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ABSTRACT

As the mobile application landscape expands, wireless networks are tasked with

supporting different connection profiles, including real-time traffic and delay-sensitive

communications. Among many ensuing engineering challenges is the need to better

understand the fundamental limits of forward error correction in non-asymptotic

regimes. This dissertation seeks to characterize the performance of block codes

over finite-state channels with memory and also evaluate their queueing performance

under different encoding/decoding schemes.

In particular, a fading formulation is considered where a discrete channel with

correlation over time introduces errors. For carefully selected channel models and

arrival processes, a tractable Markov structure composed of queue length and channel

state is identified. This facilitates the analysis of the stationary behavior of the

system, leading to evaluation criteria such as bounds on the probability of the

queue exceeding a threshold. Specifically, this dissertation focuses on system models

with scalable arrival profiles based on Poisson processes, and finite-state memory

channels. These assumptions permit the rigorous comparison of system performance

for codes with arbitrary block lengths and code rates. Based on this characterizations,

it is possible to optimize code parameters for delay-sensitive applications over

various channels. Random codes and BCH codes are then employed as means to

study the relationship between code-rate selection and the queueing performance

of point-to-point data links. The introduced methodology offers a new perspective

on the joint queueing-coding analysis for finite-state channels, and is supported by

numerical simulations.

Furthermore, classical results from information theory are revisited in the context
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of channels with rare transitions, and bounds on the probabilities of decoding

failure are derived for random codes. An analysis framework is presented where

channel dependencies within and across codewords are preserved. The results

are subsequently integrated into a queueing formulation. It is shown that for

current formulation, the performance analysis based on upper bounds provides a

good estimate of both the system performance and the optimum code parameters.

Overall, this study offers new insights about the impact of channel correlation on the

performance of delay-aware communications and provides novel guidelines to select

optimum code rates and block lengths.
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CHAPTER I

INTRODUCTION

I.1 Background Framework

With the ever increasing popularity of advanced mobile devices such

as smartphones and tablet personal computers, the demand for low-latency,

high-throughput wireless services is growing rapidly. The constantly increasing

demand for ubiquitous Internet access and mobile communication is pushing the

limits of current communication infrastructures. This demand is fueled, partly, by

the growing popularity of real-time applications such as voice-over-internet-protocol

(VoIP), video conferencing, gaming, electronic commerce, control and actuation.

As the popularity of real-time applications rises, new paradigms that maximize

throughput subject to quality of service (QoS) constraints are becoming highly

desirable. Designing wireless systems for delay-sensitive applications with quality

of service guarantees is an ambitious task. Contemporary wireless communication

systems must be designed to accommodate the wide range of applications that

compose today’s digital landscape. Modern mobile devices should be able to support

heterogeneous data flows with a variety of delay and bandwidth requirements. The

shared desire for a heightened user experience, which includes real-time applications

and mobile interactive sessions, acts as a motivation for the study of highly efficient

communication schemes subject to stringent delay constraints. While point-to-point

channels have received much attention in the past, the asymptotic approaches favored

by classical information theory offer only limited insights on efficient designs in

the context of delay-sensitive communications. Indeed, real-time traffic and live

interactive sessions are typically subject to very stringent delay requirements. An
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important aspect of delay-sensitive traffic stems from the fact that intrinsic delivery

requirements may preclude the use of very long codewords. Such constraints can

hardly be captured by asymptotic regimes where block lengths and, consequently,

delay become unbounded. As such, the insights offered by classical information

theory and based on Shannon capacity are of limited value in this context. This

necessitates merging the study of different aspects of the network theory such as

queueing, scheduling, throughput, and delay with those of the information theory

such as channel capacity, coding, and power control. In fact, joint optimization of

both network and physical layers is strongly required in design of such systems.

Queuing theory usually deals with the design of communication links with quality

of service by considering an idealized pure queueing system that ignores the physical

layer. On the other hand, information theory considers the design and analysis

of channel codes with low decoding error probability for time-varying channels.

Although cross-layer designs have been proposed to merge these two approaches,

they are limited to specific cases. There have been few attempts to combine these

two trends to specify the ultimate limit of delay-constrained communications. In the

following, we present an elaborate survey of pertinent prior research contributions.

I.2 Literature Review

Forward error-correcting codes have historically played an instrumental role in

digital communication systems by providing protection against channel uncertainties.

For instance, it is well-known that for rates below capacity, one can improve

transmission reliability by increasing the block length of a code. There is a tradeoff

between the improvements offered by low-rate codes and the payload reduction

associated with an increase in redundancy. Finding a suitable balance between

these two intertwined considerations is a fundamental pursuit in coding theory. The

2



Shannon capacity, for instance, characterizes the maximum achievable throughput a

channel can support subject to an asymptotic reliability constraint as block length

tends to infinity [1].

Due to the delay requirements of certain modern applications, one may be forced

to employ schemes with short codewords. While sometimes necessary, short codes

can preclude the concentration of empirical measures for errors and channel state

occupancy. This may, in turn, engender excess decoding failures and undetected

errors. Furthermore, these undesirable events may be correlated in time, thereby

causing queue buildups at the source that induce unacceptable delays at the

destination. The latter issue is especially important for channels with memory, as

correlation in service is known to exacerbate deviations in queueing systems. This

discussion points to the need to carefully explore the tradeoffs between queueing

and coding for communication systems with tight delay requirements, giving due

consideration to optimal block lengths and code rates.

At this point, it is important to note that several recent contributions to

communication theory seek to address the tradeoffs between average power,

throughput, rate, distortion, and delay [2–14]. For example, in [9], the problem

of delay-limited throughput maximization with a constraint on the expected

waiting-time is considered. The trade off between queueing and coding delays is

studied and a queue management technique for fading channels is proposed. In [10],

Dunn and Laneman contribute a rate-delay trade off region by introducing some

information theoretic bounds for the overhead of varying code rate. However, the

protocols used in this paper are inherently limited to the BEC with feedback, and

cannot be generalized to more general channels.

Many such articles make idealized assumptions about the performance of coded

transmissions. These assumptions are often reasonable for long codewords, but
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they are not necessarily justified for low-latency communication over channels with

memory. Delay-sensitive systems have been studied in the past, leading to several

landmark contributions [15–18]. Indeed, [15, 16, 18] are among the first papers in

which the importance of a unifying approach to information (coding) and queuing

theories has been investigated. In [15], Ephremides and Hajek reviewed several topics

that are related to communication networks with an information-theoretic flavor,

including multiaccess protocols, timing channels, effective bandwidth of bursty data

sources, deterministic constraints on data streams, queuing theory, and switching

networks. They also described the relationship between information-theoretic ideas

and networking. Before this thorough survey, delay-sensitive communications with

bursty traffic had not received much attention in the information theory literature.

The communication of delay-sensitive bits has been addressed recently under

various assumptions and settings. In particular, delay analysis for communication

over wireless fading channels has gained popularity [2, 6–8, 11, 13, 19]. Often,

asymptotic approximations are employed to enable a tractable analysis of the

problem. Below, we detail some of the existing work with their corresponding

settings.

Several articles in this area, emphasize delay-constrained information capacity

[11, 12, 17, 18, 20]. For instance, Anantharam and Verdu, analyze the Shannon

capacity of the single server queue in [18]. The capacity is shown to be the

lowest under exponential service time distribution. They also prove that this

capacity cannot be increased by feedback. For general service time distributions,

upper bounds on the Shannon capacity are derived. In [11], Negi and Goel

present an approach to obtains a joint QoS exponent by merging the queueing and

information-theoretic models and using a streaming code such as a convolutional

code. Ideas from large deviation theory (effective capacity [21]) and information
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theory (random coding error exponents), are combined. The goal is to find the

code-rate allocation that maximizes the decay rate of the asymptotic probability

of error for a given asymptotically large delay requirement. Real-time streaming

broadcast is considered over the downlink of a single cell in [20]. The authors study

the broadcast capacity of the system under deadline constraints for both uncoded and

coded wireless broadcast schemes. In [12], the authors present an analysis framework

that accounts for codeword retransmission in the performance analysis of fading

channels in terms of maximum zero-outage throughput and maximum-throughput.

The throughput problem is posed in terms of a single server queue, and it is connected

to the transmission rate and the average codeword service time.

When transmitting stochastically arriving data over fading channels, there is

an inherent tradeoff between the required average transmission power and the

average queueing delay experienced by the data. This tradeoff can be exploited

by appropriately scheduling the transmission of data over time [8]. For example,

the use of advanced power-control policies can be tailored to the needs of various

applications [2, 4, 7, 8, 22]. In many such articles, the emphasis is put on average

delay and the optimization objective naturally leads to dynamic programming

formulations [2, 3, 7, 23,24].

For instance, Bettesh and Shamai optimize the system average delay by using

combined power/rate control under average power constraints and fixed transmission

rate, in [2]. The minimization is performed using dynamic programming and

asymptotic analysis has been provided. Efficient power control schemes for delay

sensitive communication over fading channels are also studied in [4] with the goal of

optimizing the link layer performance under a long-term average power constraint.

In [7], Berry and Gallager consider communication over time-varying fading channels

with perfect channel state information (CSI). The transmission rate and power are
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chosen according to the CSI and the buffer occupancy. Their goal is to control

both the long-term average transmission power and the average buffer delay using

dynamic programming. The behavior of this tradeoff is then quantified in the regime

of asymptotically large delay. In [8], Berry studies the behavior of the optimal

power-delay tradeoff for a single user in the regime of asymptotically small delays.

Particularly, he lower bounds how much average power is required as a function of

the average queueing delay. In [3], optimal policies in terms of transmission power

and packet queueing delay over fading channels with feedback are characterized.

In [5, 6], Rajan et al. derive optimal delay-bounded schedulers for transmission

of constant-rate bursty traffic over finite-state fading channels, with the focus on

minimum power requirements.

We stress that the wide applicability of Little’s law can be leveraged to simplify

the analysis of many systems where average delay is a prime consideration [24,25]. In

[25], the average delay performance of a block coded communication over memoryless

channels is analyzed. Therein, Swamy and Javidi, model the communication system

as a queueing system with bulk service (similar to [26]), and optimize the expected

delay using some choice of forward error correction scheme. Similar to [10] and [2],

they also consider acknowledgment in the form of a request for retransmission. Unlike

[27] their notion of delay includes the queueing delay and accounts for some sort of

randomness in the inter-arrival times of bits. In [24], a cross-layer approach for a

system with a single-server queue concatenated with a multilayer channel encoder

is studied. The focus is on the minimization of the average delay of a packet, from

the moment it enters the queue until completion of successful service. Bounds are

derived for the expected delay as function of the numbers of coded layers. It is shown

that code layering may yield performance gains in terms of average delay.

On a different note, some of the existing articles in the area of delay-sensitive

6



communications study the effect of feedback on system performance [3, 27]. For

example, the advantages of using feedback from an integrated information-theoretic

and queuing-theoretic perspective is studied in [3]. It has been shown that the use

of feedback yields improvements in the power-delay tradeoff over systems without

feedback. In [27], systems with fixed end-to-end delay are studied and it has been

shown that feedback generally provides gains in terms of error exponents. An upper

bound is provided on the probability of symbol error in a fixed-delay communication

system with feedback. In the following, we briefly go through the aforementioned

publications and summarize describe their main contributions.

It is also interesting to categorize existing works from a different, yet equally

important perspective. In this regard, the first group of works consists of scenarios

where the current channel state information (CSI) is assumed to be known at both

the transmitter and receiver [6–8, 11]. For example, in [7, 8], Berry and Gallager

address the power-delay tradeoff over a Markovian fading channel with CSI both

at the transmitter and the receiver. In such a setting, the transmitter dynamically

varies power (i.e., the rate) in response to the current queue length and channel

state. In [6], Rajan et al. derive optimal delay-bounded schedulers for transmission of

constant-rate traffic over finite-state fading channels. Similar to [7, 8], the proposed

dynamic code-rate allocation in [11] is in response to the current channel fading

and relies on CSI knowledge at the transmitter. Another group of works (e.g., [2,

19]) focuses on scenarios where CSI is unknown to the transmitter, but there is a

mechanism for retransmission of codewords when the channel is in outage. In [2],

the authors provide asymptotic analysis for the optimal adaptive policies that adjust

the transmission rate and/or transmission power in response to the current queue

length at the transmitter. In another example, Liu et al. in [19] study the problem

of optimal (fixed) transmission rate to maximize the decay rate of the probability
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of buffer overflow for on-off channels and Markov-modulated arrivals. The channel

is considered off, when an outage occurs. In [13], Kittipiyakul et al., analyze the

high-SNR asymptotic performance of outage-limited communications with fading

under stringent delay constraint. They use a similar performance measure to [11],

namely the decay rate of the asymptotic probability of error. However, they cover

scenarios in which CSI is not readily available to the transmitter and there is no

retransmission. In such a setting, the variation of the fading channel is combatted via

coding over multiple independent fading realizations. While this approach improves

the transmission reliability, its longer coding duration increases the end-to-end delay

any bit faces, and can potentially increase the probability of delay violation. In other

words, in the absence of CSI and retransmission, the transmission reliability as well

as the delay violation probability are functions of the coding rate and duration.

On a different note, the recent advent of network coding and the complementary

approach of channel coding over networks have been applied to delay-sensitive

communications [20,26,28–35]. In [28], the performance gains of optimal transmission

strategies in an unreliable packet network setting using random network codes are

considered. The strategies are examined in the presence and absence of coding

capability at the transmitter and performance is evaluated in delay and throughput.

Closed-form as well as asymptotic expressions are provided for the delay performance

with and without network coding. It is shown that the network coding capability

can lead to better delay performance. In [29], analytical bounds on the completion

time and stable throughput for random linear coding are provided across multiple

multicast sessions.

In [30], Cogill and Shrader analyze the average queue backlog at a source node

serving a single multicast flow consisting of multiple destination nodes. In [32], the

performance of random linear network coding for time division duplexing channels
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with Poisson arrivals is studied. The system is modeled as a bulk-service queue with

variable bulk size. The effect of the allowable bulk sizes on the mean queue length is

studied, and it is shown that there is an optimal choice for the allowable range that

minimizes the queue length.

In [26], Shrader and Ephremides present a queueing model for a random linear

coding scheme with different amount of stochastic traffic at the source node with

an infinite-capacity buffer. They mainly seek to characterize the answer to the

question, ”Does the throughput gain offered by network coding result in a penalty

in terms of the delay?”. In [33], a lossy communication channel for unicast with

zero-delay feedback is considered. This work is an extension of [26], which is obtained

by deriving an expression for the delay of random linear coding over a field of

infinite size and refining the delay estimates produced in [26]. In [34], the analysis

of [33] is extended by comparing delay in protocols using retransmission and packet

encoding for bidirectional unicast communication over a satellite channel with high

propagation delay. In [35], the queueing delay performance is analyzed when random

linear coding is performed over packets for multicast transmission over packet erasure

channels.

Many of the works in the in the area of delay-sensitive communications, including

several of those adopting the idea of network coding, consider a stream of data (bits

or symbols) arriving at and leaving the transmitter. These works do not usually

consider block coding over the arriving data. Instead, they employ streaming (i.e.,

convolutional) codes to protect data. Hence, they do not allow characterization of

block code parameters in terms of the delay/throughput performance of the system,

which is the main focus of this dissertation (e.g., see [11,20]).

From a different perspective, many of the proposed schemes, such as [28, 29],

seem especially well-suited for packet-loss networks, and the ensuing framework

9



represents a potential alternative to automatic repeat requests when feedback is

slow or error-prone. Although closely related, these contributions differ from our

formulation in that the main focus is on the operation of the system at the packet

level, whereas we seek to characterize the impact of channel behavior at the symbol

level.

I.3 Contributions

In the first chapter of this dissertation, the impact of certain coding strategies

on the queueing performance of finite-state channels with and without memory

is studied. This is accomplished without resorting to characteristic, simplifying

assumptions about the operation of coded transmissions.

Optimum code-rate selection has previously been studied for Gilbert-Elliott

erasure channels with Bernoulli arrivals and maximum-likelihood decoding [36]. This

prior line of work centers around random codes of fixed lengths, and it offers a

distinct approach to assess the performance of communication systems operating

over erasure channels. In the first chapter we introduce a significant extension

to these existing contributions in that we examine finite-state error channels, we

leverage pragmatic coding schemes and we adopt a scalable arrival profile. The

first important distinction between the present findings and previously results is the

rigorous characterization of queueing behavior for communications over finite-state

error channels, as opposed to erasure channels. This is an important and nontrivial

extension, which arises through the fact that erasure channels intrinsically pinpoint

the location of channel distortion events at the receiver whereas error channels do not.

This lack of location information renders the decoding process much more challenging

in the latter case. Although technically more demanding, error channels permit

the more realistic modeling of practical communication links. For example, in our
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analysis, detected and undetected errors both demand appropriate considerations.

In addition to this channel enhancement, we leverage pragmatic coding schemes

such as BCH encoding with bounded distance decoding to bring a pragmatic flavor

to the analysis. Furthermore, under random coding schemes, we present a novel

framework to analyze overall system performance (e.g., probability of buffer overflow)

using both optimal decoding and minimum distance decoding. This perspective is

very beneficial because the probability of decoding failure plays a crucial role in

characterizing packet departures, queue transitions and the stationary behavior of

the transmit buffer.

Another prime distinction between contribution presented in this dissertation,

and previous work is the adoption of a scalable arrival profile which is formed based on

the Poisson process. Among other advantages, the proposed framework allows for the

rigorous comparison of coding schemes with different block lengths, something that

could not be done before. Indeed, this appears to be the first time one can perform

the rigorous optimization of queueing performance over block lengths. In [36], the

arrival process is Bernoulli and it is intrinsically tied to codeword transmissions. As

such, arrivals are implicitly linked to the block length. By adopting a Poisson (or

Markov modulated Poisson) model, we are able to overcome these limitations. We

emphasize that the scaling property of the Poisson process is crucial in enabling the

fair comparison of systems with different block lengths. The price to pay for this

additional flexibility is a slightly more complicated analysis. In particular, we need

to employ an advanced version of the matrix-geometric method. Our analysis leads

to an enhanced framework for code design and resource allocation in the context of

delay-sensitive wireless communications.

One of the challenges in dealing with block codes over finite-state channels with

memory is the time dependencies among proximate decoding events. For instance, if
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the underlying channel forms a Markov chain, then the decoding process becomes a

hidden Markov process as block codes operate over series of channel states. This often

entails a difficult analysis of the queue behavior at the source. To make this problem

tractable, we use the idea of state augmentation which was also used in [36], where

the value of the channel at the onset of a codeword is appended to the queue length.

Under this state augmentation, the coded system retains the Markov property, which

facilitates the precise characterization of the queueing behavior at the transmitter.

This approach is paralleled in the present dissertation, albeit in the general context

of error channels.

We review and extend the necessary mathematical machinery to handle error

events, as opposed to erasures, starting with the binary memoryless channel.

This step is pivotal in better understanding the encoding/decoding analysis of

communication links with errors. We then turn to finite-state channels with

memory, as originally introduced by Gilbert [37] and Elliott [38]. We leverage the

latter abstractions to assess how channel dependencies over time can affect overall

performance. It is well-known that correlation in service can significantly alter the

behavior of a queueing system or network; such changes should be expected in the

present scenario as well. Still, a novel facet of the problem we are considering is the

study of how such dependencies affect the selection of optimal design parameters in

terms of code rate and block length. Furthermore, the framework presented in this

dissertation can be used to derive novel and fundamental bounds on the maximum

arrival rate that a wireless system can support when subject to certain quality of

service requirements.

As mentioned earlier, a prime goal of this dissertation is to develop a

better understanding of delay-constrained communication, queue-based performance

criteria and service dependencies attributable to channel memory. In particular, in
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the second chapter we seek to derive meaningful performance limits for delay-aware

systems operating over channels with memory. The emphasis is put on identifying

upper bounds on the probabilities of decoding failure for systems employing short

block lengths. This is an essential intermediate step in characterizing the queueing

behavior of contemporary communication systems, which is also done in this chapter.

Computing the probability of decoding failure for specific communication

channels and particular coding schemes is of great interest. This line of work dates

back to the early days of information theory [39] and has received significant attention

in the past, with complete solutions in some cases. One approach that has been

remarkably successful, consists of deriving exponential error bounds on the behavior

of asymptotically long codewords. This approach was popularized by Gallager [1]

and these bounding techniques have been applied to memoryless channels as well as

finite-state channels with memory. In general, they can be very accurate for long, yet

finite block lengths. It is worth mentioning that the subject of error bounds has also

appeared in many more recent studies, with the advent of new approaches such as

dispersion, the uncertainty-focusing bound, saddlepoint approximation [27, 40–43].

This renewed interest in the performance of coded transmissions points to the

timeliness of the topic under investigation.

A distinguishing feature of the approach that we wish to develop is the

focus on indecomposable channels with memory and state-dependent operation.

In most prevalent asymptotic frameworks, channel parameters are kept constant

while the length of the codeword increases to infinity. Although this point of

view leads to mathematically appealing characterizations, the resulting bounds on

error probabilities do not depend on the initial or final states of the underlying

communication channel. This situation can be explained through the fact that,

no matter how slow the mixing time of the physical channel is, the duration of a
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codeword eventually far exceeds this quantity. Still, in many practical scenarios, the

service requirements imposed on a communication link forces the use of relatively

short codewords, with no obvious time-scale separation between the duration of a

codeword and the mixing time of the channel.

The mismatch between existing techniques and commonly deployed systems,

together with the growing popularity of real-time applications on wireless networks,

demands a novel approach where the impact of boundary conditions are preserved

throughout the analysis. A suitable methodology should be able to capture both

the effects of channel memory as well as the impact of the channel state at the

onset of a codeword. In the second chapter of this dissertation, we are interested in

regimes where the block length is of the same order or smaller than the coherence

time of the channel. Formally, we wish to study the scenario where the mixing time

of the underlying finite-state channel is similar to the time necessary to transmit a

codeword. This leads to two important phenomena. First, the state of the channel

at the onset of a transmission has a significant impact on the empirical distribution

of the states within a codeword transmission cycle. Second, channel dependencies

may extend beyond the boundaries of individual codewords. This is in stark contrast

with rapidly mixing channels where initial channel conditions have no effects on the

probability of decoding failures, and with block-fading models where the evolution

of the channel is independent from block to block. Our proposed framework is rich

enough to account for scenarios where decoding events are strongly correlated over

time. Dependencies from codeword to codeword give rise to correlation in decoding

failure events and can therefore greatly affect perceived service quality.

It is important to note that the standard asymptotic regimes naturally result in

concentration of channel quality over a codeword transmission time. This enables

the application of the law of large numbers to compute the mutual information,
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the convergence rate, etc. However, in non-asymptotic analysis of channels with

memory, variations of the channel quality over a codeword transmission time need

careful consideration. At the same time, high correlations make the channel behavior

more predictable. This in turn, paves the way to implement adaptive opportunistic

scheduling schemes. Our proposed methodology, called the rare-transition regime,

forms a powerful framework which enables to leverage asymptotic in bits, without

transcending asymptotic in time. In other words, the rare-transition regime

facilitates non-asymptotic analysis in high-correlation mode of operation.

At this point it is worth mentioning that the rare-transition regime, alternatively

called the slow-mixing regime, have been studied in the past, for different frameworks

such as channel estimation, asymptotic filtering, and entropy rate of a hidden

Markov process [44–46]. In the second chapter of this dissertation, we examine

probabilities of decoding failure, their distributions and temporal properties within

the context of rare-transition regime. The purpose of deriving upper bounds on the

probabilities of decoding failure for rare transitions is to capture overall performance

for systems that transmit data using block lengths on the order of the coherence

time of their respective channels. More specifically, the second chapter focuses

on Gallager-type exponential bounds applied to probabilities of decoding failure in

rare-transition regimes. By construction, these bounds depend explicitly on the

initial and terminating channel states at the codeword boundaries. The analysis

is conducted for the scenario where channel state information is available at the

receiver. The ensuing results are subsequently compared to the probabilities of

decoding failure obtained for a Gilbert-Elliott channel under a minimum distance

decoder and a maximum-likelihood decision rule [37–39].

The potential implications of this novel framework are then discussed in terms

of queueing theory. We exploit the results of the error-probability analysis in the
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rare-transition regime to evaluate the queueing performance of correlated channels.

Particularly, we employ the derived upper bounds on the probability of decoding

failure to bound the queueing performance of the system. In that regard, we show

how stochastic dominance enables a tractable analysis of overall performance. The

results of this evaluation are then compared with a performance characterization

based on the exact probability of decoding failure for a Gilbert-Elliott channel under

maximum-likelihood decoding.

16



CHAPTER II

DELAY-SENSITIVE COMMUNICATION OVER FADING

CHANNEL: QUEUING BEHAVIOR AND CODE PARAMETER

SELECTION

II.1 Introduction

In this chapter, we study the queueing performance of finite-state channels with

and without memory. The chapter is organized as follows. The Gilbert-Elliott

channel model is described in Section II.2. The arrival and departure processes of

data packets at the transmitter, and the effect of feedback information are discussed

in Section II.3. The Markov model used to evaluate queueing behavior is constructed

in Section II.4. A detailed study of the coding analysis and derivations for the

probabilities of decoding failure are given in Section II.5. Issues related to undetected

errors are discussed in Section II.6. Numerical results showing the performance of

our communication system are presented in Section II.7. Finally, we offer pertinent

conclusions in Section II.8.

II.2 Gilbert-Elliott Channel Model

At present, the term Gilbert-Elliott channel often refers to a wide class of

finite-state fading channels that model communication links with memory. In our

study, however, we allude to its original definition and we use the denomination

Gilbert-Elliott channel to designate a binary symmetric channel that features two

possible states: a good state g with crossover probability εg, and a bad state b with

crossover probability εb. While simple, this model can account for uncertainties

associated with transmitting symbols over a noisy channel and correlation over time.
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The evolution of the channel is governed by a finite-state Markov chain. We denote

the transition probability from b to g by α, and we label the transition probability in

the reverse direction by β. Thus, the channel evolution forms a Markov chain with

transition probability matrix

P =

[
1− α α
β 1− β

]
. (II.1)

A graphical representation of this channel appears in Fig. II.1. It is worth mentioning

that the steady-state probabilities of the good and bad states are α
α+β

and β
α+β

,

respectively.

We note that, in defining the matrix P, we have implicitly ordered the states

from bad to good. With a slight abuse of notation, we use this bijection between

channel states and their numerical indices to refer to specific entries in the matrix.

We employ random variable Cn to denote the state of the channel at time n. Then,

entry [P]c,d represents the probability of a channel transition to state d, given that

the current state is c. For groups of random variables, we use the common expression

P·|·(·|·) to denote conditional joint probability mass functions. Accordingly, we can

write PCn+1|Cn(d|c) = Pr(Cn+1 = d|Cn = c), where c, d ∈ {b, g}. In a similar fashion,

PCn+N |Cn(d|c) can be obtained by looking at the proper entry of matrix PN .

g b
β

α0 0
1− εg

1
εg

1
1− εg

0 0
1− εb

1
εb

1
1− εb

Figure II.1: The Gilbert-Elliott model is one of the simplest non-trivial instantiations of a finite-state
channel with memory. State evolution over time forms a Markov chain, and the input-output
relationship of this binary channel is governed by a state-dependent crossover probability, as
illustrated above.
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To proceed, we need a way to compute the conditional distribution of the number

of errors that occur during N consecutive uses of the channel. Let E denote the

number of errors occurring in a data block. The distribution of E can be obtained

using the matrix of polynomials

Px =

(1− α)(1− εb + εbx) α(1− εb + εbx)

β(1− εg + εgx) (1− β)(1− εg + εgx)

 .
Throughout, we employ JxjK to represent the linear functional that maps

a polynomial in x to the coefficient of xj. Using this notation, we get

PE,CN+1|C1(e, d|c) = Pr(E = e, CN+1 = d|C1 = c) = JxeK
[
PN
x

]
c,d

. Eventually, we

will use this distribution to compute the conditional probabilities of decoding failure

and undetected error. We note that closed-form recursions for these values have been

derived a number of times in the past [38,47].

II.3 Arrivals, Departures, and Feedback

In this section, we describe the elements that compose our queueing system.

Suppose that a packet of length L needs to be sent over the Gilbert-Elliott channel

to a destination. In the proposed framework, this packet is divided into S segments,

each containing K information bits. The last segment is zero padded, if needed, to

conform to the prescribed length. A block code (e.g., a BCH or a random code)

is used to encode each data segment into a codeword of length N (see Fig. II.2).

These codewords are then transmitted over the communication link. Packet arrivals

at the source are initially assumed to form an instance of a Poisson process with

rate λ packets per channel use (see Fig. II.3). Therefore, the number of packets

expected to arrive during an interval of length N is equal to λN = λN . As we

will see, our framework can accommodate more general packet arrivals, such as
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Markov processes with discrete state spaces [48, 49]. This comes at the expense of

additional bookkeeping. For instance, a Markov modulated Poisson process (MMPP)

with distinct arrival rates, can be employed to better capture bursty traffic [50] and

fluctuations in workload.

Packet sizes are assumed to form a sequence of independent and identically

distributed random variables, where each element has a geometric distribution with

parameter ρ ∈ (0, 1). Mathematically, we write Pr(L = `) = (1 − ρ)`−1ρ where

` ≥ 1. This assumption plays a key role in our study and it has been selected,

partly, to facilitate the analysis we wish to carry. In particular, the memoryless

property of the geometric distribution makes for a tractable queueing model. Not too

surprisingly, having a geometric distribution for the size of packets is commonplace

in the literature [51,52].

We can further relate the packet-length distribution to the progression of coded

transmissions. For fixed block length N and code rate R, every successful decoding

event reveals exactly RN information bits to the destination. As such, when a data

packet contains L bits, one needs to successfully decode S =
⌈
L
RN

⌉
codewords to

complete the transmission of the entire packet. We note that random variable S

possesses a geometric distribution with Pr(S = s) = (1 − ρr)
s−1ρr, where s ≥ 1

and ρr = 1 − (1 − ρ)RN . Thus, in the current setting, the number of coded blocks

Packet of length L

1 2 · · · S − 3 S − 2 S − 1 S

Zero padded to

K bits (if needed)

Segment of
K bits

Block length N

K Information bits and
N −K Redundancy bits

Coding
Scheme

Figure II.2: Each packet is divided into S segments, and a channel encoding scheme is used to
encode each segment
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Sequence of S coded blocks (Codewords)

1 2 · · · S

N CW1
...

CWS

P
a
ck

.
1

P
a
ck

.
2

· · ·

CW
Tx

Erroneous CWUnreliable

Channel
RxPoisson λ

Figure II.3: Coded segments are transmitted over the unreliable communication link. A data packet
is discarded from the transmit buffer only when all its codewords are successfully transmitted

per data packet S retains the memoryless property. We emphasize that, in our

framework, a data packet is discarded from the transmit buffer if and only if the

destination acknowledges reception of the latest codeword and this codeword contains

the last parcel of information corresponding to the head packet. The departure

process is governed by the parameters of the channel and the coding scheme adopted.

Generally, a lower code rate yields smaller probabilities of decoding failure, but it

also entails having more data segments to send. Thus, for a given channel and load, it

is important to choose the block length and the code rate which give the best overall

performance. In Section II.7, we present simulation results for a system with packets

of a constant size and we compare its performance to the corresponding system with

geometrically distributed packet lengths.

A subtle, yet important aspect associated with automatic repeat request over

unreliable connections is the amount of feedback needed by a particular scheme.

Using shorter block lengths necessarily entails more frequent feedback messages from

the destination. In general, adequately evaluating the costs and benefits of various

feedback strategies is a complicated task. Since this is not a prime objective of this

dissertation, we circumvent this issue by making simple assumptions. We assume

that feedback is instantaneously and faithfully received at the source; this idealized

view is frequently found in the literature [53,54]. In contrast, any detailed analysis of
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feedback requires making strong assumptions about correlation between the forward

and reverse links, the delay associated with receiving feedback, and mechanisms

to cope with corrupted messages. Although these issues warrant attention, they

are outside the scope of this dissertation. Beyond that, we hypothesize that the

price of feedback is captured by having a portion of every data segment dedicated

to a header of length h. Of course, this reduces the size of the packet payload to

RN − h. This crude approximation treats feedback bits as constant overhead, and

it is a modest step in better accounting for control messages. Feedback overhead

will affect the number of segments contained in a data packet. If h information

bits in every segment pertain to the header, then the number of successful codeword

transmissions necessary to transfer a packet becomes S =
⌈

L
K−h

⌉
, a slight variation

compared to the original value. Nevertheless, S retains a geometric distribution,

albeit with parameter ρr = 1− (1− ρ)K−h.

A very important aspect of queueing systems is stability. The Foster-Lyapunov

criterion ensures that our simple system remains stable so long as the packet service

rate exceeds the arrival rate. To calculate the mean service rate, we recall that

a packet leaves the queue whenever a codeword is decoded successfully and this

codeword carries the last data segment of the head packet. Let Ps|E(e) and Pf|E(e)

denote the conditional probabilities of decoding success and failure, respectively,

given the number of errors within a block, E = e. By reciprocity, the conditional

success probability is equal to Ps|E(e) = 1− Pf|E(e). Then, the average service rate

can be computed as µN = ρrE
[
Ps|E(e)

]
packets per codeword transmission. The

stability factor for this system is λN
µN

, and the process is stable provided that this

ratio is less than unity. Conditional failure probabilities will be computed explicitly

in Section II.5 for different channels and coding schemes.
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II.4 Queueing Model

We are ready to examine more closely the queueing behavior of our

communication link. Throughout, we use Qs to denote the number of packets

waiting in the transmit buffer. The channel state at the same instant is CsN+1.

By grouping these two random variables together, we can construct a discrete-time

Markov chain (DTMC), which we write Us = (CsN+1, Qs). The resulting DTMC is

of the M/G/1 type, and there are many established techniques that apply to such

systems [36, 55, 56]. We note that for the binary symmetric channel, input-output

properties are unchanged over time. In this degenerate case, the queue length Qs

contains all the information relevant to the DTMC, and the random variable Us is

mathematically equivalent to the state of the transmit buffer.

Using the total probability theorem, the transition probabilities for the DTMC

{Us} can be decomposed as

Pr(Us+1 = (d, qs+1)|Us = (c, qs)) =
∑
e∈N0

PQs+1|E,Qs(qs+1|e, qs)PE,C(s+1)N+1|CsN+1
(e, d|c).

Examining the summands, we need to derive expressions for PQs+1|E,Qs(qs+1|e, qs).

Suppose that the current number of packets in the queue is Qs = qs. Then,

admissible values for Qs+1 are restricted to the collection {qs − 1, qs, qs + 1, . . .}.

The corresponding transition probabilities are given by

PQs+1|E,Qs(qs − 1|e, qs) = a0(1− Pf|E(e))ρr,

PQs+1|E,Qs(qs + i|e, qs) = ai+1(1− Pf|E(e))ρr

+ ai
(
Pf|E(e) + (1− Pf|E(e))(1− ρr)

)
, i ≥ 0 (II.2)

where ai = (λN)i

i!
e−λN is the probability that i packets arrive during the transmission

of one codeword. When the queue is empty, {Qs = 0}, the transition probabilities
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reduce to PQs+1|E,Qs(qs + i|e, 0) = ai with i ≥ 0.

Using these equations, we can get the probability transition matrix of the Markov

process {Us}. First, we introduce the following convenient notation, where q ∈ N0

and c, d ∈ {g, b},

µicd = Pr(Us+1 = (d, q + i)|Us = (c, q)) i ≥ 1,

κcd = Pr(Us+1 = (d, q)|Us = (c, q))

ξcd = Pr(Us+1 = (d, q − 1)|Us = (c, q)).

Similarly, when the queue is empty, we write µi0cd = Pr(Us+1 = (d, i)|Us = (c, 0))

and κ0
cd = Pr(Us+1 = (d, 0)|Us = (c, 0)). Possible state transitions are illustrated in

Fig. II.4.

Next, we review briefly the matrix-geometric method, an efficient way to compute

the stationary distributions of chains with repetitive structures. We can represent the

equilibrium distribution of our system as a semi-infinite vector π = (π(1), π(2), . . .),

where π(2q + 1) = Pr(C = b, Q = q) and π(2q + 2) = Pr(C = g, Q = q).

Alternatively, we can group pairs of states together and write π = [π0 π1 π2 · · · ]

where πq comprises the stationary probabilities of the qth level of the chain with

πq = [π(2q+ 1) π(2q+ 2)]. Using this notation, one can express the detailed balance

equation πT = π in terms of the transition probability matrix T, which appears in

block-partitioned form below

T =


Â F̂(1) F̂(2) F̂(3) · · ·
B A F(1) F(2) · · ·
0 B A F(1) · · ·
...

...
...

...
. . .

 .
The labels A, F, and B symbolize local, forward, and backward transition-probability

blocks, respectively; the superscript (i) indicates that i additional data packets are

present in the buffer at the next time instant; and the hat designates instances where

24



(g, 0) (g, 1) (g, 2) (g, 3) · · ·

(b, 0) (b, 1) (b, 2) (b, 3) · · ·

Figure II.4: State space and transition diagram for the aggregate queued process {Us};
self-transitions are intentionally omitted.

π0 πi πi+2

(g, 0)

(b, 0)

(g, 1)

(b, 1)

· · ·

F̂(1)

(g, i)

(b, i)

F̂(i)

F(i−1)

B

(g,i+1)

(b,i+1)

F̂(i+1)

F(i)

F(1)

B

(g,i+2)

(b,i+2)

G2[2, 1]
G[1, 2]

Gi−1[2, 1]

F̂(i+2)

F(i+1)

F(2)

F(1)

BA AAAÂ

· · ·

· · ·

Figure II.5: Level transition diagram and probabilistic interpretation of G

the queue is initially empty. More specifically, we have

F(i) =

µibb µibg

µigb µigg

 , A =

κbb κbg

κgb κgg

 , B =

ξbb ξbg

ξgb ξgg

 .
For an empty queue, the blocks are

F̂(i) =

µi0bb µi0bg

µi0gb µi0gg

 Â =

κ0
bb κ0

bg

κ0
gb κ0

gg

 .
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Figure II.5 shows the possible transitions among the different levels of the system.

Proposition 1. Let G be the limiting matrix of the recursion

Gi+1 = −L−1(B +
∞∑
j=1

F(j)Gj+1
i ) (II.3)

starting from G0 = 0 and where L = A − I. For j ≥ 1, the stationary probability

vectors πj associated with T are given by

πj = −(π0Ŝ
(j) +

j−1∑
k=1

πkS
(j−k))(S(0))−1,

where F(0) = L, Ŝ(j) =
∑∞

l=j F̂(l)Gl−j for j ≥ 1, and S(j) =
∑∞

l=j F(l)Gl−j for j ≥ 0.

Vector π0 is uniquely determined by the normalization condition, and it can be found

by solving

π0[(L̂− Ŝ(1)(S(0))−1B)♦|1T −H1T ] = [0|1],

where H =
∑∞

j=1 Ŝ(j)(
∑∞

j=0 S(j))−1, L̂ = Â−I, and the symbol ♦ denotes an operator

that discards the last column of the corresponding matrix [55].

Proof. A proof for an equivalent continuous-time formulation is available in [55]; it

is based on solving πT̃ = 0. The discrete-time case can be obtained by defining

T̃ = T− I, which leads to a solution for πT = π, as desired.

Matrix G admits a nice interpretation: entry [G]r,c is the conditional probability

that the Markov process first enters level i− 1 through state c given that it starts at

level i, in state r [55]. Such a matrix must naturally satisfy the relation

AG + B +
∞∑
j=1

F(j)Gj+1 = G,

and this equation can be solved recursively, as described above. Figure II.5

illustrates the probabilistic interpretation of G and its powers. As a side note,
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we emphasize that all the matrix equations simplify to scalar computations for the

binary symmetric channel.

To conclude this section, we introduce a slight generalization of the arrival

process. Consider a two-state discrete-time Markov-modulated Poisson process with

arrival rates λ1 and λ2, MMPP(λ1, λ2). The only elements of our analysis that need

to be modified are the blocks in the transition probability matrix T; they become

4 × 4 matrices to account for the state of the modulating process. Proposition 2

offers a formal description of the quantities involved in making changes.

Proposition 2. Suppose that T1 represents the amount of time the arrival process,

MMPP(λ1, λ2), spends in modulating state one during the transmission of a

codeword. The joint probability that i packets arrive during that time interval together

with the modulating process transitioning to state AN+1, conditioned on starting state

A1, is

PKa,AN+1|A1(i, l|m) =
N∑
t=0

PKa|T1(i|t)PT1,AN+1|A1(t, l|m),

l,m ∈ {1, 2}, where Ka denotes the number of arrivals and PT1,AN+1|A1(t, l|m)

accounts for the occupation time of the modulating process as well as edge transitions

(see Lemma 17).The conditional distribution of arrivals, PKa|T1(i|t) becomes

i∑
k1=0

i−k1∑
k2=0

(λ1t)
k1

k1!
e−λ1t

(λ2(N − t))k2
k2!

e−λ2(N−t).

Collecting these results, we gather that ai must be replaced by PKa,AN+1|A1(i, l|m)

in the transition probabilities of the queue, (II.2). This yields 4 × 4 blocks in the

modified transition probability matrix. In the revised formulation,

πq = [π(4q + 1) π(4q + 2) π(4q + 3) π(4q + 4)],

which corresponds to having q packets with a specific pair of channel state and
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modulating state for the arrival process.

II.5 Probability of Decoding Failure

In the previous section, a general queueing analysis was presented in which,

different encoding/decoding schemes can be adopted. In this section, we derive

probabilities of decoding failures for various scenarios. We begin with the simpler

BSC case, and then we proceed to the Gilbert-Elliott channel. Still, applicability of

the queueing analysis does not limit to the schemes we study in this section.

II.5.1 Random Coding with ML/MD Decoding

Consider a coding scheme in which a codebook of size M = 2NR is generated at

random. As before, R denotes code rate and N stands for block length. For every

index i ∈ {1, . . . ,M}, a codeword X(i) is selected uniformly and independently from

the set of length-N binary sequences, {0, 1}N . The maximum number of information

bits encoded in each transmission is K = log2M . For performance assessment,

we assume that one of the codewords is chosen at random and sent over the

communication channel. On the receiver side, a maximum likelihood (ML) decision

rule is used to decode the received vector Y; that is, X̂ = arg maxX PY|X(y|x).

II.5.1.1 Binary Symmetric Channel

For our memoryless channel, the ML decoder actually decodes to the closest valid

codeword. The ML decision rule is therefore equivalent to the minimum distance

(MD) decoder. A subtle, yet important point in analyzing this decoder is that the

decoding radius is not fixed in advance; this can be inferred from the following

well-known result.

Theorem 3 ( [39]). Random coding is employed to send information over a BSC(p).
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Assume that ML decoding is performed at the receiver, with ties treated as decoding

failures. Then, the failure probability for this scenario is given by

Pf =
N∑
e=0

PE(e)Pf|E(e) (II.4)

=
N∑
e=0

(
N

e

)
pe(1− p)N−e

1−

(
1−2−N

e∑
i=0

(
N

i

))M−1
 .

We note this result holds for any forward error correction scheme in which all

codewords are equally likely, and that they are pairwise independent (e.g., Shannon

random coding or random linear codes). Moreover, the format of (II.4) extends to

other encoding strategies. For a BSC(p), random variable E possesses a binomial

distribution and a suitable expression for the conditional probabilities of decoding

failure should be substituted. In [41], Fano’s result is modified to better handle

ties, and it is generalized to a wider class of channels. It turns out that, for our

purpose, this modification has a negligible effect on performance; and it is therefore

disregarded.

II.5.1.2 Gilbert-Elliott Channel

Having gained valuable insight with the BSC(p), we turn to the more challenging

case. We derive probabilities of decoding failure for the Gilbert-Elliott channel under

ML decoding, and conditioned on the occupancy times. We emphasize that knowing

the empirical channel state distribution is key in finding useful expressions for failure

probabilities. LetNg andNb = N−Ng represent the numbers of visits to each channel

state during the transmission of a length-N codeword. These random variables are

sometimes collectively called the channel state type [57]. Using the empirical state

distribution and the corresponding conditional error probabilities, one can average

over all channel types to get the probabilities of decoding failure while accounting
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for boundary states,

Pf,CN+1|C1(d|c) =
N∑

ng=0

Pf|Ng
(ng)PNg,CN+1|C1(ng, d|c), (II.5)

where PNg,CN+1|C1(·, ·|·) is given by Lemma 17. One can also compute this latter

quantity using the N -th power of the matrix generating function of the good state

occupation time.

G(x) =

[
(1− α)x αx

β 1− β

]
.

We stress that the failure probabilities depend on the initial and final states of the

channel through the distribution of Ng. Since we are interested in moderate block

lengths, on the order of the mixing time of the channel, these boundary states can

have a significant impact on the probabilities of decoding failure.

For a specific channel realization, let Xc and Yc be the subvectors of X and Y

corresponding to time instants when the channel is in state c ∈ {g, b}. We denote

the number of errors in state c by Ec = dH(Xc,Yc), where dH(·, ·) represents the

Hamming distance. Conditional error probability Pf|Ng
(ng) can then be written as

ng∑
eg=0

nb∑
eb=0

Pf|Ng,Eg,Eb
(ng, eg, eb)PEg,Eb|Ng

(eg, eb|Ng). (II.6)

Given the channel type, the numbers of errors in the good and bad states are

independent,

PEg,Eb|Ng
(eg, eb|ng) = PEg|Ng

(eg|ng)PEb|Ng
(eb|ng), (II.7)

where individual distributions are simply given by

PEc|Nc(ec|nc) =

(
nc
ec

)
εecc (1− εc)nc−ec c ∈ {g, b}. (II.8)

Theorem 4. When ties are treated as errors, the probability of decoding failure for
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a length-N uniform random code with M codewords, conditioned on the number of

symbol errors in each state and the channel state type, is given by

Pf|Ng,Eg,Eb
(ng, eg, eb) = 1−

1− 2−N
∑

M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)M−1

. (II.9)

where M(d) is the set of pairs (ẽg, ẽb) ∈ {0, . . . , N}2 that satisfy γẽg + ẽb ≤ d. This

holds with γ =
ln εg−ln(1−εg)
ln εb−ln(1−εb) for the ML decision rule, and with γ = 1 for the MD

decoder.

Proof. First, we revisit the ML decoding rule for the Gilbert-Elliott channel when

channel state information is available at the receiver. Given the state occupation ng,

we have

PY|X(y|x) = PYg|Xg
(yg|xg)PYb|Xb

(yb|xb)

= εegg (1− εg)ng−egεebb (1− εb)nb−eb

Upon receiving word Y, the ML decoder returns the codeword X that maximizes

lnPY|X(y|x). Thus, a little algebra shows the decoded message will be

arg min
x∈C

[γeg(x) + eb(x)], (II.10)

where eg(x) = dH(xg,yg) and eb(x) = dH(xb,yb) are realizations of Eg and Eb,

respectively. This argument is used to demonstrate the dependency on x. Notice

that the term ng ln(1 − εg) + nb ln(1 − εb) in lnPY|X(y|x) does not change the ML

decision.

Next, we consider the probability of failure for the decoding rule given in (II.10)

when random codes are used. In our system, decoding succeeds if and only if

the correct codeword is returned as the unique minimizer in (II.10). The failure

probability found in (III.22) can be obtained in a few steps. By symmetry, we can
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assume that the transmitted codeword x is the all-zero codeword. The other M − 1

codewords are drawn independently and uniformly. For any received vector y that

satisfies Eg = eg and Eb = eb, decoding succeeds when every other codeword produces

a strictly larger value for the cost function in (II.10). A straightforward combinatorial

argument shows that the number of codewords that meet this requirement is

V (ng, nb, eg, eb) =
∑

(ẽg,ẽb)∈M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
. (II.11)

The probability that a uniformly chosen random vector falls in this set is q =

V (ng, nb, eg, eb)/2
N . Since codewords are independent, the failure probability is equal

to 1− (1− q)M−1.

One can infer from (II.10) that, for the ML decision rule, errors in the bad state

do not affect performance as much as errors in the good state. This is because the

decoder gives more weight to symbols that are received while the channel is in its

good state, as they are deemed more reliable. The MD decoder, on the other hand,

only considers the total number of errors within a block, irrespective of the state

they occur in. That is, errors in either state cost the same and γ = 1. The terms

over which the sum is taken need to be modified accordingly.

In view of Theorem 18, one can substitute the appropriate expressions for

decoding performance into (III.19) to get overall probabilities of decoding failure.

As a side note, Vandermonde’s convolution identity implies that

eg+eb∑
ẽg=0

eg+eb−ẽg∑
ẽb=0

(
ng
ẽg

)(
nb
ẽb

)
=

eg+eb∑
j=0

(
N

j

)
,

and therefore the volume expression in (II.11) for MD decoding (γ = 1) reduces to

the volume computation associated with the binary symmetric channel. Finally, we
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note that

∑
M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
+

∑
M̄(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
= 2N ,

where M̄(c) is the set of pairs (ẽg, ẽb) ∈ {0, . . . , N}2 that satisfy γẽg + ẽb > c.

II.5.2 BCH Coding with Bounded Distance Decoding

In this section, we present a more pragmatic facet of our inquiry. We consider a

primitive binary BCH code of minimum distance dmin, which is capable of correcting

up to t =
⌊
dmin−1

2

⌋
errors. This entails having N = 2m − 1, with m ≥ 2, and a

single optimal K for each dmin [58, p. 486]. We analyze the queueing behavior of

the system in terms of the block length N and the code rate R = K/N . The goal

is to characterize the performance over admissible parameters. At the receiver, the

bounded distance decoder either declares a decoding success, or it detects a failure

and requests a retransmission. It is important to emphasize that, when the number

of errors is greater than t, the decoder may be subject to an undetected error. We

discuss this issue in greater depth in Section II.6.

For the binary symmetric channel, the conditional probability of failure in (II.4)

is equal to Pf|E(e) = 1{z∈Z|z>t}(e), where 1A(·) is the standard indicator function of

the set A. Similarly, for the Gilbert-Elliott case, the average failure probability is

given by

Pf =
∑

c,d∈{g,b}

PC1(c)Pf,CN+1|C1(d|c)

=
∑

c,d∈{g,b}

PC1(c)
N∑
e=1

PE,CN+1|C1(e, d|c)Pf|E(e),

where Pf|E(e) appears above. The expected success probability can be computed in

an analog fashion, albeit replacing Pf|E(e) by 1 − Pf|E(e). The average service rate
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can be expressed as µN = ρrPs packets per codeword transmission, thereby implicitly

setting a bound for system stability.

II.6 Undetected Errors

A serious issue with pragmatic communication systems is the presence of

undetected decoding failures. In the present setting, this occurs when the receiver

uniquely decodes to the wrong codeword. For delay-sensitive applications, this

problem is especially important because recovery procedures can lead to undue delay.

To address this issue, we apply standard techniques that help control the probability

of admitting erroneous codewords [59,60]. This, in turn, leads to slight modifications

to the performance analysis presented above. The probability of undetected failure

is a system parameter that must be set during the design phase of the system.

II.6.1 Random Coding with ML/MD Decoding

Under our aforementioned scheme, information is sent over the channel and the

decoder reports the codeword with the minimum (weighted) distance to the received

vector, as seen in (II.10). To reduce the probability of undetected error, we revisit the

technique established in [59] regarding the error exponents, and introduce a safety

margin ν . This scheme and its ramifications are easiest to explain for the binary

symmetric channel. Recall that, for this simpler channel model, the ML and MD

decision rules coincide. Suppose that dH(x̂,y) = ê, where x̂ is the closest codeword to

received vector y. The enhanced decoder only returns x̂ when the distance between

y and the next closest codeword is greater than ê+ν. If another codeword is present

within distance ê+ ν, then the receiver declares a decoding failure.

As before, let e denote the distance between the sent message and the received

vector. The performance associated with this procedure can be characterized by
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considering balls of radii e − ν, e, and e + ν centered around the received vector.

Notice that, by construction, the transmitted codeword always lies in the last two

balls. To analyze the system, consider the list of all codewords contained in the ball

of radius e + ν. If there is exactly one codeword on this list, it must be the correct

one and it is returned successfully by the decoder. On the other hand, if there are

more than one codeword on the list, then a decoding failure (detected or undetected)

will occur. One can write the probability of this event as

Pf|E(e) = 1−

(
1− 2−N

e+ν∑
i=0

(
N

i

))M−1

. (II.12)

A detected failure takes place when the decoder elects not to output a candidate

codeword. The problem is setup so that the correct codeword is always on the

list. As such, an undetected failure can only occur when there is at least one other

candidate inside the ball of radius e − ν. Note that this condition is necessary, but

not sufficient; multiple incorrect candidates can be found in proximity of the received

vector in such a way that a failure is reported. If there are only two codewords in the

ball of radius e and one of them is inside the ball of radius e − ν, then the decoder

will necessarily return the incorrect one. If there are more than two codewords with

the ball of radius e, then detected and undetected failures can occur, although for

well-designed systems such events are very rare. Collecting these observations, we

can derive an upper bound for the probability of undetected failure,

Pue<

N∑
e=0

(
N

e

)
pe(1− p)N−e

1−

(
1−

∑e−ν−1
i=0

(
N
i

)
2N

)M−1
 . (II.13)

It may be instructive to point out that ties between the closest codewords are always

treated as detected failures. Also, the probability of undetected failure decreases

rapidly as ν gets larger. Thus, by choosing an appropriate value for ν, one can

manage the level of undetected failures and hence make the decoding process more
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robust, at the expense of a higher overall probability of failure. Lastly, since the

probability of undetected failure is typically much smaller than the probability of

detected failure, we can upper bound the latter by Pf with a negligible penalty.

Much of the intuition developed under the binary symmetric channel applies

to the Gilbert-Elliott model, with one important distinction related to weighted

distance. Indeed, for this more elaborate finite-state channel, the ML decoder picks

the codeword that minimizes the weighted distance found in (II.10), γeg(x) + eb(x).

Suppose that B is the minimum weighted distance between the received vector and

a codeword, and let C be the weighted distance associated with the transmitted

codeword. To deal with the probability of undetected failure, the decoder declares a

failure if there is another codeword of weighted distance at most B + ν. Otherwise,

the best candidate codeword is returned.

Similar to the BSC case, performance can be analyzed by considering three balls,

with respect to weighted distance, of radii C − ν, C, and C + ν centered around

the received vector. Again, the transmitted codeword always resides in the last two

balls. If there are multiple codewords on the list of codewords in the ball of radius

C + ν, then a decoding failure will occur. This happens with probability

Pf|Ng,Eg,Eb
(ng, eg, eb) = 1−

1− 2−N
∑

M(γeg+eb+ν)

(
ng
ẽg

)(
nb
ẽb

)M−1

. (II.14)

The joint probability of decoding failure and ending in state CN+1, conditioned

on starting state C1, denoted Pf,CN+1|C1(d|c), is upper bounded by

P̄f,CN+1|C1(d|c) =
N∑

ng=0

ng∑
eg=0

nb∑
eb=0

(
ng
eg

)(
nb
eb

)
εegg (1− εg)ng−egεebb (1− εb)nb−eb
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× Pf|Ng,Eg,Eb
(ng, eg, eb)PNg,CN+1|C1(ng, d|c). (II.15)

In a similar fashion, the joint probability of undetected failure accounting for

boundary states, Pue,CN+1|C1(d|c), is upper bounded by

P̄ue,CN+1|C1(d|c) =
N∑

ng=0

ng∑
eg=0

nb∑
eb=0

(
ng
eg

)(
nb
eb

)
εegg (1− εg)ng−egεebb (1− εb)nb−eb

× Pue|Ng,Eg,Eb
(ng, eg, eb)PNg,CN+1|C1(ng, d|c), (II.16)

where Pue|Ng,Eg,Eb
(ng, eg, eb) is equal to

1−

1− 2−N
∑

M(γeg+eb−ν)

(
ng
ẽg

)(
nb
ẽb

)M−1

.

As before, the probability of undetected decoding failure diminishes as ν increases.

Also, for most systems, the probability of detected failure is well approximated by

the upper bound Pf,CN+1|C1(d|c) because undetected failures are very unlikely.

II.6.2 BCH Codes with Bounded Distance Decoding

Our BCH codes are decoded using bounded distance decoding. It is possible to

devise a safety margin and thereby reduce the probability of undetected decoding

failures in this setting as well. In this case, an undetected error occurs when the

received vector lies in the decoding region of an incorrect codeword. Therefore,

shrinking the decoding regions of admissible codewords can prevent undetected

failures. Let ν denote the size of the safety margin, and assume that the desired

error-correcting capability of the code is t − ν errors, where t is defined in

Section II.5.2. Under this slight modification, the decoder can detect up to t + ν

symbol errors.

We assume that a codeword is mapped to the channel using a uniform random
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interleaver and, as such, all error patterns consisting of e errors are equally

probable [38]. This introduces a symmetry in the problem that facilitates analysis.

Without loss of generality, one can assume that the zero codeword is transmitted

to the destination. For this situation, an undetected error occurs whenever the

Hamming distance between the received word and a nonzero codeword is less than

t− ν.

We consider the performance of this scheme for the binary symmetric channel

first. In [61], the probability of undetected error for bounded distance decoding is

computed. Using the enhanced detecting radius t + ν (instead of t), we can write

Pue =
∑N

e=t+ν+1W (e)PE(e), where W (e) denotes the conditional decoder failure

probability defined as the ratio of the number of weight e error patterns lying within

distance t− ν from a codeword over the total number of weight e words in the entire

space. This can be written as

W (e) =

∑t−ν
j=0

∑e+j
l=e−j Al

(
N−l

(j+e−l)/2

)(
l

(j−e+l)/2

)(
N
e

) , (II.17)

where Al denotes the number of weight l codewords in a BCH code space, designed

to correct up to t =
⌊

(t−ν)+(t+ν)
2

⌋
errors where (t− ν) + (t+ ν) = dmin − 1. In other

words, we use the weight distribution of a t error-correcting BCH code in our decoder

design; however, by using the lower t− ν error correcting capability and t+ ν error

detecting capability, we get better performance in terms of undetected errors.

Still, a main issue with this expression is that the weight distributions for most

BCH codes are not known. Furthermore, when an expression is known [62], it may

be too complicated to integrate into our analysis. Nevertheless, one can approximate

the weight distribution of a binary primitive BCH code of length N = 2m − 1 and

designed distance dmin = 2t + 1, where 2t − 1 < 2dm/2e + 1, by a binomial-like
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distribution as [61],

Al =


1, l = 0

0, 1 ≤ l < dmin

2−mt
(
N
l

)
(1 + El), dmin ≤ l ≤

⌊
N
2

⌋
AN−l,

⌊
N
2

⌋
≤ l ≤ N

(II.18)

where El is an error term in the approximation of the weight distribution of the BCH

code by a binomial distribution. It has been shown that for moderately large block

lengths, El is negligible. Consequently, W (e) is well approximated by 2−mt
∑t−ν

j=0

(
N
j

)
.

As a result, the probability of undetected error is approximately

Pue ≈ 2−mt
t−ν∑
j=0

(
N

j

) N∑
e=t+ν+1

PE(e).

This interpretation generalizes to the Gilbert-Elliott channel, and the conditional

probability of undetected error is equal to

Pue,CN+1|C1(d|c) =
N∑

e=t+ν+1

W (e)PE,CN+1|C1(e, d|c),

where c, d ∈ {g, b} and W (e) is unchanged from (II.17). Similar to the BSC case,

this function is well approximated by

2−mt
t−ν∑
j=0

(
N

j

) N∑
e=t+ν+1

PE,CN+1|C1(e, d|c).

This result is supported through numerical simulations.

II.7 Performance Evaluation

In this section, we evaluate our proposed methodology using traffic parameters

based on a voice over IP (VoIP) application for an EVDO system, a 3G component

of CDMA2000 [63]. This system offers an uplink sector capacity of 500 Kb/s with 16

active users per sector [64]. For a VoIP system with more users and lower per-user

rates, this is somewhat optimistic. As such, for illustrative purposes, we choose a
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total uplink rate of 460 Kb/s per sector; this gives a rate of Rb = 28.75 Kb/s for

each active user.

The enhanced variable rate codec (EVRC), used by CDMA2000 systems for low

bit-rate speech, generates a voice packet every 20 ms. EVRC features four distinct

frame types corresponding to different bit-rates: full rate gives 171 bits, 1/2 rate

gives 80 bits, 1/4 rate gives 40 bits, and 1/8 rate gives 16 bits. Hereafter, we adopt

the rough estimates of the relative frequencies for the speech coder states published

in [63]. Moreover, as the header size for voice packets are usually very large relative

to the voice payload, we assume that ROHC compression is employed to reduce

overhead to four bytes. Under these parameters, the average size of a voice packet

becomes 1/ρ =
∑

i fi(li + overhead) = 88.55 bits, where fi is the relative frequency

of state i and li denotes the frame size for the same state. The number of header

bits in every segment is set to h = 2. Throughout the numerical evaluation, packets

are assumed to arrive according to a Poisson process. Since packets are generated

every 20 ms, we find that λ = 50 packets per second and we receive an average of

50/Rb packets/channel use.

The choice of a Poisson arrival process (or MMPP) allows us to make fair

comparisons between codes with different block lengths. In particular, the rate λ in

packets per channel use is fixed, and arrivals in the queue correspond to the number

of packets produced by the source during the transmission time of one codeword.

The marginal distribution of the sampled process is also Poisson with arrival rate

λN , in packets per codeword. Given this framework, a prime goal is to minimize the

tail probability of the queue over possible values for parameters N and K.

One drawback associated with our closed-form approach is that handling

undetected block errors in a realistic manner (e.g., via late detection when the

packet CRC fails) is not possible. Therefore, to facilitate the analysis, we assume
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the presence of a genie that informs the receiver when an undetected block decoding

error occurs. Still, we require that the system maintain a probability of undetected

error less than some threshold, and we disregard (N,K) parameter pairs that violate

this constraint. Then, we evaluate the tail probability of the queue (the probability

that the number of packets in the queue exceeds a prescribed threshold τ) over

all admissible values of N , K, and ν satisfying the undetected error probability

constraint. More precisely, we perform a two-stage procedure. During the initial

phase, the algorithm finds the smallest admissible integer ν corresponding to each

pair (N,K), subject to the prescribed upper bound on Pue(N,K, ν). Once this

is accomplished, the tail probability of the queue
∑∞

i=2τ+1 π(i) is evaluated for

different (N,K) pairs using the optimum value of ν found in the previous step. We

emphasize that distribution {π(i)} is an implicit function of ν(N,K) and Pf(N,K, ν).

To perform this procedure, we first evaluate the undetected error probabilities for

different rates and ν = 0. In many cases, ν = 0 satisfies the constraint. For rates

with high probabilities of undetected error, we increase ν progressively as to reduce

the corresponding probabilities of undetected failure. We stress that this necessarily

increases the overall probability of decoding failure, as seen in (II.12)–(II.16). Since

we are interested in keeping the latter probability as small as possible, we raise ν

until the undetected-error requirement is met and then stop. The proper value of ν is

generally very small, which makes the task fast and convenient. Note that the initial

phase of the procedure can be carried out offline beforehand, whereas the parameters

of the coding scheme can be selected based on the current system conditions. Values

of N and K for which this procedure gives poor performance are ignored.

For illustrative purposes we present the curves corresponding to the tail

probability of the queue versus the code rates, for various block lengths. This

effectively helps to understand how the choice of the code parameters significantly
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affects the queueing performance. Furthermore, these curves reveal the existence of

an optimal code rate associated to each clock length, and an optimal block length

over all possible code lengths. As such, one can fairly pick the (N,K) pair which

results in the best queueing performance.

While numerically evaluating our proposed methodology, we consider two cases:

random coding with ML decoding over the BSC, and BCH coding with bounded

distance decoding over Gilbert-Elliott channel. The concise size of this survey is

due, primarily, to space limitations. Nonetheless, we believe that the insights offered

by these two cases are applicable to other scenarios as well.

II.7.1 Random Codes over the Binary Symmetric Channel

Let the channel bit error rate be p = 0.1, which yields a capacity of C = 0.531

bits per channel use, and suppose that the constraint on Pue(N,K, ν) is 5×10−5. We

know that increasing code rate R for a fixed block length decreases redundancy and

therefore reduces the error-correcting capability of the code. Thus, the probability

of decoding failure found in (II.4) becomes larger. At the same time, changes in

code rate affect ρr, the probability with which a codeword contains the last parcel

of information of a packet. As this rate varies, these two effects alter the transition

probabilities and, hence, the stationary distribution of the Markov chain in opposite

ways.

Figure II.6 shows the complementary cumulative distribution functions evaluated

at τ = 10 packets as functions of K. For each (N,K) pair, ν has been chosen to

satisfy the undetected error probability constraint, following the steps outlined above.

Each curve corresponds to a different block length and, as seen on the graph, there

is a natural tradeoff between the probability of decoding failure and the payload

per codeword. For a fixed block length, neither the smallest segment length nor the
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largest one delivers optimal performance. Moreover, block length must be selected

carefully; longer codewords do not necessarily yield better queueing performance.

For our system, optimal parameters are close to (N,K) = (150, 51), for which, the

probability of undetected error is 3.67× 10−5, and ν = 4.

II.7.2 BCH Codes over the Gilbert-Elliott Channel

The parameters for our Gilbert-Elliott model are selected loosely based on QPSK

modulation, a vehicular speed of 20 mph, and a carrier frequency of 2.1 GHz. This

gives a normalized Doppler frequency of fDTs = 0.00082, where fD represents the

Doppler frequency and Ts = 2/Rb is the symbol transmission time. Setting the SNR

threshold for transitions between the good and bad states to a common value of

γth = 2 dB and the average received SNR to γ̄ = 15 dB, we can apply the formulas

given in [47] and get model parameters

α =
ρfDTs

√
2π

eρ2 − 1
= 0.3938 β = ρfDTs

√
2π = 0.0202

where ρ = 10(γt−γ̄)/20. The probabilities of error in the good and bad states are

chosen to be

εg =
α + β

α

ˆ ∞
γth

fΓ(γ)Pe−QPSK(γ)dγ = 0.0097,

εb =
α + β

β

ˆ γth

0

fΓ(γ)Pe−QPSK(γ)dγ = 0.3713,

where fΓ(·) is the probability distribution of the received SNR and Pe−QPSK(γ) =

1− (1−Q(
√
γ))2 is the probability of symbol error for QPSK modulation.

This time, we require that the system features a probability of undetected error no

greater than 10−5. Recall that, for a specific (N,K)-BCH code, we can tradeoff the

probability of misclassification and the ability to correct errors by changing the value

of ν. Hence, we evaluate the tail probability of the queue over all admissible values

43



0 20 40 60 80 100 120 140 160 180 200
10−3

10−2

10−1

100

T
ai

l
p

ro
b

ab
il

it
y

P
r(

Q
¿1

0)

N=50 N=70

N=100 N=130

N=150 N=180

N=200 N=220

N=250 N=280

N=310

Information Bits per Block (Segment Length), K

Figure II.6: Probabilities of buffer overflow for random codes over the BSC as functions of K,
subject to constraint Pue ≤ 5× 10−5.

of N , K, and ν satisfying the undetected error probability constraint. To proceed,

we first evaluate tail probabilities for admissible values of N and K, with ν = 0

(see Fig. II.7(a)). Then, for the values of K with high probabilities of undetected

error, we increase ν progressively as to control misclassifications and meet the desired

constraint. Again, values of N and K that lead to inferior performance are discarded.

For example, for N = 63, the values of K = 30, 36, 39, 45 are the ones with high

probability of undetected error that are refined by increasing ν (see Fig. II.7(a)-(b)).

The values of K greater than 45 associated to N = 63 are ignored, since they

result in poor performance after meeting the constraint on the undetected errors.

Interestingly, for N = 63, K < 30, the constraint on the undetected errors is met

with ν = 0. Similar behavior is also observed for other block lengths.

The results associated with this procedure, in terms of the tail probability of the

queue evaluated at τ = 5, are illustrated in Fig. II.7(b). Comparing this graph to

Fig. II.7(a), we gather that decreasing the likelihood of undetected error increases
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the tail probability of the queue. In fact, because this forces the system to declare a

detected error and request a retransmission more often, packets leave the queue less

frequently. Accordingly, the probability that the buffer exceeds a certain threshold

goes up. Looking at Fig. II.7(b), we see that the optimal code parameters are

(N,K) = (63, 36). The corresponding probability of undetected error is 8.78× 10−6

and ν = 1. We note that the tail probability for (N,K) = (127, 71) is close to this

optimal value. This alternate configuration features an undetected error probability

of 3.80 × 10−8, which is achieved with ν = 0. This survey demonstrates the need

to adjust the value of ν on a per code basis. Moreover, the results suggest that the

proper value of ν is very small relative to N .

Figure II.8 plots the stability factor for the (N,K) pairs found in our previous

graph. Systems for which λN/µN is larger than one are unstable. We note that

the tail probability is a good predictor of stability. In general, systems with small

stability factors feature good delay profiles as well.

Monte Carlo simulations provide additional empirical evidence for our proposed

methodology. This is especially important because our analysis assumes the existence

of a genie that reports undetected errors. To understand the effect of the genie,

we perform simulations with and without the genie. As expected, the genie-aided

simulation results match our analysis almost perfectly. In the absence of a genie,

we assume that an undetected decoding error is eventually revealed by the packet

CRC. So long as the probabilities of undetected error remain relatively small, our

simulations without the genie agree with both the coding and queueing performance

predicted by the analytical framework. For instance, Fig. II.7(b) superimposes

simulation results for N = 63 without the genie (dashed curve). The plotted curves

in this case are nearly indistinguishable.

Another important concern pertains to possible modeling inaccuracies related
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Figure II.7: Probabilities of buffer overflow are displayed for various BCH codes over Gilbert-Elliott
channel; (a) when undetected errors are not considered (ν = 0), (b) when the decoding radius in
every case is adjusted to meet the constraint on the probability of undetected error Pue ≤ 10−5.

to the traffic or the channel. To examine such limitations, we carry Monte Carlo

simulations for a system with constant packet lengths, L = 90. Figure II.9

demonstrates the results in terms of the complementary cumulative distribution

function (CCDF) of the queue occupancy for N = 63 and different values of K.

We compare the results with those obtained for systems with geometric packet

distributions, matching the means. Not surprisingly, reducing variations in the

arrival process decreases the tail probability of the queue. That is, it makes the

probability of a long queue very small. This behavior should be expected since fixing

the packet size precludes the arrival of a very long packet, an event that exacerbates

the distribution of the queue. In other words, designing the system using a geometric

packet distribution leads to a conservative performance assessment compared to using
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Figure II.8: Stability factors as functions of BCH code parameters; when this factor exceeds one,
the system is unstable.

a constant packet length. Empirically, the system performs uniformly better in the

latter case. In a similar manner, smoothing the arrival process over time (e.g.,

periodic arrivals) should lead to a better profile. Simulation results also suggest

that the CCDF of the stationary queue length for the system with periodic packet

arrivals is dominated by that of the system with Poisson packet arrivals (using the

same packet length distribution). The results for N = 63 and different block lengths

are presented in Fig. II.10.

Performance prediction aside, our analytical framework affords an efficient and

accurate means of selecting system parameters. For example, under stated channel

conditions and queueing objectives, the optimum values for N and K are the same

for constant and geometric packet length distributions. Specifically, the minimum

tail probability associated with the abstract model is achieved at N = 63 and K =

36. Simulation results with constant packet sizes lead to the same operating point,

although this latter approach is much more computationally demanding. Altogether,

simulation results offer strong support for the proposed methodology.
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Figure II.9: CCDF of stationary distribution of the queue length (Pr(queue length > τ)), is
displayed for geometric and constant packet length, N = 63. The tail probability of the queue
for τ = 5 , has been marked with black squares in case of constant packet size.

II.8 Concluding Remarks

In this chapter, we introduced a novel framework to study the queueing behavior

of coded wireless communications over finite-state error channels. The proposed

methodology applies to both memoryless channels and channels with memory.

Careful consideration is given to undetected decoding failures, as they can have

a very detrimental impact on the operation of pragmatic systems.

For illustrative purposes, a VoIP application is considered. Channel parameters

are derived from the CDMA2000 family of 3G mobile technology standards. The
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Figure II.10: CCDF of the stationary queue length for Poisson and periodic (constant) packet
arrival, N = 63

proposed methodology enables the numerical evaluation of the queue distribution

and the tail probabilities of the queue. This, in turn, can be employed to find the

optimal operating point. Due to the scalable arrival profile, the framework allows

for rigorous comparison of coding schemes with different block lengths and code

rates. The results and assumptions associated with our methodology are supported

by Monte Carlo simulations.
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CHAPTER III

ON THE PERFORMANCE OF SHORT-BLOCK RANDOM

CODES OVER FINITE-STATE FADING CHANNELS IN THE

RARE-TRANSITION REGIME

III.1 Introduction

In this chapter, we study the bounding performance of finite-state channels with

memory. The chapter is organized as follows. The channel model, coding strategy

and developed exponential bounds on probability of decoding failure are described in

Section III.2. In Section III.3, we propose a novel methodology which captures both

the effects of channel memory as well as the impact of the channel state at the onset

of a codeword. In Section III.4 we briefly review the derivation of exact probability

of decoding failure, mainly described in the first chapter. Standard modifications

to the upper bounds on decoding failures in order to lower the probability of

undetected error are discussed in Section III.5. The remainder of the chapter is

devoted to the potential implication of the proposed bounding technique in terms of

the queueing theory. In Section III.6, the required adjustments in the queueing model

are studied. The stochastic dominance is discussed in Section III.7. Numerical results

evaluating the proposed upper bounds and showing the bounding performance of

the communication system are presented in Section III.8. Finally, we offer pertinent

conclusions in Section III.9.

III.2 Modeling and Exponential Bounds

In this chapter, we consider indecomposable finite-state channels where state

transitions are independent of the input symbols. Such channels are often classified
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as fading models, and they have been used extensively in the information theory

literature. We employ Xn and Yn, respectively, to denote the input and output

symbols at time n. The channel state that determines the channel law at time n

is represented by Sn−1. We typically reserve capital letters for random variables,

whereas lower case letters identify outcomes and values. Boldface letters are used to

denote length-N sequences of random variables or outcomes. For groups of random

variables, we use the common expression P·|·(·|·) to denote the conditional joint

probability mass function, and Pe,·|·(·|·) to denote the conditional joint probability of

decoding error.

In general, the conditional probability distribution governing a finite-state

channel can be written as

PYn,Sn|Xn,Sn−1 (yn, sn|xn, sn−1) = Pr (Yn = yn, Sn = sn|Xn = xn, Sn−1 = sn−1) .

When state transitions are independent of input symbols, this conditional

distribution reduces to

PYn,Sn|Xn,Sn−1(yn, sn|xn, sn−1) = PSn|Sn−1(sn|sn−1)PYn|Xn,Sn−1(yn|xn, sn−1). (III.1)

Throughout, we assume that the channel statistics are homogeneous over time and

the sequence {Sn} forms a Markov chain. When dealing with finite-state channels,

it is customary to use integers to denote the possible input and output symbols; in

our exposition, we adhere to this convention.

As introduced in the first chapter, the famed Gilbert-Elliott channel is the

proverbial example of a channel that possesses the structure described above. This

quintessential model is governed by a two-state Markov chain, and it is illustrated

in Fig. II.1. The transition probability matrix for the Gilbert-Elliott channel is

expressed in (II.1), where [P]ij = Pr(Sn = j|Sn−1 = i). The state-dependent
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input-output relationship induced by channel state s ∈ {1, 2} is governed by the

crossover probability εs, where

Pr(xn = yn|Sn−1 = s) = 1− εs

Pr(xn 6= yn|Sn−1 = s) = εs.

For convenience, we order states such that ε1 < ε2.

A coding strategy that has proven exceptionally fruitful in information theory

is the use of random codes. Upholding this tradition, we adopt a random coding

scheme that employs a code ensemble C with M = eNR elements. Familiarity

with this topic may help because random coding arguments tend to be notationally

heavy [1]. Variable N denotes the block length of the code, and R represents its

rate. Every element in C corresponds to a sequence of admissible channel inputs,

x = (x1, x2, . . . , xN). Moreover, codewords are indexed by k ∈ {1, . . . ,M}. The

input sequence associated with index k, which we denote by X(k), is determined

through the following procedure. Suppose that Q(·) is a distribution on the set of

admissible input symbols. Let QN(x) =
∏N

n=1Q(xn) be the product measure induced

by Q. Codeword X(k) is selected at random according to distribution QN , i.e.,

Pr(X(k) = x) = QN(x) =
N∏
n=1

Q(xn).

We emphasize that every codeword is selected independently from other elements in

C. Once a code ensemble has been generated, a message is sent to the destination by

first selecting one of the codewords, and then sequentially transmitting its entries over

the communication channel. For the sake of clarity, we summarize our assumptions

below; they apply from this point forward, unless otherwise stated.

Assumption 5. Communication takes place over a finite-state channel that admits

the conditional decomposition of (III.1). Information is transmitted using the random

52



coding strategy outlined above. On the receiver side, a maximum-likelihood decision

rule is used to decode the received sequence. Furthermore, the state of the channel is

causally known at the receiver.

At this point, it is worth restating our objective. We want to upper bound the

probability that a codeword is decoded erroneously at the receiver. Concurrently, we

wish to develop a rare-transition regime that remains true to the fact that the channel

state at the onset of the codeword transmission process affects the evolution of the

system. Ultimately, this can be achieved in an asymptotic framework by slowing

down the transition profile of the underlying channel as the block length of the code

grows unbounded. One of the repercussions of this setting is that we have to modify

some of the results on error exponents presented by Gallager [1]. In particular, we

need the ability to restrict a channel sequence S to specific events and decompose

the error probability accordingly.

Our first formal result is a straightforward extension to Theorem 5.6.1 in [1,

pp. 135], which is itself quite general. Since we are interested in finite-state channels

with memory in a slow transition regime, we require the ability to track channel

realizations explicitly. From an abstract perspective, conditioning on a specific fading

realization is equivalent to altering the statistical profile of the underlying channel.

Proposition 6. Suppose that the realization of the channel over the duration of a

codeword is given by s. Then, for any ρ ∈ [0, 1], the probability of decoding failure at

the destination, conditioned on state sequence S = s, is upper bounded by

Pe|S(s) ≤ e−N(E0,N (ρ,QN ,s)−ρR)
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where the exponent E0,N(ρ,QN , s) is equal to

− 1

N
ln

N∏
n=1

∑
yn

[∑
xn

Q(xn)PYn|Xn,Sn−1(yn|xn, sn−1)
1

1+ρ

]1+ρ

.

Proof. First, we emphasize that the condition S = s simply alters the probability

measure governing the input-output relationship of the channel. Applying

Theorem 5.6.1 in [1] with M = eNR, we immediately get

Pe|S(s) ≤ eρNR
∑
y

[∑
x

QN(x)PY|X,S (y|x, s)
1

1+ρ

]1+ρ

,

where PY|X,S(y|x, s) represents the conditional distribution of receiving y given X =

x and S = s. Moving forward, the crux of the argument is based on interchanging the

order of exhaustive products and sums. Under the channel decomposition introduced

in (III.1), the double summation that appears in this upper bound becomes

∑
y

[∑
x

N∏
n=1

Q(xn)PYn|Xn,Sn−1(yn|xn, sn−1)
1

1+ρ

]1+ρ

=
N∏
n=1

∑
yn

[∑
xn

Q(xn)PYn|Xn,Sn−1(yn|xn, sn−1)
1

1+ρ

]1+ρ

.

Collecting these various results and using equivalent notation, we obtain the desired

proposition.

A key insight revealed through the proof of Proposition 6 is that E0,N(ρ,QN , s)

only depends on s through its empirical distribution, designated T (s). We state this

fact as a corollary because it will become very useful shortly.

Corollary 7. Let T be the empirical state distribution of a sequence of N consecutive

channel realizations. If s and s′ are two sequences such that T (s) = T (s′) = T , then

E0,N(ρ,QN , s) = E0,N(ρ,QN , s
′). Furthermore, the probability of decoding failure at
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the destination, conditioned on S ∈ U , is bounded by

Pe|S(U) ≤ e−N(E0,N (ρ,QN ,T )−ρR)

for all non-empty subset U ⊂ {s|T (s) = T} and ρ ∈ [0, 1]. Note that, with some

abuse of notation, we have implicitly defined E0,N(ρ,QN , T ) = E0,N(ρ,QN , s) where

s represents any sequence with empirical distribution T (s) = T .

For the problem at hand, we are especially interested in probabilities of the form

Pe,SN |S0(sN |s0). In some sense, each of these represents the probability of a decoding

failure while keeping track of boundary states. In view of Corollary 7, it is natural

to upper bound this quantity by partitioning the set of possible sequences according

to their empirical distributions. This is accomplished below. In stating our results,

we use T to denote the collection of all admissible empirical channel distributions

over sequences of length N .

Proposition 8. Suppose that a codeword is transmitted over a finite-state channel.

The joint probability that decoding fails at the destination and SN = sN , conditioned

on initial state S0 = s0, is upper bounded as follows

Pe,SN |S0(sN |s0) ≤
∑
T∈T

PT (S),SN |S0(T, sN |s0) min
ρ∈[0,1]

e−N(E0,N (ρ,QN ,T )−ρR)

≤ min
ρ∈[0,1]

∑
T∈T

PT (S),SN |S0(T, sN |s0)e−N(E0,N (ρ,QN ,T )−ρR) (III.2)

where PT (S),SN |S0(T, sN |s0) represents the probability that T (S) = T and SN = sN ,

given initial state S0 = s0.

Proof. The progression of this demonstration parallels an argument found in

Section 5.9 of [1]. By partitioning the set of length-N sequences according to their

55



empirical distributions, we can write

Pe,SN |S0(sN |s0) =
∑
s

Pr(S = s, SN = sN |S0 = s0)Pe|S(s)

=
∑
T∈T

∑
s:T (s)=T

Pr(S = s, SN = sN |S0 = s0)Pe|S(s)

≤
∑
T∈T

∑
s:T (s)=T

Pr(S = s, SN = sN |S0 = s0) min
ρ∈[0,1]

e−N(E0,N (ρ,QN ,s)−ρR).

The inequality in this expression comes from a direct application of Proposition 6.

Following our previous observation that E0,N(ρ,QN , s) only depends on s through

its empirical distribution T (s), we can rewrite this upper bound as

Pe,SN |S0(sN |s0) ≤
∑
T∈T

Pr (T (S) = T, SN = sN |S0 = s0) min
ρ∈[0,1]

e−N(E0,N (ρ,QN ,T )−ρR).

The first bound in Proposition 8 is equivalent to this inequality, yet it is expressed

using a more concise notation. The second bound holds because the sum of minimums

is upper bounded by the minimum of the summands.

In words, this result is obtained by first grouping channel state sequences

according to types, applying an exponential upper bound on the probability of

decoding failure to each group, and then taking an expectation over possible

empirical distributions. From a large deviations perspective, this decomposition

into summands is pertinent because it can be employed to identify the dominating

behavior of the system as block length becomes increasingly large. Interestingly, the

upper bound on the error probability only depends on the initial and final states of

the channel through the empirical distributions.

Next, we consider a Gilbert-Elliott type channel, where the cardinality of the

channel state space is S. Let sequence s be fixed and recall that sn ∈ {1, 2, . . . ,S}.
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Then, by Proposition 6, we get

E0,N(ρ,QN , s)

= − 1

N
ln

N−1∏
n=0

1

2ρ

(
ε

1
1+ρ
sn + (1− εsn)

1
1+ρ

)1+ρ

= − 1

N

S∑
i=1

ni ln
1

2ρ

(
ε

1
1+ρ

i + (1− εi)
1

1+ρ

)1+ρ

=
S∑
i=1

ni
N
bi(ρ),

(III.3)

where ni is the number of visits to channel state i in sequence s, ni
N

is the fraction of

time spent in state i, and

bi(ρ) = − ln
1

2ρ

(
ε

1
1+ρ

i + (1− εi)
1

1+ρ

)1+ρ

. (III.4)

Without loss of generality, we assume the error probabilities in different states are

ordered such that

ε1 < ε2 < · · · < εS ≤
1

2
,

which implies

b1(ρ) > b2(ρ) > · · · > bS(ρ). (III.5)

A key observation from (III.3) is that the upper bound in (III.2) can be rewritten

as an expectation with respect to the distribution of a weighted sum of the state

occupation times. This observation is of significant importance, as it reduces the

computational complexity of the bound in (III.2) by a great amount. The following

remark precisely characterizes the statement.

Remark 9. Suppose the random variable Ni denotes the number of visits to channel
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state i over the duration of a codeword, and let

W (ρ) =
1

N

S∑
i=1

Nibi(ρ), (III.6)

designate the weighted sum of the normalized occupancy times. Then, the second

upper bound on the error probability in (III.2) can be rewritten as

min
ρ∈[0,1]

∑
w

PW (ρ),SN |S0(w, sN |s0)e−N(w−ρR), (III.7)

where PW (ρ),SN |S0(w, sN |s0) represents the probability that W (ρ) = w and SN = sN ,

given initial state S0 = s0. We emphasize that the weights bi(ρ) are functions of the

optimizing parameter ρ and they are deterministic.

We note that the exponential term in (III.2) is averaged with respect to the joint

distribution of channel state occupations PT (S),SN |S0(T, sN |s0). However, conditioned

on W (ρ), the bound is statistically independent of T (S). In fact, when the channel

state information is available at the receiver, W (ρ) provides sufficient statistics to

compute the upper bound on probability of decoding error. The joint distribution

of the channel states provides more information than what is needed to derive the

bound. This key characterization significantly improves the computational efficiency

of the bounding technique, especially when the number of channel states increases.

For illustrative purposes, we derive the upper bounds on Pe,SN |S0(sN |s0) for the

two-state Gilbert-Elliott channel. Exploiting the Markov structure of this channel,

we get

Pe,SN |S0(sN |s0) ≤ min
ρ∈[0,1]

∑
s

e−N(E0,N (ρ,QN ,s)−ρR) Pr(S = s, SN = sN |S0 = s0)

= min
ρ∈[0,1]

es0

a(1, 1) a(1, 2)

a(2, 1) a(2, 2)


N

eT
sN

 eρNR.

(III.8)

In this equation, ei represents the unit vector of length two with a one in the
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ith position and zero otherwise. Matrix entries are defined by a(i, j) = [P]ij e
bi ,

where the transition probability matrix P is given in (II.1). We emphasize that

this inequality holds for any ρ ∈ [0, 1] and, hence, the bound can be tightened by

minimizing over ρ.

Remark 10. The bound in (III.8) is very similar to Gallager’s exponential bound

for finite-state channels [1, Thm 5.9.3, pp. 185] when the receiver has perfect state

information. The main difference is that Gallager considers the ergodic regime and

his equation simplifies to the logarithm of the largest eigenvalue of the matrix. We

omit this simplification because we are mainly interested in non-asymptotic regimes.

III.3 The Rare-Transition Regime

In a traditional setting where P is kept constant, the upper bound given in (III.2)

can be refined using the Perron-Frobenius theorem [1, pp. 184–185]. The more

intriguing scenario for our purpose is the rare-transition regime where individual

transition probabilities vary with N . We introduce such a dependency through

the sampling of a continuous-time Markov chain (CTMC). Consider the CTMC

X (·) defined by the infinitesimal generator matrix Q. Furthermore, suppose X (·) is

sampled at every 1/N unit of time. Then, we can construct a continuous-time version

of the sampled chain as follows,

XN(t) = X
(
bNtc
N

)
. (III.9)

Let PN represent the transition probability matrix of the sampled Markov chain

given by XN(n/N), n ∈ N. Matrix PN is governed by Q through the equation [65,

Thms 2.1.1 & 2.1.2]

PN = exp

(
Q

N

)
. (III.10)
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We note that PN is also the transition probability matrix of the Markov chain X (t)

for a time interval of length 1/N,

[PN ]ij = Pr

(
X
(

1

N

)
= j|X (0) = i

)
.

As an example, consider a two-state Markov process. In this case, the infinitesimal

generator matrix can be written as

Q =

−µ µ

ξ −ξ

 µ, ξ > 0, (III.11)

and, consequently, we can express the transition probability matrix of the sampled

process as

PN =
1

µ+ ξ

 ξ + µe−
ξ+µ
N µ

(
1− e− ξ+µN

)
ξ
(

1− e− ξ+µN
)

µ+ ξe−
ξ+µ
N

 . (III.12)

As seen above, jumps in the discrete chain become less likely as N increases. This

is expected because a refined sampling of the CTMC does not alter the character

of the underlying process. Furthermore, the roles of boundary states are preserved,

a property which is key for our subsequent analysis. At this point, it is instructive

to note that the inequalities presented in Section III.2 apply in the context of rare

transitions as well, albeit using PN rather than a fixed P.

An important benefit of the rare-transition regime is the existence of approximate

error bounds that can be computed efficiently. These approximate bounds can be

obtained using the following steps. First, we show that the distributions of the

occupation times for the sampled Markov chains converge to the distribution of the

channel state occupation times of the original CTMC, as the sampling interval 1/N

decreases to zero. Second, we employ standard results pertaining to the convergence

of empirical measures to get approximate upper bounds on the probabilities of
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decoding failure at the destination, using the continuous measures. We then leverage

a numerical procedure to compute the distributions of weighted sums of channel state

occupations for the CTMC [66,67]. Collecting these results, we arrive at the desired

characterization of channels with memory.

Following conventional notation, we use Ω to designate the sample space, and we

represent a generic outcome by ω. Whenever needed, we use superscript ω to refer to

a particular realization. For instance, X denotes the CTMC whereas X ω symbolizes

the sample path associated with realization ω. In a similar fashion, we can make a

distinction between the sampled chain XN and the realization X ω
N associated with

outcome ω. The need for this elaborate notation will become manifest shortly.

Recall the CTMC X (t) and its sampled variants XN(t), as introduced in (III.9).

For every channel state i, we define the occupation times pathwise through the

integrals below,

ηωi =

ˆ 1

0

1{Xω(t)=i}dt

ηωN,i =

ˆ 1

0

1{XωN (t)=i}dt =
1

N

N∑
k=1

1{XωN (k/N)=i}

where 1{·} represents the standard indicator function. Having specified the values of

the occupation times for every possible outcome ω, these equations unambiguously

define random variables ηi and ηN,i.

Proposition 11. The sequence of random vectors given by

ηN = (ηN,1, . . . , ηN,S) , N = 1, 2, . . .

converges almost surely to random vector η = (η1, . . . , ηS) as N approaches infinity.

Proof. The CTMC X (t) is time-homogeneous and its state space has finite

cardinality. It is therefore non-explosive [65, Sec. 2.7]. This implies that the number
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of transitions in the interval [0, 1] is finite almost surely; we can then write Pr(Ω′) = 1,

where

Ω′ = {ω ∈ Ω|X ω(t) has finitely many jumps}.

For any ω ∈ Ω′, the function X ω is bounded and continuous almost everywhere on

[0, 1]. It therefore fulfills Lebesgue’s criterion for Riemann integrability [68, pp. 323]

and, as such,

ηωi =

ˆ 1

0

1{Xω(t)=i}dt

= lim
N→∞

1

N

N∑
k=1

1{XωN (k/N)=i} = lim
N→∞

ηωN,i.

Since the number of channel states is finite, this result readily extends to vectors,

lim
N→∞

d1 (ηωN , η
ω) = 0 ∀ω ∈ Ω′

where d1(·, ·) is the `1 distance on RS . Equivalently, we can write

Pr
(
ω ∈ Ω

∣∣∣ lim
N→∞

d1

(
ηωN , η

ω
)

= 0
)

= 1.

That is, ηN converges to η almost surely, as desired.

Almost sure convergence implies convergence in probability and in

distribution [69, Sec. 8.5]. Thus, from Proposition 11, we gather that ηN

converges to η in distribution, which is sufficient for our later purpose. This further

implies that the occupation times of a sequence of independent discrete-time Markov

chains, each generated according to PN , converge in distribution to η. That is, the

sampling of the CTMC described above is a powerful mathematical tool to get the

result we seek.

In the discussion above, we are intentionally vague about the probability laws

on Ω. The careful reader will note that our arguments apply to the equilibrium
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distribution of the Markov chain as well as the conditional measure where the Markov

process starts in state i ∈ {1, 2, . . . ,S}, at time zero. Moreover, by extension, these

findings apply to probabilities where the final channel state is taken into account.

To distinguish between these different scenarios, we introduce a shorthand notation

for these joint probabilities,

F (r1, r2, . . . , rS−1) = Pr (η1 ≤ r1, · · · , ηS−1 ≤ rS−1)

Fij(r1, r2, . . . , rS−1)

= Pr (η1 ≤ r1, · · · , ηS−1 ≤ rS−1, Sf = j, Si = i)

Fj|i(r1, r2, . . . , rS−1)

= Pr (η1 ≤ r1, · · · , ηS−1 ≤ rS−1, Sf = j|Si = i) .

In our labeling, Si identifies the initial state of the channel and Sf specifies its final

value. We can define FN , FN,ij and FN,j|i in an analogous manner. It is immediate

from Proposition 11 that dFN ⇒ dF , dFN,ij ⇒ dFij, and dFN,j|i ⇒ dFj|i as N grows

to infinity, where the symbol ⇒ denotes convergence in distribution. As a direct

consequence of Proposition 11, we can apply these results to affine combinations of

η1, . . . , ηS .

Corollary 12. Let ρ be fixed and recall the coefficients bi(ρ) found in (III.4). The

sequence of random variables given by

WN(ρ) =
S∑
i=1

ηN,ibi(ρ)

converges in distribution to random variable

W (ρ) =
S∑
i=1

ηibi(ρ)

as N approaches infinity.
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We point out that the expression for W (ρ) above differs slightly from (III.6), as

it reflects the notation developed for the current asymptotic setting. Again, this

result is valid for the probability laws associated with F , Fij and Fj|i. The weighted

sum W (ρ) is of such importance in our impending discussion that we introduce a

convenient notation for its corresponding probability laws as well,

G(w) = Pr(W (ρ) ≤ w)

Gij(w) = Pr(W (ρ) ≤ w, Si = i, Sf = j)

Gj|i(w) = Pr(W (ρ) ≤ w, Sf = j|Si = i).

In addition, we write GN , GN,ij and GN,j|i for the measures associated with WN(ρ).

It may be helpful to point out that we introduce a slight abuse of notation in

establishing these quantities; the dependence of these probability laws on ρ is implicit.

This is intentional as the alternative makes the notation overly cumbersome and

confusing. In the limiting case, the measures G, Gij, and Gj|i are continuous almost

everywhere. Wherever needed, we can emphasize the dependence on ρ by writing

dG(w) = fW (ρ)(w)dw

dGij(w) = fW (ρ),Si,Sf
(w, i, j)dw

dGj|i(w) = fW (ρ),Sf |Si
(w, j|i)dw

where f(·) is our generic representation of a probability density, possibly with

weighted Dirac delta components.

Proposition 13. Suppose that a message is transmitted over a memory channel with

S possible states, using the random coding scheme introduced in Section III.2. An
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approximate upper bound for the error probability Pe,SN |S0(j|i) is given by

Pe,SN |S0(j|i) .
ˆ b1(ρ)

bS(ρ)

min
{

1, e−N(w−ρR)
}

× fW (ρ),Sf |Si
(w, j|i)dw.

(III.13)

The approximation in (III.13) reflects its potential use in selecting efficient coding

schemes. The precise mathematical meaning underlying this equation is described in

the proof.

Proof. Let ρ ∈ (0, 1) be fixed. We know from Corollary 7 that, for channel type T ,

the error probability is bounded by

Pe|S(T ) ≤ e−N(E0,N (ρ,QN ,T )−ρR) = e−N(w−ρR).

where w =
∑S

i=1
ni
N
bi(ρ) is determined by the channel type. We can readily tighten

this bound to

Pe|S(T ) ≤ min
{

1, e−N(w−ρR)
}

because individual probabilities cannot exceed one. It is useful to point out that the

expression w − ρR is an affine, strictly increasing function of w. For the purpose of

exposition, let gN(w) be defined by

gN(w) = min
{

1, e−N(w−ρR)
}

=


e−N(w−ρR) w < %

1 w ≥ %

,

where the threshold % = ρR. The sequence of functions {gN(w)} converges pointwise
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to

g(w) = 1[%,∞)(w) =


0 w < %

1 w ≥ %

,

which is uniformly continuous on the set w ∈ [0, b1(ρ)]\{%}. By taking an expectation

over W (ρ), we get

Pe,SN |S0(j|i) ≤
ˆ b1(ρ)

bS(ρ)

min
{

1, e−N(w−ρR)
}
dGN,j|i(w)

=
∑
w

PWN (ρ),SN |S0(w, j|i) min
{

1, e−N(w−ρR)
}
.

(III.14)

While this upper bound can be computed numerically if the distribution of WN(ρ) is

known, we are also interested in approximations that provide good intuition as well

as computational efficiency at the expense of a little accuracy.

As a next step, we will establish that

lim
N→∞

ˆ b1(ρ)

bS(ρ)

gN dGN,j|i =

ˆ b1(ρ)

bS(ρ)

g dGj|i. (III.15)

From Corollary 12, we know that the set of measures {GN,j|i} converges in

distribution to Gj|i. Also, for any converging sequence wN ∈ [bS(ρ), b1(ρ)] with

limN→∞wN = w 6= %, we have gN(wN) → g(w). This is pertinent because the

limiting measure Gj|i(w) is continuous at % ∈ (bS(ρ), b1(ρ)) and, consequently, the

event {w = %} has probability zero. Collecting these observations, we can can

apply [70, Thm. 5.5] and thereby establish the validity of (III.15).

In view of these results, we can write

ˆ b1(ρ)

bS(ρ)

gN dGN,j|i ≈
ˆ b1(ρ)

bS(ρ)

gN dGj|i ≈
ˆ b1(ρ)

bS(ρ)

g dGj|i (III.16)

for large enough values of N . Since the first integral in (III.16) provides an upper

bound on Pe,SN |S0(j|i), the approximate upper bound of (III.13) immediately follows.
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That is, if the code length is large enough, then the approximation in Proposition 13

is justified.

Using (III.13) to select system parameters gives an alternate, computationally

efficient way to design good systems. We emphasize that one does not necessarily

need to compute a sequence of distributions for {WN(ρ)} to follow this solution

path. Rather, it is possible to accurately approximate the distribution of W (ρ)

directly using an iterative approach. We review one such method below; it leverages

numerical techniques introduced in [66, 67]. This method applies to channels

with arbitrary, yet finite numbers of states. In contrast, the standard approach

associated with (III.14) entails computing GN,j|i explicitly for multiple values of N ,

a cumbersome task.

Proposition 14 presents a numerical method to compute the distribution of W (ρ).

This method is adapted from [66] and, as such, it is presented without detailed proof.

In practice, the infinite sum needs to be truncated according to an appropriate

criterion. To present this result, we need to introduce relevant notations. Let A be

the transition matrix given by

A = I +
Q

σ

where I is the identity matrix, σ ≥ maxk |Qkk|, k ∈ {1, 2, · · · ,S}, is a constant and

{Qkk} are the diagonal elements of Q. Also, define matrix G(w) by

[G(w)]ij = Gj|i(w)

where i, j ∈ {1, 2, . . . ,S}.

Proposition 14. Let ρ be fixed and suppose that the channel is initially in state

Si = i. The probabilities of the events {W (ρ) ≤ w, Sf = j|Si = i} as functions

67



of w are continuous almost everywhere, and they have at most S discontinuities,

with possible locations bS(ρ), . . . , b1(ρ). Furthermore, for w ∈ [bk(ρ), bk−1(ρ)) and

2 ≤ k ≤ S, we have

G(w) =
∞∑
n=0

e−σ
σn

n!

n∑
l=0

(
n

l

)
wlk(1− wk)n−lC(k)(n, l),

where

wk =
w − bk(ρ)

bk−1(ρ)− bk(ρ)
.

The matrices
{
C(k)(n, l)

}
are defined component-wise by

[
C(k)(n, l)

]
cd

= C
(k)
cd (n, l) c, d ∈ {1, 2, . . . ,S},

and the individual entries in each of these matrices are given by the following two

recurrence relations.

For k ≤ c ≤ S and 0 ≤ d ≤ S,

C
(k)
cd (n, l) =

bk(ρ)− bc(ρ)

bk−1(ρ)− bc(ρ)
C

(k)
cd (n, l − 1)

+
bk−1(ρ)− bk(ρ)

bk−1(ρ)− bc(ρ)

S∑
e=0

[A]ceC
(k)
ed (n− 1, l − 1)

where 1 ≤ l ≤ n. For n ≥ 0 and k > 1, we apply the boundary conditions C
(1)
cd (n, 0) =

0 and C
(k)
cd (n, 0) = C

(k−1)
cd (n, n).

Similarly, for 0 ≤ c ≤ k − 1 and 0 ≤ d ≤ S,

C
(k)
cd (n, l) =

bc(ρ)− bk−1(ρ)

bc(ρ)− bk(ρ)
C

(k)
cd (n, l + 1)

+
bk−1(ρ)− bk(ρ)

bk(ρ)− bc(ρ)

S∑
e=0

[A]ceC
(k)
ed (n− 1, l)

where 0 ≤ l ≤ n− 1. In this case, for n ≥ 0 and k < S, we can write the boundary

conditions C
(S)
cd (n, n) = [An]cd and C

(k)
cd (n, n) = C

(k+1)
cd (n, 0).
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Proof. We emphasize, again, that this proposition is adapted from a general

technique found in [66]. In paralleling the argument presented therein, the weights

b1(ρ), . . . , bS(ρ) play the role of reward rates. The possible discontinuities in Gj|i(w)

have to do with the non-vanishing probabilities that the chain does not visit certain

states during time interval [0, 1).

The following corollary is a consequence of Proposition 14, and it specifies density

functions for the smooth parts of matrix G.

Corollary 15. For w ∈ (bk(ρ), bk−1(ρ)) and 1 ≤ k ≤ S, we can write

dG(w) =
σe−σ

bk−1(ρ)− bk(ρ)

∞∑
n=0

σn

n!

n∑
l=0

(
n

l

)
wlk(1− wk)n−l

×
[
C(k)(n+ 1, l + 1)−C(k)(n+ 1, l)

]
.

The discrete-time Markov chain whose probability transition matrix is given by

A is called a uniformized chain [71, 72]. This chain can be paired to a Poisson

process with rate σ to form a continuous-time Markov chain. The resulting chain

is stochastically equivalent to X (t) and, as such, it possesses the same invariant

probability distribution [66]. Furthermore, the matrix PN can be written as

PN = e−
σ
N exp

(
σA
N

)
,

or, alternatively,

[PN ]ij = e−
σ
N

∞∑
k=0

1

k!

( σ
N

)k [
Ak
]
ij
.

While the uniformized chain and the sampled chain are both derived from Q, there

remains an important difference. By construction, the uniformized chain never misses

a transition in its corresponding continuous-time Markov chain; whereas the sampled

chain with its periodic structure can overlook jumps associated with fast transitions.

This makes the uniformized chain a more suitable object in describing Proposition 14.
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As a special case of Proposition 14, we turn to the situation where S = 2. Not

surprisingly, occupation times for this simple scenario have been studied in the past,

and explicit expressions for their distributions exist [73–75]. Still, the distributions

provided therein only account for an initial state, and they do not specify a final

state. We must therefore modify these results slightly to match the needs of our

current framework.

Lemma 16. Consider a continuous-time Markov chain whose generator matrix is

given by (III.11). The joint distributions governing occupation times and the final

state, conditioned on the initial state, can be written as follows

fη1,Sf |Si
(r, 1|1) = e−µr−ξ(1−r)

×

(
δ(1− r) +

√
µξr

1− r
I1

(
2
√
µξr(1− r)

))

fη1,Sf |Si
(r, 2|1) = µe−µr−ξ(1−r)I0

(
2
√
µξr(1− r)

)
fη1,Sf |Si

(r, 1|2) = ξe−µr−ξ(1−r)I0

(
2
√
µξr(1− r)

)
fη1,Sf |Si

(r, 2|2) = e−µr−ξ(1−r)

×

(
δ(r) +

√
µξ(1− r)

r
I1

(
2
√
µξr(1− r)

))
where I0(·) and I1(·) represent modified Bessel functions of the first kind.

Proof. See the appendix.

The corresponding expressions for the sampled chain are present in the following

Lemma.

Lemma 17. Consider a two-state channel whose transition probability matrix is

given by (II.1). Assume that the number of visits to each state is recorded for a

period spanning N consecutive channel realizations. The joint distributions governing
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the channel type and its final state, conditioned on the initial state, can be written

in terms of the Gaussian hypergeometric function 2F1(·, ·; ·; ·). In particular, for

m = 1, 2, . . . , N − 1, we get

PN1,SN |S0(m, 1|1) = (1− α)m(1− β)N−m

×
(

2F1(−N +m,−m; 1;λ)

− 2F1(−N +m+ 1,−m; 1;λ)
)

PN1,SN |S0(m, 2|1) =
(1− α)m−1(1− β)N−m+1α

(1− β)

× 2F1(−N +m,−m+ 1; 1;λ)

PN1,SN |S0(m, 1|2) =
(1− α)m+1(1− β)N−m−1β

(1− α)

× 2F1(−N +m+ 1,−m; 1;λ)

PN1,SN |S0(m, 2|2) = (1− α)m(1− β)N−m

×
(

2F1(−N +m,−m; 1;λ)

− 2F1(−N +m,−m+ 1; 1;λ)
)

where λ = αβ
(1−α)(1−β)

. Special consideration must be given to extremal cases. In

particular, we have

PN1,SN |S0(0, ·|1) = PN1,SN |S0(N, ·|2) = 0

PN1,SN |S0(0, 2|2) = (1− β)N

PN1,SN |S0(N, 1|1) = (1− α)N .

Proof. See the appendix.

We can relate these two results through Proposition 11 and the definition of PN

in (III.12). Let α and β be the constants defined in Lemma 17, and consider the
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assignment

α =
µ

µ+ ξ

(
1− e−

ξ+µ
N

)
β =

ξ

µ+ ξ

(
1− e−

ξ+µ
N

)
.

Then, the discrete distributions specified above converge to the occupation times

described in Lemma 16, under the asymptotic scaling N1

N
→ η, as N grow unbounded.

As a side observation, we emphasize that two of the limiting measures in Lemma 16

are not absolutely continuous with respect to the Lebesgue measure. Still, these

distributions are well-defined positive measures [69, Chap. 8]. The discontinuities

can be explained by the fact that, in the rare-transition limit, there is a positive

probability of staying in the initial channel state for the whole block.

Using the limiting distributions in Lemma 16, one can compute the approximate

upper bound found in (III.13) for the two-state case. We stress that, for this simple

channel, W (ρ) = (b1(ρ) − b2(ρ))η + b2(ρ) is an affine function of η. Hence, the

distribution of W (ρ) can be derived in terms of η. For this simple case, it is

straightforward to compute the approximate bound using the empirical distribution

of the state occupancies,

Pe,SN |S0(j|i) .
ˆ 1

0

min
{

1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR)
}
fη,Sf |Si

(r, j|i)dr. (III.17)

Yet, as the number of states increases, dealing with the joint distribution of the state

occupation times and integrating over multiple variables is an increasingly complex

task. This difficulty is bypassed when we use the distribution of the weighted sum

of occupation times since, in this latter case, we are dealing with a single random

variable as opposed to a random vector.

In general, getting the distributions of the occupation times for the discrete

chains is not needed to apply the result of Proposition 13. However, for the
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two-state channel, the distributions are available for both the continuous-time and

the sampled chains. It is then instructive to compute the exact upper bound

in (III.14) using the distributions given by Lemma 17, and compare it to the

approximate bound presented in (III.17). Numerical results for this comparison

are presented in Section III.8, thereby offering supporting evidence for our proposed

methodology. We note that, even for the simple two-state case, computing the

approximate upper bound in (III.17) is considerably more efficient than calculating

(III.14). As we will see in Section III.8, the price to pay for this computational

efficiency is a little accuracy.

From an engineering point of view, we are interested in cases where N is dictated

by the code length of a practical coding scheme. The approximate upper bound can

be used to perform a quick survey of good parameters. Then, the exact expression

based on the hypergeometric function can be employed for fine tuning locally. As a

final note on this topic, we emphasize that these upper bounds can be tightened by

optimizing over ρ ∈ [0, 1]. This task entails repeated computations of the bounds,

which partly explains our concerns with computational efficiency.

A significant benefit in dealing with the Gilbert-Elliott channel model is its

tractability. The remaining of this chapter is devoted to the analysis of error

probability and the queueing behavior of systems built around this two-state channel.

The next sections are dedicated to the derivation of exact probabilities of detected

and undetected decoding failure. This is an intermediate step to characterize system

performance, and it allows for fair evaluation of the proposed bounding technique.

Furthermore, we also show how to bound the probability of undetected errors with

slight modifications to the approximated upper bounds. In Sections III.6 and III.7,

we explore the queueing performance of the system, using exact expressions and

upper bounds on the detected and undetected probabilities of decoding failure.
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III.4 Exact Derivation of Probability of Decoding Failures

It is possible to compute exact probabilities of decoding failure under various

decision schemes for the two-state Gilbert-Elliott channel, due to its simplicity.

Consequently, in this case, we can assess how close the bounds and the true

probabilities of error are from one another. The hope is that, if the Gilbert-Elliott

bounds are reasonably tight, then the upper bounds for general finite-state channels

will also be good. Of course, it may be impractical to compute exact probabilities

of error for more elaborate channels. Even for Gilbert-Elliot type channels with

more than two states, deriving and computing exact expressions for the probability

of decoding failure rapidly becomes intractable. In such situations, the use of upper

bounds for performance evaluation is inevitable.

In [76], the authors study data transmission over a Gilbert-Elliott channel using

random coding when the state is known at the receiver. Two different decoding

schemes are considered: a minimum-distance decoder and a maximum-likelihood

decision rule. For the sake of completeness, we briefly review these results. When

channel state information is available at the destination, the empirical distribution

of the channel sequence provides enough information to determine the probability

of decoding failure. Using the measure on N1 and the corresponding conditional

error probabilities, one can average over all possible types to get the probability of

decoding failure,

Pe,SN |S0(sN |s0) =
∑
T∈T

Pe|T (S)(T ) Pr(T (S) = T, SN = sN |S0 = s0). (III.18)

The conditional probability of decoding failure, given type T = (n1, N − n1), is

examined further below. The probability distributions governing different channel

types can be found in Lemma 17.

Consider the channel realization over the span of a codeword. Suppose Xi and
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Yi represent the subvectors of X and Y corresponding to time instants when the

channel is in state i. We can denote the number of errors that occur in each state

using random variables E1 and E2, where Ei = dH(Xi,Yi) and dH(·, ·) represents the

Hamming distance. The conditional error probabilities can then be written as

Pe|T (S)(T ) =

n1∑
e1=0

n2∑
e2=0

Pe|T (S),E1,E2(T, e1, e2)

× PE1,E2|T (S)(e1, e2|T ),

(III.19)

where n2 = N − n1. Given the channel type, the numbers of errors in the good and

bad states are independent,

PE1,E2|T (S)(e1, e2|T ) = PE1|T (S)(e1|T )PE2|T (S)(e2|T ). (III.20)

Furthermore, E1 and E2 have binomial distributions

PEi|T (S)(ei|T ) = PEi|Ni(ei|ni) =

(
ni
ei

)
εeii (1− εi)ni−ei . (III.21)

This mathematical structure leads to the following theorem.

Theorem 18. When ties are treated as errors, the probability of decoding failure for

a length-N uniform random code with M codewords, conditioned on the number of

symbol errors in each state and the channel state type, is given by

Pe|T (S),E1,E2(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2)

(
n1

ẽ1

)(
n2

ẽ2

)M−1
(III.22)

where M(d) is the set of pairs (ẽ1, ẽ2) ∈ {0, . . . , N}2 that satisfy γẽ1 + ẽ2 ≤ d. This

expression holds with

γ =
ln ε1 − ln(1− ε1)

ln ε2 − ln(1− ε2)
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for the maximum-likelihood decision rule, and with γ = 1 for minimum-distance

decoding.

Proof. See [76].

Random codes paired with a maximum-likelihood decoding rule form a

permutation invariant scheme. The decoding performance is then determined by

the number of symbol errors in each state within a codeword, and not by their order

or locations. We point out that the methodology introduced herein can potentially

be extended to other permutation invariant encoding/decoding schemes to analyze

probability of decoding failure.

III.5 Undetected Errors

As we mentioned in the first chapter, a serious matter with pragmatic

communication systems is the presence of undetected decoding failures. In the

current setting, this occurs when the receiver uniquely decodes to the wrong

codeword. For delay-sensitive applications, this problem is especially important

because recovery procedures can lead to undue delay. To address this issue, we apply

techniques that help control the probability of admitting erroneous codewords [59,60].

This safeguard, in turn, leads to slight modifications to the performance analysis

presented above. In applying these techniques, the probability of undetected failure

is a system parameter that must be set during the design phase of the system.

III.5.1 The Exact Approach

In [76], the authors show that the probability of decoding failure (including

detected errors, undetected errors, and ties) is given by the equations (III.18)-(III.21)
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and substituting

Pe|T (S),E1,E2(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2+ν)

(
n1

ẽ1

)(
n2

ẽ2

)M−1

,

(III.23)

where ν is a non-negative parameter that specifies the size of the safety margin for

undetected errors. The joint probability of undetected error with ending state SN ,

conditioned on starting in state S0, is Pue,SN |S0(sN |s0) and can be upper bounded by

P̄ue,SN |S0(sN |s0) =
∑
T∈T

P̄ue|T (S)(T ) Pr(T (S) = T, SN = sN |S0 = s0) (III.24)

where

P̄ue|T (S)(T ) =

n1∑
e1=0

n2∑
e2=0

P̄ue|T (S),E1,E2(T, e1, e2)PE1,E2|T (S)(e1, e2|T ), (III.25)

and

P̄ue|T (S),E1,E2(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2−ν)

(
n1

ẽ1

)(
n2

ẽ2

)M−1

.

(III.26)

Since the probability of an undetected error is typically much smaller than that

of a detected error, one can upper bound the probability of detected error by

Pe,SN |S0(sN |s0) with a negligible penalty.

III.5.2 Exponential Bound

With slight modifications to the derived exponential upper bound, one can get a

similar bound on the probability of undetected error.

Lemma 19. The exponential upper bounds on Pe,SN |S0, and P̄ue,SN |S0 can be written

as
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P̃ue,SN |S0(j|i) = min
0≤v≤ρ≤1

N∑
n1=0

min
{
1, e−N(E0,N (ρ,QN ,n1)−ρR−vτ)

}
PN1,SN |S0(n1, j|i)

. min
0≤v≤ρ≤1

ˆ 1

0

min
{
1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR−vτ)

}
fη,Sf |Si

(r, j|i)dr

(III.27)

and

P̃e,SN |S0(j|i) = min
0≤v≤ρ≤1

N∑
n1=0

min
{
1, e−N(E0,N (ρ,QN ,n1)−ρR−vτ+τ)

}
PN1,SN |S0(n1, j|i)

. min
0≤v≤ρ≤1

ˆ 1

0

min
{
1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR−vτ+τ)

}
fη,Sf |Si

(r, j|i)dr

(III.28)

where τ controls the tradeoff between detected and undetected errors and is used to

decrease the incidence of undetected errors, in a manner similar to ν for the exact

case.

Proof. Following the same approach as in [59,60], the results are achieved.

We emphasize that the rare-transition regime, the bounds and the approximation

methodologies proposed in this dissertation have a wide range of applications. In fact,

the introduced upper bounds can be adopted in various analysis frameworks. The

following two sections are dedicated to the potential implications of the proposed

bounding techniques in terms of queueing theory. We exploit these results to

evaluate the queueing performance of systems built around correlated channels. In

particular, we show how stochastic dominance can be combined with these tools to

make performance analysis tractable.

III.6 Queueing Model

One of the distinguishing features of the methodology introduced above is the

ability to vary block length N and code rate R in a rigorous fashion. This enables
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us to account for dependence within and across codewords. This last observation

is especially pertinent for queueing systems, as correlation in service is known to

exacerbate the distribution of a queue. We describe the components of our queueing

model below.

Packets are generated at the source according to a Poisson process with arrival

rate λ, measured in packets per channel use. The number of bits per packet forms a

sequence of independent geometric random variables, each with parameter ρ ∈ (0, 1).

On arrival, a packet is divided into segments of size RN , where RN is assumed to

be an integer. The total number of segments associated with a packet of length L

is given by M =
⌈
L
RN

⌉
. As before, a random coding scheme is used to protect the

transmitted data while it is transmitted over the channel.

On the receiving end, one must successfully decode all M codewords to recover

the corresponding packet. Once this is achieved, this packet is discarded from the

queue. We note that random variable M has a geometric distribution with Pr(M =

m) = (1 − ρr)
m−1ρr, where m ≥ 1 and ρr = 1 − (1 − ρ)RN . Consequently, the

number of coded blocks per data packet possesses the memoryless property, a highly

desirable attribute for the purpose of analysis.

We emphasize that, in the current framework, a data packet is discarded from

the transmit buffer if and only if the destination acknowledges reception of the latest

codeword and this codeword contains the last parcel of information corresponding to

the head packet. Packet departures are then determined by the channel realizations

and the coding scheme. In particular, the code rate R has a major impact on

performance. Generally, a lower code rate will have a small probability of decoding

failure. However, it also needs more channel uses to complete the transmission of one

data packet. Thus, for a fixed channel profile, we can vary the block length and code

rate to find optimal system parameters. This natural tradeoff reflects the tension
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between the probability of a successful transmission and the size of its payload.

Let Qs denote the number of data packets waiting in the transmitter queue after

s codeword transmission intervals. The channel state at the same time instant is

represented by CsN+1. Notice that the channel state evolves more rapidly than

events taking place in the queue. This explains the discrepancy between the indices.

Based on these quantities, it is possible to define a Markov chain Us = (CsN+1, Qs)

that captures the joint evolution of the queue and the channel over time. The ensuing

transition probabilities from Us to Us+1 are equal to

Pr(Us+1 = (d, qs+1)|Us = (c, qs)) =

N∑
n1=0

PQs+1|N1,Qs(qs+1|n1, qs)PN1,C(s+1)N+1|CsN+1
(n1, d|c)

where the second term in the summand is given in Lemma 17. We can rewrite

PQs+1|N1,Qs (qs+1|n1, qs) as

n1∑
e1=0

n2∑
e2=0

PQs+1,E1,E2|N1,Qs(qs+1, e1, e2|n1, qs)

=

n1∑
e1=0

n2∑
e2=0

PQs+1|E1,E2,N1,Qs(qs+1|e1, e2, n1, qs)PE1,E2|N1,Qs(e1, e2|n1, qs)

=

n1∑
e1=0

n2∑
e2=0

(
n1

e1

)(
n2

e2

)
εe11 (1− ε1)n1−e1εe22 (1− ε2)n2−e2

× PQs+1|E1,E2,N1,Qs(qs+1|e1, e2, n1, qs).

Suppose that the number of packets in the queue is Qs = qs, where qs > 0. Then,

admissible values for Qs+1 are restricted to the set {qs − 1, qs, qs + 1, . . .}. The
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transition probabilities for qs > 0 and i ≥ 0 are given by

PQs+1|E1,E2,N1,Qs(qs + i|e1, e2, n1, qs)

= aiPe|E1,E2,N1(e1, e2, n1)

+ ai(1− Pe|E1,E2,N1(e1, e2, n1))(1− ρr)

+ ai+1(1− Pe|E1,E2,N1(e1, e2, n1))ρr

(III.29)

and the probability of the queue decreasing is

PQs+1|E1,E2,N1,Qs(qs − 1|e1, e2, n1, qs)

= a0

(
1− Pe|E1,E2,N1(e1, e2, n1)

)
ρr.

(III.30)

The queue can only become smaller when there are no arrivals, a codeword is

successfully received at the destination, and the decoded codeword contains the last

piece of data associated with a packet. Above, Pe|E1,E2,N1(e1, e2, n1) is the conditional

probability of decoding failure which appears in (III.23). The terms ai denotes the

probability that i packets arrive within the span of a codeword transmission. Since

arrivals form a Poisson process, we have ai = (λN)i

i!
e−λN for i ≥ 0. When the queue

is empty, qs = 0, (III.29) applies for cases where i ≥ 1. However, for i = 0, the

conditional transition probability reduces to

PQs+1|E1,E2,N1,Qs(0|e1, e2, n1, 0)

= a0 + a1

(
1− Pe|E1,E2,N1(e1, e2, n1)

)
ρr.

The overall profile of this system can be categorized as an M/G/1-type queue.

The repetitive structure enables us to employ the matrix geometric method to

compute the characteristics of this system and subsequently obtain its stationary

distribution [55,76].
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III.7 Stochastic Dominance

When the number of channel states is large, it may be impractical to employ

exact probabilities of decoding failure. Even for memoryless channels, finding explicit

expressions for different encoding/decoding schemes can be difficult. In the face of

such a challenge, it is customary to turn to upper bounds on the probabilities of

decoding failure to provide performance guarantees. Furthermore, one can employ

such upper bounds to assess the queueing performance of the system through

stochastic dominance. We emphasize that this type of argument is not tied to

our proposed bounds. Rather, it applies to any upper bound on the probability

of decoding failure.

The evolution of the queue length is governed by the Lindley equation,

Qs+1 = (Qs + As −Ds)
+

, max{0, Qs + As −Ds}
(III.31)

where As is the number of arrivals that occurred during time interval s, and Ds is

an indicator function for the potential completion of a packet transmission within

the same time period. In this queueing model, the only inherent effect of replacing

the probability of decoding failure by an upper bound is a potential reduction in the

value of Ds. Using an upper bound on the failure probability naturally gives rise to

a new random process Q̃s defined by

Q̃s+1 =
(
Q̃s + As − D̃s

)+

(III.32)

where D̃s is drawn according to the distribution implied by the upper bound. We

wish to show that, conditioned on starting in the same state and given a shared

channel trace, the distribution of Q̃s offers a conservative estimate of Qs. To make

this statement precise, we turn to an establish concept in probability.
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Definition 20. A random variable Z is stochastically dominated by another random

variable Z̃, a relation which we denote by Z � Z̃, provided that

Pr(Z > z) ≤ Pr(Z̃ > z) (III.33)

for all z ∈ R. This relation extends to conditional probability laws. Suppose that

Pr(Z > z|A) ≤ Pr(Z̃ > z|A) (III.34)

for all z ∈ R. Then, we say that Z is stochastically dominated by Z̃, given A. We

write this relation as Z �A Z̃.

A comprehensive discussion of stochastic dominance can be found in [77, 78]. In

order to formulate the results we are interested in, we need to start by introducing

two lemmas.

Lemma 21. The stochastic order defined in (III.33) is preserved under the positive

part operation, (·)+ = max{0, ·}.

Proof. From [77, Sec 1.A.1], we know that given random variables X and Y , X � Y

if and only if

E[ϕ(X)] ≤ E[ϕ(Y )]

for all increasing functions ϕ(·) for which the expectations exists. In particular,

ϕ(·) = max{0, ·} is an increasing function. Thus, if X � Y then one can conclude

that X+ � Y +, as desired.

We explore the structure of potential packet completion events below. In

establishing stochastic dominance, we will condition on a specific channel trace,

~C = {C1, CN+1, C2N+1, . . .}
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This ensures that the two stochastic processes experience a same level of difficulty

at every step while trying to decode codewords. Note that, for our purposes, the

dependence of Qs and Q̃s on ~C is only through decoding attempts and, as such, this

dependence is localized in time.

Lemma 22. Using upper bounds on the probabilities of decoding failure leads to

stochastic dominance in potential packet completions, D̃s � ~C Ds.

Proof. A potential completion occurs when a codeword is decoded successfully at

the destination, and the data it contains is the last segment of a packet. The

probability of the latter event is ρr, and it is common to both Ds and D̃s. However,

the conditional probabilities of decoding failure differ, with Pe| ~C=~c ≤ P̃e| ~C=~c. This, in

turn, gives

Pr
(
D̃s = 1|~C = ~c

)
=
(

1− P̃e| ~C=~c

)
ρr

≤
(

1− Pe| ~C=~c

)
ρr = Pr

(
Ds = 1|~C = ~c

)
.

Since Ds, D̃s ∈ {0, 1}, this equation is enough to establish stochastic ordering.

Collecting these results, we can turn to the behavior of the system. For a fair

comparison, we assume that the two queues have the same number of packets at the

onset of the communication process.

Proposition 23. Suppose that Q0 = Q̃0. Then, the process Qs is stochastically

dominated by Q̃s.

Proof. As a first step, we assume that channel trace ~C = ~c is fixed. We prove

conditional dominance through mathematical induction. The base case follows from

the condition of the theorem. As an inductive hypothesis, suppose that Qs � ~C Q̃s.

By Lemma 22, we have D̃s � ~C Ds. Since negation reverses stochastic dominance [77,
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p. 9], we deduce that

−Ds � ~C −D̃s.

This, in turn, yields the relation

Qs + As −Ds � ~C Q̃s + As − D̃s.

The last step leverages the closure property of stochastic orders under convolutions

[77, Thm 1.A.3 (b)]. Applying the increasing function ϕ(·) = max{0, ·} to both sides,

we immediately get

(Qs + As −Ds)
+ � ~C

(
Q̃s + As − D̃s

)+

from Lemma 21. That is, Qs+1 � ~C Q̃s+1, thereby establishing our inductive step.

At this point, the statement of the proposition can be obtain by taking

expectations over channel traces. Since the channel states are independent of queue

sizes and code generation, the probabilistic weighing is the same for both Qs and

Q̃s. This guarantees that the stochastic ordering is preserved. In other words, the

relation Qs � Q̃s holds at all times.

There is a subtle distinction in the argument presented above. The random

variable Ds indicates potential completion. Actual departures from the queue only

take place when there are packets awaiting transmission. Mathematically, the

distinction is resolved through the positive part operation. Conceptually, when

the queue is empty, the source attempts to send a virtual packet with no physical

meaning. This object is created for mathematical convenience.

In view of the aforementioned results, we can also consider the interplay between

stochastic dominance and the stationary distributions of the queues. When the

Markov chains Us and Ũs are positive recurrent, the corresponding queueing processes
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Qs and Q̃s are stable. In such cases, the stationary distribution associated with Q̃s

dominates the stationary distribution of Qs. In particular, for any integer q, we have

Pr(Qs > q) ≤ Pr
(
Q̃s > q

)
and, hence, in the limit we obtain

Pr(Q > q) = lim
s→∞

Pr(Qs > q)

≤ lim
s→∞

Pr
(
Q̃s > q

)
= Pr

(
Q̃ > q

)
That is, Q � Q̃ where Q and Q̃ denote the stationary distributions of the two

queueing processes listed above.

From a more intuitive point of view, one can argue that, pathwise, increasing

the probability of failure can only result in fewer departures and, as such, there

will remain at least as many packets waiting in the queue. In other words, when

comparing two queueing systems with a same arrival process, a same underlying

channel, and a same code generator, more decoding failures can only exacerbate the

size of the queue. This observation holds in some generality and can be employed

when the exact decoding error probability are not known or difficult to compute.

This approach allows one to provide performance guarantees for a queueing system

using bounds on the probabilities of decoding failure.

III.8 Numerical Results

In this section, we present numerical results for probabilities of decoding error

and we compared them to the derived upper bounds. We also evaluate queueing

performance using the exact error probabilities and their upper bounds derived in

the rare-transition regime.
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III.8.1 Comparison of Exponential Upper Bounds

We consider a communication system which transmits data over a Gilbert-Elliott

channel with crossover probabilities ε1 = 0.01 and ε2 = 0.1. Figure III.1 shows the

approximate upper bounds of (III.13) as functions of block length and code rate,

and compares them to the standard Gallager-type bounds of (III.8). Each curve

shows the value of the bound averaged over all possible state transitions. Although

the block lengths are relatively short, the approximate bounds are very close to the

standard Gallager-type bounds. Furthermore, the difference becomes more negligible

as N grows larger.

In Fig. III.2, we plot the probabilities of decoding failure for the

maximum-likelihood and minimum-distance decoders given by (III.18)-(III.22),

against the bounds provided in (III.13). As anticipated, the maximum-likelihood

decision rule outperforms the minimum distance decoder. For fixed N , there is

a roughly constant ratio between the approximate upper bounds and the exact

probabilities of error under maximum-likelihood decoding. This is not too surprising

as similar statements can be made about the accuracy of Gallager-type bounds.

Still, as block length increases, the approximate bounds get progressively closer to

the exact values. We note that the figure features particularly short block lengths,

as it is difficult to compute exact performance for channels with memory.

III.8.2 Evaluation of Queueing Performance

We turn to the evaluation of overall performance and we consider a situation

where, on average, packets are generated every 20 msec. This yields a rate of λ = 50

packets per second for the arrival process. The symbol rate for our binary channel

is set to 28.75 Kb per second, which leads to an expected 1/575 packets per channel

use. The cross-over probabilities of the Gilbert-Elliott channel are set to ε1 = 0.01
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Figure III.1: Comparison of the approximate upper bound (III.13) with the exact bound (III.8) in
the rare-transition regime with N [P]12 ' 4 and N [P]21 ' 6.
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Figure III.2: Comparison of the approximate upper bound (III.13) with the exact probabilities
of decoding failure under maximum-likelihood (ML) and minimum-distance (MD) decoding for
[P]12 = 0.0533 and [P]21 = 0.08.
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and ε2 = 0.1, and its state transition probabilities are α = 0.0533 and β = 0.08.

Shannon capacity when the state is known at the receiver is therefore equal to 0.764

bits per channel use.

Increasing code rate R for a fixed block length decreases redundancy and therefore

reduces the error-correcting capability of the code. Thus, the probability of decoding

failure becomes larger. At the same time, changes in code rate affect ρr, the

probability with which a codeword contains the last parcel of information of a packet.

As code rate varies, these two phenomena alter the transition probabilities and,

hence, they influence the stationary distribution of the Markov system in opposite

ways.

The choice of a Poisson arrival process allows us to make fair comparisons between

codes with different block lengths. In particular, the rate λ in packets per channel use

is fixed, and arrivals in the queue correspond to the number of packets produced by

the source during the transmission time of one codeword. The marginal distribution

of the sampled process is Poisson with arrival rate λN , in packets per codeword. This

formulation is new, and it bridges coding decision to queueing behavior in a rigorous

manner. To examine overall system performance, we assume the existence of a genie

which informs the receiver when an undetected decoding error occurs. Undetected

errors are intrinsic to error channels, and this approach is standard when it comes to

analysis. Still, for consistency, we require the system to feature a very low probability

of undetected error, e.g., less than 10−5, by a proper choice of the safety margin. That

is, we only consider (N,R) pairs that meet this additional constraint.

Given this framework, a prime goal is to minimize the tail probability of the queue

over all admissible values ofN , R, and τ or ν that satisfy the constraint on undetected

error. To perform this optimization using the approximate exponential bound, we

first evaluate the bound on undetected error probabilities for different rates and for
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τ = 0 in (III.27). Then, for rates with high probability of undetected error, we

increase τ so that the bound on probability of undetected error is decreased. Recall

that this increases the probability of decoding failure. As we are also interested

in minimizing the latter probability, we increase τ until the system meets the

error-detecting condition and then stop. The values of N and R for which this

procedure gives poor performance are ignored. A similar approach is used for system

evaluation with exact error probabilities by changing the value of ν in (III.23),

(III.26).

Figure III.3 shows the approximate probability of the queue exceeding a threshold

as a function of system parameters. The constraint on the number of packets in the

queue is set to five, which reflects our emphasis on delay-sensitive communication.

We have chosen τ in (III.27)-(III.28) such that maxi,j P̃ue,SN |S0(j|i) remains below

10−5. The code rate considered vary from 0.25 to 0.75, with a step size of 0.05.

Each curve corresponds to a different block length. As seen on the graph, there is

a natural tradeoff between the probability of decoding failure and the payload per

codeword. For a fixed block length, neither the smallest segment length nor the

largest one delivers optimal performance. Moreover, block length must be selected

carefully; longer codewords do not necessarily yield better queueing performance as

they may result in large decoding delays. As such, the tail probability has a minimum

over all rates and block lengths. Therefore, there are interior optimum points for

both N and R. We see in Fig. III.3 that the optimum code parameters are close to

(N,R) = (170, 0.5). For this particular set of code parameters, we have τ = 0.048.

Figure III.4 offers similar plots for the exact failure probability. Again, the

optimum code parameters are near (N,R) = (170, 0.5). In this case, ν = 8 is

the smallest value of ν that keeps maxi,j P̄ue,SN |S0(j|i) below the 10−5 threshold.

As we can see by comparing the results, performance evaluation based on the
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bound gives very good estimates for optimum coding parameters and overall system

performance. Not only does the approximate bound give a good estimate of

performance, it accurately predicts ideal system parameters for code block as small

as 125. In addition, since the approximate bounds are slightly pessimistic, they

produce conservative estimate of overall performance. Empirically, the systems

perform better than predicted by the approximate error bounds.

III.9 Concluding Remarks

In this chapter we introduced the rare-transition regime to characterize

communication systems where the block length is of the same order as the

channel memory. As such, we have derived an approximate upper bound which

is particularly appropriate for the rare-transition regime. We also employed

expressions for the exact error probability for a system that uses random codes, under

maximum-likelihood and minimum-distance decoding over Gilbert-Elliott channels.

In fact, comparison with the exact derivations strongly supports that the bounding

technique provides meaningful results. Next, the queueing performance of the system

is studied using the proposed upper bounds.
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of block length N and code rate R. The system parameters considered above are subject to
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

This dissertation aims to develop a better understanding of delay-sensitive

communication of coded data, queue-based performance criteria and service

dependencies associated to channel memory. Performance evaluation has been done

through both exact and bounding characterization of the coding schemes.

In the first chapter, we introduce a novel framework to study the queueing

behavior of coded wireless communications over finite-state error channels. Through

this framework, it is possible to select the optimal the block length and code rate

of the encoding scheme based on the requirements of the system. This is especially

useful in the context of delay-sensitive applications for which long block lengths are

inadequate. The proposed methodology applies to both memoryless channels and

channels with memory. Due attention is given to detected and undetected decoding

failures. We dedicated independent sections in the first chapter to analyze each of

these decoding failures. As undetected decoding failures can have a very detrimental

impact on the operation of pragmatic systems, careful consideration should be given

to them in the system design phase. Specifically, by using a safety margin, one can

limit the likelihood of such events and thereby ensure adequate performance.

The proposed methodology enables the numerical evaluation of the equilibrium

queue distribution. This, in turn, can be employed to compute the tail probabilities

of the queue occupancy and, subsequently, find the optimal operating point. Our

framework supports the rigorous comparison of coding schemes with different block

lengths and code rates. This possibility arises due to the scalable arrival profile

adopted in our framework. This study suggests that, for fixed conditions, optimal
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system parameters are essentially unaffected by small variations in the buffer overflow

threshold. The results and assumptions associated with our methodology are

supported by Monte Carlo simulations. This technique can be employed to facilitate

adaptive modulation schemes that take into account both the channel profile and

the requirements of the underlying traffic. The optimization task can be carried out

offline beforehand, whereas the parameters of the coding scheme can be selected

based on current system conditions. Possible avenues of future research in this

direction, include better accounting for feedback and extending this type of analysis

to multi-user environments.

In the second chapter, we mostly focus on the rare-transition regime. This regime

introduces a powerful methodology to characterize communication systems where the

block length is of the same order or smaller than the coherence time of the channel.

This mode of operation is common in many practical implementations. This fact

serves as a motivation for the proposed framework. To estimate the probability of

decoding error, we have derived an approximate upper bound specifically tailored to

the rare-transition regime. A key property of the proposed methodology is that the

dependency on the initial and final states is retained in the analysis. This bound is

also numerically efficient to compute and can be employed for parameter selection and

performance analysis in communication links with queueing constraints. We provided

supportive evidence for the accuracy of the bounding methodology by deriving exact

expressions for the Gilbert-Elliott channel. Both maximum-likelihood decoding and

a minimum-distance decision rule were considered. A numerical comparison between

exact and approximate results validates our approach, showcasing the predictive

power of the approximate bounding techniques. The numerical study focused on

a two-state Markov channel formulation where state information is available at the

destination.
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The methodology was subsequently extended to performance criteria based on the

queueing behavior of the system. We provided a practical method to choose the block

length and code rate as to minimize the probability that the transmit buffer exceeds

a prescribed threshold. This is especially pertinent for communication links that

support delay-sensitive traffic, yet it applies to general data stream as delay is known

to negatively affect the performance of flow control and congestion control protocols.

Numerical studies suggest that, for fixed conditions, optimal system parameters are

essentially unaffected by small variations in the buffer overflow threshold.

In many coded communication systems, the exact decoding failure probability

is not known or very complicated to compute. Therefore, a stochastic dominance

argument is also used to compare the performance of the system computed using

an upper bound on decoding failure probability with the exact performance of

the system. For such systems, our results imply that upper bounds on the

decoding failure probability naturally imply upper bounds on the performance of

the queueing system. Finally, our numerical results imply that, for random coding

on the Gilbert-Elliott channel, the performance analysis using the bound on failure

probability gives a good estimate of both the system performance and the optimum

code parameters.

The methodology and results are developed for finite-state Markov channels,

but can be generalized to more intricate channels with memory, with or without

symmetry property. In addition, the performance characterization of random codes

over finite-state channels may extend to more practical schemes, such as iterative

decoding of the Low Density Parity-Check (LDPC) codes. Possible avenues of future

research further include the performance analysis of the rare-transition regime in the

absence of side information at the receiver. The conjecture is that in the limiting

case, the channel sojourn time in each state is long enough for the receiver to estimate
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the state. For instance, for a channel with high correlation, patterns of errors with

the same number of errors within a block are not equally likely. In fact, the system

is more prone to burst of errors when the channel quality is poor. In other words,

long channel memory enables the receiver to predict the channel quality. Hence,

one might expect similar performance when the state information is not provided at

the receiver in the rare-transition regime. Moreover, the correct form of the missing

scale factor in front of the proposed exponential bounds is yet unknown. In fact,

even for the Gallager type bounds for channels with memory, the scale factor is yet

unknown. Derivation of this factor would be a significant improvement in the context

of decoding error probabilities.
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APPENDIX A

PROOF OF LEMMA 16

Distributions of the occupancy times for two-state discrete-time and

continuous-time Markov chains have been studied previously. These distributions

can be derived using bivariate generating functions and two-dimensional Laplace

transforms, respectively [74]. Herein, we show how to adapt these approaches to

derive the conditional distributions needed in our work.

The matrix of two-dimensional Laplace transforms for the distribution of the time

spent in the first state over the time interval [0, 1] is given by−
Q−

θ 0

0 0

− φI



−1

.

For example, the first entry in the matrix is equal to

1

u
+

µξ

u(uv − µξ)

where u = φ+θ+µ and v = φ+ξ. The inverse two-dimensional Laplace transform of

this entry gives the conditional distribution fη1,Sf |Si
(·, 1|1). After this step, Lemma 2

in [74] can be employed to get the desired format in terms of modified Bessel

functions. These are the expressions presented in Lemma 16.

107



APPENDIX B

PROOF OF LEMMA 17

Let a and b be the numbers of transitions into and out of the initial state,

respectively. Then, we can write c = a+ b to denote the total number of transitions

that occur up to time N . From [74], we gather that

PN1|S0(m|1) = (1− α)m(1− β)N−m

×
c1∑
c=0

(
m

a

)(
N −m− 1

b− 1

)(
α

1− β

)b(
β

1− α

)a
where

c1 =


N + 1

2
−
∣∣2m− 1

2
+N

∣∣ , m < N

0, m = N.

We can split the summation into two parts, one for odd and one for even values of c.

If c = 2k, then a = b = k, and the corresponding sum represents PN1,SN |S0(m, 1|1).

If c = 2k + 1, then a = k, b = k + 1, and the resulting sum is PN1,SN |S0(m, 2|1). As

such, we can write

PN1|S0(m|1) = (1− α)m(1− β)N−m

×

(
∞∑
k=0

(
m

k

)(
N −m− 1

k − 1

)(
α

1− β

)k (
β

1− α

)k
+
∞∑
k=0

(
m

k

)(
N −m− 1

k

)(
α

1− β

)k+1(
β

1− α

)k)
.

We can set the upper and lower limits on k to 0 and ∞, respectively, since all

other terms are automatically zero. From the definition of 2F1(−N+m+1,−m; 1;λ),
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we see that (
α

1− β

) ∞∑
k=0

(
m

k

)(
N −m− 1

k

)(
α

1− β

)k (
β

1− α

)k
=

(
α

1− β

)
2F1(−N +m+ 1,−m; 1;λ).

Collecting these results, we obtain

PN1,SN |S0(m, 2|1) = (1− α)m(1− β)N−m
(

α

1− β

)
× 2F1(−N +m+ 1,−m; 1;λ)

for m = 1, 2, . . . , N − 1. Clearly, for m = 0 and m = N , this conditional probability

is equal to zero. Leveraging [74] and observing that

PN1|S0(m|1) = PN1,SN |S0(m, 1|1) + PN1,SN |S0(m, 2|1),

we can write the simplified equation

PN1,SN |S0(m, 1|1) = (1− α)m(1− β)N−m

×(2F1(−N +m,−m; 1;λ)− 2F1(−N +m+ 1,−m; 1;λ))

for m = 1, 2, . . . , N − 1. Moreover, PN1,SN |S0(0, 1|1) = 0 and PN1,SN |S0(N, 1|1) =

(1−α)N . The remaining conditional probabilities can be derived in the same manner.
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