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ABSTRACT 

 

In modern chip-multiprocessor (CMP) designs, with the increasing number of 

cores, traffic between different cores keeps increasing. Consequently, on-chip 

interconnection networks experience increasingly large communication bandwidth 

demand. This thesis focuses on Quality-of-Service (QoS) of Networks-on-Chip (NoC). 

NoC is considered as a scalable approach of interconnection network compared to 

conventional bus-based architecture. Like Ethernet, NoC faces common QoS issues such 

as bandwidth utilization and fairness. This thesis is a study on the effectiveness of source 

throttling for NoC, including fairness and overall performance such as program run time 

and packet latency. Source throttling is a well-known technique for traffic regulation. It 

is shown to be effective for bufferless NoC in previous studies. Due to different traffic 

behaviors and characteristics, however, it is not obvious if source throttling is effective 

for general buffered NoC. The first part of this research is a set of network simulations 

on various synthetic traffic cases. The results indicate that source throttling can reduce 

application runtime when (1) the network is congested, (2) there are dependencies 

among communication requests, and (3) the width of the dependence graph must be 

sufficiently large. The second part is full system simulations on public benchmark suites. 

Source throttling does not bring benefit for these relative realistic cases. Further 

experiment reveals that the aforementioned conditions are not satisfied. This explains 

why source throttling is of little use for general buffered NoC in CMP designs. 
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1. INTRODUCTION 

 

In modern chip multi-processor (CMP) designs, the demand for higher 

performance never ceases to increase, and number of cores on a single chip grows 

accordingly. As more and more applications become communication intensive, the 

interconnection network, which handles all kinds of traffic between different cores, 

suffers from poor bandwidth utilization and unfair bandwidth allocation. Conventional 

bus-based architecture cannot fulfill the demand for bandwidth when on-chip traffic 

grows along with the number of cores. 

Networks-on-chip is introduced as a scalable substitute to bus-based designs. In 

NoC based CMP designs, every core has its private uncore part, such as shared cache 

and network interface (NI). Through the NI, each core is connected with a router. 

Routers together with communication links constitute a network. NoC is more scalable 

because its resources are distributed and supports massively parallel data transportation 

as opposed to bus, which is a centralized resource and is used by one or a few packets at 

a time. However, resource of NoC is still limited especially for coping with peak traffic 

demands. Some applications are so communication intensive that the limited NoC 

resource becomes a bottleneck of entire chip performance. 

Quality-of-Service is to deal with the resource allocation issue for networks. It is 

a concept introduced from the field of computer network. It can be achieved in different 

approaches. One is through routing policy, such as adaptive routing. When the utilization 

of a network is below its saturation point, it is effective for reducing congestion. 
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However, it requires additional effort to collect congestion information and conduct 

routing computation. Another approach is through router design, especially the flow 

control design. It can help to improve performance but it lacks the global view of a 

network. Last but not the least, source throttling is an approach that is studied in this 

thesis research. 

Source throttling is a well-known technique. Previous studies show that it is an 

effective to regulate traffic, either in road systems or in Ethernet. Its main idea is to hold 

some packet injection to the network so that network congestion is reduced and the 

overall performance is improved. The signal light at highway entrances in California is 

an example of source throttling. Previous works on NoC source throttling are mostly 

restricted to bufferless designs and benefits are observed in such cases. However, 

buffered NoC is more typical and the mainstream technique. Traffic behaviors and 

characteristics in buffered NoC are remarkably different from those in bufferless NoC.  

The effectiveness of source throttling for buffered NoC is hardly studied before 

and is the main focus of this thesis research. Our study includes network simulations on 

synthetic cases as well as full system simulations on public benchmark suites. We find it 

is very difficult, if not impossible, to observe any benefit of using source throttling for 

NoC in realistic CMP designs. By conducting various simulation experiments, we also 

analyze the reason of this ineffectiveness and identify several necessary conditions that 

may allow it to be useful. 
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2. RELATED WORK 

 

Quality-of-Service is an important issue for NoC designs. As more applications 

become communication intensive, congestion shows up and traffic regulation is needed. 

There are many different QoS techniques. Lu, et al., [9] propose a Time-Division-

Multiplexing Virtual-Circuit configuration for NoC. In this work, time is divided into a 

number of slots evenly. Traffic of different directions reserves a fixed number of slots in 

one period. It has hard bandwidth guarantee, but due to this guarantee and non-adaptive 

configuration, utilization of bandwidth is not high in some traffic patterns. Globally 

Synchronized Frames (GSF) is a frame-based QoS approach proposed by Lee, et al. [10]. 

It uses deadline-based arbitration to guarantee the bandwidth, and help to improve 

fairness. However, this technique may degrade network throughput when there is a 

congestion hotspot. Preemptive Virtual Clock (PVC) is another frame-based QoS 

Scheme [11]. It allows high-priority packets to preempt low-priority packets. It is a cost-

effective mechanism in terms of area and energy. On the other hand, as it allows packet 

dropping and therefore needs a retransmission scheme with an additional ACK/NACK 

protocol.  

Similar as the aforementioned approaches, source throttling also proves to be an 

effective technique to reduce congestion in interconnection [7], [8]. It is first applied to 

off-chip networks. Baydal, et al., propose an injection restriction mechanism to reduce 

congestion for wormhole network [1]. Gran, et al., present an implementation of 

infiniband hardware for congestion control [2]. This interconnection is between many 
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large-scale computers and it is different from on-chip network: each node has more 

computing power and storage space; the latency is significantly large compared with on-

chip network. Later, a few prior works apply source throttling to on-chip network. 

Nychis, et al., [3], [4] propose an application-aware mechanism to achieve higher 

network utilization for bufferless NoC. In these two works, starvation rate is used as a 

metric to indicate the congestion of a network. The starvation rate is applied into a 

function together with another parameter - Instructions-per-Flit. When the value of this 

function is higher than a preset threshold, source throttling is started. It is an effective 

scheme but it does not consider network conditions. Its focus is on the awareness of 

applications. Chang, et al., make an improvement of the work and introduce a 

mechanism that is both application-aware and network-load-aware [5]. This mechanism 

detects L1 misses per thousand instructions (MPKI) to indicate application load. In 

addition, it uses different throttling rate steps to make it network-load-aware. When the 

throttling rate is low, the rate step is large. When most of the traffic is blocked, the rate 

step is small. As such, this scheme avoids over- and under-throttling. To the best of our 

knowledge, there is no published work on latency-based source throttling on NoC.  
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3. BACKGROUND 

 

In this section, we introduce some basic concepts that will be employed in this 

thesis research, including basics in CMP architecture, cache coherence protocol, metrics, 

and techniques in source throttling.  

3.1 CMP Architecture 

 

 

Figure 1. CMP and 2D mesh-based NoC architecture. 

 

 In CMP, each core has a corresponding uncore part, including shared caches 

and a network interface (NI). Through the NI, a core is connected to the network. Both 

injection and ejection traffic go through network interface to enter or leave the network. 

Each network interface is connected with one router. Between routers, there are physical 
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links. There are different topologies of the interconnections between routers. The 

topology in Figure 1 is a 2D mesh [6].  

 For the uncore part, the detail is shown as Figure 2.  

 

Figure 2. Components in CMP architecture 

 

 Each core will have its private L1 instruction cache and data cache. Next to it is 

L2 data cache. It can be configured either shared cache or private cache, depending on 

the cache coherence protocols. If L2 cache is shared, it is still physically distributed. L2 

cache is connected with a network interface. For each level cache, there is a component 

called missing information/status holding registers (MSHRs). MSHRs [12] will help 

keep track of cache misses and allow CPU to go on execute without waiting for the 

response of cache misses. The size of MSHRs restricts the maximum number of 

outstanding requests that can be issued into the network at the same time.  
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3.2 Cache Coherence Protocols 

 

 Because of the execution requirement in modern CMP design, write-back cache 

is a dominant cache in today’s cache hierarchy. To keep the consistency between caches 

of all different levels and between different private and physically distributed shared 

cache, cache coherence protocol is needed.  

 There are mainly two types of cache coherence protocols: one is directory-based 

and the other is snooping. Directory-based protocol means that every cache has a 

directory. Whenever a request attempts to get permission to access a cache, it needs to 

query the directory. As the directory knows whether the entry is currently updated or 

invalidated by some other processors, it decides whether or not to give the permission. 

Also, the directory may know who has the most recently changed data, which helps to 

direct the request to that location. Another type of cache coherence protocol is snooping. 

For this protocol, whenever there is a cache miss, the request is cloned and broadcasted 

to all the other caches. There is no directory-like component in snooping protocols. 

Local cache has no idea who has the copy. The only way to require the data is to 

broadcast. Evidently, snooping protocol causes more traffic and more easily results in 

congestion than directory-based protocol. In the simulation environment of this thesis 

work, MESI CMP directory is a directory-based protocol and MOESI hammer is a 

snooping protocol.  

 For both types of protocols, cache status plays an important role in the protocol. 

Transitions of cache status help to understand cache behaviors.  
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3.3 NoC Performance Metrics 

 

 NoC performance can be evaluated by several different metrics. Below are some 

common metrics which are employed in this thesis: 

Round trip time (RTT): In NoC, for every transaction, there is a pair of request and 

response. Round trip time is the time from the start of a request being issued to the time 

the corresponding response is received. It includes three parts: request latency in the 

network, response time at the target and response latency in the network. Usually the 

response time at the target is a fixed value, like cache access time. But sometimes due to 

the limit to the number of target entries, the response time can be a multiple of the access 

time. RTT is a good metric to indicate the congestion of the network. When a network is 

congested, some packets must wait longer in buffer queues and hence lead to RTT 

increase.  

Ideal round trip time: Ideal round trip time is the RTT if there is no congestion in the 

network. Ideal RTT is used as a reference in source throttling algorithm.  

Latency per hop (LPH): In the 2D mesh topology, for every source-target node pair, the 

minimum number of edges in-between is the number of hops. Every packet, either 

request or response, has network latency. This latency divided by the number of hops is 

the latency per hop. This metric can also indicate the network congestion, but since its 

value is typically small compared with RTT, it is not an ideal parameter to use in the 

control policy. However, due to the various numbers of hops of different requests, LPH 
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is a good measure of fairness. It makes long distance packets and short distance packets 

comparable.  

Queue occupancy: This metric measures the occupancy of queues in buffered NoC. It 

indicates the resource utilization.  

Link Utilization: This is another metric to estimate the NoC resource utilization. It 

measures the usage of the links between routers. Under dimension order routing, links at 

the cross section tend to have more traffic than the others. Thus, these links are to be 

used to estimate the utilization.  

Injection rate: This metric is used to indicate the source feeding rate. If it is high, it is 

likely that it has a high throughput. The standard deviation of this metric can also 

indicate the fairness.  

3.4 TCP-Vegas 

 

 TCP-Vegas is a congestion avoidance algorithm based on latency. It uses RTT to 

estimate the network congestion and executes control policy accordingly. In TCP-Vegas, 

there is a window at the source queue. Records of packets in the source queue are placed 

in the window. As source throttling is only applied to the source, only request packets 

are throttled, not response packets. When a request record is placed into the window, the 

request packet can be injected into the network. A record is removed when the 

corresponding response packet is received. The original TCP-Vegas keeps track of the 

sequence of request records. It allows window shifting only when the top request is 

replied. But in NoC, the number of hops of different requests varies. There are long 
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distance requests and short distance requests. Obviously, long distance requests have 

relatively long RTT. If sequence of the records is still traced as the original TCP-Vegas 

algorithm, short distance requests could be stalled unintentionally and degrades the 

performance. To break the sequence trace of record, request record can be added into the 

window as long as there is an available slot. Then the window basically means the 

maximum outstanding requests allowed. Changing the window size can help control the 

congestion in the network.  

 For the window size changing policy, the basic idea is to keep the actual 

throughput close to the estimate throughput, which is also the ideal throughput.  

The ideal throughput is calculated as follows:  

                    
           

                 
 

The actual throughput is 

                     
                          

                  
 

The ideal throughput is always greater than the actual throughput. The difference (e – a) 

is measured. There are two preset threshold values Bl and Bh (Bl < Bh). There could be 

three cases:  

(1) Bl < (e – a) < Bh, it means that actual throughput is in the range as expected. The 

window size is then kept unchanged. 

(2) Bl > (e – a), it means that the actual throughput is very close to the ideal case. 

Requests hardly meet any congestion. More requests can be issued into the network. 

Hence, the window size is increased.  
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(3) Bh < (e – a), it means that the network is so congested that the actual throughput is 

too low. In this case, the window size needs to be decreased to block requests from 

injecting into the network.  

The control policy is called periodically to change the window size. The period is 

named control interval. Actual RTT and ideal RTT is measured in each control interval. 

The size of control interval determines the granularity of the algorithm. It may lead to 

different simulation results. This issue will be discussed in more details later.  

3.5 Properties of Buffered Network 

 

In this thesis work, buffered network is chosen as the interconnection network. It 

has some properties that are related to source throttling.  

In most previous works, source throttling is applied on the bufferless networks. It 

seems to gain a good benefit using source throttling. But the properties of bufferless 

network and buffered network are different. The difference is shown in Figure 3.  
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(a)  Bufferless network [4] 

 

(b) Buffered network [13] 

Figure 3. Throughput vs. injection rate 

 

It is very clear that two types of networks act differently when injection rate is 

very high. The bufferless network suffers from a throughput drop, while the throughput 

of buffered network saturates and stays at the maximum. The effect of source throttling 

is to reduce injection rate when it is too high, to improve the performance or throughput. 

For bufferless network, when reducing the injection rate from a very high value, the 

throughput can get closer to the maximum value and thus gain benefit. But for buffered 

network, when throttling reduces the injection rate, there is not much change in the 

throughput. The potential benefit in buffered networks is not expected to be as high as 

that in bufferless networks.  

Another property that buffered network has is the tree saturation [7]. As it is on-

chip network for NoC, its resource, such as queue depth, is very limited. Once there is 

congestion, it means some packets are stalled in the network. It occupies one certain 

queue in the network, and blocks some upstream traffic from injecting into this queue. 

Then the upstream traffic will be stalled. The back-pressure is propagated to the source 
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queue. The buffers are filled up quickly and part of the network is stalled, leading to 

performance degradation. Source throttling helps to reduce the effect of tree saturation as 

it blocks traffic at the source node.  
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4. PROBLEM STATEMENT AND METHODOLOGY 

 

This section mainly discusses the problem formulation and methodology. It 

introduces the mathematical model of the problem and an analysis is provided.  

4.1 Problem Formulation 

 

The problem formulation is: 

Maximize  

 ( )   ∑  (  )

   

 ∑  

   

(∑   

     

) 

where    is the utility function, according to a certain fairness metric,    is a “barrier” 

associated with link l and x is the injection rate [13]. 

 The utility function can be built depending on the type of fairness desired. There 

are three basic types of fairness: proportionally fairness, max-min fairness and minimum 

potential delay fairness. In this thesis work, proportionally fairness is the adopted. In this 

case, the utility function can be written as:  

  (  )     (  ) 

 Then the problem is to find the optimal {  ̂}.  
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4.2 Methodology 

 

To solve the mathematical formulated in section 4.1, an algorithm similar to 

steepest decent is used. In each control interval, throttle is made according to the 

following equation.  

       (  )(  
 (  )  ∑  

   

(∑  

   

)) 

where    is an empirical parameter,   
  is the gradient of the utility function,   is the 

injection rate and    is the link price. In this project, the round trip time of the request is 

used as the link price. The injection rate is adjusted using the equation above at the 

beginning of each control interval.  

To solve this problem, TCP-Vegas based source throttling is applied. The basic 

idea of TCP-Vegas is to keep the difference between the ideal throughput and the actual 

throughput in a certain range. This difference is used to control the window size at the 

network interface. The window keeps the number of outstanding requests injected into 

the network by its core. If the window is fully filled, all the requests trying to inject into 

the network will be stalled. Until at least one outstanding request gets replied can new 

request get injected. This method is revised and different from the basic TCP-Vegas. 

Because for on-chip network, resource is limited and per-destination queues cannot be 

implemented, the window controls only one queue that stores requests to all destinations. 

This makes the method keep track of all outstanding requests.  
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Metrics to be measured are round trip time, link utilization, queue occupancy, 

latency per hop and injection rate. They can present the network utilization and fairness 

for the baseline case and throttled case. Comparing these two groups of data, it can be 

concluded whether benefit can be gained by source throttling.  

The simulations are based on both synthetic traffic and practical application 

traffic. Synthetic traffic is used to identify the conditions for source throttling to be 

effective. The practical application is to test the method in the full system simulation. It 

is to show whether or not source throttling is useful in realistic cases. 

 

 

 



 

17 

 

5. SYNTHETIC TRAFFIC SIMULATION 

 

This section describes synthetic traffic simulation. The simulation is based on 

ocin-tsim simulator [17]. Since the cases are prepared by ourselves, high controllability 

and observability are allowed in these cases. It starts from introducing the simulation 

environment. Then using one specific self-built case to find how the benefit of source 

throttling is generated. Finally, we try more synthetic cases to see the potential average 

gain.  

5.1 Ocin-Tsim Simulator and Simulation Environment 

 

In the synthetic traffic simulation, ocin-tsim simulator is used. It is claimed as a 

DVFS (Dynamic Voltage and Frequency Scaling) aware simulator for NoC. However, 

since it models the cache system and network interconnection, it can be used as a 

simulator for source throttling. It can also run some benchmarks by reading trace files. 

But the traces are fixed files and every packet is generated at a fixed time according to 

the trace files. Its simulation still has significant difference from practical CPU feeding 

mechanism on packet generation. Therefore, we use it only for synthetic traffic 

simulation.  

The configuration of ocin-tsim simulation environment is shown as Table 1.  
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Table 1. Simulation environment configuration 

Network 64 nodes, 8 by 8 mesh, dimension order routing 

Synthetic benchmarks Based on uniformly random. 1- and 4-flit packets, 

 stochastically generated 

Baseline network 4 VCs per network port, 5 flits per VC; 2 injection VCs;  

2 ejection VCs; round robin policy 

Network latency 1 cycle per hop, 1 cycle wire delay, 1 cycle router pipeline 

latency 

5.2 Synthetic Traffic Simulation and Analysis 

 

 There are a lot of built-in synthetic traffic patterns in ocin-tsim, such as 

uniformly random. The first synthetic simulation is on uniformly random traffic. By 

tuning the injection rate, we can generate congested cases. Because it is a uniformly 

random traffic, the window size is expected to be a fixed number. The result is as Table 

2 follows.  

 

Table 2. Source throttling on uniformly random traffic 
window 

size 
baseline 3 4 5 6 7 8 

Network 

latency 
83.6886 99.7884 88.1761 83.6539 83.5956 83.6622 83.727 

Q time 3.51036 27.1341 12.8121 5.1118 3.90617 3.6044 3.55379 

RTT 87.199 126.923 100.988 88.766 87.502 87.267 87.281 

ideal 

RTT 
45.0023 44.8212 45.0196 45.0026 45.0026 45.0026 45.0023 

std dev Q 

time 
0.680419 23.22 3.22624 0.599675 0.574554 0.640407 0.683617 

std dev 

LPH 
0.484686 1.75618 0.773421 0.694075 0.683012 0.678686 0.675783 

 

This simulation is run with 15% injection rate, which means packets are injected 

into the network by 15% of the time. The number of packets in this simulation is 
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1,000,000 and the control interval is 100 cycles. In this table, Q time is the amount of 

time packet stalled at the source node queue. RTT is the sum of Q time and network 

latency. It can be seen that, with increasing window sizes, the result gets closer to the 

baseline case, but none is better than the baseline case. It means that no performance 

improvement is observed. This is conceivable as uniformly random is a case where 

every core has about the same priority. It is already fair even without the throttling.  

To test source throttling on an intrinsically unfair case, the parking lot case is 

simulated. The traffic pattern is shown as Figure 4.  

 

Figure 4. Parking lot case traffic pattern [16] 

 

 In the simulation, the network is 8 by 8 mesh. Figure above shows the traffic 

pattern in one line of the mesh. For every line, the left 7 nodes issue requests to the right-

most node. The injection rate of every node varies as marked on the edge in the figure. 

The injection rate can be tuned simultaneously to create a congested case. The result is 

Table 3.  
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Table 3. Simulation results for parking lot case. 
window 

size 
baseline 3 4 5 6 7 8 9 

Network 

latency 
63.3769 59.9647 62.0633 62.9336 63.242 63.3398 63.3678 63.3754 

Q time 2.25361 7.46924 3.80306 2.71884 2.3913 2.29102 2.26295 2.25514 

RTT 65.631 67.434 65.866 65.652 65.633 65.631 65.631 65.630 

ideal 

RTT 
37.0025 37.0025 37.0025 37.0025 37.0025 37.0025 37.0025 37.0025 

std dev Q 

time 
0.861663 4.96089 2.07718 1.12088 0.892728 0.863543 0.862471 0.861487 

std dev 

LPH 
2.8938 2.90012 2.90242 2.89848 2.8955 2.89434 2.89392 2.89382 

runtime 4440013 13380000 13470000 12245000 13060000 13170000 12835000 14260000 

avg req 

time 
65.63051 67.43394 65.86636 65.65244 65.6333 65.63082 65.63075 65.63054 

 

The injection rate of P0 is 3%. The number of packets in the simulation is 

1,000,000 and the control interval is 100 cycles. The simulation result is similar as that 

of the uniformly random case. We also tried some cases with different injection rate of 

each node, but similar result is observed. That is, when the window size keeps increasing, 

the result gets closer to the baseline case. Under the source throttling, the unfairness still 

exists. There is one bottleneck link in the network - the link between node 6 and node 7 

in Figure 4. All traffic needs to pass through this link and source throttling cannot 

overcome this bottleneck. The TCP-Vegas algorithm actually hurts the long distance 

request, which makes the unfairness even worse. 

 For all of the simulation above, the priorities of all packets are the same. But in 

realistic cases, some packets have higher priority than others. The next simulation is the 

case with different packet priorities.  

 In an application, quite often some tasks must be finished before some others 

begin. Such precedence constraint can be modeled in a data dependency tree. For 
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example, if request A has dependency on request B, request A cannot be issued until 

request B gets replied. Due to this constraint, request A has a lower priority than request 

B. A data dependency tree is built for the simulation and is shown in Figure 5.  

 

 

Figure 5. Data dependency tree in synthetic traffic simulation 
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 In the figure, REQ means request and ACK means responses. Every request has a 

corresponding response. In the figure, if there is a data dependency between two packets, 

the two nodes are connected by an edge. The lower node cannot be issued until the upper 

node packet reaches its target. Every core has similar dependency tree for its requests. In 

this case, different packets have different priorities. The simulation result is shown in 

Table 4.  

 

Table 4. Different packet priority case with dependency tree 

 Baseline ST(0.1, 0.15) 

Network latency 154.909 157.543 

Queue time 31.7794 47.4594 

Runtime 26037 24519 

LPH std dev 1.35262 1.1673 

Q time std dev 13.9184 17.1804 

 

 The injection rate is 40%. The number of packets in the simulation is 70400 and 

the control interval is 100 cycles. The simulation result shows that both the network 

latency and source queuing time increased. Nevertheless, the total runtime is reduced by 

around 5.83%. It seems strange as lower network latency is expected after source 

throttling. Further analysis needs to be done for this case. More information is collected 

from the simulation and shown as Figure 6.  
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Figure 6. Injection time vs. packet ID 

 

 The horizontal axis is packet ID and vertical axis is the injection time of the 

corresponding packet. It can be seen that after 300 packets, the packets are injected into 

the network earlier if source throttling is conducted. We also check the injection rate 

over control interval, which is 500 cycles. The result is plotted in Figure 7.  

 

 

Figure 7. Packet injection number vs. cycles 
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 It is clear that the injection rate has a drop at around 13000 cycles in the baseline. 

From then on, source throttling allows packets to be injected earlier than the baseline. 

The injection drop is caused by the data dependency. It means some packets are blocked 

from injection due to data dependency. Since the source throttling blocks the injection of 

some low priority packets, high priority packets can be injected earlier. There are less 

packets waiting compared with the baseline case.  

 For the network latency histogram in Figure 8, the RTT tends to be crowded in 

the middle range, between 150 cycles to 400 cycles, after source throttling. There are 

less very short RTT packets after source throttling, but there are also less very long RTT 

packets. The maximum RTT during overall runtime decreases from 1059 to 825 cycles. 

In this sense, source throttling does improve fairness.  

 

 

Figure 8. Network latency histogram 
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 CONCLUSION: Data dependency may cause injection rate drop. Source 

throttling can prevent low priority packets from blocking high priority packets. 

 From this case, it is observed that data dependency is necessary for source 

throttling to show its effect. Then a series of simulations are run. The first simulation is 

to make perturbation of the destination of every packet. In the previous simulation, the 

destination is calculated by packet ID and core ID. This causes the traffic to have a 

moving hotspot. To make the case more general, for each case, 20 simulations are run. 

The average is used to measure the performance. For the 20 simulations, the simulator 

reads randomly from an existing file to generate packet destinations. We also vary the 

width of dependency trees to see the effect in Table 5.  

 

Table 5. Perturbation of different tree width cases 
tree width = 4 tree width = 8 tree width = 10 

Baseline 

runtime 

ST 

runtime 
improve 

Baseline 

runtime 

ST 

runtime 
improve 

Baseline 

runtime 

ST 

runtime 
improve 

35190 35200 -0.028% 47177 47039 0.293% 54309 54090 0.403% 

35366 35539 -0.489% 47884 47979 -0.198% 56151 55211 1.674% 

35479 35312 0.471% 47408 46900 1.072% 55315 54552 1.379% 

35313 35174 0.394% 47818 47505 0.655% 55452 54859 1.069% 

35091 35260 -0.482% 47270 46970 0.635% 55155 55022 0.241% 

35336 35228 0.306% 47548 47340 0.437% 56515 55435 1.911% 

35266 35273 -0.020% 46995 47248 -0.538% 54078 55136 -1.956% 

35398 35522 -0.350% 47315 47659 -0.727% 55398 54255 2.063% 

35300 35157 0.405% 46797 47344 -1.169% 54852 53647 2.197% 

35111 35183 -0.205% 46822 47307 -1.036% 54139 53864 0.508% 

35490 35279 0.595% 48095 47380 1.487% 54967 55924 -1.741% 

35195 35237 -0.119% 47972 47416 1.159% 54403 54097 0.562% 

35446 35378 0.192% 47257 47205 0.110% 54964 54854 0.200% 

35547 35386 0.453% 48028 47139 1.851% 54146 55428 -2.368% 

35084 35115 -0.088% 47112 47100 0.025% 55443 54762 1.228% 

35260 35069 0.542% 47599 48051 -0.950% 54551 54661 -0.202% 

35114 35266 -0.433% 47366 47609 -0.513% 55452 54681 1.390% 

35148 35111 0.105% 47412 47662 -0.527% 55434 54468 1.743% 
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Table 5. continued 
35190 35502 -0.887% 47242 47294 -0.110% 54363 55381 -1.873% 

35304 35343 -0.110% 47549 46852 1.466% 54513 54306 0.380% 

 
705628 705534 0.013% 948666 946999 0.176% 1099600 1094633 0.452% 

 

The injection rates of all three cases are 40%. And two preset threshold of source 

throttling is 0.05 and 0.1 for all above cases. The numbers of packets for these cases are 

12800, 46080 and 70400. The control interval is 100 cycles. In the table above, it shows 

the runtime of baseline case and throttled case. The last line shows the average 

improvement. When the tree is narrow in width, like 4, there is hardly any benefit for 

source throttling. When the tree width increases, the benefit of source throttling becomes 

discernable.  

 CONCLUSION: Wider dependency tree width is necessary for source throttling 

to show effect. 

 The next simulation is to see the impact from different dependency tree depths.  

  

Table 6. Simulation result of deeper tree (tree width = 8) 
tree width = 8 

pktNum = 46080 

tree width = 8 

pktNum = 92160 

Baseline 

runtime 

ST(0.05,0.1) 

runtime 
improvement 

Baseline 

runtime 

ST(0.05,0.1) 

runtime 
improvement 

47177 47039 0.293% 61679 61675 0.006% 

47884 47979 -0.198% 62780 61756 1.631% 

47408 46900 1.072% 61252 61233 0.031% 

47818 47505 0.655% 62461 61891 0.913% 

47270 46970 0.635% 59934 61161 -2.047% 

47548 47340 0.437% 61010 61400 -0.639% 

46995 47248 -0.538% 61687 60929 1.229% 

47315 47659 -0.727% 61296 61539 -0.396% 

46797 47344 -1.169% 61648 61167 0.780% 

46822 47307 -1.036% 61625 60608 1.650% 

48095 47380 1.487% 61694 61645 0.079% 
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Table 6. continued 
47972 47416 1.159% 61101 61519 -0.684% 

47257 47205 0.110% 61171 61916 -1.218% 

48028 47139 1.851% 62913 61679 1.961% 

47112 47100 0.025% 61966 62301 -0.541% 

47599 48051 -0.950% 61896 62606 -1.147% 

47366 47609 -0.513% 61410 61512 -0.166% 

47412 47662 -0.527% 61591 61198 0.638% 

47242 47294 -0.110% 62126 62202 -0.122% 

47549 46852 1.466% 62119 61809 0.499% 

 
948666 946999 0.176% 1233359 1231746 0.131% 

 

Table 7. Simulation result of deeper tree (tree width = 4) 
tree width = 4 

pktNum = 12800 

tree width = 4 

pktNum = 25600 

Baseline 

runtime 

ST(0.05,0.1) 

runtime 
improvement 

Baseline 

runtime 

ST(0.05,0.1) 

runtime 
improvement 

35190 35200 -0.028% 40336 40303 0.082% 

35366 35539 -0.489% 41126 41335 -0.508% 

35479 35312 0.471% 40725 40579 0.359% 

35313 35174 0.394% 41016 40898 0.288% 

35091 35260 -0.482% 41051 41071 -0.049% 

35336 35228 0.306% 40769 40998 -0.562% 

35266 35273 -0.020% 40660 40816 -0.384% 

35398 35522 -0.350% 40390 40852 -1.144% 

35300 35157 0.405% 40838 40981 -0.350% 

35111 35183 -0.205% 41134 41033 0.246% 

35490 35279 0.595% 40964 40948 0.039% 

35195 35237 -0.119% 40934 40904 0.073% 

35446 35378 0.192% 40949 40858 0.222% 

35547 35386 0.453% 41101 40700 0.976% 

35084 35115 -0.088% 40760 40895 -0.331% 

35260 35069 0.542% 40793 40825 -0.078% 

35114 35266 -0.433% 40511 40763 -0.622% 

35148 35111 0.105% 40601 40719 -0.291% 

35190 35502 -0.887% 41089 41194 -0.256% 

35304 35343 -0.110% 41106 40908 0.482% 

 
705628 705534 0.013% 816853 817580 -0.089% 

 

 In Table 6 and Table 7, the injection rate for all cases above is 40%. The control 

interval is 100 cycles. From the two tables above, it is clear that varying tree depth 
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makes almost no difference on the effect of source throttling. It is expected that the 

benefit permitted by data dependency does not change when the tree depth is doubled, as 

the overall runtime increases proportionally with or without source throttling. 

 CONCLUSION: Varying dependency tree depth does not affect the effect of 

source throttling. 

 Compared with other previous work (e.g., [3], [4], [5]), TCP-Vegas is somewhat 

more aggressive in the control policy, as it completely blocks requests from issuing 

when the source is throttled. By contrast, in a precious work, if time is divided into a set 

of time slots, the policy only blocks the NI for a certain percentage of the time slots. To 

reduce the aggressiveness of TCP-Vegas, we can use larger control intervals to make the 

window size change less frequently.  

 

 

Figure 9. Runtime reduction percentage with different control interval 
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 In Figure 9 above, horizontal axis is the control interval in cycles and vertical 

axis is the reduction in runtime compared with baseline case. This case is run with tree 

width equal to 10, which allows the largest benefit. The injection rate keeps being 40%. 

The original control interval is 100 cycles as it is about the same length of RTTs. It can 

be seen that the benefit from source throttling is greater when control interval is around 

1000 cycles.  

CONCLUSION: The original TCP-Vegas is too aggressive in terms of the 

frequency of window size change. More benefit can be observed if the window size is 

changed less frequently. 

 Then it is wondered that if any benefit could be obtained with less data 

dependency. Another data dependency tree is built as Figure 10 below.  
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Figure 10. Data dependency tree with less dependency 

 

 It is a case with very much less data dependency. The simulation in Figure 11 

results show that there is no injection rate drop in the middle and no obvious benefit can 

be observed.  

 The injection rate in this case is 40%. The control interval is 100 cycles.  
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(a) Tree width = 12 

 

(b) Tree width = 10 

Figure 11. Packet injection number vs. cycles (with less dependency) 

 

 CONCLUSION: If data dependency is low, source throttling provides almost no 

performance improvement. 

 The last simulation is on synthetic traffic where data dependency exists between 

different cores. According to statistics of realistic benchmarks, there is about one data 

dependency every hundreds of requests. In the simulation, cases are tried with inter-

core-dependency every 500, 800, 1000, 1500 and 2000 requests.  

 

Table 8. Simulation result of inter-core-dependency case 

Inter-core 

dependency 

frequency 

Improvement 

1/500 reqs 1.68% 

1/800 reqs 1.96% 

1/1000 reqs 1.22% 

1/1500 reqs 2.29% 

1/2000 reqs 1.89% 

 

 In Table 8, the cases are built based on previous cases with less data dependency. 

There is no benefit for those cases, which makes the benefit of inter-core-dependency 
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clear. The dependency tree width is 10 and the injection rate is 40%. The number of 

packets is 70400 and the control interval is 100 cycles. The performance improvement is 

around 2%. By tracing the injection rate of one case as Figure 12 and Table 9, it is found 

that reason for this improvement is almost the same as the case of table 4. However, the 

improvement is less than table 4, which is over 5%.  

 

 

Figure 12. Packet injection number vs. cycles (with inter-core dependency) 

 

 To find out what happens around 1500 cycles, dependent packets are traced.  

 

Table 9. Trace of dependent packets 

Baseline:  

bt-core-dep 4 ready @507 

bt-core-dep 4 complete @1931 

 

ST:  

bt-core-dep 4 ready @731 

bt-core-dep 4 complete @1040 
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 It can be found that a certain dependent packet is completed earlier when 

throttled. Instead of injection rate drop, the injection rate increases a little bit at cycle 

1000. The overall runtime is reduced.  

CONCLUSION: Source throttling is still effective when there are inter-core-

dependencies.  
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6. FULL SYSTEM SIMULATION 

 

This section introduces the full system simulation, including the full system 

simulator gem5 and its configuration, PARSEC benchmark and the simulation results 

and analysis.  

6.1 Full System Simulator and Simulation Environment 

 

Different from the simulator used in synthetic traffic simulation, the full system 

simulation needs a simulator that models not only the network and cache system, but 

also the CPUs. The simulator should act the same as the realistic applications on CMP. It 

can boot up an operating system on the CPU, and run an application on it. Lots of 

information on all kinds of metrics can be captured. Not surprisingly, the runtime of full 

system simulation is much longer than ocin-tsim.  

The simulator is gem5 [14]. It is an open source simulator for chip multi-

processor. It can be configured to different architectures, such as alpha, X86 and ARM, 

as well as different cache coherence protocols, like MESI CMP directory and MOESI 

hammer protocols. In addition, CPU frequency and network frequency can be set to 

different values. Since it is a full system simulator, there are a lot of parameters in the 

whole system that can be changed when setting up the configuration.  

Some major configurations are listed in Table 10.  
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Table 10. Full system simulation environment configuration 

Network 32 nodes, 4 by 4 concentrated mesh, dimension order 

routing 

Core model Out-of-order, 128-entry instruction window, 16 miss 

buffers, stall when buffers are full 

Coherence protocol MOESI hammer snooping protocol 

Benchmarks PARSEC benchmarks 

Baseline network 4 VCs per network port, 5 flits per VC 

Router 5 pipeline-stage router, round robin 

 

In this simulation, concentrated mesh is used. The topology is shown as Figure 

13 below.  

 

Figure 13. Concentrated mesh topology 

 

It can be seen that two cores share one router. More traffic will be injected into 

the network. The network will be more congested. Upon that source throttling may be 

more useful. 
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6.2 PARSEC Benchmark 

 

In the full system simulation, realistic benchmark can be run on the simulator. 

The PARSEC benchmark suite is used in this work.  

 PARSEC is a benchmark suite for CMPs that focuses on emerging applications. 

It includes a diverse set of benchmarks from different domains such as interactive 

animation or systems applications that mimic large-scale commercial benchmarks [15].  

 For the benchmarks that are used in our simulation are briefly introduced here. 

Blackscholes comes from financial analysis. It has little communication among cores. 

Canneal employs a simulated annealing algorithm to minimize the routing cost of a chip 

design. Both Freqmine and Streamcluster are data mining processes and have a lot of 

traffic in the network. Vips and x264 are abstracted from media processing.  

 Each benchmark trace mainly consists of four parts. The first is operating system 

boot up. The second part is a period of set up before running the application. Then there 

is the Region of Interest (ROI). This is a parallel phase in the benchmarks. Most 

researches are focused on ROI. Usually simulation will run in simple CPU mode to fast 

boot the system and switch to parallel mode at the beginning of ROI to simulate the 

hardware. The last part is tailing process. Source throttling is only applied in ROI, which 

shows distinctive characteristics among different cases. In the simulation, the start cycle 

of ROI and end cycle of ROI is set using a hook library in the disk loaded by the 

simulator.  
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6.3 Simulation Results and Analysis 

 

From the simulation results, we first build the latency histogram, which helps to 

characterize different request types. The latency histogram of Blackscholes is shown in 

Figure 14.  

 

 

Figure 14. Latency histogram of Blackscholes 

 

The histogram contains two sets of peaks, which correspond to two different 

types of communication requests. The main peak at 50 cycles to 200 cycles is the cache 

coherence traffic. Their latencies are mostly small as they are restricted to short distance 

on-chip communication. The small peak around 400 cycles on the right is traffic 

involving memory access. As there is only one memory controller on the CMP, all 

memory accesses have to go to the node where the memory controller is placed. The 
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memory access time from the controller is a fixed number, 300 cycles, which makes the 

peaks way from the peak of coherence traffic. We need to distinguish the two types of 

traffic because the ideal RTTs for these two different types of traffics are different.  

CONCLUSION: There are two types of traffics networks, cache coherence 

traffic and memory access traffic. They can be throttled together or separately. But as we 

can see, the amount of memory access traffic is very small compared with cache 

coherence traffic. Throttling separately will not have too much difference but will cost 

more in the overhead. So in this work the simulation will both types of traffic together.  

 The second simulation in this section is changing the ratio of core frequency over 

network frequency to obtain the more congested case. In this simulation, core frequency 

is fixed at 1GHz, while network frequency can be quite different from case to case. This 

simulation is run to find the relationship between injection rate and core versus uncore 

frequency ratio. The simulation results are listed below as Table 11, Table 12 and Table 

13.  

 

Table 11. Network results with different network frequency (Blackscholes) 

ratio 

net 

freq RTT1 RTT2 

Queue 

Time LPH inj avg ROI length 

0.25 4G 116.09 127.164 11.074 10.435 0.001485 91893444 

2 500M 123.275 135.575 12.3 11.7952 0.001481 213263226 

2.857 350M 117.144 133.141 15.997 11.9456 0.001474 311622993 

3.125 320M 122.131 134.628 12.497 11.9556 0.001473 332950418 

3.571 280M 123.036 135.395 12.359 11.9203 0.001431 362314078 

4.545 220M 126.23 138.679 12.449 12.7141 0.001459 469233081 

7.143 140M 120.913 133.401 12.488 11.9241 0.001541 752225026 

12.5 80M 122.582 135.438 12.856 12.1196 0.001487 1225637913 
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Table 12. Network results with different network frequency (Swaption) 

ratio 

net 

freq RTT1 RTT2 

Queue 

Time LPH inj avg ROI length 

0.25 4G 109.71 120.278 10.568 10.1306 0.002286 199436796 

1 1G 113.116 125.101 11.985 11.3965 0.001897 329279362 

2 500M 116.832 129.506 12.674 11.4151 0.001867 490095276 

2.857 350M 118.031 130.782 12.751 11.7322 0.001688 725837048 

3.125 320M 119.321 131.865 12.544 11.8542 0.00174 767219653 

3.571 280M 119.561 132.183 12.622 11.7135 0.001591 863039151 

4.545 220M 124.573 137.305 12.732 12.509 0.001653 1099207696 

7.143 140M 122.067 134.683 12.616 11.8743 0.001635 1625185527 

12.5 80M 121.4 134.346 12.946 12.1006 0.001609 2720429021 

 

Table 13. Network results with different network frequency (Streamcluster) 

ratio 

net 

freq RTT1 RTT2 

Queue 

Time LPH inj avg ROI length 

2 500M 128.336 138.554 10.218 11.1453 0.00319 1216566350 

2.857 350M 128.145 139.114 10.969 11.2976 0.002644 1727283312 

3.125 320M 131.503 142.515 11.012 11.3298 0.002607 1849381631 

3.571 280M 132.728 144.381 11.653 11.4654 0.002454 2096949197 

4.55 220M 134.463 146.218 11.755 11.9908 0.002221 2680568930 

6.25 160M 126.991 139.478 12.487 11.7003 0.002119 3489948806 

7.14 140M 127.803 139.908 12.105 11.7165 0.002103 3915168459 

12.5 80M 127.52 140.743 13.223 11.9651 0.001864 6450388537 

 

In this simulation, the second column in the table is the network frequency. 

RTT1 is the RTT without source queuing time. RTT2 includes the queuing time at the 

source. Standard deviation of latency per hop and average injection rate are also listed. 

 It can be found that when network frequency keeps increasing, the injection rate 

also increases, but not proportionally. When the network frequency doubles, the 

injection rate increases a little.  

 This phenomenon reveals an issue. That is, a core may have self-throttling. All 

the RTTs in the table above are based on network cycles. When they are converted to 
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CPU cycles, they can be as large as one thousand cycles. From CPU’s point of view, 

such high RTTs are interpreted as network congestion. Then, a core naturally slows 

down issuing new requests into the network.  

 CONCLUSION: A core has implicit self-throttling that may overlap with the 

function of our explicit source throttling. 

 The third simulation is applying TCP-Vegas based source throttling on NoC. In 

this simulation is conducted on multiple benchmarks.  

 

Table 14. Source throttling results vs. baseline results 

 
Blackscholes Swaption Streamcluster 

 
baseline ST baseline ST baseline ST 

ROI 

start 
5676227277 5676227277 5621312944 5621312944 5621207555 5621207555 

ROI end 5805025918 5814526045 5960101586 5960880541 6199319536 6215786188 

ROI 

length 
128798641 138298768 338788642 339567597 578111981 594578633 

Runtime 5853508340 5863069066 5969061237 5969608122 6207941902 6224694656 

LPH var 87.7723 100.909 72.1854 75.9538 50.1769 37.2955 

LPH avg 11.8174 11.9293 11.3854 11.4215 10.7793 10.0999 

RTT1 144.764 148.503 131.942 130.829 142.621 143.04 

RTT2 132.498 136.44 120.003 118.76 132.682 135.104 

Queuing 

time 
12.266 12.063 11.939 12.069 9.939 7.936 

 

In Table 14, RTT1 and RTT2 still have the same meanings as precious table. It 

can be found that for all three benchmarks, runtime of application is increased with 

source throttling. Only Streamcluster shows reduction on LPH variation. This means 

TCP-Vegas based source throttling hardly have benefit on realistic benchmarks.  
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To find out why there is no benefit on these benchmarks, a further experiment is 

done. It checks the number of outstanding requests issued by cores and the number of 

requests at the network interface, which is also MSHR occupation for last level cache.  

 

Table 15. Some characteristics of PARSEC benchmarks 

 Max outstanding 

request number 

Max LLC MSHR 

occupancy 

Average LLC MSHR 

occupancy 

Blackscholes 16 1 0.0434 

Freqmine 11 7 0.4166 

Swaption 6 1 0.0178 

Streamcluster 16 8 3.9252 

 

 According to the conclusion in section 5, source throttling is effective when the 

LLC MSHR occupancy is at least 6. PARSEC benchmarks do not meet the requirement 

as Table 15 shows. This is a main reason that source throttling does not show benefits in 

these cases. 

 CONCLUSION: PARSEC benchmarks usually do not have a large number of 

concurrent outstanding requests, which are necessary for the TCP Vegas based source 

throttling to be effective. 
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7. CONCLUSIONS 

 

In this research work, it is found that there is potential benefit for source 

throttling in NoC under certain conditions. The number of concurrent outstanding 

requests needs to be large. But for practical benchmarks extracted from real life, it is 

hard to meet the requirement. So there is hardly any benefit for source throttling in full 

system simulation. In summary, source throttling can hardly help any system 

performance for practical benchmarks.  
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