1   cd 

3. Mepiquat Chloride (Compact®) EB 72.4     a 

4. Glyphosate (Roundup WM®) EB 68.7  abc 

5. Azoxystrobin/Mepiquat Chloride EB 70.9   ab 

6. Azoxystrobin/Glyphosate EB 67.9 abc 

7. Azoxystrobin  EB+14 66.3 bcd 

8. Azoxystrobin/Mepiquat Chloride EB+14 63.9  cd 

9. Azoxystrobin/Glyphosate EB+14 66.9  bc 

10. Azoxystrobin  EB, EB+14 66.6  bc 

Pr > f ‡  0.0001 

† Final plant heights were taken from ten consecutive plants in one of the outer two rows of the four row plot, which were not      
harvested. 
§ Plant height values within a single column followed by the same letter are not different at a 10% probability level. 
‡ Probability of the ANOVA. 
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The comparison of mepiquat chloride and its combination with azoxystrobin for 

an early bloom application were not statistically different.  The later application of these 

compounds in combination, treatment eight, had a lower value in height than its non-

mixed application, treatment three. 

Glyphosate in combination with azoxystrobin, treatment six, was not statistically 

separated in final plant height measurement.  Treatment nine, the combination of 

azoxystrobin and glyphosate at the EB+14 growth stage, was significantly shorter in 

plant stature at the final plant height measurement than its evaluation with the 

application of glyphosate alone at EB. 

3.8 Study 2 Plant Nodes at Harvest 

Final total plant nodes were determined by end-of-season plant mapping (Table 

9).  Total plant nodes for Study 2, in 2008-2009, averaged 19.37 nodes plant-1 across 

treatments with a coefficient of variance equivalent to 6.75.  Statistical significance was 

not detected in these measurements.  The analysis yielded Pr > f at 0.2902. 

Numerical differences were noted within the comparison of the untreated control, 

treatment one 18.67 nodes plant-1, and the applications of azoxystrobin at EB with 18.71 

nodes plant-1, the application of azoxystrobin at EB+14 18.82 nodes plant-1, and the 

sequential application of azoxystrobin at EB and then EB+14 19.62 nodes plant-1.  These 

values were not of statistical power or significance. 

The treatments, within Study 2, that contained comparisons of mepiquat chloride 

applications in combination with azoxystrobin were numerically similar in their values.  

Statistical differences were nullified by the elevated Pr>f analysis. 
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Table 9. Final node counts at harvest (Study 2), 2008-2009. 

  Final Nodes† 

  2 Year 

Treatment Timing of Application _______
nodes plant

-1_______ 

1. Untreated Control (UTC)          N/A 18.67  

2. Azoxystrobin (Quadris®)           EB 18.71  

3. Mepiquat Chloride (Compact®)           EB 20.17  

4. Glyphosate (Roundup WM®)           EB 19.85  

5. Azoxystrobin/Mepiquat Chloride           EB 20.10  

6. Azoxystrobin/Glyphosate           EB 19.62  

7. Azoxystrobin         EB+14 18.82  

8. Azoxystrobin/Mepiquat Chloride        EB+14 19.66  

9. Azoxystrobin/Glyphosate        EB+14 18.53  

10. Azoxystrobin     EB, EB+14 19.62  

Pr > f ‡  .2902 

† Final node counts were taken from ten consecutive plants in one of outer two rows of the plot, which were not harvested. 
‡ Probability of the ANOVA. 

  

  



 

36 
 

 

The glyphosate application at EB, in treatment four, was separated from the 

value observed for the EB+14 application of azoxystrobin with glyphosate numerically.  

Those numerical values were 19.85 nodes plant-1 versus 18.53 nodes plant-1, 

respectively.  The glyphosate alone application at EB, in treatment four, was similar to 

the combination of azoxystrobin with glyphosate application at EB, in treatment six.  

These, again, were not significantly significant.  

The evaluation of azoxystrobin, and its combination with commercially applied 

compounds, yielded results of insignificance within the realm of total plant nodes prior 

to defoliation.  Statistical significance was not present in this measurement and 

numerical values had a range of 1.64 nodes plant-1. 

3.9 Study 2 Final NAWF 

 The node above white flower (NAWF) measurement was included for 

verification of potential effects on maturity with applications of azoxystrobin (Table 10).  

Significant year x treatment interaction was absent for the analysis, thus the combination 

of the years for analysis.  The NAWF measurements of Study 2 were not statistically 

different.  The evaluation of results yielded a probability level higher than 0.1, Pr>f was 

0.1551.  Numerical differences were noted. 

 In Study 2, the untreated control, treatment one, had a NAWF value of 1.  This 

treatment related to the application of azoxystrobin at EB, the application of 

azoxystrobin at EB+14, or the tandem application of azoxystrobin at EB and then 
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Table 10. Final node above white flower (Study 2), 2008-2009. 

  NAWF† 

  2 Year 

Treatment Timing of Application _______
NAWF plant

-1_______ 

1. Untreated Control (UTC) N/A 1.00  

2. Azoxystrobin (Quadris®) EB 0.62  

3. Mepiquat Chloride (Compact®) EB 0.37  

4. Glyphosate (Roundup WM®) EB 0.62  

5. Azoxystrobin/Mepiquat Chloride EB 0.87  

6. Azoxystrobin/Glyphosate EB 0.50  

7. Azoxystrobin  EB+14 1.00  

8. Azoxystrobin/Mepiquat Chloride EB+14 0.75  

9. Azoxystrobin/Glyphosate EB+14 0.50  

10. Azoxystrobin  EB, EB+14 0.75  

Pr > f ‡  .1551 

† NAWF counts were taken from ten consecutive plants in one of the two rows of the 4 row plot, which were not harvested. 
‡ Probability of the ANOVA. 
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applied at EB+14 were not statistically different or significant.  The range was 1 NAWF 

to 0.62 for the lowest numerical value with the application of azoxystrobin at EB.   

With the growth regulator, mepiquat chloride, comparisons for the final NAWF 

varied numerically, but failed to yield statistical significance.  The mepiquat chloride 

alone application at EB retained the lowest numerical value for NAWF, but was not 

significantly different or significant from the application of azoxystrobin with mepiquat 

chloride at EB and the treatment azoxystrobin and mepiquat chloride at EB+14. 

 The glyphosate application treatments produced a numerical range across this 

measurement that yielded insignificance statistically.  No statistical significance was 

proven among the application of glyphosate at EB, azoxystrobin with glyphosate, as well 

as the EB+14 application of azoxystrobin with glyphosate in combination. 

3.10 Study 2 Yield Parameters 

The yield parameters were in insignificant.  The data was evaluated over the 

years that Study 2 was conducted (Table 11).  The mean values for seed cotton ha-1, lint 

turnout percentage, and lint yield ha-1 for Study 2 were 2056, 41.5, and 947, 

respectively.  The modeling of the yield parameters returned a value of statistical 

insignificance.   

As shown in Table 11, the mean value for seed cotton returns pertaining to the 

untreated control, treatment 1, was not significantly different from the azoxystrobin 

applied at EB, EB+14, or the tandem application of azoxystrobin at EB and then 

followed at EB+14.  Numerically, within these comparisons, the treatment containing 
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Table 11.  Lint yield as affected by azoxystrobin treatments (Study 2), 2008-2009. 

 Yield Parameters 

Treatment 
Timing of 

Application 
_
seed cotton yield kg ha

-1_
 

_
lint turnout 

percentage
_
 

_
lint yield kg ha

-1_
 

1. Untreated Control (UTC) N/A 2297  41.37  947  

2. Azoxystrobin (Quadris®) EB 2373  42.00  998  

3. Mepiquat Chloride 
(Compact®) 

EB 2490 41.50 1031 

4. Glyphosate (Roundup WM®) EB 2297 41.62 957  

5. Azoxystrobin EB 2312  41.87  966  

      Mepiquat Chloride     

6. Azoxystrobin/Glyphosate EB 2297  41.62  954  

      Glyphosate     

7. Azoxystrobin  EB+14 2281  41.37  940  

8. Azoxystrobin EB+14 2158  41.37  896  

      Mepiquat Chloride     

9. Azoxystrobin/Glyphosate EB+14 2264  41.37  934  

      Glyphosate     

10. Azoxystrobin  EB, EB+14 2268  41.87  949  

Pr > f ‡  .7448 .3922 .7560 

‡ Probability of the ANOVA. 
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azoxystrobin at EB yielded the highest mean for the seed cotton measurement.  The 

treatment of azoxystrobin at EB, the later application of azoxystrobin at EB+14, as well 

as the dual application of azoxystrobin at EB and EB+14 were numerically separated for 

lint turn out percentage and final lint yield.  These values had no statistical significance. 

Mepiquat chloride applied at EB compared with the treatments containing 

azoxystrobin compounds applied at EB and EB+14 showed similar results as those 

discussed previously within Study 2, which was statistical insignificance.  Seed cotton 

yield for the mepiquat chloride at EB application yielded the highest numerical yield, but 

was not statistically different from the azoxystrobin with mepiquat chloride applied at 

EB or this combination applied at EB+14.  Lint turnout percentage and final lint yield 

were not separated statistically for these combinations and comparisons.   

The glyphosate combinations in Study 2 showed insignificance statistical 

probability in their comparisons for seed cotton yield.  Glyphosate applied at EB and the 

combination of azoxystrobin with glyphosate at EB was numerically equivalent for seed 

cotton yield.  Azoxystrobin and glyphosate applied at EB+14 was numerically smaller 

than its glyphosate comparison of glyphosate applied alone at EB.  Lint turnout 

percentage and final lint yield values were not different for any of the treatments.   

3.11 Study 2 Major Fiber Properties 

Significant year x treatment interaction was not observed for micronaire values, 

fiber length, fiber strength, and fiber uniformity; therefore, data was combined for the 

two years of Study 2 (Table 12).  High Volume Instrument (HVI) classing, at the 

International Textile Center in Lubbock, Texas was performed on the lint 150-gram 
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Table 12. Major fiber properties from azoxystrobin treatments (Study 2), 2008-2009. 

  High Volume Instrument Testing† 

  Strength Length Micronaire Uniformity 

Treatment Timing of Application 
_
g tex

-1_
 

_
100

ths
 of an inch

_
 

___
value

__
 

__
percent

_
 

1. Untreated Control (UTC) N/A 31.06 a 1.10 a 5.07  82.61 a 

2. Azoxystrobin (Quadris®) EB 31.12 a 1.10 a 5.12  82.73 a 

3. Mepiquat Chloride (Compact®) EB 31.05 a 1.10 a 5.05  83.06 a 

4. Glyphosate (Roundup WM®) EB 30.76 a 1.09 a 5.12  83.03 a 

5. Azoxystrobin/Mepiquat Chloride EB 31.32 a 1.11 a 5.11  83.35 a 

6. Azoxystrobin/Glyphosate EB 31.18 a 1.10 a 5.02  82.93 a 

7. Azoxystrobin  EB+14 30.82 a 1.10 a 5.03  83.27 a 

8. Azoxystrobin/Mepiquat Chloride EB+14 31.26 a 1.10 a 4.98  83.12 a 

9. Azoxystrobin/Glyphosate EB+14 31.07 a 1.09 a 5.03  83.26 a 

10. Azoxystrobin  EB, EB+14 31.12 a 1.10 a 4.92  83.20 a 

Pr > f ‡  .0001 .0022 .3223 .0001 

† HVI values within a single column followed by the same letter are not different at a 0.1 probability level. 
‡ Probability of the ANOVA. 
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samples from Study 2 in both years of the study.  The fiber measurements analyzed over 

the two years of Study 2 showed statistical significance, except for the micronaire 

values, but failed to show separation where significance was noted.   

Strength, measured in g tex-1, showed statistical significance in its analysis.  

Statistical separation was absent between the untreated control and the application of 

azoxystrobin at EB, azoxystrobin at EB+14, or the dual application of azoxystrobin at 

EB and then EB+14.  The mepiquat chloride application at EB for strength yielded no 

statistical separation form the treatment of azoxystrobin with mepiquat chloride at EB or 

this combination at EB+14.  Glyphosate comparisons yielded the same results as the 

treatment combinations discussed previously for fiber strength.  Statistical separation 

was not found between glyphosate at EB, azoxystrobin with glyphosate at EB, or 

azoxystrobin with glyphosate at EB+14. 

The length factor, measured in 100ths of an inch, showed statistical significance.  

Though significance was noted in the model for length, the values of the untreated 

control paralleled to the treatments of azoxystrobin applications at early bloom and the 

following application fourteen days later did not separate.  Observations for the 

mepiquat chloride application at EB and the combination of azoxystrobin with mepiquat 

chloride at EB or EB+14 failed to yield statistical separation.  Glyphosate applied at EB 

did not separate statistically from the applications of azoxystrobin and glyphosate 

applied at EB or EB+14.  A narrow range of 0.01one hundredths of an inch was yielded. 

Micronaire values for Study 2 failed to display statistical strength in the 

evaluation of the treatments imposed within this study.  The probability of data resulted 
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in Pr > f as 0.3233.  The untreated control versus its comparison to the treatments of 

azoxystrobin at EB, azoxystrobin at EB+14, and the sequential application of 

azoxystrobin at EB and EB+14 yielded had numerical differences in a small range of 

0.2.  This micronaire value analysis returned results of the same statistical no 

significance within the application of azoxystrobin with mepiquat chloride at EB or this 

same combination of compounds at EB+14 in Study 2.  The application of glyphosate at 

EB showed no statistical significance as with the application of azoxystrobin and 

glyphosate at EB or at the timing of EB+14 for effects on micronaire.  These compounds 

were contained in treatments four, six, and nine in both years of the study, respectively. 

Uniformity of the samples processed for the untreated control failed to show 

statistical separation when compared to the azoxystrobin compounds applied as a 

standalone application at EB and EB+14.  This data point maintained the same results 

for the applications being compared to the mepiquat chloride treatment at EB and the 

combination of azoxystrobin and mepiquat chloride at EB and EB+14.  The percentage 

of uniformity for glyphosate applied at EB, in combination with azoxystrobin at EB and 

EB+14 was statistically significant, but did not separate in the analysis. 
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4.  CONCLUSIONS 

4.1 Study 1 Conclusions 

 According to the analysis of Study 1, final plant measurements conducted in 

2008 and 2009 were statistically different among treatments.  The scale of the 

differences, and their occurrence throughout the treatments, were not sound evidence of 

maturity being lengthened due to pyraclostrobin being applied, as compared to the 

untreated control.  The effects of tank mixing glyphosate, or mepiquat chloride, with 

pyraclostrobin did not prove detrimental to the growth measurements of the cotton in 

this study.   

Within the yield parameters, the application of pyraclostrobin at EB and the 

treatment at EB+14 ten did separate themselves from the comparison with the untreated 

control.  This separation was statistically significant in seed cotton yields, as well as 

final lint yield ha-1.  The differences in final lint yield 213 kg ha-1 of the application with 

pyraclostrobin at EB+14 compared to the untreated control is considered significant.  

The scale of separation between the sequential applications of pyraclostrobin at EB and 

EB+14 with the untreated control was shown to be 65 kg ha-1.  The comparisons 

between glyphosate and mepiquat chloride treatments were statistically the same as their 

combination treatments including pyraclostrobin.   

HVI analysis of fiber samples from Study 1 showed significance in 3 categories.  

Though significance was proven, statistical separation was not present.  No derogatory 

affects were observed with tank mixing of glyphosate or the growth regulator, mepiquat 

chloride.  Differences observed within Study 1, based on monetary returns, would differ 
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solely on lint kg ha-1 harvested.   The cotton cultivar STV 4554B2RF was not lengthened 

in maturity due to the application of pyraclostrobin and the blanket application of 

pyraclostrobin, with lack of disease pressure, is not recommended for the stewardship 

and longevity of activity with this chemistry. 

4.2 Study 2 Conclusions 

Statistical differences were observed for final plant measurements within the 

treatments containing comparisons with azoxystrobin.  These differences, though 

significant, did not prove to lengthen maturity of the STV 4554B2RF plants.  The data, 

within these measurements, was proven statistically significant, but not relevant to 

production practices due to the small numerical differences from the UTC.  Tank mixing 

azoxystrobin with glyphosate and mepiquat chloride yielded results that were not 

detrimental to the growth parameters measured in this study.   

The yield parameters for Study 2 showed the absence of statistical power.  

Numerical comparisons displayed small scalar differences between the untreated control 

and the treatments containing azoxystrobin within Study 2.  Glyphosate and mepiquat 

chloride tank mixes proved to be of no consequence on final lint kg ha-1. 

The fiber analysis of treatments from Study 2 maintained statistical significance, 

though separation was not observed in the classification of results.  The azoxystrobin 

treatments did not separate from the untreated control in lint analysis.  The combination 

of the herbicide, glyphosate, and the growth regulator mepiquat chloride did not prove 

detrimental to these fiber measurements. 
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APPENDIX A 

 

2008 WEATHER DATA - BURLESON COUNTY, TX 

      

      

Date Max. Min. Max.  Min. DD60's 

  ___________oC___________ ___________oF___________ Daily 

9-Apr 24.44 19.33 76 66.8 11.4 

10-Apr 28.89 17.72 84 63.9 14.0 

11-Apr 24.94 15.28 76.9 59.5 8.2 

12-Apr 21.89 8.94 71.4 48.1 -0.3 

13-Apr 20.94 5.33 69.7 41.6 -4.3 

14-Apr 20.83 2.67 69.5 36.8 -6.9 

15-Apr 25.06 4.78 77.1 40.6 -1.2 

16-Apr 26.39 9.89 79.5 49.8 4.7 

17-Apr 28.61 16.39 83.5 61.5 12.5 

18-Apr 21.78 10.06 71.2 50.1 0.7 

19-Apr 27.83 8.72 82.1 47.7 4.9 

20-Apr 26.83 11.28 80.3 52.3 6.3 

21-Apr 31.11 19.89 88 67.8 17.9 

22-Apr 31.17 21.44 88.1 70.6 19.4 

23-Apr 31.67 20.33 89 68.6 18.8 

24-Apr 31.11 20.94 88 69.7 18.9 

25-Apr 29.33 21.22 84.8 70.2 17.5 

26-Apr 28.22 16.72 82.8 62.1 12.5 

27-Apr 21.00 9.89 69.8 49.8 -0.2 

28-Apr 24.94 7.22 76.9 45 1.0 

29-Apr 27.89 6.78 82.2 44.2 3.2 

30-Apr 29.56 11.22 85.2 52.2 8.7 

1-May 29.17 18.17 84.5 64.7 14.6 

2-May 30.56 19.89 87 67.8 17.4 

3-May 23.83 12.94 74.9 55.3 5.1 

4-May 29.06 9.67 84.3 49.4 6.8 

5-May 22.28 17.33 72.1 63.2 7.7 

6-May 26.28 17.06 79.3 62.7 11.0 

7-May 27.17 20.39 80.9 68.7 14.8 

8-May 29.94 16.44 85.9 61.6 13.8 

Date Max. Min. Max.  Min. DD60's 
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 ___________oC___________ ___________oF___________ Daily 
9-May 33.89 19.17 93 66.5 19.8 

10-May 31.00 22.67 87.8 72.8 20.3 

11-May 25.83 15.94 78.5 60.7 9.6 

12-May 26.67 12.67 80 54.8 7.4 

13-May 27.78 21.06 82 69.9 16.0 

14-May 29.00 20.22 84.2 68.4 16.3 

15-May 22.83 17.72 73.1 63.9 8.5 

16-May 24.61 15.33 76.3 59.6 8.0 

17-May 26.89 13.72 80.4 56.7 8.6 

18-May 32.00 15.67 89.6 60.2 14.9 

19-May 34.61 14.89 94.3 58.8 16.6 

20-May 35.22 19.17 95.4 66.5 21.0 

21-May 34.28 22.72 93.7 72.9 23.3 

22-May 33.28 23.72 91.9 74.7 23.3 

23-May 35.83 25.61 96.5 78.1 27.3 

24-May 33.94 24.61 93.1 76.3 24.7 

25-May 34.50 23.50 94.1 74.3 24.2 

26-May 34.44 24.28 94 75.7 24.9 

27-May 35.56 20.39 96 68.7 22.4 

28-May 33.11 19.94 91.6 67.9 19.8 

29-May 33.83 20.94 92.9 69.7 21.3 

30-May 33.33 19.28 92 66.7 19.4 

31-May 35.28 20.33 95.5 68.6 22.1 

1-Jun 35.39 22.11 95.7 71.8 23.8 

2-Jun 35.94 21.94 96.7 71.5 24.1 

3-Jun 35.83 23.06 96.5 73.5 25.0 

4-Jun 34.61 23.78 94.3 74.8 24.6 

5-Jun 34.22 25.44 93.6 77.8 25.7 

6-Jun 35.83 25.33 96.5 77.6 27.1 

7-Jun 35.39 25.17 95.7 77.3 26.5 

8-Jun 35.94 24.83 96.7 76.7 26.7 

9-Jun 35.61 25.06 96.1 77.1 26.6 

10-Jun 33.28 23.11 91.9 73.6 22.8 

11-Jun 35.17 22.44 95.3 72.4 23.9 

12-Jun 34.94 22.11 94.9 71.8 23.4 

13-Jun 35.39 23.00 95.7 73.4 24.6 

Date Max. Min. Max.  Min. DD60's 
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 ___________oC___________ ___________oF___________ Daily 
14-Jun 36.00 22.50 96.8 72.5 24.7 

15-Jun 36.11 23.00 97 73.4 25.2 

16-Jun 36.33 23.00 97.4 73.4 25.4 

17-Jun 36.39 23.06 97.5 73.5 25.5 

18-Jun 37.39 22.00 99.3 71.6 25.5 

19-Jun 34.28 22.39 93.7 72.3 23.0 

20-Jun 34.00 22.39 93.2 72.3 22.8 

21-Jun 36.06 21.00 96.9 69.8 23.4 

22-Jun 35.28 19.67 95.5 67.4 21.5 

23-Jun 36.61 20.67 97.9 69.2 23.6 

24-Jun 33.94 21.61 93.1 70.9 22.0 

25-Jun 35.72 22.11 96.3 71.8 24.1 

26-Jun 35.83 22.61 96.5 72.7 24.6 

27-Jun 36.11 22.61 97 72.7 24.9 

28-Jun 36.00 22.61 96.8 72.7 24.8 

29-Jun 35.83 22.17 96.5 71.9 24.2 

30-Jun 33.22 20.72 91.8 69.3 20.6 

1-Jul 34.50 19.17 94.1 66.5 20.3 

2-Jul 36.11 20.39 97 68.7 22.9 

3-Jul 36.67 19.89 98 67.8 22.9 

4-Jul 34.17 20.56 93.5 69 21.3 

5-Jul 35.67 20.39 96.2 68.7 22.5 

6-Jul 36.00 20.33 96.8 68.6 22.7 

7-Jul 36.11 22.06 97 71.7 24.4 

8-Jul 36.61 22.00 97.9 71.6 24.8 

9-Jul 37.50 21.17 99.5 70.1 24.8 

10-Jul 34.56 22.28 94.2 72.1 23.2 

11-Jul 36.83 22.11 98.3 71.8 25.1 

12-Jul 36.00 23.22 96.8 73.8 25.3 

13-Jul 37.39 21.17 99.3 70.1 24.7 

14-Jul 37.11 23.50 98.8 74.3 26.6 

15-Jul 37.50 22.83 99.5 73.1 26.3 

16-Jul 37.17 23.78 98.9 74.8 26.9 

17-Jul 36.83 22.00 98.3 71.6 25.0 

18-Jul 37.06 20.94 98.7 69.7 24.2 

19-Jul 36.33 20.83 97.4 69.5 23.5 

Date Max. Min. Max.  Min. DD60's 
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 ___________oC___________ ___________oF___________ Daily 
20-Jul 37.50 21.44 99.5 70.6 25.1 

21-Jul 38.17 23.67 100.7 74.6 27.7 

22-Jul 37.94 21.78 100.3 71.2 25.8 

23-Jul 35.44 24.22 95.8 75.6 25.7 

24-Jul 33.94 23.78 93.1 74.8 24.0 

25-Jul 36.11 24.33 97 75.8 26.4 

26-Jul 37.44 23.06 99.4 73.5 26.5 

27-Jul 38.50 20.83 101.3 69.5 25.4 

28-Jul 38.11 21.78 100.6 71.2 25.9 

29-Jul 37.22 22.72 99 72.9 26.0 

30-Jul 37.06 22.17 98.7 71.9 25.3 

31-Jul 37.50 25.39 99.5 77.7 28.6 

1-Aug 37.94 24.78 100.3 76.6 28.5 

2-Aug 39.11 24.11 102.4 75.4 28.9 

3-Aug 37.94 23.39 100.3 74.1 27.2 

4-Aug 38.17 21.39 100.7 70.5 25.6 

5-Aug 29.72 23.06 85.5 73.5 19.5 

6-Aug 35.22 22.67 95.4 72.8 24.1 

7-Aug 37.11 23.28 98.8 73.9 26.4 

8-Aug 36.72 23.56 98.1 74.4 26.3 

9-Aug 36.78 23.44 98.2 74.2 26.2 

10-Aug 37.17 24.22 98.9 75.6 27.3 

11-Aug 35.67 25.67 96.2 78.2 27.2 

12-Aug 30.00 24.89 86 76.8 21.4 

13-Aug 35.28 23.72 95.5 74.7 25.1 

14-Aug 36.28 22.67 97.3 72.8 25.1 

15-Aug 35.28 22.11 95.5 71.8 23.7 

16-Aug 31.67 22.67 89 72.8 20.9 

17-Aug 31.11 22.72 88 72.9 20.5 

18-Aug 29.89 22.78 85.8 73 19.4 

19-Aug 27.11 22.06 80.8 71.7 16.3 

20-Aug 31.11 22.50 88 72.5 20.3 

21-Aug 31.67 23.50 89 74.3 21.7 

22-Aug 34.56 23.89 94.2 75 24.6 

23-Aug 33.33 22.78 92 73 22.5 

24-Aug 32.44 21.44 90.4 70.6 20.5 
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2009 WEATHER DATA - BURLESON COUNTY, TX 

      

      

Date Max. Min. Max.  Min. DD60's 

  ___________oC___________ ___________oF___________ Daily 

11-Apr 19.28 13.00 66.7 55.4 1.1 

12-Apr 25.22 14.17 77.4 57.5 7.5 

13-Apr 21.78 9.56 71.2 49.2 0.2 

14-Apr 25.72 5.39 78.3 41.7 0.0 

15-Apr 26.06 9.44 78.9 49 4.0 

16-Apr 24.94 14.89 76.9 58.8 7.8 

17-Apr 19.28 16.11 66.7 61 3.9 

18-Apr 23.33 16.67 74 62 8.0 

19-Apr 23.22 13.22 73.8 55.8 4.8 

20-Apr 25.39 10.00 77.7 50 3.9 

21-Apr 30.78 11.94 87.4 53.5 10.5 

22-Apr 32.56 13.83 90.6 56.9 13.8 

23-Apr 28.94 17.39 84.1 63.3 13.7 

24-Apr 25.39 18.67 77.7 65.6 11.7 

25-Apr 28.11 18.89 82.6 66 14.3 

26-Apr 28.50 21.56 83.3 70.8 17.1 

27-Apr 25.39 17.22 77.7 63 10.4 

28-Apr 27.39 17.17 81.3 62.9 12.1 

29-Apr 27.83 21.17 82.1 70.1 16.1 

30-Apr 29.39 20.94 84.9 69.7 17.3 

1-May 29.94 22.11 85.9 71.8 18.9 

2-May 29.56 21.94 85.2 71.5 18.4 

3-May 27.44 17.06 81.4 62.7 12.1 

4-May 27.44 14.22 81.4 57.6 9.5 

5-May 30.89 20.67 87.6 69.2 18.4 

6-May 31.39 22.44 88.5 72.4 20.5 

7-May 31.72 23.06 89.1 73.5 21.3 

8-May 32.83 22.78 91.1 73 22.1 

9-May 32.72 21.72 90.9 71.1 21.0 

10-May 32.72 20.67 90.9 69.2 20.1 

11-May 33.89 22.33 93 72.2 22.60 

Date Max. Min. Max.  Min. DD60's 

APPENDIX B 
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  ___________oC___________ ___________oF___________ Daily 

12-May 33.56 22.44 92.4 72.4 22.40 

13-May 31.94 22.33 89.5 72.2 20.85 

14-May 32.28 21.56 90.1 70.8 20.45 

15-May 32.94 20.33 91.3 68.6 19.95 

16-May 29.94 18.94 85.9 66.1 16.00 

17-May 23.50 16.11 74.3 61 7.65 

18-May 25.50 13.00 77.9 55.4 6.65 

19-May 28.11 9.89 82.6 49.8 6.20 

20-May 28.83 12.17 83.9 53.9 8.90 

21-May 30.89 13.83 87.6 56.9 12.25 

22-May 28.83 18.78 83.9 65.8 14.85 

23-May 29.28 18.17 84.7 64.7 14.70 

24-May 26.94 19.28 80.5 66.7 13.60 

25-May 31.72 17.83 89.1 64.1 16.60 

26-May 34.28 21.44 93.7 70.6 22.15 

27-May 30.17 20.67 86.3 69.2 17.75 

28-May 32.17 18.17 89.9 64.7 17.30 

29-May 32.89 18.39 91.2 65.1 18.15 

30-May 34.28 15.17 93.7 59.3 16.50 

31-May 32.78 19.06 91 66.3 18.65 

1-Jun 31.72 16.17 89.1 61.1 15.10 

2-Jun 33.78 19.78 92.8 67.6 20.20 

3-Jun 33.56 20.72 92.4 69.3 20.85 

4-Jun 30.56 18.39 87 65.1 16.05 

5-Jun 32.94 15.11 91.3 59.2 15.25 

6-Jun 33.61 18.67 92.5 65.6 19.05 

7-Jun 34.06 18.44 93.3 65.2 19.25 

8-Jun 34.06 20.61 93.3 69.1 21.20 

9-Jun 34.67 21.78 94.4 71.2 22.80 

10-Jun 35.39 24.50 95.7 76.1 25.90 

11-Jun 35.39 25.50 95.7 77.9 26.80 

12-Jun 36.67 25.50 98 77.9 27.95 

13-Jun 36.94 24.28 98.5 75.7 27.10 

14-Jun 36.50 22.83 97.7 73.1 25.40 

15-Jun 36.72 23.50 98.1 74.3 26.20 

16-Jun 37.44 23.50 99.4 74.3 26.85 

Date Max. Min. Max.  Min. DD60's 
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  ___________oC___________ ___________oF___________ Daily 

17-Jun 36.39 25.11 97.5 77.2 27.35 

18-Jun 36.56 23.72 97.8 74.7 26.25 

19-Jun 36.39 22.72 97.5 72.9 25.20 

20-Jun 37.11 22.00 98.8 71.6 25.20 

21-Jun 37.17 22.28 98.9 72.1 25.50 

22-Jun 37.67 23.00 99.8 73.4 26.60 

23-Jun 37.50 23.06 99.5 73.5 26.50 

24-Jun 39.72 23.72 103.5 74.7 29.10 

25-Jun 39.89 25.56 103.8 78 30.90 

26-Jun 39.44 23.00 103 73.4 28.20 

27-Jun 38.72 24.22 101.7 75.6 28.65 

28-Jun 39.11 24.22 102.4 75.6 29.00 

29-Jun 39.94 26.33 103.9 79.4 31.65 

30-Jun 32.00 24.39 89.6 75.9 22.75 

1-Jul 33.39 23.78 92.1 74.8 23.45 

2-Jul 39.50 22.78 103.1 73 28.05 

3-Jul 38.56 22.78 101.4 73 27.20 

4-Jul 38.28 24.78 100.9 76.6 28.75 

5-Jul 38.94 25.83 102.1 78.5 30.30 

6-Jul 34.17 26.06 93.5 78.9 26.20 

7-Jul 37.22 25.33 99 77.6 28.30 

8-Jul 39.89 24.83 103.8 76.7 30.25 

9-Jul 40.17 24.56 104.3 76.2 30.25 

10-Jul 38.94 25.39 102.1 77.7 29.90 

11-Jul 38.50 23.11 101.3 73.6 27.45 

12-Jul 38.50 23.94 101.3 75.1 28.20 

13-Jul 39.22 25.33 102.6 77.6 30.10 

14-Jul 39.11 25.22 102.4 77.4 29.90 

15-Jul 39.22 23.89 102.6 75 28.80 

16-Jul 39.11 25.00 102.4 77 29.70 

17-Jul 36.33 22.78 97.4 73 25.20 

18-Jul 37.89 22.06 100.2 71.7 25.95 

19-Jul 37.50 21.78 99.5 71.2 25.35 

20-Jul 35.94 23.61 96.7 74.5 25.60 

21-Jul 36.83 24.44 98.3 76 27.15 

22-Jul 36.50 25.67 97.7 78.2 27.95 

Date Max. Min. Max.  Min. DD60's 
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  ___________oC___________ ___________oF___________ Daily 

23-Jul 34.50 23.11 94.1 73.6 23.85 

24-Jul 36.28 23.94 97.3 75.1 26.20 

25-Jul 38.72 22.83 101.7 73.1 27.40 

26-Jul 39.33 25.28 102.8 77.5 30.15 

27-Jul 38.06 25.39 100.5 77.7 29.10 

28-Jul 38.17 26.78 100.7 80.2 30.45 

29-Jul 36.67 26.11 98 79 28.50 

30-Jul 36.83 22.89 98.3 73.2 25.75 

31-Jul 32.17 22.44 89.9 72.4 21.15 

1-Aug 38.17 25.06 100.7 77.1 28.90 

2-Aug 35.17 25.17 95.3 77.3 26.30 

3-Aug 38.56 22.78 101.4 73 27.20 

4-Aug 38.50 23.33 101.3 74 27.65 

5-Aug 38.61 23.39 101.5 74.1 27.80 

6-Aug 38.78 23.83 101.8 74.9 28.35 

7-Aug 37.94 23.89 100.3 75 27.65 

8-Aug 37.39 23.50 99.3 74.3 26.80 

9-Aug 33.83 24.56 92.9 76.2 24.55 

10-Aug 37.22 23.78 99 74.8 26.90 

11-Aug 38.61 23.56 101.5 74.4 27.95 

12-Aug 39.22 23.67 102.6 74.6 28.60 

13-Aug 37.22 21.67 99 71 25.00 

14-Aug 37.17 22.72 98.9 72.9 25.90 

15-Aug 36.83 22.06 98.3 71.7 25.00 

16-Aug 37.83 22.28 100.1 72.1 26.10 

17-Aug 37.11 23.33 98.8 74 26.40 

18-Aug 34.56 23.78 94.2 74.8 24.50 

19-Aug 36.39 24.11 97.5 75.4 26.45 

20-Aug 38.72 24.89 101.7 76.8 29.25 

21-Aug 38.61 24.89 101.5 76.8 29.15 

22-Aug 37.56 23.06 99.6 73.5 26.55 

23-Aug 38.61 23.06 101.5 73.5 27.50 

24-Aug 38.11 24.61 100.6 76.3 28.45 
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APPENDIX C 

  
CROP PRODUCTION PRODUCTS USED IN 2008 COTTON STUDY 

  
  
The following products were used at the rates indicated for the designated weeds or pest. 
  
  
Preplant  
  
Broadleaf weeds and annual grasses Treflan® 4EC – trifluralin: 1.86 L ha-1 
 α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl- 
 p-tolidine 
  
Early Season  
  
Thrips (Thrips tabaci) Temik® 15G – aldicarb: 5.61 kg ha-1 
 [2-methyl-2-(methylthio)propionaldehyde 
 0-(methylcarbamoyl)] 
  
 Bidrin® 8 – dicrotophos: 0.29 L ha-1 
 Dimethyl phosphate of 3-hydroxy-N,N- 
 Dimethyl-cis-crotonamide 
  
Annual grasses Dual® II – metolachlor: 1.17 L ha-1  
 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2- 
 Methoxy-1-methylethyl)acetamide 
  
 Caparol® 4L – prometryn: 2.34 L ha-1 
 2,4-bis(isopropylamino)-6-methylthio)-S- 
 triazine 
  
Broadleaf weeds (primarily Ipomoea sp.) Roundup WeatherMax® –  glyphosaste:  
 1.61 L ha-1 N-(phosphonomethyl)glycine 
  
Grasses (primarily Sorghum halepense) Fusilade® DX – fluazifop-P-butyl: 0.88 L 
 ha-1 Butyl (R)-2-[4-[[5-(trifluoromethyl)-2-

pyridinyl]oxy]phenoxy]propanoate 
  
Cotton Fleahopper (Pseudatomoscelis 

seriatus) 
Orthene®  90S acephate: 0.22 L ha-1 
(O,S-Dimethyl 
acetylphosphoramidiothioate) 
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Plant Growth Regulator Pentia® – mepiquat pentaborate: 0.58 L  
ha-1 N,N-dimethylpiperidiniurn  
pentaborate 

  
Harvest Aids Dropp® 50WP – thidiazuron: 0.11 kg ha-1 
 N-phenyl-N-1,2,3-thiadiazol-5-urea 
  
 Def® – tribufos: 1.75 L ha-1 

S,S,S-tributyl 
 phosphorotrithioate 
  
 Prep – ethephon: 1.55 L ha-1 (2-

chloroethyl) phosphonic acid 
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APPENDIX D 
  

CROP PRODUCTION PRODUCTS USED IN 2009 COTTON STUDY 

  
  
The following products were used at the rates indicated for the designated weeds or pest. 
  
  
Preplant  
  
Broadleaf weeds and annual grasses Treflan® 4EC – trifluralin: 1.86 L ha-1 
 α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl- 
 p-tolidine 
  
Early Season  
  
Thrips (Thrips tabaci) Temik® 15G – aldicarb: 5.61 kg ha-1 
 [2-methyl-2-(methylthio)propionaldehyde 
 0-(methylcarbamoyl)] 
  
 Bidrin® 8 – dicrotophos: 0.29 L ha-1 
 Dimethyl phosphate of 3-hydroxy-N,N- 
 Dimethyl-cis-crotonamide 
  
Annual grasses Dual® II – metolachlor: 1.17 L ha-1  
 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2- 
 Methoxy-1-methylethyl)acetamide 
  
 Caparol® 4L – prometryn: 2.34 L ha-1 
 2,4-bis(isopropylamino)-6-methylthio)-S- 
 triazine 
  
Broadleaf weeds (primarily Ipomoea sp.) Roundup WeatherMax® –  glyphosaste:  
 1.61 L ha-1 N-(phosphonomethyl)glycine 
  
Grasses (primarily Sorghum halepense) Fusilade® DX – fluazifop-P-butyl: 0.88 L 
 ha-1 Butyl (R)-2-[4-[[5-(trifluoromethyl)-2-

pyridinyl]oxy]phenoxy]propanoate 
  
Cotton Fleahopper (Pseudatomoscelis 

seriatus) 
Trimax® imidicloprid: 0.11 L ha-1 
1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro- 

 2-imidazolidinimine 
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Mid- to Late Season  
  
Cotton Aphid (Aphis gossypii) and  Provado 1.6F – imidicloprid: 0.18 L ha-1 
Whitefly ( ) 1-[(6-chloro-3-pryidinyl)methyl]-N-nitro-

2-imidazolidinimine 
  
Plant Growth Regulator Pentia® – mepiquat pentaborate: 0.58 L  

ha-1 N,N-dimethylpiperidiniurn  
pentaborate 

  
Harvest Aids Dropp® SC – thidiazuron: 0.15 kg ha-1 
 N-phenyl-N-1,2,3-thiadiazol-5-urea 
  
 Ginstar® – thidiazuron/diuron: 0.07 L ha-1  

N-phenyl-N’-1,2,3-thidiazol-5-ylurea, 
3-(3,4-dichlorophenyl)-1,1-dimethylurea 

  
  
 Finish Pro 6® – ethephon: 1.55 L ha1 (2-

chloroethyl) phosphonic acid, cyclanilide 
1-(2,4-dichlorophenlyaminocarbonyl)-
cyclopropane carboxylic acid 

  
  
 




