
OPEN RIGGING THROUGH XML: CHARACTER SETUP UTILIZING METADATA

AND NODE BASED EDITING

A Thesis

by

LOGAN SCOTT KELLY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

as partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tim McLaughlin
Committee Members, John Keyser

Philip Galanter
Head of Department, Tim McLaughlin

May 2014

Major Subject: Visualization

Copyright Logan Scott Kelly 2014

ABSTRACT

Modular rigging systems exist to automate many of the labor intensive tasks

associated with setting up character motion and control systems for 3D animation

production. In this paper, a modular rigging system is described that encodes rig

definitions in extensible markup language (XML). This method provides for version

control along with the construct of a metadata node network facilitating easy

propagation of changes to existing rigs. A node based interface is also provided for

easily authoring rig definition files. The interface presented to the user is sufficiently

simple that a user with minimal knowledge of rigging can construct a variety of complex

rigs. By providing a node-based interface and rig definition format that utilizes version

control, this method makes available capabilities that are currently not present in other

open rigging systems.

ii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . v

1 INTRODUCTION . 1

2 RELATED WORK . 3

2.1 Modular Rigging . 3

2.2 Semantic Networks . 3

2.3 Rig Definitions and Data Exchange Formats 5

2.4 Node Based Interfaces . 6

3 METHODOLOGY . 8

3.1 Rig Definition Files . 8

3.2 Rig Instantiation and Updating . 10

3.3 Rig Authoring . 13

4 IMPLEMENTATION . 16

4.1 Using XML for Rig Definitions . 16

4.2 Using C++ and Maya API to Load, Update, and Remove Rigs 18

4.2.1 Constructing the Metadata Node Network 19

4.2.2 Commands for Loading, Updating, and Removing Rigs 20

4.3 Using PyQt for the Rig Manager and Node Editor 21

4.3.1 Rig Manager . 22

4.3.2 Node Editor . 26

5 DISCUSSION . 32

6 FUTURE WORK . 34

REFERENCES . 36

iii

Page

APPENDIX A . 38

APPENDIX B . 41

APPENDIX C . 49

APPENDIX D . 51

APPENDIX E . 53

APPENDIX F . 54

iv

LIST OF FIGURES

FIGURE Page

1 An example node graph of a character, with representations of the same
graph in XML and JSON. 9

2 A possible Metadata Node Network present in a scene. 11

3 Concept design for the Rig Manager interface. 12

4 Concept design for the Node Editor. 15

5 An example MetaDataManagerNode connected to two MetaRootNodes in
Maya. 20

6 The drop down menu provided for accessing the Rig Manager. 22

7 The Rig Manager interface for an empty scene. 23

8 The Rig Manager interface and “Rig Edit Mode” label on the viewport
after clicking the “Create Rig” button. 24

9 The Rig Manager interface after a rig instance has been loaded into a
scene. 24

10 The Rig Manager interface after a different version is selected from the
Version drop down box. 26

11 The Node Editor interface is empty when the user begins creating a new
rig definition. 27

12 A Rig Node has been added and selected in the Node Network Panel, and
settings for the node are displayed in the Node Details Panel. 28

13 A Geometry Node attached to a Rig Node. 29

14 A Global Node attached to a Rig Node. 30

15 A Spine Node added to the node graph for a rig. 31

16 Attributes of a MetaDataManagerNode listed in Maya. 41

17 Attributes of a MetaRootNode listed in Maya. 42

18 Attributes of a MDGlobalNode listed in Maya. 43

19 Attributes of a MDHipNode listed in Maya. 45

20 Attributes of a MDSpineNode listed in Maya. 46

v

1 INTRODUCTION

Rigging is an essential step in the production pipeline of 3D character animation

studios. It is the process that lies between modeling of character forms and animation

of character performance. A rig is the architecture required for animating the motion of

a character [O’Neill, 2008]. The process of designing and creating a rig is complex,

time-consuming and labor-intensive.

In order to minimize both time and effort, procedural methods are used to automate

portions of the rig construction and revision. Special types of rig scripts, called modular

rigging systems, make the process easier by providing object-oriented components that

define specific parts of a rig which can be connected together. However, many of these

modular rigging systems do not provide support for revising rigs after they are already

being used in animated productions. Additionally, often there is no persistent encoding

of the rig definition outside of its use in a scene description file, which makes the

utilization of version control tools for rigs difficult at best.

This paper presents a modular rigging system that utilizes rig definition files to

support the process of designing rigs and enable rig updates while a rig is being used.

Only the data relevant to a specific rig is contained in its own definition file. Therefore,

managing the definition files with version control software is easily accomplished. The

system also utilizes rig versions in order to determine if existing rigs are current or out

of date. Every rig has a Metadata Node Network attached to each object that

comprises the rig in the scene so that updates can be easily pushed from an associated

definition file. A node-based interface for authoring rig definitions in a special editing

mode also makes the rig creation process extremely simple.

This system is implemented as plug-in for the Autodesk Maya 3D software package.

It utilizes the Maya C++ API in order to provide functions for loading and updating

rigs from definition files, as well as defining metadata nodes used in Metadata Node

Networks. XML (Extensible Markup Language) is used for encoding the rig definition

files. Python and PyQt are used for creating the node-based interface for authoring rigs,

as well as for the Rig Manager that lists all rigs and switches the user into and out of

1

rig editing mode.

The resulting system provides powerful functionality for managing and editing rigs

that is not typically found in systems outside of a studio’s proprietary tool set. The

system’s node-based interface also presents rig construction in a simple yet flexible way

that only exposes the information pertinent to the user and hides complexity that

typically makes rig construction difficult. Additionally, the use of open formats and

non-proprietary software provides a framework that others should be able to expand

upon easily.

2

2 RELATED WORK

2.1 Modular Rigging

In response to the increasing use of digital characters in films, games, and episodic

media, a variety of modular rigging systems have been developed in recent years. One of

the earliest publicized systems is Industrial Light & Magic’s Block Party. A key feature

of Block Party is that rig skeletons and controls can be shared across characters.

Additionally, through a simple plug and socket mechanism Block Party allows mixing

and matching of individual components of rigs to create new rigs. For example, the

centaurs in “The Chronicles of Narnia” were a combination of the upper torso of a

human rig and a horse rig excluding its head. In order to share joint positions and

deformations across characters with similar body forms, a reference mesh associated

with every component is deformed to match the shape of the new model. This deformed

mesh is used as a volume guide in order to transfer the joint positions and deformations,

resulting in production-ready deformations [Smith and White, 2006].

A similar system was developed by Blue Sky Studios to manage their procedural

character rigs. However, where Block Party emphasized the use of volume guides as the

foundation of their system, Blue Sky’s system is based on the idea of separating the

template for a character rig from the character itself. A character template is a network

of nodes that defines all of a character’s components’ attributes, functionality, and

relationships to other components. Rig templates can be developed in parallel with

artists actually using the rig in its current state for animation. The rig templates would

then be able to deploy updates to the current rigs used in shots automatically through a

series of rig component script nodes (or rcSNs) that could build up or tear down a

particular component. All rcSNs are attached to a top level rig component manager

that controls the current state of all rcSNs in the scene[Malvarez et al., 2008].

2.2 Semantic Networks

An important concept to understand for the next modular rigging system that will

be described is the idea of a Semantic Network. A Semantic Network is a graph that

3

represents knowledge in interconnected nodes and arcs. Semantic networks have existed

long before computers, and have been used in philosophy, psychology, and linguistics.

One of the earliest recorded semantic networks was created by the Greek philosopher

Porphyry to comment on Aristotle’s categories[Shapiro, 1992].

Semantic Networks have also been used in computer technologies for artificial

intelligence, and also for traversal of the internet. In the case of internet traversal,

search engines utilize semantic networks by harvesting metadata embedded in web

pages in order to build its own Semantic Network to relate similar websites together.

metadata includes information about what type of content is on a web page, and can be

easily accessed by a web crawling agent that indexes websites. Relations between

websites can then be accessed to return search results when a user performs a query

with the search engine [Berners-Lee et al., 2001].

The video game company Bungie has used similar concepts of metadata and

semantic traversal of node networks in their modular rigging system. This system is

built on top of Maya, a commercial 3D software package. metadata is a term that

means data about data, and semantic in this context means to describe what something

is rather than what it is composed of through the utilization of metadata. For example,

a character’s arm component in a rig could be described as being composed of three

joints, an IK solver, expression nodes, and 2D curves used as controller objects. But

this wouldn’t be a very useful description from a rigging perspective because it does not

tell anyone that these objects are part of the character’s arm. This description

corresponds to an explicit description, and arm is the semantic description. The word

arm corresponds to the metadata attached to the rig component [Hunt, 2009].

Bungie’s rigging system allows for semantic traversal of the rig by constructing what

they refer to as a Metadata Node Network. MetaNodes are additional nodes created in

Maya’s Dependency Graph that attach to each other, and also to important rig

components. These are highly similar to Blue Sky’s rcSNs, except that MetaNodes store

additional metadata information to enable semantic traversal of the rig for scripting

purposes.

4

2.3 Rig Definitions and Data Exchange Formats

While the previously described approaches to modular rigging have many powerful

features, all of them are missing a rig definition file separate from the scene containing

the rig. There are several reasons why this would be a desirable feature to have. First of

all, creating a separate definition file that is agnostic to a particular software package

allows the possibility of sharing the same rig across several software packages. This

would ease the hand-off between different stages of the production pipeline where

different software packages may be used. For example, animating in Maya but doing

effects in Houdini. Another reason for creating a rig definition file is that it can describe

a rig at a more abstracted level, containing only the data necessary to create the rig.

This makes it easier to manage the rig data using version control systems, and also to

update the rig definition when changes are necessary.

There are several options to choose from when deciding upon a particular format for

a rig definition file. One option is to create a unique format just for use with rig

definitions. While this option allows the greatest degree of freedom, it also requires the

greatest amount of effort and makes adoption by others more difficult. Everyone using

the definition format or expanding upon it would need to learn how it is structured

from the ground up, and also write a parser from scratch in order to extract data from

it into their own software or tools. A successful example of this approach is the

RenderMan Interface Bytestream (RIB) file format for specifying RenderMan scene

descriptions [Apodaca and Gritz, 1999].

Another option is to use a pre-existing data exchange format, and follow its

formatting conventions. There are more varieties of formats than can possibly be listed

here, but two of the most prominent are JSON and XML. JSON stands for JavaScript

Object Notation and is a text-based open standard. The specification for JSON was

written by Douglas Crockford, a computer programmer with extensive experience in

JavaScript. It originated as a format to exchange data between JavaScript executed in

web browsers and web servers. Despite its name, JSON is language-independent

[Crockford, 2006]. XML stands for Extensible Markup Language and is a format

traditionally used in web technologies for distributing arbitrarily structured documents

5

and data. The specification for XML was produced by the W3C, or World Wide Web

Consortium which is the primary standards organization for the World Wide Web [Bray

et al., 2008]. XML is also widely adopted, and has been used as the underlying format

for many document types such as Microsoft Office files [Ngo, 2006]. While the choice

between using JSON or XML is somewhat arbitrary, JSON tends to be more

data-oriented and less verbose and XML is more documented-oriented and has more

formatting relative to a similar amount of data. Both formats are human-readable, open

standards with parsers commonly available in many languages.

2.4 Node Based Interfaces

As demonstrated by Side Effects Software’s Houdini, node-based editing is a simple

and powerful method for creating and managing 3D content. While Maya’s Dependency

Graph represents the scene as a interconnected node network, it is not intended as the

primary interface for creating new content or even modifying connections between

nodes.

In order to create a node interface that is editable within Maya, Tim Withers used

PyQt for his thesis work at Texas A&M. PyQt is a Python binding of the Qt framework

which is commonly used for developing graphical user interfaces. Qt is far more flexible

and powerful than the default GUI framework provided by Maya, enabling the

development of custom node-based interfaces which would not have previously been

possible. Tim Withers’s Node Editor interface as it was originally created is only

intended for use with authoring particle systems. It replaces the default menu interface

for particle systems, which many users of Maya see as cumbersome and non-intuitive

[Withers, 2012].

This node-based interface can be re-purposed for other tasks where a node-based

approach would be beneficial. Since Tim Wither’s made his custom interface code open

source, anyone can download the code and modify it freely for their own purposes. All

that is required is to remove the underlying commands executed by the GUI widget

elements in his interface and replace them with code that performs the desired actions.

For example, the node-based interface can be used to replace the task of authoring rig

6

definition files in a text editor so that the user never needs to learn the rig definition

format.

7

3 METHODOLOGY

The rigging system described in this thesis calls for three different subsystems in

order to provide all of its essential features. The first subsystem is a rig definition file

format that contains all of the data and metadata necessary to build a rig. The second

subsystem is a mechanism for instantiating rigs based upon a rig definition file, and a

method for propagating changes to pre-existing rigs when its corresponding rig

definition file is updated. The third and final subsystem is an interface for authoring rig

definition files.

3.1 Rig Definition Files

For the rig definition file format, a previously established data exchange format such

as JSON or XML is preferred. Both formats have several useful properties that assist in

implementing the rig definition file. These formats have been widely publicized and

used, therefore many individuals will already be familiar with the basic syntax. They

are implemented in a human-readable text-based format that makes debugging easier, as

well as allowing the definitions to be managed with version control systems such as Git.

The hierarchical nested structure of these formats works well for representing the

composition of a rig at an abstracted level. For any modular rigging system, the

composition of a rig can be mapped by a graph of interconnected nodes. Each of these

nodes represents a component, which is a discrete unit of a rig corresponding to a body

form. An example component would be an arm, leg, or spine. While more complex

components could be envisioned, for the purposes of this system an organic biped body

form will be represented. Every connection between two components represents a

relationship between the components. While there could be many different kinds of

relationships between components, our system always assumes that a parent-child

relationship is being established between the connected components. For the problem

domain of an organic bipedal character, this will be sufficient for the rig representation.

8

Figure 1: An example node graph of a character, with representations of the same graph
in XML and JSON.

Graphical notations and linear notations can express equivalent information

[Shapiro, 1992]. As a result, the node graph of the rig can be represented in our chosen

data exchange format. Both JSON and XML have the capacity to represent objects

with attached attributes that have other objects nested within them. This naturally

leads to the idea that each object could represent a component in the graph, and each

parent-child connection between two components can be represented implicitly by

nesting an object inside of its parent object. Useful metadata associated with a given

component can be contained inside of the attributes associated with its given object.

An example of nesting objects inside of one another to represent parent-child

connections can be seen in Figure 1.

9

There are a few scenarios that the previously defined rig definition system would

have difficulty representing. One such scenario is to imagine a body form in which two

limbs extend out from a central body and then re-converge into a third limb that is

attached to both limbs. Since the third limb would need to be nested under both of the

objects, this would be impossible to represent under the previously established

conventions without adding some sort of support for instancing the object for the third

limb under multiple objects. Because this would represent a non-bipedal form, the

system established under this thesis disallows this scenario.

Another scenario that could not be represented with the present rig definition

system is one in which components can have dynamic parenting relationships with other

components. One could imagine a body type where a limb could be detached and

re-attached elsewhere, or the parenting relationship with a component’s parent could be

temporarily inverted so that the parent could be made to follow the child. Since the

structure of the rig definition file is underpinned by the assumption that parenting

relationships are static, these scenarios could not be easily represented by the definition

file without significant alterations to the format.

3.2 Rig Instantiation and Updating

The rig definition file contains all of the information that is needed to build a rig,

but this file is not useful until instances of the rig can be used within the 3D scene of a

given software package. The relationship between the rig definition file and the rig

instances is analagous to genotypes and phenotypes in biology. Genotypes are the

internally coded information responsible for biological traits, and the phenotypes are

the outward physical manifestations of that information [Lewontin, 2011].

The Load and Update functions of the rigging system are responsible for creating all

of the joints, controllers, constraints, models, and skin weighting to implement the rig

definition as a usable rig instance. Each rig instance is attached to a Metadata Node

Network. This Metadata Node Network is similar to Bungie’s modular rigging system

[Hunt, 2009]. The Metadata Node Network is essential for updating and removing rig

instances as may be necessary in the future.

10

A good way to understand the Metadata Node Network is from a top down

perspective. The top level metadata node, that all other nodes are ultimately connected

to, is the rig manager node. Only one rig manager node exists in a given scene that

implements the metadata system. Attached directly to the rig manager node are the

metadata rig nodes corresponding to each rig instance in the scene. These metadata rig

nodes contain a reference to the rig definition file used to define the given rig instance.

This reference takes the form of a file path that the rig updating mechanism uses to

open the rig definition and check for updates.

Figure 2: A possible Metadata Node Network present in a scene.

Attached beneath the metadata rig node is the metadata node for the root

component of the rig. Typically this is a global component, which provides a controller

that is able to move, rotate, and scale in global space the rest of the components of the

rig which are attached to it. The metadata node for the root component can then have

any number of metadata nodes for child components attached to it. These metadata

11

nodes may then also have metadata nodes for components attached to them, and so on

in a recursive manner (see Figure 2). The connections of these nodes exactly mirror the

nesting of objects in the rig definition file.

Each metadata node for a rig component has connections to every object in the

scene which is part of that component. This allows the Update and Remove functions of

the rigging system to find the correct objects to change for updates, or remove when the

rig is removed.

The functionality for creating, updating, and removing rigs can be implemented

either as commands through a plugin for the given 3D software package, or as

procedures in a scripting language supported by the software. As long as the software

package exposes the ability to script the creation of all objects necessary to create a rig,

and to create persistent custom nodes for the metadata network, both a plugin or

scripting approach should work.

Figure 3: Concept design for the Rig Manager interface.

12

The Load, Update, and Remove functionality for rigs is made accessible to the user

through the Rig Manager interface. The interface provides a list of all rigs present in

the scene, and allows various operations to be performed on a selected rig. If no rig is

selected, a new rig may be added to the scene based upon a rig definition file. A

conceptual design for the Rig Manager is shown in Figure 3.

The Rig Manager allows users to edit an existing rig definition file by selecting a rig

and entering Rig Edit Mode. While in Rig Edit Mode, an instance of the rig is displayed

in its default configuration. This means that all controllers have zero local translation

and rotation, local scale values of one, and no attached animation curves. Any changes

to the positions of controllers and joints on this rig are saved into the positions in the

rig definition file. During Rig Edit Mode the user can open the Node Editor, which

shows a node-based representation of the rig. The Node Editor interface is discussed in

more detail in the next section.

3.3 Rig Authoring

It is necessary for developers to understand the rig definition file format in order to

extend the modular rigging system. However, most users of the system should not need

to understand how to author new rig definition files in a text editor. Instead, a

graphical user interface (GUI) is provided that is capable of generating new rig

definition files based upon user interactions. A GUI lowers the initial difficulty for new

users to begin creating rigs with the system. It also increases the speed with which new

rig definitions can be authored. As an additional benefit, the GUI guarantees that the

rig definition files produced are of valid structure, and disallows user interactions that

would result in an invalid rig construction.

Node-based GUI systems have been used in software packages such as Houdini.

Node-based interfaces have proven efficient for tools that need to rapidly generate many

variations of a product and to easily perform changes earlier in the creation of the

product. Both of these attributes are useful to have for a rigging system.

The rig definition file can be represented as a graph of connected nodes, making a

node-based GUI fit well with the existing system. The Update functionality provided by

13

the rigging system guarantees that any operations performed in the node-based

interface will be reflected correctly on the rig. A node-based interface is a different

approach from many other software packages such as Autodesk Maya, which require

that the user access operations from lists of menus that modify a scene graph without

the user knowing exactly what connections are being made. Because menu-based

systems require the user to memorize the order in which operations must be performed,

errors can occur when the user does not remember the correct order[Withers, 2012].

The menu-based approach requires the user to maintain a mental model of the state

of their scene before applying an operation to do it correctly. A node-based approach is

made more simple by representing the state of a scene directly to the user as a graph.

The node-based interface can disallow incorrect operations that could occur with the

menu-based approach by providing connection points that allow only correct

connections. Since insertions into the node graph are one of the primary operations that

a user can perform, making changes to something that has already been constructed is

easier than with the menu-based approach. When a new node is inserted, changes can

be propagated through every node connected below the inserted node. To perform the

same action with the menu-based approach, many previously applied operations need to

be undone, and then new correct operations applied in order to properly modify the

scene state. Modifying something that has already been made is often too

time-consuming or complicated, and the user is better off starting from scratch.

A node-based interface for authoring a rig definition file can mirror the construction

of the Metadata Node Network which supports rig updates as well as the hierarchical

structure of objects in the definition file. Nodes can be created in a node network panel

by selecting from a pre-defined list. Selected nodes can then be connected together to

represent parenting relationships, disconnected and reconnected if parent ordering needs

to be changed, or deleted if a node is no longer necessary. Attributes for the component

represented by the node can be modified in a details panel with widgets for all the

relevant settings. The general layout for the node-based interface, called the Node

Editor, is represented in Figure 4.

14

Figure 4: Concept design for the Node Editor.

Following all actions, the interface regenerates the rig definition file based upon the

changes in the GUI widgets. The new rig definition file is used immediately to update

the rig instance represented in the 3D scene during Rig Edit Mode.

15

4 IMPLEMENTATION

The modular rigging system described in this paper has been implemented in the 3D

software package Autodesk Maya. The particular programming languages, software, and

APIs used to implement this system are not the only choices that could be made. The

rig definition format is designed so that as a possible future extension, rigs could be

shared across varying software packages and applications. Autodesk Maya was chosen

because of its proven capability and widespread use in the animation industry. For the

rig definition format, XML was chosen in preference to JSON because of the abundance

of XML parsers in Python and C++. The custom nodes for the Metadata Node

Network as well as the Load, Update, and Remove functions for the rigs were all written

as a Maya C++ API plugin. The node-based interface and Rig Manager interface were

created using Python and PyQt. For reference, an overview of the architecture in a

design diagram is included in Appendix .

4.1 Using XML for Rig Definitions

The data exchange format chosen for the rig definition files is XML. The XML

format supports hierarchies of nested objects with attached attributes, and our

particular rig definition format takes full advantage of this. A full listing of all

attributes for every element in the rig definition file can be found in Appendix . The

top level object, or element as it is typically referred to in XML, is the Rig element. An

example Rig element looks like this:

<rig guiLocation="247.0,461.0" name="test" version="1.2">

The Rig element can have two types of child elements contained within it. The first

type is a Geo element, which is used to contain data about a piece of geometry that is

loaded and attached to the rig. A Geo element may look like this:

<geo file="./assets/TestSphere.ma" guiLocation="138.0,310.0" name="

pSphere1" />

16

The other type of element a Rig element should contain is a Component element.

This element is used to define every type of rig component used by the rigging system.

The particular type of component and its characteristics are defined by the attributes

on the Component element and additional child elements contained by the

Component element, such as Location elements. Only one Component element

should be contained by the Rig element, since logically there should be a top level

component from which every other component should be ultimately attached. In almost

every case, the top level Component element should be a global component.

A global component is typically the top level component of a rig because it contains

a controller object with no joints or other objects. This controller object can be used for

translating, rotating, and scaling the entire rig in world space. A global component

element may look like this:

<component color="yellow" guiLocation="362.0,331.0" icon="FourArrowCircle

" name="global" rigId="08495011515e4c1d926513662cc869dd" type="global"

version="1.1">

A global component always has one Location element as a child element. This

element identifies the position, rotation, and scale for a global component’s controller.

Here is an example:

<location localX="0.0" localY="0.0" localZ="0.0" rotateX="45.0" rotateY="

0.0" rotateZ="0.0" scaleX="1.0" scaleY="1.0" scaleZ="1.0" />

Other Component elements can also be contained by the global component

element. Typically these component elements are of different types, since it would not

be especially useful to create a rig with nothing but global components. For a biped rig,

the global component has a hip component as a child element. The hip component

element is identical to the global component element, except that its type is set to

“hip”. The difference between a hip component and a global component is that a hip

component contains a joint object, while a global component does not. The position of

the joint object uses the data in the Location child element.

17

Another type of component element that is usually contained by a hip component

element is a spine. A spine component represents a chain of joints that can be

controlled with forward kinematics (FK), inverse kinematics that uses a spline curve

(spline IK), or spline IK that will stretch to reach a target position (stretchy spline IK).

A ShoulderControl child element can be included within the spine component

element if the “splineIK” or “stretchySplineIK” options are selected for the

KinematicType attribute. This element is used to define the position and appearance

of the controller that positions the target of the IK solver. This target is usually placed

at the shoulders of the character, therefore the controller is referred to as the shoulder

controller.

The spine component also contains multiple Location child elements. These

Location elements are nested beneath one another to represent parenting relationships

between joints and controllers. At least three Location elements must be contained by

a spine component element to build a valid spine component. There is no upper limit on

the number of joints and controllers a spine component can contain.

4.2 Using C++ and Maya API to Load, Update, and Remove Rigs

Maya allows its functionality to be extended with scripts in Maya Embedded

Language (MEL) and Python. Compiled plugins written in C++ can also be created

[Gould, 2003]. The functionality of the rigging system to load, update, and remove rigs

based upon rig definition files is provided by a Maya plugin written in C++. C++ was

chosen over MEL or Python for many reasons. MEL could not be used because it does

not provide access to the Maya API. The Maya API is necessary for the rigging system

because it provides the capability to create custom nodes in Maya’s Dependency Graph,

which are used to implement the Metadata Node Network. Without this network,

updating and removing rigs would be impossible.

Python provides access to the Maya API as well, but C++ is used instead because

updates to rigs are executed much more quickly. Since rig updates are executed

constantly while in Rig Edit Mode, the execution speed of C++ is advantageous. While

a Python implementation might be easier for new developers to use, such an

18

implementation is left as a possible future extension to the system.

4.2.1 Constructing the Metadata Node Network

Maya’s Dependency Graph (DG) is the fundamental structure by which every scene

construction operation in Maya is accomplished. Each DG node has a set of input

connections that provide different types of data. Every DG node has a compute function

that can perform operations on this data, and then produce results to various output

connections. These output connections can then be connected to other DG nodes. A

subset of the Dependency Graph is the Directed Acyclic Graph, or DAG. The DAG is

different from the DG because no child node in the DAG can be its own parent. The

DAG is used for objects that have a 3D position associated with them in the scene, such

as geometry or groups. Because DAG nodes are a subset of DG nodes, DAG nodes can

receive connections from DG nodes [Gould, 2003]. This is an essential property for the

rigging system, because a Metadata Node Network can be constructed from DG nodes

which are connected to DAG nodes comprising a rig (such as joints and controllers).

The C++ plugin provides custom nodes for use in the Dependency Graph. Each

custom node defines a particular type of metadata node for use in the Metadata Node

Network. Each type of node has a unique set of attributes that are attached to other

nodes relevant to that type of metadata node. The compute functions of the nodes are

not used, as the nodes are only used so that their connections can be traversed.

The first custom node provided by the plugin is the MetadataManagerNode.

This type of node is the top level node in the Metadata Node Network, to which all

other metadata nodes are ultimately attached (see Figure 5). The next custom node

provided is the MetaRootNode. There is one MetaRootNode in the scene for each

rig loaded from a definition file.

The plugin also provides metadata nodes for every type of component available in

the system. One such metadata node is for global components, and is called an

MDGlobalNode. Another metadata component node is provided for hip components,

called a MDHipNode. A metadata component node is also available for spine

components, and is called a MDSpineNode. For a full listing of all the attributes used

19

by each type of metadata node, see Appendix .

Figure 5: An example MetaDataManagerNode connected to two MetaRootNodes in
Maya.

4.2.2 Commands for Loading, Updating, and Removing Rigs

The C++ plugin also provides a series of commands for performing tasks important

for the rigging system to function. All of the commands utilize a set of C++ classes

which parse rig definition XML files into guide classes, build up rigs based upon the

guide information, update and remove rigs, and perform Metadata Node Network

traversal. An overview of these classes can be found in Appendix .

A series of commands are provided by the plugin, and are callable by the user and

other scripts as MEL commands. A complete listing of all the parameters available for

each command can be found in Appendix .

The first command provided by the plugin is updateMetadataManager. This

command is used to update either all of the rigs currently loaded into the scene, or

individual rigs.

The listMetaRoots command returns a list of all the MetaRootNodes currently

loaded into the scene. This command is used to populate the widget in the Rig

Manager that lists all of the rigs in a scene.

20

The loadRig command is used to load a rig instance into the scene using a rig

definition file. When the rig is built, it also constructs the Metadata Node Network

associated with the rig and attaches all objects to it.

The removeRig command removes an individual rig instance from the scene. All

nodes connected to the rig’s Metadata Node Network are deleted, and the rig’s

Metadata Node Network is also deleted.

getMetaNodeConnection is used to perform traversal of the Metadata Node

Network by following connections on a metadata node. It returns the name or DAG

path of the node connected to a particular attribute on a metadata node.

getMetaChildById also performs traversal of the Metadata Node Network, but it

only searches the metaChildren attribute of metadata nodes. From the list of child

metadata nodes, it returns the name of the metadata node that matches a provided

rigId.

4.3 Using PyQt for the Rig Manager and Node Editor

PyQt is a binding of the Qt application framework for Python. Beginning with

Maya 2011, PyQt has been available for developers to use to create custom GUIs in

Maya. While MEL provides a limited selection of widgets for use in custom GUIs, the

flexibility of PyQt allows a greater range of custom GUIs to be created. Because of its

versatility, Tim Withers chose to use PyQt for the development of his node-based GUI

for authoring particle systems [Withers, 2012]. Since Tim Withers provided the source

code for a node-based interface system that was proven to work, I chose to use the

source code for his project as the basis for the Node Editor interface.

Since the Node Editor interface used PyQt, it was natural to also use PyQt to create

the Rig Manager interface. The program Qt Designer was used for designing the Rig

Manager interface. Qt Designer is a program that is available from the creators of Qt

for authoring Qt interfaces in a WYSIWYG (what-you-see-is-what-you-get) editor

[Digia, 2013]. A WYSIWYG editor allows a user to visually design an interface instead

of writing code. Using Qt Designer, python scripts for creating an interface can be

automatically generated, and the signals emitted by Qt widget elements can be

21

connected to slots in Python code. Signals are emitted by Qt widgets whenever the user

interacts with a widget. Slots either can be signals on other Qt widgets or function

callbacks in Python.

4.3.1 Rig Manager

The Rig Manager allows users of the rigging system to load, update, and remove rigs

from their scene. It also provides access to Rig Edit Mode where the user can modify

or create new rigs using the Node Editor. In order to access the Rig Manager, a drop

down menu is added to the list of menus at the top of Maya’s interface. This drop down

menu (as seen in) is created by a MEL procedure that is called when the plugin is

loaded. A screenshot of this interface can be seen in Figure 6.

Figure 6: The drop down menu provided for accessing the Rig Manager.

The plugin also provides metadata nodes for every type of component available in

the system. One such metadata node is for global components, and is called an

MDGlobalNode. Another metadata component node is provided for hip components,

called a MDHipNode. A metadata component node is also available for spine

components, and is called a MDSpineNode. For a full listing of all the attributes used

by each type of metadata node, see Appendix .

Selecting the Rig Manager from the menu displays the Rig Manager interface to the

user. When the Rig Manager is displayed in a new scene with no rigs currently present,

only two options are available to the user: add a rig to the scene from a definition file,

or create a new rig in Rig Edit Mode. All other buttons are disabled until one of the

22

two actions are taken. The Rig Manager for an empty scene is shown in Figure 7.

Figure 7: The Rig Manager interface for an empty scene.

When the user clicks the “Add Rig” button, a file dialog is shown allowing the user

to select a rig definition file from the file system. These are typically stored within a

subdirectory of the Maya project called “rigDefinitions”. When a rig definition file is

selected by the user, the loadRig command is called with the file path provided as a

parameter, resulting in an instance of the rig being loaded into the scene.

If the user clicks the “Create Rig” button, Rig Edit Mode is immediately entered

and the user can begin creating a new rig using the Node Editor. Entering Rig Edit

Mode involves saving the current scene, and creating a new empty scene where

interactions with an instance of the rig result in changes to its definition file. A text

label that says “Rig Edit Mode” is also added to the viewport of the 3D scene to make

it clear to users that they are operating in Rig Edit Mode (see Figure 8). While in

Rig Edit Mode, only two buttons can be selected in the Rig Manager interface: the

“Open Node Editor” button, and the “Exit Rig Edit Mode” button. The “Open Node

23

Figure 8: The Rig Manager interface and “Rig Edit Mode” label on the viewport after
clicking the “Create Rig” button.

Editor” button will display the Node Editor interface, which is discussed in the next

section. The “Exit Rig Edit Mode” leaves Rig Edit Mode, unloading the current scene

and returning to the last scene loaded before the “Create Rig” button was pressed.

Figure 9: The Rig Manager interface after a rig instance has been loaded into a scene.

24

Once an instance of a rig has been loaded into a scene, it is added to the list of rigs

in the upper left of the Rig Manager panel (see Figure 9). When a rig is selected from

this list, information on the right side of the panel is populated for this rig. Several

buttons at the bottom of the Rig Manager panel are also enabled for performing actions

on the rig selected from the list. These buttons include:

Remove Selected removes the selected rig from the scene by calling the removeRig

command with the name of the MetaRootNode for the rig instance provided as

a parameter.

Update Selected updates only the selected rig with the updateMetadataManager

command. If the “Maintain global position of keys on update” option box is

checked, it calls the command with the globalPos parameter.

Enter Rig Edit Mode enters Rig Edit Mode and loads an instance of the selected

rig into the scene for editing. When the Node Editor is displayed, it shows the

node graph for the selected rig.

25

The drop down box for Version is also populated with a list of all versions of the rig

definition file available. The version selected in the drop down box is the version

currently loaded for the selected rig instance. If a different version is selected, the

“Update Selected” button will be displayed in red until the rig is updated (see Figure

10).

Figure 10: The Rig Manager interface after a different version is selected from the Version
drop down box.

4.3.2 Node Editor

While some graphical assets and the general structure of Tim Withers’ interface are

re-used in the Node Editor, the underlying commands executed by the interface have

been replaced by code that interfaces with the rest of the rigging system [Withers,

2012]. The selection of nodes available in the Node List Panel is different, as is the

information presented in the Node Details Panel and the Node Description Panel when

nodes are selected.

If the user opens the Node Editor interface when creating a new rig, no nodes are

shown in the Node Network Panel because no definition file currently exists (see Figure

11). The user can begin authoring a new rig definition by dragging different node types

26

from the Node List Panel into the Node Network Panel. Descriptions of each type of

node are shown in the Node Description Panel when a node type is selected from the

Node List Panel.

As the user begins placing nodes into the Node Network Panel, a temporary rig

definition file is created. This is used to update a rig instance in the 3D scene as

changes are made. Nodes added in the Node Network Panel correspond to different

types of elements in the rig definition file. The color of the graphic used to represent

each node corresponds to a different type of element in the rig definition file. For

instance, red is used on all nodes that represent component elements.

Figure 11: The Node Editor interface is empty when the user begins creating a new rig
definition.

The first node that must be added to the Node Network Panel to begin creating a

rig is the Rig node, and corresponds to the Rig element in XML. When a Rig node is

selected in the Node Network Panel, information and parameters for the node are

displayed in the Node Details Panel (see Figure 12). For a Rig node, this includes the

current version of the rig definition file being authored and a text box for setting the

27

name of the rig.

Figure 12: A Rig Node has been added and selected in the Node Network Panel, and
settings for the node are displayed in the Node Details Panel.

As nodes are added to the Node Network Panel, the changes that the nodes

represent will not be reflected in the scene until they are attached to the node graph for

the rig. This is done by attaching an output connection from a node to an input

connection on another node. A Geometry node is used to add a piece of geometry to a

rig, and corresponds to the Geo element in XML. In the Node Details Panel for the

Geometry node, a button is provided that will call a File Dialog for selecting a Maya

ascii file containing geometry. When a file is selected, a list box is populated with the

name of every geometry object present in the file. The geometry selected from the list

will the be the geometry used by the rig (see Figure 13).

28

Figure 13: A Geometry Node attached to a Rig Node.

The Global node corresponds to a Component element of type “Global” in XML.

The Node Details Panel for the Global node allows the user to set the name of the

global component as well as the icon and color of the controller for the global

component. The drop down boxes are populated with a set of pre-determined options

created in Python functions (see Figure 14).

After a Global node is connected to the graph, a controller for the global

component is created for the rig instance shown in the 3D scene. When this controller is

moved, its position in world space is used for the Location element of the global

component in the XML file. The rig definition file is automatically updated by this

change in position by using a scriptJob. A scriptJob is a feature of Maya that allows

a user-defined function to be called whenever the values of a channel on an object are

modified. In this case, the function causes the rig definition file to be regenerated from

the node graph in the Node Editor.

The Hip node represents a Component element of type “Hip” in an XML file. The

settings for the Hip node in the Node Details Panel are identical to those available for

the Global node. When a Hip node is attached to the node graph, both a controller

29

and joint object are created in the 3D scene for the hip component. Since the joint is

parent constrained to the controller, the controller is used to update the Location

element of the hip component.

Figure 14: A Global Node attached to a Rig Node.

The Spine node corresponds to a Component element of type “Spine” in XML.

There are many settings available for the Spine node in the Node Details Panel. The

“FK Color” and “FK Icon” widgets set the icon and color used for the FK controllers of

the spine. The “Kin. Type” widget allows the user to change among the three

Kinematic Types available for spine components. If a IK Kinematic Type is selected,

additional widgets are added for setting the icon and color of the shoulder controller.

The index of the joint in the parent component to which the spine is attached can also

be set using the “Parent Number” widget. By default a spine is built with three joints,

but more can be added using the “Add Joint” button. If more than three joints are

present, joints can be be removed using the “Remove Joint” button (see Figure 15).

30

Figure 15: A Spine Node added to the node graph for a rig.

Once the user is done creating or modifying a rig definition, a new XML file can be

saved using the File menu at the top of the Node Editor. If a rig definition file already

exists for this rig, the rig version is incremented.

31

5 DISCUSSION

This system aids scene organization by providing mechanisms for managing different

versions of rigs and loading them into scenes. The Metadata Node Network makes it

possible to update rigs that have already been deployed in scenes and provides a

method to help preserve animation keys despite changes to the rig. This would be

difficult to do with Maya’s default file referencing system. The node-based interface also

greatly accelerates rig design and hides most of the more technical aspects of rigging

from the user. Additionally, it entirely eliminates the need to script rigs designed with

the system.

In the absence of this rigging system, users who wish to create a rig either need to

manually create all of the connections in Maya to build a functional rig, or write a

script using Python or MEL that will build the rig for them. They could also utilize

another free rigging system, but none of the systems presently available provide a

node-based interface for customizing the rig and easily modifying the relationships

between the rig’s components. Additionally, such systems do not provide any

mechanism for easily updating existing rigs that have been created. Generally these

rigging systems only provide a user interface that sits on top of a Python or MEL script

which can only create new rigs.

The greatest weakness of the system remains the limited number of components that

are available to the user for constructing rigs. In order to create a complete character

rig, many more features such as blend shapes for facial performance must also be

supported by new types of components. For characters with extremely unusual

performance characteristics, the system may also prove insufficient. An example of this

is a character who has limbs that can be detached and re-attached to different locations

on the body. This type of problem is much more difficult to solve, as it undermines

basic assumptions about the architecture of the system such as parenting relationships

between components.

The rigging system fills a gap as an open source node-based rigging system. While

many free or open source rigging systems exist for Maya, none of those currently

32

available provide the node-based interface or version capabilities implemented within

this system. This provides for small studios and individuals capabilities typically not

found outside of proprietary tools at large animation studios.

The software-agnostic rig definition format used by this system also solves pipeline

issues for studios. Some of these issues include sharing data among many different

software packages, or sharing data between facilities at different locations. The rig

definition files can be managed with existing version control systems such as Git, which

benefits 3D animated productions that choose to use such systems. While the rigging

system is not a complete pipeline solution, its rig definition approach could be

integrated into larger pipeline packages.

33

6 FUTURE WORK

As previously mentioned, the system would greatly benefit by the addition of a larger

variety of components. The more components made available in the system, the greater

the variety of rigs that can be constructed by the user. Some components that come to

mind include a component for rigging faces, and components for quadrupedal legs and

spines. Non-organic types of components could also be supported, such as common

types of machine components. The system could also integrate with a modeling and

rigging tool such as the one created by Chris Wheeler in his thesis work [Wheeler, 2009].

The rig definition format could be expanded to include support for unusual rig

performance characteristics, such as dynamic parenting relationships between

components. Many different types of relationships between components could be

supported, such as components that are only constrained by orientation to their parent

components.

Instancing of rig components is an important feature that could be supported by the

definition format. This would make it easier to re-use the same component or set of

components within different parts of the same rig, or across several rigs. The rig

definition format could support referencing pieces of a rig, where shared components are

stored in their own separate files. Thus changes to those components can more easily be

shared and propagated.

A feature that was considered, but dropped early in development due to time

constraints, is the addition of a picker interface for selecting controller objects in a 2D

control panel. Such a picker interface could either be designed in a WYSIWYG

drag-and-drop environment, or procedurally generated by an automated system that

determines how to organize and place the 2D elements in the interface.

In order to take advantage of the software-agnostic rig definition format,

implementations of the rigging system in other software packages such as Houdini, 3D

Studio Max, or Softimage should also be created. Assuming that such implementations

are possible, the same rig could be used seamlessly in all three packages. Additionally,

project management tools could be written that use the information in the rig definition

34

files in order to track development progress on rigs. Such tools could be written in

HTML5 and WebGL so that rigs could be viewed in 3D in a web browser without one

ever having to own or open a standalone 3D animation package.

While the functions for loading, updating, and removing rigs were written as a C++

plugin for performance reasons, an alternative implementation in Python is possible. A

Python implementation would make it easier for new developers to begin modifying the

system and more quickly to begin implementing changes.

The XML rig definition format could also benefit from the creation of a schema. A

schema is a file used by a XML document that lists all valid elements, what attributes

each element has, and how elements can be structured in relation to one another in the

document. If a schema is provided, any given XML document can be validated against

the schema to determine if it is validly structured. This helps to catch errors when an

XML document is generated and enforces consistency for a particular document type.

Once this document is published, the full source code for the rigging system will be

hosted on the website GitHub, which has been used to share codebases for many large

software development projects. It is the author’s hope that by his doing so, others will

be encouraged to learn from the techniques implemented in this rigging system, and

that they may contribute with their own improvements to the project.

35

REFERENCES

Anthony A. Apodaca and Larry Gritz. Advanced Renderman: Creating CGI for Motion

Pictures. Morgan Kaufmann, San Francisco, CA, 1999.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001. URL http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau.

Extensible markup language (xml) 1.0 (fifth edition). Technical report, World Wide

Web Consortium, November 2008. URL http://www.w3.org/TR/REC-xml/.

Douglas Crockford. The application/json media type for javascript object notation

(json). Technical report, Internet Engineering Task Force, July 2006. URL

http://www.ietf.org/rfc/rfc4627.txt. RFC 4627.

Digia. Qt Designer Manual, 2013. URL

http://qt-project.org/doc/qt-4.8/designer-manual.html.

David Gould. Complete Maya Programming (Volume I): An Extensive Guide to MEL

and the C++ API. Morgan Kaufmann Publishers, San Francisco, CA, 2003.

David Hunt. Modular procedural rigging. In Game Developer’s Conference 2009, San

Francisco, CA, 2009. URL

http://www.gdcvault.com/play/1708/Modular_Procedural_Rigging.

Paul Leach. A universally unique identifier (uuid) urn namespace. Technical report,

Internet Engineering Task Force, July 2005. URL

http://www.ietf.org/rfc/rfc4122.txt. RFC 4122.

Richard Lewontin. The genotype/phenotype distinction. In Edward N. Zalta, editor,

The Stanford Encyclopedia of Philosophy. Summer 2011 edition, 2011. URL

http://plato.stanford.edu/archives/sum2011/entries/genotype-phenotype/.

Erik Malvarez, Scott Sharp, and Stephen Unterfranz. A new approach to procedural

character rigs. In ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, pages 47:1–47:1,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-343-3. doi:

10.1145/1401032.1401093. URL http://doi.acm.org/10.1145/1401032.1401093.

36

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/TR/REC-xml/
http://www.ietf.org/rfc/rfc4627.txt
http://qt-project.org/doc/qt-4.8/designer-manual.html
http://www.gdcvault.com/play/1708/Modular_Procedural_Rigging
http://www.ietf.org/rfc/rfc4122.txt
http://plato.stanford.edu/archives/sum2011/entries/genotype-phenotype/
http://doi.acm.org/10.1145/1401032.1401093

Tom Ngo. Office open xml overview. Technical report, European Computer

Manufacturers Association, 2006. URL http://www.ecma-international.org/

news/TC45_current_work/OpenXML%20White%20Paper.pdf.

Rob O’Neill. Digital Character Development: Theory And Practice. CRC Press,

Burlington, MA, 2008.

Stuart C. Shapiro. Semantic networks. In Encyclopedia of Artificial Intelligence. Wiley,

1992. URL http://www.jfsowa.com/pubs/semnet.htm.

Jason Smith and Jeff White. Blockparty: Modular rigging encoded in a geometric

volume. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New York, NY, USA,

2006. ACM. ISBN 1-59593-364-6. doi: 10.1145/1179849.1179993. URL

http://doi.acm.org/10.1145/1179849.1179993.

Chris Wheeler. An automated system for the creation of articulated mechanical parts.

Master’s thesis, Texas A&M, College Station, TX, 2009.

Tim Withers. Developing a framework for a new visual-based interface design in

autodesk maya. Master’s thesis, Texas A&M, College Station, TX, 2012.

37

http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
http://www.jfsowa.com/pubs/semnet.htm
http://doi.acm.org/10.1145/1179849.1179993

APPENDIX A

XML ELEMENT ATTRIBUTES

Rig Element Attributes

Name is used by the rig Load and Update functions when creating

objects in the scene. It is the prefix string that is always at the front of

every object’s name in the scene when it is created. This makes it easier

to identify which objects are part of which rig when viewed in the 3D

scene.

Version is the version number associated with this rig definition file. It

is used to determine if a rig instance is currently up to date with its rig

definition.

GuiLocation is a location in 2D screen coordinates for positioning the

rig node representing this element in the Node Network Panel of the

Node Editor.

Geo Element Attributes

File is a project relative file path which points to the Maya scene file

containing the geometry to load. Since the file path is project relative, a

project directory must be currently set in Maya’s configuration options

in order for the geometry to be correctly loaded.

GuiLocation is identical to the same attribute on the Rig element,

except that it is used for the geometry node corresponding to this

element.

Name is used to identify a piece of geometry contained within the

geometry Maya scene file.

38

Component Element Attributes for Global

Name is used as the second prefix for an object’s name when created in

the scene, appearing after the rig name from the Rig element in order

to identify which rig and component of which the object is a part.

Version is used by the Update function when it is determining whether

a particular component needs to be updated or not.

Type defines what type of component is defined by this Component

element. In the case of a global component it will be equal to “global”.

RigId is an identifier string associated with this component which

is created randomly from a version 4 UUID (Universally Unique

Identifier). UUIDs are designed such that when one is randomly

generated, the chances that two UUIDs are identical is statistically

unlikely [Leach, 2005]. The rigId is used internally by the rigging system

to match component elements in a rig definition with their corresponding

metadata nodes in the scene when calling the Update function.

Icon identifies which pre-defined shape to use for the global component’s

controller object. An extensive list of controller shapes is defined by the

rigging system, which allows the user to pick one by name instead of

having to create a shape from scratch.

Color determines which of the predefined colors provided by Maya to

use for the global component’s controller object.

The spine component type differs in a significant number of ways from the global

and hip component types. It does not use the Icon attribute, and some of the

attributes used in the global and hip are used in different ways by the spine component.

Additional attributes are also added that the global and hip components do not use.

The differences in the spine component type’s attributes are shown below.

39

Component Element Attributes for Spine

Color is used to set the color on all of the FK controllers present in the

spine component.

FkIcon is the controller shape used by all FK controllers.

KinematicType defines what type of kinematic solution will be used

to determine joint positions by the spine component. The three options

available are “FK”, “splineIK”, or “stretchySplineIK”. If “splineIK” or

“stretchySplineIK” are used, then the ShoulderControl child element

must be present within this spine component element.

ParentJoint is the index number of the joint and controller in the

parent component of this spine to which the top level joint and controller

of this spine will be attached.

ShoulderControl Element Attributes

Color is the color of the shoulder controller.

Icon is identical to the global and hip component’s Icon attribute, but

is used for the shoulder controller.

LocalX, LocalY, LocalZ, RotateX, RotateY, RotateZ, ScaleX,

ScaleY, and ScaleZ. These are used for purposes identical to those of

the Location element but are for the shoulder controller.

40

APPENDIX B

METADATA NODE ATTRIBUTES

Figure 16: Attributes of a MetaDataManagerNode listed in Maya.

MetadataManagerNode Attributes

MetaRoots attribute is attached to the MetaParent attribute of

MetaRootNodes.

41

Figure 17: Attributes of a MetaRootNode listed in Maya.

MetaRootNode Attributes

MetaParent is always connected to the MetaRoots attribute of the

MetadataManagerNode.

MetaChildren is attached to one or more MetaParent attributes on

component metadata nodes.

Version holds the current version number for the rig associated with

this MetaRootNode. It is drawn from the rig definition file the when

it is loaded or updated.

XmlPath is the file path to the XML rig definition file associated with

this rig.

Geometry is connected to the MetaParent attribute on the geometry

node associated with this rig.

TopGroup is connected to the MetaParent attribute on the top level

group for this rig. This group is used for organizing the scene Outliner,

with every other DAG node of the rig as a child of this group node.

RigGroup is connected to the MetaParent attribute on the rig group

for this rig. The rig group is a child of the top group, and contains

all of the joints, geometry, constraints, end effectors, and IK handles

associated with the rig.

42

CtlGroup is connected to the MetaParent attribute on the control

group for this rig. The control group is a child of the top group, and

contains all of the controller objects and clusters associated with the rig.

NoTransformGroup is connected to the MetaParent attribute on

the NoTransform group for this rig. This group contains certain objects

in a rig that should never be moved from their default transformation

positions.

SkelLayer is connected to the MetaParent attribute on the display

layer which contains all of the joints in this rig.

CtlLayer is connected to the MetaParent attribute on the display

layer which contains all of the controllers in this rig.

ExtrasLayer is connected to the MetaParent attribute on the display

layer which contains miscellaneous extra objects which the user typically

does not need to see, such as clusters and IK handles.

Figure 18: Attributes of a MDGlobalNode listed in Maya.

43

MDGlobalNode Attributes

MetaParent is connected to the MetaChildren attribute of

another metadata node such as a metadata component node, or a

MetaRootNode. The metadata node to which it is connected is

identical to the parenting relationships in the rig definition file.

MetaChildren is connected to the MetaParent attribute of another

metadata component node.

Version holds the current version number of this component as defined

in the rig definition file when it was last loaded or updated. It is used

by the Update function determine if a component needs to be updated.

RigId holds the UUID number for this component as defined in the rig

definition file. It is used to match metadata component nodes to their

corresponding component element in the definition file when the Update

function is called.

Controller is connected to the MetaParent attribute on the controller

associated with this global component.

ControllerGroup is connected to the MetaParent attribute on the

group holding the controller.

RigParentConstraint is connected to the MetaParent attribute on

the parent constraint from the global controller to the rig group.

RigScaleConstraint is connected to the MetaParent attribute on

the scale constraint from the global controller to the rig group.

NoTransformScaleConstraint is connected to the MetaParent

attribute on the scale constraint from the global controller to the

NoTransform group.

44

Figure 19: Attributes of a MDHipNode listed in Maya.

MDHipNode Attributes

HipJoint connects to the MetaParent attribute on the joint associated

with this hip component.

HipJointParentConstraint is connected to the MetaParent

attribute on the parent constraint from the hip controller to the hip

joint.

45

Figure 20: Attributes of a MDSpineNode listed in Maya.

46

MDSpineNode Attributes

FKControllers connects to the MetaParent attributes on all of the

FK controllers for this spine component.

FKControllerGroups connects to the MetaParent attributes of all

the groups containing FK controllers for this spine component.

FKJoints connects to the MetaParent attributes of all joints in the

FK chain for the spine. If the Kinematic Type of the spine is set to FK,

there is no separate FK joint chain so this attribute is not connected to

any joint objects.

BindJoints connects to the MetaParent attributes of all the joints in

a spine component used for binding skin weights to a mesh.

FKJointParentConstraints connects to the MetaParent attributes

of the parent constraints from FK controllers to FK joints.

HipJointCopy is attached to the MetaParent attribute of a copy of

the hip joint for the FK joint chain, if the spine is attached to a hip

component.

SplineIKHandle is attached to the MetaParent attribute of the

spline IK handle, if the Kinematic Type of the spine is set to “spline

IK” or “stretchy spline IK”.

47

SplineIKEndEffector is attached to the MetaParent attribute of the

spline IK end effector, if the Kinematic Type of the spine is set to “spline

IK” or “stretchy spline IK”.

SplineIKCurve is attached to the MetaParent attribute of the spline

curve used for a spline IK setup, if the Kinematic Type of the spine is

set to “spline IK” or “stretchy spline IK”.

ShoulderControl is attached to the MetaParent attribute of the

shoulder controller, which is only present if the Kinematic Type of the

spine is set to “spline IK” or “stretchy spline IK”.

ShoulderControlGroup is attached to the MetaParent attribute of

the group containing the shoulder controller, if it exists.

MathNodes is attached to the MetaParent attribute of math nodes

used to calculate scaling values on joints if the Kinematic Type is set to

“stretchy spline IK”.

SplineIKClusters is attached to the MetaParent attribute of clusters

used to control the spline curve if the Kinematic Type is set to “spline

IK” or “stretchy spline IK”.

ShoulderControlConstraint is attached to the MetaParent

attribute of the parent constraint from the last FK joint in the group

containing the shoulder controller.

HipControlConstraint is attached to the MetaParent attribute of

the parent constraint from hip component’s group to the copy of the hip

joint, if it exists.

MiddleClusterConstraint is attached to the MetaParent attribute

of the parent constraint from the shoulder controller and parent

controller of the parent component to the middle cluster controlling the

spline IK curve, if it exists.

KinematicType holds the current Kinematic Type of the spine, as

defined in the rig definition file the last time it was loaded or updated.

This is drawn from the KinematicType attribute of the spine element in

the file.

48

APPENDIX C

C++ CLASSES

XmlGuide loads an XML file into a hierarchy of guide information data structures. It

uses the RapidXML library for file parsing. It contains a pointer to the guide

object for the top level component.

ComponentGuide is the abstract base class for all component guides. It provides

shared functionality and a consistent interface for component guide objects. It can

contain a list of one or more child ComponentGuide objects.

GlobalComponentGuide derives from ComponentGuide and provides

functionality for loading guide information for a global component.

HipComponentGuide is similar to GlobalComponentGuide but for hip

components.

SpineComponentGuide is similar to GlobalComponentGuide but for spine

components.

Rig is the top level class for all functionality related to loading, updating, and

removing rigs. It contains a pointer to an XmlGuide object which it uses for its

load and update functions. It contains member variables for the RigIdManager

and top level Component object.

RigIdManager manages a dictionary data structure whose keys are RigIds, and

values are pairs of pointers to Component objects and metadata component

node handles. This is used to map components in a rig definition file to their

matching metadata components nodes when the rigs are updated.

Component is the abstract base class for all component classes. It provides a

consistent interface to load, update, and remove individual components. It

contains a pointer to a ComponentGuide object. It can also contain a list of

one or more Component objects.

GlobalComponent derives from Component and provides functionality for loading,

updating, and removing global components.

HipComponent similar to GlobalComponent but for hip components.

SpineComponent similar to textbfGlobalComponent but for spine components.

LoadRigUtils provides utility functions to simplify common tasks necessary for

loading, updating, and removing rigs. Some of these functions are exposed as

commands through the plugin so they can be used in scripts.

MyErrorChecking provides macros useful for making error checking in Maya plug-ins

less labor intensive. The code for these macros was lifted from Complete Maya

49

Programming [Gould, 2003].

50

APPENDIX D

COMMAND PARAMETERS

The long name of parameters in the listing is shown first, with the short name in

parentheses afterwards.

updateMetadataManager Parameters

name (n) is an optional parameter. It is provided only the meta-root

node of the provided name is updated.

force (f) is an optional parameter. It is provided version checking is

ignored when the update is performed, forcing updates.

replace (r) is an optional parameter. It is provided an alternate path

to the rig definition file is used instead of the path provided in the

MetaRootNode XmlPath attribute.

globalPos (g) is an optional parameter. It is provided when the

update is performed the world space position of keys on animation curves

attached to controllers will be maintained.

loadRig Parameters

path (p) is a required parameter. It must contain an absolute path to

an XML rig definition file.

removeRig Parameters

name (n) is a required parameter. It must contain the name of a

MetaRootNode for a rig instance currently loaded into the scene.

getMetaNodeConnection Parameters

node (n) is a required parameter. It specifies the name of a metadata

node. The attributes of this node will be used to find connections to

other nodes.

connection (c) is a required parameter. It specifies the name of an

attribute on the given metadata node.

index (c) is an optional parameter. It specifies the index number of

a connection on an attribute if that attribute is connected to multiple

nodes. If there are multiple connections and the index is not specified,

then the first object connected is returned.

51

getMetaChildById Parameters

node (n) is a required parameter. It specifies the name of a metadata

node. The metaChildren of this node will be used to find connections

to other metadata nodes.

rigIdentifier (rid) is a required parameter. It specifies the rigId string

to search for in the list of child metadata nodes.

52

APPENDIX E

ARCHITECTURE DESIGN DIAGRAM

53

APPENDIX F

GLOSSARY

DAG stands for Directed Acyclic Graph. The DAG is a subset of Maya’s Dependency

Graph where no child node can be its own parent. The DAG is used for objects

that have a 3D position associated with them in the scene, such as geometry or

groups.. 16, 18, 38

Dependency Graph is the fundamental structure by which every scene construction

operation in Maya is accomplished. This is done by creating graphs of connected

nodes that recieve input, process it, and then create output to other nodes.. 5, 6,

16

JSON stands for JavaScript Object Notation, and is a text-based open standard for

exchanging data. It originated as a format for sharing data between JavaScript

executed in web browsers and web servers. v, 5–8

metadata is a term that means “data about data”. Metadata is useful in web

technologies to describe what type of content is on a website. In a rigging context,

it is used to describe components of a rig in an abstract way, such as calling a

piece of a rig an “arm” or “leg”. 1, 4, 5, 7–10, 16–18, 35, 38, 40, 45–47

Metadata Node Network is a network of nodes constructed in a scene graph in

order to enable semantic traversal of a rig. The network is attached to every

object in the scene that composes a rig. The rigging system implemented for this

thesis creates a Metadata Node Network in Maya’s Dependency Graph. v, 1, 5, 9,

10, 12, 14, 16–18, 27

Node Editor is the interface for authoring new rig definition files. The rig is

represented in this interface as a graph of interconnected nodes which can be

created, connected together, or deleted. The Node Editor can only be accessed

while in Rig Edit Mode.. v, 6, 11, 13, 18–20, 22, 23, 26, 34

PyQt is a binding of the Qt framework which is commonly used for developing

graphical user interfaces. 1, 6, 14, 18

Rig Edit Mode is a special mode of operation that the user can enter through the Rig

Manager interface. Rig Edit Mode loads an instance of a selected rig in the scene

which alters the default configuration of the rig when changed. The Node Editor

interface is also accessible while in Rig Edit Mode.. 11, 13, 16, 19, 20, 22

54

Rig Manager is the interface used for loading, updating, and removing rigs from a

scene. Rig Edit Mode can also be accessed through this interface.. v, 1, 10, 11, 14,

18–22

Semantic Network is a graph that represents knowledge with interconnected nodes

and arcs. Semantic networks have been used in philosophy, psychology, linguistics,

and computer software. Metadata Node Networks use many of the same concepts

devised for semantic networks.. 3, 4

XML stands for Extensible Markup Language. XML is a document format

traditionally used in web technologies for distributing arbitrarily structured

documents and data. v, 1, 2, 5–8, 14, 17, 24–26, 31, 38, 45, 46

55

	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Modular Rigging
	2.2 Semantic Networks
	2.3 Rig Definitions and Data Exchange Formats
	2.4 Node Based Interfaces
	3 Methodology
	3.1 Rig Definition Files
	3.2 Rig Instantiation and Updating
	3.3 Rig Authoring

	4 Implementation
	4.1 Using XML for Rig Definitions
	4.2 Using C++ and Maya API to Load, Update, and Remove Rigs
	4.2.1 Constructing the Metadata Node Network
	4.2.2 Commands for Loading, Updating, and Removing Rigs
	4.3 Using PyQt for the Rig Manager and Node Editor
	4.3.1 Rig Manager
	4.3.2 Node Editor

	5 Discussion

	6 Future Work

	References

	Appendix A
	Appendix B

	Appendix C
	Appendix D

	Appendix E
	Appendix F

