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ABSTRACT 

Spray cooling has proven to be efficient in managing thermal load in high power 

applications. Reliability of electronic products lies on the thermal management and 

understanding of heat transfer mechanisms of the most commonly used thermal 

management schemes such as spray cooling. Many experiments have been done to 

understand the heat transfer mechanisms associated with spray cooling. However, most 

of them have relied on comprehensive spray cooling experiments where multiple physical 

variables are at play simultaneously. Furthermore, experiments with single streams of 

droplets have not been able to elucidate the effects of the onset of boiling (ONB) during 

the droplet impingement process. Therefore, efforts have been undertaken to consider the 

effects of using three droplet streams arranged in a triangulated fashion. The effects of 

using triangulated multiple droplet impingements on the suppression or enhancement of 

boiling on heated surfaces has been investigated. Moreover, the effects of using screen 

laminated on the suppression of ONB during the droplet impingement process has been 

studied in detail. The main goal of this project is to study the effects of multiple droplet 

impingement on the flat heater surface in the spray cooling with and without the use of 

metallic screen laminates. Single and triple droplet impingement experiments have been 

performed to understand the droplet behavior in spray cooling systems where multiple 

droplets simultaneously impact a heated surface.  
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The experiments consisted of using a stainless steel screen laminate over a sample 

surface to observe the suppression or enhancement of pool boiling which tends to occur 

at the periphery of each droplet impingement zone. An infrared-based imaging technique 

was used to measure surface temperature during droplet impingement. The heat transfer 

performance has been evaluated in terms of heat flux, droplet frequency and volume flow 

rate. The results indicate that droplet stream spacing and the use of copper meshes can 

enhance surface cooling significantly. Specifically, droplet stream spacing of 1000 m 

with copper meshes with a 6 mm hole and gap of 0.2 mm lead to enhanced surface 

cooling during the multiple droplet impingement process. It is expected that the results 

and conclusions of this study will be useful in understanding the physics of spray cooling 

which should help design better spray cooling system. 
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NOMENCLATURE 

A                     Area 

C              Heat capacity 

D                     Digital count of infrared camera 

D                     Diameter 

d32.                             Sauter-mean diameter 

f                      Frequency 

h.                     Heat transfer coefficient 

hfg                    Latent heat of vaporization 

I                      Current 

k.                     Thermal conductivity 

L                     Distance between droplets 

M”                   Mass flowrate 

Nu                   Nusselt number ((hd)/k) 

P                     Power 

q                     Heat 

q”                    Heat flux 

Q”                   Volumetric flowrate 

Re                   Renolds number ((ρvd/μ)) 

S                    Droplet spacing 

St                    Strouhal number ((fd)/v 

T                Temperature 
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T                 Liquid film thickness 

U                 Uncertainty 

V                 Voltage 

v.                 Velocity 

W                 Irradiance 

We                Weber number ((𝜌𝑣2𝑑)/𝜎) 

η                  Fluid cooling efficiency 

μ                  Dynamic viscosity 

ρ                  Density 

τ                  Transmissivity 
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1. INTRODUCTION 

1.1 Motivation 

With the development of electronic and computational systems, high speed 

calculations and high reliability of such system are needed eagerly. Due to these 

requirements, new cooling technologies should be developed to reduce very high heat flux 

in many industrial applications including electronic cooling. Conventional air- and 

water-based technologies have been developed to handle these problems, but they can only 

deal with low heat flux, which is in the range of 5 to 20 W/cm2. Therefore, new phase 

change cooling technologies should be proposed that can handle high heat flux values as 

high as 1000 W/cm2. Among the most promising phase change–based cooling schemes, 

spray cooling is thought to be the most appropriate because of its reliability, uniformity and 

heat transfer capacity.  

Compare to pool boiling, spray cooling can handle higher heat flux values because of 

its ability to dissipate heat at higher critical heat flux (CHF) values than in pool boiling. 

Furthermore, the surface temperature distribution found in spray cooling systems is more 

uniform than that of jet cooling, which makes spray cooling much more reliable than jet 

cooling, especially in applications where precise electronic devices are needed. 
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Heat dissipating capability in spray cooling is determined by numerous correlated 

factors including coolant type, nozzle type, nozzle-to-surface distance, droplet diameter, 

droplet frequency, droplet velocity and volumetric flow rate. The study of each parameter 

independently using a spray cooling set-up is difficult to carry out. In this project, surface 

heat flux, droplet frequency and liquid volume flow rate were considered independently in 

order to compare the heat transfer performance of multiple droplet spray cooling including 

the effects of the screen laminates.   

1.2 Objectives 

The objective of this study is to observe multiple stream droplets impinging on a 

surface when it is subjected to constant heat flux. This is the first study when the effects of 

using triangulated multiple droplet streams have been considered. Single and triple stream 

droplet impingement cooling experiments have been performed in an effort to minimize 

the number of physical parameters necessary to elucidate the main mechanisms in droplet 

impingement. In this project, triple streams  of droplets impacting a heated surface 

arranged in an equilateral triangle shape was used since it represents the most basic 

impingement pattern in a possible spray cooling system. The used patterned in very 

repeatable, which should be easy to extend into other multiple stream droplet impingement 

schemes. The effects of screen laminates on pool boiling of the surface area was also 
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studied. The screen laminates were used to suppress and enhance pool boiling. The 

following is a brief summary of the tasks that were undertaken as part of the study. 

1.3 Organization of this work 

Section 2 provides a detail literature review of current research about spray cooling, 

which includes single droplet impingement, multiple droplets impingement and screen 

laminates application in the boiling field. The present research was based on the 

knowledge gap found in these former studies. 

Section 3 describes the experimental setup that was used to perform the heat transfer 

and visualization experiments. The fluid delivery system, heating system, data acquisition 

system, high-speed imaging system, infrared imaging system are represented in detail. 

Finally, experiments were conducted to decide the appropriate droplet frequency, volume 

flow rate and heat flux. 

Section 4 presents the results including heat transfer performance of triangulated 

triple stream droplet impingements and the effects of screen laminates on pool boiling of 

the surface area. 

Section 5 includes the conclusions and future work. 
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2. LITERATURE REVIEW 

2.1 Spray cooling review 

For the last few decades, numerous studies have been done in order to characterize the 

dominating parameters responsible for high heat transfer in spray cooling.  

In the work of Monde [2] and Mudawar et al. [1], [3], several parameters of spray 

cooling were studied and they concluded that CHF was the mostly dependent on 

volumetric flow rate. Mudawar [3] also suggested that Sauter mean diameter (d32) and 

nozzle-to-surface distance also have strong influence on spray cooling. 

Kopchikov et al. [4] found that CHF in film boiling are several times larger than those 

in pool boiling. They used distilled water, ethanol, carbon tetrachloride and benzene as the 

test fluids. They have changed some of the fluid supply conditions such as: 

nozzle-to-surface distance, jet inclination to the heated surface and spray nozzle diameter; 

but they suggested that these mentioned characteristics have no effect on the heat transfer 

process within a certain range. 

Toda [5, 6] obtained a heat transfer curve using distilled water for a wide range of 

surface temperatures, generating a heat flux temperature plot similar to pool boiling curve. 

Nucleate boiling, transitional, and film boiling were identified in their study. They also 

estimated droplet diameter which was 117µm, with droplet impact velocities of 72.4m/s 
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and the Weber number was calculated to be 8,750. But all the data were not measured 

directly. They showed that spray volume flow rate has the strong effect on cooling 

performance, while subcooling of the spray liquid hardly had any effect. 

Other researchers [7, 8, 9, 10] used pressure-atomized nozzles in their liquid delivery 

systems. Tilton [7] used water as the test fluid and an1cm×1cm copper sample as the 

heated surface. Droplet diameters ranges from 50 to 100µm and the velocity was 9 m/s. 

Tilton [7]indicated that heat transfer was dependent on droplet velocity and droplet 

diameter which were used to determine Weber number. Smaller droplets were also 

suggested due to the formation of a thinner film during impingement. 

Navedo [8] found that droplet impinging frequency and droplet velocity were 

proportional to Critical Heat Flux (CHF) and heat transfer coefficient (h) at CHF. Also the 

Sauter Mean Diameter (d32) was found to be inversely proportional to heat transfer 

coefficient at CHF but has no directly effect on CHF value. 

Ortiz et al. [9] used distilled water as the cooling fluid. Mass flow rate, surface 

roughness, subcooling temperature, and spray impact angle were considered and 

investigated because they may have influence on the stable two phase flow behavior. Their 

experiment results showed that heat flux would increase with mass flow rate and surface 

roughness, but heat flux would decrease with the impact angle increasing.  

Estes et al. [10] used different working fluid such as FC-72, FC-87 and water. The 

research team presented a correlation between heat transfer performance and Sauter Mean 



 

6 

Diameter (d32) of droplets. The results also suggested that CHF increased with the 

increasing of mass flow rate and subcooling. Most significant contribution part was the 

postulation of correlation (2.1) which could accurately predicts CHF for FC-72, FC-87 and 

water and many different full cone nozzles within a wide range of flow rate and 

subcooling.  

             
𝑞𝑐"

𝜌𝑞ℎ𝑓𝑔𝑄"
= 2.3 (

𝜌𝑓

𝜌𝑔
)

0.3

(
𝜌𝑓𝑄"2𝑑32

𝜎
)

−0.35

(1 + 0.0019
𝜌𝑐𝑓∆𝑇𝑠𝑢𝑏

𝜌𝑔ℎ𝑓𝑔
)

0.98

            (2.1) 

 

Cho et al. [11] showed that heat transfer rate was a function of superheat temperature 

and the Weber number defined in terms of the Sauter Mean Diameter (d32) as indicated in 

Equation (2.2). 

                                                       
𝑞”𝐻

𝜇𝑓ℎ𝑓𝑔
= 93.8𝑊𝑒d32

0.43 (
𝑐𝑓∆𝑇𝑠𝑢𝑝

ℎ𝑓𝑔
)

0.98

                           (2.2) 

 

Tao et al. [12] used dionized water as the working fluid and they found out that 

non-boiling spray cooling system can remove high heat flux from a small surface while 

maintaining the surface at desirable low temperatures. Increasing the liquid volume flow 

rate or reducing the liquid inlet temperature would increase the heat transfer coefficient (h). 

The most significant contribution from their work is the effect of the nozzle-to-surface 

distance on the heat transfer coefficient as shown in Figure 1.In the article, the reported 
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nozzle to surface distance ranged from 7 to 22 mm, and the maximum liquid volume flow 

rate of each nozzle was 8.67x10-6 m3/s.  

 
Figure 1. Heat transfer coefficient as a function of nozzle-to-surface distance [12] 

Zhang et al. [13] also presented optimal orifice-to-surface distance results in their 

article. Deionized water was also used as the cooling fluid in the study using both flat and 

enhanced surface as heater surfaces. The volumetric flow rate ranged from 22.2L/h to 

60.8L/h, and the orifice-to-surface distance varied from 0.5 cm to 3.0 cm with spray 
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inclination angles from 0to 45°. They found out that the best orifice-to-surface distance 

for spray cooling when using flat surfaces was 1.5cm. Another helpful conclusion was 

that the optimal inclination angle was 0° in terms of heat transfer performance.  

Yan et al. [14] used normal and inclination sprays to show the effects of inclination 

on thermal performance for the same spray coverage area and flow conditions. The 

results from their study indicate that normal sprays lead to uniform surface temperature 

distribution at different flowrates as shown as Figure 2. I summary, normal sprays are 

better than inclined sprays in terms of temperature distribution. 

 

Figure 2. Normal spray and inclined spray at different flowrates [14] 

Fabris et al. [15] indicated that drops impinging on a liquid film, spread without 

splashing leading to high-efficiency and stable heat transfer behavior. Distilled water was 

used in their experiment when using both single and dual nozzles in their experimental 
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setup. The droplet impingement frequency ranged from 2 kHz to 8 kHz. They determined 

that the heat flux is proportional to mass flow rate but not directly related with the wetted 

area. The most significant conclusion from the point of view of the current study was the 

effect of droplet velocity on the occurrence of splashing. It was concluded that at low 

velocities, splashing is not likely to happen when droplets impacting the thin liquid film. 

Tsai [16] studied single stream droplet impingent cooling at different impact angle, 

and also double streams droplet impingement cooling with different spacing and impact 

angles. The author suggested that for spray cooling, a 0° impact angle leads to the best heat 

transfer performance. From the double stream droplet impingement cooling test results, the 

optimum spacing of multiple droplet impingement was given, which was also found to be 

proportional to the flow rate per droplet stream. In addition, for fixed flow rate, dryout was 

found between adjacent impacts when the spacing was larger than a critical spacing value, 

which caused large temperature variation within the two adjacent craters. On the other 

hand, fluid collision was observed when the spacing became smaller than the critical 

spacing, which led to the spreading-splashing mode and lower heat transfer. 

2.2 Multiple nozzles spray cooling review 

Pautsch et al. [17] studied the effects of multiple nozzle arrays of spray cooling on 

heat transfer. The cooling performance was evaluated by calculating its spray efficiency. 
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Spray efficiency is limited by the area first exposed to CHF. This area often occurs at the 

center region of the heater due to flow interactions from adjacent nozzles. Moreover, a 

stagnation region in the liquid film could exist between neighboring spray zones at the 

surface where heat transfer is adversely affected. The authors suggested that heat transfer 

performance was sensitive to nozzle spacing and the arrangement of spray nozzles. 

Hou et al. [18] simulated the multiple nozzles spray cooling with CFD method based 

on the fundamentals of air flow and liquid droplet collision dynamics. They concluded that 

the main multiple nozzles spray variables should include the Sauter Mean Diameter (d32 ) 

of droplets and the mass weight average droplet velocity since they are significantly 

influenced by the nozzle inlet pressure, the nozzle-to-surface distance, and the number of 

nozzles. Water was used as the simulated cooling fluid. They indicated that the droplet 

Sauter Mean Diameter increases linearly with mass flux. Also, it was found that the 

average droplet velocity also increases with the mass flux. Hou [18] found that with a 

linear arrangement of nozzles, increasing nozzle number should decrease the average 

droplet velocity without affecting the droplet size. They also concluded that with an 

increase in the number of nozzles, the distributions of droplet size and droplet velocity 

will be improved greatly. 

Soriano [19] studied single and triple droplet impingements under constant heat flux 

conditions. From his single stream tests, the author suggested that forced heat convection is 

the main heat transfer mechanism inside the crown formation formed by droplet 
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impingement. Impact regimes also play an important role on heat transfer behavior. 

Spacing among adjacent droplets was found to be the most important factor for multiple 

droplet stream heat transfer behavior. 

Lin [20] studied spray cooling over a bare and a nano-structured surface with single 

and triple stream droplets. He used FC-72 as the cooling fluid, silicon as the material of 

the heater for both bare and nano-structured heater surfaces. Lin [20] measured heat 

transfer performance with single and triple droplets, and also adjusted the spacing of the 

triple streams. His results showed that for triple streams, larger spacing (2000µm) leads to 

a uniform temperature distribution than smaller (500µm) spacing as shown in Figure 3. 

The results clearly indicate that larger spacing could provide better heat transfer 

performance by maintaining lower minimum wall temperature and more uniform surface 

temperature distribution especially at high heat flux condition than at smaller spacings.  
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Figure 3. Minimum wall temperature for triple droplet stream cooling with 500 µm and 

2000 µm stream spacing [20] 

On the other hand, droplet streams with smaller spacing showed a wide and flat local 

temperature distribution, which indicate the advantage of moderating temperature gradient 

within a small area. Curves in Figure 4and 5 showed that smaller spacing between droplet 

streams can provide a more intensive cooling in a small area. 
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Figure 4. Radial temperature distribution for triple droplet stream cooling with different 

stream spacing (500 µm and 2000 µm) under low heat flux condition [20] 

 

Figure 5. Radial temperature distribution for triple droplet stream cooling with different 

stream spacing (500 µm and 2000 µm) under high heat flux condition [20] 
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2.3 Mesh laminates review 

Holland et al. [21] studied flow boiling with multi-layered screen laminates using 

porous extended surface matrices (ESMs). The authors suggested that screen laminates can 

effectively enhance heat transfer over a surface in terms of both surface temperature and 

heat flux.  

Sloan et al. [22] used copper mesh laminates in their study with three different sizes 

including 50, 80 and 145 (Number of filaments per inch). They used deionized distilled 

water as the working fluid. Figure 6 shows that the unenhanced surface experiences on set 

of boiling (ONB) at a 7K superheat, while the surface with screen laminates experiences 

ONB at only 2K superheat. 

 
Figure 6. Comparison of Onset of Nucleate Boiling (ONB) using mesh laminates on 

enhanced and unenhanced surfaces [22] 
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They studied the lamination sublayer and concluded that the laminates may preheat 

the working fluid next to the edge of the test surface. Although the lamination sublayer 

might not be hot enough to induce local boiling, it could still provide some heat to the fluid. 

After comparing all the surfaces with different sizes of screen laminates, Sloan [22] 

presented that the best enhancement surface in terms of boiling performance was the finest 

mesh, thickest lamination surface at all pressures. For this surface, a CHF of 212 W/cm2at 

a superheat of 11 K and 1 atm of pressure was obtained. 

In general, this research was very helpful in the current study since it facilitated the 

selection of screen laminates that could enhance and suppress boiling within the droplet 

impingement region. Based on their results, heat transfer performance improved as the 

pore hydraulic diameter decreased and the thickness (number of layers) of the lamination 

was increased. The rapid coalescence of departing bubbles on the lower part of the test 

surfaces help swept the upper area of the test surfaces, possibly contributing to improved 

heat transfer. Also, increased contact between the mesh layers and the heater surface led to 

an increased in effective thermal conductivity, which also contributed to improved heat 

transfer.  

Li and Peterson [23] showed experimentally that in pool boiling, having multiple 

layers of screen laminates leads to enhanced thermal performance. 
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2.4 Identification of gaps in current knowledge base 

In the multiple arrays spray cooling studies conducted by Pautsch [17], Hou [18], 

Soriano [19] and Lin [20], only linearly arranged orifices were considered in their 

experiments. Pautsch [17] suggested that heat transfer performance is sensitive to nozzle 

spacing and the arrangement of spray nozzles. Lin [20] indicated that larger spacing in the 

case of droplet impingement could provide more uniform surface temperature distribution 

and better heat transfer performance. So understanding how the spacing and arrangement 

of droplet stream affect surface cooling heat transfer performance is very important to 

better explain the spray cooling mechanisms in the future. 

In the studies for screen laminates in cooling or boiling, Holland [21], Sloan [22], Li 

and Peterson [23] suggested that screen laminates could improve heat transfer performance 

on a heated surface. Li and Peterson [23] used multiple layers of screen laminates over a 

heated surface, and claimed that multiple layers are more efficient than a single layer. 

However, the effects of screen laminates on heat transfer performance over a heated 

surface in spray cooling have not been explained clearly, and the suppression effect of 

screen laminates on boiling surrounding the droplet impingement zone still has to be 

considered and evaluated experimentally.  
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3. EXPERIMENTAL SETUP AND METHODOLOGY 

In order to achieve the proposed objectives of this research project, an experimental 

setup was designed, built and calibrated accordingly. The experimental setup consisted of 

three main parts, which are: Fluid Delivery System, Heater System and Data Acquisition 

System as shown in Figure 7.  

The Fluid Delivery System comprised of a syringe pump, a droplet generator and a 

frequency generator. The Heater System consisted of a power supply and the assembled 

heater. The Data Acquisition System included a computer, a high speed camera and an 

infrared camera. 

 

Figure 7. Experimental setup (schematic) 
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3.1 Fluid delivery system 

In this research project, 3MTM NovecTM Engineered Fluid HFE-7100 was chosen as 

the coolant. HFE-7100 has been used in many applications as cleaning fluid, deposition 

solvents and heat transfer fluid. It is the appropriate coolant for this project because of its 

relatively low boiling point (61ºC) and non-electrical conductivity. Some of physical and 

chemical properties are shown in Table 1(all properties specified at 25 ºC).  

Table 1. Physical and chemical properties of HFE-7100 

Physical Property Value 

Boiling Point (ºC) 61 (@760mmHg) 

Freezing Point (ºC) -135 

Density (g/ml) 1.5 

Latent Heat (J/g) 111.6 

Specific Heat (J/kg.ºC) 1183 

Surface Tension (dynes/cm) 13.6 

The HFE-7100 fluid was filled into the syringe always after being filtered using a 20 

µm filter to avoid small particles from blocking or clogging the orifice plate hole. The 

syringe with a liquid volume of 120 ml was place in the syringe pump which was used to 
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provide precise volume flow rate. The end of the syringe was connected to the 

piezoelectric droplet generator using a 1.6mm plastic tubing. The piezoelectric droplet 

generator was made by TSI, model MDG100. Square waves were delivered by the 

frequency generator (Model 401A by BK Precision). 

A three (triangulated) hole orifice plate was attached at the end of the droplet 

generator to dispense three identical droplet streams. The orifice plate was made of BeCu 

with a thin layer of Ni, and the hole was etched to ensure a smooth perimeter around each 

hole. Two orifice plates were used in this research project with different hole 

center-to-center distance. The plates had center-to-center distance and hole diameter of 

1000 µm and 150 µm, and 750 µm and 150 µm, respectively. Figure 8 shows the orifice 

plates used in the study. Theoretically, the three streams of droplets should be parallel to 

each other and the droplets should have the same velocity. The gravity effect on the 

velocity was found to be less than 4%, so the droplet velocity was assumed to be constant 

in this project.  
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   750 µm center to center orifice plate      1000 µm center to center orifice plate 

Figure 8. Orifice plates 

3.2 Heater system 

Silicon was chosen as the substrate of the heater because of its IR range (1 µm to 10 

µm) which makes translucent from the IR camera’s point of view. The dimension of the 

substrate was 15 mm by 10mm, and its thickness was 0.5 mm. A 100 nm thick Indium 

Tin Oxide (ITO) coating was placed on the top surface of the Silicon substrate to serve as 

heating element. Two copper wires were attached on the very edge of the surface using 

an electrically conductive epoxy. The effective area for heat transfer testing was about 

0.9 cm2. The wires were connected to the Power Supply (Lambda GEN600-2.6). The 

Power Supply was controlled by the computer using the Microsoft HyperTerminal. The 

Silicon substrate was attached on top of the Teflon-based sample holder using insulation 

epoxy. The heater system is shown in Figure 9. 
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Figure 9. Heater system 

3.3 Infrared imaging system 

Temperature was measured using an IR camera (FLIR SC7000) located below the 

heater system. The distance from the IR camera to the sample surface was about 90 mm, 

and the field of view was about 18.2 mm by 12.9 mm. The resolution of the lens was 25 

µm/pixel. The temperature range of this model IR camera is between 5 °C to 300 °C with 

an accuracy of ±1 ºC. Figure10 shows a typical IR example image for the three 

triangulated droplets impact case.  

Copper wires 

ITO coating 

Silicon substrate 

Sample holder 
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Figure 10. IR example image 

3.4 High-speed imaging system 

A Photron SA3 high speed camera was used in this research project.  The 

maximum image capture rate was set to 60,000 frames per second. The maximum vision 

of this camera was 1024 by 1024 pixel. However, the resolution was varied as the lens 

and the film rate were changed. The camera was located both on the left side of the 

droplet generator to capture the images of droplets or at 60°with respect to the vertical 

axis for capturing images at the impact craters during the droplet impingement process. A 

250W backlight was used for illumination in order to capture better images with the 

high-speed camera. Figure 11 shows the Photron AS3 model of the high-speed camera 

and Figure 12 shows the positions of the camera used during the experiments. 
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Figure 11. Photron AS3 model of high-speed camera 

Figure 12. Two positions of the high-speed camera 

3.5 Data acquisition system 

For the infrared camera, we used the Thermal Vision Examine IR as the imaging 

software. Through changing the variables such as surrounding (reflective) temperature, 

environmental temperature, emissivity, measuring distance and environmental humidity, 

the temperature distribution image can be obtained using the software. Then CSV format 
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files could be exported as comma-separated values, which were analyzed using a Matlab 

code for calculating average temperature, minimum temperature, maximum temperature 

and some other relative information.  

For the high-speed camera, we used the Photron FASTCAM Viewer to record and 

export the images and movies. The high speed camera was also used for measuring 

droplet diameter and droplet velocity, and also the impact craters.  

3.6 Multiple droplets impingement experiment 

Before running the heat transfer experiments, the high-speed camera was used to 

observe the multiple droplet streams to determine the optimal flowrates and impingement 

frequencies that would results in stable streams.  

The experimental setup was adjusted as shown in Figure 7. Discrete and stable, and 

unstable droplet streams were imaged to determine the effect of droplet frequency, 

flowrate, and spacing on stream stability. Two different sets of experiments were 

conducted to determine the effect of center-to-center hole distance within the orifice plate 

on stream behavior. 

The first test considered a center-to-center distance of 750 m. With this orifice 

plate, droplet stream movies were recorded at flowrates of 450 ml/hr, 480 ml/hr and 510 
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ml/hr. For each flowrate, several droplet generation frequencies were considered. Figure 

13, 14 and 15show multiple droplet streams at different frequencies and flowrates. 

 

Figure 13. Image for multiple droplet streams with 750µm center-to-center hole distance 

within the orifice plate at a flowrate of 510ml/hr 

 

 

Figure 14. Image for multiple droplets with 750µm center-to-center hole distance within 

the orifice plate at a flowrate of 480ml/hr.
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Figure 15. Image for multiple droplets with 750µm center-to-center hole distance within 

the orifice plate at a flowrate of 450ml/hr. 

As seen in Figure 13, some droplets collided or coalesced with neighboring droplets 

at a flowrate of 510ml/hr and frequencies less than or equal to 4000Hz. The same 

behavior was observed at a flowrate of at 480ml/hr and frequencies less than or equal to 

3500Hz as seen in Fig. 14. Also at frequencies as high as 7000 Hz, droplets were 

observed to fall down discontinuously at a flowrate of 510ml/hr.  The same behavior 

was observed at 6500 Hz at a flowrate of 480ml/hr. For a flowrate of 450ml/hr, droplet 

streams oscillated with respect to the vertical axis slightly, so those conditions were not 

used for any heat transfer test. In summary, the flowrate and droplet frequency had to be 

adjusted to avoid unstable behavior.  

The tests were repeated when the center-to-center hole distance within the orifice 

plate was set at 1000 m for the same flowrates. Results of those tests are shown in 

Figure 16, 17 and 18. 



 

27 

 

Figure 16. Image for multiple droplets with 1000µm center-to-center hole distance within 

the orifice plate at a flowrate of 510ml/hr. 

 
Figure 17. Image for multiple droplets with 1000µm center-to-center hole distance within 

the orifice plate at a flowrate of 480ml/hr 
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Figure 18. Image for multiple droplets with 1000µm center-to-center hole distance within 

the orifice plate at a flowrate of 450ml/hr 

For the 1000µm center-to-center hole distance, oscillations of the droplet streams 

were not observed.  

In conclusion, the flowrates and frequencies had to be adjusted to ensure stable and 

discrete droplet streams for all the heat transfer experiments. Table 2 shows the 

acceptable conditions considered during the heat transfer tests. 
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Table 2. Flowrate and relative frequencies selection 

750µm center-to-center hole distance 
 

Flowrate(ml/hr) Frequency (Hz) 
 

510 4500 5000 5500 6000 6500 
 

480 4000 4500 5000 5500 6000 
 

100µm center-to-center hole distance 
 

Flowrate(ml/hr) Frequency (Hz) 
 

510 4500 5000 5500 
   

480 3500 4000 4500 5000 5500 6000 

450 3500 4000 4500 5000 5500 
 

Once the fluid delivery system conditions that would ensure the formation and 

delivery of stable droplet streams were identified, the focus of the study shifted to the use 

of droplet streams for surface cooling.  Before each heat transfer test, the heater surface 

was inspected and cleaned. Isopropyl alcohol was used to wipe the surface before drying 

it using an air duster. The IR camera was also used to check whether the top surface 

showed any hot spots caused by possible particle contamination or sample damage.  

After making sure the heater surface was clean, the thermal distribution of the 

sample was assessed using the infrared camera. For each orifice plate case, the sample 

heated up until it reached a certain heat flux value under each combination of flowrate 
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and droplet frequency. The results of the heat transfer experiments are discussed in 

section 4.  

3.7 Screen laminates experiment 

Screen laminates were made of copper and aluminum with different sizes to be able 

to determine their effects of surface cooling and suppression of pool boiling in droplet 

impingement experiments. Screen laminates were cut into 0.7 mm by 35 mm sections 

which were suitable for the size of heating sample. Then, different holes were cut of 

different sizes to make sure the screen laminates did not obstruct the impinging streams. 

The sizes of the holes were based on the dimension of the impact craters. Because the 

dimension of the impact craters were 1000 µm and 500 µm, respectively, the hole 

diameters were 2.5 mm, 4.5 mm and 6 mm. Table 3 presents the screen laminates 

properties. Table 4 presents the properties of copper and aluminum.  

After cutting the screen laminates, wooden stages were built to ensure the laminates 

could rest on them to avoid any direct contact with the heater surface. The gap between 

each screen laminate and the heater surfaces was fixed accordingly. Figure 19 shows the 

screen laminates setup used in the experiments. 
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Table 3. Properties of copper and aluminum screen laminates or meshes 

 

Mesh Size 

(filaments per 

inch) 

Opening Size, 

mm 

(inch) 

Open Area 
Wire Diameter 

mm (inch) 

aluminum 
50x50 0.28 (0.011) 30% 0.23 (0.009) 

120x120 0.11(0.0043) 27% 0.1(0.004) 

copper 
60x60 0.23(0.009) 30% 0.19(0.0075) 

100x100 0.15(0.006) 30% 0.11(0.0045) 

Table 4. Properties of copper and aluminum at 300 K 

 

ρ 

(kg/m³) 

cp 

(J/kg·K) 

k 

(W/m·K) 

α·106 

(m²/s) 

aluminum 2702 903 237 97.1 

copper 8933 385 401 117 

 

 

 

 

 

 

 

Figure 19. Heater setup 
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Heat transfer experiments were undertaken by considering the same variables as in 

the multiple droplets impingement experiments. Results and plots for the screen laminate 

cases are presented and compared in Section 4.  

  



 

33 

4. RESULTS AND DISCUSSION 

In this section, heat transfer performance and droplet characterization of droplets 

impinging on a heated surface are presented based on data acquired using IR and high 

speed imaging systems. First, single stream droplet and three triangulated arranged stream 

droplets tests were undertaken and heat transfer results under conditions of different 

frequency, flow rate and spacing are presented. Weber number and Strouhal number are 

presented along with surface temperature. The relationship between surface temperature 

and radial distance along the impinged liquid film is presented graphically. Then, heat 

transfer data for cases where metallic screen laminates were used are presented as well.  

4.1 Droplet characterization 

As piezo-electric droplet generator was used in this research to produce 

monodispersed stream of droplets.  The streams were characterized using a high-speed 

camera. The effect of drag force and gravity at the point of impact can be neglected 

because of the small size of the droplets used in the experiments. As a result, initial 

droplet velocity measured at the outlet of droplet generator was assumed to be the same 

as the impact velocity. Droplet diameter (dd) and droplet velocity (vd) were measured and 

their theoretical values were calculated using Equations 4.1and 4.2.  
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)

1
2⁄

                                                (4.2) 

 

Where the 𝑄̇ is flow rate, f is frequency, 𝑣𝑗  is initial velocity of droplet stream which 

is calculated using Equation4.3,𝜎 is surface tension of HFE7100 (which is 13.6 dynes/cm), 

𝜌 is the density of HFE7100 (which is 1.5 g/ml).  

                             

                                                                     𝑣𝑗 =
4V̇

πdj
2                                                                (4.3) 

 

Where 𝑑𝑗 is the diameter of orifice. Droplet diameter and droplet velocity of both 

three droplet streams were measured and are presented in Table 5 and 6. In the table, the 

experimental value of droplet velocity was calculated using Equation 4.4. 

                                         

                                                                        𝑣𝑑 = 𝐿𝑓                                                              (4.4) 
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Table 5. Average droplet diameter and average velocity for 1000 µm center to center 

horizontal spacing. 

Flowrate(ml/hr) 
Frequency 

(Hz) 

Theoretical 

𝑑𝑑(μm) 

Experimental 

𝑑𝑑(μm) 

Theoretical 

 𝑣𝑑(m/s) 

Experimental 

 𝑣𝑑(m/s) 

510 4500 271.7  259.6  2.60  2.81  

510 5000 262.3  268.5  2.59  2.95  

510 5500 254.1  247.8  2.59  2.76  

480 5000 257.1  241.9  2.43  2.57  

480 5500 249.0  236.0  2.43  2.60  

480 6000 241.9  230.1  2.42  2.58  

Table 6. Average droplet diameter and average velocity for 500 µm center to center 

horizontal spacing. 

Flowrate 

(ml/hr) 

Frequency 

(Hz) 

Theoretical 

𝑑𝑑(μm) 

Experimental 

𝑑𝑑(μm) 

Theoretical 

 𝑣𝑑(m/s) 

Experimental 

 𝑣𝑑(m/s) 

510 5000 262.3  253.7 2.59  2.68  

510 5500 254.1  250.75 2.59  2.73  

510 6000 246.8  253.7 2.59  2.80  

480 5000 257.1  253.7 2.43  2.60  

480 5500 249.0  241.9 2.43  2.56  

480 6000 241.9  247.8 2.42  2.55  
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Table 7 and 8 shows the comparison between experimental value and theoretical 

value including percent difference and standard deviation. Most differences of theoretical 

and experimental values on droplet diameter and velocity fall below 10%. The percent 

difference (% diff) was calculated taking into account the theoretical and experimental 

values. 

Table 7. Comparison of droplet diameter and velocity for 1000 µm center to center 

horizontal spacing 

Theoretical 

 d (μm) 

Experimental 

d (μm) 

Std 

Dev 
%diff 

Theoretical 

v (m/s) 

Experimental 

v (m/s) 

Std 

Dev 
%diff 

271.7  259.6  8.5  -4.4  2.60  2.81  0.15  8.4  

262.3  268.5  4.3  2.3  2.59  2.95  0.25  13.7  

254.1  247.8  4.5  -2.5  2.59  2.76  0.12  6.4  

289.5  277.3  8.6  -4.2  2.44  2.64  0.14  8.4  

257.1  241.9  10.7  -5.9  2.43  2.57  0.10  5.6  

249.0  236.0  9.2  -5.2  2.43  2.60  0.12  7.0  

241.9  230.1  8.3  -4.9  2.42  2.58  0.11  6.6  
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Table 8. Comparison of droplet diameter and velocity for 500µm center to center 

horizontal spacing 

Theoretical 

d(μm) 

Experimental 

d(μm) 

Std 

Dev 
%diff 

Theoretical 

v(m/s) 

Experimental 

v(m/s) 

Std 

Dev 
%diff 

262.3  253.7 6.1  -3.3  2.59  2.68  0.06  3.5  

254.1  250.75 2.4  -1.3  2.59  2.73  0.10  5.2  

246.8  253.7 4.9  2.8  2.59  2.80  0.15  8.0  

257.1  253.7 2.4  -1.3  2.43  2.60  0.12  6.8  

249.0  241.9 5.0  -2.9  2.43  2.56  0.10  5.6  

241.9  247.8 4.2  2.4  2.42  2.55  0.09  5.1  

4.2 Single stream droplets experiments without screen laminates 

In this section, the basic physical phenomenon of droplet impingement is presented 

using IR images. Three main parameters were considered for the single stream droplets 

experiments, which were flowrate, frequency and heat flux. The relationship between 

minimum surface temperature and heat flux is also presented graphically. 

4.2.1 Effect of heat flux and flowrate 

While the sample was heated at different heat flux values, surface temperature would 

be different. Temperature distribution for single droplet stream under different heat fluxes 

condition with the same frequency, two different flowrates are shown in Figure 20 and 21.  
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Figure 20. Single stream droplets with flowrate at 160 ml/hr, frequency at 5000 Hz 

and different heat fluxes 

 
Figure 21. Single stream droplets with flowrate at 170 ml/hr, frequency at 5000 Hz and 

different heat fluxes 

30

35

40

45

50

55

60

65

-3000 -2000 -1000 0 1000 2000 3000

Te
m

p
e

ra
tu

re
(°

C
)

Radial Distance(μm)

20.67 W/cm²

17.97 W/cm²

12.39 W/cm²

7.70 W/cm²

30

35

40

45

50

55

60

65

70

-3000 -1000 1000 3000

Te
m

p
e

ra
tu

re
(°

C
)

Radial Distance(μm)

23.75 W/cm²

18.20 W/cm²

13.50 W/cm²

9.84 W/cm²



 

39 

As presented in the figures, when the heat flux is higher, the temperature curve shifts 

upwardly. In Figure 20, the maximum temperature difference within the temperature 

profile at 7.7 W/cm2 is within 2 ºC, but increases over 5 ºC at 20.7 W/cm2. The 

temperature difference increased when the heat flux increased because of a greater 

surface tension gradient effect at higher temperature. Furthermore, the temperature within 

the impact crater at high heat flux is below the boiling point of HFE (60 °C), indicating 

that the droplet streams impinging on the surface suppresses the onset of boiling within 

the impact crater. 

Surface temperatures at two different flowrates were measured to determine its effect 

on heat transfer performance. Temperature were compared at different heat fluxes. 

Minimum surface temperature for different flowrates under different heat fluxes conditions 

are shown in Figure 22. Linear correlations have been added on the profile to indicate that 

most of the heating that takes place is single phase in nature, which can be found in the 

inner area of the impingement zone. Furthermore, at higher flowrates, lower surface 

temperatures can be obtained as indicated by the intercept of the correlated equations. 
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Figure 22. Minimum wall temperature of single droplet stream with different flowrates 

under different heat flux conditions 

4.2.2 Effect of frequency 

Frequency is a significant parameter in the experiment, although it is believed to have 

small effect on heat transfer performance in spray cooling applications. Experiments were 

undertaken to study the effects of droplet impingement frequency by maintaining the heat 

flux and flowrate constant. Figures 23, 24 and 25 present the temperature distribution for 

the different heat flux and flowrate conditions. 
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Figure 23. Temperature distribution of single droplet stream with 120 ml/hr flowrate, 11 

W/cm2 heat flux under different frequency conditions 

 

Figure 24. Temperature distribution of single droplet stream with 150 ml/hr flowrate, 13.2 

W/cm2 heat flux under different frequency conditions 
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Figure 25. Temperature distribution of single droplet stream with 180 ml/hr flowrate, 18.2 

W/cm2 heat flux under different frequency conditions 

As mentioned in Section 2, frequency has an optimal range which increases with 

flowrate.  For each case, flowrate and heat flux were set to be constant, while frequencies 

were varied as shown in Table 9. 
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Table 9. Droplet Diameter, Weber number and minimum temperature for different 

flowrates and frequencies 

Flowrate 

ml/hr 

Frequency 

Hz 

D 

µm 

We St 

Tmin 

ºC 

Tmin, highest– Tmin, 

lowest 

120 

4720 238.0 80.4 0.654 43.44 

0.4 

4100 249.5 84.3 0.595 43.55 

3400 265.5 89.7 0.525 43.38 

2730 285.7 96.5 0.454 43.15 

150 

6200 232.9 134.2 0.649 44.70 

1.41 

5300 246.7 141.4 0.584 44.50 

4300 264.5 151.6 0.508 43.40 

3335 287.9 165 0.430 43.29 

180 

7500 233.5 201 0.639 48.52 

1.43 

6300 247.5 213 0.568 48.64 

5300 262.2 225.7 0.508 48.53 

4300 281.1 242 0.441 47.21 
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In all three cases, the lowest frequency and higher Weber number depict the lowest 

temperature profile. For 120 ml/hr case, the difference between minimum temperatures 

was within 1°C, and the difference was about 1 °C for 150 ml/hr case then increased at 

about 1.5 °C for 180 ml/hr case. This indicated that frequency and Weber number have an 

effect on the heat transfer performance and this effect grows with flowrate. Furthermore, 

the results suggest that the interaction between larger impinging droplets and the fluid at 

the surface could be playing a significant role in terms of surface cooling. Pointedly, it 

could be inferred that larger droplets lead to greater microscale capillary waves at the 

solid-liquid interface as seen in the study by Trujillo et al [24]. Similar studies have been 

undertaken by Zhang et al [25] where the effects of frequency and Weber number have 

been discussed. 

4.3 Triple stream droplets experiments without screen laminates 

In this section, the effects of multiple droplet impingement spacing, flowrate and 

frequency on heat transfer performance are presented.  

4.3.1 Effect of flow rate on the temperature distribution 

In the study of triple streams experiments, firstly, a high-speed camera was used to 

measure the center-to-center distance of droplet impact craters two different orifice sizes. 
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Because the substrate which was made of silicon was not transparent in the optical range, 

ZnSe was used as substrate to be able to measure impact crater spacing among the three 

impact craters. The ZnSe sample was only used for imaging the impact craters without 

applying any heat transfer to the surface.  All the other experiments were conducted using 

the Silicon samples since they could be used to measure surface temperature during each 

heat transfer experiment. A 45º mirror was located just below the ZnSe sample which 

allowed the high-speed camera to record images of the impact craters through the mirror. 

Then ImageJ software was then used to calculate the center to center distance on the 

sample surface. Figure 26 shows the image taken by high-speed camera. From the image, 

impact crowns could easily be recognized, the impact points were seems to be forming an 

equilateral triangle. Ejection of fluid along the inner perimeters of the impact craters was 

also observed through the image.  The ejection area were circled in Figure 26 to facilitate 

identification of the maim features of triple droplet impingement.  
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Figure 26. Image taken by high speed camera through a ZnSe sample at 540 ml/hr flowrate, 

7200 Hz frequency and 1000 µm center to center distance 

As images show, when the orifice center-to-center distance was 1000 µm, the craters 

center to center distance was about 1000 µm, but when the 750 µm center-to-center 

distance on the orifice plate was used, it resulted in a 500 µm center-to-center distance. 

Temperature distribution images were recorded using the IR camera as shown in Figure 

27. From the image, the lowest temperature was approached within the impact craters. 

Matlab software was used to obtain the temperature distribution data along different 

directions and areas.  
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Figure 27. IR image through a Silicon sample, with droplets impinging a flowrate of 480 

ml/hr, 5000 Hz frequency and 1000 µm center-to-center spacing 

 

 Figure 28. Temperature distribution directions  

X1 

X2 
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As shown in Figure 28, five different directions and lines were drawn on the 

impacting area. X1, X3 and Y1 crossed both three impact craters. X2 crossed one crater 

and the ejection area and Y2 crossed both two impact craters and the ejection area. With 

Matlab, temperature data could be plotted as a function of radial position. Figure 29-32 

show the temperature distribution on the heated surface at heat flux values. 

 
Figure 29. Images for X1 and X3 directions at 480 ml/hr flowrate, 5000Hz frequency and 

1000 µm impact spacing and different heat fluxes 
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Figure 30. Images for X2 direction at 480 ml/hr flowrate, 5000Hz frequency and 1000 µm 

impact spacing and different heat fluxes 

 
Figure 31. Images for Y1 direction at 480 ml/hr flowrate, 5000Hz frequency and 1000 µm 

impact spacing and different heat fluxes 
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Figure 32. Images for Y2 direction at 480 ml/hr flowrate, 5000Hz frequency and 1000 µm 

impact spacing and different heat fluxes 

In Figure 29, the temperature distribution at X1 and X3 directions are almost 

identical. The temperature slope was a little bit lower in the negative direction because of 

the impact crater and the ejection of fluid in the negative direction. In Figure 30 for the 

X2 direction, temperature slope was lower in the positive direction because of the two 

impact craters and the ejection flow was in the positive direction. In Figure 31 for Y1 

direction, temperature slope was almost symmetric and the temperature at the end of both 

negative and positive directions are equally to the temperature at negative direction of X1 

and X3, because they were both in the ejection area. In Figure 32 for Y2 direction, the 
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temperature at the end of both negative and positive direction appears to be identical. A 

flat slope was observed in the center area which can be attributed to the adjacent area 

between two craters and the ejection area. The temperature distribution in this area was 

very stable which may be very suitable in temperature sensitive applications. Furthermore, 

all the results indicate that at higher heat flux values, the whole temperature profile shifts 

upwardly. 

Experiments were also performed at higher flowrate (510 ml/hr) but same frequency 

and same impact spacing. Figure 33 shows the minimum wall temperature for the above 

cases but with different flowrates. 

 

 

Figure 33. Minimum wall temperature of triple droplets stream with different flowrates 

under same frequency conditions 
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Figure 33 indicates that minimum temperature decreases with flowrate at the same 

heat flux. Figure 34-38 shows the temperature distribution comparison profiles for the 

highest heat flux cases, from which the temperature difference is presented more clearly. 

 

Figure 34. Temperature distribution comparison on X1 direction for flowrate at 480 ml/hr 

(Heat flux at 36.1 w/cm2) and 510 ml/hr (Heat flux at 36.0 w/cm2), frequency at 5000Hz, 

1000 µm impact spacing 
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Figure 35. Temperature distribution comparison on X2 direction for flowrate at 480 ml/hr 

(Heat flux at 36.1 w/cm2) and 510 ml/hr (Heat flux at 36.0 w/cm2), frequency at 5000Hz, 

1000 µm impact spacing 

 

Figure 36. Temperature distribution comparison on X3 direction for flowrate at 480 ml/hr 

(Heat flux at 36.1 w/cm2) and 510 ml/hr(Heat flux at 36.0 w/cm2), frequency at 5000Hz, 

1000 µm impact spacing 
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Figure 37. Temperature distribution comparison on Y1 direction for flowrate at 480 ml/hr 

(Heat flux at 36.1 w/cm2) and 510 ml/hr (Heat flux at 36.0 w/cm2), frequency at 5000Hz, 

1000 µm impact spacing 

 
Figure 38. Temperature distribution comparison on Y2 direction for flowrate at 480 ml/hr 

(Heat flux at 36.1 w/cm2) and 510 ml/hr (Heat flux at 36.0 w/cm2), frequency at 5000Hz, 

1000 µm impact spacing 
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From Figure 34 - 38, flowrate is shown to be a very significant parameter which 

affects the cooling on a heated surface. The minimum temperature was about 3 ºC lower 

when the flowrate increased by only 30 ml/hr. However, as mentioned before, flowrate 

has an optimal range where no splashing takes place when droplets impact the heated 

surface.  Moreover, previous results show that splashing should be avoided to improved 

heat transfer performance [19]. 

4.3.2 Effect of impact spacing 

Experiments were performed under same conditions but different impact spacing. 

Figures 39 - 43 show the comparison for the effect of different spacing under the same 

flowrate, frequency and heat flux. 

 

 

Figure 39. Temperature distribution comparison on X1 direction for 1000 µm and 500µm 

impact spacing, flowrate at 510 ml/hr, frequency at 5000Hz 
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Figure 40. Temperature distribution comparison on X2 direction for 1000 µm and 500µm 

impact spacing, flowrate at 510 ml/hr, frequency at 5000Hz 

 
Figure 41. Temperature distribution comparison on X3 direction for 1000 µm and 500µm 

impact spacing, flowrate at 510 ml/hr, frequency at 5000Hz 
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Figure 42. Temperature distribution comparison on Y1 direction for 1000 µm and 500µm 

impact spacing, flowrate at 510 ml/hr, frequency at 5000Hz 

 

Figure 43. Temperature distribution comparison on Y2 direction for 1000 µm and 500µm 

impact spacing, flowrate at 510 ml/hr, frequency at 5000Hz 
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From Figures 39 - 43, 1000 µm spacing depicts better cooling performance than the 

500 µm spacing case since the minimum surface temperature was about 3 ºC lower. 

High-speed camera were used to record the 500 µm and 1000 µm spacing impact process 

with ZnSe substrate. Figure 44 shows the comparison for both of them. 

 

Figure 44. Comparison of 500 µm and 1000µm impact spacing at 540 ml/hr for flowrate, 

frequency at 7200 Hz. 

From Figure 44, the left side shows an image for a 500 µm impact spacing, where 

overlapping of the impact craters was observed on the impinging surface, which may lead 

to thicker film thickness. The ejection phenomena in 500 µm spacing case is considered 

to be significant when compared with the 1000 µm impact spacing case. For the 1000 µm 

case, three impact craters never overlapped at all which led to the optimal ejection effect. 
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In summary, bigger impact spacing (1000 µm) led to better cooling performance in this 

research study.  

In general, impact spacing was found to be very important for multiple droplet 

streams spray cooling arranged in triangulated shape.  

4.3.3 Effect of frequency on the temperature distribution 

Frequency was proven to be an influential parameter for cooling performance in 

Section 4.2.2 when using single streams of droplets. In this section, the results from 

experiments conducted using triple streams of droplets are presented to show how they 

affect cooling performance. Figure 45-49 show temperature distribution results under 

different frequencies, but at the same flowrate, same heat flux and same impact spacing.  

 
Figure 45. Temperature distribution on X1 direction under different frequencies, flowrate 

at 480 ml/hr, impact spacing at 1000 µm and heat flux at 26.5 W/cm2 
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Figure 46. Temperature distribution on X2 direction under different frequencies, flowrate 

at 480 ml/hr, impact spacing at 1000 µm and heat flux at 26.5 W/cm2 

 

Figure 47. Temperature distribution on X3 direction under different frequencies, flowrate 

at 480 ml/hr, impact spacing at 1000 µm and heat flux at 26.5 W/cm2 
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Figure 48. Temperature distribution on Y1 direction under different frequencies, flowrate 

at 480 ml/hr, impact spacing at 1000 µm and heat flux at 26.5 W/cm2 

 

 

Figure 49. Temperature distribution on Y2 direction under different frequencies, flowrate 

at 480 ml/hr, impact spacing at 1000 µm and heat flux at 26.5 W/cm2 
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Through Figure 45-49, the temperature profiles shift upwardly with impingement 

frequency. The figures also show that the temperature profiles are relatively flat within 

the droplet impingement zones. The difference of minimum temperature between 4500 

Hz and 5500 Hz cases was only about 1 ºC. This means that within the optimal frequency 

range, lower frequency should lead to better cooling performance, which is consistent 

with the results presented in Section 4.2.2. Furthermore, frequency determines the droplet 

diameter and droplet impacting velocity at a fixed flowrate. Moreover, droplet diameters 

increased as frequency decreased, but the droplet impacting velocity would increase a 

little bit. Table 10 shows how droplet velocity, droplet diameter, Weber number and 

Strouhal number at different frequencies but the same impact spacing, same flowrate. 

Table 10. Triple stream droplet properties under different frequencies and flowrate at 480 

ml/hr, impact spacing at 1000 µm 

frequency 

(Hz) 

velocity 

(m/s) 

droplet diameter 

(µm) 
Weber Strouhal 

4500 2.433  266.2  171.5  0.493  

5000 2.430  257.1  165.1  0.529  

5500 2.427  249.0  159.6  0.564  

From the Table 10, the percent difference of velocity was only 0.1% which can be 

neglected. As a result, droplet velocity in this research project could be assumed to be 
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constant under same flowrate but with different frequencies. On the other hand, percent 

differences of droplet diameter were about 3.5% which was not too big, this number 

could be an explanation of the 1 ºC temperature difference from 4500 Hz to 5500 Hz.  

4.4 Experiments with screen laminates 

For this section, results from screen laminates experiments are presented.  Effects of 

the height between screen and heating surface, material of screen laminates and sizes of 

center hole on heat transfer performance have been investigated.  

4.4.1 Effect of screen laminates material, size and stage height 

As indicated in the literature review section of this thesis, screen laminates have been 

used to enhance the performance of boiling processes. Since some level of pool boiling 

takes place near the impact crates of the impingement zone, it was decided to investigate 

the effect of screen laminates on heat transfer performance when using single and triple 

streams of droplets. In order to select the right material and mesh size, small center holes 

were cut on both aluminum and copper meshes. Single stream droplets tests were run 

using the difference meshes or screen laminates. For the aluminum mesh, the mesh sizes 

were 50x50 (filaments per inch) and 120x120 (filaments per inch); and for copper mesh, 

the mesh sizes were 60x60 (filaments per inch) and 100x100 (filaments per inch).  
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Figure 50-53 show the temperature distribution results with aluminum meshes at 

different mesh sizes and gap distances. 

 
Figure 50. Temperature distribution with aluminum meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 6.0 W/cm2 

29

30

31

32

33

34

-3000 -1000 1000 3000

Te
m

p
e

ra
tu

re
(°

C
)

Radial Distance(μm)

1-bare

aluminum  50x50 0.2mm

aluminum  50x50 1.7mm

aluminum  50x50 2.2mm

aluminum  120x120 0.2mm

aluminum  120x120 1.7mm

aluminum  120x120 2.2mm



 

65 

 

Figure 51. Temperature distribution with aluminum meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 9.22 W/cm2 

 

Figure 52. Temperature distribution with aluminum meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 13.12 W/cm2 
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Figure 53. Temperature distribution with aluminum meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 14.96 W/cm2 

From Figures 50, 51, 52 and 53, the bare surface temperature profiles are always the 

lowest compared to all the other mesh surface profiles, which indicates that screen 

laminates reduced the cooling efficiency. It is inferred that aluminum meshes interrupt 

the evaporation of cooling fluid on the heating surface. Moreover, it appears that the 

relatively high specific heat of aluminum (903 J/kg-k) which is comparable to the 

specific heat of HFE-7100, reduce the fluids ability to dissipate heat effectively. 

Furthermore, the thermal conductivity of aluminum is about 237 W/m-K which is 40% 

less than for copper. The results also show that coarse meshes at close proximity to the 

heater surface are detrimental in terms of heat transfer. This suggests that coarser meshes 

could be trapping air or vapor bubbles close to the surface without providing additional 

routes for heat transfer through metal phase. This effect seems to be ameliorated when 
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finer meshes are used because of the better thermal network available for heat transfer 

especially at small gap distance.   

Figure 54-57 show the temperature distribution experimental results with copper 

meshes. In general, a fine mesh (100x100) at small gap distance (0.2 mm) performs better 

than under the other conditions. The enhanced performance can be explained by taking 

into account the thermal properties of copper as well as the high surface density of the 

fine mesh which allowed heat to flow unimpededly throughout the mesh structure. 

 

 
Figure 54. Temperature distribution with Copper meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 5.75 W/cm2 
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Figure 55. Temperature distribution with Copper meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 8.9 W/cm2 

 

Figure 56. Temperature distribution with Copper meshes under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 12.86 W/cm2 
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Figure 57. Temperature distribution with Copper meshes u under hole size of 2.5 mm of 

screen laminate, flowrate at 160 ml/hr, frequency at 5000 Hz and heat flux at 14.64 W/cm2 

From Figures 54 - 57, the copper mesh with size of 100x100 and the gap distance at 

0.2 mm worked the best, for which the minimum temperature was lower than that of the 

bare surface and also the lowest among all the tested laminates or meshes. The results 

indicate that the finest filaments could provide the best cooling performance. Furthermore, 

the high thermal conductivity of copper should have also contributed to the high heat 

transfer rate as mentioned above. Furthermore, when the gap between mesh and heating 

surface was decreased, the temperature profile moved downwardly. In the case of single 

droplet stream, the film thickness was measured to be about 80 µm by Tsai [16], so it 

appears that the a small gap distance (0.2 mm or 200 m) of the fine screen laminate 

could ensure adequate contact with the liquid layer outside the impingement zone but it 

was high enough not to disrupt the formation of the thin liquid film within the 
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impingement zone. In summary, surface density and gap distance of the screen laminate 

can enhance heat transfer under the right conditions.  

4.4.2 Effect of screen laminates center hole sizes in triangulated droplet streams 

experiments 

The effect of screen laminate hole size on droplet stream cooling was also 

considered by using copper as mesh material. A copper mesh of 100x100 size with gap 

distance at 0.2 mm (200 m) was used.  

For triple stream droplets experiments, both 500 µm and 1000 µm droplet spacing 

were used because droplet spacing effect on cooling varies with different center hole 

sizes. 

Figure 58-60 are temperature distribution of 1000 µm impact craters spacing, and 

Figure 61-63 are 500 µm impact craters spacing. 
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Figure 58. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 2.5mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 1000 µm and different heat fluxes 

 

 

Figure 59. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 4.5mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 1000 µm and different heat fluxes 
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Figure 60. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 6 mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 1000 µm and different heat fluxes 

 

 

Figure 61. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 2.5mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 500 µm and different heat fluxes 
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Figure 62. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 4.5mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 500 µm and different heat fluxes 

 

 

Figure 63. Temperature distribution of triangulated droplet steam with Copper meshes 

with a center hole at 6 mm, size at 100x100 and gap distance at 0.2 mm, flowrate at 480 

ml/hr, frequency at 5000 Hz, spacing of 500 µm and different heat fluxes 
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From Figure 58, all the temperature profiles overlap with each other at all three heat 

fluxes. Figure 58 shows that the bare surface temperature profile is lower or equal to the 

2.5 mm center hole mesh temperature profile at different heat flux conditions. This 

indicates that the 2.5 mm center hole mesh does not enhance cooling performance. 

However, for the 4.5 mm center hole temperature profile in Figure 59 and 6 mm center 

hole temperature profile in Figure 60, the temperature distribution profiles are lower than 

the bare surface temperature profile, which indicates that the boiling phenomena on 

heating surface with screen laminates was suppressed and the cooling performance was 

enhanced. Moreover, the 6 mm hole size mesh temperature profile appears to be more 

effective than the 4.5 mm hole size mesh because surface was able to reach the lower (or 

lowest temperature difference between mesh and bare surface, Tmin,mesh-Tmin,bare), which 

indicates that the bigger hole size leads to better performance. For Figures 61-63, the 

results of 500 µm cases are consistent with the 1000 µm results. 

Figure 64 and 65 show the minimum temperature with different mesh center hole 

sizes under different heat flux conditions. In Figure 64, the slope of 6 mm center hole 

trend line is 6.3 % more than the slope of bare surface trend line, the intersection of the 6 

mm center hole trend line is 0.73 % larger than the intersection of bare surface trend line. 

Moreover, in Figure 65, the slope of 6 mm center hole trend line is 0.42 % less than the 

slope of bare surface trend line, the intersection of 6 mm center hole trend line is 8.64 % 

smaller than the intersection of bare surface trend line. From Figure 64, it is evident that 
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the screen laminate enhances the convection process as the surface temperature increases 

at small droplet stream spacing (500 m). On the other hand, at larger droplet stream 

spacing (1000 m) the enhancement in convection is independent of temperature as seen 

in Figure 65.  

 

 

Figure 64. Minimum temperature for triple droplets stream with and without copper mesh 

under 500 µm spacing and different heat flux conditions 
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Figure 65. Minimum temperature for triple droplets stream with and without copper mesh 

under 1000 µm spacing and different heat flux conditions 

 

Figure 66-71 show the High Speed Camera (HSC) images taken from a 45º degree 

angle for all the 1000 µm spacing experiments. Through these figures, the effect of using 

screen laminates can be appreciated a bit more. HSC figures were compared between the 

no heat flux and the highest heat flux (36 W/cm2) conditions. 
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Figure 66. Triple stream droplets at 1000 µm spacing, with 100x100 copper mesh with 2.5 

mm center hole with no heat flux 

 
Figure 67. Triple stream droplets at 1000 µm spacing, with 100x100 copper mesh with 4.5 

mm center hole with no heat flux 
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Figure 68. Triple stream droplets at 1000 µm spacing, with 100x100 copper mesh with 6 

mm center hole with no heat flux 

 

 

Figure 69. Triple stream droplets at 1000 µm spacing with 100x100 copper mesh with 2.5 

mm center hole with heat flux at 36 W/cm2 
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Figure 70. Triple stream droplets at 1000 µm spacing with 100x100 copper mesh with 4.5 

mm center hole with heat flux at 36 W/cm2 

 

 

Figure 71. Triple stream droplets at 1000 µm spacing with 100x100 copper mesh with 6 

mm center hole with heat flux at 36 W/cm2 
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Liquid accumulation can be observed at 2.5 mm and 4.5 mm center hole cases 

(Figures 66 and 67), which indicates that the cooling fluid formed a relatively large liquid 

film between the mesh and heating surface which reduce cooling efficiency. So when the 

surface was heated, the liquid accumulation phenomenon should have taken place as 

observed through Figures 69 and 70 for the 2.5 mm and 4.5 mm center hole cases. When 

the center hole size approached 6 mm in Figure 71, the liquid film had no contact with 

the mesh, which means that the cooling fluid evaporates downstream from the impact 

crater, which could have improved cooling efficiency. Furthermore, increased contact 

between the mesh layers and the heater surface led to an increased in effective thermal 

conductivity, which also contributed to improve heat transfer. 

Figure 72 shows the High Speed Camera images for the 500 µm spacing cases. 

Splashing is observed which indicates that 500 µm impact craters spacing is too small for 

cooling enhancement. Although the temperature distribution profiles show that the 

cooling performance is still enhanced with 6 mm center hole mesh, but splashing still 

affect the cooling efficiency somewhat. 
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Figure 72. Triple stream droplet at 500 µm spacing with 100x100 copper mesh with 2.5mm, 

4.5mm and 6mm center hole and heat flux at 36 W/cm2 

 

Figure 73 – 76 present IR images under conditions at 1000 µm spacing, 480 ml/hr 

flowrate and 5000 Hz droplet impingement frequency with and without mesh. The 

isotherm circle shown in the images corresponds for the boiling point of HFE-7100 (61 

ºC), which increases with the mesh hole size. From the figures, it is evident that the 

effective cooling area (area encircled by the isotherm) increases with mesh hole size.  
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Figure 73. Triple stream droplets at 1000 µm spacing, 480 ml/hr flowrate and 5000 Hz 

frequency without mesh 
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Figure 74. Triple stream droplets at 1000 µm spacing, 480 ml/hr flowrate and 5000 Hz 

frequency with 2.5 mm diameter center hole mesh 

 

Figure 75. Triple stream droplets at 1000 µm spacing, 480 ml/hr flowrate and 5000 Hz 

frequency with 4.5 mm diameter center hole mesh 
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Figure 76. Triple stream droplets at 1000 µm spacing, 480 ml/hr flowrate and 5000 Hz 

frequency with 6 mm diameter center hole mesh 

 

Figure 77. IR image comparison of impact craters for triple droplets streams with 1000 µm 

spacing, 480 ml/hr flowrate and 5000Hz frequency 
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Figure 77 shows the original images taken by IR camera without the isotherm lines. 

The impact craters appears to be enlarged by the screen laminates, especially when using 

the 6 mm center hole mesh, which indicates that the screen laminates has the effect of 

enlarging the cooling area by as much as 44.8% and 68.2% for the 4.5 mm and 6 mm 

hole size, respectively. When the center hole was 6 mm, the cooling area was the biggest 

with the lowest surface temperature among all the cases. All experimental data suggest 

that screen laminates or meshes lead to an increase in the effective cooling area. The 

exact mechanism by which the area increases is not clearly understood; however, the 

meshes seem to increase the bubble departure rate where the surface temperature exceeds 

the boiling point of HFE-7100 as seen in other studies [21]. As the experimental data 

suggest, the larger holes are more effective in terms of heat transfer enhancement, which 

can be attributed to the departure of bubbles at an optimal radial distance from the 

impingement zone. It can be implied that enhanced bubble departure induced by the 

copper mesh help drive the impinged liquid film away from the impingement zone 

resulting in a thinner liquid film and enhanced convection. 



 

86 

 
Figure 78. Triple streams at 1000 µm spacing, 5000 Hz frequency, 480 ml/hr flowrate and 

different heat fluxes, without mesh 

From Figure 78, dryout was observed when sample was heated at different heat 

fluxes. The dryout area increases with heat flux, which leads to a temperature gradient 

along the surface. From Figures 69 - 71, dryout was not observed for the tests with mesh. 

With triple droplets stream, the impinged liquid film seems to spread more easily with the 

mesh which helps cool the surface uniformly.  

  



 

87 

5. CONCLUSION 

Single stream droplet impingement cooling at different flowrates and frequencies 

was performed to investigate the effect of them on heat transfer. Triple stream droplet 

impingement cooling at different flowrates, frequencies and spacing was performed to 

investigate the effect of them on heat transfer. Single streams droplet impingement with 

screen laminates at different height between mesh and heating surface and material were 

also tested to understand their effects on surface cooling. Triple streams droplet 

impingement with screen laminates at center hole sizes and impact craters spacing were 

also tested to understand their effects on surface cooling. The droplet and impact crater 

images were captured using a high speed imaging system. An infrared thermal imaging 

technique was used to measure surface temperature within the heat transfer area.  

From single stream thermal images results, the temperature curve shifts upwardly 

when the heat flux increases. Furthermore, the temperature within the impact crater at 

high heat flux is below the boiling point of HFE (60 °C), indicating that the droplet 

streams impinging on the surface suppresses the onset of boiling within the impact crater. 

Moreover, the results suggest that the interaction between larger impinging droplets and 

the fluid at the surface could be playing a significant role in terms of surface cooling. 

Pointedly, it could be inferred that larger droplets lead to greater microscale capillary 

waves at the solid-liquid interface. 
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From triple streams thermal images results, ejection phenomenon was observed in 

the adjacent area between two impact craters which led to the lower and stable 

temperature distribution. Furthermore, impact craters spacing was presented to be a 

significant parameter in the triangulated fashion spray cooling considered the effect of 

splashing. In addition, the effect of flowrate and frequency consisted with the single 

stream droplets experiments results. 

From single stream droplets experiments with screen laminates or meshes, it is 

inferred that aluminum meshes interrupt the evaporation of cooling fluid on the heating 

surface. Moreover, it appears that the relatively high specific heat of aluminum (903 

J/kg-k) which is comparable to the specific heat of HFE-7100, reduce the fluids ability to 

dissipate heat effectively. Furthermore, the thermal conductivity of aluminum is about 

237 W/m-K which is 40% than for copper. In general, aluminum is not the right material 

which can suppress the boiling in impact craters. Furthermore, the results also show that 

coarse meshes at close proximity to the heater surface are detrimental in terms of heat 

transfer. Moreover, the copper mesh with size of 100x100 and the gap distance at 0.2 mm 

worked the best, which indicates that the finest filaments could provide the best cooling 

performance. 

From triple streams droplets experiments with screen laminates or meshes, size of 

center hole is a significant parameter which indicates that the boiling phenomena on 

heating surface with screen laminates was suppressed and the cooling performance was 
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enhanced. Moreover, the screen laminate enhances the convection process as the surface 

temperature increases at small droplet stream spacing (500 m). On the other hand, at 

larger droplet stream spacing (1000 m) the enhancement in convection is independent of 

temperature. Furthermore, increased contact between the mesh layers and the heater 

surface led to an increased in effective thermal conductivity, which also contributed to 

improve heat transfer. Furthermore, the larger holes are more effective in terms of heat 

transfer enhancement, which can be attributed to the departure of bubbles at an optimal 

radial distance from the impingement zone. It can be implied that enhanced bubble 

departure induced by the copper mesh help drive the impinged liquid film away from the 

impingement zone resulting in a thinner liquid film and enhanced convection. 
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APPENDIX A 

A. Emissivity measurement and uncertainty analysis 

In this project research, Standard ASTM E1933 "Standard test methods for measuring 

and compensating for emissivity using infrared imaging radiometers " was used.  

The procedure indicated in the standard was followed using the experimental setup 

shown in Figure 79. Firstly, an aluminum foil was attached as the reflective foil (as shown 

in Figure 80). Secondly, the black tape was attached onto the ceramic sample with the 

heater sample just besides it (as shown in Figure 81). In the end, both the reflective foil and 

the ceramic sample was heated so their temperature is at least 30 ºC above the surrounding 

temperature, then measured the irradiance counts from the target and aluminum foil. 

Infrared imaging of the target was shown in Figure 82.  

 
Figure 79. Experimental setup 



 

95 

 

Figure 80. Reflective foil 

 

Figure 81. Black tape and heater sample 
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Figure 82. IR image 

According to the ASTM Standard, the emissivity was calculated with following 

equation: 

                                                          𝜀𝑜𝑏𝑗 =
𝐷𝑜𝑏𝑗 − 𝐷𝑠𝑢𝑟

𝐷𝑟𝑒𝑓 − 𝐷𝑠𝑢𝑟
∗ 𝜀𝑟𝑒𝑓                                                 (1) 

 

Where D represents the digital reading of the camera in number of counts. The 

reference used for this measurement was an electrical vinyl tape Super 88 with a known 

emissivity value of ε=0.95±0.05. The calculated emissivity values at different temperatures 

are listed at Table 11: 
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Table 11. Emissivity measurement 

Temperature(ºC) Dobj Dref Dsur Emissivity 
Error 

propagation 

62 8276.9 9484.7 2916 0.775 0.0408 

61.6 8229.9 9429.8 2940 0.774 0.0407 

61.3 8187.7 9375 2957 0.774 0.0407 

66.5 9017 10508.3 2826 0.766 0.0403 

67 9103.2 10622.8 2842.3 0.764 0.0402 

66.2 8987.4 10444.4 2891.2 0.767 0.0403 

71.6 9997.6 11776.7 2891.8 0.76 0.04 

71.3 9922.2 11687.9 2981.5 0.757 0.0398 

71.9 10081 11855.9 2955.4 0.761 0.04 

74.8 10626 12610 2966.5 0.755 0.0397 

75.2 10728 12722.4 2978.2 0.756 0.0397 

75.3 10718.2 12755.9 3020 0.751 0.0395 

From this table, the objects emissivity vs. objective irradiance counts was plotted as 

follows (Figure 83), and also the trace line to get a function which can be used to calculate 

the emissivity at different temperatures. The function was shown as follows: 

 

𝜀 = −0.07 ln(𝐷𝑜𝑏𝑗) + 1.473                                              (2) 
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Figure 83. Emissivity vs. counts 

B. Droplet diameter and droplet velocity measurement 

1. Droplet diameter measurement 

The droplet diameter was measured using the image analysis tool from National 

Instrument Vision Assistant software. The projected vertical surface area of each droplet 

was obtained first and then used to compute the droplet diameter. A scale of 1.5µm/pixel 

was used for the measurement. The uncertainty of the diameter measurement was as 

follows:         

                                                                          udd
=

∂dd

∂A
uA                                                      (3) 

    The droplet diameter uncertainty was found to be ±7.5µm. 
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2. Droplet velocity measurement 

The droplet velocity was calculated through equation 4 

                                      𝑣𝑑 = 𝐿 × 𝑓                                (4) 

Where L is the distance between droplets and f is the frequency of the function 

generator. The uncertainty of the velocity measurement was given by:  

                              

                                                               𝑢2
𝑣𝑑

= (
𝜕𝑣𝑑

𝜕𝐿
𝑢𝐿)2 + (

𝜕𝑣𝑑

𝜕𝑓
𝑢𝑓)

2

                                   (5) 

             

The distance of each droplet was measured using a magnification of 4.5µm/pixel with 

a corresponding uncertainty of ± 20µm. Uncertainty of frequency for signal generator (BK 

Precision Model 4011A) was ± 10Hz. By substituting these values into Equation 5, the 

uncertainty of the droplet velocity was found to be ± 0.14 m/s. 

 

 


