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ABSTRACT 

 

Without successful feeding, ticks can neither cause damage to their host nor 

transmit disease agents. Thus, a deeper understanding of tick physiology as a means to 

discover weaknesses that can be targeted for tick control is needed. In a previous study, 

40 genes were discovered that are differentially up regulated in Amblyomma 

americanum (Aam) (Linnaeus) females when exposed to feeding stimuli. The purpose of 

this study was to biologically and biochemically characterize one of the 40 candidate 

genes, a putative acidic chitinase (Ach), to understand its role(s) and significance in 

regulating tick feeding physiology. This research has shown that A. americanum 

expresses two putative AamAch isoforms [long (L) and short (S)], both of which are 

classified into the glycosyl hydrolase 18 (GH-18) family. Members of the GH-18 are 

involved in regulating multiple functions including nutrition processes in bacteria, 

morphogenesis in yeast and fungi, pathogen attack in plants, molting in insects, and 

inflammation and tissue remodeling in mammals. Spatial and temporal mRNA transcript 

analyses show that putative AamAch-L and AamAch-S are ubiquitously expressed, with 

highest transcript abundance post-attachment observed at 72h in all tissues, and at 96h in 

the salivary gland. Pichia pastoris-expressed recombinant AamAch-L was glycosylated, 

consistent with molecular analysis that predicted N- and O-linked glycosylation sites. 

Substrate hydrolysis analysis indicated that rAamAch-L does not apparently have 

chitinase activity. RNAi mediated silencing of AamAch mRNA apparently caused 

loosening or weakening of the tick cement plug at the feeding site. Animals injected with 
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AamAch-dsRNA bled around mouthparts, and were loosely attached on its rabbit host in 

that they easily detached with a light touch. The putative AamAch is therefore 

potentially involved in mediating tick attachment onto host skin. This thesis research 

advances our knowledge on the understanding of the molecular basis of tick feeding 

physiology and provides new information on the diverse physiological role of acidic 

chitinase-like proteins. 
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CHAPTER I 

INTRODUCTION 

 

Ticks and Tick-Borne Diseases 

Ticks are ectoparasites of major public and veterinary health importance. Ticks 

transmit various animal and human disease agents, including protozoa, bacteria, 

spirochaetes and viruses (Jongejan and Uilenberg, 1994). They are second to mosquitoes 

in terms of public health impact of pathogens they transmit, but are first in terms of the 

diversity of animal and human pathogens they transmit (Jongejan and Uilenberg, 2004; 

Sonenshine, 1993). Some tick species also inject toxins into animals and humans that 

cause paralysis (Kaire, 1966; Espinoza-Gomez et al., 2011). The lone star tick, 

Amblyomma americanum, the focus of this master’s degree thesis research, is among 

important tick species of medical and veterinary health significance. A. americanum, 

which for many years was widely distributed in the southeastern United States (Mixson 

et. al., 2006) has also been found in the northeastern region as far as Maine (Keirans et 

al., 1998). This tick appears to be the most dominant tick species that bite humans in the 

Southern U.S. Felz et al., (1996) reported A. americanum in 83% of human tick 

infestations in the Southern states. A. americanum is involved in transmission of 

multiple animal and human disease agents including Ehrlichia chaffensis, the causative 

agent of human monocytic ehrlichiosis (Anderson et al., 1993), and E. ewingii, which 

also causes ehrlichiosis in humans, sometimes referred to as human granulocytic 

ehrlichiosis (Murphy et al., 1998; Buller et al., 1999; Wolf et al., 2000), Francisella 
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tularensis (Tularemia) (Hopla et al., 1953; Taylor et al., 1991), a yet to be described 

disease agent that cause Lyme disease-like symptoms referred to as southern tick 

associated rash illness (STARI) (Armstrong et al., 2001; James et al., 2001), and an E. 

ruminantium-like organism referred to as the Panola Mountain Ehrlichia (PME) (Reeves 

et al., 2008; Yabsley et al., 2008). There is also evidence that A. americanum may 

transmit Rickettsia amblyommii to humans (Apperson et al., 2008). Of importance in 

veterinary health, A. americanum transmits Theileria cervi to deer (Laird et al., 1988), 

and E. ewingii to dogs (Little et al., 2010). There are reports of mortality in deer fawns 

that were attributed to a combination of heavy A. americanum infestation and T. cervi 

infections (Yabsley et al., 2005). 

 

Tick Control and Alternatives 

Tick control has been a costly ongoing battle globally. Current methods of tick 

control are primarily focused on the use of chemical acaricides. Although in the short 

term acaricide use can effectively control ticks, it does not provide a permanent solution 

because of numerous limitations such as ticks developing resistance to acaricides, 

environmental contamination, cost of developing new acaricides, and the inconvenience 

of application procedures. These limitations have necessitated the search for alternative 

novel tick control methods that will provide a permanent solution (de la Fuente and 

Kocan 2006; de la Fuente et al., 2007; Graf et al., 2004). Several alternative tick 

methods based on tick habitat modifications such as deforestation, landscape 

management, and rotational grazing have also been tried and proven inefficient 
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(Sonenshine, 1993). Research by Australian groups in the 1980s demonstrated that 

immunization of animals against tick feeding was a sustainable, environmental friendly 

alternative tick control method (Opdebeeck et al., 1988). To create successful anti-tick 

vaccines, our knowledge of the molecular mechanisms involved in tick feeding 

physiology must advance. This knowledge will result in discovery of “weak links” in 

tick biology that can be targeted for tick vaccine development.  

 

Tick Feeding Behavioral Changes 

Ticks are slow pool-feeding arthropods that accomplish feeding by lacerating 

tissue and small blood vessels in the skin to create a feeding lesion from which they 

imbibe host blood. A sequence of distinct physiological events occurs for a tick to 

successfully feed and reproduce (Walade and Rice, 1982) starting with the pre-appetence 

phase (PA), when newly hatched larvae or newly molted nymph and adult tick show no 

desire to feed (reviewed in Mulenga et al., 2007). Subsequently the tick attains 

appetence (Appetence phase, AP) and begins to display host-seeking behavior. Upon 

engaging the host, the tick transitions into the Pre-feeding phase (PF) when it selects the 

suitable feeding site on the animal, after which it transitions to the Preparatory feeding 

phase (PP). During the PP the tick secretes an adhesive substance, cement to attach onto 

host skin and create the feeding lesion. During this phase, the tick also secretes 

immunosuppressants that are thought to help Tick Borne Disease (TBD) agents to 

colonize the host (Piesman et al., 1987; Piesman et al., 1991; Katavolos et al., 1998; Ebel 

and Kramer 2004). Following the PP phase, the tick transitions into the Slow Feeding 
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phase (SF) when the tick is thought to maintain the feeding lesion, feed moderately, and 

undergo intermolt growth or neosomy (cuticular growth unrelated to the molt) to prepare 

for the rapid feeding phase (RP). In the RP phase the tick feeds to repletion and 

spontaneously detaches.  

 The tick feeding style is expected to trigger host defense mechanisms such as 

inflammation response, platelet aggregation, activate both the blood coagulation system 

and complement cascade (Chmelar et. al., 2011; Mulenga et al., 2007; Imamura et al., 

2005; Nuttall and Labuda, 2004). Given that host response to tick feeding activity was 

expected to be swift, Mulenga et al., (2007) hypothesized that tick genes that regulate or 

facilitate the initial stages of tick feeding (attachment onto host skin and creating the 

feeding lesion) are expressed before or immediately around the AP or PF. Towards 

discovery of tick genes that regulate the initial stages of tick feeding, subtractive 

hybridization analysis was used to identify 40 A. americanum (Aam) genes that were 

differentially up regulated in ticks that were exposed to tick feeding stimuli (Mulenga et 

al., 2007). One of these 40 genes, a putative acidic chitinase was characterized in this 

thesis research.  

 

Functional Roles of Chitinases   

Chitinases are enzymes that hydrolyze the β-1,4 glycosidic linkages of N-

acetylglucosamines primarily found in chitin. Chitin is an insoluble structural 

polysaccharide that is important as a supporting element in arthropod exoskeleton 

(Neville et al., 1976), cell wall of fungi and bacteria (Debono and Gordee, 1994; Gomaa, 
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2012), microfilarial sheath of parasitic nematodes (Araujo et al., 1993) and the lining of 

the digestive tracts of many arthropods (Souza-Neto et al., 2003; Zimoch et al., 2005; 

Khajuria et al., 2010). Arthropods development and morphogenesis rely on remodeling 

chitin and in the process requires chitin synthases and chitinases to control these 

processes (Merzendorfer and Zimoch, 2003). There are currently 133 different glycosyl 

hydrolase families according to the Carbohydrate-Active Enzymes database, cazy.org 

(Lombard et al., 2014). Chitinases are classified into the glycosyl hydrolase 18 or 19 

family based on amino acid sequence similarity (Henrissat, 1991). At the time of this 

write up, according to the National Center for Biotechnology Information (NCBI) 

Conserved Domains (CDD) database (www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), 

the GH-18 family includes chitolectins, chitotriosidase, chitobiase, hevamine, zymocin-

alpha, narbonin, SI-CLP (stabilin-1 interacting chitinase-like protein), IDGF (imaginal 

disc growth factor), CFLE (cortical fragment-lytic enzyme) spore hydrolase, the type III 

and type V plant chitinases, and the endo-beta-N-acetylglucosaminidases. 

Chitinases have widely different functions in many organisms. In fungi, 

chitinases play important biological and physiological roles such as in autolysis, 

nutrition, morphogenesis, and parasitism. It has been shown that the endochitinase of the 

dimorphic fungus Benjaminiella poitrasii significantly contributes to its morphological 

changes during the yeast-mycelium transition (Ghormade et al., 2000). Most bacterial 

chitinases are involved in degrading chitin to provide nitrogen and carbon (Patil et al., 

2000). Chitinases play a major defensive role in all plants against attack by fungi and 

bacteria, and also against attack by insect pests (Gooday, 1999). They also play a role as 
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regulators of development and morphogenesis in plants (Grover, 2012). Insect chitinases 

are involved in cuticle turnover, digestion, and degradation of peritrophic membrane 

during molting and also as biopesticides (Kramer and Muthukristhnan, 1997; 

Merzendorfer and Zimoch, 2003; Rao et al., 2004). In nematodes, chitinase has been 

shown to play a role in development. In the filarial nematode Acanthocheilonema viteae, 

RNAi silencing of the chitinase inhibited molting of the L3 stage and hatching of 

microfilariae, alongside 50% mortality of female worms (Tachu et al., 2008). Chitinase 

in the microfilariae of parasitic nematode Brugia malayi is stored in the inner body, and 

it is secreted during the exsheathment of the microfilaria in the mosquito (Wu et al., 

2008). In Ascaris suum the chitinase is involved in the initial molt and responsible for 

the digestion of eggshell during hatching (Geng et al., 2002). Mammals may not 

synthesize chitin, but the human genome encodes eight chitinases that are involved in T-

cell mediated inflammation and asthma (Reese et al., 2007; Kawada et al., 2007). In 

mammals chitinases have also been shown to play a role in inflammation, tissue 

remodeling and injury (Lee et al., 2011). Available data show that chitinases also play an 

important role in tick physiology. In the tick, Haemaphysalis longicornis, immunization 

of rabbits with recombinant virus expressing a chitinase was used as a bioacaricide, 

which caused reduced feeding efficiency (You et al., 2003; Assenga et al., 2006), and 

prevented molting (You et al., 2009).  

 

 

 



	
  
	
  

	
  7 

Significance of Research  

This master’s degree thesis research addresses an important problem, that is, to 

find effective antigens to develop vaccines against tick feeding to stop the spread of tick 

borne disease agents to animals and humans. The medical and veterinary impact of A. 

americanum as a vector of major human tick borne disease agents (Childs and Paddock, 

2003) has made it imperative to develop novel tick strategies to stop the spread of tick 

borne diseases to the human population.  Of significance to this research is that there is 

evidence of high conservation of key proteins, among Amblyomma spp. ticks (Mulenga 

et al., 2007, 2013). The implication of findings from this research could be extrapolated 

to other Amblyomma spp. of significant veterinary importance such as A. variegatum, the 

principal vector of Erhlichia ruminantium, which causes heart water, a destructive 

disease in domestic and wild ruminants (Esemu et al., 2013; Allsopp, 2010). 
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CHAPTER II 

BIOINFORMATICS, TEMPORAL AND SPATIAL TRANSCRIPTION ANALYSES 

OF PUTATIVE AMBLYOMMA AMERICANUM ACIDIC CHITINASE (AamAch) 

 

Introduction 
 

Recent advances in bioinformatics, genomics and proteomics have allowed 

discovery of putative candidate tick genes that regulate key tick physiological processes. 

The majority of these genes are of unknown functions, referred as hypothetical proteins 

in GenBank, while those that are provisionally identified are classified on basis of 

functional analysis data in other organisms (Juncker et al., 2009; Loewenstein et al., 

2009). Two approaches, bioinformatics and transcriptional analyses are routinely used to 

gain insight on probable functions of candidate genes in tick physiology, and their 

relationship to the tick feeding process (Mulenga et al., 2008; 2009; Yamaji et al., 2009). 

Bioinformatics has been widely used to determine the relationship of candidate genes or 

protein of interest to predict its function with reference to tick feeding (Ibelli et al., 2013; 

Louw et al., 2013; Pellegrini et al., 1999). Multiple bioinformatics platforms such as 

ProtoParam to predict physiochemical properties of a protein (Gasteiger et al., 2005), 

ScanProsite to scan for annotated amino acid motifs (de Castro et al., 2006), and NCBI 

Blast to compare with other sequences in GenBank (Altschul et al., 1990) have been 

developed. These programs and other programs alike have been utilized to gauge 

probable function(s) of putative tick genes or proteins of interest (Mulenga et al., 2013; 

Ibelli et al., 2013; Tian et al., 2011). Limitations arise in the attempt to characterize 



	
  
	
  

	
  9 

putative genes solely by bioinformatics analyses. This may provide clues to the 

relationship of genes, but it does not inform on the relationship of a candidate gene 

during the tick feeding process. To begin understanding the relationship of the candidate 

gene to tick feeding physiology, transcription profiling during specific periods of the tick 

feeding processes has been routinely applied (McNally et al., 2012; Mulenga et al, 2007; 

Rudenko et al., 2005). In this thesis research the author uses both bioinformatics and 

transcriptional analysis to gauge insight into probable functions of Amblyomma 

americanum putative acidic chitinase-like (AamAch) protein in tick physiology.  

 

Materials and Methods 

Tick feeding, dissections, total RNA extractions and cDNA synthesis 

A. americanum ticks used in this thesis research were purchased from tick 

laboratories at Texas A&M University and Oklahoma State University (College Station, 

TX and Stillwater, OK, respectively). Routinely, ticks were fed on rabbits according to 

animal use protocols approved by Texas A&M University Institutional Animal Care and 

Use Committee (AUP 2011-189). To feed, A. americanum ticks were placed onto the 

outer part of the ear of specific pathogen free (SPF) New Zealand rabbits. Ticks were 

restricted onto the outer ears using orthopedic stockinet. The orthopedic stockinet was 

glued onto the rabbit ear with Kamar Adhesive (Kamar Products Inc., Zionsville, IN). 

Six male ticks were pre-fed for three days prior to introducing 15 female ticks on each 

ear stocking (total of 30 female ticks per rabbit). Using soft forceps, five female ticks 

were manually detached at 24, 48, 72, 96 and 120h post-attachment. Within the first 
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hour of detachment, ticks were prepared for dissections as described in Mulenga et al. 

(2013). Prior to dissecting, tick mouthparts were inspected to remove any remaining 

rabbit tissue and washed in RNase inhibitor diethylpyrocarbonate (DEPC) treated water. 

The tick was placed on a clean glass, ventral side down, and dissected using a sterile 

razor blade by carefully cutting the most extreme ends of the anterior, posterior and 

lateral portions along the leg line. Subsequently, the tick was placed on a sterile concave 

well slide covered with DEPC water and the dorsum was lifted and removed to expose 

all the tick organs using soft tissue forceps. Tick organs including, salivary glands (SG), 

midguts (MG), synganglion (SYN), Malpighian tubules (MT), and carcass (CA, the 

remnants after dissection) were isolated and placed in 1mL of the RNA extraction 

solution, Trizol (Life Technologies, Carlsbad, CA) and stored at -80° C until total RNA 

extraction.  

Total RNA was extracted using the Trizol reagent according to the 

manufacturer’s instructions (Life Technologies) and re-suspended in DEPC treated 

water. Total RNA was quantified using a UV-VIS Spectrophotometer DU-640B 

(Beckman Coulter, Brea, CA). Total RNA (1µg) was used to synthesize cDNA using the 

qScript cDNA SuperMix according to the manufacturer’s instructions (Quanta 

Bioscience, Inc, Gaithersburg, MD). The synthesized cDNA was quantified as above and 

stored in -20°C until use. 
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Full-length A. americanum (Aam) Ach cDNA cloning, bioinformatics and phylogeny 

analyses 

The full-length cDNA sequence of putative AamAch cDNA was cloned using the 

Rapid Amplification of cDNA Ends (RACE) (ClonTech, Mountain View, CA) 

according to the manufacturer’s protocol (cloning was done by Jenny Curran, a 2008 

cohort REU-EXCITE student). RACE ready, 3ʹ′ and 5ʹ′ cDNA templates were 

synthesized using ~5ug 120h post-attached tick total RNA. In the first step an antisense 

primer amplified the 5ʹ′ fragment. Following sequencing of the 5ʹ′ fragment, a sense 

primer was designed at the extreme end of the 5ʹ′ ORF fragment to amplify the full-

length AamAch cDNA in a 3ʹ′ RACE approach. PCR fragments were routinely cloned 

into the pGEM-T TA cloning vector (Promega, Madison, WI) and sequenced with T7 

and SP6 promoter primers. DNA sequences were done at the Laboratory for Genome 

Technology at Texas A&M University (College Station, TX) for a fee-for-service. 

Sequences were analyzed, and the open reading frame was assembled using the 

MacVector program (MacVector Inc., Cary, NC).  

 

Bioinformatics and phylogeny analyses 

 BlastX, BlastP, and NCBI protein database search engines were used to identify 

protein sequences in other organisms that showed identity to AamAch. The putative 

AamAch amino acid sequence was scanned on the SignalP Version 4.1 server (Petersen 

et al., 2011), and NetNGlyc 1.0 and NetOGlyc 4.0 servers (Steentoft et al., 2013) to 

determine presence of a signal peptide and putative N- and O-linked glycosylation sites. 
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To scan for annotated amino acid motifs, the putative AamAch amino acid sequence was 

scanned against entries in ScanProsite program (de Castro et al., 2006), and to gauge 

insight into physio-chemical properties using the ProtParam program (Gasteiger et al., 

2005). Predicted isoeletric point (pI) and calculated molecular weights were determined 

using MacVector protein toolbox. 

The top 19 GenBank sequence matches (Table 1) to putative AamAch from ticks, 

mosquitoes, helminths and mammals were downloaded and used to construct a guide 

phylogeny tree using MacVector software (MacVector Inc.). Based on initial blast 

results, AamAch was categorized as a GH-18 chitinase-like protein, therefore Homo 

sapiens (Accession # AAA35684.1) GH-18 chitobiase was used as an out-group in the 

phylogeny tree.  Sequences were aligned using ClustalW and the phylogeny tree 

constructed using the Neighbor-joining method. To estimate bootstrap values, 

replications were set to 1000. 

 

Validating if two putative AamAch forms are expressed  

Sequence alignment analyses performed as the cloning experiments to obtain the 

full-length putative AamAch cDNA were carried out, revealed the possibility that A. 

americanum expressed a long (L) and short (S) forms, AamAch-L and AamAch-S. 

Preliminary pairwise sequence alignment analysis showed position 715-925 bp of 

AamAch -L is deleted in the AamAch –S.  

To determine if both AamAch-L and AamAch-S mRNAs were expressed, 

respective specific forward 5′GAGGGGAGTCTGGAACGGAG3′ and 5′CGCCCAAG  
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Organism Identity 
(%)  

Query Coverage 
(%) 

Accession # 

AamAch- S 99 75 KF819830 

R. sanguineus 83 88 ACX33152.1 

I. ricinus 61 99 JAB70416.1 

I. scapularis 55 78 XP_002407804.1 

I. scapularis 48 93 XP_002407799.1 

I. scapularis 48 78 XP_002407802.1 

I. scapularis 42 94 XP_002407798.1 

A. aegypti 39 84 AAB81849.1 

A. gambiae 39 83 AEE44123.1 

M. sexta 39 83 AAB53952 

C. quinquefasciatus 38 84 XP_001863384.1 

I. scapularis 36 94 XP_002399313.1 

H. longicornis 36 90 BAC06447.1 

M. musculus 35 84 NP_075675.2 

H. sapiens 35 83 AAG10644.1 

A. viteae 30 96 AAB68959.1 

O. volvulus 30 95 AAB68960.1 

W. bancrofti 30 84 AAF66988.1 

B. malayi 30 83 AAA27854.1 

B. pahangi 29 79 AAC47324.1 

H. sapiens * 21 51 AAA35684.1 
 Percentage identity of amino acid sequences of 19 most similar sequences to 

AamAch- S (KF819830) and AamAch-L (KF819831) found in GenBank and 
compared using NCBI BLAST bl2seq. Included is a GH-18 family chitobiase from 
Homo sapiens (AAA35684.1) denoted by (*) used as the outgroup for phylogenetic 
tree.   

Table 1. Pairwise alignment showing percent identity and coverage of GH-18 
chitinase-like proteins compared with AamAch- L.	
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CCCACGCCCTCGTC3′ and the universal reverse 5′GAAGTCGTCCAGGTCGTTGT 

TG3′ PCR primers were designed as illustrated on Fig. 1A. These primers were used to 

verify expression of AamAch-L and AamAch-S cDNA fragments in 3ʹ′ RACE ready 

cDNA. 

 

Temporal and spatial transcription analyses during the first five days of tick post-

attachment   

To determine temporal and spatial transcription relationship to the tick feeding 

process, AamAch-L and AamAch-S mRNA expression profiles were determined in 

organs (SG, MG, SYN OV, and CA) that were dissected from ticks that were partially 

fed for 24, 48, 72, 96, and 120h, using two-step semi-quantitative RT-PCR. For both 

putative AamAch-L and AamAch–S, PCR cycling conditions were an initial denaturing 

step at 94°C followed by 30 amplification cycles of 94°C for 30 s, 53°C for 30 s, 72°C 

for 1 min, and a final extension step of 72°C for 5 min. Tick actin primers (For: 

5′GGACAGCTACGTGGGCGACGAGG3′, Rev: 5′CGATTTCACGCTCAGCCGTGGT 

GG3′) were used for cDNA sample normalization (Chalaire et al., 2011). The actin 

cycling conditions were an initial denaturing step at 94°C followed by 25 amplification 

cycles of 94°C for 30 s, 57°C for 30 s, 72°C for 1 min, and a final extension step of 72°C 

for 5 min. Routinely, PCR products were resolved using 2% agarose gel with 1µg/mL of 

ethidium bromide and visualized using the FOTO/Convertible Transilluminator image 

analyzer (Fotodyne Inc., Hartland, WI). To determine apparent transcript abundance, 
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Fig. 1. Detection of long (L) and short (S) Amblyommma americanum (Aam) 
putative acidic chitinase (Ach) mRNA. (A) Pairwise sequence alignment of 
AamAch- L and S nucleotide sequences showing ~200bp gap denoted by broken line 
(------) that produce two in frame proteins [See Fig. 2]. Sequences were aligned using 
the ClustalW sequence alignment tool in MacVector DNA analysis software. The 
AamAch- L and S forward respective primers are in bold and highlighted with red (à) 
and blue (à), and a universal reverse primer in purple (ß). (B) Shown below, PCR 
validation of two AamAch isoforms resolved on a 2% agarose gel containing 1 µg/mL 
ethidium bromide. B1 denotes the ~300 base pair (bp) band for AamAch- S, B2 
denotes the ~500 bp band for AmAch- L. 
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Fig. 1. Continued 

 

 

 

PCR band densities were measured using the ImageJ software from the National 

Institute of Health (NIH, Bethesda, MD). To quantify transcript abundance, PCR band 

densities were normalized using the formula, Y = V + [V (H-X)/X]. Y is the normalized  

mRNA density, V is the observed putative AamAch PCR band density in individual 

samples, H is the highest tick actin PCR band density among tested samples, and X is the 

tick actin PCR band for the test tissue (Mulenga et al., 2008). 
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Results 

Amblyomma americanum expresses long (L) and short (S) putative AamAch forms 

RACE and sequence analysis identified a 1959 base pair (bp) (long, L, 

accession# KF819831) and 1718 bp (short, S, accession# KF819830) putative AamAch 

cDNA. Nucleic acid sequence alignment of AamAch-L and AamAch-S summarized in 

Fig. 1A shows a 212 bp deletion in AamAch-S. AamAch-L and AamAch-S full-length 

cDNA respectively contain 1332 and 1104 bp open reading frame (ORF) that encodes 

for a 443 (426 without signal peptide) and 367 amino acid residues proteins (Fig. 2). To 

determine if both AamAch-L and AamAch-S were expressed, specific forward and a 

universal reverse primers to respectively amplify ~500 and 300 bp, AamAch-L and 

AamAch-S cDNA fragments were designed (Fig. 1A).  Fig. 1B shows that these primers 

amplified expected size AamAch-L and AamAch-S cDNA fragments confirming that the 

two putative AamAch types were expressed in A. americanum. 

 

Putative AamAch- L and -S are chitinase-like proteins belonging to the GH-18 family 

The ORF of both putative AamAch isoforms were subjected to amino acid motif 

scanning using ScanProsite Expasy server  (de Castro et al., 2006), but retrieved no hits 

to any motifs (not shown). When scanned against entries in GenBank, both AamAch-L 

and AamAch-S yielded best matches to more than 20 hits to annotated chitinase and 

chitinase-like proteins in the glycosyl hydrolase-18 (GH-18) family with amino acid 

identity levels ranging from 40-85% (not shown). The GH-18 family is characterized by 

four signature amino acid sequence motifs, “FDG(L/F)DLDWE(Y/F)P”, 
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“K(F/V)M(V/L/I)AVGGW”, “M(S/T)YDL(R/H)G”, and “GAM(T/V)WA(I/L)D” 

(Arakane and Muthukrishnan, 2010). Visual inspection of both AamAch-L and AamAch-

S amino acid sequences show that the GH-18 family consensus amino acid motifs 

(highlighted in purple) are conserved up to 55% (LDGVDMAWPFP), 67 % 

(KTLLSVGFW), 71% AamAch-L and 0% in AamAch-S (QAYDLRG), and 38% 

(GVYVRNND) shown in Fig. 2. Both AamAch-L and AamAch-S have (2 and 1, 

highlighted in red) and (25 and 6, highlighted in blue) putative N- and O-linked 

glycosylation sites (Fig. 2). A 17 amino acid signal peptide (indicated in Fig. 2) is 

predicted in AamAch-L but not in AamAch-S (Fig. 2). 

 

Both AamAch- L and -S segregate with other blood feeding arthropods  

At the time of this write up, the putative tick Ach when used as a query in 

GenBank retrieved eight tick GH-18 like chitinases, Rhipicephalus sanguineus 

(ACX33152.1), Ixodes scapularis (XP_002407804.1, XP_002407802.1, 

XP_002407799.1, XP_002407798.1, XP_002399313.1), I. ricinus (JAB70416.1), and H. 

longicornis (BAC06447.1). A phylogeny tree out-rooted from Homo sapiens GH-18 

chitobiase (Accession#: AAA35684.1) was constructed using the Neighbor-joining 

method set to default parameters in the MacVector program.  Sequences segregated into 

three clusters: a, b, and c, supported by 98, 79, and 88% bootstrap values respectively 

(Fig. 3). In cluster “a”, both AamAch-L and AamAch-S amino acid sequences segregated 

together with annotated GH-18 chitinase sequences from GenBank of other blood  
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Fig. 2. Pairwise sequence alignment of AamAch- L and -S amino acid sequence 
showing the four consensus motifs of glycosyl hydrolase- 18 (GH-18) family. 
Sequences were aligned using the MUSCLE sequence alignment tool in MacVector 
DNA analysis software. The four consensus motifs of GH-18 family are in bold purple 
color and denoted with a (*) and a number. (*1) denotes the motif 
K(F/V)M(V/L/I)AVGGW, (*2) denotes the motif FDG(L/F)DLDWE(Y/F)P, and (*3) 
denotes the motif M(S/T)YDL(R/H)G and show 71 % identity with AamAch-L and is 
deleted in the AamAch –S. (*4) denotes the motif GAM(T/V)WA(I/L)D  and  shows 
~67, 55, 38 % identity with respective AamAch-L and S. Prediction of (24 and 6) O-
linked and (2 and 1) N-linked glycosylation sites in AamAch -L and S are represented by 
blue and red amino acids, respectively. Green colored amino acid represents both O-
linked and N-linked glycosylation sites. A 17 amino acid signal peptide for AamAch- L 
is underlined and in bold. 
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Fig. 3. Phylogenetic analysis of chitinases in GH-18 family against AamAch- L.  
Neighbor-joining guide phylogenetic tree showing the relationship of Amblyomma 
americanum AamAch- L and S putative proteins to glycosyl hydrolase (GH-18) chitinase 
proteins from ticks (n = 8), mosquitoes (n = 3), helminths (n = 5), mammals (n = 2), 
insect (n = 1) and a human GH-18 family chitobiase (n = 1) as the outgroup. The 
predicted putative AamAch –L and S was aligned with glycosyl hydrolase 18 chitinase 
and chitinase-like proteins sequences: R_sanguineus (ACX33152.1); I_scapularis 
(XP_002407804.1, XP_002407802.1, XP_002407799.1, XP002407798.1, 
XP_002399313.1); I_ricinus (JAB70416.1); H_longicornis (BAC06447.1), 
C_quinquefasciatus (XP_001863384); A_aegypti (AAB81849.1); A_gambiae 
(AEE44123.1); M_sexta (AAB53952.1); B_pahangi (AAC47324.1); B_malayi, 
(AAA27854.1); A_viteae (AAB68959.1); O_volvulus (AAB68960.1); W_bancrofti 
(AAF66988.1); M_musculus (NP075675.2); and H_sapiens (AAG10644.1, 
AAA35684.1), using ClustalW sequence alignment tool. The phylogenetic guide tree was 
constructed using the MacVector Neighbor-joining method with default parameters as 
described in materials and method section in chapter II. Cluster “a” consists of 
arthropods, Cluster “b” consists of mammals (except with [*], which are arthropods) and 
Cluster “c” consists of helminths. Y denotes the outgroup of GH-18 family chitobiase and 
Z denotes GH-18 chitinases and chitinase-like proteins. Numbers at each node represent 
bootstrap values that signify the level of confidence in the branch.  
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feeding arthropods including ticks: R. sanguineus (ACX33152.1), I. scapularis acid 

identity levels decreased to a respective 55 to 36% and 61% which is comparable to 

AamAch identity levels to mosquitoes (Table 1).   

 

Both AamAch- L and -S mRNA are ubiquitously expressed through 5 days post 

attachment 

 Fig. 4 summarizes AamAch-L and AamAch-S transcription relationship to the 

tick feeding process through five days post-attachment. Semi-quantitative RT-PCR 

analyses revealed that both AamAch-L and AamAch-S mRNA were expressed during the 

first five days (Fig. 4A). Based on normalized mRNA transcript abundance, both forms 

of AamAch were highly abundant at the 72h post-attachment time point in all tick organs 

except the salivary gland, which peaked at the 96 h time point (Figs. 4 B & C). 

 

Discussion 

Up-regulation of the enzyme transcript for AamAch in response to tick feeding 

stimuli before ticks start to feed (Mulenga et al., 2007) encouraged the author to 

investigate the biological role(s) of putative AamAch during the tick feeding process. To 

begin understanding the role(s) of candidate genes in the tick feeding process, mRNA 

expression profiles were compared during the different stages of the tick feeding 

process. In this way, genes that are up regulated in response to feeding are thought to be 

associated with blood meal feeding (Mulenga et al., 2007, Aljamali et al., 2009;  
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Fig. 4. Spatial and temporal mRNA expression profile in dissected tissues through 5 
days post-attachment. (A) Five ticks detached from rabbits at 24, 48, 72, 96, and 120 h 
post-attachment were processed individually for total RNA extraction and subjected to 
two-step semi-quantitative RT-PCR to amplify the AamAch- L and S fragments and tick 
actin (load control). (B & C) Densities of AamAch-L and S (respectively) and tick actin 
PCR bands were determined using a web based ImageJ online program. Densities were 
normalized as described in the material and methods section using the following 
formula: Y=V+[V(H–X)/X], where Y stands for the normalized mRNA density, V is the 
observed AamAch-L or S PCR band density in individual samples, H is the highest tick 
actin PCR band density among tested samples, and X is the tick actin PCR band density 
(Mulenga et al., 2008). Means and standard error of means (SEM) of the three PCR band 
densities were determined using the ImageJ analyzer program and the plotted in 
Microsoft Office Excel 2011. AamAch –L and S mRNA transcript was highest at 72 h 
post-attachment time point in all tissues except in salivary glands at 96 h. Labeling of 
tick organs are color coded: salivary glands (blue), midgut (red), Malpighian tubule 
(green), synganglion (purple), and remnants labeled carcass (black).  
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Mulenga and Khumthong, 2010a; Konnai et al., 2011) and those that are down-regulated 

are believed to play other roles in tick biology, but not associated with blood meal 

feeding (Aljamali et al., 2009; Umemiya et al., 2008). The observation that both 

AamAch-L and AamAch-S were up regulated in response to feeding for 72 h in all 

tissues and at 96 h in the salivary gland, may suggest that these two proteins may be 

associated with blood meal feeding events during the first four days of feeding. During 

this period the tick accomplishes attachment onto the host skin by secreting tick cement, 

create the feeding lesion, begin to transmit disease agents, and begins to grow new tissue 

and cuticle to prepare for imbibing huge volumes of blood (Sonenshine, 1993).  

  Chitinases are classified into the GH-18 or 19 family based on amino acid 

sequence similarity (Henrissat, 1991). In a previous study a GH-18 like family H. 

longicornis tick chitinase was shown to be involved in the hydrolysis of chitin and 

believe to be involved in controlling turnover and porosity of the chitinous peritrophic 

membrane (You et al., 2003). In this research two putative AamAch isoforms 

provisionally annotated as members of the GH-18 family were characterized. Most 

members of the GH-18 family are characterized by a multi-domain architecture 

including a signal peptide, Ser/Thr- rich linker regions that may be heavily glycosylated, 

one to five GH-18 catalytic domains, and none to five chitin binding domains (Arakane 

and Muthukrishnan, 2010; Huang et al., 2012). The Ser/Thr rich linker region is most 

likely the site of O-glycosylation and may contribute to immunogenicity and protein 

stability (Arakane et al., 2003). The chitin binding domains are sites where chitin may 

bind, which is then degraded. The absence of the domain does not affect the ability of 
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the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes its 

ability to hydrolyze insoluble chitin (Tjoelker et al., 2000). The observation that both 

AamAch-L and AamAch-S do not have the putative chitin-binding domain may suggest 

that the two proteins may not be involved in chitin hydrolysis. Native AamAch-L protein 

is likely to function in the extracellular space in that it is predicted to have a signal 

peptide, while the AamAch-S does not have a signal peptide and it is likely to function 

intracellularly. 

 Phylogeny analysis data revealed that AamAch-L and AamAch-S putative 

sequences are closely related to sequences in other blood feeding arthropods. It is 

interesting to note that similar to transcription profiling data in this research, Anopheles 

gambiae GH-18 chitinase (AEE44123.1) was up regulated in the foregut of blood fed 

females (Zhang et al., 2011). Tick acidic chitinases characterized here were also closely 

related to the helminth GH-18 chitinases. The worm known to cause brugian lymphatic 

filariasis, Brugia malayi (AAA27854), contained two active microfilarial GH-18 

chitinases that may potentially be involved in degrading chitin structure in the 

microfilaria during development and transmission in its mosquito vector (Fuhrman et al., 

1992). Data reviewed here show that there are active and inactive chitinase enzyme 

within the GH-18 family.  
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CHAPTER III 

BIOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF AMBLYOMMA 

AMERICANUM PUTATIVE ACIDIC CHITINASE 

 

Introduction  

 
 In chapter II bioinformatics and transcriptional analyses revealed that putative A. 

americanum (Aam) acidic chitinase (Ach) is a member of the chitinase GH-18 family 

that is ubiquitously transcribed with transcript abundance being highest at the 72h post 

attachment time point in all tissues, except for the salivary gland where high expression 

was observed at the 96h time point. To begin understanding the role(s) of AamAch in 

tick feeding physiology, biochemical and biological characterization of AamAch will be 

discussed in this chapter. The Mulenga lab’s interest is to find target antigens for anti-

tick vaccine development. From this perspective AamAch-L, which is predicted to 

function in the extracellular environment was further characterized. The goals of this 

research in this chapter were two fold. The first goal was to determine if wild type and 

mutant recombinant AamAch-L were functional chitinases. The rationale to design and 

express recombinant mutant chitinase was motivated by preliminary data that showed 

that the wild type may not be a functional chitinase. The second goal was to determine if 

AamAch-L function was important to tick feeding success.  

Biochemical characterization approaches have elucidated the possible functional 

role(s) of putative acidic chitinases in several organisms such as in insects 

(Merzendorfer and Zimoch, 2003) and in plants (Gooday, 1999). Biochemical 
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function(s) of candidate acidic chitinases in multiple organisms were determined by 

characterizing recombinant proteins that were expressed in E. coli (Lan et al., 2006), 

insect cells (Huang et al., 2000; Zhu et al., 2008) or yeast cells (Li et al., 2010). Reported 

studies have used the ability to hydrolyze exochitinase substrates (4-nitrophenyl N,N′-

diacetyl-β-D-chitobioside and 4-nitrophenyl N-acetyl-β-D-glucosaminide) and/ or 

endochitinase substrate (4-nitrophenyl β-D-N,N′,N′′-triacetylchitotriose substrate) to 

determine the functional nature of chitinases. Usually, exochitinases progressively 

cleave off two subunits from the reducing or non-reducing ends of the chitin chain 

(Frandberg and Schnurer, 1994; Chernin et al., 1998). Endochitinases generally digest 

the β-1,4-linkages of  the internal positions in N-acetyl-D-glucosamine polymers of 

chitin and cleave randomly within the chitin chain (Larsen et al., 2011).  

 The advent of RNA interference (i)-mediated gene silencing technology has 

provided opportunities to understand the role(s) and/or importance of candidate genes in 

tick physiology. As a naturally occurring process, RNAi was first demonstrated to 

efficiently turn-off gene expression in transparent worms, Caenorhabditis elegans (Fire 

et al., 1998). In experimental systems, the RNAi pathway is induced by the introduction 

of in vitro synthesized double stranded RNA (dsRNA) that is complementary to the gene 

of interest, into an organism or cell culture (Haley et al., 2003; Ovcharenko et al. 2005). 

Thereafter, the dsRNA is recognized as an exogenous material and the RNAi pathway is 

initiated with the presence of a Dicer enzyme which cleaves the dsRNA into smaller 

fragments called the small interfering RNA (siRNA) (Ketting et al., 2001; Macrae et al., 

2006). The siRNA further unwinds to two strands, the parent and guide strands. The 
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parent strand is processed for degradation while the guide strand is associated with the 

multi-protein RNA-induced silencing complex (RISC). Post-transcriptional gene 

silencing occurs when the guide strand base pairs with its complementary mRNA 

sequence and induces cleavage by the Argonaute protein, which degrades the mRNA. In 

this way translation of the candidate protein is blocked. The general interpretation of 

RNAi silencing is that if the silenced target is important, there is some loss of fitness or 

performance by the organism and a phenotype would be measurable or observable. 

Since the discovery of the RNAi pathway, researchers have utilized this tool to 

further elucidate the biological importance of target genes in their organism of interest. 

In the tick research community, RNAi was used to demonstrate the importance of 

candidate genes in hard ticks, A. americanum (Mulenga et al., 2013; Chalaire et al., 

2011; Mulenga and Khumthong, 2010b; de la Fuente et al., 2010), I. scapularis (Dai et 

al., 2010; Kocan et al., 2007), I. ricinus (Sojka et al., 2012; Decrem et al., 2008), D. 

variabilis (Kocan et al., 2007), R. microplus (Kocan et al., 2007) and R. 

haemaphysaloides (Yu et al., 2013), and soft ticks Ornithodoros moubata (Diaz-Martin 

et al., 2013). Routinely the impact of RNAi silencing is investigated on tick feeding 

success, reproduction, viability of offspring and pathogen transmission and acquisition.  
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Materials and Methods 

Expression and affinity purification of recombinant tick wild type and mutant  

AamAch- L  

Putative recombinant (r) wild type (Wt) and mutant (Mu) AamAch-L protein was 

expressed in the Pichia pastoris expression system as described in Mulenga et al. (2013). 

In preliminary experiments, Wt rAamAch-L did not show any chitinase activity. Thus, 

Mu rAamAch-L was expressed to attempt restoring function using the QuikChange 

Lightning Site-Directed Mutagenesis kit (Agilent Technologies Inc., Santa Barbara, 

CA). A mutant strand synthesis reaction was prepared to create a mutation of Proline to 

Glutamic Acid at amino acid position 189 by thermal cycling a sense (5′GTGG 

ACATGGCCTGGGAGTTCCCAGGCGTCTCC3′) and anti-sense (5′GGAGAC 

GCCTGGGAACTCCCAGGCCATGTCCAC3′) primers designed to contain a GAG in 

place of CCT at nucleotide positions 616 – 618, 100ng of AamAch-L/pPICZαA plasmid 

as template, and components from the kit. The thermal cycling conditions were an initial 

denaturing step at 95°C for 2 min followed by 18 amplification cycles of 95°C for 20 s, 

60°C for 10 s, 68°C for 2 min, and a final step of 68°C for 5 min. The following reaction 

was digested with Dpn I enzyme, cloned and verified by sequencing.   

An expression plasmid was constructed by sub-cloning the mature putative 

AamAch coding domain into pPICZαA KpnI and NotI sites, using forward 

(5′GGTACCATGCCCCAGCAAGACGGGGATG3′) and reverse 

(5′GCGGCCGCAGCGGGTGATGCGGTAATCTCG3′) primers with added restriction 

enzyme sites in bold. The pPICZαA-AamAch-L expression plasmid linearized with 
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PmeI was used to transform Pichia pastoris X-33 strain (Life Technologies) by 

electroporation using an ECM600 electroporator  (BTX Harvard Apparatus Inc., 

Holliston, MA) with parameters set to 1.5kV, 25uF, and 186Ω. Transformed colonies 

were selected on Yeast Extract Peptone Dextrose Medium with Sorbitol (YPDS) agar 

plates with zeocin (100µg/µl), and then selected for methanol utilization on Minimal 

Methanol (MM) agar plates, both incubated at 28°C. The pPICZαA vector contains an 

AOX1 promoter for tightly regulated, methanol-induced expression. Positive 

transformants from PCR insert check were inoculated in Buffered Glycerol-complex 

Medium (BMGY) and grown overnight at 28°C with shaking (230-250 rpm). 

Subsequently the cells were used to inoculate Buffered Methanol-complex Medium 

(BMMY) to A600 of 1 after which protein expression was induced by adding methanol to 

0.5% final concentration every 24h for five days. The pPICZαA plasmid contains a α-

factor secretion signal that directs the recombinant protein for secretion in the media. To 

obtain the secreted recombinant protein, yeast culture spent media was centrifuged at 

5000g for 10 min at room temperature. The recombinant protein in the supernatant was 

precipitated by ammonium sulfate saturation (525g/1L of media) with stirring overnight 

at 4°C. The precipitate was pelleted at 11,200g for 1-2 hrs at 4°C. The pellet was re-

suspended in and dialyzed against phosphate buffered saline (PBS) pH 7.4.  

To verify expression of AamAch-L, a routine western blot analysis was 

performed using the horseradish peroxidae (HRP)-labeled antibody to the C-terminus 

hexa histidine tag (Life Technologies) diluted to 1:5000 in 5% blocking buffer (5% Skim 

milk powder in PBS with 0.05% Tween). The positive signal was detected using metal 
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enhanced 3,3’ Diaminobenzidine (DAB) chromogenic substrate kit (Thermo Scientific, 

Rockford, IL). Subsequently rAamAch-L was affinity purified under native conditions 

using Hi-Trap Chelating HP Columns (GE Healthcare). Affinity purified putative 

rAamAch-L was dialyzed against 1X PBS pH 7.4 for downstream assays. The 

expression protocol was repeated to express the mutant rAamAch chitinase. Routinely, 

affinity purified rAamAch-L was resolved on a 10% SDS-PAGE gel and visualized by 

silver staining to verify purity and background contamination. Protein in the samples 

was concentrated by either ammonium sulfate precipitation or by centrifugation using 

MicroSep Centrifugal Concentration Devices (Pall Corporation, Port Washington, NY).  

 

N- and O- linked glycosylation assay 

Bioinformatics analysis in chapter II predicted 2 and 24 N- and O-linked 

glycosylation sites in AamAch-L. To determine if putative rAamAch was N-glycosylated 

and/or O-glycosylated, affinity purified rAamAch was treated with Protein 

Deglycosylation Mix following the manufacturer’s instructions (New England Biolabs, 

Ipswich, MA). Deglycosylation was verified by Western Blot using antibody to C-

terminus hexa histidine-tag (Life Technologies) and the positive signal was detected 

using HRP chromogenic substrate (Thermo Scientific). 

 

Western blotting analysis  

To determine if native putative AamAch-L is secreted by ticks into the host 

during the first 48 h of the post-attachment phase, affinity purified rAamAch-L was 
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subjected to routine western blotting analyses using antibodies developed against Tick 

Saliva Proteins (TSP) of A. americanum. These antibodies were produced by repeated 

tick infestations on rabbits every 48 h (Chalaire et al., 2011). Recombinant AamAch-L 

proteins were separated on a 10% SDS-PAGE gel and transferred onto a PVDF 

membrane by wet electroblotting. Subsequently, the electroblotted membrane was 

washed in PBS with 0.05% Tween and placed in 5% blocking buffer (5% Skim milk 

powder in PBS with 0.05% Tween) overnight on a rocker at 4°C. The following day, 

membranes were exposed to 48h TSP antibody and pre-immune serum (PI) both diluted 

to 1:50 – 1:1000 in 5% blocking buffer for 1 hr at room temperature, and then washed 

with PBS with 0.05% Tween five times for five minutes. The membranes were then 

exposed to a goat anti-rabbit IgG, HRP-conjugated secondary antibody (Millipore, 

Billerica, MA) diluted to 1:2000 for 1 hr at room temperature and washed as described 

above. The positive signal was detected using metal enhanced 3,3’ Diaminobenzidine 

(DAB) chromogenic substrate kit (Thermo Scientific) and Microwell and/or Membrane 

HRP chemiluminescent substrate (SurModics, Eden Prairie, MN). 

Our preliminary analysis showed that rAamAch-L non-specifically reacted with 

both the pre-immune (PI) serum and the antibody to 48h TSP. To validate if rAamAch 

non-specifically binds immunoglobulins, deglycosylated and glycosylated wild type 

(Wt) and mutant (Mu) protein samples were subjected to western blot analyses as 

described above using pre-immune sera of rabbit, chicken, and bovine (respective 

serums were collected from Lab Animal Resources and Research Facility, Poultry 

Science Department, and Rosenthal Slaughter House, all located at Texas A&M 
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University, College Station, TX). In all western blotting experiments, 1:50 – 1:1000 

primary antibody and 1:2000 secondary antibody dilutions were used. Rabbit, chicken 

and bovine secondary antibodies used were a respective goat anti-rabbit IgG HRP-

conjugated (Millipore, Billerica, MA), goat anti-chicken IgY HRP-conjugated (Santa 

Cruz Biotechnology, Inc., Dallas, TX) and goat anti-bovine IgG (H+L) HRP-conjugated 

(Jackson ImmunoResearch Lanoratories, Inc., West Grove, PA). 

 

Chitinase substrate hydrolysis assay 

To determine if Wt and Mu rAamAch were active chitinases, a chitinase substrate 

hydrolysis assay was performed using a commercial kit from Sigma (St. Louis, MO, 

Catalog # CS0980), according to manufacturer’s instructions. rAamAch activity was 

assayed using substrates, nitrophenyl N,N′-diacetyl-β-D-chitobioside and 4-nitrophenyl 

N-acetyl-β-D-glucosaminide for exochitinase activity and  4-nitrophenyl β-D-N,N′,N′′-

triacetylchitotriose substrate for endochitinase activity. Prior to beginning the assay, 

standard and substrate solutions were equilibrated to 37°C by incubating for 10 min in a 

37 °C water bath. The pre-warmed substrates 50µL (1mg/mL) were mixed with rAmAch 

(1.91 µM and 0.477 µM), positive (0.8 µM and 0.2 µM) or negative (1.91 µM and 0.477 

µM) controls in a 96 well plate. The standard reaction was placed into separate wells on 

the plate and the whole plate was mixed by shaking in the plate reader and incubated for 

30 min at 37 °C. The reaction was stopped by addition of 100µL of stop solution (0.4 M 

sodium carbonate) and the optical density of each well was measured at A405 using the 

Infinite M200 Pro plate reader (Tecan, Männedorf, Switzerland) pre-warmed to 37 °C. 
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RNA interference (RNAi) mediated AamAch silencing  

RNAi-mediated silencing was performed as previously published (Mulenga et. 

al., 2008). Double stranded RNA (dsRNA) was synthesized in vitro using the Megascript 

RNAi kit (Life Technologies) according to the manufacturer’s protocol. To synthesize a 

466 bp AamAch dsRNA target from postions 104 – 569 of AamAch –S and -L DNA 

sequences, templates for dsRNA synthesis were amplified using cloned AamAch 

plasmid DNA with specific primers with added T7 promoter sequence in bold (Forward: 

5′TAATACGACTCACTATAGGGCCACGTCAAGCACCACCACC3′ and Reverse: 

5′TAATACGACTCACTATAGGGGCGTAGTTTTCCTTATCGCG3′). Green 

fluorescent protein (GFP) PCR primers with T7 promoter sequence in bold (Forward: 

5′TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTCAGCGTGTC3′ 

and Reverse 5′TAATACGACTCACTATAGGGTCACGAACTCCAGCAGGACC 

ATGTGATC3′) were used to amplify the template for the control group. The purified 

dsRNA was eluted in nuclease free water. Two test groups of 15 female A. americanum 

ticks were injected with GFP-dsRNA injected control or AamAch dsRNA injected 

target. Ticks were injected with 0.5-1µL (~3 µg/µL) of dsRNA on the ventral side of the 

lower right coxa using a 33 guage/ 0.5 inches/ 45° angle beveled needle on a Model 701 

Hamilton syringe (Hamilton Company, Reno, NV). Injected ticks were kept for 24h at 

room temperature in 85% humidity to recover before being placed on specific pathogen 

free (SPF) New Zealand rabbits to feed.  
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Tick feeding was performed as described in chapter II of this thesis. Ticks 

injected with AamAch-dsRNA (n = 15) and GFP-dsRNA (n = 15) were placed into a 

two-inch cotton stockinet tick containment cells attached on top of the rabbit ear to feed 

using the Kamar adhesive (Kamar Products Inc.). The effect of AamAch mRNA 

silencing on tick feeding success was assessed by investigating tick attachment and 

mortality rates, time to feed to repletion, engorgement mass (EM) as an index for 

amount of blood taken in by tick, and egg mass conversion ratio (EMCR) as measure of 

utilizing blood meal to produce eggs. Attachment rates were determined by daily counts 

of unattached ticks, and then subtracting from the total number of ticks that were placed 

on the animal less those that were found dead. Mortality rates were determined by 

calculating dead ticks as a fraction of the total number of ticks. EM was the weight of 

spontaneously detached ticks. To determine EMCR, ticks were allowed to lay eggs for 3-

4 weeks at room temperature in 85% humidity. EMCR was determined by dividing egg 

mass over EM. Tick phenotypes during feeding were documented daily using the Canon 

EOS Rebel XS camera attached to a Canon Ultrasonic EF 100mm 1:2:8 USM Macro 

Lens (Canon USA Inc, Melville, NY).  

To validate if injection of dsRNA caused disruption of AamAch mRNA, three 

GFP dsRNA and AamAch dsRNA injected female ticks were sampled at the 48h post-

attachment time point by manual detachment. Ticks were processed individually for 

dissection of tick organs as described (Mulenga et al. 2013). Dissected organs, salivary 

glands (SG), midguts (MG), synganglion (SYN), Malpighian tubule (MT), ovary (OVR) 

and remnants labeled as carcass (CA), preserved in 200-400µL RNAlater (Life 
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Technologies) were processed for mRNA extraction using the Dynabead mRNA Direct 

Kit (Life Technologies). Concentration of mRNA was determined using the NanoQuant 

Plate in the Infinite M200 Pro plate reader (Tecan). Template cDNA was synthesized 

from ~200ng of mRNA using the qScript cDNA SuperMix following the manufacturer’s 

instructions (Quanta Biosciences, Gaithersburg, MD). To quantify AamAch transcript 

abundance in treatment and control ticks, cDNA was subjected to quantitative real time 

reverse transcriptase (qRT-PCR) using the ABI7300 system (Life Technologies). 

Routinely ~50ng of cDNA, and 900µM of AamAch forward 

5′GGGAACTGGCTGGTGCATT3’ reverse 5′GAGCGGCACGACGACTGT3’ primers 

were added to 25µL SYBR Green Master Mix (Life Technologies) in triplicate. For 

internal control, A. americanum 40S ribosomal protein S4 (accession number 

GAGD01011247.1) which is stably expressed in Ixodes scapularis during feeding (Koci 

et al., 2013) was used.  Relative Quantification (RQ) of AamAch transcript was 

determined using the comparative CT (2−ΔΔCt) method (Livak and Schmittgen, 2001) 

incorporated into the ABI 7300 System software (Life Technologies). To determine the 

apparent level of AamAch mRNA suppression, the formula, S = 100-(RQT/RQC X 100) 

where S = mRNA suppression, RQT and RQC = RQ of tissues in AamAch-dsRNA and 

GFP-AamAch injected ticks respectively was used. For each tick organ, mRNA 

suppression was determined as the mean ± SD of two S values. The two S values were 

generated by independently comparing treatment RQ to two separate control tick RQs.   
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Results 

Expression and affinity purification of wild type and mutant rAamAch in Pichia pastoris 

Fig. 5 summarizes the analysis of daily protein expression and affinity 

purification of recombinant (r) wild type (Wt) and mutant (Mu) AamAch-L during a 

five-day pilot experiment.  This analysis showed a progressive daily increase in both Wt 

and Mu rAamAch expression with the highest level at day five (Fig. 5A and 5C). A 

three-liter large-scale expression of Wt and Mu rAmAch was precipitated by ammonium 

sulfate saturation and affinity purified using NiCl2
+ charged column. Following 

purification, elution fractions with relatively pure rAamAch were pooled and 

concentrated using JumboSep™ centrifugal device filters (Pall Corporation). 

Concentrated proteins were subjected to SDS-PAGE on 10% acrylamide gel followed by 

silver staining to verify purity of Wt and Mu rAamAch as shown in Figs. 5B and 5D, 

respectively. The predicted molecular mass of both Wt and Mu rAamAch is 

approximately 61 kDa: comprised of ~11 kDa N-terminus region, ~47 kDa of mature 

rAamAch protein and ~3 kDa of C-terminal tag containing the hexa-histidine sequence. 

However when Wt and Mu rAamAch were electrophoresed on SDS-PAGE and 

visualized by silver staining, a band at about 70 kDa is observed (Figs. 5B and 5D). 

Sequence analysis in chapter I revealed that AamAch had 2 and 24 putative N- and O-

linked glycosylation sites respectively. Thus, there is a possibility that the observed band 

shift from 61 kDa to 70kDa was due to post-translational glycosylation of rAamAch. 

When both Wt and Mu rAamAch were treated with a deglycosylation mix (New England 
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Fig. 5. Expression and affinity purification of recombinant (r) Amblyomma 
americanum putative AamAch expression in Pichia pastoris. (A) Daily expression 
levels of wild type (Wt) putative rAamAch through 5 days of culture. Construction of the 
expression plasmid, induction and validation of expression levels using antibody to the 
C-terminus hexa-histidine tag and affinity purification of Wt putative rAamAch were 
performed as described in material and methods section in chapter III. Visualized by 
chemiluminescent detection. (B) Validation of affinity purification of Wt putative 
rAamAch using silver staining, was accomplished by combination of ammonium sulfate 
precipitation and affinity purification with NiCl2+ charged columns as described in 
material and methods section in chapter III. (C) Daily expression levels of mutant (Mu) 
putative rAamAch through 5 days of culture. Mu putative rAamAch was constructed as 
described for fig. 5A. Visualized by chromogenic detection. (D) Validation of affinity 
purification of Mu putative rAamAch using silver staining was performed as described in 
fig. 5B. (E) Validation of N- and/ or O-linked glycosylation post-translational 
modification of Wt and Mu putative rAamAch: 1µg of affinity purified Wt and Mu 
putative rAamAch was treated with a commercial deglycosylation mix described in 
material and methods section in chapter III. Deglycosylated Wt and Mu putative 
rAamAch was detected by western blot analysis using antibodies to the C-terminus hexa-
histidine tag. The (C): positive hexa-histidine control, recombinant tick calreticulin,  
(Wt-): wild type putative rAamAch not treated with deglycosylation enzyme mix, (Wt+): 
wild type putative rAamAch treated with deglycosylation enzyme mix, (Mu-): Mutant 
putative rAamAch not treated with deglycosylation enzyme mix, (Mu+): Mutant putative 
rAamAch treated with deglycosylation enzyme mix. 
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Biolabs) that cleaves off both N- and O- linked glycans, there was a downshift in the 

molecular weight to about 61 kDa (Fig. 5E) confirming that rAamAch was glycosylated. 

 

Both wild type and mutant (P189E) rAamAch-L apparently have no chitinase activity 

To determine if AamAch had chitinolytic activity, Wt rAamAch-L was subjected 

to chitinase function assay using a colorimetric substrate Chitinase assay kit (Sigma). 

There was no apparent exo- or endo- chitinase activity of rAamAch with 4-nitrophenyl 

N,N′-diacetyl-β-D-chitobioside and 4-nitrophenyl N-acetyl-β-D-glucosaminide 

exochitinase substrates and 4-nitrophenyl β-D-N,N′,N′′-triacetylchitotriose endochitinase 

substrate when compared to the chitinase from Trichoderma viride as a positive control 

which was provided in the kit (not shown). Likewise Mu (P189E, amino acid residue 

numbering is based on the AamAch- L, NCBI accession number: KF819831) rAamAch-

L did not show activity. 

 

Validation of RNAi-mediated silencing by qRT-PCR 

The Mega script in vitro RNA synthesis kit (Life Technologies) was used to 

successfully synthesize and purify the target AamAch-dsRNA and control GFP-dsRNA 

(Fig. 6). Double stranded RNA quantitative real time RT-PCR expression analysis was 

used to confirm if the delivery of AamAch-dsRNA triggered silencing of AamAch 

mRNA as shown in Fig. 7. Fig. 7 show that AamAch mRNA was apparently suppressed 

by 77.5 - 91.2 % in the salivary gland, 79.9 - 96.6 % in the synganglion, 56.3 - 92.3 % in 

the midgut, and 0 - 91.2 % in Malpighian tubules. Silencing in the ovary and carcass 
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were minimal, 32.2 - 54.3 % and 0 - 73 %. It is interesting to note that while in tick 1 

AamAch mRNA was suppressed in the SG, SYN, MG, OVR, no silencing occurred in 

the MT and CA. 

 

Putative AamAch may potentially be a key factor in the maintenance of a stable cement 

plug 

Silencing of AamAch mRNA did not affect the ability of ticks to attach onto host 

skin and start feeding because 24 h after being placed on rabbits, 100% of both GFP-

dsRNA and AamAch-dsRNA-injected ticks were attached (not shown). The tick RNAi-  

 

Fig. 6. Synthesis of AamAch and control GFP dsRNA. Synthesized and purified 
dsRNAs from AamAch (bottom panel) and control gene (GFP) resolved on a 2% 
agarose gel containing 1 µg/mL ethidium bromide. Lane 1 represents the dsRNA 
synthesis before digestion with DNase I and RNase. Lane 2 represents the dsRNA 
synthesis after digestion with DNase I and RNase. Lanes 3-7 show decreasing 
concentrations of purified dsRNA elutions. Lanes 8-12 represent decreasing 
concentrations of concentrated and purified dsRNA elutions. 
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Fig. 7. Determining suppression level of Amblyomma americanum AamAch mRNA 
in tick feeding success. Validating the disruption of AamAch mRNA in AamAch-double 
stranded (ds) RNA injected ticks. Fifteen ticks were microinjected with 0.5–1 µL (2–
3 µg/µL) of AamAch or GFP (control) dsRNA in nuclease free water. At 48 h post-
attachment, three ticks per treatment of GFP-dsRNA injected control and AamAch-
dsRNA injected ticks, were manually detached. Ticks were individually processed for 
mRNA extraction and then subjected to two-step quantitative (q) reverse transcriptase 
(RT)-PCR using AamAch PCR primers. A relative quantification (RQ) of gene 
expression study was performed using the ABI 7300 Software by the Comparative CT 
Method (ΔΔCt) to determine mRNA suppression levels of AamAch. To determine the 
apparent level of AamAch mRNA suppression, the following formula, S = 100-
(RQT/RQC X 100) where S = mRNA suppression, RQT and RQC = RQ of tissues of 
AamAch-dsRNA and GFP-AamAch injected ticks respectively, was used. 
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mediated silencing feeding phenotypes were documented every 24 hours with pictures. 

Fig. 8 presents documentation of AamAch-dsRNA and GFP-dsRNA injected ticks 

feeding on the rabbit host in two independent experiments. In both experiments there 

was leakage of blood around the tick mouthparts by day 13 post-attachment in AamAch-

dsRNA injected ticks (indicated by red arrows). No leakage of blood was observed in 

GFP-dsRNA injected control ticks. In the first experiment, bleeding was so intense that 

by the 15th day, veterinarians at the Comparative Medicine Program (CMP) facility 

advised to halt the experiment due to the uncontrolled seepage of blood. Therefore, all 

the remaining ticks on the host were removed. In the second experiment bleeding had 

continued, but it was not as intense to stop the experiment when compared to first 

experiment. While manually detaching AamAch-dsRNA injected ticks, the author 

noticed that the ticks were weakly attached onto the host, in that the ticks would fall off 

the host with a gentle touch to the tick.  

 

The effects of RNAi mediated silencing of AamAch on feeding efficiency and fecundity 

are apparent but not statistically  

As an index to measure the amount of blood imbibed by ticks, engorgement mass 

(EM) of replete fed and spontaneously detached AamAch-dsRNA and GFP-dsRNA 

injected ticks were determined (Fig. 9A). EM of AamAch-dsRNA and GFP-dsRNA 

injected ticks ranged from 362.7 – 751.2 mg (n = 7) and 145.4 – 777.9 mg (n = 7), 

respectively. Although there is apparent difference between mean EM of AamAch-

dsRNA (441.1± 92.27mg) GFP-dsRNA (504.2±53.66mg) injected ticks (Fig. 9B), an  
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Fig. 8. Phenotype of AamAch-dsRNA injected ticks. Ticks were photographed every 
24 hours post-attachment until the end of the experiment to note changes during tick 
feeding in putative AamAch-dsRNA injected ticks compared to control GFP-dsRNA 
injected ticks. The experiment was repeated twice: (A) Set of pictures from first trial that 
was stopped at 320h post-attachment due to excessive bleeding from host at tick feeding 
site and (B) set of pictures from second trial in which ticks completed feeding and tick 
organs were dissected and analyzed to measure suppression levels. Red arrows indicate 
the excess pool of blood around feeding site, not observed in control GFP-dsRNA 
injected ticks on both trials. 
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Fig. 9. Analysis of the effect of silencing Amblyomma americanum putative 
AamAch mRNA transcript on blood meal acquisition and fecundity.  15 unfed 
female ticks were injected with dsRNA putative AamAch and GFP. Each group of 
ticks were fed on rabbits and weighed after detachment. (A) Spontaneously detached 
ticks were photographed to document their phenotype. (B) Spontaneously detached 
ticks were individually weighed to determine the engorgement mass (EM). The EM 
means for each group were subjected to a unpaired student T-test to determine the 
statistical significance between treatments. Mean EM of treated and controls were not 
statistically different. Mean engorgement weight (grams) noted on top of respective 
bar. (C) After determining the EM, ticks were placed at room temperature for 30 days 
to lay eggs as described in materials and methods section in chapter III. Subsequently 
eggs were weighed (grams) to calculate the egg mass conversion ratio (EMCR: 
amount of blood meal converted for egg development). The egg weight means for each 
group were subjected to a unpaired student T-test to determine the statistical 
significance between treatments. Mean egg weights were not significantly different. 
Mean egg weights (grams) noted on top of respective bar. (D) Egg mass conversion 
ratio calculated by the egg weight divided by the EM. EMCR means for each group 
were subjected to unpaired student T-test to determine the statistical significance 
between treatments. ECMR between treatment groups was not significantly different. 
EMCR (grams) noted on top of respective bar. 
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unpaired student t-test showed that differences were not statistically significant (P = 

0.5656).  

To determine the effect of RNAi-mediated silencing on fecundity, ticks were 

allowed to oviposit for 30 days and egg clutches were weighed. As an index of the tick’s 

ability to convert its blood meal to eggs, the egg mass conversion ratio (EMCR) was 

calculated by dividing the egg weight by EM. Calculated EMCR for GFP-dsRNA and 

AamAch RNA ranged from 594.9 – 449.1 mg (n=3) and 532.7 – 258.2 mg (n=3) 

respectively. While the EMCR of AamAch-dsRNA (417.0± 82.12 mg) injected ticks is 

apparently smaller than GFP-dsRNA injected ticks (539.3 ±45.52) (Fig. 9D), the 

observed difference is not statistically significant as revealed using an unpaired student 

t-test (P= 0.2626).  

 

Discussion 

Recent advances in genomics, proteomics, RNA sequencing and bioinformatics 

technologies have allowed for discovery of candidate genes that may be important to tick 

physiology. The majority of tick genes that are being discovered are of unknown 

functions (McNally et al., 2012; Mulenga et al., 2007; Ribeiro et al., 2006). The limited 

numbers of candidate tick genes that are annotated are based on sequence analysis 

compared to homologous genes that have been functionally characterized in other 

organisms. Whether or not annotated candidate genes perform the same functions in tick 

physiology is not known.  In chapter II of this master’s thesis research, the author 

determined that putative AamAch-L belongs in the GH-18 family chitinase and that the 
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mRNA transcript was ubiquitously expressed during the first five days of post-

attachment.  The next goal of the research was to understand whether or not AamAch-L 

was a functional GH-18 family chitinase. Therefore, to gauge insight into functional 

properties, rAamAch was successfully expressed in Pichia pastoris. Consistent with 

bioinformatics prediction of multiple putative N- and O-linked glycosylation sites in its 

sequence, rAamAch-L was significantly glycosylated. This meant that rAamAch-L was 

potentially well folded with appropriate posttranslational modifications, and thus 

functional analysis data could potentially reflect in vivo events. Based on substrate 

hydrolysis assays in this research, wild type rAamAch-L is apparently not an active 

chitinase. In GH-18 functional domain “FDG(L/F)DLDWE(Y/F)P”, aspartic acid (D) 

and glutamic acid (E) (highlighted in bold) were thought to be important to activity of 

GH18 chitinases (Arakane and Muthukrishnan, 2010). Thus, the lack of chitinase 

activity by rAamAch-L may be explained by the fact that within the putative functional 

domain,  “LDGVDMAWPFP”, of AamAch amino acid sequence “D” is replaced by 

“A”, while “E” is replaced by “P”.  In this research, site directed mutagenesis of “P” to 

“E” did not restore chitinase activity. This may suggest that restoration of function may 

require both “D” and “E” in the functional domain. The observation here is consistent 

with reported studies where GH-18 chitinase-like proteins in Tribolium castaneum, 

Autographa californica, and Manduca sexta that have mutations similar to AamAch 

were not functional chitinases (Arakane and Muthukrishnan, 2010; Thomas et al., 2002; 

Lu et al., 2002). It is also important to note that one tick chitinase (accession # 

BAC06447.1) reported in the phylogeny analysis in chapter II retains amino acid 
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residues that are important for GH-18 chitinase function (You et al., 2003). This may 

imply that ticks encode both a functional and non-functional GH-18 like chitinases.  

 Another objective of this study was to investigate the significance of AamAch in 

tick feeding physiology. Although apparent silencing of AamAch was observed in the 

SG, MG, SYN and MT, it did not affect the ability of the ticks to attach, initiate feeding, 

and reproduce. Despite the lack of effect on other tick feeding parameters, observations 

that AamAch silencing apparently affected the cement plug were significant. Within 5-

30 min of attaching onto the host, ticks secrete an amorphous substance called cement to 

anchor itself onto host skin (Sonenshine, 1993). Tick cement forms a plug that contains 

the tick-feeding site under host skin. In future research, it will be interesting to 

investigate if AamAch is part of the cement plug. 
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CHAPTER IV 

CONCLUSION 

 

Immunization of animals against tick infestation is a proven alternative to the 

acaricide-based strategies to control ticks and tick borne diseases (Willadsen, 2006). The 

major bottleneck towards global adoption of anti-tick immunization as a strategy to 

control ticks and tick borne diseases is hampered by lack of effective vaccine target 

antigens. The key pre-requisite towards development of anti-tick vaccines is a deeper 

understanding of the molecular basis of tick feeding physiology. While recent advances 

in genomics, proteomics and bioinformatics technologies have been streamlined towards 

the discovery of huge numbers of candidate genes, painstaking functional and biological 

analyses studies to understand the importance of candidate genes in tick feeding 

physiology remain to be done. This research has made a contribution towards 

understanding the role(s) and significance of putative acidic chitinases, here named as 

AamAch-L and AamAch-S in A. americanum tick feeding physiology.  

 Bioinformatics analysis in this research revealed that AamAch-L was likely to 

function in the extracellular environment, while AamAch-S was an intracellular protein. 

From the perspective of the long interest of the Mulenga laboratory to find target 

antigens for anti-tick vaccine development, AamAch-L is appealing in that it is likely to 

interact with the vertebrate host’s immune response factors. It is important to note that 

experiments to verify whether or not AamAch-L was secreted into the host during tick 

feeding were inconclusive and remain to be investigated. Based on RNAi silencing data, 



	
  
	
  

	
  48 

AamAch is apparently important during the tick attachment phase, as it appears to be 

important to maintenance of the tick cement plug. Ticks are long term blood feeding 

ecto-parasites that remain securely attached onto host skin for long periods of time, 4-7 

days for larva and nymphs, and 10-14 days for adult ticks (Sonenshine 1993). Without 

the cement cone, ticks can be easily groomed off the host. From this perspective 

candidate proteins such as AamAch-L that are important to maintenance of tick cement 

stability could represent effective target antigens for tick vaccine development. It will 

also be interesting to find out if AamAch-L is a component of tick cement or if it is 

involved with up stream events that lead to formation of the tick cement plug.  

Another notable contribution in this study is that for first time, it was 

demonstrated that RNAi silencing could be validated in individual tick organs from 

individual ticks. Most published studies have pooled tick organs together to validate 

silencing by either semi-quantitative or quantitative RT-PCR analyses (Aljamali et al., 

2003; Karim et al., 2005; Chalaire et al., 2011; Mulenga et al, 2013). An important 

outcome of the approach in this thesis research was that silencing of target mRNA in 

individual organs was achieved to different levels. The cause of this cannot be explained 

by data in this thesis research. However these data could be used to explain the fact that 

the effectiveness of RNAi silencing is at best partial, and that target validation will 

require follow up anti-tick immunization experiments. It is interesting to note that in all 

three animals the highest mRNA suppression levels were observed in the salivary gland 

followed by synganglion, midgut, Malpighian tubules, carcass, and the ovary. Whether 
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or not this implies that the ovary is not easily accessible by dsRNA remains to be 

investigated.  

The limitation of the RNAi silencing approach in this study was that the dsRNA 

construct targeted both the AamAch –S and –L, and it is most likely that the mRNA 

silencing observed here could represent suppression of both isoforms. Another limitation 

was that protein turnover could not be assessed due to lack of specific AamAch antibody. 

Regardless of the limitations, data presented here clearly show the potential role for 

putative acidic chitinases in maintaining the cement plug. In future experiments, it would 

also be interesting to investigate specific contributions of the AamAch –S and –L 

isoforms to stability of the cement plug.  

 In conclusion, this research has made a contribution towards understanding the 

molecular basis of the tick attachment phase. As alluded to earlier, putative AamAch was 

discovered in A. americanum ticks that were stimulated to feed. This research has 

revealed that putative AamAch-L may not be a functional chitinase, but it is likely 

important to maintaining the cement cone. Important questions that remain to be 

resolved are whether or not AamAch non-specifically binds IgG, and whether or not it is 

part of the cement cone.  
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