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ABSTRACT 

 

A mental model reflects the structural relationships between concepts within a 

specified knowledge domain. Measuring the structure of knowledge is important because 

it offers the possibility of capturing expert knowledge which is often difficult to assess 

using traditional declarative knowledge measures. The concept of mental model has 

been extensively studied over the last decades and it is often acknowledged in the 

training literature as one of the key antecedents of performance in complex tasks, 

particularly in the context of teams where the construct of shared mental models has 

received ample attention. Whereas the training literature has established the validity of 

mental models for predicting individual and team performance using single-level studies, 

the extant literature has not yet tested the validity of mental models as a multilevel 

construct. Consequently, the purpose of the present study was to assess the extent to 

which the relationships between mental models and performance generalizes across 

individuals and teams, that is to test a homologous multilevel model. 

Participants in this study completed a dynamic, networked computer-based 

simulation. Three-person teams operated the simulator collectively (through specialized 

roles) and as individuals (performing all roles simultaneously) over the course of a 2-day 

48-hour-interval protocol. The sample consisted of 243 individuals nested in 81 3-person 

teams. Consistent with the multilevel nature of the problem under study, multilevel 

analyses were conducted to test the study hypotheses.  
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Consistent with theory and previous research on individual and team cognition, it 

was hypothesized that stronger relationships between mental models and performance 

would exist at the individual level compared to the team level. In essence, processes 

occurring at the team level were expected to attenuate the relationship between mental 

models and performance compared to the individual level of analysis. Contrary to this 

expectation, the magnitude of the relationship between mental models and performance 

was similar across levels of analysis. Additionally, consistent with previous research on 

the effectiveness of declarative knowledge measures for predicting complex 

performance, the present results indicated that declarative knowledge was more 

predictive of individual performance than team performance.  

In addition to performance, an objective measure of behaviors was utilized to 

further understand of the processes through which mental models translate into effective 

individual and team performance. It was hypothesized that the relationship between 

mental models and behaviors would be stronger for individual tasks than team tasks as a 

function of the additional interaction requirements associated with team tasks. However, 

contrary to this expectations, mental models and behaviors were more strongly 

associated at the team level than the individual level. 
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1. INTRODUCTION 

"Intuition is nothing more and nothing less than recognition" 
-Herbert Simon 

A mental model is a higher-order cognitive construct for representing the global 

relations among relevant concepts within a domain. In the context of complex skills 

acquisition, experts’ facility to articulate complex responses in a seemingly effortless 

manner has been linked to their ability to recognize meaningful patterns in their 

knowledge domain which would indicate a superior organization of the knowledge base 

(Glaser & Chi, 1988), that is, a superior mental model. In an attempt to reconcile some 

formal definitions of the construct, Rouse and Morris (1986) defined mental models as 

"the mechanisms whereby humans are able to generate descriptions of system purpose 

and form, explanations of system functioning and observed system states, and 

predictions of future system states" (p. 351). Advancements from the fields of cognitive 

psychology, computer science, and artificial intelligence have contributed to the 

development of psychological scaling algorithms to represent knowledge from data 

collected from human subjects (Schvaneveldt, 1990; Schvaneveldt, Dearholt, & Durso, 

1988). The extant literature has established the validity of mental models for predicting 

performance on a variety of individual and team tasks, which suggests the presence of a 

multilevel construct—that is, a construct that is meaningful across multiple levels of 

analysis (Chen, Mathieu, & Bliese, 2005; Kozlowski & Klein, 2000). 

The validity of several constructs that are meaningful across individual- and 

group-levels (e.g., teams, groups, organizations) has been demonstrated by employing 

single-level studies. Devine and Philips' (2001) meta-analysis demonstrated that team-
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level cognitive ability and team performance are positively correlated (ρ = .29), a finding 

that parallels the well-established relationship between cognitive ability and performance 

at the individual level (Hunter, 1986). Likewise, self- and team-efficacy have been found 

to exhibit positive correlations with individual (ρ = .20) and team performance (ρ = .39), 

respectively (Gully, Incalcaterra, Joshi, & Beaubien, 2002). In general, the impetus for 

scaling an individual-level construct to the group-level is that the specified construct is 

assumed to be homologous across levels—that is, the construct is said to operate 

similarly across levels of analysis. Yet, only a few studies have demonstrated the validity 

of constructs across levels of analysis using a multilevel framework that directly tests 

homologous models. Chen, Thomas, and Wallace (2005) tested a multilevel model 

relating training outcomes (team knowledge, collective efficacy, and team skills) to 

training transfer at both the individual and team levels. More recently, Beus, Muñoz, 

Arthur, and Payne (2013) tested a proportional theory of homology to describe safety 

climate’s relationships with safety incidents and safety behaviors across construct levels. 

Specifically, Beus et al. found that safety climate demonstrated proportionately stronger 

associations with safety incidents at the workgroup level relative to the individual level. 

The point is that although the assumption of homology is rarely tested, "tests of 

homology can and should play an integral role in the validation of multilevel constructs 

and theories" (Chen, Bliese, & Mathieu, 2005, p. 378). 

Direct empirical evidence supporting the multilevel validity of mental models is 

lacking. That is, although single-level research has been valuable in establishing the 

relationship between mental models and the acquisition of complex skills within 
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individual and team contexts, a multilevel study of mental models is needed. One reason 

for undertaking such an effort is to more precisely compare the effectiveness of 

individual and team mental models as predictors of performance. To do so, it is critical 

to obtain an individual-level estimate of the mental model-performance relationship and 

evaluate the extent to which this estimate differs from its group-level counterpart. In 

addition, the appropriate research design to test a theory of homology involves having 

the same individuals performing a similar task both as individuals and teams. And 

because in this design individuals are nested in teams, in order to obtain unbiased 

estimates of the relationship between the constructs of interest at the individual level of 

analysis, the statistical procedures implemented must also account for the hierarchical 

structure of the data (e.g., hierarchical linear modeling). Thus, the main contribution of 

the proposed study is to test a multilevel theory of mental models—the extent to which 

the relationships between mental models and performance generalizes across individuals 

and teams—using current principles and analytical tools for testing homologous 

multilevel models (Chen, Bliese, & Mathieu, 2005). 

Whereas the overall goal of training is to enhance organizational effectiveness, 

training interventions customarily focus on individual-level models and methods. This 

creates a levels paradox (Kozlowski, Brown, Weissbein, Cannon-Bowers, & Salas, 

2000) or a problem of misspecification (Rousseau, 1985) that occurs when researchers 

draw conclusions at a higher-order level based on individual-level models, or fail to take 

into account the potential role of contextual factors on lower-level relationships. 

Kozlowski and Salas (1997) distinguished between transfer of training occurring across 
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different settings at the same level (horizontal transfer) from upward transfer across 

different levels of the organization (vertical transfer). From a training perspective, a 

direct comparison of individual and team mental models is concerned with vertical 

transfer, or the link between training outcomes across levels of the organizational 

system. Consistent with the premise that there is a conceptually staggering difference 

between building an expert team versus developing a group of expert individuals, the 

present study contributes to the training literature by examining the difference between 

team and individual knowledge acquisition and their relationships with performance. 

Lastly, previous studies have examined the relationship between team mental 

models and team processes. For instance, Mathieu, Heffner, Goodwin, Salas, and 

Cannon-Bowers (2000) demonstrated that the relationship between shared mental 

models and team performance was mediated by team processes. Furthermore, evidence 

has shown that the use of structural assessment techniques for measuring mental models 

is critical for predicting team processes (DeChurch & Mesmer-Magnus, 2010a). 

However, the manner in which team processes are measured is often based on subjective 

rather than objective measures of team processes. The use of raters, for instance, is not 

uncommon in this literature (e.g., Mathieu et al., 2000). In contrast, for the present study 

an objective measure of team behavioral processes was developed in which specific 

actions performed during the performance task (e.g., putting out a fire collectively using 

two distinct platforms) was recorded. These action sequences were then mapped on to 

specific conceptual links in the mental model networks. The use of an objective measure 

of behaviors is important because the overlap between mental models and behaviors 
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indexes the extent to which mental models are “used” effectively. Furthermore, 

differences between individuals and teams in terms of their ability to implement their 

mental models speaks to the issue of the effective integration of cognitions during team 

performance (Cooke, Salas, Kiekel, & Bell, 2004). Consequently, yet another 

contribution of the present study is to bridge the gap between cognitions and their 

implications for action in individual and team contexts.  
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2. VALIDITY OF PSYCHOLOGICAL CONSTRUCTS ACROSS LEVELS OF 

ANALYSIS 

Within the broader context of the unified concept of validity (Messick, 1995), 

construct validity represents the all-encompassing focus of validation efforts. Hence, 

different forms of evidence are subsumed as different aspects of construct validity. 

Construct validation can thus be seen as a continuing effort of appraising the 

meaningfulness of test scores, that is, the extent to which empirical evidence and 

theoretical rationales support the appropriateness of score interpretation and its 

implications for action. Specifically, Messick distinguished six aspects of construct 

validity comprising content, substantive, structural, generalizability, convergence and 

discriminant, and consequential validity.  

Evidence related to the content, substantive, structural, generalizability, and 

consequential validity of mental models is presented here to highlight some 

methodological and theoretical issues related to the mental model construct, and as a 

background to contextualize the unique contribution of the present study. 

Evidence in support of various aspects of the construct validity of mental models 

is available. From a content validation perspective, the development of mental model 

measures involves conducting a detailed job or task analysis which typically entails 

interviewing subject matter experts (SME). Because mental models are typically used to 

assess expertise in specific knowledge domains (e.g., avionics troubleshooting) and often 

in the context of synthetic tasks in laboratory settings, researchers who make use of the 

mental model construct must expend considerable effort constructing ad-hoc measures. 
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Mohammed, Klimoski, and Rentsch (2000) advocated for the use of multiple methods to 

adequately sample the underlying dimensions of the specified domain. Cooke and 

McDonald’s (1986) study on driving mental models as well as Smith-Jentsch, Mathieu, 

and Kraiger’s (2005) study with air traffic controllers, are excellent examples of the 

careful consideration involved in the selection of stimuli for mental model assessment.  

The substantive aspect of construct validity refers to “theoretical rationales for 

the observed consistencies in test responses . . . along with empirical evidence that the 

theoretical processes are actually engaged by respondents in the assessment task” 

(Messick, 1995, p. 745). Rowe, Cooke, Hall, and Halgren (1996), for instance, had 19 

Air Force technicians complete various system knowledge measures—a laddering 

interview, concept relatedness ratings, a diagramming task, and a think aloud task—and 

assessed their comparative effectiveness as predictors of the technicians’ scores on a 

verbal troubleshooting task. In the troubleshooting task technicians were asked to 

describe the steps that should be taken to repair a fault that had occurred with the 

equipment. Mental model scores were based on the concept relatedness ratings which 

were analyzed via the Pathfinder algorithm (Schvaneveldt, 1990). Rowe et al.’s results 

indicated that participants’ scores on the troubleshooting task were positively correlated 

to the quality of their mental models, demonstrating the substantive validity of mental 

models. That is, Rowe et al.’s study demonstrated that mental model scores were 

associated with the technicians’ cognitive processes underlying their performance. 

Messick (1995) postulated that structural validity (or structural fidelity; 

Loevinger, 1957) is demonstrated when the scoring model is consistent with the theory 
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of the construct domain. The use of structural assessment techniques and scaling 

algorithms that capture the configural aspect of knowledge is aligned with the mental 

model construct. A study conducted by DeChurch and Mesmer-Magnus (2010a) 

demonstrated that “only methods that model the structure or organization of knowledge 

are predictive of [team] process” (p. 1). Although the way in which team mental models 

are operationalized differentially predicts team processes, differences in 

operationalization do not seem to relate to team performance. Somewhat similar results 

have been observed using individual performance as criteria. For example, Schuelke et 

al. (2009) examined the relative criterion-related validity of coherence (an index of the 

quality of mental models’ internal organization) and two indices of mental model 

accuracy (closeness and correlation) for predicting individual performance. Although not 

acknowledged by Schuelke et al. one could argue that unlike coherence and closeness, a 

simple correlation between novice and expert ratings does not really assess the 

underlying structure of knowledge. In this sense, Schuelke et al.’s finding that the 

different indices (coherence, closeness, and correlation) were highly similar for 

predicting individual performance is not really at odds with an extensive body of 

literature in the team domain which suggests that different methods for representing 

knowledge can be used to predict performance but only structural assessment methods 

are effective for predicting processes. 

Generalizability refers to the degree to which construct interpretation generalizes 

across tasks and contexts (Messick, 1995). Meta-analyses are typically employed to 

support the generalizability aspect of construct validity. The general purpose of meta-
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analytic studies (e.g., Hunter & Schmidt, 2004) is to determine the extent to which X-Y 

relationships can be generalized across samples and identify the conditions under which 

said relationships hold true. Although meta-analyses are useful for establishing the 

boundaries of score meaning across samples, a different approach is needed to 

demonstrate the generalizability of constructs across levels. In contrast to validity 

generalization studies which focus on generalizing empirical results across samples, 

multilevel tests of homology focus on generalization across levels (Chen, Bliese, & 

Mathieu, 2005). Specifically, homologous multilevel theories consider “whether 

processes and relationships among variables at one level (e.g., the individual) are 

consistent with analogous processes and relationships at another level (e.g., the team)” 

(Chen, Bliese, & Mathieu, 2005, p. 376). Whereas the accumulated evidence 

demonstrates that mental models are valid predictors of team processes and performance 

(DeChurch & Mesmer-Magnus, 2010b), the unique contribution of the present study is 

to evaluate the generalizability of mental models across levels of analysis. 

Issues pertaining to the consequential validity of mental models are clearly 

underdeveloped in the scholarly literature. One reason for this lack of attention may be 

that structural assessment techniques are rarely included in high-stakes settings in which 

issues of test bias and fairness are more salient. At first glance, the failure of structural 

assessment techniques to enter the applied world seems at odds with mounting evidence 

suggesting that mental models are valid predictors of performance. Research has shown, 

for instance, that computer programmers can be correctly classified as naïve, novice, 

intermediate, or expert, based on the quality of their mental models (Cooke & Rowe, 
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1993). Thus, it does not seem unreasonable to use mental models as an employment 

decision making tool (e.g., personnel selection). 

In addition to potential technical barriers for conducting structural assessments, 

there is at least one explanation for this apparent disconnect between research and 

practice. Mental model scoring often relies on SMEs whose mental models act as a 

normative or referent structure. However, evidence shows that it is not unusual for 

experts to hold different mental models (e.g., Acton, Johnson, & Goldsmith, 1994) 

which complicates the interpretation of mental model scores and their implications for 

action. If there are multiple ways to accomplish a task, how should one rank order 

candidates based on their mental model scores? One reason for the observed differences 

between experts’ knowledge structures is the complex nature of the tasks involved and 

the fact that for some complex tasks, there are multiple ways to effectively perform the 

same task (i.e., equifinality; Edwards, Day, Arthur, & Bell, 2006; Mathieu, Heffner, 

Goodwin, Cannon-Bowers, & Salas, 2005). 

In sum, mounting evidence supports the construct validity of mental models. 

However, as highlighted in multilevel theories of training (e.g., Kozlowski et al., 2000, 

Kozlowski & Salas, 1997), evidence on the validity of mental models across levels of 

analysis is needed. In the next section, a discussion of multilevel theories and methods is 

presented to further explicate the issues that arise when dealing with multilevel 

phenomena. 
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2.1. Why a Multilevel Perspective? 

As highlighted by Rousseau (1985), assessing multilevel effects becomes the 

inevitable subject of study once one recognizes that organizations are multilevel 

systems. Multilevel research is a conceptual and methodological approach germane to 

organizational science and other disciplines (e.g., education) where the phenomena 

under study involve potential multilevel effects. Thus, the need for a multilevel approach 

stems from the nature of organizations as multilevel systems and the need to clarify and 

specify complex conceptual and methodological issues that arise in the study of 

multilevel phenomena. 

Although historically the influence of organizational systems theory had been 

merely metaphorical (Kozlowski & Klein, 2000), the multilevel approach has evolved 

towards a well-developed conceptual and methodological framework for studying 

multilevel issues. Numerous journal articles and books (including a dedicated book 

series; Yammarino & Dansereau, 2002-2009) attest to the presence of an emergent 

paradigm in organizational science (Kozloski & Klein, 2000) that is likely to influence 

the study of a broad range of phenomena that occur in organizations, impacting subfields 

of industrial and organizational psychology such as personnel selection (Schneider, 

Smith, & Sipe, 2000) and training (Kozlowski et al., 2000) that have customarily treated 

psychological phenomena as an individual-level issue. 

By taking issues of levels into account one reduces the risk of model 

misspecification. A problem of misspecification occurs when the validity of the 

constructs employed has not been established at the focal level of analysis; when 
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relationships occurring at one level of analysis (e.g., individual level) are interpreted at 

another level (e.g., team level); or when contextual effects are not accounted for when 

assessing lower-level relationships (Rousseau, 1985). A researcher interested in the 

relationship between individual differences (e.g., general mental ability, personality 

traits) and performance at the individual level may erroneously infer that similar 

functional relationships exist at higher levels, and falsely conclude that, for instance, 

implementing a selection system using said constructs will positively impact the 

performance of the organization as a whole. What is problematic about this claim is that 

in order to appraise the value of a selection system in terms of organizational-level 

performance, one must also consider the influence of processes occurring at higher-order 

levels and their impact on lower-level variables. For instance, because employees rarely 

perform their tasks in isolation, interactions between organizational members may hinder 

(thorough process losses; Steiner, 1972) or facilitate (through synergistic processes; 

Larson, 2010) individual performances in a group context, which may question the 

utility estimates of a selection system based exclusively on individual performance 

criteria. Steiner’s (1972) theory of group productivity, for example, states that the 

potential productivity of a team will be offset by process losses associated with 

motivational processes occurring at the individual level in group contexts, such that 

greater opportunities for social loafing are present in relatively large groups which, in 

turn, will result in lower individual effort and decreased group performance. 

From another perspective, the utility of selection systems as a human resource 

management strategy conflicts with evidence from strategy research demonstrating that 
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gains from employing high-ability individuals can be offset by the compensation 

premiums required to hire them (Molloy, Ployhart, & Wright, 2010). Unfortunately, 

researchers typically assess the effectiveness of selection systems using individual 

performance as criteria instead of organizational-level criteria (Schneider, Smith, & 

Sipe, 2000), which illustrates how researchers sometimes overlook or underestimate the 

complexity of organizations as multilevel systems. Thus, broadly speaking, the 

cautionary tale of the multilevel approach is that researchers should not interpret the 

parts without understanding the whole, and vice versa. 

2.2. Multilevel Models 

As previously noted, theoretical frameworks and methodological guidelines for 

conducting multilevel research have been developed over the past decades. The purpose 

of this section is to identify the main themes that characterize this research stream with 

the purpose of illustrating the complexity of the issues surrounding multilevel research 

while providing a set of basic principles and terminology that will be used henceforth. 

A number of scholars have examined the issue of multilevel theory development 

(Chan, 1998; Chen, Mathieu, & Bliese, 2005; House, Rousseau, & Thomas-Hunt, 1995; 

Klein, Dansereau, & Hall, 1994; Morgeson & Hofmann, 1999; Roberts, Hulin, & 

Rousseau, 1978; Rousseau, 1985). Rousseau was among the first to develop a typology 

of mixed-level models to describe the types of models and effects that characterize 

multilevel phenomena. According to Rousseau, there are three basic forms that mixed-

level models can take, that is composition, cross-level, and multilevel.  
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Composition models specify the nature of the relationship between similar 

constructs presumed to exist at different levels. The relevance of delineating a 

composition model is that once the composition model is specified, it becomes clear how 

to combine the lower level unit data to establish the higher level construct (e.g., mean of 

some personality trait).1 Building on Rousseau’s (1985) work, Chan (1998) developed a 

typology of composition models to guide the development and validation of constructs 

in multilevel research. Chan’s typology is comprised of five basic forms of composition 

models: (a) additive, (b) direct consensus, (c) referent-shift consensus, (d) dispersion, 

and (e) process composition. Table 1 summarizes Chan’s typology of composition 

models. For each composition model there is a typical operation by which the lower 

level construct is combined to form its higher level counterpart. For instance, compared 

to additive models which involve a simple summation (e.g., mean) of the lower level 

data, direct consensus models require within-group consensus of the lower level units to 

justify aggregation. However, provided that within-group agreement has been 

established in direct consensus models, the validity of the aggregate index provides 

empirical support for the constructs of interest. 

  

                                                 

1 Chan (1998) stated that global indices of higher level constructs (e.g., group size) are not as prevalent in 
multilevel research and that the variables of interest in multilevel research often rely on aggregated data 
from lower level units. Consonant with this, the following discussion focuses on shared and configural 
unit properties rather than global unit properties. 
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Table 1  
 
Chan’s (1998) Typology of Composition Models 

 

Functional relationships 
Typical operation 

combination Empirical support 

Additive model 

Higher level unit is a 
summation of the lower level 
units regardless of the 
variance among these units 

Summing or averaging lower 
level scores 

Validity of additive index 
(e.g., mean of lower level 
units) 

Direct consensus model 

Meaning of higher level 
construct is in the consensus 
among lower level units 

Within-group agreement to 
index consensus and justify 
aggregation 

Value of within-group 
agreement index (e.g., rwg); 
validity of aggregated scores 

Referent-shift consensus model 

Lower level units being 
composed by consensus are 
conceptually distinct though 
derived from the original 
individual-level units 

Within-group agreement of 
new referent lower level units 
to index consensus and justify 
aggregation 

Value of within-group 
agreement index (e.g., rwg); 
validity of aggregated scores 

Dispersion model 

Meaning of the higher level 
construct is in the dispersion 
or variance among lower 
level units 

Within-group variance (or its 
derivative) as 
operationalization of the 
higher level construct 

Absence of multimodality in 
within-group distributions of 
lower level scores; validity of 
dispersion index 

Process model 

Process parameters at higher 
level are analogues of 
process parameters at lower 
level 

No simple algorithm; ensure 
analogues exist for all critical 
parameters 

Nomological validity for 
source and target constructs 
at their respective levels to 
distinguish shared core 
content from level-specific 
aspects 
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In an attempt to further extend previous work on compositional emergent 

phenomena, Kozlowski and Klein’s (2000) typology explicitly considered the possibility 

of compilational forms of emergence. In contrast to composition models in which the 

type and amount of elemental content is similar among group members (i.e., 

isomorphism), compilational models assume discontinuity in either the type or amount 

of elemental content. In baseball, for instance, “the pitcher pitches, fielders field, and 

batters hit” (Kozlowski & Klein, 2000, p. 62). That is, whereas the elemental content in 

compilational forms of emergence comes from a common domain (e.g., baseball), the 

nature of individual contributions can be quite different.  

In sum, a model of emergence (compositional or compilational) reflects the 

theoretical rationale and specifies the methodological implications (e.g., aggregation 

operations) for establishing multilevel constructs. For instance, do groups and other 

collectives possess characteristics such as “personalities”? Does personality have the 

same meaning across levels? And if so, what are the implications for measurement and 

data aggregation operations?  

It is important to note that the emergence model is mainly concerned with the 

function of the construct of interest across levels, and not so much with its underlying 

structure. The structure of a construct refers to the actions and interactions between 

group members that result in the emergence of a collective phenomenon; in contrast, a 

functional analysis of a collective construct refers to the outputs or effects of a given 

construct (Morgeson & Hofmann, 1999). For instance, Chen, Bliese, and Mathieu (2005) 

argued that individual personality and group personality are not isomorphic in terms of 
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the processes whereby individual and group personality develops. Whereas the former is 

based on genetic makeup and developmental experiences, the latter would be largely a 

function of social processes. However, individual and group personality may be 

functionally equivalent in that correlates of personality may be comparable across levels 

(Chen, Bliese, & Mathieu, 2005). One implication of the functionalist approach for 

understanding collective constructs is its usefulness for integrating constructs across 

levels at least during the first stages of multilevel theory development. However, in order 

to fully develop multilevel theories one also needs to explicate and identify the unique 

processes underlying the construct’s structure at each level of analysis, thus integrating 

the functional and structural analysis of the construct of interest (Morgeson & Hofmann, 

1999).  

In contrast to composition models’ which are concerned with similar constructs 

across levels, cross-level and multilevel models postulate relationships between distinct 

constructs. Figure 1 illustrates the broad type of mixed-level models identified in prior 

work (Klein & Kozlowski, 2000; Rousseau, 1985). Direct cross-level models describe a 

direct relationship between different constructs at different levels of analysis (Rousseau, 

1985). The effect of organizational differences (e.g., human resource management 

practices) on individual performance is an exemplar of a cross-level direct effect. In 

addition to cross-level direct effects, it is also possible to hypothesize cross-level 

moderator effects in which higher-level constructs (e.g., job complexity) moderate the 

relationship between lower-level constructs (e.g., individual differences and individual 

performance). In statistical terms, the difference between direct and moderator cross-
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level effects is that the former involves intercept differences whereas the latter involves 

differences in slopes (Schneider et al., 2000). 

Multilevel models (Rousseau, 1985) or homologous multilevel models 

(Kozlowski & Klein, 2000) postulate relationships among constructs that generalize 

across two or more levels. Thus, homology models assume that “X-Y relationships 

observed at one level of analysis are comparable to those obtained between similar 

variables at different levels of analysis” (Chen, Bliese, & Mathieu, 2005, p. 378). 

Because constructs in homology models are presumed to be similar in meaning across 

levels, researchers must first evaluate the extent to which the constructs are sufficiently 

similar across levels and, therefore, must pay special attention to the composition model. 

Thus, homologous multilevel models examine parallel relationships and parallel 

constructs at different levels of analysis.  
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Figure 1. A Conceptual typology of mixed-level models (Rousseau, 1985) 
 
 
 

2.2. Multilevel Analytical Strategies 

Klein and Kozlowski (2000) identified several general approaches for the 

analysis of multilevel data. At the onset it is important to realize that “there is no one, 

all-encompassing multilevel data-analytic strategy that is appropriate to all research 

questions” (Klein & Kozlowski, 2000, p. 51), and that ultimately the choice of analytic 

strategy is dictated by the researchers’ questions and hypotheses. Some of the analytical 

strategies for testing multilevel models identified by Klein and Kozlowski (2000)—

analysis of covariance (ANCOVA) and contextual analysis, cross-level and multilevel 

regression, and multilevel random-coefficient modeling—will be briefly discussed here. 
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However, because the present study proposes a multilevel theory of homology, Chen, 

Bliese, and Mathieu’s (2005) framework for testing homologous multilevel theories is 

discussed in more detail. 

ANCOVA and contextual analysis are among the earliest approaches to 

analyzing cross-level data (Klein & Kozlowski, 2000). To test for cross-level effects 

ANCOVA compares the variance explained by unit membership (i.e., the independent 

variable) to the variance explained by the individual-level predictors, which are treated 

as covariates in the model. In contrast to ANCOVA, contextual analysis is a regression-

based approach that typically includes individual-level predictors and unit means on the 

same predictors. Thus, unlike ANCOVA which can only speak to differences 

attributable to the grouping variable, contextual analysis identifies the unit characteristic 

responsible for the observed differences. Because in contextual analysis the lower- and 

higher-level constructs are entered in the regression model concurrently, one implication 

of this procedure is that individual-level analogues of the contextual construct are 

controlled for.  

Cross-level and multilevel regression proceeds by first evaluating the model of 

emergence, and subsequently tests the substantive study hypothesis. For example, prior 

to examining the relationship between group safety climate (a unit-level construct) and 

job satisfaction (an individual-level construct), the researcher should demonstrate that 

there is enough consistency or agreement within each group before aggregating to the 

higher-order level. Finally, multilevel random-coefficient modeling (or hierarchical 

linear regression; Hox, 2010) is mainly concerned with biases occurring at the 
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individual-level of analysis that result from the violation of the assumption of 

independence in hierarchically structured data. 

2.2.1. A Statistical Procedure for Testing a Multilevel Theory of Homology 

Chen, Bliese, and Mathieu (2005) proposed a new analytical framework and 

method that can be used to test homologous multilevel theories. A discussion of Chen, 

Bliese, and Mathieu’s analytical framework is germane to the present study because it is 

used to test the study’s research hypotheses.  

Chen, Bliese, and Mathieu (2005) stated that existing methods for testing 

homologous models such as within-and-between analysis (WABA; Dansereau, Alutto, & 

Yammarino, 1984; Dansereau & Yammarino, 2000) and multi-group or multilevel 

structural equation modeling (SEM; Muthén, 1994) are limited in flexibility. Among 

other things, because WABA analysis necessitates individual-level data, it cannot be 

used to test models that use primarily group consensus data or, more generally, models 

in which unit level data involve a single score at the group level that cannot be 

disaggregated to lower levels of analysis. In addition, WABA can only accommodate 

additive or direct consensus composition models but not referent-shift consensus 

measures because in the latter the higher-order construct (e.g., team-efficacy) is 

measured using a different metric than its individual-level analogue (e.g., self-efficacy). 

Chen, Bliese, and Mathieu’s critique of multilevel SEM focuses on some statistical 

issues inherent to the SEM approach (e.g., identification problems, instability of 

estimates obtained from small sample sizes) and other challenges yet to be addressed 

such as the problem of standardizing SEM variables within versus between units. 
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However, perhaps the most problematic aspect of multilevel SEM highlighted by Chen, 

Bliese, and Mathieu relates to the fact that this technique treats higher-level units as 

independent from their lower-level counterparts, which precludes explicit tests of 

homology. 

Chen, Bliese, and Mathieu's (2005) organizing framework is consistent with 

Widaman's (2000) levels of similarity (configural, scalar, and metric) and describes how 

the general linear model (GLM) and hierarchical linear modeling can be used to test 

sequential models to assess similarity across levels of analysis. Configural similarity is 

achieved when parameter estimates across different levels exhibit similar patterns of 

significance. For instance, consider the efficacy-performance relationship. If efficacy-

performance associations are statistically significant across individual and team levels, 

then configural similarity is supported. In contrast to configural similarity, tests of scalar 

and metric similarity make specific predictions regarding the magnitude of the expected 

effects across levels of analysis. In the case of scalar similarity, parameter estimates 

from one level are related to parameters obtained at another level by a multiplicative 

function. For instance, one may hypothesize that the efficacy-performance association is 

twice as strong at the team level than at the individual level. Thus, whereas in tests of 

scalar similarity the expected pattern of effects is consistent across levels, the 

corresponding parameters are expected to differ in magnitude, although they are related 

by a scaling factor. Finally, metric similarity is a special case of scalar similarity using a 

rescaling factor of 1, that is, when the magnitudes of parameter estimates are not 

expected to differ significantly across levels. 
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2.3. Summary 

As previously noted, construct validity encompasses various forms of evidence. 

In contrast to other forms of evidence, the generalizability aspect of mental models 

across levels of analysis has not been previously addressed. Although previous research 

suggests the presence of a multilevel construct, a multilevel approach is critical to 

evaluate the validity of mental models as predictors of performance across levels of 

analysis, that is, a multilevel test of homology. Finally, among the available methods for 

testing homologous multilevel models, Chen, Bliese, and Mathieu’s (2005) analytic 

framework seems the most appropriate to address this issue. 
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3. DELINEATION OF MENTAL MODELS AS A MULTILEVEL PHENOMENON 

Kozlowski and Klein (2000) stated that "the first and foremost task in crafting a 

multilevel theory or study is to define, justify, and explain the level of each focal 

construct that constitutes the theoretical system" (p. 27). Because the objective of this 

study is to investigate the relationship between mental models and performance using a 

multilevel framework, the goal of the following sections is to review the extant literature 

on both individual and team mental models, and delineate a multilevel theory to 

characterize the relationship between mental models and performance across levels of 

analysis by integrating previous conceptual work in this area (e.g., Klimoski & 

Mohammed, 1994; Mohammed & Dumville, 2001). Specifically, a proportional theory 

of homology (Chen, Bliese, & Mathieu, 2005) is offered as a framework to test the 

multilevel validity of mental models as a predictor of complex skill acquisition.  

3.1. Mental Models 

In the context of Kraiger, Ford, and Salas’ (1993) taxonomy, a mental model 

measures an individual’s knowledge organization. Mental models reflect the structural 

relationships that exist between a set of concepts within a given knowledge domain 

(Johnson-Laird, 1983; Kraiger et al., 1993; Rouse & Morris, 1986; Wilson & 

Rutherford, 1989). Structural knowledge assessment is the most common approach for 

assessing mental models (Kraiger et al., 1993). In structural assessments, individuals 

provide pair-wise relatedness ratings amongst a sample of relevant terms (i.e., concepts 

or tasks). The pair-wise relatedness ratings are then used to generate a representation of 

the individual’s mental model. The preponderance of the mental model research has 
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focused on the sharedness or similarity, and accuracy of mental models. Similarity is 

typically used in the context of team research, and refers to the extent to which team 

members share an understanding of the team’s task (e.g., Edwards et al., 2006). In 

contrast, accuracy represents the extent to which an individual’s (or team’s) mental 

model approximates the “true” state of the world or “the” expert model2 (Acton et al., 

1994). 

One reason for measuring mental models is to understand the relationships that 

exist between different components of a specified knowledge domain. Assessing mental 

models is important because of the informational value of characterizing the 

relationships between these basic knowledge components. In other words, mental model 

assessment techniques emphasize the importance of eliciting the configural property of 

knowledge (i.e., how knowledge is organized) rather than the amount of information an 

individual can recognize or recall, which is typically captured through traditional 

declarative knowledge tests as typified by multiple-choice exams. 

Although the use of verbal reports (e.g., thinking aloud protocols) for the purpose 

of uncovering users' mental models is not uncommon, this approach is limited in that 

much expert knowledge consists of mental processes that are automatic and 

unconscious. Basically, in order to speed up performance, many of the processes and 

strategies that experts employ to solve problems are combined into chunks of 

                                                 

2 Unlike the term “expert-based model” the term “expert model” is used here as analogous to the term 
“expert system”, a computer program to emulate human decision-making ability. For all intents and 
purposes, an expert model is short for correct or “true” structure of the underlying domain. 
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productions, and thus, it is often difficult for the expert to reconstruct the original steps, 

which leads to difficulties in the explicit expression of knowledge (Nisbett & Wilson, 

1977). Consonant with automaticity as a defining feature of expertise, researchers often 

ask participants to "not ponder their judgment" (Schvaneveldt et al., 1985, p. 704) while 

completing the pairwise relatedness task. Thus, the impetus for using the pairwise 

elicitation method is that it offers the possibility of capturing expert knowledge while 

overcoming one important limitation of traditional interview and verbal protocol 

techniques which is the fact that experts have difficulty in reliably reporting on their 

mental processes (Cooke & McDonald, 1986). Not at odds with this premise, Kraiger 

and Salas (1993) found that mental models were more sensitive as training criteria than 

an explicit measure of knowledge (i.e., a multiple-choice test)—that is, mental models 

discriminated between a control group and a group of trainees who underwent a naval 

aircrew coordination training, but multiple-choice tests did not—which suggests that 

mental models capture something that explicit knowledge measures cannot.  

3.2. Team Mental Models 

Teams are two or more individuals who work interdependently, have specific 

roles and assignments, and interact and coordinate to achieve a common goal (Baker & 

Salas, 1996; Kozlowski & Ilgen, 2006; McIntyre & Salas, 1995). Because team tasks 

require some degree of coordination amongst team members to successfully perform 

their task, a defining feature or job characteristic of team tasks is the presence of 

interdependence (Arthur, Edwards, Bell, Villado, & Bennett, 2005; Arthur, Glaze, 

Bhupatkar, Villado, Bennett, & Rowe, 2012).  
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The implicit coordination of teams operating in complex environments has been 

linked to the cognitive underpinnings of team tasks. Because teams perform cognitive 

tasks (e.g., decision making, problem solving, planning), an understanding of team 

cognition seems critical to understanding team performance (Cooke, Kiekel, Salas, 

Stout, Bowers, & Cannon-Bowers, 2003; Hinsz, Tindale, & Vollrath, 1997). Consonant 

with this reasoning, several reviews of teams have identified cognitive emergent states as 

a relevant antecedent of team functioning (Ilgen, Hollenbeck, Johnson, & Jundt, 2005; 

Kozlowski & Bell, 2003; Kozlowski & Ilgen, 2006; Mathieu, Maynard, Rapp, & Gilson, 

2008). These reviews have focused on two constructs related to team cognition—team 

mental models (e.g., Edwards et al., 2006) and transactive memory systems3 (Moreland, 

Argote, & Krishnan, 1996). For instance, research has shown that mental model 

sharedness is positively associated with team performance. Such findings are typically 

explained in terms of team members’ increased ability to anticipate the needs and actions 

of other team members (e.g., Mohammed & Dumville, 2001; Mohammed, Ferzandi, & 

Hamilton, 2010) which facilitates team coordination and team performance. 

In the team literature, the analogue of an “individual” mental model is a “team” 

mental model. Team mental models have been defined as organized mental 

representations of relevant knowledge that enable team members to coordinate their 

efforts, facilitate information processing, provide mutual support, and, in general, adapt 

                                                 

3 Transactive memory systems refer to knowledge that is distributed among team members. Although 
transactive memory systems have been shown to outperform shared mental models as an antecedent of 
both team processes and team performance (see Tables 5 and 6 in DeChurch & Mesmer-Magnus, 2010b), 
there is no individual level analogue of this construct. Consequently, it is inappropriate to postulate a 
multilevel homology theory for this construct. 
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to cognitively demanding tasks (e.g., Edwards et al., 2006). The term team mental 

model—instead of, for instance, shared mental model—refers to a broad category that 

encompasses both shared mental models and accurate mental models (or quality mental 

models; Mathieu et al., 2005). In the team training literature, mental models have been 

recognized as a process variable that mediates the relationship between team 

interventions and team outcomes (Mohammed, Ferzandi, & Hamilton, 2010). DeChurch 

and Mesmer-Magnus’ (2010b) meta-analysis demonstrated that team mental models are 

valid predictors of behavioral processes, motivational-affective states, and team 

performance, and that team mental models explain additional variance in team 

performance after accounting for behavioral processes and motivational-affective states.  

As previously noted, an important issue in the team mental model literature is the 

distinction between similarity and accuracy. Team mental model sharedness or similarity 

involves knowledge that is common among team members (Cannon-Bowers, Salas, & 

Converse, 1993; Cannon-Bowers & Salas, 2001), whereas team mental model accuracy 

indexes the extent to which team mental models match an expert mental model (e.g., 

Lim & Klein, 2006). 

Whereas team mental model accuracy and similarity have been shown to be 

highly related (e.g., rs between .61 and .67; Edwards et al., 2006) accuracy tends to be 

more strongly associated with performance than similarity (ρ = 34 and .30, respectively; 

DeChurch & Mesmer-Magnus, 2010b). However, there are many tasks for which it may 

be difficult to derive one “correct” model and thus it is not uncommon to find 

discrepancies between experts’ mental models (e.g., Acton et al., 1994). Mathieu et al. 
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(2005) argued that such discrepancies may very well exist in the presence of 

equifinality—that is, when there are multiple equally good, but yet different ways to 

successfully complete a task. Although one could use heterogeneous expert models to 

yield normative comparisons, sharedness or similarity is more appropiate than accuracy 

when tasks exhibit equifinality. Nonetheless, when there is a “true score” against which 

mental models can be compared to, similarity among team members is expected to 

increase with accuracy because teammates’ mental models will coalesce as they 

approximate the true state of the world. 

Consequently, because complex team tasks are often characterized by 

equifinality, similarity or sharedness will be useful in most, if not all situations, whereas 

accuracy requires a known “true state of the world” (Edwards et al., 2006). In addition, 

the formation of shared mental models is concomitant with enhanced team processes 

(e.g., communication and coordination) which have been emphasized in team research 

due to their critical role as antecedents of team performance (Mathieu et al., 2000). 

Accordingly, the relevance of mental model sharedness or similarity for team 

coordination and effective team performance has been acknowledged in models of 

teamwork. Salas, Sims, and Burke (2005), for instance, identified shared mental models 

as one of the three coordinating mechanisms—along with close-loop communication and 

mutual trust—that support what they called the “Big Five” of teamwork. Despite the 

ubiquity of sharedness compared to accuracy, meta-analytic results also support the 

validity of team mental model accuracy (DeChurch & Mesmer-Magnus, 2010b). 
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Although a team can develop mental models of a number of facets of their job or 

task, most researchers in this domain collapse the content of team mental models into 

two categories—taskwork and teamwork (Mohammed et al., 2010). Mathieu et al. 

(2000) described taskwork mental models as knowledge of the technology or equipment 

with which the user is interacting, as well as knowledge regarding the task procedures, 

task strategies, likely contingencies or problems, and environmental/task conditions. In 

contrast, teamwork models include an understanding of the team interaction 

requirements (e.g., roles and responsibilities, information flow) as well as specific 

information about the team members (e.g., knowledge, skills, attitudes, preferences, 

strengths and weaknesses). Researchers agree that effective teams have individuals who 

not only perform task-related functions well but can also work together as a team. 

Whereas team cognitions are often conceptualized as antecedents of 

performance, of equal or perhaps greater importance is the issue of explaining the 

mechanisms whereby individual cognitions develop into a team mental model or "group 

mind" (Klimoski & Mohammed, 1994). Team training interventions have been shown to 

have a positive impact on team-level cognitive outcomes (ρ = .42; Salas et al., 2008) 

which demonstrates the usefulness of team cognitions as training criteria. Team 

processes, such as planning (Stout, Cannon-Bowers, Salas, & Milanovich, 1999), leader 

pre-briefs and team interaction training (Marks, Zaccaro & Mathieu, 2000), and cross-

training (Marks, Sabella, Burke, & Zaccaro, 2002) have also been shown to enhance 

mental model sharedness. 
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3.3. Mental Model Measurement 

There are different measurement strategies consistent with the definition of 

mental models as a structural knowledge construct. Structural assessment is a general 

approach for assessing mental models or knowledge structures (Kraiger et al., 1993) that 

involves three steps: (1) knowledge elicitation, (2) knowledge representation, and (3) 

evaluation of an individual’s knowledge representation (Goldsmith, Johnson, & Acton, 

1991).  

Knowledge elicitation refers to the technique used to capture the content of 

knowledge, such as similarity ratings, concept maps, and card sorting tasks.4 Similarity 

ratings can be obtained using a pairwise relatedness task in which participants are asked 

to report on their perceptions about the relation between concepts or how often events 

co-occur. Card sorting is a well-known technique in psychology that involves writing 

concepts on cards and then sorting or placing them as to what is closest to what. Marks 

et al. (2000), for instance, used team-interaction concept maps to operationalize team 

mental model similarity. For this measure, participants selected 8 cards with concepts 

written on them and placed them on a concept map. The concept map rows represented 

action sequences of team members and the concept map columns represented a cross-

section of what all team members should be doing concurrently. The overlap between 

team members’ concept maps was used to operationalize team mental model similarity.  

                                                 

4 Although Likert scale questionnaires can be used to elicit the content of mental models, these are not 
customarily used in conjunction with a representation technique to capture the cognitive structure 
underlying individual or team cognition. So, consonant with Mohammed et al. (2000) they are not 
discussed here as a mental model measurement technique. 
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Knowledge representation refers to the technique or scaling procedure used to 

derive an individual’s cognitive structure. Alternative methods for representing the 

structure of knowledge exist such as UCINET, multidimensional scaling (MDS), and 

Pathfinder. 

UCINET (Borgatti, Everett, & Freeman, 2002) is a social network analysis 

program that also uses nodes (or actors if the network is social in nature) and links 

between nodes to reflect the structural organization of knowledge. MDS generates a 

representation in geometric space for understanding similarities between a set of objects 

and reveal underlying dimensions respondents use when evaluating those objects. A 

single n×n square symmetric matrix of similarities serves as the input data which are 

then analyzed via Euclidean distances (e.g., Carroll & Chang, 1970). Concept mapping 

characterizes the causal linkage among concepts derived from observations, interviews, 

and questionnaire data. Concept mapping has been used for the study of organizational 

research topics such as decision making, negotiation, and organizational cognition 

(Mohammed et al., 2000). As an example, individuals may be interviewed about the 

causal relationships occurring between a set of concepts related to medical diagnosis. 

The content of the interview can then be coded to determine the presence of causal links 

between symptoms (e.g., coughing) and plausible causes (e.g., viral illnesses, infections, 

smoking, etc.). Pathfinder networks are based on similarity ratings that reflect the 

psychological proximity or distance between concepts. The Pathfinder algorithm 

(Schvaneveldt et al., 1988) generates a structure consisting of nodes with links 

connecting some pairs of nodes.   
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The final step of structural assessment is knowledge evaluation which consists of 

evaluating the extent to which mental models are similar to a referent structure (i.e., 

accuracy) or the extent to which team members’ mental models are similar (i.e., 

sharedness or similarity). 

Although the usefulness of these techniques may depend on the research context 

(Mohammedet al., 2000), empirical evidence within the team literature has shown that 

mental model measurement strategies differ in terms of their associations with team 

outcomes (DeChurch & Mesmer-Magnus, 2010a). Specifically, stronger relationships 

with team processes is evident when similarity ratings are used as the elicitation method 

and the Pathfinder network algorithm is used to represent structure. In contrast to team 

processes, measurement strategy does not seem to affect the relationship between mental 

model similarity and performance. Empirical data on the effectiveness of measurement 

strategy as a moderator of the validity of individual mental models is scarce but 

consistent with the team literature in that Pathfinder-based scores yield stronger 

predictive validities than MDS (Goldsmith & Johnson, 1990). Thus, based on the 

available literature on mental models, the decision was made to operationalize individual 

and team cognition using Pathfinder instead of other measurement strategies. 

3.3.1. Pathfinder Networks  

Pathfinder networks (Schvaneveldt et al., 1988) can be used to identify structural 

aspects of knowledge, such as memory organization or category structure. A computer 

program, namely Pathfinder (Schvaneveldt, 2009a), can be used to draw a spatial 

representation of a mental model in which each node represents a component of the 
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model (e.g., a concept), and each link between nodes reflects the relatedness that exists 

between the model components. Networks are derived using two parameters, r and q, to 

determine how network node distance is calculated (r is typically set to infinity and q is 

set to equal the number of concepts minus one).  

The resultant networks can then be evaluated in terms of similarity, and accuracy 

scores. Whereas similarity refers to the extent to which team members share an 

understanding of the team’s environment, accuracy scores represent the extent to which 

an individual’s (or team’s) mental model approximates an expert model, or a referent 

structure that best reflects the true knowledge structure of the domain (Acton et al., 

1994). However, the metric used to represent mental model similarity and accuracy is 

based on the same index, namely, closeness (C; Goldsmith & Davenport, 1990). 

Goldsmith and Johnson (1990) advocate the use of C as the best way to operationalize 

the extent to which mental models resemble each other. C is roughly equal to the ratio of 

the number of common links between two networks divided by the total number of links 

in both; it varies from 0 to 1 with 1 representing a perfect match between two mental 

models (Day et al., 2001; Kraiger et al., 1995). 

In addition to C scores, Pathfinder yields three additional indices, mental model 

correlations, number of links, and coherence scores. The index of correlation between an 

individual’s relatedness-ratings matrix and a referent structure accomplishes the same 

purpose as C scores. However, in contrast to C scores which can be conceptualized as an 

index of agreement, Pathfinder’s index of correlation indexes consistency. 
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A mental model can also be evaluated in terms of its parsimony and coherence. 

The number of links reflects a knowledge structure’s parsimony, where fewer links 

indicate more parsimony and vice versa. More parsimonious models are considered 

superior to relatively less parsimonious models. In contrast, coherence scores are usually 

considered a measure of internal consistency. Coherence scores can be used as an 

indication of the individual’s ability to provide a consistent pattern of responses 

(Schvaneveldt, 2009a). Whereas previous research has shown that C scores, correlations, 

and coherence scores yield comparable validities in the prediction of skill-based 

performance, the number of links has not been demonstrated to be a valid predictor of 

skill-based performance (Schuelke et al., 2009).  

3.4. Summary 

Parallel to research on individual expertise (Chi, Glaser & Farr, 1988), cognition 

has been shown to be also important for team performance. In essence, team and 

individual mental models are homologous constructs (Chen, Bliese, & Mathieu, 2005). 

That is, the function of team cognition is analogous to individual cognition in that mental 

models serve as a basis for selecting actions that are consistent with current task 

demands, thereby accounting for behavioral differences observable at both individual 

and team levels.  

However, the processes whereby team and individual cognitions translate into 

performance are evidently different. At the individual level, the effective application of 

knowledge requires processes such as retrieval and pattern recognition, whereas at the 

team level processes such as communication and coordination are critical for 
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transforming a collection of individuals' knowledge into effective team knowledge 

(Cooke et al., 2004). Previous research has demonstrated that team processes—strategy 

formation and coordination, cooperation, and communication—are associated with 

mental model sharedness, such that teams with convergent taskwork and teamwork 

mental models tend to display higher quality team processes (Mathieu et al., 2000). 

Interestingly, past literature reviews have focused solely on team mental models 

and have paid limited attention to individual mental models. However, a recent meta-

analysis by McDonald and Muñoz (2013), demonstrated that the effect size of individual 

mental models is almost twice as large as the effect size of team mental models for 

predicting task performance (r = .35 and .18, respectively).5 Thus, although previous 

meta-analytic evidence suggests that team mental models are valid predictors of team 

performance (DeChurch & Memer-Magnus, 2010b), difficulties in the process of 

integrating team members' knowledge for optimal task execution may attenuate, mask, 

or understate the importance of team cognitions for team performance. For instance, 

Steiner's (1966, 1972) notion of process loss indicates that a team's potential 

performance may be reduced due to factors related to poor coordination or other group 

processes (e.g., low motivation) which may reduce the influence of team cognitions on 

performance. 

                                                 

5 The meta-analytic estimate of r = .18 for the association between team mental models and performance 
from McDonald and Muñoz (2013) is considerably lower than DeChurch and Mesmer-Magnus’ (2010a) 
estimate of r = .28. Estimates from both meta-analyses come from studies that use Pathfinder to represent 
structure. However, McDonald and Muñoz employed a relatively larger number of studies (k = 16, N = 
1,050) than De DeChurch and Mesmer-Magnus (k = 5, N = 287), which may account for the noted 
estimate differences.    
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4. MENTAL MODELS AS A MULTILEVEL CONSTRUCT  

In the previous section individual mental models were distinguished from team 

mental models. In the following section, issues pertaining to the conceptual basis and 

justification for scaling individual mental models to the team level are discussed within 

the context of a multilevel framework for conceptualizing mental models as a multilevel 

phenomenon. Next, a proportional theory of homology is offered as a multilevel 

framework to test the validity of mental models as a predictor of complex skill 

acquisition across levels of analysis. Finally, the statistical procedures to test such model 

are outlined and described.  

4.1. Nature of Emergence  

Kozlowski and Klein (2000) distinguish between two forms of emergence—

composition and compilation. Whereas composition models of emergence describe 

"phenomena that are essentially the same as they emerge upward across models . . . 

compilation describes phenomena that comprise a common domain but are distinctively 

different as they emerge across levels" (p. 16). Composition and compilation are also 

distinguished by their underlying theoretical models. Whereas composition is based on 

isomorphism—where the type and amount of elemental content is similar for all 

individuals in the collective—compilation is based on a model of discontinuity—where 

either the amount or type of elemental content is different, or both the amount and type 

are different.  

 Although the measurement techniques used to index team mental models may be 

at the individual level, a team mental model is an emergent property of the collective 
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(Klimoski & Mohammed, 1994). Thus, team mental models can be conceptualized as a 

bottom-up emergent construct that originates in the cognitions of individuals. Some 

scholars have suggested that at the root of the distinction between similarity and 

accuracy resides an important conceptual distinction with relevant implications for 

understanding the multilevel nature of this construct. Mathieu et al. (2005), for instance, 

posited that whereas similarity emerges through compilational processes to manifest as 

higher-level phenomena, accuracy is akin to a compositional construct. Specifically, they 

state that: 

It is important to note that the notion of shared mental models is a configural 

type of team construct. It derives from the consistency of individuals' models, yet 

there is no "team model" per se . . . rather, the convergence index itself represents 

the extent to which individuals share a common knowledge structure. . . . 

However, team QMM [quality of mental models] represents a summary index of 

the quality of members' models relative to some standard(s). (Mathieu et al., 

2005, pp. 38-39) 

Interestingly, some disparity exists amongst scholars regarding the nature of the 

emergence of team mental models. For instance, in contrast to Mathieu et al.’s (2005) 

perspective, DeChurch and Mesmer-Magnus (2010b) consider both sharedness and 

accuracy as compositional constructs. Kozlowski and Klein (2000) posited that 

differences in the conceptualization of emergence for a given construct may very well 

exist. For instance, most researchers use mean accuracy scores to operationalize team 

mental model accuracy (e.g., Cooke et al., 2003; Lim & Klein, 2006). After mental 
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model accuracy is calculated for each individual team member, these indices are 

averaged to yield a team accuracy score. Alternatively, one could use the minimum, the 

maximum, the variance, or the profile or pattern of team members’ accuracy scores to 

operationalize team mental model accuracy. Each of these would correspond to a 

different form of emergence and, thus, engender different assumptions regarding the 

cognitive underpinnings of team performance (i.e., how team members integrate their 

cognitions during performance). Stout, Cannon-Bowers, and Salas (1996) suggested that 

the effective operationalization of team mental models depends on the task demands. For 

instance, under conditions in which communication between team members is difficult, 

shared mental models become more crucial to team functioning because in these 

situations teams are precluded from strategizing “on the fly”. Consistent with this 

reasoning, mental model accuracy may also become more important when 

communication is difficult. On the contrary, if team members can communicate freely, 

then they may help each other by sharing their knowledge during the performance 

episode (e.g., helping hypothesis; Lepine, Hollenbeck, Ilgen, & Hedlung, 1997). In the 

latter case, the highest within-team mental model accuracy score will be more predictive 

of team performance than the team mean accuracy. 

The point is that, in the absence of a universal form of emergence for a given 

construct, it seems important to justify (either theoretically or empirically) the specific 

form of emergence and correspondent procedures employed to aggregate data to the 

team level. Although researchers rarely provide a conceptual basis for using mean 

accuracy scores as the aggregation method, this procedure seems to be aligned with the 
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cognitive underpinnings of team performance. Because team performance depends on 

the successful execution of all individual roles, it has been suggested that an overall 

estimate of team members’ ability is the most effective operationalization of team ability 

for predicting team performance (Day, Arthur, Miyashiro, Edwards, Tubré, & Tubré, 

2004). Also, using the mean in this context is consistent with the premise that mental 

models serve to enhance team members' ability to anticipate the needs and actions of 

other team members (Mohammed & Dumville, 2001; Mohammed, Ferzandi, & 

Hamilton, 2010). Although mental model assessment could target team members’ 

accurate knowledge of their own role, the content of mental models may comprise team 

members' understanding of their own role and of the task as a whole, including other 

team members' tasks (i.e., interpositional knowledge). In this case, two individuals with 

non-overlapping mental models may have similarly low accuracy scores due to, for 

instance, their accurate taskwork knowledge about their own roles and their lack of 

knowledge of the other team members' role (Cooke et al., 2003, pp. 194-195). In 

contrast, when team mean accuracy is high, team average scores would rightly suggest 

that team members are knowledgeable about the different facets of the job comprising 

other team members' tasks as well as their own. Yet if the content of mental models 

focuses solely on role knowledge, then the minimum individual score may be more 

predictive of team performance because unknowledgeable members could have a 

substantial adverse effect on team performance (e.g., Chen, Thomas, & Wallace, 2005)  

Although it is possible that nonredundant mental representations may fit together 

in a complementary way to create a whole (Kozlowski, Gully, Salas, & Cannon-Bowers, 
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1996), having an understanding of the whole task seems germane for the team cognition 

construct to be meaningful in the sense of explaining the successful integration of team 

members’ actions during task performance. Although this idea is reminiscent of Lepine 

et al.’s (1997) helping hypothesis, anticipating the needs of other team members is not 

the same as “helping” because coordination among team members does not imply 

differential team member ability. In other words, team members coordinate their efforts 

because their roles are interdependent, not to compensate for each other’s lack of ability. 

Thus, using Kozlowski and Klein's (2000) typology, team mental model accuracy 

is best represented by a pooled unconstrained emergence type,6 in which the type of 

content remains the same across levels but variation in the amount of elemental content 

is possible (i.e., team members accuracy scores may vary considerably). Because in 

pooled unconstrained models one does not need to meet the assumption of 

isomorphism—as in pure composition models—within-group agreement is not necessary 

to justify the aggregation of lower level variables to reflect the higher level construct. At 

issue here is that the team members do not have to have equally accurate mental models 

to permit the aggregation of individuals' models to the team level to reflect the team 

mental model. Having said that, researchers recommend that the group-mean reliability 

(ICC(2)) should be estimated in pool unconstrained models.7 Even in instances where 

there are no theoretical reasons to expect clustering to occur, the estimation of non-

                                                 

6 Chan (1998) referred to them as additive models. 
7 Bliese (2000) uses the term fuzzy composition for a model that is fundamentally equivalent to the pooled 
unconstrained model identify by Kozlowski and Klein (2000).  
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independence (i.e., the degree to which lower-level responses are affected by higher-

level factors) is important if the data are nested or have a hierarchical nature (Bliese, 

2000) because even a small degree of non-independence can substantially bias statistical 

models (Bryk & Raudenbush, 1992). Thus, "estimates of non-independence . . . provide 

a way of determining the degree to which lower-level relationships will be biased if 

higher-level effects are not adequately controlled for . . . regardless of whether or not 

one is explicitly interested in modeling contextual effects" (Bliese, 2000, p. 365). 

Whereas mental model similarity has been described sometimes as a 

compositional construct (e.g., DeChurch & Mesmer-Magnus, 2010b), in the present 

study similarity is conceptualized as a compilational construct, a position that is in 

accordance with that espoused by Mathieu et al. (2005). Similarity is typically 

operationalized by comparing team members’ mental models to each other and then 

averaging the similarity between team member pairs to obtain a team-level similarity 
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(Mathieu et al., 2005) is that this approach allows for between-team variance in 

similarity which is the variance purportedly associated with changes in team 

performance. To the extent that team member mental models are similar, team 

performance is likely to improve (provided that mental models are accurate).  

  

It is also important to mention that whereas the individual contributions to the 

higher-level phenomenon can be constrained to be similar by imposing a threshold to 

justify aggregation to the higher level, this approach would reduce or restrict between-

team variance in similarity (for instance, teams with low rwgs would be discarded). 

Thus, yet another reason for conceptualizing similarity as a compilational construct 

index. To reiterate Mathieu et al.’s position, the similarity index itself represents the 

extent to which individuals share a common knowledge structure, and it is used directly 

as a predictor of team performance, which is analogous to using climate strength as 

opposed to the content of the climate for predicting organizational-level outcomes.  



 

44 

 

4.2. Testing a Proportional Theory of Homology 

Rousseau (1985) and Kozlowski and Klein (2000) defined homologous 

multilevel models as models in which the relationships linking a set of constructs are 

generalizable across organizational levels. Chen, Bliese, and Mathieu (2005) further 

refined this framework by developing a theoretical and methodological approach to test 

homologous models.  

Chen, Bliese, and Mathieu (2005) posited that homology theories evolve from 

exploratory to confirmatory phases. Historically, mental model research has made 

substantial progress, to the point that this line of research is now viewed as "one of the 

more developed collective cognition literature streams" (Mathieu, Maynard, Rapp, & 

Gilson, 2008, p. 429). One can literally see how this literature has advanced from the 

exploratory to confirmatory phase by looking at the titles of two widely cited papers in 

this research domain—from "Team Mental Model: Construct or Metaphor?" (Klimoski 

& Mohammed, 1994) to "Metaphor No More: A 15-Year Review of the Team Mental 

Model Construct" (Mohammed et al., 2010). Thus, it is not unreasonable to specify a 

theory of homology that states more explicitly the nature and strength of the 

relationships between team mental models and performance across levels of analysis. 

Specifically, consonant with previous research showing that mental model-performance 

relationships are stronger at the individual (e.g., Acton et al., 1994; Davis, Curtis, & 

Tschetter, 2003; Day et al., 2001; Goldsmith et al., 1991; Rowe et al., 1996) than the 

team level (e.g., Cooke et al., 2003; Lim & Klein, 2006; Marks, Sabella, Burke, & 

Zaccaro, 2002), the present study proposes a proportional theory of homology to 
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describe the mental model-performance relationship such that proportionately stronger 

associations will be demonstrated at the individual level relative to the team level. This 

proposition is also consistent with Chen, Thomas, and Wallace's (2005) finding that 

task-related knowledge was a stronger predictor of performance at the individual level 

than the team level. Consequently, the proposed study is an extension of previous 

multilevel research on the knowledge-performance relationship using a structural 

assessment technique to measure individual and team knowledge—instead of a multiple-

choice test as in Chen, Thomas, and Wallace’s study.  

So, on the basis of the above noted distinction between levels of similarity, and 

in view of previous studies showing stronger associations between mental models and 

performance at the individual level of analysis, it was hypothesized that: 

Hypothesis 1: The relationship between mental model accuracy and performance 

will be stronger at the individual level than the team level.  

It is well-established that the acquisition of job knowledge is one of the best 

predictors of job performance (e.g., Hunter, 1986). Knowledge acquired during training 

has also been shown to predict performance on complex tasks (e.g., flying pilots work 

samples; Ree, Carretta, & Teachout, 1995). Finally, evidence from multilevel studies 

have shown that declarative knowledge is more strongly related to performance at the 

individual then the team level of analysis (Chen, Thomas, & Wallace, 2005).8 Assessing 

                                                 

8 Chen, Thomas and Wallace (2005) used items that covered both declarative, and procedural and strategic 
knowledge. However, for the sake of simplicity and given the nature of the method used to assess 
knowledge (i.e., a multiple-choice test) these aspects of knowledge are referred henceforth as declarative 
knowledge. 
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the validity of declarative knowledge in addition to mental models was important to 

replicate previous findings concerning the validity of these constructs within as well as 

across level of analysis. Also, comparing how declarative knowledge and mental models 

function across levels of analysis will contribute to further understanding the role of 

cognitive measures in complex training performance. 

Chen, Thomas, and Wallace’s (2005) study used a 10-item multiple choice test to 

assess specific role knowledge. Due to the highly interdependent nature of the task, 

Chen, Thomas, and Wallace used the minimum individual score to aggregate knowledge 

at the team level because one team member with low role knowledge could disrupt team 

functioning. Whereas the performance task of the present study was also highly 

interdependent, the mean was used to operationalize team declarative knowledge 

because the declarative knowledge measure used in the present study assessed team 

knowledge, which combines both role and interpositional knowledge. Therefore, 

consistent with the expectation of Hypothesis 1, it was hypothesized that: 

Hypothesis 2: The relationship between declarative knowledge and performance 

will be stronger at the individual level than the team level.  
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5. RELATIONSHIP BETWEEN MENTAL MODELS AND BEHAVIORS 

Team performance indexes the degree to which the team was able to successfully 

meet the demands of the situation and can be operationalized using both objective (e.g., 

number of targets destroyed, completion time) and subjective (e.g., supervisor ratings) 

measures. Within the team literature, the preponderance of mental model research has 

focused on team performance (e.g., points on a computer simulation) rather than 

behavioral processes, which comprises the actions and interactions of team members 

during team performance. The distinction between results and processes is commonly 

acknowledged in models of training criteria (i.e., Kirkpatrick, 1994) and criterion 

development for personnel decision making (e.g., Campbell, Dunnette, Lawler, & 

Weick, 1970). The risk of relying exclusively on performance results or output measures 

is that it limits the understanding of the psychological and/or behavioral processes 

involved in performance (e.g., Cascio & Aguinis, 2011). Consonant with this view, team 

actions and behavioral processes (what teams do) have also been included in models of 

team performance (e.g., Kozlowski & Ilgen, 2006). 

Evidence in support of a mental model-behaviors association seems germane for 

advancing mental model research. Such consistencies would demonstrate that mental 

model assessments reflect the processes utilized during task performance. For instance, 

the procedural knowledge contained in a mental model should map on to an observable 

pattern of behaviors. In turn, the set of enacted behaviors is the mechanism that 

“translates” a mental model into effective performance. Thus, an additional contribution 
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of the present study is to expand the criterion domain of mental model research by 

including the behavioral component of team performance. 

5.1. Team Performance as a Compilational Construct 

Whereas the focus of the present study is on mental models, it is essential to also 

describe the nature of the emergence of team performance, the study’s focal dependent 

variable. Observing and analyzing these interrelated phenomena (i.e., team mental 

models and team performance) yields a clearer understanding of the mechanisms that 

underlie the association between team cognition and team performance.  

As previously noted, Kozlowski and Klein (2000) describe two types of 

emergence—composition (shared unit properties) and compilation (configural unit 

properties). As a higher-level phenomenon, team performance emerges from the pattern 

of team member's execution of their individual roles. Consequently, the behavioral 

processes that result in team performance are akin to a compilation model where the 

configuration of different lower-level behaviors emerge, bottom-up, to characterize the 

performance of the team as a whole. For instance, consider a case where one member of 

a team serves as the gunner and a second one serves as the driver of a tank. Task 

interdependency exists at the team level such that the tank cannot be operated 

successfully without the combined effort of the gunner and the driver. Team 

performance emerges as the gunner and driver enact their roles and execute their 

interdependent yet qualitatively distinct tasks. 

At the individual level, the processes and strategies that experts employ are 

thought to be combined into chunks of productions. Mental models capture this 
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knowledge (e.g., if-then rules) and, thus, uncover what guides experts’ actions during a 

performance episode. Unlike individual performance, team performance requires that 

team members coordinate their actions to successfully perform as a team, and 

coordination demands increase with task interdependence. Consequently, if all the tasks 

that comprise a job are interdependent, then team members must work with each other 

constantly to perform effectively. However, complex tasks are usually comprised of 

individual and team tasks (e.g., Arthur et al., 2012). In the context of teams, disparities 

between team members’ mental models may result in weaker associations between 

mental models and behaviors compared to individual tasks. In addition, the magnitude of 

the relationship between mental model accuracy and behaviors may be attenuated by less 

than perfect coordination amongst team members. Thus, stronger mental-model-

behavior associations are expected at the individual level than the team level. 

Because not all the similarity ratings obtained during the mental model 

assessment translate into observable behaviors exhibited during team performance, the 

relationship between mental models and behaviors was limited to an examination of a 

subset of similarity ratings as they relate to their correspondent behaviors (see Method 

section for details). Thus, it was hypothesized that: 

Hypothesis 3: The relationship between individual similarity ratings and 

individual behaviors will be stronger than the relationship between team 

similarity ratings and team behaviors.  
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7. METHOD 

7.1. Participants 

The study sample consisted of 243 individuals nested in 81 3-person teams. 

Participants were recruited from the subject pool of the psychology department of Texas 

A&M University to participate in the study in partial fulfillment of a course requirement. 

In addition to course credit, participants were eligible to earn a monetary reward of $80, 

$40, or $20 (per person) for teams with the three highest average performance scores 

during the study. 

A power analysis was conducted using G*Power 3.1 (Faul, Erdfelder, Buchnar, 

& Lang, 2009) to estimate the optimal number of participants. Because the results of the 

power analysis will differ depending on the type of homologous model tested, the 

following power estimates are based on the more restrictive homology models—scalar 

or metric similarity. For instance, to test for metric similarity, Chen, Bliese, and Mathieu 

(2005) recommended the use of an F-test to evaluate the fit of two nested models (see 

Statistical Analyses section for details). If the resultant F value is not significantly 

different from zero (i.e., observed R2 increase is not statistically significant) then metric 

similarity is demonstrated.  

A power analysis was conducted to determine the power level associated with the 

final sample size. Consonant with Chen, Bliese, and Mathieu’s (2005) recommendation, 

a liberal p value of .20 was adopted to evaluate the statistical significance of the F test. 

Using an alpha of .20, the sample size of 81 teams resulted in a 99% chance of detecting 
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a medium effect size (F2 = 0.15) and a 76% chance of detecting a small to medium effect 

size (F2 = 0.05). 

Configural homology is demonstrated when observed correlations are 

statistically significant across individual and team levels. So, based on the sample size of 

81 teams, the power to reject the null hypothesis that correlations across levels are 

different from zero is higher than the power to reject scalar or metric similarity. 

Consequently, the power to test configural similarity was higher than the power to test 

scalar and metric similarity. At the team level, the achieved power for detecting a 

medium effect size (ρ = .30, two-tailed, α = .20, N = 81), was 84% whereas at the 

individual level, the achieved power for detecting a medium effect size (ρ = .30, two-

tailed, α = .05, N = 243) was 99%. 

7.2. Measures 

7.2.1. Crisis in the Kodiak: Oilrig Search and Rescue 

The performance task was a disaster response simulation that was developed to 

include task, goal, and feedback interdependencies (Arthur, Naber, Jarrett, Glaze, 

Shurig, McDonald, & Muñoz, 2011). Missions entail the roles of oilrig workers, 

helicopter aviators, and boat captains tasked with responding to an off-shore oilrig 

explosion. Each team operates nine platforms (three for each role) to achieve two goals 

of shutting off oil valves and rescuing survivors (see Figure 2). Platforms have unique 

capabilities that can be used individually and interactively to accomplish mission 

objectives. So, team members must coordinate the three platforms that comprise their 

assigned roles to achieve the mission goals. Each mission lasted 10 minutes. Participants 
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also completed the task individually by controlling all nine platforms simultaneously; 

otherwise, the individual and team missions were identical. Team members 

communicated with each other via voice-activated microphones and headphones. Team 

members performed the individual and team missions in the same room at their own 

computer stations facing the wall. 

 

 
 

Figure 2. Example screenshot of the Crisis in the Kodiak: Oilrig Search and Rescue 
simulation. 
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7.2.1.1. Performance and Behaviors 

Participants have two equally important goals—shutting off valves to stop the 

flow of oil fueling the oilrig fire, and healing and picking up survivors. Points are earned 

for survivors healed, survivors rescued, and oil valves shut off. There were 

 20 survivors. Participants receive 10 points for each survivor healed and another 10 

points for each healed survivor picked up. There are 4 shutoff valves and each valve 

successfully turned off is worth 50 points. The maximum performance score is 600 

points per mission—regardless of whether the mission is performed individually or as a 

team. Individual and team performance total scores across the five trials (baseline 

performance, and performance missions 1 through 4) served to operationalize individual 

and team performance. 

Behaviors were assessed by counting the number of times participants engaged in 

specific types of actions during the missions. For instance, an oilrig worker has 

capabilities that allow this platform to heal an injured survivor by itself or in conjunction 

with the helicopters or the boats. So, as an example, if an individual chose to use only 

the helicopter to heal survivors over the boats, then a stronger mental model link should 

exist between the concepts of “healing survivors” and “helicopter” than between the 

concepts of “healing survivors” and “boats”. Consequently, the frequency with which 

specific actions were carried out during the performance episode were used to 

operationalize behaviors at the individual and team level. 
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7.2.2. Mental Models 

Target, a graphical user interface developed by Schvaneveldt (2009b) was used 

to assess participants’ mental models. Taking each concept in turn, the program presents 

the concept at the center of a bull’s eye-type diagram. Participants were instructed to 

drag-and-drop the remaining concepts around the focal concept or target to reflect the 

closeness or similarity of the concepts to the focal concept or target. Hence, relatedness 

ratings were based on the distance between a given concept and the target (0 = less 

related or unrelated, 4 = synonyms). The same procedure is repeated until every concept 

is positioned as the focal concept (see Figure 3 and the Appendix). 

Fifteen concepts were used to measure mental models in the present study. These 

concepts were developed through a task analysis (Table 2). The concepts were reviewed, 

revised, and finalized via consensus by three SMEs who were senior Ph.D. Industrial 

and Organizational Psychology graduate students involved in the design and 

development of Crisis In The Kodiak: Oilrig Search And Rescue and with more than a 

year of experience with the research tool. All SMEs have more than 50 hours of 

experience playing the simulation as individuals and teams. As a team, the SMEs 

consistently succeeded at shutting off the four oilrig valves in the scenario while healing 

and rescuing over 15 of the 20 survivors (approximately 500 out of 600 possible points). 

Individually, SMEs were able to shut off 3 of the 4 oilrig valves and heal and rescue 

about 10 survivors (approximately 350 points). As a comparison, mean individual 

performance scores among pilot study participants was 157.45 (SD = 93.83). In contrast, 

mean team performance for the pilot study was 222.67 (SD = 96.89).  Thus, individually 
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and as a team, SMEs outperformed pilot study participants by approximately 2 SDs. The 

SMEs included the performance task simulator lead programmer and the author of the 

present study. 

 

 

 
Figure 3. Screen capture of a participant’s view of the bull’s eye diagram for presenting 
mental model terms. The focal term (“Helicopter”) is at the center of the bull’s eye while 
the remaining terms are being dragged and dropped around the focal concept to indicate 
their degree of relatedness (synonyms, extremely related, largely related, moderately 
related, and less related or unrelated [outside the bull’s eye]). 
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Table 2 
 
Concepts Utilized for Mental Model Assessment 

 
Concepts Description Final mental model terms 
Platforms 

Oilrig Worker Rescue platform moving on the surface of the rig with the 
capacity of autonomously healing burn injuries, putting out 
all types of fire, and shutting off valves. It can also stop 
hemorrhage and hypothermia but only in conjunction with 
other platforms. 
 

Oilrig Worker 

Helicopter Rescue platform flying above the rig with the capacity of 
autonomously stopping hemorrhages, putting out electrical 
fires, and evacuating survivors by air. It can also heal burns 
and hypothermia and putting out structural and oil fires but 
only in conjunction with other platforms. 
 

Helicopter 

Boat Rescue platform circling around the rig with the capacity 
of autonomously stopping hypothermia, putting out 
electrical fires, and evacuating survivors by water. It can 
also heal burns and hypothermia and putting off structural 
and oil fires but only in conjunction with other platforms. 
Boats have a larger view range compared to other 
platforms. Thus, although boats are limited to circle around 
the rig, their view range permits their involvement in 
actions occurring inside the rig. 

Boat 
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Table 2 (cont’d) 
 
Concepts Utilized for Mental Model Assessment 

 
Concepts Description Final mental model terms 
Capability tasks   

Matching vulnerabilities and capabilities   
Healing survivors Finding relevant information for diagnosing and 

treating worker injuries. 
Healing survivors 

Putting out fires Finding relevant information for diagnosing and 
extinguishing different types of fire. 

Putting out fires 

Shutting off valves Using shut-off valve capability to shut down valves. Shutting off valves 
Picking up survivors Rescuing healed survivors by picking them up. Picking up survivors 

In-game planning    
Finding a route Finding the best path to get to a specified 

destination quickly. 
Finding a route 

Coordinating clicks Communicating with other decision makers to use 
combined capabilities in a timely manner. 

Coordinating clicks 

Time management Completing tasks and goals within the specified 
time limit. 

Time management 

Maneuvering around obstacles Moving around scenario quickly. Maneuvering 
Managing survivor capacity Being aware of the remaining pick-up capacity. Survivor capacity 

Non-capability tasks 

Strategic positioning Positioning platforms strategically for searching for 
valves and survivors, and helping other decision 
makers. 

Strategic positioning 

Clearing the path for oilrig workers Putting out fires along a path for oilrig workers to 
reach valves quickly. 

Clearing the path 

Requesting assistance Communicating needs to other platforms. Requesting assistance 
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7.2.2.1. Mental Model Accuracy and Similarity 

Accuracy scores represent the extent to which an individual’s (or team’s) mental 

model approximates an expert model. Mental model accuracy was obtained using C 

scores to index the closeness of each individual mental model to the expert-based model. 

Team mental model accuracy was operationalized as the mean accuracy (mean C scores) 

of each team. The normative or referent structure used for the present study was the 

leading programmer’s mental model. As expected, the normative mental model 

displayed acceptable psychometric characteristics. First, the referent structure coherence 

score of .24 was higher than the cutoff point of .20 recommended by Schvaneveldt 

(2009a). Second, as indicated by the ratio of links (20 links) to the total number of 

components (15 components) the network was considered fairly parsimonious (Figure 

4). 

Team mental model similarity is typically operationalized using the average 

similarity between team members. Within each team, individual members’ mental 

models were compared to each other. Then, the mean similarity between team member 

pairs was used to index team mental model similarity—that is, average C scores within 

the team.  

7.2.3. Declarative Knowledge 

A 3-alternative 42-item test was developed to assess participants’ declarative 

knowledge of Crisis in the Kodiak. This test was administered at baseline prior to task 

exposure and at three additional time-points throughout the study protocol. Items on this 

test covered basic knowledge concerning the team mission (e.g., “How many points does 
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a team earn for each shutoff valve it successfully turns off ?”) and the simulation 

interface (e.g., “In which tab does Crisis in the Kodiak display information about what 

first aid items can be used to heal a survivor?”). It also included items to assess team 

knowledge (i.e., knowledge about team members’ capabilities). Example items of team 

knowledge were “"Which platforms cannot pick up healed survivors?" and “Which 

platforms can independently extinguish an oil fire without help from another platform?”. 

Consequently, the team knowledge items assessed role knowledge (i.e., knowledge 

about team members own capabilities) as well as interpositional knowledge (i.e., 

knowledge about other team members capabilities.) 

At each administration, individual total scores were calculated as the percentage 

of correct answers. Based on the premise that team knowledge is best represented by an 

additive composition model in which the team-level construct is the mean of the lower-

level scores, team knowledge was operationalized as the average of individual members’ 

declarative knowledge test scores within each team. Excluding the baseline measure, the 

reliability of the declarative knowledge scores were acceptable. At the individual level, 

the test-retest reliabilities for the declarative knowledge scores were .78, .72, and .78 for 

Time 2/Time 3, Time 2/Time 4, and Time 3/Time 4, respectively. At the team level, the 

test-retest reliabilities for the declarative knowledge scores were .85, .81, and .82 for 

Time 2/Time 3, Time 2/Time 4, and Time 3/Time 4, respectively.  
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Figure 4. Pathfinder network of the referent mental model.  
Coherence = .24; Number of links = 20. 
 
 
 

7.3. Design and Procedure 

Because the present study is concerned with the relationship between measured 

variables (i.e., mental models and performance), the study is a multilevel correlational 

design in which individuals are nested in teams. Individuals and teams were trained to 

perform the computer-based simulation over the course of a 2-day 48-hour interval 

protocol (Table 3). At the beginning of the study, participants were randomly assigned to 

one of three roles (oilrig worker, helicopter aviator, or boat captain) and performed this 

role during team missions throughout the duration of the study.  



 

61 

 

Participants participated in a dynamic, networked computer-based simulation. 

Three-person teams operated the simulator collectively (through specialized roles) and 

as individuals (performing all roles simultaneously). Thus, participants performed the 

same complex task as individuals and teams. 

During the first phase of the study (Day 1), participants were trained to operate 

the simulator and perform a series of individual and team missions. Next, after a 48-hour 

interval, participants returned to complete the second and final session of the study (Day 

2). The Day 1 and Day 2 protocols were 3 and 2 hours long, respectively. Participants 

received pre-recorded in-role and interpositional tutorials, which were self-paced and 

interactive. A task aid was available onscreen during training and performance.  

In addition to the baseline team and individual performance missions, 

participants completed eight additional missions (four as individuals and four as a team). 

Team and individual missions were counterbalanced—individual missions followed by 

team missions, and team missions followed by individual missions. Prior to all team 

missions, participants were given 2-minute planning periods with their teammates where 

they were encouraged to formulate a mission strategy. Mental models were measured at 

the end of Day 2. 
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Table 3 
 
Study Protocol 

 

Day ActivityA 
1 Spoken Training 
  
 Briefing/Planning 
 Team Mission 0 
 Briefing/Planning 
 Individual Mission 0 
  
 In-Role Training 
 Interpositional Training 
  
 Briefing/Planning 
 Team Practice Mission 
 Individual Practice Mission 
  
 Briefing/Planning 
 Team Mission 1 
 Briefing/Planning 
 Individual Mission 1 
  
 Briefing/Planning 
 Team Mission 2 
 Briefing/Planning 
 Individual Mission 2 
  

48-hour interval  
  
2 Briefing/Planning 
 Team Mission 3 
 Briefing/Planning 
 Individual Mission 3 
  
 Briefing/Planning 
 Team Mission 4 
 Briefing/Planning 

 Individual Mission 4 
  
 Mental Model Assessment 

Note. The order of team and individual missions (practice and test missions) was 
counterbalanced.  
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7.4. Statistical Analyses 

In addition to descriptive statistics and intercorrelations amongst study variables 

at individual and team levels, Chen, Bliese, and Mathieu’s (2005) statistical procedures 

for testing similarity across levels was used to test the study hypotheses. Although the 

study hypotheses focus on differences between relationships across levels of analysis, a 

first step is to determine if these associations are statistically significant within each 

level. If the relationships between mental models and performance are statistically 

significant within each level, then the higher-level estimates can be compared to the 

lower-level estimates to determine how much those estimates differ and, more 

importantly, if the observed difference is consistent with the directionality of the study 

hypotheses. Specifically, the following steps are necessary to test for homologous 

theories: 

1. Estimate the lower level model (M1) by regressing individual performance on 

the individual level predictor using RCM. 

2. Calculate the expected team performance for each team by multiplying each 

team-level predictor by the regression weights obtained in step 1. Then, 

estimate the proportionally constrained model by regressing the actual team 

performance scores on the predicted team performance scores (M2). 

3. Estimate a higher level model in which the estimates of the higher level 

regression weights are freely estimated (M3). 

4. Compare the baseline (M3) and proportionally constrained model (M2) using 

Equation 1: 
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𝐹 =  
[𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀2)−𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀3)]/(𝑘𝑀3−𝑘𝑀2)

𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀3)/ (𝑁−𝑘𝑀3) 
    (1) 

Where SSerror(M2) and SSerror(M3) are the sum of squares error for M2 and 

M3, kM3 is the number of parameters estimated in M3, kM2 is the 

number of parameters estimated in M2, and N is the team-level sample 

size. 

5. Scalar similarity is supported if the F test is nonsignificant. Failure to reject 

scalar similarity indicates that the pattern of the magnitude of effects does not 

differ within versus between units. That is, a single scaling factor applies 

equally well to the set of predictors. 

6. To test for metric similarity, the fit of M2 is compared to a new model (M4) in 

which the rescaling factor is set to 1. Specifically, the following equation was 

used to test for metric similarity: 

𝐹 =  
[𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀4)−𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀2)]/(𝑘𝑀2−𝑘𝑀4)

𝑆𝑆𝑒𝑟𝑟𝑜𝑟(𝑀2)/ (𝑁−𝑘𝑀2) 
    (2) 

Where SSerror(M4) and SSerror(M2) are the error terms for M4 and M2, kM2 is the 

number of parameters estimated in M2, kM4 is the number of parameters 

estimated in M4, and N is the team-level sample size. 
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8. RESULTS 

8.1. Mental Model Accuracy and Declarative Knowledge as Predictors of 

Performance Across Levels of Analysis 

Individual- and team-level descriptive statistics are presented in Tables 4 and 5, 

respectively. The pattern of performance scores suggest that individuals and teams 

improved their performance—from nearly zero points for baseline performance up to 

160.08 (Individual Mission 4) and 268.77 points (Team Mission 4). In contrast, 

participants’ scores on the declarative knowledge test improved substantially following 

the baseline assessment (48%) but then remained fairly stable around 76-80% accuracy. 

In addition, intercorrelations between performance scores are consistent with a simplex 

pattern, with adjacent trials been more strongly correlated compared to trials further 

apart. Specifically, correlations amongst performance scores for adjacent trials ranged 

from .27 to .78 at the team level, and from .22 to .79 at the individual level. As expected, 

correlations between the baseline performance and performance scores from other 

missions are lower than correlations between missions 1-4 due to a floor effect for initial 

task performance. Extremely low scores (and variance) during initial task performance is 

not surprising considering that the task is deemed very difficult for someone with no 

previous experience with the task. 
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Table 4 

 
Individual-Level Descriptive Statistics and Intercorrelations Amongst the Study Variables 

 
Variable N M SD 1 2 3 4 5 6 7 8 9 10 11 

1.   Age 243 18.98 1.78            
2.   Sex 243 - - .15*           
3.   DK Time 1 243 48.25 9.00 .04 .07          
4.   DK Time 2 237 76.43 11.76 -.04 .22* .19*         
5.   DK Time 3 243 76.53 12.29 -.04 .21* .25* .78*        
6.   DK Time 4 237 79.88 11.22 -.07 .18* .23* .72* .78*       
7.   Mental Model Accuracy 243 0.26 0.06 -.02 .01 -.01 .11 .23* .23*      
8.   Individual Mission 0 240 4.38 15.27 .04 .14* .01 .05 .09 .06 -.03     
9.   Individual Mission 1 241 78.42 62.90 .00 .45* .00 .23* .31* .24* .18* .22*    
10. Individual Mission 2 242 111.69 74.23 -.12 .37* -.01 .23* .26* .25* .21* .21* .70*   
11. Individual Mission 3 240 118.08 78.94 -.07 .42* .07 .28* .32* .31* .25* .25* .70* .76*  
12. Individual Mission 4 243 160.08 89.58 -.08 .44* .06 .30* .33* .32* .24* .18* .61* .69* .79* 

 

Note. DK = declarative knowledge. DK scores indicate percentage of correct answers. Dummy codes for sex are female = 0 (N = 140) and  
male = 1 (N = 103).For each mission, performance scores could range from 0-600. *p < .05 (two-tailed). 
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Table 5 

 
Team-Level Descriptive Statistics and Intercorrelations Amongst the Study Variables 

 
Variable N M SD 1 2 3 4 5 6 7 8 9 10 11 12 

1.   Age 81 18.98 1.19             
2.   Sex 81 - - .28*            
3.   DK Time 1 81 48.25 5.37 -.07 .09           
4.   DK Time 2 79 76.43 7.90 -.03 .25* .34*          
5.   DK Time 3 81 76.53 8.34 -.05 .19 .42* .85*         
6.   DK Time 4 80 79.90 7.40 -.04 .14 .37* .81* .82*        
7.   Mental Model Accuracy 81 0.26 0.03 .08 .04 .14 .20 .18 .14       
8.   Mental Model Similarity 81 0.36 0.09 .05 -.07 .07 .07 .20 .20 .27*      
9.   Team Mission 0 78 2.82 10.80 .01 -.06 -.11 .09 .09 .12 .16 .15     
10. Team Mission 1 80 150.75 84.28 .05 .41* .06 .41* .43* .34* .19 .30* .27*    
11. Team Mission 2 79 204.18 91.49 -.04 .37* .14 .41* .43* .32* .33* .22 .15 .78*   
12. Team Mission 3 78 230.13 99.39 .09 .34* .09 .34* .39* .31* .27* .34* .17 .72* .71*  
13. Team Mission 4 81 268.77 98.53 -.18 .19 -.05 .19 .24* .18 .28* .29* .13 .58* .62* .73* 

 

Note. DK = declarative knowledge. DK scores indicate percentage of correct answers. Dummy codes for sex are female = 0 (N = 140) and male = 1  
(N = 103). For each mission, performance scores could range from 0-600. *p < .05 (two-tailed). 



 

68 

 

Because the study used a longitudinal design, Tables 4 and 5 include data 

collected at different time points (e.g., declarative knowledge measured at Time 1, 2, 3, 

and 4). Nevertheless, because mental models were assessed only at the end of Day 2, 

performance scores from team mission 4 and individual mission 4 were used as the focal 

dependent variables to test the study hypotheses. 

Although the objective of the present study was to investigate the relationship 

between mental model accuracy and performance, the relationship between mental 

model similarity and performance was also examined. As can be seen in Table 5, the 

relationship between mental model similarity and team performance was positive and 

statistically significant for team mission 4 (r = .29, p < .05). Also, mental model 

similarity was moderately positively correlated to mental model accuracy (r = .27, p < 

.05). These finding suggest that teams with accurate mental models tend to have similar 

mental models because their mental models converge as they approximate the expert 

mental model which, in turn, is thought to be a reasonably good approximation of the 

true state of the world. 

8.2. Testing a Homology Theory of Mental Models 

Chen, Bliese, and Mathieu (2005) posited that a necessary condition to conduct 

scalar similarity analyses is the presence of consistent statistically significant 

correlations across levels of analysis. An examination of Tables 4 and 5 indicates that 

the relationship between mental model accuracy was statistically significant at both the 

individual (r = .24, p < .05) and team level of analysis (r = .28, p < .05). In contrast, 
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declarative knowledge’s association with performance was statistically significant at the 

individual level (r = .32, p < .05) but not at the team level (r = .18, p > .05). Additional 

analyses conducted at the individual level demonstrated that mental model accuracy 

predicted additional variance in performance after accounting for the effect of 

declarative knowledge, ΔR2 = .03, F (1,234) = 7.23, p < .05. Thus, although declarative 

knowledge and mental model accuracy were correlated at the individual level (r = .23, p 

< .05), they accounted for different portions of the criterion space. 

Because only mental model accuracy was a statistically significant predictor of 

performance across levels, tests of scalar and metric similarity were conducted using 

mental model accuracy as the sole predictor. Consonant with Chen, Bliese, and 

Mathieu’s (2005) framework for testing similarity across levels, a RCM was estimated—

using the PROC MIXED procedure in SAS (version 9.3)—with mental model accuracy 

as the predictor and individual performance as the dependent variable (Model 1). As 

recommended by Chen, Bliese, and Mathieu (2005), all variables in the model were 

previously standardized in order to make the resulting estimates comparable across 

levels. Results from Model 1 indicated that mental model accuracy was a statistically 

significant predictor of performance (β = .23, t = 3.80, p < .05) after accounting for team 

nesting. 

Next, a new predicted score was created by multiplying the higher-level predictor 

(i.e., team mental model accuracy) by its respective lower-level estimate obtained in the 

previous step. The specific values used to create the new performance scores were β0 = 
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.00 and β1 = .23. The next step was to test for scalar similarity by regressing team 

performance on the newly created predictor (Model 2). Because only one predictor was 

used to estimate the new variable (i.e., mental model accuracy), the parameter estimate 

resulting from this step is interpreted directly as the rescaling factor to equate the 

individual- and team-level estimates for the mental model accuracy-performance 

relationship. According to Model 2 the team-level parameter was slightly stronger than 

the individual-level parameter. Specifically, the team-level parameter was 1.21 the size 

of the individual level parameter. 

To evaluate scalar similarity, Model 2 is typically compared to a third model 

(Model 3) in which the association between team mental model accuracy and 

performance is freely estimated. However, a comparison between Model 2 and Model 3 

is meaningless if the models have only one predictor. When there is more than one 

predictor, the comparison is meaningful in the sense that one could evaluate whether the 

rescaling factor (i.e., the parameter estimate of 1.21 from Model 2) applies equally well 

to a set of predictors. So, because the comparison between Models 2 and 3 was 

unnecessary, the next step was to examine whether the observed value of 1.21 was 

statistically significantly different from 1—that is, to test for metric similarity. To 

accomplish this, the fit of Model 2 was compared to a model where the team-level and 

individual-level parameters were set to be identical (Model 4). Again as per Chen, 

Bliese, and Mathieu’s (2005) recommendation, to test for metric similarity the fit of 
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Model 4 was compared to the fit of Model 2 by comparing the error terms of both 

models using Equation 2. 

The SS error for the full metric similarity model was 73.80, whereas the SS error 

for Model 2 was 73.61. Applying Equation 2 yielded an F value of 0.20 (p > .05) which 

indicates a failure to reject metric similarity. In other words, the observed difference 

between the magnitudes of the individual and team-level coefficients were not 

statistically significant—the rescaling factor of 1.21 was not statistically significantly 

different from 1. Hypothesis 1 stated that the relationship between mental model 

accuracy and performance would be stronger at the individual than the team level of 

analysis. Contrary to Hypothesis 1, the comparison between the constrained and 

unconstrained models demonstrates that the magnitude of the relationship between 

mental model accuracy and performance was similar at the team level and the individual 

level. 

Hypothesis 2 stated that declarative knowledge’s relationship with performance  

would be stronger at the individual level compared to the team level of analysis. Because 

declarative knowledge was not a statistically significant predictor of performance at the 

team level, scalar or metric invariance tests were precluded. Notwithstanding, the 

present results support Hypothesis 2. 

The previous analyses used the mean to operationalize team declarative 

knowledge and team mental model accuracy. However, to compare the efficacy and 

appropriateness of alternative composition models, additional analyses were conducted 
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using the minimum and the maximum team member mental model accuracy and 

declarative knowledge as predictors of team performance. Results indicated stronger 

associations between team mental models and performance when using the minimum (r 

= .29, p < .05) rather than the maximum (r = .12, p > .05) to operationalize team mental 

model accuracy. In contrast, the pattern of results for declarative knowledge were in the 

opposite direction with weaker associations between declarative knowledge and 

performance when using the minimum (r = .10, p > .05) instead of the maximum (r = 

.21, p > .05). The predictive validities of the alternative operationalizations of mental 

model accuracy and declarative knowledge—the minimum and the maximum, 

respectively—were not statistically significantly different from the predictive validities 

of mental model accuracy and declarative knowledge using the mean. However, the 

differences between the minimum and the maximum for predicting performance were 

statistically significant. Specifically, the differences of .17 (rmin - rmax = .29 - .12 = .17) 

for mental model accuracy and -.11 (rmin - rmax = .10 - .21 = -.11) for declarative 

knowledge were statistically significantly different from zero (p < .10; see Meng, 

Rosenthal, & Rubin, 1992). Thus, although similar to the mean, the specified alternative 

operationalizations (i.e., minimum and maximum) of mental models and declarative 

knowledge were statistically significantly different from each other in predicting team 

performance. 

Concordant with the previous analyses, homology tests were conducted only if 

statistically significant effects were found at the individual and team levels. Thus, given 
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that the maximum declarative knowledge was not statistically significantly associated 

with performance (r = .21, p > .05), homology tests were not conducted for this measure. 

Homology tests conducted for mental models using the minimum indicated that the 

scaling factor for team mental model accuracy was 1.23. However, this value of 1.23 

(very close to the 1.21 obtained for the mean mental model accuracy) was not 

statistically significantly different from 1, F = 0.27, p > .05. 

Together, these results suggest that individual and team mental model accuracy 

are valid predictors of individual and team performance and that the magnitude of this 

relationship is similar across the individual and team levels. Further analyses suggested 

that the method for aggregating declarative knowledge and mental models has 

substantial implications for predicting team performance. For mental model accuracy, 

the minimum was superior to the maximum for predicting team performance, whereas 

for declarative knowledge the maximum was superior to the minimum for predicting 

team performance. 

8.3. Relationships Between Similarity Ratings and Behaviors Across Levels of 

Analysis 

A set of 15 observed behaviors—obtained from an analysis of the text output that 

is automatically generated during each mission—were used as criteria for the analyses of 

the relationships between similarity rating and behaviors (Table 6). Figure 5 displays an 

example of the text output. 
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Figure 5. Example of Text Output with Behavioral Data 
 
 
 

In the example presented in Figure 5, lines 2-3 indicate that one of the boats used 

blankets to heal survivor #13. Subsequently, one of the helicopters joined the boat by 

providing blankets (lines 6-9). Lines 12-15 indicate that the event was terminated as no 

other platform joined the action. Although a single target was engaged, the events from 

lines 2 to 15 were coded as a three separate behaviors—boat engaging a survivor, 
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helicopter engaging a survivor, and boat interacting with helicopter. Lines 18-42 suggest 

that the previous engagement was unsuccessful as survivor #13 was again engaged by 

the boat and the helicopter now using a different set of capabilities (i.e., oxygen and 

blankets). Events from lines 18-42 constitute three additional events—again, boat 

engaging a survivor, helicopter engaging a survivor, and boat interacting with helicopter. 

The 15 behaviors coded for the present study are presented in Table 6. 

 

Table 6 

Coded Behaviors and Corresponding Similarity Rating Pairs  

Type of Behaviors Similarity rating pairs 

Helicopter healing survivor Helicopter - Healing survivors 
Helicopter picking up survivor Helicopter - Picking up survivors 
Helicopter putting out fire Helicopter - Putting out fire 
Helicopter shutting off valvesA Helicopter  - Shutting off valves 
Oilrig Worker healing survivor Oilrig Worker - Healing survivor 
Oilrig Worker picking up survivorB Oilrig Worker - Picking up survivor 
Oilrig Worker putting out fire Oilrig Worker - Putting out fire 
Oilrig Worker shutting off valves Oilrig Worker - Shutting off valves 
Boat healing survivor Boat - Healing survivor 
Boat picking up survivor Boat - Picking up survivor 
Boat putting out fire Boat - Putting out fire 
Boat shutting off valvesA Boat - Shutting off valves 
Helicopter working with Oilrig Worker Helicopter - Oilrig Worker 
Helicopter working with Boats Helicopter - Boats 
Oilrig Worker working with Boats Oilrig Worker - Boats 

 

Note. ANeither the helicopters nor the boats are capable of shutting off valves, but 
putting off a fire on top of a valve counts as a valve engagement. BBecause oilrig 
workers cannot pick up survivors, the frequency count for these behaviors is effectively 
zero. 
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Table 7 

Frequency of Individual and Team Behaviors per Type of Behavior  

 Individual level  Team level   
 N = 159  N = 53   
Type of Behaviors M SD Min Max  M SD Min Max     d 

Helicopter healing survivor 8.56 5.94 0 29  12.42 5.43 0 22  0.68* 
Helicopter picking up survivor 6.08 4.69 0 22  8.42 5.06 0 23  0.48* 
Helicopter putting out fire 2.89 2.61 0 10  7.47 14.78 0 108  0.43* 
Helicopter shutting off valvesA 2.75 3.27 0 25  2.79 2.82 0 10  0.01 
Oilrig Worker healing survivor 3.87 3.31 0 12  5.17 4.21 0 20  0.34* 
Oilrig Worker picking up survivorB 0.00 0.00 0 0  0.00 0.00 0 0  0.00 
Oilrig Worker putting out fire 8.28 5.11 0 26  15.55 21.35 4 162  0.47* 
Oilrig Worker shutting off valves 4.86 4.38 0 28  7.58 6.28 0 43  0.50* 
Boat healing survivor 3.89 4.35 0 18  10.06 5.22 0 23  1.28* 
Boat picking up survivor 1.74 2.85 0 18  4.79 3.62 0 18  0.94* 
Boat putting out fire 1.54 2.41 0 18  8.32 19.22 0 108  0.49* 
Boat shutting off valvesA 0.94 1.65 0 11  2.34 3.14 0 14  0.56* 
Helicopter working with Boats 5.20 4.34 0 17  4.19 4.18 0 21  -0.24* 
Oilrig Worker working with Boats 3.23 3.61 0 19  5.19 5.30 0 23  0.43* 
Oilrig Worker working with Helicopter 1.15 1.67 0 7  1.30 1.81 0 8  0.09 
Total 54.97 18.21 8 122  95.58 45.17 34 378  1.18* 

 

Note. ANeither the helicopters nor the boats are capable of shutting off valves, but putting off a fire on top of 
a valve counts as a valve engagement. BBecause oilrig workers cannot pick up survivors, the frequency count 
for these behaviors is effectively zero.  
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Table 7 presents the mean frequency of each type of behavior at the individual 

and team level of analysis. Overall teams performed more behaviors (M = 95.58, SD = 

45.17) than individuals (M = 54.97, SD = 18.21), t(158) = 11.10, p < .05, d = 1.18. 

Interestingly, the number of times that oilrig workers and helicopters worked together to 

perform a task was similar between individual and team missions. Whereas oilrig 

workers interacted more with boats during team missions, helicopters interacted more 

with boats during individual missions. 

Because the mental model assessment was based on 15 concepts, each individual 

mental model was comprised of 15 × (15 -1) = 210 similarity ratings. A subset of 15 

similarity ratings (out of the 210) that matched the 15 specified behaviors was used to 

test Hypothesis 3. For instance, the rating for the pair helicopter-healing survivors was 

used to estimate the number of times a helicopter healed a survivor. Because each pair 

was rated twice during the mental model assessment, the two ratings were combined into 

a single rating by calculating the median between the two. The decision to use the 

median (instead of the mean, for instance) is consistent with the procedure for 

combining mental models from different individuals in Pathfinder (Schvaneveldt, 

2009a). 

.
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Table 8 

Mean Individual and Team Similarity Ratings by Concept Pair 

 Individual level  Team level   
 N = 159  N = 53   
Pair M SD Min Max  M SD Min Max    d 

Helicopter healing survivor 2.64 0.75 0.00 4.00  2.81 0.31 2.00 3.50  0.30* 
Helicopter picking up survivor 2.97 0.54 1.00 4.00  2.92 0.28 2.00 3.50  -0.12 
Helicopter putting out fire 2.56 0.66 0.00 4.00  2.63 0.41 1.50 3.00  0.13 
Helicopter shutting off valves 1.22 1.09 0.00 4.00  1.14 0.90 0.00 3.00  -0.08 
Oilrig Worker healing survivor 2.32 0.78 0.00 4.00  2.33 0.54 1.00 3.00  0.01 
Oilrig Worker picking up survivor 0.69 0.95 0.00 3.00  0.50 0.74 0.00 3.00  -0.22 
Oilrig Worker putting out fire 2.64 0.63 0.00 4.00  2.75 0.40 1. 50 3.50  0.21 
Oilrig Worker shutting off valves 3.37 0.52 2.00 4.00  3.35 0.47 2.50 4.00  -0.04 
Boat healing survivor 2.60 0.72 0.00 4.00  2.75 0.33 2.00 3.50  0.27* 
Boat picking up survivor 2.70 0.80 0.00 4.00  2.78 0.54 0.00 4.00  0.12 
Boat putting out fire 2.50 0.73 0.00 4.00  2.58 0.42 2.00 3.50  0.13 
Boat shutting off valves 1.08 1.06 0.00 4.00  0.95 0.85 0.00 3.00  -0.14 
Helicopter working with Boats 1.38 1.25 0.00 4.00  1.36 1.08 0.00 4.00  -0.02 
Oilrig Worker working with Boats 1.11 1.18 0.00 4.00  1.00 0.97 0.00 3.00  -0.10 
Oilrig Worker working with Helicopter 1.41 1.28 0.00 4.00  1.37 1.09 0.00 4.00  -0.03 
Total 2.08 0.49 0.87 3.20  2.08 0.31 1.53 2.93  0.00 

 

Note. Similarity ratings range from 0 (unrelated) to 4 (synonyms). Team-level similarity was operationalized 
 as the median similarity across individual team members. 
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The individual ratings were aggregated at the team level using the median which, 

again, is consistent with the procedure that Pathfinder (Schvaneveldt, 2009a) uses to 

aggregate similarity ratings from multiple raters. Table 8 presents the individual- and 

team-level similarity ratings for the 15 concept pairs utilized during the mental model 

assessment. As can be seen in Table 8 differences between team and individual 

similarity ratings are generally small and non-significant. 

Hypothesis 3 stated that the relationship between similarity ratings and behaviors 

would be stronger at the individual level compared to the team level. To test this 

hypothesis, the correlation between similarity ratings and behavior frequencies was 

computed for each individual and team (with stronger associations between the 15 

similarity ratings-behavior pairs indicating greater consistency between mental models 

and behaviors). Because individuals were nested in teams, the mean correlation 

difference between individuals and teams was tested using a paired-samples t-test. 

Results from this analysis indicated that the mean correlation between similarity ratings 

and behaviors at the individual level (M = .29, SD = .22) was substantially lower than 

the team-level mean correlation (M = .46, SD = .19), t(158) = -8.45, p < .05, d  = -.83. 

Contrary to Hypothesis 3, these results suggest that teams were more effective at 

implementing their mental models than individuals. 
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9. DISCUSSION 

The purpose of the present study was to examine the relationship between mental 

models and the acquisition of a complex skill across levels of analysis. It was 

hypothesized that the relationship between mental models and performance would be 

stronger at the individual level than the team level due to inherent challenges in the 

process of integrating team member’s knowledge during the execution of team tasks. 

Contrary to this expectation, the magnitude of this relationship was similar across levels 

of analysis. In addition, it was hypothesized that declarative knowledge would be a 

stronger predictor of performance at the individual level compared to the team level of 

analysis. The present results successfully replicated Chen, Thomas, and Wallace’s 

(2005) findings on the relationship between declarative knowledge and performance. 

Specifically, results demonstrated stronger associations between declarative knowledge 

and performance at the individual level compared to the team level of analysis. Finally, 

the association between similarity ratings and behaviors was substantially stronger 

among teams than individuals. 

Multilevel studies have potential implications for team selection and team 

composition. Stronger associations at the individual level compared to the team level, 

would indicate the utility of the selection system will lessen when team performance is 

the criterion. On the other hand, stronger associations at the team level suggest the 

presence of synergistic performance effects occurring at the team level (Larson, 2010). 

The results of the present study indicate similar relationships between mental model and 

performance across levels which suggests that individual mental model assessments 
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serve equally well to predict individual and team performance, a finding that has direct 

implications for team selection and composition.  

Mental model accuracy and declarative knowledge were valid predictors of 

individual performance. Subsequent analyses conducted at the individual level 

demonstrated that mental model accuracy accounted for variance beyond the effect of 

declarative knowledge, which is also consistent with previous findings in this domain 

(e.g., Cooke, Kiekel, & Helm, 2001; Kraiger & Salas, 1993). However, as previously 

noted, declarative knowledge was not a valid predictor of team performance. There are 

two plausible explanations for this finding. First, the relationship between team 

declarative knowledge and team performance was lower at Time 4 compared to Time 2 

(r = .41, p < .05) and Time 3 (r = .39, p < .05) which may reflect a shift in the 

relationships between determinants of team performance across trials, which is 

reminiscent of individual skill acquisition models (e.g., Ackerman, 1988; Anderson, 

1982). Specifically, by the end of training, teams may have been transitioning from 

controlled to automatic processing strategies, which would explain the observed 

decrease in declarative knowledge’s predictive validity at the end of training. However, 

because this pattern of result was observed only at the team level, this change may be 

attributed to the acquisition of (automatized) teamwork skills rather than taskwork 

knowledge. Thus, the ability of team members to work together effectively may be more 

important at this stage than in previous stages in terms of differentiating between high- 

and low-performing teams.  
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The second explanation for the lack of a relationship between declarative 

knowledge and team performance is that the method for aggregating declarative 

knowledge at the team level was inadequate. Consequently, alternative 

operationalizations of declarative knowledge as a team level construct were assessed. 

Although not anticipated, the maximum yielded the highest declarative knowledge-team 

performance association (compared to the minimum). Thus, just as the effective 

operationalization of team mental models depends on task demands (Stout et al., 1996), 

the best operationalization of declarative knowledge depends on the nature of the task 

and the manner in which team members interact during task performance. Because teams 

were able to freely communicate during the performance episodes, it is plausible that 

more knowledgeable team members passed on information and subsequently help 

developed their teammates’ knowledge during training. This would not be the case with 

mental models because the content of mental models cannot be communicated, or at 

least it would be more difficult to articulate and communicate this knowledge explicitly 

(e.g., Nisbett & Wilson, 1977). Thus, in hindsight, using the maximum rather than the 

mean for operationalizing declarative knowledge at the team level appears to be the 

appropriate composition model for declarative knowledge in situations in which team 

members can communicate freely.  

Recent research examining the processes whereby team mental models affect 

performance has examined the role of implicit coordination for team performance 

(Fisher, Bell, Dierdorff, & Belohlav, 2012). Specifically, Fisher et al. demonstrated that 

implicit coordination mediated the relationship between team mental model similarity 



 

83 

 

and team performance. If mental models and declarative knowledge correspond to 

implicit and explicit forms of team cognition, then these forms of cognition should exert 

their influence on team performance by means of explicit and implicit coordination 

mechanisms, respectively. So, for instance, an examination of the pattern of 

communication between team members during a performance episode would show that 

team members with the highest declarative knowledge scores offer explicit guidance to 

their fellow teammates more often. 

Evidence and theory supporting the usefulness of mental models for predicting 

skill acquisition appears to be closely related to the use of similarity ratings for the 

elicitation of knowledge. Compared to declarative knowledge measures which are 

typically assessed via multiple-choice tests, similarity judgments capture individuals’ 

intuitive understanding of system function, and thus should be more sensitive to 

differences between experts and novices. This view is consistent with empirical findings 

showing that referent structures obtained via consensus are less predictive of team 

performance than mechanical aggregations of knowledge structures (e.g., Cooke et al., 

2001; Day et al., 2001). As an example, team mental models could have been obtained 

by having team members rate concept pairs as a group to arrive at a consensus rating 

(see Cooke et al., 2001). However, both declarative knowledge measures and consensus 

measures are subject to the same limitation; they tap explicit knowledge rather than 

implicit knowledge which makes those approaches less appropriate for measuring 

expertise. Thus, if high-performing teams require expert team members, then the use of 
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measures of expertise, such as mental models, seem preferable to declarative knowledge 

measures which focus more on surface features of the task. 

Studies comparing declarative knowledge and mental models as predictors of 

team performance recognize that the declarative knowledge measures may have been too 

easy and therefore not very sensitive (e.g., Cooke et al., 2001; Kraiger & Salas, 1993). 

Evidence from the present study may mitigate this concern. As with previous studies, the 

declarative knowledge measure used in the present study was relatively easy (77 to 80 

percent accuracy, not including the baseline measure). In spite of this, declarative 

knowledge remained a valid predictor of individual performance and a valid predictor of 

team performance (at least during team missions 1 to 3). Notwithstanding, further 

evidence is needed to support the use of alternative operationalizations of declarative 

knowledge as a predictor of team performance (e.g., using the maximum). 

The relationship between similarity ratings—obtained during the mental model 

assessment—and specific behaviors observed during the performance episode was 

positive at the individual level and the team level. Essentially, stronger associations 

between concepts obtained via similarity ratings translated into more behaviors 

consistent with those associations. However, contrary to Hypothesis 3, these associations 

were lower at the individual level compared to the team level (d = -0.83). This result is 

important because it demonstrates that the behaviors of teams reflect the cognitive 

structures that support team functioning, even when these cognitive structures may not 

necessarily translate into performance results which are influenced by other factors that 

fall outside the cognitive domain. 
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In summary, the results of the present study further support the usefulness of 

mental models as training criteria for individual performance as well as team 

performance. In addition, stronger associations between similarity ratings and behaviors 

at the team level suggest that teams were more effective than individuals in terms of 

“translating” their mental models into action. 

9.1. Implications for Training 

Kozlowski and Salas (1997) considered organizational system factors that 

influence the effectiveness of training. Specifically, they discussed the importance of 

vertical transfer, an issue which has been largely neglected by researchers (Salas & 

Cannon-Bowers, 2001). Gagne (1965) distinguished lateral from vertical transfer. 

Lateral or horizontal transfer refers to the application of trained skills over a set of 

situations at the same level of complexity or difficulty. In contrast, vertical transfer is 

defined as the propagation of individual-level training outcomes to team- and 

organizational-levels. This distinction implies that the skills acquired as an individual do 

not necessarily generalize to other situations, such as a team context in which additional 

interrole behaviors need to be acquired.  

Although vertical transfer is defined as an “upward” propagation of skills, 

vertical transfer may also occur downwardly. For instance, in the active interlocked 

modeling (AIM) protocol (e.g., Arthur, Day, Bennett, McNelly, & Jordan, 1997), 

trainees are trained in a team context to perform later as individuals. Specifically, in the 

AIM protocol each member of a team controls only one aspect of the task (e.g., piloting 

or shooting), alternating roles with their partner(s) between sessions (e.g., Arthur et al., 
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1997; Shebilske, Regian, Arthur, & Jordan, 1992). Previous studies comparing the AIM 

protocol with standard individual training have repeatedly demonstrated the 

effectiveness of the former in terms of effective use of time and resources. In addition to 

variables such as group facilitation, is has been posited that the AIM protocol engenders 

cognitive characteristics that facilitate individual learning. Specifically, consonant with 

Kanfer and Ackerman (1989), Arthur et al. (1997) proposed that “requiring trainees to be 

responsible for only [a portion] of the task . . . may free up trainees cognitive resources” 

(p. 784) that are very important during initial acquisition. Thus, although evidence of 

upward vertical transfer is scarce, there is some evidence of downward transfer—that is, 

cooperative learning—in that teams can serve as an effective context to acquire 

individual skills. 

Kozlowski et al. (2000) proposed that the contribution of training to 

organizational outcomes “will be enhanced to the extent that the training system is 

aligned with the form of vertical transfer as a composition or compilation process” (p. 

179). For example, compilation-based outcomes depend on the successful integration of 

the unique knowledge and skills that each individual member brings to the team. Thus, 

training design for compilation-based outcomes should focus on the team level (e.g., 

teamwork behaviors) and pay special attention to the sequencing of training content. The 

sequencing of training is critical for compilation-based outcomes because team 

functioning requires that all team members are proficient in their specific roles. 

The complexity and team interrelatedness of the tasks typically encountered 

within highly specialized teams (e.g., medical emergency teams, disaster response teams, 
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law enforcement special units) necessitates training that recognizes the interdependent 

nature of the tasks performed by those teams. For these tasks, it is critical that individual 

members master their specific roles as well as the teamwork behaviors for optimal 

execution of their tasks as a team. In contrast, composition-based outcomes require a 

somewhat different training approach. Sales representatives, for instance, can be trained 

individually and the order in which individuals are trained is not critical for optimal team 

performance because failure of one team member to meet the sales performance goals 

should not influence the performance of other team members.  

In the present study, team mental model accuracy was operationalized using the 

mean of individual team members’ mental model accuracy. This determination was 

based on the premise that team members need to master their own role and also 

understand the task as a whole in order to anticipate the needs of other team members 

and solicit their assistance when needed. Consistent with this reasoning, mean team 

mental model accuracy was a valid predictor of team performance. 

Understanding the roles, responsibilities, and information needs of other team 

members is critical to the facilitation of team interaction. This type of knowledge is 

referred to as interpositional knowledge (Cannon-Bowers, Salas, Blickensderfer, & 

Bowers, 1998; Volpe, Cannon-Bowers, Salas, & Spector, 1996).9 Volpe et al. posited 

that interpositional knowledge is critical to team functioning because “it allows team 

members to anticipate the task needs of fellow team members, thus allowing enhanced 

                                                 

9 This type of knowledge has been sometimes subsumed as an aspect of teamwork knowledge (e.g., 
Mathieu et al., 2000). 
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coordination with minimal communication requirement” (p. 88). This explanation is 

nearly identical to the mechanism invoked for explaining the influence of mental models 

on team performance. In fact, it is not unreasonable to posit that the generalizability of 

mental models across levels of analysis may be due to the inclusion of role and 

interpositional knowledge. However, the inclusion of both types of knowledge may have 

resulted in a hybrid model of emergence, an issue that is discussed below. 

The minimum mental model accuracy was also predictive of team performance. 

The fact that the mean and the minimum were predictive of team performance is not 

surprising considering that the two operationalizations were highly correlated (r = .76, p 

< .05). Paradoxically, this additional finding suggests a hybrid model of emergence 

which encompasses both compositional and compilational elements. In hindsight, 

describing the performance task used in the present study as highly interdependent, 

rather than purely interdependent, is accurate in the sense that although several tasks 

require collaboration between team members, some tasks can be accomplished 

individually, without the assistance of other team members. Furthermore, it is possible to 

complete almost every task using only two members of the team without necessitating 

the help of the third member of the team. (The only exception to this is shutting off 

valves which can only be accomplished by the oilrig worker; thus, the helicopter and the 

boat working together would be able to complete every task by themselves except 

shutting off valves.) 

From a training standpoint, if the team task is comprised of both compositional 

and compilational elements, then team performance will likely benefit from using a 
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combination of individual and team training. If team functioning is not entirely 

dependent on its least capable member (as in conjunctive tasks; Steiner, 1972), then 

novice members can be safely incorporated to the team even if they have not yet fully 

developed the necessary knowledge and skills. In addition, novice members may 

continue their training while gaining experience as members of their new team. As an 

example, having a medical intern assisting in an operating room may have an impact on 

compilational outcomes such as length of the surgery, but it should not have an impact 

on the success of the operation as a whole. However, faced with a medical emergency, 

the surgical team may decide not to have an intern in the operating room. 

Thus, the validity of the mean and the minimum to operationalize team mental 

model accuracy is consistent with the coexistence of individual- and team-based 

outcomes in the present study’s performance task. Although a single individual could not 

successfully accomplish all the required tasks, a low ability team member would not 

severely disrupt team functioning either. Thus, the present study illustrates the 

importance of matching the cognitive processes assessed with the cognitive processes 

underlying performance. Specifically, the inclusion of role knowledge and 

interpositional knowledge in the mental model assessment is consistent with the task 

demands of the simulation which included both compilational- and compositional-based 

outcomes. 

9.2. Limitations and Future Directions 

From a multilevel perspective, it is important to reiterate that inferences from 

individual-level data cannot be assumed to hold at team- or organizational-levels. For 
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instance, it is questionable to assess the effectiveness of selection systems at the 

individual level and then generalize these results to higher-level systems (Schneider et 

al., 2000). One of the objectives of the present study was to more precisely estimate the 

magnitude of the difference between individual and team mental models as predictors of 

performance. Although the present results successfully replicated previous findings 

within each level of analysis (i.e., individual and team levels), the observed difference 

between team and individual level coefficients were inconsistent with similar estimates 

obtained from single-level studies. This discrepancy can be attributed to the use of a 

multilevel design to perform a direct comparison between estimates across levels which 

was deemed a better approach than comparing coefficients from single-level studies. 

Nonetheless, other methodological characteristics of the study may also account for 

these discrepancies. Specifically, whereas the present study used a command-and-control 

task which is often used as performance criteria for studying mental models in the team 

training literature, research on individual mental models have been conducted using 

other tasks and criteria (e.g., exam performance [e.g., Acton et al., 1994, Goldsmith, et 

al., 1991]; computer programming [Davis & Yi, 2004]) which do not include the 

behavioral component typically encountered in command-and-control simulations. The 

mechanism whereby mental models predict performance of command-and-control tasks 

may differ from the mechanism whereby mental models predict performance of decision 

making tasks, which in turn may influence the extent to which individual and team 

mental models predict performance. Consequently, an obvious extension of the present 
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work would be to replicate these findings comparing the validity of individual and team 

mental models using diverse tasks. 

Differences in the operationalization of team performance may also contribute to 

further understanding team mental models and the processes whereby they influence 

team performance. Larson (2010) posited that teams offer the potential for synergistic 

performance which is a different way to conceptualize (and operationalize) team 

performance. Team synergy is demonstrated if a team is capable of performing better 

than the sum of its individual team members working independently. Specifically, if the 

team achieves a score greater than the sum of its individual team members performing 

the same task alone, then this would constitute synergistic performance. It would be 

informative to establish a criterion for team performance that is aligned with the 

synergistic aspect of team performance. Establishing a relationship between team mental 

models and synergistic performance—a more stringent criteria for team performance—

would suggest that team mental models facilitate team performance by enabling teams to 

do more than their individual team members working independently. Furthermore, 

evidence from the present study suggests that teams engage in considerably more 

behaviors than individuals, and that the behaviors of the team are more aligned with 

team mental models than individual behaviors with individual mental models.  

Whereas the meaning of the link between concepts in a knowledge structure is 

typically ambiguous or uninterpretable, the present results indicate that the links between 

the specified concepts may be interpreted, at least in part, as event sequences—who does 

what and with whom. At the same time, it is important to acknowledge that the target 
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behaviors of the present study are only one of several possible manifestations of mental 

models during team performance. Consequently, one limitation of the present study is 

that the behaviors coded represent only a subset of all the possible links that could be 

evaluated using the information obtained from the mental model assessment. The 

decision to examine the specified set of 15 behaviors was necessary to limit the study to 

those behaviors that could be objectively coded, thus eliminating the need for using 

subjective ratings. In other words, there was a trade-off between objectively scoring 

individual and team behaviors and representing the criterion space thoroughly. 

Results from the present study showed that the operationalization of declarative 

knowledge is critical for predicting team performance—using the maximum declarative 

knowledge seems more predictive of team performance than the mean or the minimum 

declarative knowledge. To explain these results it was argued that team members with 

relatively high declarative knowledge may communicate with their teammates and 

provide them critical information to perform their tasks. There are at least two ways in 

which future research could investigate this issue further. First, communication data 

could be analyze to identify the flow and content of information between team members. 

The expectation would be that more knowledgeable team members would pass on more 

work-related task information compared to other team members. However, this could 

also be tested experimentally by manipulating the implicit coordination requirements of 

the task. Specifically, teams could be assigned to a free communication condition and 

another condition in which team members are not allowed to communicate freely (no-

communication condition). Team declarative knowledge is expected to influence team 
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performance in the free communication condition but not in the no-communication 

condition. Comparing the validity of declarative knowledge and mental models across 

conditions would clarify the role and impact of explicit versus implicit cognition on team 

performance. 

Previous work has found that taskwork knowledge assessed immediately after 

individual training predicts team performance, such that individuals with quality mental 

models tend to be in high-performing teams (Cooke et al., 2001). Results from Cooke et 

al. are not surprising given that the training delivered in her study included both role and 

interpositional knowledge. Thus, in line with the previous discussion, the relevance of 

including both role and interpositional knowledge as part of the mental model 

assessment for predicting team outcomes cannot be overstated. To further demonstrate 

the utility of interpositional knowledge for measuring team mental models, it would be 

useful to partial out the effects of role and interpositional knowledge and evaluate the 

extent to which each of them predicts team performance independently. For instance, 

even if team members understand the roles and tasks of their teammates—and they do so 

accurately—differences in specific role knowledge may lead to dissimilar mental 

models. To put it in a nutshell, it is critical to focus on what needs to be shared among 

team members to maximize the utility of team mental models.  
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10. CONCLUSION 

A review of previous research suggested that mental models tend to display 

higher validities for predicting individual-level outcomes than team-level outcomes. 

However, prior work in this domain has been conducted using single-level studies which 

precludes a direct comparison between estimates across levels of analysis. Differences 

between the previous findings and the present study’s results illustrate the need to 

conduct multilevel studies to obtain more precise estimates of these relationships.  

The findings of the present study have direct implications for selection and 

training. For the design of selection systems, because composition-based outcomes are 

based on additive models, selection decisions depend on establishing a specified level of 

performance for the group. Once the performance level for the group is established, then 

one could literally calculate how many individuals would be needed to produce the 

desired level of output. However, compositional-based outcomes require the integration 

of team members’ unique knowledge, skills, and abilities (KSAs). In such situations, 

selection systems need to be designed in accordance with the compilational nature of the 

higher level outcome. However, in addition to selecting individuals with complementary 

KSAs, the full potential of teams will also depend on the implementation of appropriate 

team behaviors which highlights the criticality of team training for compilational-based 

outcomes. From a training perspective, for compilational-based outcomes, the 

development of individual- and team-level skills will benefit team performance. 

Studies have shown that the acquisition of teamwork knowledge is facilitated by 

previous taskwork knowledge (Cooke et al., 2003). Results from the present study 
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showed stronger associations between declarative knowledge and performance at the 

individual level compared to the team level. Concurrently, the relationship between 

mental models and performance was similar across levels. In conjunction, these results 

clarify the role of team cognitions for team performance. Whereas declarative 

knowledge measures are critical for initial team performance, team mental models are 

critical for differentiating between low- and high-performing teams at later 

developmental stages. In other words, the adequacy of team cognition measures is 

dependent on the developmental phase of the team. Related to this, yet another 

contribution of this study is to provide a better understanding of the sequencing of 

taskwork and teamwork knowledge acquisition. 

Accurate individual mental models can serve equally well as a training criteria 

for individual- and team-based outcomes provided that they capture both role and 

interpositional knowledge. Because the validity of mental models for team performance 

is based on the premise that mental models allow team members to anticipate the needs 

and actions of other team members (e.g., Mohammed & Dumville, 2001), broadening 

the scope of mental model assessment is critical for using individual mental models (or 

aggregates of individual mental models) for predicting team outcomes. This may be 

particularly important in situations when the opportunity to perform the task in 

conjunction with other team members is limited, or when the training team is different 

from the performing team. In such situations, mental models may be used appropriately 

as an individual-level training outcome and as a predictor of subsequent team 

performance. 
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Appendix 

Instructions for Mental Model Assessment 

Click on the icon in the Toolbar named Target. In this task, you will see several 
concepts listed on the left hand side of the screen. Each of these concepts will be 
presented as a focus concept in the bull’s-eye of the target on the right hand side. 

 
Your task is to move the concepts that are extremely, largely, moderately related, 

or synonyms to the target inside the appropriate gradient of the target. To move the 
concepts, click and drag them to the location in which you wish to drop them. Each 
concept that you rate must fit into one of the three related categories (extremely related, 
largely related, moderately related, or synonyms): There is no in between option. 
Concepts that are less related or unrelated should be left in place at the left side. Each 
concept will earn a score based on its distance from the concept at the center of the box; 
you do not need to think about the distances between concepts other than the one at the 
center of the box. You can change your mind about a concept by moving it again. Once 
you have moved all the concepts onto the target, click NEXT to proceed to the next 
target. Although we expect you to take this task seriously, do not spend too much time 
deliberating. 
 

YOU SHOULD BASE YOUR RELATEDNESS JUDGMENTS ON HOW THE 
CONCEPTS ARE RELATED FOR SUCCESSFUL COMPLETION OF YOUR TASKS 
IN KODIAK ISLAND. Here are the concepts: 

 Boats 
 Helicopters 
 Oilrig workers 
 Strategic Positioning 
 Clearing the path 
 Healing survivors 
 Putting out fires 
 Maneuvering 
 Survivor Capacity 
 Requesting assistance 
 Finding a route 
 Coordinating clicks 
 Time management 
 Shutting off valves 
 Picking up survivors 
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Do you have any questions before you begin? You may now begin the Target 

measure.  

 




