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ABSTRACT 

 

Geothermal and unconventional reservoirs play an important role in supplying 

fuel for a growing energy demand in the United States. The development of such 

reservoirs relies on creating a fracture network to provide flow and transport conduits 

during injection and production operations. The Displacement Discontinuity Method 

(DDM) is frequently used for modeling the behavior of fractures embedded in elastic 

and poroelastic rocks. However, DDM requires the calculation of the influence among 

all fractures being computationally inefficient for large systems of cracks. It demands 

quadratic and cubic complexity of memory and solution time by direct methods, 

respectively, limiting its application to only small-scale situations.  

Recent fast summation techniques such as the Fast Multipole Method (FMM) 

have been used to speed up the solution of several boundary element problems using 

modest computational resources. FMM relies in accelerating matrix-vector products in 

iterative methods by splitting the computation of the influences among elements into 

near and far-field interactions. While the former are calculated similarly to the 

conventional DDM, the latter, where most of the interactions are found, are efficiently 

approximated by the FMM using analytical multipole and local expansions. However, in 

spite of its immediately apparent application in the geomechanic context, FMM has been 

limited to only certain fracture problems because those analytical expansions are only 

available for selected fundamental solutions and the development for new ones requires 

complex mathematical derivations even for those kernels of simple form. 
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This work presents a new method called Fast Multipole–Displacement 

Discontinuity Method (FM-DDM) for an efficient flow-geomechanical simulation of 

large-scale naturally fractured reservoirs undergoing fluid injection and extraction. The 

approach combines both DDM and FMM using for the latter a kernel-independent 

version where multipole and local expansions are not required opening a range of 

potential applications within the geothermal and oil industries. Several case studies 

involving fracture networks with up to one hundred thousands of boundary elements 

were presented to evaluate accuracy, computational efficiency and applications of the 

FMM approach. From the results, FM-DDM showed an excellent agreement with well-

known benchmark solutions outperforming DDM with linear complexity in both 

memory and execution time. In addition, a variety of large-scale geomechanical 

applications were efficiently evaluated with FM-DDM involving interactions between 

transverse hydraulic fractures and a fracture network, fast visualization of high-

resolution stress distribution, and the design of exploitation strategies in elastic and 

poroelastic fractured reservoirs.  
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1. INTRODUCTION 

 

Geothermal and unconventional petroleum reservoirs contain vast resources to 

supply the energy demand in the United States. However due to their ultra-low 

permeability, the development of such reservoirs depends mainly on the ability to 

transport the underground fluid to the surface through extensive natural fracture 

networks subjected to geoemachanical deformation of the rock and fractures. In these 

reservoirs, natural fractures represent the main channels for the movement of the fluid 

during injection and production operations. They are usually densely packed and 

interconnected forming large and complex networks subjected to different physical 

phenomena (e.g., fluid-flow and diffusion, deformation, elastic and poroelastic effects) 

that control the processes of fracture initialization, and propagation. As the later governs 

the flow pattern and total heat and fluid recovery in the reservoir (Bagheri and Settari 

2005; Jalali and Dusseault 2008), large-scale numerical simulations are necessary for a 

realistic representation of those unconventional reservoirs to model their complexity 

with a high level of details for the proper design of exploitation strategies. This section 

will begin with an explanation of the problem followed by a literature review of previous 

works focused on large-scale fracture modeling. Finally, the objectives and a summary 

of the dissertation will be presented.  
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1.1. Problem definition  

Modeling fractures embedded in linear-elastic rock relies on solving conservative 

(i.e., mass, momentum, equilibrium) and constitutive (i.e., Darcy’s law, poroelasticity) 

equations for the fluid and solid matrix. Among the available numerical techniques for 

solving those equations, the Displacement Discontinuity Method (DDM) (Crouch 1984), 

an indirect Boundary Element Method (BEM), provides an alternative to the prevailing 

domain methods in continuum mechanics such as Finite Differences (FDM) or Finite 

Elements (FEM) Methods (Tao et al. 2009a; Tao et al. 2009b; Tao and Ghassemi 2010). 

DDM is frequently used due to its semi-analytical nature and because it reduces the 

dimensionality of the problem by needing only the discretization of the boundary. 

Therefore, DDM is suitable for modeling linear problems with small surface-volume 

ratio (cavities within an infinite medium) and due to its semi-analytical nature it is more 

accurate than FDM and FEM becoming a powerful tool for fracture mechanic analysis. 

The basis behind DDM is to transform the original partial differential equations that 

define a physical problem into equivalent boundary integral equations (BIE) by means of 

fundamental solutions and then solve the corresponding integral equations by numerical 

methods. 

DDM has been extensively applied in mining and hydraulic fracturing (Curran 

and Carvalho 1987; Tao et al. 2009a; Tao et al. 2009b; Tao and Ghassemi 2010). 

However, DDM requires computing the influences among all fracture elements so the 

coefficient matrix of the system of equations is dense and nonsymmetrical. This 

requirement impacts the computational performance of conventional strategies, either 

 

 



 

3 

 

direct or iterative, for the solution of the system of equations when large numbers of 

elements are involved making DDM computationally intensive. Direct methods such as 

Gaussian elimination are robust and easy to implement but are limited to solving a few 

thousands of elements, demanding O(N2) memory and O(N3) floating point operations to 

construct (and store) the matrix and solve the system, where N is the number of degrees 

of freedom. On the other hand, computational applications (Bängtsson and Neytcheva 

2005; Elvin and Leung 1999; Kolk et al. 2006)  based on iterative algorithms such as the 

Generalized Minimum Residual Method (GMRES) still need O(N2) memory but are able 

to solve larger systems because the number of algebraic operations are reduced to 

O(kN
2
), where k is the number of iterations to achieve convergence. If preconditioning 

algorithms are implemented (Bängtsson and Neytcheva 2005; Kolk et al. 2006), 

additional reduction of computation can be achieved making k virtually independent of 

N (k<<N). However, realistic representation of most fracture problems of interest that 

involve a high number of boundary elements are still beyond the current capability of 

personal computers because matrix-vector products become prohibitive, so other 

methods are necessary to make improvements.  

 

1.2. Literature review 

During the last two decades, fast summation techniques such as the Fast 

Multipole Method (FMM) (Greengard and Rokhlin 1987) have improved the 

performance of some boundary-value problems in terms of memory requirements and 

CPU time (Liu 2009; Nishimura et al. 1999; Wang, H. et al. 2005; Wang and Yao 2005; 
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Wang, P. et al. 2005; Wang et al. 2007; Yoshida et al. 2001b). FMM has been regarded 

as one of the top 10 algorithms in scientific computing created in the 20th century (Board 

and Schulten 2000). Originally developed to solve electrostatic and gravitation 

problems, it has been now successfully applied to many other (Fu et al. 1998; Li and 

Huang 2011; Liu and Shen 2005; Tornberg and Greengard 2008) scientific problems 

(See Figure 1-1). The FMM relies on an iterative strategy in which the matrix-vector 

multiplication is accelerated without forming the coefficient matrix explicitly. This 

acceleration is carried out by efficiently calculating the interaction between elements 

using the same BEM discretization but by recursive operations of a quad-tree structure 

for computation and storage. It permits the solution of larger problems by combining the 

robustness and accuracy of conventional BEM but with superior performance (See 

Figure 1-2).  

 
Figure 1-1. Applications of the FMM for the solution of several large-scale scientific 

problems (Liu 2009). 

Fuel CellsBiomedicalAcoustic

Radiation
Electrostatics Bioelectrostatics



 

5 

 

Figure 1-2. Comparison of the typical computational performance of BEM and FMM 
for different problem sizes. In general, FMM solves for large problems and exhibits a 

linear complexity with unit slope in a log-log plot. 
 

However, and in contrast to its immediately apparent application, FMM has not 

been extensively applied in combination with the DDM mainly because of the difficulty 

of understanding FMM and lack of mathematical developments for the fundamental 

solutions of interest as well as high programming complexity. Previous works using both 

DDM and FMM has been limited to elastic rocks (Morris and Blair 2000; Peirce and 

Napier 1995). Both studies used the available mathematical developments of FMM in 

electrostatic potential for two-dimensional problems.  

Peirce and Napier (Peirce and Napier 1995)  were the first to explore this area 

introducing a spectral version of the FMM. They proposed a potential representation of 

the fundamental solutions to approximate the normal and shear displacement 

discontinuities applying the method to the granular assemblies problem using a 
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maximum of 1800 boundary elements. Although the approach provides memory savings 

of O(N), its computational implementation is quite inefficient demanding O(N
2LogN) 

operations. On the other hand, Morris and Blair (Morris and Blair 2000) explored the 

problem of discontinuities within an elastic solid for simulating a brittle rock fracture 

with up to 22,500 fracture elements. In their work, the far-field behavior of the 

fundamental solutions is approximated by decaying kernels of the form Log(r), where r 

is the distance between source and field points. However, such approximation is accurate 

if the interacting elements are separated by a distance greater than a certain number 

element lengths. This condition restricts the maximum number of levels in the quad-tree 

and then increases the amount of fractures contained in the cells for near interactions. 

Because these interactions are computed directly as in the conventional DDM, the 

efficiency of the algorithm is deteriorated when the cells enclose high numbers of 

elements. Moreover, the implementation requires the evaluation of 27 unique multipoles 

to perform the matrix-vector multiplication, presumably producing an ideal O(N) 

behavior only for certain element arrangements. 

Others FMM implementations based on multipole expansions have been reported 

in the literature for modeling elastic but unconnected linear (Wang, H. et al. 2005; 

Wang, P. et al. 2005; Wang et al. 2007; Wang and Yao 2006; Yao et al. 2007), circular 

(Lai and Rodin 2003; Pham et al. 2012; Yoshida et al. 2001a, 2001b; Yoshida), and 

penny-shape (Nishimura et al. 1999; Pham et al. 2012; Yoshida et al. 2001a, 2001b; 

Yoshida) fractures problems in absence of fluid-flow. However, these works use a direct 

formulation of the boundary element method usually called Fast Multipole-Boundary 
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Element Method (FMBEM) not suitable for modeling fractures problems in unbounded 

reservoir domains so that they are out of the scope of this work. 

In recent years, a new FMM formulation called “black-box” has been developed 

which does not require the implementation of multiple expansions of the underlying 

kernel but only the kernel evaluations (Fong and Darve 2009). This FMM formulation 

differs from the previous ones (Morris and Blair 2000; Peirce and Napier 1995) and is 

very useful for problems where the kernel is known analytically but is quite complicated 

for which analytical expansions might be difficult to obtain. The complexity of the 

method would be completely hidden from the end-user which opens up a range of 

potential applications to more general problems. This kernel-independent version 

exhibits the same structure and performance of the classical FMM but it is simpler to 

implement. Table 1-1 presents a summary of previous works discussed above for solving 

large-scale fracture problems using FMM showing potential contributions of the 

proposed approach. 

This work presents a novel approach called Fast Multipole – Displacement 

Discontinuity Method (acronymed as FM-DDM) by combining DDM and a kernel-

independent version of the classical FMM for the efficient solution of the coupled fluid 

flow-geomechanical problem in large-scale naturally fractured reservoirs subjected to 

injection and production operations.  
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Table 1-1.  Summary of previous works for solving large-scale fracture problems using 
FMM showing potential contributions of the proposed approach. 

Author/Year 
(Peirce and 

Napier 1995) 
(Morris and 
Blair 2000) 

(Lai and Rodin 
2003; 

Nishimura et 
al. 1999; Pham 

et al. 2012; 
Wang, H. et al. 
2005; Wang, P. 

et al. 2005; 
Wang et al. 
2007; Wang 

and Yao 2006; 
Yao et al. 

2007; Yoshida 
et al. 2001a, 

2001b; 
Yoshida) 

Current work 

Fracture 

problem 

formulation 

Direct   X  

Indirect (DDM) X X  X 

Fast Multipole 

formulation 

Multipole-based† X X X  

Kernel-independent    X 

Fracture model 

components 

Rock type Elastic Elastic Elastic Elastic/Poroelastic 

Joint    X 

Fluid-flow    X 

Rock failure  X   

Numerical 

examples 

No. of elements 1800 22,500 104 - 106 105 

Performance O(N2LogN) O(N)‡ O(N logN) 
- O(N) O(N) 

Application Mining Brittle rock No specific 
purpose 

Reservoir 
geomechanics 

 

 

1.3. Objectives 

The proposed research will accomplish the following objectives: 

                                                 

†
 Loss of accuracy is present due to a necessary simplification of kernels 

‡ Only for certain element arrangements. 
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1. Develop a computational implementation of the Fast Multipole Method with the 

Displacement Discontinuity Method (acronymed as FM-DDM) to estimate the 

coupled fluid flow-geomechanical response of large-scale naturally fractured 

reservoirs under injection and production operations. 

2. Evaluate the accuracy of the FMM approach and compare its computational 

performance with the conventional DDM in terms of the memory requirements 

and execution time. 

3. Evaluate several two-dimensional configurations of large-scale fracture networks 

under elastic and poroelastic conditions using the FM-DDM. 

 

1.4. Summary of the dissertation 

Section 1 explains the problem of interest and its relevance and presents a critical 

review of previous works in the area followed by the objectives of the research. Section 

2 formally describes the conventional DDM for modeling the geomechanical response of 

naturally fractured reservoirs undergoing fluid injection and production. Three 

geomechanical models of increasing complexity are proposed to describe the fluid flow 

phenomenon through elastic and poroelastic fracture networks. Section 3 presents a 

general description of the FMM for the solution of large-scale boundary-value problems 

along with its advantages and limitations.  Simplified reviews of the classical multipole-

based and kernel-independent versions of the FMM are also presented. Section 4 

presents the details of the proposed approach called Fast Multipole–Displacement 

Discontinuity Method (FM-DDM) as well as the numerical procedure and computational 
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implementation. Section 5 presents several cases studies to evaluate the accuracy and 

computational performance of the FM-DDM on those numerical models described in 

Section 2 associated with geomechanical conditions of increasing complexity. Section 6 

shows large-scale numerical applications to evaluate geomechanical interactions among 

multiple transverse fractures in unconventional reservoirs and fluid flow-geomechanical 

problems in elastic and poroelastic fracture networks under fluid injection and 

extraction. Finally, Section 7 presents the conclusions and recommendations of this 

research. 
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2. DISPLACEMENT DISCONTINUITY METHOD (DDM) 

 

The Displacement Discontinuity Method (DDM) (Crouch 1984) is an indirect 

Boundary Element Method (BEM) that provides an alternative to the prevailing domain 

methods in continuum mechanics such as finite differences (FDM) or finite elements 

(FEM) methods (Tao et al. 2009a; Tao et al. 2009b; Tao and Ghassemi 2010). The basis 

behind DDM is to transform the original partial differential equations that define a 

physical problem into equivalent boundary integral equations (BIE) by means of 

fundamental solutions and then solve the corresponding integral equations by numerical 

methods. DDM has been extensively applied in mining and hydraulic fracturing 

modeling (Curran and Carvalho 1987; Tao et al. 2009a; Tao et al. 2009b; Tao and 

Ghassemi 2010) due to its semi-analytical nature and ability to reduce the dimensionality 

of the problem by needing only the discretization of the boundary.  

In this work, DDM will be used for modeling the geomechanical response of 

naturally fractured reservoirs undergoing fluid injection and production. To facilitate the 

integration with the FMM and the corresponding verification process, three (3) 

geomechanical models of increasing complexity are proposed in this section to gradually 

integrate the physical phenomena involving Elastic Deformation (ED), Flow-Elastic 

Deformation (FED), and Flow-Poroelastic Deformation and Difussion (FPDD). 
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2.1. Elastic Deformation (ED) model 

DDM can be used for modeling the normal (opening) and shear (ride) 

displacement discontinuities of fractures embedded in an infinite and elastic medium 

(Crouch 1984). The method is based on fundamental or analytical solutions to the 

problem of a finite segment fracture centered in a Cartesian plane with constant normal 

and shear discontinuities in displacement (see Figure 2-1). The displacement 

discontinuity, Di, is defined as the difference in displacement between the two sides of 

the segment as: 

    snixuxuD iii ,0,0, 11    (2-1) 

The fundamental solutions provide expressions to compute the induced stresses 

(xx, yy, and xy) at any field point (x,y) of the domain caused by displacement 

discontinuities (Dn and Ds) of the fracture with its center at the origin (source) (Crouch 

1984): 

 

Figure 2-1. Fracture segment embedded in a two-dimensional and infinite medium 
showing constant normal and shear discontinuity displacements. 

+Dn+Ds

(0,0)
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                                        (2-2) 

                                    (2-3) 

                                    (2-4) 

where: 

 

        
 

       
 

      
 

   
     

 

   
  

                                   

  (2-5) 

whete f is the relative position function between the source and field points, G is the 

shear modulus, v represents the Poisson’s ratio of the solid medium, and a the fracture 

half-length. 

For a curvy fracture in an infinite two-dimensional medium, its length needs to 

be divided into j fracture segments, each one with a local coordinate system whose x-

axis is parallel to the orientation of the jth fracture segment (See Figure 2-2). As the 

fundamental solutions (Eqs. (2-2) to (2-4)) are defined for a fracture element parallel to 

the x-axis and centered at the origin, the following coordinate transformations are 

necessary to compute the effects of one of these fracture segments in a field point (x,y) at 

the global coordinate system: 

                           (2-6) 

                           (2-7) 
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Figure 2-2. Two-dimensional medium with a curvy fracture divided by j fracture 
segments showing global and local coordinate system. 

 

where j is the angle of the jth fracture segment with the x-axis. Now, the induced 

stresses on the field point in the local x,y co-ordinate system by the normal and shear 

displacement discontinuity of the jth fracture are: 

                                                                   (2-8) 

                                                          (2-9) 

                                                          (2-10) 

where the spatial derivatives of influence function f are denoted by  F4, F5, F6, and F7 

and defined as follow: 

                 
 

       
 

  

           
 

  

           
  (2-11) 

                         
 

       
 

    

           
 

    

           
  (2-12) 
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(2-13) 

                            

 
   

       
 

    

              
 

    

              
  

(2-14) 

Finally, by using the superposition method, the induced stresses at a field point i 

caused by the effect of m fractures at different source locations can be computed as the 

sum of the contributions of the m fracture segment involved. After rotating the stresses 

components to the normal (n) and shear directions (s), we have:  

  
      

  
  

 

 

   

     
  

  
 

 

   

 (2-15) 

  
      

  
  

 

 

   

     
  

  
 

 

   

 (2-16) 

with 

  
      

     
                

       
       

   (2-17) 

  
     

      
      

               
      

  (2-18) 

and 

  
     

    (2-19) 

where   
   is the effective normal stress, P is the fluid pressure, and    

 ,    
 , and    

  are 

the field stress components in xx, yy, and xy directions, respectively. Note that the 

coefficients Asn, Ass, Ann, and Ans represent the global influence containing multiple 
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spatial derivative of          and depending of the relative position of the element i and j 

and upon the orientation and length of fracture element j.  If the mechanical responses of 

a natural fracture (joint) over the initial stress field ( 

0,ns ) is taken into account (Tao et 

al. 2009b) then the total displacement discontinuities are solved simply by adding local 

or self-influence coefficients to Eqs. (2-15) and (2-16): 

    
  

 

 
   

   
      

  
  

 

 

   

     
  

  
 

 

   

 (2-20) 

    
  

 

 
   

    
    

            
  

  
 

 

   

     
  

  
 

 

   

 (2-21) 

where ( 

0,ns )  is the initial stress field,  Ks and Kn represent the normal and shear joint 

stiffness, respectively, and    is the dilation angle which account for the increase of 

joint aperture by shear displacement. Based on the Goodman model (Goodman 1976), 

Kn is estimated via an hyperbolic equation as a function of the initial stiffness (Kni) and 

maximum closure (Dnmax): 

         
   

            
 

  

 (2-22) 

In a problem with multiple field and source points, a linear system of equations 

can be formed by setting up the field locations equal to the source points as: 

           (2-23) 

where A is the coefficient matrix, b is a vector of stresses, and x represents the shear and 

normal displacement discontinuities. Given the stresses as boundary conditions, the 

displacement discontinuities can be obtained by solving the linear system of equations.  



 

17 

 

2.2. Flow-Elastic Deformation (FED) model  

This model incorporate the fluid flow phenomenon through the fracture network 

and account for simultaneous changes of normal and shear displacements discontinuities 

as well as fluid pressure. The FED model extends the previous ED one which assumes 

constant pressure in the fracture and has limited applicability for the geothermal and oil 

industries. In this model, the change in time of the traction components to the normal 

(  n) and shear (  s) directions expressed in Eqs. (2-20) and (2-21) can be re-written as: 

   
    

    
      

  
   

 

 

   

     
  

   
 

 

   

   (2-24) 

   
     

     
     

            
  

   
 

 

   

     
  

   
 

    
 

 

   

 (2-25) 

where    
  represents the change of the fluid pressure inside a fracture element i in a 

given time step k. An additional equation (Tao et al. 2009a; Tao et al. 2009b) formed by 

combining the mass balance equation and Darcy’s law is needed for the distribution of 

fluid pressure in an interconnected fracture network: 

    

 

  

  
        

  

  
    

   

  
         (2-26) 

In Eq. (2-26), the term on the left,     

 

  

  
, is the net flow rate in the fracture, the first 

right term,        
  

  
, represents the change of fluid volume due to fluid expansion or 

compression, the second right term,    
   

  
, is the change of fluid volume by fracture 

deformation. Finally, the third and last right terms,      and    are the fluid leak-off 
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rate per unit height between fracture and the matrix (neglected in this model), and the 

production or injection rate per unit formation thickness, respectively. 

 

2.3. Flow-Poroelastic Deformation and Diffusion (FPDD) model 

The previous FED model represents an improvement of the ED model after 

accounting for fluid flow through the fracture network. However, this is still limited to 

handle more realistic cases involving simultaneously poroelasticity deformation of the 

fracture and rocks in shale reservoirs as well as fluid leak-off or interface flow between 

the fracture and porous matrix. However, poroelastic rock simulations are even more 

time consuming than the elastic case while solving for additional unknowns and by 

requiring the implementation of computational intensive time-marching schemes for the 

numerical integration.  

2.3.1. Description of poroleasticity effects 

The theory of poroelasticity for a fluid saturated rock accounts for the coupled 

diffusion–deformation mechanism (Biot 1941; Rice and Cleary 1976). Based on this 

theory, the relation of stress to strain and pore pressure assuming a linear isotropic 

poroelastic media is given by:  

              

 

    
           (2-27) 

where  , p, and e represent the stress, pore pressure and strain, respectively;  , v and G 

are Biot’s poroelastic coefficient, Poisson’s ratio, and shear modulus, respectively. On 

the other hand,      represents the Kronecker delta function and     is the volumetric 
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strain. Using Eq. (2-27) in the force balance equation, the Navier equation of 

poroelasticity is formed as: 

       
 

    
                (2-28) 

where F is the body force (neglected in this work) and u is the solid displacement. The 

coupled fluid diffusion equation for pressure-dependent fluid density is expressed as 

follow (Tao et al. 2009b): 

     
 

  

  

  
 

  

 

    

  
 

   

 
 (2-29) 

with  

 

 
     

   

  
 (2-30) 

where    is the bulk modulus of the solid grains,   is the porosity,   is the matrix 

permeability,   is the fluid viscosity,    is the volumetric flow rate,  and    is the fluid 

compressibility.  

Note in Eqs. (2-28) and (2-29) that the fluid diffusion in a rock matrix induces 

porous matrix deformation and stress redistribution, and that porous matrix deformation 

also induces fluid flow and fluid pressure redistribution. Also when fractures are 

presented in the porous media, their opening or closing will induce the deformation not 

only of the porous matrix and but also pore-pressure and fluid flow (Curran and 

Carvalho 1987; Goodman 1976; Wang 2000). In this work, however, we only consider a 

one-way coupling and neglect the second term on the right-hand-side of Eq. (2-29).  
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2.3.2. Poroelastic geomechanical model 

The displacement discontinuity method (DDM) is used again to numerically 

solve the poroelastic equations (2-28) to (2-29), under prescribed conditions on the 

boundary of the region of interest, to solve for simultaneous changes of the normal (n) 

and shear (s) displacement discontinuities, fluid leak-off rate and pore-pressure  (see Fig. 

2-3). This is accomplished by first transforming those partial differential equations into 

an integral representation by using fundamental solutions which are analytical solutions 

corresponding to singular impulses (e.g., displacement discontinuities, point fluid 

source) at a point in an infinite region. Then using the superposition method, the integral 

equations are numerically approximated by dividing the boundary   (or fracture surface 

in our case) into N elements and distributing those singular impulses on the elements so 

that the combine effects of all them satisfy the boundary conditions (e.g., stresses). 

 
 
 

 
Figure 2-3. Fracture segment embedded in a two-dimensional and infinite porous 

medium showing constant normal and shear discontinuity displacements and interface 
flow between the fracture and porous matrix. 
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For a fracture problem in a poroelastic rock with a one-way coupling, the 

following two (2) integral equations for the stresses and pore pressure are required to be 

solved in space and time: 

                
                      

                         
 

 

 

 (2-31) 

                                     
 

 

 
 (2-32) 

where   and   are the two-dimensional coordinate vectors.          denotes the stress 

component at x and time t. The influence functions     
            and    

            

represent the stress component due to an instantaneous unit point DD (id) and fluid 

source (is), respectively, located at   and taking place at  . Similarly,              is 

the pore pressure due to the same instantaneous source. Note also that         and 

       are the unknown strengths of the point DD and fluid sources.  

For time-dependent normal displacement discontinuity, Dn, shear displacement 

discontinuity, Ds, and fluid leak-off, Ql, a time-marching scheme as shown in Figure 

2-4 is applied to discretize the time-dependent quantities into   constant steps using the 

superposition method to account for each step change at the time it occurs. Following 

Tao and Ghassemi (Tao and Ghassemi 2010), the total induced tractions and pore-

pressure on the ith fracture segment at time t are obtained by summing the influences 

from all time steps as follow: 
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Figure 2-4. Illustration of the time-marching scheme for the changes of a generic source 
variable . 

 

 

 

  
           

           
  

 

   

     
           

  

 

   

 

   

     
           

  

 

   

  

(2-33) 

  
           

           
  

 

   

 

   

     
           

  
     

           
  

 

   

 

   

  

(2-34) 
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where h is the time step index and    
  ,    

  , and    
   denote the increments of 

normal displacement discontinuity, shear displacement discontinuity and fluid leak-off 

or interface flow rate of the jth fracture segment at h. Kernels components such as the 

   
         are the influence coefficients of jth fracture segment on the ith fracture 

element at time    according to the time-convolution. In this work, the coefficients    
  , 

   
  ,    

  , and    
   that account for the influences of the displacements discontinuities 

over the traction components consider only elastic effects while the coefficients    
  ,    

  , 

and    
   take into account the poroelastic effects of the fluid leak-off over traction and 

pore-pressure (Curran and Carvalho 1987; Tao et al. 2011; Vandamme and Roegiers 

1990).  

To account for shear dilation and joint deformation in Eqs. (2-33) and (2-34), the 

coefficient    
   and    

   are modified as follow: 

   
  

    
  

   
          

   

   
  

    
  

   
           

      
         

(2-36) 

where    is the dilation angle which account for the increase of joint aperture by shear 

displacement, and Kn and Ks are the normal and shear joint stiffness. By rearrenging 

equations (2-33) to (2-35), a more compact representation of the linear system of 

equations is formed by keeping on the left side the kernel coefficients (A) and unknown 

variables (  ) associated with the current time step (Tao and Ghassemi 2010):  
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     (2-37) 

         
           

  
   

     (2-38) 

          
           

  
   

     (2-39) 

where         , and        . The right-hand side (b) groups the accumulated 

effects of variables corresponding to previous time steps and is writeen as follow: 

  
         

           
   (2-40) 

  
       

     
           

   (2-41) 

  
        

     
           

   (2-42) 

where           , and     represents the kth unknown variable    ,    , and  . 

Note that computing b requires the computation of Th  matrix-vector multiplications 

O(Th N
2
) which exhibit a quadratic complexity according to the number of time steps h:   

     

 

   

           
      

 
 (2-43) 

For example, if 20 time steps are set for a numerical simulation, the total number of 

matrix-vector multiplications would be 210. Therefore, our approach will also use the 

FMM to accelerate the calculation of b. 

Finally, Eq. (2-24) for the fluid flow through the fracture network represents the 

last equation that needs to be simultaneously solved along with Eqs. (2-33) to (2-35). 

Comparing with the previous FED model, it now accounts not only for changes in the 

fluid density and compressibility but also for the leak-off fluid between the fracture and 
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formation. Here, fracture permeability (kf) is computed using the cubic law as a function 

of fracture width (wf) as:  

   
  

 

  
 (2-44) 

The final form of Eq. (2-24) after proper discretization in time and space using a 

convolution scheme is: 

         

 

   

      
  

      
  

                 
  

   

   

    
  

 

   

 (2-45) 

Note that in order to solve Eq. (2-45), fluid pressure, displacement discontinuities, fluid 

leak-off rate as well as production or injection rates need to be set with initial and 

boundary conditions, respectively. 
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3. FAST MULTIPOLE METHOD (FMM) 

 

The Fast Multipole Method (FMM) (Greengard and Rokhlin 1987) has been used 

to reduce the computational complexity of some boundary value problems in terms 

memory requirements and execution time (Liu 2009; Nishimura et al. 1999; Wang, H. et 

al. 2005; Wang and Yao 2005; Wang, P. et al. 2005; Wang et al. 2007; Yoshida et al. 

2001b). However, its application to other general problems has been limited mainly due 

to the difficulty of understanding the method and lack of mathematical developments for 

the fundamental solutions of interest as well as high programming complexity. Recently, 

a new FMM formulation called “black-box” has been developed which does not require 

the implementation of multiple expansions of the underlying kernel but only the kernel 

evaluations (Fong and Darve 2009), opening up a range of potential applications for 

engineering applications.  

This section presents a comprehensive description of the FMM beginning with a 

brief overview of the method and then showing the mathematical background of both the 

conventional and kernel-independent versions of the FMM, in particular for the latter the 

Black-Box FMM (bbFMM) that will be adopted as the building block in our approach. 

 

3.1. Overview 

The main idea behind the FMM is to accelerate matrix–vector products (Ax) in 

iterative algorithms without forming the coefficient matrix explicitly which reduces 

computation time and saves memory (Greengard and Rokhlin 1987; Liu 2009). 
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Algebraically, the product of the i-th row of a NxN matrix, K, with a column vector,  , 

of length N can be expressed as follow: 

               

 

   

   (3-1) 

In analogy to Eq. (2-15), the term f in Eq. (3-1) may represent a field value evaluated at 

point xi due to the influence of sources (governed by the kernel matrix K) and located at 

a set of centers. This computation represents the well-known “N-body problem” and 

requires NxN algebraic products or O(N
2
) operations to compute the field values at a set 

of N evaluation points, xi. Therefore, the objective of using FMM is to reduce this 

calculation to ideally O(N) counts by approximating the values of f. This approximation 

is accomplished by classifying the influences into near and far-field interactions 

according with the distance among field and source points. While the near-field 

interactions are evaluated as the conventional DDM showing a quadratic complexity, the 

far-field influences that involve most of the algebraic products are calculated efficiently 

using FMM to reduce the cost proportional to N, O(N). 

The far-field interactions are approximated by concentrating the influence of a 

cluster of source particles (or fractures in our case) in a single location by assuming that 

the influences of such particles become weaker as the distance between field and source 

locations increases. This procedure requires constructing a hierarchical tree (or quadtree 

structure in 2D) to decompose and divide the computational domain with increasing 

level of refinements, identifiying a near and far sub-domains at each level. Based on this 
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space decomposition, Eq. (3-1) can be expressed as (Liu 2009; Morris and Blair 2000; 

Peirce and Napier 1995): 

               

     

   

            

    

   

   (3-2) 

where Nnear and Nfar represent the number of source points in the near and far-field 

domains of the summation terms (assuming Nnear << Nfar) which are computed using the 

conventional DDM and FMM, respectively. More details and variations of the FMM 

have been described previously by other authors (Greengard and Rokhlin 1987; Ying et 

al. 2004). 

 

3.2. Conventional FMM 

Consider a general 2D potential problem (e.g., heat conduction, acoustic) 

governed by the Laplace equation in a circular domain V with boundary S: 

                  (3-3) 

under the boundary conditions: 

                    (3-4) 

where   is the potential.  

Using the method of fundamental solutions, for example, and placing N field (x) and 

source (y) points on the boundary S, (See Figure 3-1), the following system of equations 

can be formed: 
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     (3-5) 

with 

       
 

  
   

 

 
  (3-6) 

Expresssing Eq. (3-6) in complex notation after replacing x and y by    and  , take the 

form: 

         
 

  
         (3-7) 

where   is the kernel or fundamental solution for potential problems, r is the distance 

between field and source points, and    is the unknown density at the source points j.  

 The main idea behind the conventional FMM is to expand the kernel in order to 

have new approximated expressions where the field (  ) and source ( ) points are 

separated. For example, by introducing an expansion or “middle” point    near   using 

Taylor series (See Figure 3-1), Eq. (3-7) becomes (Liu et al. 2005): 

         
 

  
            

 

 

      
 

        

 

   

  (3-8) 

Note that in contrast to Eq. (3-7),    and   are separated by    in Eq. (3-8). Now, after 

introducing Eq. (3-8) into the leaf-hand side Eq. (3-5) we have:  

           

 

   

  
 

  
              

      

        

 

   

  (3-9) 
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Figure 3-1. Location of expansion points near    and   used in the FMM (Liu et al. 
2005). 

 

where the        are the so called moments about    which does not depend on   : 

       

 
 

    
 

       

 
 

 
        

 

 
         

  (3-10) 

Therefore, given a set of values for the unknowns    contained in a cell c centered at   , 

these moments are needed to be computed once, and then Eq. (3-9) can be used to 

evaluate left-hand side of Eq. (3-5) for    far away from   .  

Additional expansion approximations near    and   points obtained through 

mathematical manipulation are necessary in the FMM to compute the influence of points 

   located far away from to  . The Moment-to-Moment translation (M2M) is used to 

translate the effects of moments from points    in Eq. (3-10) to a new location    , 

commonly the center of the father cell of cell c without recomputing the moments: 
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  (3-11) 

On the other hand, by introducing a new expansion point    close to   , the so-

called local expansion is obtained: 

           

 

               
 

 

   

 (3-12) 

where the coefficient are given by the Multipole-to-Local (M2L) translation by: 

       

 
 
 
 
 

 
 
 
  

 

  
              

      

        

 

   

        

 

 

  
 
       

 

  

        
  

     

        

  
     

   
 

 

   

       

        
        

  (3-13) 

Finally, by moving the local expansion point    to    , a new expression local expansion 

using n-terms is obtained: 

           

 

  
 

  
             

      

       

 

   

  (3-14) 

where the new coefficients are called Local -to-Local (L2L) translation and are given by: 

          
 

 
 

 

   

        
                         (3-15) 
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Eqs. (3-10), (3-11), (3-13), and (3-15) associated with the moments, M2M, M2L, and 

L2L represent the building block operations used in the FMM and are key to understand 

the solution algorithm.     

3.2.1. Solution algorithm 

This section presents a general algorithm (Liu 2009; Liu et al. 2005) for the far-

field calculation in Eq. (3-5) which involves the following four (4) steps: a) 

Discretization of the boundary, b) Construction of the quad-tree structure of the 

boundary element, c) Upward pass, and d) Downward pass as described below:  

a) Discretization of the boundary: The FMM uses the same discretization of the 

conventional BEM by dividing the boundary of the problem  into several boundary 

elements of constant length.  

b) Construction of quad-tree structure of the boundary elements: Starting from a square 

(or parent cell of level 0) enclosing all boundary elements, this parent cell is divided into 

four equal squares (called children cells of level 1) and the process is continued 

recursively and stopped when the number of boundary elements in a child cell is fewer 

than a prespecified number (called leaf cell) or alternatively when the specified number 

of levels of the quad-tree, l, is reached. As a result, a data structure is created to 

determine at each level of partition the distribution of the boundary elements within the 

cells as well as to classify each cell into near and far categories according to the distance 

to the field points. This data organization is also useful for storing certain coefficients 

needed during the following upward and downward operations.  
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c) Upward pass: This steps involves computing the moments (Liu 2009) on all cells and 

at all levels and trace the tree structure upward. The moments are used to expand the 

kernel and separate the source y and field x points by the introduction of a middle point, 

yo. The moment concentrates in this single point, located in the center of the leaf cells, 

the effects of a cluster of boundary elements enclosed in them (l=2) (Figure 3-2). A 

similar agglomeration process is done at higher levels (l>2) for the parent cells by 

summing the moments on its four children cells and concentrate them at point y1 through 

a Moment to Moment translation (M2M). 

 

 

Figure 3-2. Principal operations of the FMM (Wang et al. 2007). 
 

d) Downward pass:  In this step the influence of the far source points stored in the cells 

at different levels (by computing the moments) is finally translated to the field points. 

This is accomplished by calculating the local expansion coefficients on all cells, starting 

from level 2 and tracing the tree structure downward to all the leaves. The coefficients 
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associated with a cell D is the sum of the contributions from the Moment to Local 

translation (M2L) and Local to Local translation (L2L) operations. M2L shifts the 

cluster effect from y1 to x0 and L2L translates it from x0 to x1. A local expansion 

operation (Liu 2009) is used to finally pass the information from point x1 to the field 

point x. 

Note that the moments as well as the M2M, M2L, and L2L operations are kernel 

dependent and involve analytical equations. Currently, although there is a solid 

mathematical development of these operations for selected decaying kernels of the form 

of Eq. (3-6), complex mathematical derivations (in case of exist) are necessary for new 

kernels even those of simple form.   

 

3.2. Kernel-Independent FMM (Black-Box FMM) 

In contrast with the conventional FMM, the black-box FMM (bbFMM) does not 

require the implementation of multiple expansions of the kernel using only the kernel 

evaluations. It shows to be very useful for problems where the kernel is known 

analytically but is complicated for which analytical expansions might be difficult to 

obtain. To briefly describe some of the components of bbFMM, let assume a 

computation similar to that found in Eq. (3-5): 

           

 

   

    (3-16) 

To compute the far-field approximation of the kernels, the Black-Box FMM requires 

three (3) main steps:  
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a) Creates a low-rank approximation of the kernel using Chebyshev polynomials: 

Assuming a closed interval [-1, 1], any smooth function      can be 

approximated using: 

           

 

   

      
 

 
 (3-17) 

with 

      
 

 
         

 

   

        
 

 
 (3-18) 

where       is s Chebishev polynomial of order m and    are the zeros of      . Now, 

let assume that        is desired to be approximated in both x and y in the interval. By 

substituting (3-18) into (3-17), we have: 

                          
   

 (3-19) 

Therefore, for two set of N points    and   , an      method are constructed by first 

calculating the equivalent charges at node   : 

            

 

   
 (3-20) 

Next, by computing the potential at Chebyshev node    

                 

 

   
 (3-21) 

and finally, the potential at the N nodes    

               
 

   
 (3-22) 
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In general, the advantage of using a low-rank approximation approach for the 

FMM is that minimal pre-computing and only requires the ability to evaluate the kernel 

(K) at several locations avoiding any kernel dependent analytical expansion. In bbFMM, 

the adoption of Chebyshev polynomials along with their roots as the interpolation nodes 

serve as the basis to approximate the far-field behavior of a non-oscillatory K. Using 

Chebyshev nodes ensures the stability of the interpolation scheme providing uniform 

error distribution across the domain as the number of interpolation nodes (n) become 

large. Therefore, it allows the specification of fewer nodes for a given accuracy avoiding 

suffering from the Runge’s phenomenon.  

b) Build a FMM approach using the approximated kernel:  

Once constructed the low-rank approximation of a continuous kernel defined 

over arbitrary rectangular domains, the M2L operator (described previously) consists in 

evaluating the field due to source particles located at the n Chebyshev nodes, 

independent of the N source locations.  

c) Accelerate the performance of the M2L operation using Singular Value 

Decomposition (SVD).  

The performance of the M2L which is by far the most expensive operation in 

FMM is further optimized using SVD by compressing the Chebyshev’s interpolation 

scheme and producing a more compact multipole and local expansion. A more detailed 

description of bbFMM can be found in (Fong and Darve 2009). 
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4. FAST MULTIPOLE – DISPLACEMENT DISCONTINUITY METHOD       

(FM-DDM) 

 

DDM has been extensively applied in mining and hydraulic fracturing (Curran 

and Carvalho 1987; Tao et al. 2009a; Tao et al. 2009b; Tao and Ghassemi 2010) but it is 

inefficient when facing large problem sizes. Direct solvers requires O(N
2
) memory and 

O(N
3
) to compute the coefficient matrix and solve the system of equations. On the other 

hand, iterative methods such as the GMRES still need O(N
2
) memory but the number of 

operations to perform a matrix-vector multiplication in k iterations for convergence 

could be reduced to O(kN
2
) in case of well-conditioned systems (k<<N). However, 

realistic representation of most fracture problems of interest that involve a high number 

of boundary elements are still beyond the current capability of personal computers 

because matrix-vector products become prohibitive so other methods are necessary to 

make improvements. 

This section presents a new approach called Fast Multipole–Displacement 

Discontinuity Method (FM-DDM) for the efficient solution of large-scale fracture 

problems with linear complexity. It combines the DDM and FMM described in Sections 

2 and 3, respectively, using for the latter a kernel-independent version of the classical 

FMM called black-box FMM (bbFMM) based on kernel evaluations where multipole 

and local expansions are not required. In this section, the FM-DDM is described in terms 

of its main components for the fast matrix-vector product associated with each 
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geomechanical model, iterative algorithm, and preconditioner. Additional details of the 

numerical procedure and computational implementation are also presented. 

 

4.1. Description 

In general, FMM relies on an iterative strategy in which the large matrix-vector 

multiplication is accelerated without forming the coefficient matrix explicitly. As 

described in Section 3, this acceleration is carried out by efficiently calculating the 

interaction between elements using the same BEM discretization but by recursive 

operations of a quad-tree structure for computation and storage. 

In our approach, the normal and shear tractions caused by geomechanical 

interactions among all fractures can be expressed mathematically as the sum of near and 

far-field components: 

     
       

   
       (4-1) 

where the near-field interactions are evaluated as the conventional DDM (Section 2) 

showing a quadratic, O(N
2
), computational complexity and the far-field influences that 

involves most of the algebraic products are efficiently calculated using FMM (Section 3) 

to reduce to O(N) the cost proportional to the number of degrees of freedom (N). 

 
4.1.1. Fast computation of matrix-vector multiplications 

The calculation of the traction components via iterative techniques in Eq. (4-1) 

requires the evaluation of several expensive matrix-vector products (denoted as mvp). If 
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the ED or FED models are considered, these operations involve only the effects of 

displacement discontinuities for the multiplication of the coefficient matrix and solution 

vector during the iterative search. However, the FPDD model poses a more complex 

situation by requiring the combined elastic and poroelastic effects due the displacement 

discontinuities and fluid leak-off for the matrix-vector product of interest and also for the 

calculation of the right-hand side of the system of equations at very time step. 

 
4.1.2. FMM approach for the ED and FED models 

Before using the black-box FMM to solve our geomechanics problem of interest 

several enhancements have to be done. First, it is necessary to express in a compact 

representation the product of the displacement discontinuity vector and the matrix kernel 

governing the influence of an arbitrary source fracture j over the stress components in a 

field location or fracture i: 

 

   
   

   
   

   
   

   

 
 
 
 
        

   
       

   

       
   

       
   

       
   

       
   

 
 
 
 
 

 
  

 

  
 
  (4-2) 

where c is an elastic constant computed by:                                 

  
  

       
 (4-3) 

Eq. (4-3) can be written for N elements as: 
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The next step is to decompose the matrix-vector product in (4-4) into a sum of two (2) 

matrix-vector products by each stress component. For instance, xx is expressed as: 

   
        

   

 

   

  
 
       

   

 

   

  
  (4-5) 

with 

     
   

            
                 

         (4-6) 

     
   

         
            

        (4-7) 

where βj is the angle of the fracture j. After substituting Eqs. (4-6) and (4-7) into Eq. (4-

5), xx could now be computed using six (6) matrix-vector products: 

   
         

 
 

 

   

         
    

 

 

   

          
    

 

 

   

        
 
       

    
 

 

   

 

   

       
  

 

   

  
  

(4-8) 

with  

  
 

   
  (4-9) 

  
 

         
  (4-10) 

  
 
         

  (4-11) 

  
 

   
  (4-12) 

  
 

         
  (4-13) 

  
 

         
  (4-14) 
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where   
 ,   

 ,   
 ,   

 ,   
  and   

  are vectors grouping unknown variables (e.g.,   
 
   

 ), 

fracture parameters (  ) and even rock properties (for heterogeneous cases) associated 

exclusively with the source locations j. Note that functions F4 to F7 in Eqs. (2-11) to (2-

14) are expected to be evaluated at the field position and require proper angular 

transformations from the global (   ) to the local (     ) coordinate system using Eq. (4-

15):  

 
   

      
          

           
  

       

       
  (4-15) 

It should be noted at this point that computing xx with Eq. (4-8) using the 

kernels enclosed by parentheses follows the form of Eq. (3-1). However, additional 

analytical modifications are required to express such kernels as a function of global 

coordinate (x,y) as imposed by any FMM algorithm including the bbFMM. It means the 

presence of    inside F4 to F7 need to be factored and grouped outside in the vector of 

unknowns. Following Morris and Blair (Morris and Blair 2000), it can be shown that the 

influence functions in Eqs. (2-11) to (2-14) can be approximated for large distances as 

dependent only on global coordinates using the Chain rule: 

                                      (4-16) 

                                      (4-17) 

                                      (4-18) 

                                       (4-19) 
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After substituting Eqs. (4-16) to (4-19) into Eq. (4-8) the number of kernels and 

pseudo-charges will increase. Finally for compacness, the traction components can be 

represented mathematically as: 

  
        

   
  

 

 

   

 

      

   

                               (4-20) 

where the subscripts q and p represent the directions of tractions and displacement 

discontinuities components, and Km and Qm are the kernel matrix and vector associated 

to the m-th matrix-vector product of       . Initially, the total number of mvp required 

for q and p directions are 26 in total. However, as many Km and Qm are repeated only 10 

unique FMM approximations with 16 different pseudo charges are needed. Appendix A 

presents the corresponding analytical expressions of those kernels used by bbFMM to 

evaluate the three stress components (           ). As a final step in the calculation, a 

post-processing stage to rotate the stress components to the normal and shear directions 

is performed using Eqs. (2-17) and (2-18).  

The description above for the computation of the traction components due to the 

far-field effect of displacement discontinuities applied for both the ED and FED models. 

For the latter, no additional multipole approximations are needed for the fluid flow 

equation as it is evaluated within the near-field computation. 

 
4.1.3. FMM approach for the FPDD model 

This model incorporates elastic and poroelastic effects to solve for simultaneous 

changes of the normal (n) and shear (s) displacement discontinuities, fluid leak-off rate 
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and pore-pressure. In a compact form, the far-field of the tractions due to poroelastic 

rocks is expressed as the sum of several matrix-vector products (mvp) as: 

  
      

   
  

 
   (4-21) 

where           , and           
 . Note that Eq. (4-21) follows the form of  Eq. 

(3-1) in order to apply the FMM approximation and accounts also for the influence of 

the fluid leak-off rate (Ql) over the tractions components (xx, yy, and xy) and the pore 

pressure (p). In addition, to reduce the number of multipole approximations of our FMM 

approach, the poroelastic kernels that relate the stress components and displacements 

discontinuities are replaced by their elastic versions of the ED and FED models.  

To satisfy Eq. (3-1), the mathematical expressions of the new kernels associated 

with the fluid leak-off rate and pore pressure need to be simplified (See Appendix B). 

Final forms of these four (4) kernels for the far-field effects in the local   ,    co-ordinate 

system of the fracture but in terms of x and y at global coordinates are presented below: 

       
                        (4-22) 

       
           

   (4-23) 

       
                        (4-24) 

                     (4-25) 

with 

                             (4-26) 

            
 

     
 

          

     
 (4-27) 
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Figure 4-1. Far-field behaviour comparison of the polynomial, exponential, and 

exponential integral kernels. Note how the polynomial one exhibits the lowest decay 
with distance. 

 

Mathematical expressions for the additional kernels M1 to M4 and related 

poroelastic parameters (c, M), and constants (d) can be found in Appendix C.  

Note that kernels        
  ,        

  ,        
   in Eqs. (4-22) to (4-24) were simplified from their 

original forms by keeping only the quadratic polynomial components in the 

corresponding Eqs. (A1) to (A3) and by neglecting exponential and exponential integrals 

terms which exhibit a relative faster decay with distance as shown in Figure 4-1.  

On the other hand, the far-field of the pore-pressure, which involves only a single 

integral of exponential integral function, was transformed by first changing the 

analytical integration with a numerical approximation using the midpoint rule and then 
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by replacing the function with an asymptotic expansion (Press 1992) where only the first 

two terms were taken into account. 

For more details, Appendix B shows the procedure to integrate and rotate elastic 

and poroelastic kernels of the tractions components from the   ,    local to the x, y global 

coordinate of the j-th fracture element. As a final step, the above traction components 

have to be computed to the shear and normal directions of the i-th fracture using 

common stress transformation equations. 

 

4.2. Iterative algorithm and preconditioner 

FM-DDM uses the Generalized Minimal RESidual method (usually 

abbreviated GMRES) as the iterative strategy along with a preconditioner to solve the 

linear system of equations.  

 
4.2.1. Iterative algorithm GMRES 

The GMRES is an iterative method for the numerical solution of a 

nonsymmetric system of linear equations (Ayachour 2003). The method approximates 

the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi 

iteration is used to find this vector. Denote the Euclidean norm of any vector v by ||v||. 

Denote the system of linear equations to be solved by: 

     (4-26) 

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Residual_(numerical_analysis)
http://en.wikipedia.org/wiki/Arnoldi_iteration
http://en.wikipedia.org/wiki/Arnoldi_iteration
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where the matrix A is assumed to be invertible of size m-by-m. Furthermore, it is 

assumed that b is normalized, i.e., that ||b|| = 1. The nth Krylov subspace for this problem 

is: 

                                  (4-27) 

This algorithm approximates the exact solution of Ax = b by the vector xn   

Kn that minimizes the Euclidean norm of the residual Axn − b. The vectors b, Ab, 

…, An−1
b might be almost linearly dependent, so instead of this basis, the Arnoldi 

iteration is used to find orthonormal vectors             which form a basis for Kn. 

Hence, the vector xn   Kn can be written as xn = Qnyn with yn   R
n, where Qn is the m-

by-n matrix formed by q1, …,qn. 

The Arnoldi process also produces an (n+1)-by-n upper Hessenberg matrix     with 

            (4-28) 

Because    is orthogonal, we have 

                     (4-29) 

where                is the first vector in the standard basis of Rn+1, and 

          (4-30) 

   being the first trial vector (usually zero). Hence,    can be found by minimizing the 

Euclidean norm of the residual: 

                (4-31) 

http://en.wikipedia.org/wiki/Invertible_matrix
http://en.wikipedia.org/wiki/Krylov_sequence
http://en.wikipedia.org/wiki/Residual_(numerical_analysis)
http://en.wikipedia.org/wiki/Linear_independence
http://en.wikipedia.org/wiki/Arnoldi_iteration
http://en.wikipedia.org/wiki/Arnoldi_iteration
http://en.wikipedia.org/wiki/Hessenberg_matrix
http://en.wikipedia.org/wiki/Standard_basis
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This is a linear least squares problem of size n. This yields the GMRES method. At 

every step of the iteration: 

1. do one step of the Arnoldi method. 

2. find the    which minimizes ||rn||. 

3. compute        . 

4. repeat if the residual is not yet small enough. 

At every iteration, a matrix-vector product Aqn must be computed. This costs about 

2m
2 floating-point operations for general dense matrices of size m. In addition to the 

matrix-vector product, O(nxm) floating-point operations must be computed at the nth 

iteration. 

 
4.2.2. Preconditioning 

Preconditioning transforms the original linear system Ax = b into an equivalent 

one which is easier to solve by an iterative technique. A good preconditioner M is an 

approximation for A which can be efficiently inverted, chosen in a way that using M-1
A 

or AM
-1 instead of A leads to a better convergence behavior (Liu 2009). 

GMRES is rarely used directly. In practice, they are always applied in 

combination with some preconditioner. Note that, whereas GMRES is a general purpose 

technique, the preconditioner typically incorporates information about the specific 

problem under consideration. Two (2) types of preconditioning could be used in this 

work: left and right preconditioners: 

http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Floating_point
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– Left preconditioning: 

              (4-32) 

– Right preconditioning: 

            (4-33) 

with 

         (4-34) 

where the latter involves a substitution u for the original variable x.  

The matrix M is chosen in such a way that the spectral properties of M
-1

A are 

better than those of A and, at the same time, the inverse of M is not expensive to 

compute. The Jacobi preconditioner (also known as diagonal scaling), is the simplest of 

other known approaches and consists of diagonal elements of the original coefficient 

matrix which are easy to calculate and implement. Of the same family, the block-

diagonal or block Jacobi preconditioner is more accurate and uses the sub-matrices along 

the diagonal, inverting M through the Gauss-elimination method. More specifically, 

given a coefficient matrix A in a block form: 

     

    

    

    

    

 
 

    

    
    

             

   (4-35) 

a preconditioner could be chosen so that 

  
     

 
 
 
 
    

  

    
  

 
    

   
 
 
 

  (4-36) 

Here, of course, we assume that the diagonal blocks Ai,i are cheaply invertible.  
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4.3. Solution algorithm 

This section will describe the numerical procedure associated with the solution of 

FPDD model as it represents the most general geomechanical case. Eqs. (2-25), (2-26), 

(2-27), and (2-35) are solved iteratively using a scaling and diagonal-block 

preconditioned GMRES following the next steps. Initially, the input data of the fracture 

network associated with geometry, discretization, element connectivity, rock and fluid 

properties, multipole, solver parameters as well as initial and boundary conditions are 

set. Then, the quad-tree structure of the boundary elements, multipole approximations of 

the kernels are constructed in a pre-processing stage along with the preconditioning data. 

Next, the time loop of the simulation begins and for a given a time step, the right-hand 

side vector is initially computed. Then, the multiplication between the coefficient matrix 

and the solution guess at the k
th iteration is carried out efficiently using the FMM 

approach. For the problem of interest, the unknowns are the changes of the displacement 

discontinuities    
  and    

 ,  fluid pore-pressure   , and fluid leak-off rate    
  at each 

time step. The residual vector is obtained after assembling near and far-field 

approximations using the conventional poroelastic DDM and FMM, respectively. When 

convergence is achieved, the unknown variables associated with stresses, fracture 

geometry and permeability are updated and the simulation for the next time step is 

initiated. The above procedure is repeated for the remaining time steps followed by the 

evaluation of accuracy and computational performance. 
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4.4. Computational implementation 

FM-DDM was implemented in C language using NetBeans Platform on Linux. 

All cases were run in a Notebook PC with modest computational resources (2.0 GHz 

Intel Core 2 Duo T5750 Processor with 4GB of RAM). Access to the BLAS/LAPACK 

libraries in Fortran 77 is also needed during the computation. These libraries are 

available from Netlib (http://www.netlib.org/). Double precision is used to represent 

floating-point numbers. Our approach uses a preconditioned GMRES to solve iteratively 

the system of linear equations (Wang, H. et al. 2005). In this work, the scaling and 

block-diagonal preconditioner were chosen and coupled with GMRES to reduce the 

condition number and then the number of iterations. 
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5. VERIFICATION OF GEOMECHANICAL MODELS AND 

COMPUTATIONAL PERFORMANCE EVALUATION 

 

During the last two decades FMM have been used to improve the performance of 

some large-scale boundary-value problems in terms of memory requirements and CPU 

time showing linear complexity. However, FMM has not been extensively applied in 

combination with the DDM mainly because of the difficulty of understanding the 

method and lack of mathematical developments for the fundamental solutions of interest 

as well as high programming complexity.  

This section presents several cases studies to evaluate accuracy and 

computational performances of the FM-DDM on those numerical models described in 

Section 2. These models are associated with geomechanical conditions of increasing 

complexity involving elastic deformation (ED), flow-elastic deformation (FED), and 

flow-poroelastic deformation and diffusion (FPDD). The results using FM-DDM show 

an excellent agreement with both analytical and numerical solutions under well-known 

fracture configurations with a linear complexity in both memory and execution time, 

outperforming the conventional DDM that demands quadratic and cubic requirements. 

Problems sizes with up to two hundred thousand of DOFs were successfully evaluated 

using the proposed approach. 
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5.1. Model verification 

 

5.1.1. ED model verification – Case 1 

FM-DDM was verified comparing its predictions with an analytical solution for 

the problem of a single pressurized crack in a homogeneous and isotropic rock. As 

shown in Figure 5-1, the situation of interest involves a single pressurized line fracture 

of length 2a embedded in an infinite 2-D elastic rock.  

 

Figure 5-1. A pressurized single crack in an infinite domain configuration used to verify 
FM-DDM – Case 1. 

 

The fracture is centered at the origin of the coordinate system and oriented along 

the x-direction. An analytical approximation for the normal displacement discontinuity 

(Dn) is available from the elastic theory as follow (Crouch 1984): 
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Table 5-1. Data set used in ED model verification – Case 1. 
Parameter Value 

Domain length, L (m) 400 
Shear modulus, G (GPa) 15 
Poisson’s ratio, v (-) 0.1 
Initial normal stiffness, Kni (GPa/m) 30 
Shear joint stiffness, Ks (GPa/m) 15 
Initial fracture aperture,   

  (m) 3x10-3 
Maximum fracture closure, Dnmax, (m) 3x10-3 
Initial field stress in xx direction,    

  (MPa) 30 
Initial field stress in yy direction,    

 (MPa)   30 
Initial field stress in xy direction,    

 (MPa) 0 
Fluid pressure, p (MPa) 25 
Number of chebyshev nodes per dimension, n (-) 5 

 

Table 5-1 presents common rock and fluid properties as well as FMM 

parameters. Other parameters associated with the iterative algorithm such as tolerance of 

convergence, Krylov subspace dimension, and maximum number of restart of the Krylov 

iteration are 3x10-5, 50, and 10, respectively.  

In the numerical analysis, the fracture is divided into 1000 elements of uniform 

length. Then the fracture opening of every segment is solved and compared with 

analytical values. From Figure 5-2 it is clear that the numerical results agree well with 

the analytical solution showing a maximum relative error less than 0.03%. 
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Figure 5-2. Comparison of the fracture opening between FM-DDM and the analytical 
solution of the pressurized crack problem for different discretizations – Case 1. 

 

 

Once satisfied this initial verification stage, FM-DDM was then used to compute 

high definition distributions of normal stress for well-known fracture problems (See 

Figures 5-3 and 5-4). For both cases, 1000 source elements with 10,000 field points were 

employed for the visualization whose results agree with those provided by widely used 

numerical tools (TWODD) (Crouch 1984) and reported in the literature (Behnia et al. 

2011, 2012).  
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Figure 5-3. High quality normal stress distribution around a pressurized fracture 

computed with FMM. 1,000 source elements with 10,000 field points were used for the 
visualization – Case 1. 

 

 

 
Figure 5-4. High quality normal stress distribution around two parallel horizontal 

fractures computed with FMM. Equal number of sources and field points of Case 1(a) 
were used – Case 1. 
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5.1.2. FED model verification – Case 2 

In this case study, a linear fracture embedded in an elastic rock and subjected to 

injection and production at both ends is considered (See Figure 5-5). As transient 

analytical solutions to predict simultaneous changes of both displacement discontinuities 

and fluid pressure are not available, this work proposed to conduct the verification 

process by inspecting residual values of the traction and diffusion equations described 

previously. A residual tolerance of 1x10-3 has been set as a threshold for comparison 

purposes. Additional qualitatively verifications will be carried out by analyzing some 

expected patterns of the dynamic pressure and displacements responses to ensure the 

numerical solution obeys the physical processes. Most of the attention will be focused on 

the pressure computation because the normal and shear displacement discontinuities 

were previously verified using an analytical solution. Table 5-1 presents rock and fluid 

properties, FMM parameters as well as production and injection data. 

 

 
Figure 5-5. Linear fracture configuration subjected to fluid injection and production 

used to verify the FED model – Case 2. 
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Table 5-2. Data set used in the FED model verification – Case 2. 
Parameter Value 

Domain length, L, (m) 400 
Shear modulus, G, (GPa) 15 
Poisson’s ratio, v, (-) 0.1 
Shear joint stiffness, Ks (GPa/m) 7.5 
Initial normal stiffness, Kni, (GPa/m) 15.0 
Maximum fracture closure, Dnmax, (m) 5x10-4 
Far-field stress in xx direction,    

  , (MPa) 15.1 
Far-field stress in yy direction,    

 , (MPa)   15.1 
Far-field stress in xy direction,    

 , (MPa) 0 
Initial fracture aperture,   

 , (m) 5x10-4 
Initial shear displacement,   

 , (m) 0 
Initial fluid pressure, p, (MPa) 15 
Fluid compressibility,   , (1/MPa) 5x10-5 
Fluid viscosity,   , (MPa.s) 5x10-9 
Total injection or production rate, qs, (m3/s) 2.16x10-4 
Total simulation time, ts, (s) 1x106 
Number of time steps, ndt, (-) 30 
Number of chebyshev nodes per dimension, n, (-) 5 

  

For this case the fracture length is divided in 400 boundary elements. Figure 5-6 

presents the residual mean squared error of the equations for each time step while Figure 

5-7 shows the transient response of pressure and displacements at both wells with 

respect to their initial values. Values above (below) zero correspond to the injector 

(producer) well. Observe that the residual errors are significatively smaller than the 

prescribed tolerance during all the simulation, with a maximum value of 10-4 for the 

pressure. On the other hand, it is clear from Fig. 4 that the solution response at both 

wells shows as expected: i) symmetry pressure pattern respect to the initial value, ii) 

steady state behavior at late time, iii) null shear displacements, and iv) maximum 
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(minimum) normal displacement discontinuity at the injector (producer) which indicate 

the numerical solution is qualitatively correct. 

 
Figure 5-6. Mean values of the residual equations for each time step – Case 2. 

 

 

 
Figure 5-7. Transient response of pressure and displacements at the injector and 

producer wells – Case 2. 
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5.1.3. FPDD model verification – Case 3 

The elastic version of this model was verified in the previous section. Now, the 

poroelastic model is tested here using again the problem of a pressurized crack (Figure 

5-1). The crack is suddenly and uniformly pressurized. Under a one-way coupling 

scenario, the fracture response (aperture) is a sum of the aperture under elastic loading 

and a closure caused by the stressed induced by pore pressure diffusion (Curran and 

Carvalho 1987; Tao et al. 2011; Vandamme and Roegiers 1990; Zhou and Ghassemi 

2011).  The input for the problem is from [3] and the element and time are divided into 

forty (40) elements and time steps. Figure 5-8 shows the response of the fracture (at its 

center) under a pore pressure or Mode 2 loading. As expected the impact of pore 

pressure is negligible at zero plus time and gradually increases as the fluid diffuses into 

the rock matrix causing it to dilate and hence lead to a fracture closure.  

 

 
Figure 5-8. Fracture response to Mode II or pore pressure loading. The fracture tends to 

close under this loading mode – Case 3. 
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The result predicted by the model is in good agreement with those in (Tao et al. 

2011; Vandamme and Roegiers 1990).  Figure 5-9 shows the maximum fracture aperture 

(at its center) under combined Mode I and II loading. Mode I is assumed elastic in this 

study and occurs instantaneously. The fracture opening gradually decreases with time 

under the action of pore pressure diffusion.  

 
Figure 5-9. Fracture response under elastic and pore pressure loading. Pore pressure 

diffusion makes the aperture response time dependent – Case 3. 

 
Figure 5-10. Fracture profile for different times representing drained and undrained 

conditions – Case 3. 
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In Figure 5-10, the facture opening profile is shown for small and large time. The profile 

is elliptical and again, the opening is smaller at larger time in agreement with the results 

in (Tao et al. 2011). 

An additional verification step is presented by comparing the results of FM-

DDM with a well-known analytical solution of uniform flux in a vertical fracture for the 

specific case of constant width by ignoring geomechanical effects. Figure 5-11 presents 

the comparison between the wellbore and dimensionless pressure of both FM-DDM and 

the analytical solution for uniform flux in fractures.  

 
Figure 5-11. Comparison between the wellbore pressure (left) and dimensionless 

pressure (right) computed with FM-DDM and the analytical solution for uniform flux in 
a vertical fracture – Case 3. 

 

Similar to Fig. 5-5, a linear fracture is considered but the producer well is located 

in the center of the linear fracture and no injection is assumed allowing the reservoir 

fluid comes into the fracture. Note that only the linear flow behavior of the analytical 
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solution at the early time of the response will be used here for comparison purposes. 

Therefore, our geomechanical model which account for one dimensional flow sustained 

mainly by expansion of fluids in front of the fracture faces could be used. For 

dimensionless time (    
) less than 0.16, the full analytical solution for the 

dimensionless pressure (  ) can be reduced during this regime to (Cinco-Ley and 

Samaniego-V. 1981): 

         
 (5-1) 

with 

   
           

  
                 

 
  

      
  (5-2) 

 

where    and     are the initial and flowing wellbore pressure,   is the time,    is the 

fracture length and   is the formation thickness. The results of the comparison show in 

general a good agreement in both the flowing wellbore pressure (Fig. 5-11 - Left) with 

an average error of 0.2%, and the dimensionless pressure (Fig. 8 - Right) where the usual 

half slope on the log-log plot associated with the linear flow regime is observed.  

 

5.2. Computational performance evaluation 

This evaluation process involves solving geomechanical problems of increasing 

number of fractures (e.g., 10,000, 20,000, 50,000) and then registers and compares the 

corresponding memory and time requirements for both the conventional DDM and the 

FM-DDM. For all case studies, an orthogonal fracture network is assumed so that the 
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number of fracture segments and corresponding constant length are determined after 

given the fracture spacing. Therefore, fracture networks generated with different fracture 

spacing correspond to different geometries and their results cannot be compared even 

though with the same reservoir dimension. 

 
5.2.1. ED model evaluation – Case 4 

Figure 5-12 shows the largest fracture network discretized into 100,000 fractures 

of 0.42m (or 200,000 DOFs as every element has associated two unknowns). As shown 

in the enlarged zone, the network consists of orthogonal fractures whose elements are 

chosen randomly. The spacing between the fractures is equal to the fracture element size. 

The network is subjected to a constant fluid pressure that is lower than the far-field stress 

so that the fracture elements behave as joints. The input data is showed in Table 5-1. 

 
Figure 5-12. Fracture network of 100,000 boundary elements used to evaluate the 

performance of FM-DDM – Case 4. 
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Figures 5-13 and 5-14 show the CPU time and the percent of RAM memory used by 

DDM and FM-DDM to solve geomechanic models of increasing number of degrees of 

freedom (DOF), respectively.  

 

 

Figure 5-13. Comparison of the memory space between DDM and FM-DDM for 
increasing numbers of DOFs – Case 4. 

 

 

Figure 5-14. Comparison of the CPU time between DDM and FM-DDM for increasing 
numbers of DOFs – Case 4. 
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Table 5-3 presents the numerical values of Figs. 5-13 and 5-14 including the number of 

iterations for convergence required by the preconditioned version of FM-DDM. 

Moreover, the relative error of the final solutions between this iterative approach and the 

direct calculation (DDM) is also included for additional verification purpose.  

 

Table 5-3. Computational performance of FM-DDM and DDM for 
various problem sizes – Case 4. 

DOFs 
DDM FM-DDM Error 

x10-4 
 (%) 

Time 
(sec) 

Mem. 
(%) 

Time 
(sec) 

Mem. 
(%) 

No. 
Iter. 

1000 3 0.2 10 2.5 7 2.75 
2000 27 0.9 16 3.0 8 1.54 
5000 372 4.9 34 4.2 10 2.22 
10,000 3372 20.2 93 4.5 10 2.02 
20,000 30,000 80 176 5.2 14 1.98 
50,000 - 794 7.4 16 - 
100,000 - 3218 10.2 18 - 
200,000 - 4522 24.3 22 - 

 

The numbers of level l of the quad-tree for the first five (5) cases corresponding 

to 1000, 2000, 5000, 10,000, and 20,000 DOFs were 2, 2, 3, 3, and 4, respectively. As 

can be seen from Figs. 5-13 and 5-14, the memory and CPU time demanded by the 

conventional DDM present as expected a quadratic and cubic behaviour (a slope of 2 

and 3 in the log-log plot) in terms of the DOFs. Also, the maximum number of DOFs 

that DDM can handle was around 20,000 with the available memory resources (4 GB) 

after 8.3 hours of computation. 

On the other hand, FM-DDM shows a linear trend exhibiting a theoretical unit 

slope in both memory and CPU time so larger problems can be treated. In comparison 

with DDM, only 1.2 hours was required by FM-DDM to obtain the solution for the 
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largest fracture network and is more efficient for problems with more than 2000 DOFs. 

Note that by extrapolating the DDM’s performance curves, the same simulation would 

require at least: i) 320 GB of RAM to construct and allocate the coefficient matrix, and 

ii) more than 1.2 years of computation to solve the linear system of equations, 

approximately. The FM-DDM also shows scalable properties as achieving convergence 

at comparable number of iterations for various problem sizes as shown in Table 5-2.  

 
 5.2.2. FED model evaluation – Cases 5 and 6 

 

5.2.2.1. FED model for numerical solution – Case 5 

Figure 5-15 shows the locations of the injector and producer wells within the 

fracture network associated with the largest problem of 200,000 DOFs.  

 

 

Figure 5-15. Locations of the injector and producer wells in the fracture network of 
200,000 DOFs used to evaluate the performance of the FMM approach – Case 5. 



 

67 

 

 
Figure 5-16. Comparison of the memory usage between DDM and the FMM proposed 

approach for increasing numbers of DOFs – Case 5. 
 

 

Figures 5-16 and 5-17 show the percent of RAM memory and execution time required 

by the FMM approach and the conventional DDM to perform coupled fluid flow-

geomechanical simulations of increasing number of DOFs, respectively. Table 5-4 

presents the numerical values of Figures 5-16 and 5-17 including the number of 

iterations for convergence required by the preconditioned version of the program. For 

additional verification purposes, the relative error of the fluid pressure at the end of the 

injection between the direct calculation (DDM) and FMM approach is also included. The 

number of levels l of the quad-tree for the eight (8) cases corresponding to 1000, 2000, 

5000, 10,000, 20,000, 50,000, 100,000, and 200,000 DOFs were 2, 2, 3, 3, 3, 4, and 4, 5, 

respectively. 

10
2

10
3

10
4

10
5

10
6

10
-1

10
0

10
1

10
2

Degrees of freedom, DOFs [-]

M
e
m

o
ry

 u
s
a
g
e
 [

%
]

 

 

DDM

DDFMM



 

68 

 

 
Figure 5-17. Comparison of the CPU time between DDM and the proposed FMM 

approach for increasing numbers of DOFs – Case 5. 
 

Figure 5-18 presents the fluid pressure distribution for the largest regular fracture 

network of 66,666 boundary elements (or 200,000 DOFs as every element has associated 

three unknowns) used for this case.  
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Table 5-4. Computational performance of the FMM approach and 
DDM for various problem sizes – Case 5. 

DOFs 
DDM FM-DDM Error 

x10-12 
 (%) 

Time 
(sec) 

Mem. 
(%) 

Time 
(sec) 

Mem. 
(%) 

No. 
Iter. 

1000 51 0.2 53 3.1 245 13.51 
2000 589 0.9 112 3.2 286 5.23 
5000 12,090 4.6 448 3.6 326 3.12 
10,000 102,000 21.1 1010 3.9 400 0.82 
20,000 - - 3777 5.2 476 - 
50,000 - - 11,463 7.1 699 - 
100,000 - - 38,110 8.5 878 - 
200,000 - - 65,690 25.7 1043 - 
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Figure 5-18. Fluid pressure distribution (in MPa) at the end of injection for the largest 

fracture network of 200,000 DOFs used to evaluate the FMM approach – Case 5. 
 

Figs. 5-16 and 5-17 show as expected that the memory and execution time 

employed by the conventional DDM presents a quadratic and cubic behaviour in term of 

the DOFs. With the available RAM memory (4 GB), DDM needed 21.1% (0.844 GB) 

for the 10,000 DOFs case after 28.3 hours of computation and is only able to handle a 

maximum of 20,000 DOFs which were estimated by extrapolating the quadratic 

performance curve. On the other hand, the proposed simulator showed a linear trend in 

both memory and CPU time so larger number of fracture elements can be evaluated. In 

contrast with the conventional method, the current approach based on the FM-DDM is 

faster (higher memory-efficient) than DDM for problems with more than 1000 (4000) 

DOFs needing only 25.7% of memory and 18.4 hours to solve the largest fracture 

network problem. Note that in the hypothetical case of doing the same calculation in a 

personal computer using DDM, such computation would require 4x100 GBs of RAM 
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and more than 317 years of computation, approximately. Finally, see in Table 5-4 that 

again the proposed simulator achieves solution convergence at comparable number of 

iterations for various problem sizes, showing additionally scalable properties.   

 

5.2.2.2. FED model for visualization purposes – Case 6  

This case study evaluates the execution time of FM-DDM for visualizing high-

resolution stress variations in large-scale fracture networks. Figure 5-19 shows the CPU 

time used by DDM and FM-DDM to compute the normal stress distribution around 

10,000 horizontal fractures with increasing number of field points. Table 5-5 presents 

the associated numerical values of Fig. 5-19.  Note in this figure how the complexity of 

the matrix-vector multiplication required to compute the stress components at the 

prescribed field locations has been successfully reduced from a quadratic calculation 

with conventional DDM to linear one using FM-DDM. According with the values in 

Table 5-5, an average speed-up, which is the ratio between the execution time of DDM 

and FM-DDM, of 4.5 was gained over the conventional DDM for this particular case 

study with an apparent superior performance for higher number of fractures. 

 

 

 

 

 

 

 

Table 5-5. Computational performance of DDFMM and 
DDM for different visualization data-sets – Case 6 

Filed points Execution time [sec] Speed up [-] DDM FM-DDM 
100,000 335 69 4.85 
200,000 661 165 4.0 
400,000 1328 261 5.0 
600,000 2069 481 4.3 

1,000,000 - 645 - 
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Figure 5-19. Comparison of the CPU time between DDM and FM-DDM for increasing 

numbers of field points – Case 6 
 

 

Figure 5-20 shows the normal stress distribution for the fracture network with the 

highest number of field points (one million) using FM-DDM. Additionally, Figure 5-21 

presents a comparison of the above spatial distribution computed with FM-DDM (right) 

within a small section of the domain with those obtained with DDM (left) using fewer 

number of field points (200,000).  Note how by the inclusion of more field locations 

additional and subtle details are captured for a better representation (more similar to that 

presented in Fig. 5-19 for parallel fractures) with a comparable computation time. 
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Figure 5-20. Normal stress distribution created with one million field point locations in 
a reservoir with 10,000 horizontal fractures. Stress variations in the central dashed zone 

is enlarged and showed for visualization and further comparison purposes – Case 6. 
 

 

 
Figure 5-21. Comparison of the normal stress distribution within the small zone of Fig. 

8 computed with DDM (left) and FMM (right) using 200,000 and one million field 
points, respectively – Case 6. 
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5.2.3. FPDD model evaluation – Case 7 

This case study considers a naturally fractured network undergoing fluid 

injection and production through a five-spot pattern. For the largest problem of 100,000 

DOFs, the reservoir dimension, fracture distribution (regular mesh), and locations of 

wells are presented in Figure 5-22. Input data for this case study can be found in Table 

5-6. Note that a constant flow rates is specified on each well and the corresponding 

magnitude is obtained by dividing the total flow rate presented in Table 5-6 by the 

number of injector or producer wells. The memory demand and CPU time required by 

both the conventional poroelastic DDM and the FMM approach are showed in Figures 5-

23 and 5-24 after executing geomechanics models of increasing number of degrees of 

freedom (DOFs), respectively.  

 

Figure 5-22. Locations of the injector and producer wells in the fracture network of 
100,000 DOFs used to evaluate the performance of the FMM approach – Case 7. 

 

Injection
Production
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Table 5-6. Input data for the FPPD model evaluation – Case 7. 
Parameter Value 

Shear modulus, G, (GPa) 15 
Poisson’s ratio, v, (-) 0.1 
Shear joint stiffness, Ks (GPa/m) 7.5 
Initial normal stiffness, Kni, (GPa/m) 3.0 
Maximum fracture closure, Dnmax, (m) 5x10-4 
Far-field stress in xx direction,    

  , (MPa) 20 
Far-field stress in yy direction,    

 , (MPa)   20 
Far-field stress in xy direction,    

 , (MPa) 0 
Initial fracture aperture,   

 , (m) 3x10-3 
Initial shear displacement,   

 , (m) 0 
Initial fluid pressure, p, (MPa) 19 
Fluid compressibility,   , (1/MPa) 5x10-5 
Fluid viscosity,   , (MPa.s) 1x10-9 
Matrix permeability, k, [m2] 0.4 x10-15 
Porosity, ϕ, [-] 0.02 
Biot’s poroelastic coefficient, α, [-] 0.4399 
Dilation angle, ϕd, [rad] 0 
Number of Chebyshev nodes per dimension, n, (-) 5 
Number of time steps, h, (-) 20 

 

 
Figure 5-23. Comparison of the memory usage between DDM and the proposed FMM 

approach for increasing numbers of DOFs – Case 7. 
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Figure 5-24. Comparison of the CPU time between DDM and the proposed FMM 

approach for increasing numbers of DOFs – Case 7. 
 

  

Table 5-7 shows the corresponding numerical values along with the total number of 

iterations for convergence. In Table 5-5, the relative error of the pore-pressure at the end 

of the injection process computed with the conventional DDM and the FMM approach is 

also included for an additional verification. For the seven (7) cases corresponding to 

1000, 2000, 5000, 10,000, 20,000, 50,000, and 100,000 DOFs, the number of levels l of 

the quad-tree associated with the FMM approach were 3, 3, 4, 4, 4, 5, and 5, 

respectively. For the largest problem of 100,000 DOFs, the fracture network is 

discretized using 25,000 boundary elements (as every element has associated four 

DOFs). The corresponding spatial distribution of the pore-pressure at the end of injection 

is presented in Figure 5-25.  
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Figure 5-25. Pore-pressure distribution (in MPa) at the end of injection for the largest 
fracture network of 100,000 DOFs used to evaluate the FMM approach – Case 7. 

 

 On the other hand, memory and execution time demanded by the conventional 

poroelastic DDM show as expected quadratic and cubic trends with respect to the 

number of unknowns. In reference to the case of 10,000 DOFs, the conventional DDM 

Table 5-7. Computational performance of the FMM approach and 
DDM for various problem sizes – Case 7. 

DOFs 
DDM FM-DDM Error 

x10-9 
 (%) 

Time 
(sec) 

Memory 
(%) 

Time 
(sec) 

Memory 
(%) 

No. 
Iter. 

1000 160 4.1 1003 4.0 455 206.27 
2000 610 4.7 1256 4.2 547 102.30 
5000 9084 10.8 6464 6.2 583 2.49 
10,000 100713 24.4 8115 6.5 503 58.41 
20,000 - - 9843 7.8 500 - 
50,000 - - 38900 20.2 553 - 
100,000 - - 73753 22.5 684 - 
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needed 24.4% (0.976 GB) after 28 hours of processing. By extrapolating its performance 

curve (dash-dot line), DDM would be able to solve optimistically up to 20,000 DOFs 

with the current computational resources.  

 In contrast, a linear performance in both memory and CPU time is showed by the 

FMM approach so larger problem can be executed. The poroelastic FM-DDM is faster 

and save more memory than the conventional method for problems with more than 1000 

and 4000 unknowns, respectively. In fact, solving the largest fracture network the FMM 

approach only needed 22.5% of memory with 20.5 hours of calculation. Note that the 

same calculation using DDM would require 400% more RAM with more than 31.7 years 

of computation, approximately. Finally, values in Table 5-7 suggest again that the FMM 

approach exhibit scalable properties by achieving solution convergence at comparable 

number of iterations even for higher problems sizes.   
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6. NUMERICAL APPLICATIONS 

 

The proposed method described in Section 5 to evaluate large-scale 

geomechanical models is used here for several numerical applications. By using FM-

DDM, complex interactions between hydraulic and natural fractures are computed and a 

more realistic opening distribution of the transverse fractures is obtained. In addition, 

fast visualization of high-resolution stress distribution around fracture intersections are 

obtained with low-computational resources for realistic representation and 

characterization of unconventional reservoirs. Finally, several production scenarios in 

elastic and poroelastic fractured reservoirs are evaluated after computing the coupled 

flow-geomechanical response associated with different well type, location and 

configuration. 

This section begins describing an application for multiple transverse fractures in 

unconventional reservoirs using the elastic deformation (ED) model explained in Section 

2.  Next, examples using the flow-elastic deformation (FED) model for the transient and 

spatial response of fracture networks are presented. Finally, a case study using the flow-

poroelastic deformation and diffusion (FPDD) for the fluid injection and production in a 

large-scale poroelastic network is shown. Input data for all case studies is the same as in 

Section 5. 
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6.1. Multiple transverse fractures in unconventional reservoirs – Case 1  

The objective of this case study is to evaluate mechanical interactions between a 

network of naturally fractures and a set of transverse hydraulic fractures as commonly 

found in unconventional reservoirs and to further illustrate the computational efficiency 

of FM-DDM to consider large-scale geomechanical interactions during reservoir 

stimulation. The three parallel hydraulic fractures, orientated perpendicular to the 

horizontal well, intersect an interconnected natural fracture network whose elements are 

distributed in the reservoir with different locations, lengths, and angles (See Fig. 6-1).  

 

 

 

 

Figure 6-1. Distribution of natural fractures in the reservoir and location of the 
transverse hydraulic fractures – Case 1. 
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Figure 6-2. Minimization of the relative error during the iterative search for the 

preconditioned and non-preconditioned FM-DDM – Case 1. 
 

Exploiting the ability of FM-DDM to solve for larger problems, a fine 

discretization scheme is applied to capture high level of detail using 17,000 fracture 

elements (34,000 DOFs) of average length of 0.65 m. One set of natural fractures is 

oriented 22.5 degrees respect to x-axis and the other set is perpendicular to it. The 

minimum and maximum spacing for both directions are 5.6 m and 25.8 m. The average 

spacing between the co-linear ones is around to 15.3 m. Constant fluid pressure is 

assumed in all fractures (10 MPa in the natural fractures and 5 MPa of net pressure in the 

hydraulically induced ones) as our analysis considers the injection fluid has filled the 

fractures and the pressure is stabilized.  Additionally, neither fracture propagation nor 

proppant transport is modeled. 

Figure 6-2 presents the curves of the relative error during the iterative search for 

both non-preconditioned and preconditioned versions of FM-DDM. Note that the block-

diagonal preconditioner helps to achieve convergence after 48 iterations (497 sec) in 
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contrast with the unpreconditioned version which after 150 iterations (1615 sec) could 

not drastically reduce the error. Figure 6-3 shows a graphical representation of the 

fracture opening (not to scale) and shear displacement of both natural and hydraulic 

fractures. For comparison purposes, Fig. 6-3 also includes in the upper left side the 

corresponding displacement results in the absence of the fracture network computed by 

FM-DDM similar to those reported using analytical and conventional numerical methods 

(Wu and Olson 2013). Note that in this simplified stimulation scenario, the two (2) 

exterior hydraulic fractures (left and right) have the highest normal aperture in the 

middle and maximum shear close to the tip. Here, the central fracture exhibits generally 

lower width as being under compression by the effect of the exterior fractures (Sesetty 

and Ghassemi 2012; Sesetty and Ghassemi 2013).  

 

 

  

Figure 6-3. Final fracture width (left) and shear (right) DD computed with the 
preconditioned version of FM-DDM – Case 1. 
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Figure 6-4. Histogram of the final normal aperture of boundary elements associated to 
both the hydraulic (left) and natural (right) fractures showing the distribution of values 

above (opening) and below (closure) the initial aperture – Case 1. 
 

The results in Fig. 6-3 show more complex mechanical interactions in the 

fractured reservoir which create different profiles of the normal and shear displacements 

for the hydraulic fractures and also some of the natural fractures. The fracture elements 

with maximum normal aperture and shear displacement are located mostly along the 

transverse fractures where stress shadow is lower and shear stress is higher. But a well-

defined pattern cannot be observed due to the complex nature of the network. Some 

fracture elements have experienced a decrease in aperture while others have increased 

apertures.  

Figure 6-4 presents a histogram of the normal displacement associated with the 
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(75%) of the boundary elements corresponding to the hydraulic (natural) fractures are 

greater than the initial normal aperture, indicating some degree of stimulation in the 

reservoir.  

 

6.2. A large-scale flow-geomechanical simulation in a fractured reservoir – Case 2  

In this case study, the computational cost, convergence rate, and evolution of 

flow and geomechanical variables are evaluated. Figure 6-5 shows the locations of the 

two (2) injector and four (4) producer wells on the reservoir.  

 

 

 

Figure 6-5. Locations of the injector and producer wells in the fracture network – Case 

2. 
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The naturally fracture network is discretized using a regular mesh of 25,000 

boundary elements (75,000 DOFs) exploiting the ability of the approach to solve for 

larger problems. Figure 6-6 shows the changes of the fluid pressure at the injector and 

producer wells during the simulation while Figure 6-7 shows the distribution of the fluid 

pressure in the fracture network at the beginning (0.047 sec) and at the end of the 

injection. On the other hand, Figures 6-8 and 6-9 shows the distributions of the shear 

displacement discontinuity and fracture width in the network at the corresponding times. 

Finally, Figure 6-10 and 6-11 show the fracture permeability and the induced stress 

components    ,    , and    , respectively. 

 

 

 

Figure 6-6. Changes of the fluid pressure at the injector and producer wells during the 
simulation – Case 2. 
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Figure 6-7. Distribution of the fluid pressure in the fracture network computed at the 
beginning (left) and at the end (right) of injection – Case 2. 

 

 
Figure 6-8. Distribution of the shear displacement discontinuity (  ) in the fracture 
network computed at the beginning (left) and at the end (right) of injection – Case 2. 

 

 
Figure 6-9. Distribution of the fracture width (  ) in the fracture network computed at 

the beginning (left) and at the end (right) of injection – Case 2. 

  
 

  
 

  
 



 

86 

 

As shown in Fig. 6-6, the pressure at the injector (producer) wells increase 

(decrease) with time and reach a steady-state behavior near the end of injection. 

Therefore, and as expected, higher (lower) values of fluid pressure are found in regions 

around the injector (producer) wells. Note that these regions are well-separated at the 

beginning and their extension limited to fractures around the wells. However, after the 

fluid injection continues, the connection of these regions is evident and greater isobaric 

zones are formed in the fracture network (see Figure 6-7). Highest (positive and 

negative) shear displacement discontinuity in Fig. 6-8 are observed in the vicinity of the 

injector (I1) and producer (P4) wells during the simulation indicating relevant shear 

stress concentration at these locations with potential to modify the fracture permeability 

by shear dilation. Note also that when the injection commence, fracture aperture (or 

negative normal displacement discontinuity) are located mainly near the injector wells 

while regions away from this points experiment certain closure in special around the 

producers (see Fig. 6-9). At the end the injection, smaller changes in fracture aperture 

are found not only around the injection points but also in regions between them. 

Note that fracture permeability in Fig. 6-10 has a pattern similar to the aperture 

distribution with higher (lower) values around injector (producer) well as expected 

according to Eq. (2-44). Variations of the spatial gradient apparently depend on several 

factors such as the relative position between those wells and the induced stresses. The 

stress distributions are presented in Figure 6-11.  
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Figure 6-10. Distribution of the fracture permeability (  ) in the fracture network 
computed at the beginning (left) and at the end (right) of injection – Case 2. 

 

 

An analysis of those stress distributions reveals that the gradient of     and     

are orientated in the vertical and horizontal directions and in general showing positive 

(compression) values in the upper-right zone due to the fluid production (P4) and 

negative (traction) ones on the lower-left corner as a consequence of the injection (I1). 

Finally inspecting     contour plot, it follows the trend of the associated displacement 

discontinuity (Fig. 13) presenting higher variations concentrated on the left and lower 

sides of the fractured reservoir due to the effects of the injection. 
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Figure 6-11. Distribution of the induced stresses     (top),     (middle), and      

(bottom) in the fracture network computed at the beginning (left) and at the end (right) 
of injection. Units are in kPa – Case 2. 
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6.3. Geomechanical response of fractured reservoirs due to injection – Case 3 

 This case study computes the stress distributions in a reservoir at different times 

caused by the isothermal fluid injection through an irregular fracture network. The 

dimension and distribution of the 1000 fractures (16.6 meters each one) as well as the 

locations of the injector and producer wells at the center of the fracture elements are 

showed in Figure 6-12. A large number of field points (160,000) were used to capture 

higher details of the stress variations above and below the initial field stress. Transient 

numerical solutions were obtained by solving the flow-elastic deformation (FED) model 

described in Section 2. 

 

 

 

Figure 6-12. Fractured reservoir used for the injection process indicating the locations of 
the injector and producer wells– Case 3. 
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Figure 6-13. Fluid pressure in the fracture network after 2 (left) and 60 (right) days of 
injection – Case 3. 

 
 

 

 The fluid pressure in the fracture network during the injection is presented in 

Figure 6-13. Figure 6-14 presents the mean stress distribution in the reservoir using 

160,000 field points after 2 (left) and 60 (right) days of injection. The small dashed zone 

on the bottom left is used in Figure 6-14 to compare with more details the stress 

variations near the injector well. A quick examination of Fig. 6-14 shows that slightly 

changes of the initial value occurred at the beginning of the injection but increase in 

magnitude during the process. Note that at later times, higher stress values are 

concentrated around the intersection of fractures where most of them seem to be 

distributed along NE-SW directions. This coincides with the natural path for the 

movement of fluids from the injector to the producer wells because greater normal 

displacements (and then normal stress) are created along this direction to provide 

transport conduits to the fluid flow.  
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Figure 6-14. High fidelity mean stress distribution in the reservoir constructed using 

100,000 field points after 2 (left) and 60 (right) days of injection – Case 3. 
 

 
Figure 6-15. Comparison of the mean stress variations near the injector well after 2 

(left) and 60 (right) days of fluid injection – Case 3. 
 

Finally as can be seem in Fig. 6-15 (right), a closed inspection of the stress 

variation near the injector reveals that larger number of field points help to construct a 

more accurate but computationally cheap spatial distribution in this small area using 

FM-DDM. It shows again higher stress concentrations at the fracture’s intersections that 

could potentially lead to, for instance, fracture initiation and propagation.  
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6.4. Fluid injection and production in large-scale poroelastic shales – Case 4 

The dynamic evolution of flow and geomechanics variables in a poroelastic shale 

is analyzed in this case study. For this purpose, an irregular fractured reservoir with 

sealing faults containing 10,000 boundary elements with two (2) injectors and three (3) 

producer wells is proposed (see Figure 6-16). The transient response of the pore pressure 

at the injector and producer well are plotted in Figure 6-17 and the associated spatial 

distribution of geomechanical and flow variables are presented in Figures 6-18 and 6-19, 

respectively. For additional details, Figure 6-20 shows the corresponding distribution of 

the induced stresses in the fracture network computed at the beginning and at the end of 

the process. 

 

 

 

Figure 6-16. Locations of the injector and producer wells in the fracture network with 
sealing faults – Case 4. 

I1

I2

P2

P3

P1

Injector

Producer



 

93 

 

 
Figure 6-17. Transient response of the pore pressure at the injector and producer wells – 

Case 4. 

 

Figure 6-18. Distribution of shear displacement (top) and fracture width (bottom) in the 
fracture network with sealing faults computed at the beginning (left) and at the end 

(right) of simulation. Units for Ds and Wf are in m, respectively – Case 4. 
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Figure 6-19. Distribution of pore pressure, p,  (top) and fluid leak-off, Ql,  (bottom) in 
the fracture network with sealing faults computed at the beginning (left) and at the end 
(right) of simulation. Units for p and Ql are in MPa and m2/sec, respectively – Case 4. 

 

 

For comparison purposes, Figure 6-21 presents the pressure evolution at the 

injector and producer wells in the network with and without sealing faults. The 

corresponding pore pressure, fluid leak-off, and fracture permeability are presented in 

Figure 6-22. Finally, Figure 6-23 presents the evolution of wellbore pressure for both the 

elastic and poroelastic faulted network cases. 
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Figure 6-20. Distribution of the induced stresses xx (top), yy (middle), and xy (bottom) 
in the fracture network with sealing faults computed at the beginning (left) and at the end 
(right) of injection. Units are in kPa along with tension positive as the sign convention – 

Case 4. 
 



 

96 

 

 

Figure 6-21. Comparison of the pressure evolution at the injector and producer wells in 
the poroelastic fracture network with and without sealing faults – Case 4. 

 
 

As can be seen in Fig. 6-17, the pore pressure is higher (lower) at the injector 

(producer) wells and increases (decreases) with time stabilizing near the end of the 

simulation. Figs. 6-18 and 6-19 reveal that geological faults play an important role in the 

reservoir dynamic even at the early stage of the injection. The sealing faults create flow 

barriers in the fracture network and introduce compartmentalization that produce 

discontinuous spatial distribution of both geomechanical and flow variables that 

potentially impact the fluid recovery. In particular, Fig. 6-20 presents how the induced 

stresses are generally homogeneous in most of the domain’s compartments where fluid 

injection/extraction is carried out showing only stress gradients in the central area of the 

reservoir where those compartments are in communication.  

 

I1
P1
Faults
No Faults



 

97 

 

Note that, for example, if the sealing faults are removed, the pressure response (Fig. 6-

21) as well as the flow variables (Fig. 6-22) would change drastically.  

 

Figure 6-22. Distribution of the pore pressure, (top), fluid leak-off (middle), and fracture 
permeability (bottom) in the fracture network with (left) and without (right) sealing 
faults at the end of injection. Fracture permeability’s unit is in Darcy x10-3 – Case 4. 
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In general as no flow barriers exist, less pressure at the injector well is needed and the 

distribution of the fluid leak-off, pressure, and even fracture permeability are more 

uniform within the domain with gradual spatial gradients. 

Finally, the results in Figure 6-23 involving the comparison of the injecting and 

producing pressure reveals that the elastic faulted network presented lower pressure 

demands than the corresponding poroelastic case probably by the fact of neglecting the 

fracture interface flow rate which would involves additional pressure drops. 

 

 

 
Figure 6-23. Comparison of the pressure at the injector and producer wells for the 

elastic and poroelastic fracture network with sealing faults – Case 4. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

DDM is commonly used for the solution of fracture problems in mining and 

hydraulic fracturing. However, it demands computing the influences among all elements 

so the resulting coefficient matrix is dense and nonsymmetrical and conventional 

strategies, either direct or iterative, for the solution of the system of equations are 

computationally intensive when large numbers of elements are involved. This work 

presents a novel approach to solve large-scale fracture problems using the Fast Multipole 

Method. 

 

7.1. Conclusions 

The main contributions and conclusions from this study are summarized as follow: 

1. This work presented a new method called Fast Multipole-Displacement 

Discontinuity Method (acronymed as FM-DDM) for the efficient fluid flow-

geomechanical simulations of large-scale naturally fractured reservoirs under 

injection and production operations.  

2. FM-DDM was applied to simulate the response of field-scale geomechanical 

models of increasing complexity which account for the normal and shear 

deformation of fractures embedded in elastic and poroelastic rocks and for the 

changes in pore-pressure and fluid leak-off due to the flow through a two-

dimensional network.  
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3. The accuracy of FM-DDM was evaluated through several synthetic case studies 

showing excellent agreement with both analytical and numerical solutions. In 

addition, the computational performance of the FMM approach and DDM were 

compared and analyzed after solving goemechanical models of increasing 

number of fractures. From the results, FM-DDM showed linear complexity in 

both memory and execution time outperforming the conventional method which 

demands quadratic and cubic requirements, as expected.  

4. Using modest computational resources provided by personal computers, the FM-

DDM approach was able to solve for larger problem sizes with up to two 

hundred thousand DOFs. A variety of large-scale geomechanical situations were 

successfully evaluated with FM-DDM involving the computation of interactions 

between transverse hydraulic fractures and a naturally fracture network, design of 

exploitation strategies in fractured reservoirs with vertical wells, and fast 

visualization of high-resolution stress distribution around fracture intersections 

for realistic representation and characterization of unconventional reservoirs. 

5. By adopting a kernel-independent version of the classical FMM called Black-

Box FMM, the programming complexity of our computational implementation 

was significantly reduced without the need for any analytical multipole and local 

expansions, opening a range of new potential applications within the geothermal 

and oil industries. 
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7.2. Recommendations 

For further studies, the following topics are recommended: 

1. Use FM-DDM to evaluate more industrial-oriented problems involving other 

geomechanical processes (e.g., hydraulic fracturing), physical phenomena (e.g., 

micro-earthquake), and study types (e.g., sensitivity analysis, characterization, 

optimization). 

2. Extend FM-DDM to account for more complex situations such as 3D fracture 

networks, variable injection rate scenarios, and full poroelastic or thermal 

response. 

3. Develop a pre-processing module for the automated meshing of stochastically 

generated fracture networks and improve the preconditioner stage of the iterative 

solver in order to get faster convergence when more irregular fracture 

distributions are evaluated.  
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NOMENCLATURE 

 

a : Fracture half-length 

A : 
Influence coefficient for normal an shear stresses by the displacement 

discontinuities 

c : Elastic constant 

cf : Fluid compressibility 

cn : Number of chebyshev nodes per dimension 

ct : Total compressibility of fracture 

C : Fluid pressure coefficient between elements i and j 

D : Displacement discontinuity 

Dmax : Maximum possible closure 

f : Influence function of the fundamental solution of elastic rocks 

G : Shear modulus 

kf : Fracture permeability 

   : Matrix permeability 

  : Joint stiffness 

    : Initial stiffness 

Km, Qm : 
Kernel matrix and pseudo charge vector associated to the m-th matrix-

vector product 

L : Fracture length (or 2a) 
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m : Total fracture elements connected to the ith fracture 

M : Biot’s modulus 

n : Vf /Vef 

N : Number of unknowns or degrees of freedom (DOF) 

P : Pore-pressure 

Vef : Effective fracture void volume for fluid flow 

Vf : Actual fracture void volume 

q : Flow rate in the fracture 

qs : 
Injection or production rate (positive injection) per unit formation 

thickness 

Ql : Fluid leak-off rate per unit height 

s : Spatial coordinate along the fracture length 

t : Time 

wf : Fracture width or aperture 

 

Symbols: 

μ : Fluid viscosity 

 : Angle counterclockwise from the x-axis to the fracture 

  : Biot’s coefficient  

  : Porosity 

   : Dilation angle 
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  : Poisson’s ratio 

  : Stress 

   : Effective stress 

   : Field stress 

 

Subscripts 

i, j : Index of fracture segments  

n, s : Normal and shear directions respect to the fracture orientation 

p : 
Source components associated with the shear, normal displacement 

discontinuities, and fluid leak-off rate. 

q : Effects over the tractions components (xx, yy, and xy) and pressure (p) 

      : Coordinate direction in the local coordinate system 

                   : Directions of the stress components in the local coordinate system 

x, y : Coordinate direction in the global coordinate system 

 

Superscripts 

i : ith fracture element 

x : Current time step 

h : Index of time step 

k, k+1 : Old and new time levels 
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APPENDIX A 

 
FAR-FIELD APPROXIMATION OF KERNELS FOR THE STRESSES DUE TO 

THE DISPLACEMENT DISCONTINUITIES 

 

Let write the product of the displacement discontinuity vector and the matrix 

kernel in Eqs. (2-8) to (2-10): 

 
 
 
        

   

       
   

       
   

 
 
 
 

  

 
 
 
 
            

   
           

   

           
   

           
   

           
   

           
   

 
 
 
 
 

 
  

 

  
 
  (A-1) 

For compactness, let express the six (6) kernels of the matrix above as follow: 
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      (A-11) 

       
            

        (A-12) 

        
            

        (A-13) 

Note that computing the effects of the jth fracture (source) into the ith fracture 

(field) using kernels in Eq. (A-1) involves proper coordinate transformations of the 

relative location between both fractures from the global (x,y) to the local (     ) system 

using Eqs. (2-6) and (2-7).  In addition, note that the final induced stresses 

(                       ) are expressed for the local (     ) system of the ith fracture segment so 

additional transformations are necessary to rotate it to the global (x,y) one.  

Table A1 shows the far-field approximations at global coordinates of the kernels 

in Eqs. (A-8) to (A-13). Note in Table A1 that the term mvp means the number of 

matrix-vector products (and then multipole approximations) necessary for the evaluation 

of kernels K1 to K6 at local coordinates         using kernel expressions (enclosed by 

parenthesis) at global coordinates      . A total of ten (10) multipole approximations 

with sixteen (16) mvp are required for this approximation. For instance, to evaluate 

kernel K1 at         is necessary to execute and sum two (2) multipole approximations of 

F4 and F5 at      , grouping the terms        and        with the unknown vector, 

respectively.  
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 Table A1 –Far-field approximation of kernels in Eqs. (A-8) to (A-13) 
  

Kernel 
        

Kernel       
mvp 
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                                                   3 

                                                    3 
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APPENDIX B 

POROELASTIC KERNELS OF PORE-PRESSURE AND INDUCED STRESSES 

DUE TO THE FLUID LEAK-OFF 
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APPENDIX C 

 
ANALYTICAL EXPRESSIONS FOR THE FAR-FIELD APPROXIMATION OF 

POROELASTIC KERNELS 

 The mathematical expressions to approximate the poroleastic kernels in Eqs. (4-

22) to (4-26) are presented below: 
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APPENDIX D 

 
ASSEMBLE OF ELASTIC AND POROELASTIC KERNELS FOR THE 

COMPUTATION OF TRACTIONS COMPONENTS 

 If a j-th fracture element is considered, the traction components at the x, y global 

coordinate is computed by multiplying the kernel matrix at the   ,    local system, the 

rotation matrix, and the unknown vector (Tao et al. 2009a; Tao and Ghassemi 2010): 

 

    

    

    

 

 

 
 
 
        

         
         

  

       
         

         
  

       
         

         
  

 
 
 
 

 

     
      

        

     
      

       

                          
       

 

  

   

   

   

  

(D-1) 

The effects of the displacement discontinuities and fluid leak-off rate over the tractions 

can be separated by splitting the corresponding components in the kernel matrix as: 

 
 
 
        

         
         

  

       
         

         
  

       
         

         
  

 
 
 
 
 

 
 
 
        

         
   

       
         

   

       
         

    
 
 
 

     

 

 
 
 
          

  

         
  

         
  

 
 
 
 

   

 (D-2) 

After introducing Eq. (D-2) into Eq. (D-1), the final traction components can be 

expressed as the contribution of two (2) separated effects: 

 

    

    

    

   

    

    

    

 

     

  

    

    

    

 

   

 (D-3) 

Note that computing the tractions associated with the displacement discontinuities (    ) 

has been described in Appendix A for elastic rocks. The current FMM approach 
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accounts additionally for the poroleastic effects due to the fluid leak-off rate (  ) as 

expressed below:  

 

    

    

    

 

   

 

 
 
 
        

       
         

       
         

        

       
       

         
       

         
        

       
                    

                    
        

       
   

 
 
 

    (D-4) 

 Corresponding mathematical expressions for the far-field approximation of 

kernels        
  ,        

  , and        
   are found in Eqs. (4-22) to (4-24). Note that after proper 

simplification of elastic and poroelastic terms, only a total of 14 unique multipole 

approximations with 28 mvp are needed.  




