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ABSTRACT 

 

Electronic States and Optical Transitions in Bulk and 

Quantum Well Structures of III-V Compound Semiconductors.  

(May 2011) 

Yong Hee Cho, B.S., Hanyang University at Seoul 

Chair of Advisory Committee: Dr. Alexey Belyanin 

 

 In this work we apply the methods of band structure calculation combined with a 

self-consistent treatment of the light-matter interaction to a variety of problems in bulk 

semiconductors and semiconductor heterostructures as well as in new optoelectronic 

devices. 

In particular, we utilize the 30- and 8-band k • p band structure calculation 

methods to study the electronic, magnetic, and optical properties of the diluted magnetic 

semiconductor, GaMnAs, in the mean-field Zener model. We calculate the anisotropic 

dielectric response of GaMnAs in the metallic regime and show that our model produces 

a good agreement with the experimental results of magneto-optical Kerr spectroscopy in 

the interband transition region. We also discuss the advantages of the 30-band k • p 

model for spin-polarized ferromagnetic GaMnAs. 

 We present new methods for calculating electronic states in low-dimensional 

semiconductor heterostructures based on the real-space Hamiltonian. The formalism 

provides an extremely simple numerical implementation that gives accurate results. It is 



 iv 

applicable to a general n-band k • p model; we specifically test it in the 6- and 8-band    

k • p models, and a simple parabolic one band model. Spurious solutions have long been 

a major issue in low- dimensional band structure calculations. The transparency of the 

new method allows us to investigate the origin of both types of spurious solutions in a 

unified manner and eliminate fast oscillating spurious solutions.  

We apply this method to two-dimensional nonlinear optical semiconductor 

heterostructures. We calculate the upper limits on the efficiency of the passive terahertz 

difference frequency generation based on the intersubband resonant nonlinearity. Our 

approach incorporates electronic states together with propagating coupled fields through 

a self-consistent calculation of the Poisson equation, density matrix equations, and 

coupled wave equations. We develop optimal device geometries and systematically 

study the device performance as a function of various parameters. The results are 

compared with a simplified analytic solution. 
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1.  INTRODUCTION
*
 

 

 

1.1   Band Structure Based on the k • p Model for Bulk Semiconductors 

 

 Electronic states in semiconductors are best described by the series of quasi-

continuous energy bands (for example, see Fig. 1-1) or in other words, by the dispersion 

relation between energy and momentum of a quasi-particle. The band structure contains 

information such as effective masses in high symmetry points or in band extrema and 

transition energies between interband critical points, band edge energies, the band gap, 

and so on. 

 

 
 

Fig. 1-1. GaAs band structure calculated by a 30-band k • p model. 

 

____________ 

This dissertation follows the style of Physical Review Letters.  
*
Part of this section is reprinted from “Above-bandgap magneto-optical Kerr effect in 

ferromagnetic Ga1−xMnxAs” by C. Sun, J. Kono, Y.-H. Cho, A. K. Wojcik, A. Belyanin, 

and H. Munekata, (2011), Physical Review B, 83, 125206, Copyright © 2011 by 

American Physical Society (APS). 
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 There are several methods to calculate the semiconductor band structure. The 

pseudo-potential method [1-5] uses the effective smooth potential for valence electrons 

based on the plane wave-basis wave functions instead of true potential, showing 

similarity with the nearly free electron model [6, 7]. The method can be further 

categorized into empirical and ab-initio (or first principle) pseudo-potential methods [8, 

9] according to whether or not experimental data is used for determining pseudo-

potential form factors, which is the Fourier transformation of pseudo-potential [10]. The 

empirical method often uses the band gap as an experimental input parameter. The local 

density approximation (LDA) [11-13] taking into account the many body effects such as 

exchange and correlation effects is an example of the ab-initio pseudo-potential method. 

On the other hand, the tight-binding method [14] assumes that electrons are tightly 

bound to nuclei sites. The method basically utilizes the overlap parameters for the 

interaction of electrons with nearby atoms. The k • p method [15, 16] provides another 

approach to the semiconductor band structure calculation. Compared to the empirical 

pseudo-potential method, it uses more experimental data such as all band edge energies 

and optically measured momentum matrix elements which represent band-to-band 

interactions.  

 Among the semiconductor band structure calculation methods, the k • p model is 

one of the most attractive since it provides convenient and efficient approach not only 

for bulk semiconductors but also for low dimensional semiconductor structures, 

particularly two-dimensional layered quantum well heterostructures [16]. 
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 The k • p method has a long history starting from Luttinger and Kohn’s work 

based on the envelope function approximation back in 1955 [17]. It reduced finding the 

complicated valence band structure of semiconductors to a straightforward eigenvalue 

problem with a simple Hamiltonian matrix form based on the second order canonical 

transformation. The valence band structure consisted of 6 bands, i.e., the heavy hole 

(HH) band, the light hole (LH) band, and the spin-orbit (SO) band with Kramers double 

degeneracy of spin-up and spin-down states. The interactions between the valence band 

and the other bands were effectively taken into account by, so called, the Luttinger 

parameters [18]. Later, the conduction band (CB) structure has been added to the 6-band 

k • p model by Kane based on the perturbation theory [19], and the 8-band k • p model is 

now often referred to as the Kane model (see Fig. 1-2 for its band structure). It is 

accompanied by the modification of the valence band interaction parameters or the 

Luttinger parameters in the 6-valence band k • p model by subtracting the contribution of 

the conduction band (see APPENDIX A). Also, the difference from the 6-valence k • p 

Hamiltonian lies in the appearance of interband terms taking into account the interaction 

between the conduction band and the valence band. The explicit 8-band Hamiltonian 

matrix is given in APPENDIX A. 
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Fig. 1-2. GaAs band structure near  symmetry point, calculated by the 8-

band k • p model. The band parameters in Ref. [20] are used. 

 

 However, the validity of this two-level k • p model, i.e., the 8-band k • p model is 

limited to the near vicinity of the  symmetry point, approximately up to the quasi-

particle wave number k ~ 0.1 Å
-1

 as one can see in Fig. 1-3. It does not correctly take 

into account the nonparabolic and anisotropic nature of semiconductor band structure at 

larger wave numbers. The validity of the model can be extended by explicitly including 

remote bands. Such k • p models are called the extended k • p models, differentiated 

from the 8-band k • p model. The 14-band [21-24], 15-band [25-28], 16-band [29], 20-

band [30, 31], 24-band [32, 33], 30-band [34-37], and 34-band k • p models [38, 39] 

have been proposed. The development of the extended k • p method has been somewhat 

slow as compared to other band structure calculation methods because of the difficulty to 

find the d-level symmetry and its basis [34]. Before the emergence of the 30-band k • p 

model, they have been described by the Luttinger-like parameters [31-33]. In the 30-
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band k • p model [34, 35], the symmetry was explicitly taken into account. The Luttinger 

parameters are not required anymore in the 30-band Hamiltonian matrix (the 15-band k • 

p model [25-28] also does not require them, but the spin degeneracy is neglected), and 

the valence band interactions with remote bands are fully taken into account by band-to-

band momentum matrix elements and band edge energies. The 30-band k • p model 

provides an accurate semiconductor band structure which is valid over the whole first 

Brillouin zone. For most problems there is no need to go beyond the 30-band k • p 

model.  

 

 
 

Fig. 1-3. The comparison between the band structure obtained by the 8-

band (dashed) and the 30-band k • p models (solid) (a) over the whole 

Brillouin zone and (b) near the  symmetry point (magnified).  

 

 The 30-band k • p method is valid up to 5 eV above and 6 eV below the top of 

the valence band (see Fig. 1-3 and Ref. [34]), covering interband transitions of energies 

up to 11 eV. It has been successfully applied to calculating effective masses and Landé g 
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factors for the group IV and III-V semiconductors [36]. The general shortcomings of the 

method are also known: e.g., limited experimental data for remote bands and the 

numerical difficulty in ensuring the continuity between U and K symmetry points [34]. 

However, the GaAs band structure calculated by the 30-band method, which we will use, 

is quite accurate, and its results are adopted in the Landolt Börnstein database. The lack 

of inversion symmetry is taken into account through the matrix element between 6C and 

8V/7V (here we follow the Td double group notation throughout the paper). The 30-

band k • p Hamiltonian matrix elements are obtained by the inner product of the 30-band 

basis orbitals [35] on (A.1). The energy level structures, band edge energies, and 

momentum matrix elements for GaAs in a 30-band model can be found in Ref. [34, 35]. 

 

 

1.2   The Dilute Magnetic Semiconductor, (Ga,Mn)As 

 

The diluted magnetic semiconductor, Ga1-xMnxAs, is obtained by heavy doping 

of the transition metal element, manganese (Mn), on GaAs. (Ga,Mn)As is an attractive 

material among III-V compound diluted magnetic semiconductors due to the mature 

growth technology and its possible coherent transition to new functional devices for 

spin-electronics [40]. Usual doping impurities in n- and p-type GaAs semiconductors are 

zinc (Zn) and selenium (Se) respectively [41]. Each of them has the atomic configuration 

of [Ar]4s
2
3d

10
 and of [Ar]4s

2
3d

10
4p

4
. Accordingly, Zn and Se become an acceptor and a 

donor of an electron. Mn has the electronic configuration similar to Zn, but with a half 
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filled d-shell, i.e., [Ar]4s
2
3d

5
. In terms of the Hund’s rule [42], all five electrons have the 

same spin-up or spin-down configuration with the ground state term symbol of 
25

6
S . 

Therefore, the Mn impurities in GaMnAs not only play a role of acceptors while 

substituting Ga sites, but also show the possibility of the Mn spin-ordering mediated by 

the hole spin depending on their favored ferromagnetic or antiferromagnetic exchange 

couplings.  

The ferromagnetic GaMnAs was first realized [43] back in 1996, seven years 

after the demonstration of the ferromagnetic InMnAs [44] along with the advent of the 

low temperature (LT) non-equilibrium MBE growth technology. After that, the material 

has been extensively explored in both experiment and theory. However, its 

ferromagnetic nature in the metallic regime is still controversial in (Ga,Mn)As with the 

high doping of Mn > 1%. In particular it is still debated whether the holes reside (i) in 

the valence band [45-48], (ii) in the impurity d band, or (iii) in the acceptor level above 

the valence band [49-53]. 

The early diluted magnetic semiconductors based on II-VI compounds (ZnSe, 

HgTe, and CdTe) back in 1970s through 1980s [54] did not reveal ferromagnetism. 

Nowadays due to the increased solubility of transition metal elements into II-VI 

semiconductors, allowed by the LT-MBE technology, one can achieve free carrier-

mediated ferromagnetism in II-Mn-VI materials, but the ferromagnetic transition 

temperature is only ~2.5K [55], which is low as compared to the III-Mn-V materials 

(~190K for Ga1-xMnxAs with %10x  [56]). It can be attributed to the fact that the 

doping impurity Mn has the same number of electrons as in the outer shell of column II 
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elements in the host semiconductors such as Zn, Hg, and Cd, which are substituted by 

Mn. 

Not all Mn impurities in GaAs are substituted in Ga sites; some of them reside in 

interstitial sites [57, 58]. Since the ionized Mn
2+

 is regarded as neutral, the Mn impurities 

for such cases give out two electrons which effectively compensate two substitutional 

Mn ions (one hole for each substitutional Mn). However, such defects can be reduced by 

heating up samples after sample growth, and then such an annealing process increases 

the hole density. Consequently, the ferromagnetic transition temperature in the system 

also increases.  

 The (Ga,Mn)As samples which we will investigate were grown by the LT-MBE 

in Munekata’s group in Tokyo Institute of Technology, and then they were 

experimentally characterized by interband magneto-optical (MO) Kerr (see section 1.3) 

spectroscopy and SQUID measurements in Kono’s group at Rice University. We 

microscopically model the electronic states, Curie temperatures, magnetic anisotropies, 

and the dielectric responses of the samples adopting the valence band picture for metallic 

GaMnAs, as addressed above, based on the mean-field Zener model. Later, we compare 

with the experimental results. 

 Within the approach utilizing the k • p band model for electronic states of 

GaMnAs, the 8-band k • p model is usually adopted in many references [59-66]. It was 

applied to describe the response in the infrared spectral region near the Fermi level 

located inside the valence band in the metallic regime. Most recently such approach with 
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the antiferromagnetic p-d spin exchange coupling was used to explain experimentally 

observed magneto-optical effect in GaMnAs in a semi-quantitative way [66]. 

 Our approach is similar but we use a 30-band k • p method instead of the 

effective band structure calculation based on the two-level model, which includes only 

6C (CB) and 8V/7V (VB). Since our primary interest is to reproduce the experimental 

magneto-optical Kerr spectra in the interband region up to ~ 3 eV, the band structure 

should be valid in this energy range. In that sense, the 8-band k • p method is not 

sufficient since it holds up to ~ 2 eV. The simulation of the magneto-optical Kerr spectra 

requires the calculation of the dielectric response or the conductivity of the material. It is 

significantly influenced by states with k-vectors higher than ~ 0.1 Å
-1

, in which the two-

level model starts to break down. Also, the model based on the 8-band k • p method has 

to include an adjustable static dielectric constant added by hand. 

 Furthermore, within the two-level k • p model, one needs to specify the Luttinger 

parameters in order to take into account any change of the interaction between the 

valence band and remote bands, which can occur due to adding additional interactions 

such as the spin exchange coupling in the ferromagnetic GaMnAs. On the other hand, it 

is automatically taken into account in the 30-band k • p model because the Luttinger 

parameters are not required in the Hamiltonian. Rather, they can be calculated especially 

upon adding the spin exchange interaction in GaMnAs. This is an important advantage 

of the 30-band k • p method as compared to the 8-band k • p method. Therefore, the 

modification of the valence band interaction with remote bands due to antiferromagnetic 

Mn-hole spin exchange coupling, the epitaxial strain of samples, and Coulomb 
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interaction effects in diluted magnetic semiconductors can be simultaneously taken into 

account within the 30-band k • p model.  

 At the same time, the 8-band k • p model is enough to deal with the magnetic 

properties of GaMnAs such as temperature-dependent magnetization and magnetic 

anisotropy based on the Zener model [67] which describes that the magnetic ordering of 

ion spins is mediated by free carrier spins, since they are associated with a very top 

portion of the valence band structure up to the quasi-Fermi level. The derivation of the 

s,p-d spin exchange interaction Hamiltonian for arbitrary magnetization directions in the 

8-band k • p basis is presented in APPENDIX B. 

 

 

1.3   Magneto-Optical Kerr Effect (MOKE) 

 

 The magneto-optical Kerr effect (MOKE) [68, 69] has long been a useful tool to 

investigate anisotropic dielectric materials that have non-zero net magnetization. When a 

linearly polarized electromagnetic field is incident on such samples, the polarization axis 

of the reflected light is rotated from the initial direction by an angle (the Kerr angle) that 

depends on the magnitude and direction of the magnetization. MOKE is originated from 

the refractive index difference between the right and left circular polarizations. In other 

words, it is attributed to the anisotropic dielectric response or conductivity of magnetic 

samples to the incident electromagnetic field. 
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1.4   Eigensolutions of Low-Dimensional Semiconductor Nanostructure 

 

 The development of semiconductor epitaxial growth technologies such as the 

molecular beam epitaxy (MBE) [70] and the metal-organic chemical vapor deposition 

(MOCVD) [71] has enabled fabrication of high-quality nanostructures in which layer 

thicknesses are controlled with one monolayer precision and electrons experience 

quantum confinement in one, two, or three dimensions [7]. The methods of calculating 

confined electron states, particularly in semiconductor layered heterostructures, are more 

complex than in bulk since the momentum component in the confinement direction (or 

the growth direction) becomes an operator, allowing only discrete eigen-energies in that 

direction instead of continuous ones. It requires solving coupled high-order partial 

differential equations depending on the number of bands included. This is usually 

handled by complicated numerical techniques as well as huge computing resources. 

Therefore, it is important to find a simple, accurate, and efficient methodology. 

A number of methods in the real space [72-75] as well as in the momentum space 

[76-78] have been developed for calculating eigenstates in coupled low dimensional 

semiconductor heterostructures. However, many of them suffered from unphysical 

spurious solutions, and much effort have been spent on trying to remove these artifacts 

in various ways [77-86] even without being restricted[81, 86-88] to the k • p theory [15-

17, 19]. However, it seems that there are no universal methods for removing spurious 

solutions until now. Many of them are for particular or simplified band models, or for 
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specific numerical models, and it is sometimes required to change the k • p Hamiltonian 

matrix or band parameters. The methods are not compatible to one another. 

The spurious solutions are usually referred to as eigen solutions that are located 

in the middle of the band gap or that are fast oscillating envelope functions. It is 

heuristically known that multi-band Hamiltonians expanded up to the second order in 

terms of the confined momentum component generate such spurious solutions upon 

simultaneously seeking eigenstates in both the conduction and the valence bands. It 

occurs regardless of the simplicity of the k • p band models. Often, the origin is 

attributed to large k values outside the first Brillouin zone edge. 

In the momentum space, the cut-off method [77] has been recently suggested for 

removing fast oscillating envelope-function-type spurious solutions in the plane wave 

expansion for confined states. It truncates the wave number vector at the cut-off value 

which is determined by the conduction band bending and is much smaller than the edge 

of the first Brillouin zone. The method is based on a miscalculated bulk 8-band structure, 

in which the contribution due to the explicit inclusion of the conduction band had not 

been subtracted from the valence band parameters. In other words, the Luttinger 

parameters were not modified properly. Consequently, the conduction band is bowed 

down into the band gap as the wave vector increases, which is obviously unphysical. The 

basic idea of introducing a cutoff to remove spurious solutions has been employed in 

other papers [81, 86]. 

The correct interface boundary condition, which connects wells and barriers at 

abrupt jump interfaces, in heterostructures is still being disputed [89-95]. Here, we 
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follow the ideology of the Fourier grid Hamiltonian (FGH) method [96], in which 

explicit boundary conditions are not necessary. Therefore, the ambiguity of the interface 

boundary condition on eigen solutions in semiconductor heterostructure problems can be 

ruled out within the EFA. Such approach to the heterostucture problem has been 

previously used in Ref. [76] in the momentum space instead of that in the real space as 

in our present work. 

The FGH method [96] uses the forward and backward Fourier transformation, 

the variational method, and the fact that natural representations for the kinetic and the 

potential energies are in the momentum and the coordinate space, respectively. The 

resulting Hamiltonian for a bound system in a simple one-dimensional Schrödinger 

equation forms an N×N square matrix, in which N is equally discretized number of grid 

points in the coordinate space. The method has been further developed in various ways 

[97-102]. 

 

 

1.5   THz DFG in Quantum Well Heterostructures 

 

 As an application of the layered semiconductor heterostructures, we treat the 

optical device emitting terahertz (THz) radiation in quantum well heterostructures. The 

ability of the terahertz (THz; 1THz ~ 4 meV) radiation to penetrate non-destructively 

through dry opaque materials such as tissue, plastics, and fabrics, drives the development 

of THz sources for a wide range of potential applications, for example, in medical 
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imaging, gas sensing, security screening, and manufacturing [103]. For such practical 

applications, compact and efficient sources of for THz radiation operating at room 

temperature are in high demand. Among various kinds of THz radiation sources [104-

123], the difference frequency generation (DFG) [124] based on intersubband resonant 

nonlinearity in multiple quantum well structures [104-107, 112-114] has attracted much 

interest. This process utilizes a large second-order optical susceptibility (at least 10
3
 

times larger than in conventional nonlinear crystals), originated from the broken parity 

of subband envelope functions in properly engineered multiple quantum well structures. 

The large optical nonlinearity opens the way to achieve high enough conversion 

efficiency even with moderate mid-infrared pump powers generated by mid-infrared 

quantum cascade laser sources.  

 The THz radiation at room temperature has been demonstrated particularly in the 

intracavity DFG scheme [105], in which the nonlinear mixing region was integrated 

within a dual-wavelength quantum cascade laser structure and in fact served as the active 

region for laser generation. However, due to a relatively small nonlinear overlap integral 

and the gain competition [125], the conversion efficiency to THz power is only 10
-6

W
-1

 

for the pump power of 1W. Also, the design of such devices is constrained by the 

requirement to have dual-wavelength mid-infrared laser generation in a monolithic 

device [126, 127]. 

 Here, we consider an externally pumped THz DFG in semiconductor quantum 

well heterostructures, when two external pump fields at mid-infrared frequencies nearly 

resonant with intersubband transition energies E31 and E21 in Fig. 1-4, are incident on a 
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thick stack of multiple quantum wells designed to have a large optical nonlinearity for 

THz DFG. In this case, the nonlinear structure can be fully optimized for maximal 

nonlinear conversion efficiency without any negative effect on the mid-infrared laser 

performance. Also, since both pump laser radiation and THz-difference frequency mode 

can reside in a same thick nonlinear section, the nonlinear overlap integral can be 

approximately twenty times larger as compared to the intracavity THz DFG laser. 

Therefore, one can expect a much larger THz DFG output power in despite of the 

increased resonant absorption of pump fields due to the increased thickness of the 

nonlinear section. 

 

E3

E2

E1

1

2

21

 
 

Fig. 1-4. A schematic picture of the energy levels (E1, E2, and E3) and 

nearly resonant pump fields or the Rabi frequencies (1, 2) with 

detunings (1, 2) in the three-level medium for THz DFG. The 

difference (3 = 2 - 1) between the two pump fields corresponds to the 

THz field. 

 

 The non-pump-depletion approximation in the coupled field theory [104] is 

usually adopted to explain the efficiency of the intracavity THz DFG in semiconductor 

quantum well structures since it provides simple physical interpretation for optimal 



 16 

conditions of the efficient generation of DFG. According to the approximation, the THz 

intensity is given by Eq. (1.1): [128, 129] 
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and L is the nonlinear section length, k=k1+k3-k2 is the phase mismatch, and ki and i 

are the propagation constant and the absorption coefficient for the i
th
 beam at frequency 

i. When 1,2  0 and L>>1/3, the coherence length 
eff

l  is determined by the 

absorption at frequency 3, reducing to    
2

3

22
21  kl

eff
. 

  As follows from Eq. (1.1), for efficient generation of the THz-difference 

frequency field, the device needs to provide a large effective optical nonlinear 

susceptibility, a large overlap integral of pumps and DFG fields in the active region of a 

waveguide (or a small effective interaction area), high intensity of pump fields, phase 

matching, and low absorption. However, this approximation cannot be directly applied 

to the passive devices, where pump fields are significantly depleting due to resonant 

absorption and optical saturation effects which affect the electron distribution over 

subbands. Later we show that one can extend the analytic formula to include resonant 

absorption and saturation effects in an approximate way. However, significant deviation 
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from the analytic results still occurs at high pump powers or for longer waveguides. 

Therefore, a systematic and accurate numerical approach applicable for all input powers 

is required.  

 

 

1.6 Overview of Dissertation 

 

The dissertation deals with a III-V compound-base semiconductor bulk materials 

by the multi-band k • p methods and then moves to the two-dimensional system 

possessing the one-dimensional confinement in the momentum space together with 

applications for optical devices. Section 2 focuses on how to model and characterize the 

ferromagnetic GaMnAs materials by using the 30- and 8-band k • p method and the 

mean-field Zener model along with comparing with experimental Kerr spectroscopy and 

magnetization measurement results by SQUID. Section 3 plays a role of the bridge 

connecting bulk and low dimensional eigenvalue problems. Here we develop three 

different approaches for calculating the eigenstates in semiconductor heterostructures. 

First, starting from the ideology of the FGH method, we set up the formalism for the 

three approaches in the one-band model, and then they are extended to the general n-

band k • p model based on the envelope function approximation. The differences 

between the approaches come from different approximations on the quasi-particle 

momentum integrals, which unavoidably appear due to the coordinate-dependent band 

parameters particularly in the heterostructure problems. These approximations have a 
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simple physical interpretation and their analysis helps us to pinpoint the origin of 

spurious solutions in the unified manner. In section 4, we use one of the new methods 

proposed in section 3, the delta function method, based on the one-band model with the 

nonparabolic correction. As applications, THz DFG optical devices are dealt by self-

consistently taking into account the spatial charge distribution, electron distribution over 

excited subbands, and the propagation of coupled fields in waveguide structures of large 

nonlinear overlap integrals. In section 5, the summary and conclusions are provided. 
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2.   ANISOTROPIC DIELECTRIC RESPONSE OF (Ga,Mn)As  

IN THE 30-BAND K • P MODEL
†
 

 

 

2.1   Ga1-xMnxAs Sample Structure and Experimental Results 

 

 First we present the specific GaMnAs sample (grown by Munekata’s group in 

Tokyo Institute of Technology) structure which we will study and the experimental 

results using MOKE and SQUID, obtained in Kono’s group at Rice University. 

Experimentally obtained MOKE spectra will be compared with theoretical results in 

section 2.4.  

 The Ga1-xMnxAs samples are grown by low-temperature MBE, and its layer 

sequence is shown in Fig. 2-1. On a GaAs substrate, 1000 nm-thick GaInAs and 50 nm-

thick GaMnAs layers are grown. There are three different kinds of samples depending 

on the nominal Mn fraction and post-growth annealing process, labeled as S-1, S-2, and 

S-3. The nominal Mn fractions of x = 0.01 and 0.024 are used in S-1 and S-2 

respectively, and S-3 is the sample S-2 annealed at T = 190 
o
C in air for four hours. The 

samples show different ferromagnetic transition temperature TC = 30, 45, and 70 K for 

S-1, S-2, and S-3 respectively, and temperature-dependent magnetization is measured by  

____________ 
†
Part of this section is reprinted from “Above-bandgap magneto-optical Kerr effect in 

ferromagnetic Ga1−xMnxAs” by C. Sun, J. Kono, Y.-H. Cho, A. K. Wojcik, A. Belyanin, 

and H. Munekata, (2011), Physical Review B, 83, 125206, Copyright © 2011 by 

American Physical Society (APS). 
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the remanent Kerr angle for S-2,-3 and by SQUID for S-1, as shown in Fig. 2-2. The 

ferromagnetic hysteresis for S-2 detected at 730 nm wavelength is shown in Fig. 2-3. 

 

 
 

Fig. 2-1. GaMnAs sample structure grown by MBE at Munekata’s group 

in Tokyo Institute of Technology. 

 

 
 

Fig. 2-2. Remanent Kerr angles (left) with 720nm wavelength of incident 

beam and magnetization (right) as functions of temperature are shown for 

three different GaMnAs samples; S-1 (triangle), S-2(square), and S-3 

(circle). The right figure has been obtained by SQUID measurement. 

They indicate the temperature-dependent magnetization and Curie 

temperature (S-1: 30K, S-2: 45K, S-3: 70K) for the samples. The 

measurement data come from Kono’s group at Rice University.  
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Fig. 2-3. Hysteresis loops measured at 730 nm for sample S-2 at multiple 

temperatures ranging from 10 K to 50 K under external magnetic field 

applied in the out-of-plane direction. The figure has been provided by 

Kono’s group at Rice University. 

 

 

2.2   Electronic States of GaMnAs Based on A 30-Band k • p Model 

 

As discussed in section 1.2, our theoretical approach for investigating the 

samples shown in the section 2.1 is based on the k • p model and the mean-field Zener 

model [45, 46]. Our model-Hamiltonian is expressed as 

 

ij

exspin

ij

strain

ijij

T
HHHH




0
          (2.1) 










,

strainij

strain
jDiH          (2.2) 
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jiSNJjJiH
scMnMnij

N

I

scII

ij

exspin

Mn

ssSRr ˆ )(  
     (2.3) 

where 
 



ij

ij
V

m

pp
jDi  . ij

H
0

 is a 30-band k • p matrix [35], ij

strain
H  is the 

strain Hamiltonian matrix, strain


  is the strain tensor, in which all off-diagonal elements 

are zero;  and  are coordinates, jDi
  consists of the linear combination of the 

deformation potentials [15], m is the bare electron mass, and ij

exspin
H


 describes the spin 

exchange interaction between the substitutional Mn magnetic impurity spins and the 

itinerant charge carrier spins in the host semiconductor in the mean-field approximation. 

The indices i and j run over all 30-band basis orbitals. The antiferromagnetic spin 

exchange constant Jij is not zero only when the bases correspond to 6C, 8V, and 7V; Jij 

= 54 meV∙nm
3
 for VV, Jij = –9 meV∙nm

3
 for C [130, 131], and 

3
/4

GaMnAsMn
aN  , 

where 
GaMnAs

a  is the lattice constant of GaMnAs. The strain effects are included only for 

the bases 6C, 8V, and 7V. In this approximation, the  edges of 6C, 8V, and 7V states 

are shifted by strain in the same trend as those in the 8-band model.  

 We qualitatively take into account many-body Coulomb interactions through the 

phenomenological band gap narrowing (BGN) [132]. The hole-occupied exchange spin 

split V bands are assumed to be rigidly shifted by the total hole density dependence 

ap
1/3

, where a = 2.610
-8

, hole density p is in cm
-3

. The proportionality constant is 

compatible with that used in [66]. Several iterations are necessary to obtain self-

consistent positions of the 8V edges and the Fermi level. The disorder effect is also 
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phenomenologically described as broadening of interband optical transitions (~100 meV 

at half-width at half maximum (HWHM)) in the linear dielectric response function.  

 The thermal fluctuations of Mn spin ordering are estimated for the temperature T 

= 20 K, at which MOKE spectroscopy experiments are performed, by comparing the 

measured amplitudes of the remanent Kerr angle at 10 K and 20 K in Fig. 2-2. The effect 

of thermal fluctuations is included in the calculation of temperature-dependent dielectric 

tensors and Kerr angle spectra. The temperature dependence of other physical 

parameters, for example, the band gap, the lattice constant, the strain tensor, and the hole 

density are assumed to be negligible in this narrow temperature range. 

 We assume that our samples only have the epitaxial biaxial tensile strain (see 

Fig. 2-1), which breaks the crystallographic cubic symmetry due to the lattice mismatch 

between the GaMnAs epilayer and the relaxed GaInAs buffer layer. The same strain 

parameters as for GaAs [40] were used for the GaMnAs epilayer except for its lattice 

constant. Depending on the Mn (2 ~ 5%) and In (9.5%) contents, the strain tensor 
strain

ii
  

(i = x, y, z) [15, 16] varies from 0.4 to 0.57% for the MnAs lattice constant 5.98 Å [5]. 

We assumed that our experimental post-growth procedure does not produce any 

additional significant strain. An example of the band structure calculated with the 30-

band k • p method is shown in Fig. 2-4 for 5% Mn assuming a perpendicular 

magnetization (parallel to the sample growth direction). Contrary to the GaAs band 

structure shown in Fig. 1-1, the Kramers degeneracy is no longer valid, and spin-up and 

spin-down states are split. It indicates the spin polarization with different density of 

states for spin-up and spin-down of the valence band. 
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 The conduction band and valence band splitting at  edge occur due to non-zero 

Jsd and Jpd respectively. Note that when Jpd ≠ 0 and Jsd = 0, there is no spin splitting in 

the CB specifically at  edge. However, as k values increase, the spin splitting in CB 

rises because of the conduction and valence band mixing in the diagonalization process 

with the opposite sign of Jsd. Therefore, for Jpd ≠ 0 and Jsd ≠ 0, the spin splitting at k ≠ 0 

in the conduction band is more or less compensated with the splitting caused with Jpd ≠ 0 

and Jsd = 0, so that the first CB splitting becomes smaller as k increases as shown in Fig. 

2-4(right). In the similar manner, the spin splitting in the valence band at larger k is 

affected by the non-zero Jsd exchange constant. But the effect is much smaller because of 

the relatively much smaller value of Jsd than Jpd. 

 

 
 

Fig. 2-4. Band structure of Ga0.95Mn0.05As, calculated with the 30-band k 

• p method described in the text, taking into account the Mn-hole spin 

exchange interaction as well as a biaxial tensile strain of 
strain

xx
e  = +0.4%. 

The right panel shows a magnified band structure near k = 0, in which 

split spin-up and spin-down states are clearly shown. 
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2.3   Temperature-Dependent Magnetization and Magnetic Anisotropy 

 

 Before proceeding with the calculation of the frequency-dependent dielectric 

tensor and magneto-optical Kerr angle spectra, we roughly estimate hole densities and 

Curie temperatures in our samples by calculating temperature-dependent magnetization. 

In addition, we determine the easy axis of magnetization with the estimated hole 

densities obtained for various Mn fractions. These will provide not only guidelines but 

also justification for subsequent Kerr angle calculations by the extended k • p method in 

the metallic regime in the interband range.  

It is important to notice that the band structure is changed depending on 

magnetization direction as well as epitaxial strain. Figure 2-5 directly shows such effects 

on Fermi surfaces for 5% Mn and hole density p = 310
20

cm
-3

 by varying the 

magnetization direction from in-plane [100] to out-of-plane [001] (parallel to the sample 

growth direction) and the strain from the compressive to the tensile. Two outer and inner 

surfaces correspond to spin-polarized HH and LH states respectively.  

Since the ferromagnetism in GaMnAs comes from the ferromagnetic ordering of 

Mn spins mediated by antiferromagnetic coupling between hole spins and Mn spins 

based on the Zener model [67], the modeling of temperature-dependent magnetization 

requires that the hole free energy as a function of both hole density and magnetization is 

known prior to self-consistently dealing with the Brillouin function, Bs, obtained by the 

molecular-field approximation [133] in the canonical ensemble as can be seen in (2.4) 

under the absence of external magnetic fields. 



 26 

w/ tensile

 =+0.4%

M // [001]

w/ compressive

 = 0.3%

M // [100]

w/o strain

 = 0%

M // [100]

strain

xx


strain

xx


strain

xx


(a) (b) (c)

 
 

Fig. 2-5. Spin-polarized Fermi surfaces of GaMnAs for 5% Mn and hole 

density p = 310
20

cm
-3

 in the valence band with (a) in-plane direction 

[100] of magnetization M without strain, (b) in-plane direction [100] of M 

with strain tensor strain

xx
 = –0.3 %, (c) out-of-plane magnetization M [001] 

with strain tensor strain

xx
 = 0.4 %. 
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zB
SxgNM 

0
               (2.7) 

 

where F(p,M) is Helmholtz hole free energy in the strongly degenerate limit (see 

APPENDIX C for derivation), p is hole density, M is the magnitude of magnetization,   

is the eigenvalue of the system for given p and M, 
z

S  is Mn spin projection to [001] 

direction, x is Mn fraction, g is Landé g factor, and B is Bohr magneton. 
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 For a fixed Mn doping fraction, F(p,M) can be calculated by integrating over a 

hole density in the graph, indicating the relation between Fermi levels and hole densities 

for each value of Mn spin orientation. Figure 2-6 shows the Fermi level dependence of 

hole density for fifty different Mn spin projections ranging from 
z

S  = 0 to 5/2 with 

M//[001] and 4% Mn, and Fig. 2-7 shows the corresponding hole free energy behavior as 

a function of 
z

S . Particularly near Curie temperature, i.e., 
z

S  = 0, the hole free 

energy is parabolically increased as 
z

S  is increased (or temperature is decreased).  

 

M//[001]

 
 

Fig. 2-6. Fermi energy as a function of hole density for fifty different Mn 

spin projections ranging from 
z

S  = 0 to 5/2, assuming that M//[001] and 

4% Mn. 
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Fig. 2-7. Hole free energy as a function of 
z

S  for M//[001], 4% Mn, and 

hole density p = 10
20

cm
-3

. 

 

Now it is straightforward to obtain the gradient of  
z

SF  in terms of 
z

S  (see 

(2.4)), and the result is shown in Fig. 2-8. As consistent with Fig. 2-7, it shows the linear 

feature near TC = 0. However, the gradient is nonlinear throughout 
z

S . The extent of 

the nonlinearity indicates the interplay between the Fermi energy and p-d spin exchange 

coupling; the more linear gradient is, the smaller the Fermi energy.  
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Fig. 2-8. Gradient of the hole free energy F as a function of 
z

S  for 4% 

Mn and p = 10
20

cm
-3

 (Blue line). A linear reference line is indicated by 

black line. 

 

The self-consistent solution for 
z

S  with varying temperatures in (2.4) gives the 

temperature-dependent magnetization and Curie temperatures of GaMnAs. We tried 

various Mn fractions and hole densities (Table II-1), for which the calculated Curie 

temperatures are equal to the experimental ferromagnetic phase transition temperatures 

obtained from SQUID measurement and the saturated remanent Kerr angle as a function 

of temperature (Fig. 2-2). The calculated results for temperature dependent 

magnetization are shown in Fig. 2-9, and corresponding Mn fractions and hole densities 

are given in Table II-1. Here, we neglected the Fermi-liquid effect, which increases TC 

[34], as well as the spin-wave excitations [35], which decrease TC for a given Mn 

fraction and a hole density. We simulated the annealing effect [25], which increased TC 

to 70 K for sample S-3, by increasing the hole density for each Mn fraction. Note that 
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generally not only the hole density increases, but also the lattice constant of GaMnAs is 

reduced upon annealing [26]. 

 

 
 

Fig. 2-9. Calculated temperature-dependent normalized magnetization 

based on the mean-field Zener model and the 8-band k • p method with 

different Mn fractions x = 0.03 (black solid line), 0.04 (red dashed line), 

0.05 (blue dash-dotted line) for TC = 45K (S-2) and 70K (annealed 

sample, S-3), and with x = 0.02 (black solid line), 0.03 (red dashed line), 

0.04 (blue dash-dotted line) for TC = 30K. The corresponding hole density 

for each case are summarized in Table II-1. The annealing effect was 

simply simulated by increasing hole densities for each Mn fraction. The 

results are all under tensile strain 
strain

xx
e  = (0.57, 0.52, 0.46, 0.4) % for Mn 

fraction x = (0.02, 0.03, 0.04, 0.05). 

 

The magneto-crystalline anisotropy, caused by the spin-orbit interaction, is 

attributed to the valence band holes since the total angular momentum of the local Mn 

moments is solely due to spins. The anisotropy gives certain preferred directions for the 

spins to be aligned in crystals, so that the easy direction of magnetization is determined. 

We estimate the anisotropy field, which is proportional to the difference of hole free 

energies normalized by magnetization in [001] and [100] directions [34], for different 
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nominal Mn fractions under tensile strain. The magnetic easy axis changes from [100] to 

[001] depending on the hole density as shown in Fig. 2-10 with the data set of Table II-1, 

in which for all hole densities the magnetic easy axis falls into the out-of-plane ([001]) 

because they are all larger than the critical hole density for each Mn fraction. The out-of-

plane easy axis is further confirmed by the single domain like-behavior in the hysteresis 

loops of the measured remanent Kerr angles for the applied out-of-plane external 

magnetic field shown in Fig. 2-3. 

 

Table II-1: Hole densities that are calculated with various Mn fractions based on the 6-

band k • p method and the mean-field Zener model for the measured Curie temperatures 

of our samples. 

 

TC (K) Mn (%) 
Hole Density, p  

(10
20

cm
-3

) 

45 

(S-2) 

3 2.35 

4 1.6 

5 1.2 

70  

(S-3) 

3 5 

4 3.05 

5 2.2 

30  

(S-1) 

2 2.4 

3 1.39 

4 0.97 
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Fig. 2-10. Anisotropy field Han, Calculated by the 8-band k • p model, as 

a function of hole density under tensile strain strain

xx
  = (0.63, 0.57, 0.52, 

0.46, 0.4)% for Mn fraction x=(0.01, 0.02, 0.03, 0.04, 0.05) respectively. 

The magnetic easy axes of our samples are out-of plane ([001]) according 

to the pre-calculated hole densities that give the measured Curie 

temperatures, TC = 30K, 45K, and 70K, as shown in Table II-1. Mn 

fraction x=0.01 (bottom solid), 0.02 (dashed), 0.03(dash-dotted), 0.04 

(dotted), 0.05 (upper solid). 

 

 

2.4 Frequency-Dependent Anisotropic Dielectric Tensor and  

Kerr Angle Spectra in the Interband Range 

 

 With the estimated hole densities and magnetic easy axis directions, calculations 

of the dielectric tensor are performed based on the linear response theory (or the Kubo 

formula [41-43]) shown in (2.8) for several different hole densities (shown in Table II-2 
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from the range of the hole densities and Mn fractions calculated for our samples in the 

previous section (see Table II-1)): 
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 (2.8) 

where  and  denote coordinates, and a and b represent valence bands and conduction 

bands respectively. Only interband transitions are included in calculations; fa is the 

Fermi-Dirac distribution and 

ab
p  are components of the momentum matrix element (see 

APPENDIX D for the derivation). The integration is extended over the first Brillouin 

zone using full band structure calculated by the 30-band k • p method described in the 

section 1.1 and 2.2. An example of the calculated dielectric tensor is shown in Fig. 2-11. 

 

 
 

Fig. 2-11. Diagonal and off-diagonal dielectric tensor components are 

shown for 4% Mn, 0.5% tensile strain, TC = 45K, and hole density p = 

10
20

cm
-3

. 
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Note that the above approach is based on momentum matrix elements determined 

for a clean GaAs material. An important and still open question is whether and how one 

could modify the k • p matrix elements in a meaningful way to provide a more adequate 

description of heavily disordered systems.  

Once frequency-dependent dielectric functions are obtained, Kerr angle spectra 

(
K

  vs.  ) are straightforwardly simulated [68], taking into account multiple 

reflections [134, 135] in a thin GaMnAs layer and the buffer layer right below the 

GaMnAs layer. Note that GaInAs and air are isotropic materials, so that there is no right 

or left circular polarization dependence with 0
xy

 . For the frequency dependent 

dielectric function of the GaInAs buffer layer, the linear interpolation of the 

experimental data [44] for GaAs and InAs are used.  

The calculated Kerr angle results are shown in Fig. 2-12 (a,b,c) for the GaMnAs 

samples S-1, S-2, and S-3 respectively. Note that in Fig. 2-12 for a fixed Mn fraction, the 

Kerr angle peak magnitude decreases with increasing hole density. This happens because 

at these densities the Fermi level is already located below the lowest band edge of the 

spin-split 8V. With increasing hole density, the Fermi level is shifted further downward, 

which reduces the number of states that contribute to interband optical transitions. On 

the other hand, if the Fermi level were initially positioned in the middle of the spin-split 

8V, increasing the hole density would not necessarily decrease the Kerr angle 

amplitude. 
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Fig. 2-12. Calculated frequency-dependent magneto-optical Kerr angles 

under the tensile strain by the 30-band k • p method in the interband 

transition range for GaMnAs samples (a) S-2, (b) S-1, and (c) S-3. For 

each case, hole densities and Mn fractions are changed as summarized in 

Table II-2. Hole densities were chosen with the range of ~510
19

cm
-3

 

from the estimated hole densities in Table II-1; (a) Mn fractions 

x=0.03(red dashed), 0.04(black solid), 0.05(blue dash-dotted); (b) 

x=0.02(red dashed), 0.03(black solid), 0.04(blue dash-dotted); (c) x 

=0.04(black solid), 0.05(blue dash-dotted). For each Mn fraction, 

corresponding hole densities are smaller from the top graph. Here 

GaMnAs epilayer thickness is assumed to be 70nm. Circles indicate 

experimentally measured Kerr spectra provided by Kono’s group in Rice 

University.  

 

Table II-2: Mn fractions and corresponding hole densities chosen for the dielectric 

function and Kerr angle calculations (Fig. 2-12) by the 30-band k • p method. Best 

matching conditions with experimental Kerr angle measurement are underlined. 

 

TC  

(K) 

Mn  

(%) 

p 

 (10
20

cm
-3

) 

TC 

(K) 

Mn 

(%) 

p 

 (10
20

cm
-3

) 

TC  

(K) 

Mn 

(%) 

p 

 (10
20

cm
-3

) 

45 

(S-2) 

3  

(red) 

2 

30 

(S-1) 

2  

(red) 

2 

70 

(S-3) 

4 

(black) 

2.5 
2.5 2.5 

3 3 
3 

4 

(black) 

1 
3  

(black) 

1.2 

1.5 1.4 
3.5 

2 1.6 

5  

(blue) 

1 
4  

(blue) 

0.8 
5  

(blue) 

2 

1.5 
1 

2.5 2.5 
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Kerr angle calculation results for 4% Mn give the best agreement with the 

experimental MOKE spectra of S-2, as shown in Fig. 2-12(a). The first positive peak that 

can be attributed to the interband transitions around the E0 critical point is red-shifted 

due to phenomenological band gap narrowing of 0.121 and 0.138 eV, respectively, for 

each case. Note that the above Mn fractions are 1.5-2 times larger than the experimental 

nominal value, 2.4% for S-2. We discuss it in the following section. 

For sample S-1, the calculated result for Kerr angles is closest to the 

experimental MOKE spectra for 3% Mn, as shown in Fig. 2-12(b) and Table II-2. This 

Mn fraction is also larger than the experimental value of 1.5% for sample S-1. 

In Table II-1, the hole densities that are predicted for TC = 70 K based on the 8-

band k • p model are over-estimated since at large hole densities the hole free energy 

calculated with the 8-band k • p model becomes non-negligibly smaller than the one 

calculated with the full-band model. This originates from the difference between the 

valence band structures calculated with these two models at large k. Therefore, it is 

expected that the 30-band structure calculation yields the hole densities lower than those 

listed in Table II-1. Also since with 4% or 5% Mn fraction, the Kerr angle calculation 

better agrees with the experimental Kerr spectra for TC = 45K (S-2) as shown in Fig. 2-

12(a), cases with 4% and 5% Mn fractions are only performed for the annealed case of 

TC = 70K. The results are shown in Fig. 2-12(c), and their corresponding hole densities 

are listed in Table II-2.  
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2.5   Discussion 

 

Our calculated MOKE spectra of ferromagnetic GaMnAs samples in the 

interband transition range reveal a general pattern of a large-amplitude positive peak 

around 1.4-2.3 eV followed by negative and positive peaks with lower-amplitudes at 

higher photon energies, similar to the experimental data. At the same time, the 

quantitative spectral shapes and the positions of the peaks sensitively depend on the 

amount of substitutional Mn, the hole density, and the layer thickness. We determined 

the range of Mn fractions and corresponding hole densities for which the calculated 

Curie temperatures were equal to the experimentally measured ferromagnetic transition 

temperatures. Then the parameters from this range providing the best fit to the measured 

MOKE spectra were found. The resulting Mn fractions turned out to be larger than the 

experimental nominal doping values for all samples. If we assume that the experimental 

Mn concentrations are quite accurate, this result could indicate that antiferromagnetic p-

d exchange coupling strengths are 1.5-2 times stronger than the value of 
ij

J  adopted in 

the calculations. This is because, in the mean-field approximation, the exchange 

coupling energy is linearly proportional to the nominal Mn fraction as well as 
ij

J , as 

shown in Eq. (2.3). 

Unlike magnetic circular dichroism, which has a clear physical interpretation as 

the difference of absorption coefficients between the - and + polarizations, it is 

difficult to extract a single physical parameter that determines the characteristics of the 

Kerr angle spectra in a thin layer limit [18] since the contribution of the GaMnAs layer 
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thickness, diagonal and off-diagonal components of dielectric functions, and the 

dielectric function of the buffer layer should be explicitly considered. However, the first 

positive peak can still be attributed to the interband transitions around the E0 critical 

point. The position of this peak and those of subsequent peaks are affected by the layer 

thickness. Figure 2-13 shows a set of calculated MOKE spectra for a fixed Mn fraction 

(4%) and hole density (p = 110
20

cm
-3

) but different thicknesses of the GaMnAs 

epilayer. The Kerr angle peaks red-shift as the thickness increases. The best match to the 

spectrum of sample S-2 is obtained when the layer thickness is about 70nm, which is 

somewhat higher than our nominal value of 50nm. 

 

 
 

Fig. 2-13. Calculated MOKE spectra for ferromagnetic GaMnAs with 

different layer thicknesses for 4% Mn fraction and hole density of 110
20

 

cm
-3

. The dotted (green) line shows the experimental spectrum for sample 

S-2.  
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For the annealed sample (S-3) the main peak in the measured MOKE spectrum 

shows a slightly increased amplitude as well as a slight blue-shift as compared to that 

before annealing (S-2). If we assume that the only effect of annealing is an increased 

hole density for a given Mn fraction, our simulations predict an opposite trend: a 

decrease in the amplitude of the Kerr angle peak with increasing hole density. Within the 

mean field approximation, the observed effect of annealing indicates that the annealing 

also leads to an increase in the exchange interaction energy through an increase in the 

Mn fraction or/and 
ij

J . 
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3.   NEW METHODOLOGIES FOR FINDING EIGEN SOLUTIONS  

IN LOW DIMENSIONAL SEMICONDUCTOR NANOSTRUCTURES 

 

 

3.1   New Real Space Approaches to Heterostructure Hamiltonian in One Band Model 

 

3.1.1   A 2-D Heterostructure Hamiltonian Based on the Fourier Grid Hamiltonian 

Method  

 

A simple empirical way to determine band offsets at a heterojunction between 

two different bulk semiconductors is to assume that the vacuum energy levels for these 

materials coincide and the valence band position is the same as in the bulk materials. 

This determines the valence band (VB) offset between the two materials at the top of the 

VB. InSb provides the zero reference of the VB offset, from which those for the other 

materials are determined [20]. The resulting band edge profiles in a heterojunction look 

step-function-like and therefore acquire the coordinate dependence. This is true not only 

for the band edges but also for other band parameters such as the Luttinger parameters, 

the Kane parameter, and strain parameters because band parameters used in 

heterostructure problems are assumed to be the same as the parameters of bulk materials 

in the EFA. 

In the parabolic one band model, the band edge effective masses for quasi-

particles also show abrupt jumps and coordinate-dependence at heterojunctions. 
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Therefore, in the Schrödinger equation for the one band model (Eq. (3.1)), one needs to 

decide how to write the kinetic energy term, which contains the inverse coordinate-

dependent mass and the momentum which becomes a differential operator in the 

coordinate representation. The usual choice is to write the kinetic term in the 

symmetrized way that keeps the Hamiltonian Hermitian[136]: 

 
   zVkzBkzV

zm

k
H z ˆˆˆˆ)ˆ(

ˆ2

ˆ
ˆ

*

22




    (3.1) 

where the confinement direction is assumed to be the z-direction,    zmzB ˆ2ˆ
*2

 , 
z

k̂  

is the momentum operator, the notation for 
z

k̂  is simplified to k̂ , and  zV ˆ  is a quantum 

well potential in a single band,. 

We first adopt the machinery of the Fourier grid Hamiltonian (FGH) method[96] to 

derive the Hamiltonian for semiconductor heterostructures. In (3.1),  zB ˆ  and  zV ˆ  are 

represented in the coordinate basis, and 
z

k̂  in the momentum basis. These are most 

natural choices because of the immediate diagonalization of eigenvalues in each 

representation. Then, (3.1) can be expressed as 

    'ˆˆˆˆ'ˆ zzVkzBkzzHz           (3.2) 

      























 '''"'''"'''"'"ˆ""''''''ˆ""''ˆ dzdzdkdkdkdkzkkkkkzzzBzzkkkkkz

  'ˆ zzVz  (3.3) 

where the completeness relations for coordinate and momentum bases were used, i.e., 
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Assuming the plane wave basis when projecting the momentum space on the coordinate 

space  

ikz
ekz

2

1
  

and using the orthogonality of the basis along with eigenvalue equations such that  

'''ˆ kkkk   ,   ''')'''('''ˆ zzBzzB   

(3.3) can be simplified to (3.4) leaving only three integrals in the kinetic energy term:  

 

         '"' '" 
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1
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



   (3.4) 

Note that as a result of the coordinate dependent band parameter, i.e., B(z), integrations 

in terms of two different quasi-particle momenta appear as the symmetric form in (3.4). 

Since the bases are spanning over the coordinates of a whole quantum well system, the 

explicit treatment of boundary conditions are not required. Instead they are implicitly 

included and automatically fulfilled. This is also true when the band parameter is not 

dependent of coordinates. Starting from (3.4), three different approaches depending on 

approximations of integrals in (3.4) will be shown through this section and section 3.1.2 

~ 3.1.3. 

For the numerical treatment in the FGH method, the integration in Eq. (4) is 

straightforwardly done by the discretization with an equal grid length,  1 NLz , 

which has the Fourier reciprocal relation with momentum as )(2 zNk   . Here, L 

and N are the total system length in the coordinate space and the total odd number of 

grid points, respectively. Then, we change integral variables and coordinate bases to 
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discrete forms in (3.4) such that kk   , kk  ' ,   zpz  1 ,   zqz  1' , and 

  zsz  1" , where –m ≤ ≤ m (=(N-1)/2), and p q, and s are 1, 2, 3,…, N. 

Integrals are now replaced by summations. Then, the kinetic energy term in (3.4) 

becomes the following expression: 
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





  (3.5) 

where we have used that , = 0 do not contribute to the summations. The potential 

energy term in (3.4) can be discretized in the same way as the kinetic energy term, and 

resulting equation can be written as  

     zqpzpV  1        

  
pq

zpV
z




 1
1

          (3.6) 

where the following property of the delta function[137] was used: 

    
pq

z
qp

z
qpz 







11
,   )0( z             (3.7) 

By putting (3.5) and (3.6) together and applying the variational method,[96] which 

cancels the 1/z factor in (3.5) and (3.6), we finally obtain the Hamiltonian matrix 

elements for quantum well heterostructures in the one band model based on the Fourier 

grid Hamiltonian method: 
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Note that the Hamiltonian matrix is real and symmetric upon exchanging grid indices p 

and q, ensuring that it is Hermitian. The two summations in terms of  and  are 

independent of each other. However, the summation over s is connected with the other 

summations.  

Using a standard eigenvalue equation solver, the eigenvalues (En) (or subband energy 

levels) and the eigenfunctions (fn) (or envelope functions) are readily obtained by 

solving
nnn

fEHf  . But it is necessary for each eigenfunction to be normalized by 

fulfilling the following condition: 

   11

1

 


N

m

n
zmfz  

 

 

3.1.2   Modified Formalism with Improved Accuracy 

 

In the previous section, the final form of a heterostructure Hamiltonian (3.8) in the one 

band model has been obtained by directly discretizing (3.4), following the original 

strategy of the Fourier grid Hamiltonian method. All three integrals in (3.4) have been 

approximated by the discretization, which inevitably generates errors in determining the 

subband energy levels. In this section we show how the method can be improved by the 

analytical evaluation of the quasi-particle momentum integrals. It is possible since the 
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infinite integral range is practically cut off to be finite, determined by the Fourier 

reciprocal relation as was done in (3.5).  

Therefore, in (3.4) the integral over k can be rewritten as  
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Here sinc is an unnormalized sinc function, kmk
m

 , where m and k are defined as in 

(3.5). The integral over k’ can be calculated similarly. Consequently, the kinetic energy 

part of (3.4) becomes 
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where z ≠ z” and z’ ≠ z”. Now only a single integral exists as compared to (3.4). By the 

discretization as in (3.5) and the variational method used in (3.8), the modified 

heterostructure Hamiltonian of (3.8) with improved accuracy is given by 
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where the notations are same as above, and the Hamiltonian matrix is real and Hermitian 

again. Note that when p = s or q = s, the kinetic energy part in (3.12) is zero. 

 

 

3.1.3   Delta Function Method (DFM) 

 

In this section we rewrite Eq. (3.4) in terms of the delta functions in the real space and 

then discretize them. Starting from (3.4), in which no approximation has been used, the 

exponential terms are expressed as 
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Here, one might think that there could be several choices to replace the exponential 

terms since there are two possible derivatives for each. However, it is not true for the 

following reasons. First of all, we need to make sure that the Hamiltonian is still 

symmetric upon exchanging z and z’ in the final form. Second, we like to eliminate the 

integral with respect to z” in (3.4), eventually removing all integrals. The way to do this 

is that each of the exponential terms should contain a z” derivative only once. The only 

possible choice which fulfills the above two conditions is to combine [(3.13) and (3.16)] 

and [(3.14) and (3.15)]. This is uniquely determined with excluding any other 

combinations. This becomes more transparent through the following derivation. 

Using the above combinations, Eq. (3.4) can be now rewritten as 
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Note that the derivatives do not act on B (z”). The integrals in terms of quasi-particle 

momenta k and k’ can be exactly evaluated using the integral form of the delta 

function,[137] i.e.,  
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Then, the kinetic energy term in (3.17) becomes 
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Using the relation for the derivative of the delta function, 
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the formula (3.18) can be further simplified by explicitly evaluating the integral with 

respect to z”, i.e.,  
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By putting the kinetic energy together with the potential energy term, (3.17) can be now 

read as 
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This is the core equation of the delta function approach for layered 

heterostructure problems in the one band model. Eq. (3.20) can be compared to Eq. 

(3.4). Now all integrals have disappeared, and instead the Hamiltonian consists of 

derivatives of the delta functions and solely depends on the band parameters in the real 

space. It should be noted that Eq. (3.20) has been obtained without any approximation 

starting from (3.1) and the integrals for k and k’ have been evaluated out in the infinite 

range rather than within the effective cut-off values as in (3.8) and (3.12). This 

difference plays an important role in investigating the spurious solutions in later 

sections. Note that Eq. (3.20) is real and symmetric with respect to the coordinates z and 

z’. This ensures that the symmetrization which has been discussed above is critical due 

to the basis-dependent band parameter B (z) as well as non-zero off-diagonal elements in 

the kinetic energy matrix. However, such additional symmetrization was not necessary 

in (3.12) since the argument of the band parameter B(z”) is for summation but not for 

Hamiltonian basis. 

When B (z) is constant, B (z) =B, (3.20) is reduced to  
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The readers can intuitively consider (3.21) as the original Schrödinger equation in which 

the envelope function has been replaced by the delta function with a minus sign in the 

kinetic energy term, associating two coordinate bases, not just one. 

Before discretizing (3.20) for the numerical treatment, we replace the derivative 

of the delta function by the alternative definition based on the finite difference form: 
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Then, the kinetic energy term in (3.16) becomes 
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Note that (3.19) is still an exact expression without any approximation as long as h 

infinitesimally goes to zero. 

Now we discretize and approximate (3.23) by the equal grid length in the 

coordinate space, similarly to Eq. (3.5). By substituting zpz  )1( , zqz  )1(' , 

 1 NLzh , where p and q are 1, 2, 3,..., N, and N is the total number of 

coordinate grid points, formula (3.23) becomes 
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
 

Using the delta function property of Eq. (3.7), we obtain the discretized form of kinetic 

energy term: 
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(3.24) 

The potential term in (3.20) is also discretized to the same form as in (3.7). Putting it 

together with (3.24) and using the variational method as in (3.5), (3.6) and (3.8), we 

obtain the final form of the heterostructure Hamiltonian in the delta function approach:  
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(3.25) 

The eigen solutions of (3.25) can be obtained in the same way as described in 

section 3.1.1. Compared to the previous formalism in Eqs. (3.8) and (3.12), the kinetic 

energy part has been dramatically simplified. It is only necessary to know tridiagonal 

terms, originated from the finite difference form of the derivative of the delta function 

without any summations. The total number of grid points N does not have to be odd, 

contrary to (3.8).  

When B (z) is a constant in (3.25), i.e., B (z) = B, the symmetric form for B (z) is 

no longer necessary, leading to a much simpler form of the Hamiltonian: 
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Note that Eq. (3.26) can be used for any quantum systems with one-dimensional 

confinement potential and a constant mass. The compactness and simplicity of the 

Hamiltonian (3.25) and (3.26) differentiate it from the other methods. The superior 

calculation speed is obvious due to the sparse Hamiltonian matrix elements, which can 

be immediately defined without any calculus.  

The delta function method should not be confused with the finite difference 

method (FDM)[75] which also employs the tridiagonal matrix. Nevertheless, they are 

different methods for the following obvious reasons: In the FDM, (i) boundary 

conditions should be explicitly taken into account upon constructing system equations. 

(ii) the tridiagonal matrix is not a Hamiltonian matrix. In fact, it comes from the 

recurrence relation of envelope functions directly discretized at the very beginning from 

the Schrödinger equation along with boundary conditions at heterojunctions; (iii) the 

tridiagonal matrix includes the eigenvalues, which have to be solved for. (iv) the matrix 

inversion is required to obtain envelope functions. 

In the following section, we extend the formalism of our method to general 

multiband k • p models based on the EFA. 
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3.2   Extension of Heterostructure Hamiltonian Formalism Based on  

Generalized n-Band k • p Models 

 

Compared to a parabolic energy dispersion as in (3.1), the actual band structure 

of semiconductors is much more complicated since each band is highly coupled with the 

others, leading to the non-parabolicity and the anisotropy. Therefore, except very near 

the high symmetry points at the band extrema, the parabolic approximation with a 

constant band-edge effective mass is generally not adequate. There is an approximate 

recipe to include the non-parabolic correction[138, 139] within a one band model 

through the energy-dependent effective mass or an additional term to the kinetic energy 

which is of the fourth order in kz. However, its use should be still limited by the close 

vicinity of the band extrema by definition.  

Including band-to-band interactions for an accurate band structure by explicitly 

solving the coupled high order partial differential equations is essential especially when 

dealing with low-dimensional confinement, electronic states with high in-plane momenta 

or large free carrier densities.  

For the transition from bulk to heterostructure problems, each basis of the N 

coordinate space is acted on a general n-band bulk Hamiltonian 
nn

H


. The resulting 

matrix is a nN×nN heterostructure Hamiltonian shown in (3.27). 
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where 
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and E is a real constant eigenvalue. For whole eigenvalues for a system, eigenvalues and 

eigenfunctions are also nN×nN matrices. 
in

F  is a column vector of length n for i
th

 

coordinate basis.  

However, Eq. (3.27) is not a convenient form to directly apply the formalism 

obtained in the previous sections. Therefore, using linear algebra, we rewrite (3.27) as 
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where  
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Here i and j run over 1 to N, jHi


 is an NN square matrix, n is a bulk band index , 

and 
nN

F  is a column vector of length N, representing the envelope function for n
th
 band. 

Eq. (3.28) shows that a heterostructure Hamiltonian is constructed such that each bulk 

Hamiltonian matrix element 
H  is transformed to an N×N square block matrix, 

jHi


.  
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In this paper, we restrict the highest order of momentum to the second order in 

bulk Hamiltonian matrix elements. A usual 8-band k • p model (see APPENDIX A) 

conforms to this category. Therefore, the bulk Hamiltonian matrix elements contain 

zeroth order, linear, and quadratic terms with respect to the confined wave number kz. 

In the one band case, we have already shown how the second order term with respect to 

kz is transformed to the heterostructure case with N grid points in the coordinate space 

for three different approaches. Therefore, each of them can be readily applied to the 

conversion of bulk multi-band Hamiltonian matrix elements to the heterostructure case. 

They are explicitly rewritten again from section 3.1.1 ~ 3.1.3 as 
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where 
H  is a bulk k • p Hamiltonian matrix element, 

B  is the corresponding bulk 

band parameter, and the rest of the notations is the same as in the previous sections.  
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It remains to derive the linear terms,  
z

kzB ˆˆ


 and zeroth order terms to represent 

a complete heterostructure Hamiltonian in the multiband case. Basically, the procedure 

of the derivation for the linear term is same as shown above for the quadratic term. In the 

coordinate space,  
z

kzB ˆˆ


 can be expressed as 
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where 
z

k̂  is simplified to k̂ , and  
z
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 has been symmetrized to be Hermitian. 

Following the procedure of going from (3.2) to (3.4), formula (3.32) becomes  
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In the quadratic term, two exponential terms were associated with two quasi-

particle momenta, k and k’. However, in the linear term, only single exponential term 

appears instead. Following the section 3.1.1 ~ 3.1.3, the discretized forms of linear terms 

for the three approaches become 
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where notations are the same as before. Contrary to the quadratic case, diagonal 

elements for linear terms are zeros in the block square matrix in Eqs. (3.35) and (3.36). 

In the delta function approach given by formula (3.36) one additional symmetrization 

has been performed by the linear combination of the two possible derivatives for 

 'xxik
ke

  as shown in (3.9) and (3.10) to make the Hamiltonian Hermitian.  

All terms that do not depend on 
z

k  or zeroth order terms with respect to kz in a 

bulk Hamiltonian matrix are transformed to an N×N diagonal matrix in the coordinate 

space regardless of the three different approaches in section 3.1.1 ~ 3.1.3, i.e, 

 
pqz

BkH 



0

)(       (3.37) 

For example, in-plane momentum 
||

k -dependent terms and the potential energy terms 

correspond to this classification.  

As we have shown above, the extension from the one band heterostructure 

problem to the multiband case is straightforward within our method once bulk k • p 

models are known. This extreme simplicity is the unique feature of the heterostructure 

Hamiltonian method.  

In the next section, we show the numerical results of eigen solutions obtained by 

the heterostructure Hamiltonian method in the one band, the 6-valence band, and the 8-

band k • p models. Particularly, in the case of the one band model, subband levels are 

compared to analytical results in single quantum well heterostructures. 
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3.3   Numerical Results and Spurious Solutions 

 

3.3.1   One-Band Case 

 

The numerical results in the one band model are shown in Table III-1 and Fig. 3-

1~3.3 for single quantum wells of Ga0.47In0.53As surrounded by Al0.48In0.52As barriers 

with 1 Å grid length and various quantum well widths. They are obtained by the three 

different methods derived in section 3.1.1~3.1.3 and compared to the analytical solutions 

[16]. The formalism that produces the most accurate result is the modified Fourier grid 

Hamiltonian method (MFGHM) based on the approach shown in the section 3.1.2. The 

results obtained by the delta function method (DFM) in section 3.1.3 show nearly the 

same accuracy as those by the MFGHM. With the same grid length, both the MFGHM 

and the DFM are superior in the accuracy of eigen solutions to that of the shooting 

method, (for example, see Ref. [136]) which is widely used but limited to the one band 

model. The MFGHM provides an extreme accuracy along with simplicity. The 

formalism based on the original Fourier grid Hamiltonian method (FGHM) in section 

3.1.1 shows the worst accuracy among the three approaches.  
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Fig. 3-1. The confined subband energies obtained by the Fourier grid 

Hamiltonian method (blue solid lines) based on the section 3.1.1 are 

compared with the analytical results (red circle) in Ga0.47In0.53As / 

Al0.48In0.52As single quantum wells as a function of the well width. 

Numerical values are shown in Table III-1. The discrepancy between the 

two cases is noticeable. 

 

 
 

Fig. 3-2. The confined subband energies obtained by the modified Fourier 

grid Hamiltonian method (blue solid line) based on the section 3.1.2 are 

compared with the analytic results (red circle) in Ga0.47In0.53As / 

Al0.48In0.52As single quantum wells as a function of the well width. 

Numerical values are shown in Table III-1. The numerical and analytic 

solutions coincide for all eigenstates and well widths. 
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Fig. 3-3. The confined subband energies obtained by the delta function 

method (blue solid lines) based on the section 3.1.3 are compared with 

the analytic results (red circle) in Ga0.47In0.53As / Al0.48In0.52As single 

quantum wells as a function of well width. Numerical values are provided 

in Table III-1.  

 

The accuracy of confined subband levels can be further improved by decreasing 

grid lengths, eventually approaching the analytic solution as shown in Table III-2, 

calculated for a 20 Å single Ga0.47In0.53As/Al0.48In0.52As quantum well . 
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Table III-1: Energies of confined eigenstates in a single Ga0.47In0.53As quantum well 

surrounded by a 200 Å Al0.48In0.52As barrier. The numerical results obtained by the 

Fourier grid Hamiltonian method (FGHM), the modified Fourier grid Hamiltonian 

method (MFGHM), and the delta function method (DFM) in the one band model for grid 

length of 1 Å are compared with the analytic solutions for various well widths. The band 

parameters from Ref. [20] are used. The MFGHM shows the most accurate subband 

energies. 

  

Well width (Å) 40 80 120 160 200 

E1 (meV) 

Analytical 161.25985 67.554882 36.934941 23.253849 15.977027 

FGHM 182.43827 70.902619 36.626685 22.196255 14.839734 

MFGHM 161.20016 67.536622 36.927318 23.249987 15.974811 

DFM 161.14823 67.513335 36.916341 23.244135 15.971368 

E2 (meV) 

Analytical - 269.97003 148.17194 93.21242 63.997522 

FGHM - 288.67084 158.37179 97.914199 66.157427 

MFGHM - 269.91372 148.14388 93.197475 63.988762 

DFM - 269.85384 148.11024 93.177495 63.976236 

E3 (meV) 

Analytical - - 331.18192 209.81867 144.16398 

FGHM - - 343.66261 219.86289 150.21993 

MFGHM - - 331.14028 209.79109 144.14664 

DFM - - 331.05605 209.74429 144.11765 
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Table III-2: Energy of the ground subband in a 20Å Ga0.47In0.53As/Al0.48In0.52As single 

quantum well, calculated with the MFGM and the delta function method, and compared 

with the analytical solution. As grid length decreases, the numerical solutions approach 

the analytical solution.  

 

Grid length 

(Å) 

Analytical solution  

(meV) 

MFGH method 

(meV) 

Delta function 

method 

(meV) 

1 

300.3039163 

300.192223 300.1365936 

0.5 300.2756513 300.2620914 

0.2 300.2993678 300.2972307 

0.1 300.3027823 300.3022506 

 

 
 

Fig. 3-4. The eigen solutions in a 40 Å Ga0.47In0.53As / Al0.48In0.52As 

single quantum well are compared for three different approaches 

described in section 3.1 based on the one band model. Left panel: the 

Fourier grid Hamiltonian method (FGHM), middle panel: the modified 

Fourier grid Hamiltonian method (MFGHM), right panel: the delta 

function method (DFM). In the FGHM and the DFM, spurious solutions 

do not appear. However, the MFGHM produces them in the continuum as 

fast oscillating envelope functions. The spurious solutions are responsible 

for the difference of continuum states between the MFGHM and the 

DFM. 
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However, as shown in Fig. 3-4 (middle panel), the MFGHM generates fast 

oscillating continuum states i.e., the spurious solutions, which are the only subbands that 

are different from those in the DFM. Note that all confined electron states in Fig. 3-4 are 

free from spurious solutions and are not affected by the presence of the latter, as 

indicated in Table III-1 and Fig. 3-2. 

Since the FGHM does not produce the unphysical solutions, we were able to 

figure out their origin and remove them by comparing with the MFGHM. The only 

difference between the two methods lies in the manner how the quasi-particle wave 

number integrals are dealt with. The FGHM treats them by the discretization with equal 

lengths as in Eq. (3.38), while the MFGHM exactly evaluates them analytically as in Eq. 

(3.39). 
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        (3.39) 

where z is taken to be 1 Å for simplicity. In (3.39), the first cosine term is dominant 

due to the factor km.  

For a 40 Å GaInAs/AlInAs well, expressions (3.38) and (3.39) are plotted in Fig. 

3-5 as a function of the index s (see Eq. (3.29, 3.30)) for a given p = 120, which 

corresponds to the center of the quantum well. Each of (3.38) and (3.39) is an even or an 

odd function, which shows a peak or a zero point at |p - s| = 0 respectively, and the parity 

becomes opposite at that point. Also, as the absolute value |p - s| increases, the 
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amplitudes of (3.38) are much more quickly suppressed than those of (3.39). It is 

important to notice that their different behavior is not related to the cut-off value of wave 

vector k since the latter is determined by the reciprocal length of a heterostructure in 

both cases.  

 

 
 

Fig. 3-5. The wave number integrals, expression (3.38) (circle solid line) 

and (3.39) (square, dashed line) that appear in the Fourier grid 

Hamiltonian method (FGHM) (see (3.8)) and the modified Fourier grid 

Hamiltonian method (MFGHM) (see (3.12)) respectively are plotted as a 

function of the summation coordinate index s for a given real space basis 

p = 120, which corresponds to the center of the quantum well shown in 

Fig. 3-4 with the grid length of 1 Å. The parity between the two cases 

becomes opposite at s = 121 and higher. 

 

To remove the spurious solutions in the MFGHM, we try to achieve the 

characteristics of the wave number integral in the FGHM by introducing a certain shift 

factor , i.e., with replacing s to s- in (3.39). Any small shift factor can lead to a non-

zero wave number integral at |p - s| = 0 (or |q - s| = 0). Also, the shift of z/2 makes the 

wave number integral decay much more quickly as |p - s| (or |q - s|) increases. Such 

behavior originates from the destructive interference of the wave number integral due to 

the shift. Figure 3-6 shows expression (3.39) before and after applying the shift factor. 
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Fig. 3-6. The wave number integral, expression (3.39), before (square, 

dashed line) and after (circle, solid line) adding a shift factor +z/2 to s in 

(3.39) calculated by the MFGHM for a given p = 120. Such a shift factor 

removes the fast oscillating spurious solutions in the continuum in the 

MFGHM as shown in Fig. 3-7, which can be compared to Fig. 3-4 

(middle panel) before the removal of fast oscillating spurious solutions. 

 

 
 

Fig. 3-7. The eigenstates (envelope functions) obtained by the MFGHN 

after introducing the shift factor of ±z/2 in (3.39). The fast oscillating 

envelope functions in the continuum present in Fig. 3-4 (middle panel) 

are now disappeared. The average of Hamiltonians for each positive and 

negative shift is used to preserve the symmetry of envelope functions 

based on the one-band model. The subband levels now resemble those 

obtained by the DFM (see Fig. 3-4 (right panel)). Their numerical values 

are compared in Table III-3 for the same grid length of 1 Å. A small shift 

factor weakly affects confined energy levels. 
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Table III-3: Energies of confined states in a single 40Å Ga0.47In0.53As quantum well 

surrounded by a 100 Å Al0.48In0.52As barrier, after spurious solution have been removed 

by introducing the shift factor ±z/2 in wave number integrals (see the text) in the 

MFGHM are compared to eigen solutions obtained in the DFM. 

 

  

Spurious-solution-free 

MFGHM 
DFM 

(meV) (meV) 

CB 1 161.63119 161.1482357 

CB 2 536.397413 536.5257855 

CB 3 571.43349 572.1300149 

CB 4 618.887341 620.10291 

CB 5 714.70258 717.2621885 

CB 6 784.423103 787.7672658 

 

In addition, to keep the symmetry of envelope functions even after introducing 

the shift factor, the average of two Hamiltonians obtained by the positive and negative 

shifts is used. The resulting eigen solutions are now free from the spurious solutions as 

shown in Fig. 3-7 with the shift factor  = ±z/2, and they resemble those obtained by 

the DFM in Fig. 3-4 (right panel) rather than those by the FGHM (Fig. 3-4 (left panel)). 

The spurious solution-free eigenvalues after the shift factor is introduced in the MFGHM 

are compared with those obtained by the DFM in Table III-3 for the same quantum well 

structure as shown in Fig. 3-4 with the same grid length of 1 Å. Subband levels in the 

DFM are more accurate now. Since the larger shifts diminish away the accuracy of eigen 

solutions, the minimal shift to just remove the spurious solutions will be optimal. The 

removal of fast oscillating envelope functions in the above comes at the price of 

approximating the exact wave number integral. Note that we exclude the possibility that 
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the removal of spurious solutions may be attributed to the implicit change of interface 

boundary conditions due to the shift factor. We will extend the discussion on the 

spurious solutions for the multiband case in the next section.  

 

 

3.3.2   Heterostructure Eigen Solutions in the 8-band k • p Model 

 

The Hamiltonians constructed in section 3.2 for heterostructure problems with 

one dimensional confinement based on multiband k • p models (see the APPENDIX A 

for the bulk Hamiltonian of a 8-band k • p model) can be easily solved for eigen 

solutions by a standard eigenvalue solver. The numerical results for confined subband 

energy levels in a single GaAs/AlGaAs quantum well by the 6-valence band and the 8-

band k • p models are shown in Table III-4 for the in-plane wave vector k|| = 0. First of 

all, in the 6-valence band case, the subband positions obtained by the FGHM 

significantly deviate from those obtained by the other two methods, i.e., the MFGHM 

and the DFM. The discrepancy becomes larger with increasing k|| as shown in Fig. 3-8 

and 3-9. On the other hand, the MFGHM and the DFM give nearly the same subband 

positions. Figure 3-8 shows such an agreement in the in-plane subband dispersion. Note 

that the DFM and the FGHM do not produce any kind of spurious solutions within the 6-

valence band model. On the other hand, in the MFGHM they occur in the continuum 

again and can be removed just like in its one band model case. The general trend of 
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eigen solutions obtained by the three methods in the 6-valence k • p band model is 

consistent with that in the one band model. 

 

 
 

Fig. 3-8. The in-plane dispersion of subbands in the valence band of a 42 

Å GaAs/AlAs single quantum well obtained by the MFGHM (circle) and 

the DFM (triangle) based on the 6-valence band k • p model. Energies are 

measured from the top of the valence band. Results can be compared to 

Fig. 5 in Ref. [76]. 
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Fig. 3-9. The in-plane dispersion of subbands in the valence band of a 42 

Å GaAs/AlAs single quantum well heterostructure obtained by the 

FGHM based on the 6-valence band k • p model. Energies are measured 

from the top of the valence band. This plot shows a severe discrepancy 

with Fig. 3-8 as k|| becomes large. 

 

Upon including the conduction band to the 6-valence band, i.e., in the 8-band 

model, subband levels at k|| = 0, calculated by the FGHM, the MFGHM, and the DFM, 

are compared in Table III-4. The general pattern in terms of accuracy of eigen solutions 

is the same as in both the one-band and the 6-valence band cases. However, in the 

transition from the 6-band to the 8-band model, unphysical solutions of another kind 

appear in the band gap in the DFM as shown in Fig. 3-10 (right). Also, the fast 

oscillating envelope functions can occur in very high continuum states even within the 

DFM although they are not shown in the chosen quantum well heterostructure in Fig. 3-

10~12. The tendency of spurious solutions in a heterostructure calculated by the 

MFGHM under the 8-band k • p model is more or less the same as in both the one- band 
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and the 6-valence band models, showing the fast oscillating continuum states and no 

spurious solutions in confined states. The eigen solutions obtained by the FGHM are still 

completely free from any kind of spurious solutions even if they are not so accurate. The 

above features of the three different approaches in the real space heterostructure 

Hamiltonian methods are summarized in Table III-5. 

 

 
 

Fig. 3-10. Eigen solutions in a single quantum well GaAs/Al0.7Ga0.3As 

heterostructure of well width 50 Å, obtained by the FGHM (left), the 

MFGHM (middle), and the DFM (right) based on the 8-band k • p model 

are shown near the band gap region. The first two heterostructure 

Hamiltonian methods do not produce any spurious solutions in the band 

gap, but the DFM does. 
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Fig. 3-11. Eigen solutions in the conduction band of a single quantum 

well GaAs/Al0.7Ga0.3As heterostructure of well width 50 Å, obtained by 

the FGHM (left), the MFGHM (middle), and the DFM (right) at the  

point based on the 8-band k • p model. Only the MFGHM produces fast 

oscillating envelope functions in the continuum. However, such spurious 

solutions do not occur in the confined states. The amplitudes of envelope 

functions have been enhanced for better visualization. 

 

 
 

Fig. 3-12. Eigen solutions in the valence band of a single quantum well 

GaAs/Al0.7Ga0.3As heterostructure of well width 50 Å, obtained by the 

FGHM (left), the MFGHM (middle), and the DFM (right) at the  point 

based on the 8-band k • p model. Only the MFGHM produces the fast 

oscillating envelope functions in the continuum. However, such spurious 

solutions do not occur for the confined states. The amplitudes of envelope 

functions have been enhanced for better visualization. 
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Table III-4: The subband levels obtained by the three heterostructure Hamiltonian 

methods are compared within the 6-valence band model and the 8-band k • p model for a 

single 50 Å GaAs/Ga0.3Al0.7As quantum well at k|| = 0. The differences in the subband 

levels between the MFGHM and the DFM are less than 1 meV in both models. As with 

the one band model, the eigen solutions obtained by the FGHM are significantly 

different from those obtained by the other two methods. Here a grid length of 1 Å has 

been used. 

 

  
FGHM MFGHM DFM 

(meV) (meV) (meV) 

8-band k • p model 

CB1 108.64504 107.24964 107.15618 

CB2 376.82667 370.37231 369.78052 

HH1 -27.69696 -27.88907 -27.86137 

LH1 -72.15378 -70.37055 -70.32858 

HH2 -113.0806 -110.4117 -110.2825 

LH2 -232.8446 -227.8996 -227.6626 

HH3 -245.3835 -241.8397 -241.4504 

SO1 -360.5566 -360.6551 -361.2818 

    

6-valence band k • p model 

HH1 -27.69696 -27.88907 -27.86137 

LH1 -70.431 -66.44799 -66.4151 

HH2 -113.0806 -110.4117 -110.2825 

LH2 -237.2404 -231.095 -230.9851 

HH3 -245.3835 -241.8397 -241.4504 

SO1 -360.7283 -360.8921 -361.5259 
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Table III-5: The characteristics of the three approaches in the heterostructure 

Hamiltonian method are compared regarding the generation of spurious solutions and the 

accuracy of eigen solutions in the one-band, the 6-valence band, and the 8-band k • p 

models. 

 

  

A one-band model A 6-VB k • p model A 8-band k • p model 

Spurious 

solutions 

Accuracy 

of confined 

states 

Spurious 

solutions 

Accuracy 

of confined 

states 

Spurious 

solutions 

Accuracy 

of confined 

states 

FGHM No No No No No No 

MFGHM 
Only in the 
continuum 

Yes 
Only in the 
continuum 

in VB 

Yes 
Only in the 

continuum in 

CB & VB 

Yes 

DFM No Yes No Yes 

In the high 

continuum 

of CB or/and 

in BG 

Yes 

 

By comparing the eigen solutions obtained by the 6- and 8-band models in Table 

III-4, it is important to recognize that the occurrence of spurious solutions in the middle 

of the band gap does not affect the true confined eigen states.  

In the case of the 8-band model, we apply the same strategy which has been used 

for eliminating the fast oscillating continuum states in the one-band and the 6-valence 

band model by introducing the shift factor ±z/2 in the wave number integral in the 

MFGHM followed by averaging heterostructure Hamiltonians at positive and negative 

shifts. As a result, most of the fast oscillating envelope functions in the valence band 

continuum are removed, but those in the conduction band continuum still reside nearly 

without change. However, note that there are no unphysical solutions in the band gap as 

in the one- and 6-valence band cases. 
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To summarize the behavior of the spurious solutions, the unphysical eigen 

solutions in the middle of the band gap are originated from the contribution of large 

wave number values in the wave number integrals in sections II.2 and II.3. In the 

MFGHM, upon evaluating the integrals, k values have been cut off by the Fourier 

reciprocal relation. On the other hand, in the DFM, those integrals have been analytically 

integrated over the infinite range without any truncation of k, and the final formalism 

solely depends on the band parameters in the real space. For the other type of spurious 

solutions, i.e., the fast oscillating envelope functions, their removal is related to 

sacrificing the accuracy of the eigen solutions as can be seen in the comparison of the 

FGHM and the MFGHM. 

The in-plane subband dispersion in the valence band, obtained by the MFGHM, 

are compared for the 6-and 8-band cases in Fig. 3-13, i.e., with and without an explicit 

inclusion of the conduction band, which is done by modifying the Luttinger parameters. 

It shows that the change of the valence band interaction with remote bands in bulk 

materials influence the valence band in-plane dispersion in heterostructures. Figure 3-13 

can be compared to Fig. 3-5 in Ref. [76].  
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Fig. 3-13. The in-plane dispersion of subbands in the valence band of a 42 

Å GaAs/AlAs single quantum well heterostructure obtained by the 

MFGHM based on the 6-valence band (dashed) and the 8-band (solid) k • 

p model. At large k||, the disagreement becomes obvious. This indicates 

that the modification of the valence band interaction parameters 

(Luttinger parameters) due to the explicit inclusion of the conduction 

band has non-negligible influcences on subband positions. The crossing 

of subband dispersions is sharper in the 6-band model. 

 

We also investigated the effect of square wave-like abrupt hetero-interfaces of 

bulk band parameters on spurious solutions by the Fourier series expansion [137] as in 

expression (3.40). The abruptness of the band parameters at interfaces is effectively 

controlled by the upper limit, nmax, of the summation in (3.40). Figure 3-14 shows that 

such replacement only improves the smoothness of envelope functions at the interface 

boundary, and it rarely affects both types of spurious solutions.  
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Fig. 3-14. The same quantum well as in Fig. 3-13 but with square wave-

like abrupt interfaces of band parameters replaced by the smooth ones 

using the Fourier expansion of the coordinate dependent band parameters, 

Eq. (3.40), calculated by the MFGHM (top) and the DFM (bottom). 

Smoothness of interfaces does not affect the spurious solutions in both 

cases, only the envelope functions at interfaces become smoother. There 

are nine interface grid points with nmax = 25 in Eq. (3.40). 
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Fig. 3-15. Eigen solutions obtained by the DFM with the 8-band k • p 

model in a 100 Å GaAs single layer. The unphysical eigen solutions 

inside the band gap (dashed) can be observed. The band parameters in 

Ref. [20] are used; the band parameters recommended in Ref. [82] cannot 

remove the solution in the middle of the band gap. 

 

Figure 3-15 shows the eigen solutions in a single GaAs layer calculated by the 

DFM, in which band parameters in Ref. [20] are used, and a spurious solution is 

observed. As long as such spurious solutions appear in a single GaAs layer, it is 

generally impossible to completely remove them in GaAs-based heterostructures even if 

some of heterostructures can be free from spurious solutions due to certain destructive 

interferences. The way to modify the Luttinger parameters to prevent spurious solutions 

in the band gap has been reported based on the finite difference method [82]. However, 

this prescription fails in the general case. The universal method which can remove the 

existing spurious solutions within the EFA is currently absent. 
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4.   PASSIVE THz DFG BASED ON INTERSUBBAND NONLINEARITY  

IN SEMICONDUCTOR MQW STRUCTURES 

 

 

4.1   Invalidity of Non-Pump depletion Approximation (NPDA) in Passive Devices 

 

The use of NDPA mentioned in section 1.5 should be restricted to a lossless 

medium for pump fields since it is obtained under the approximation in which pump 

fields are not decaying at all, and linear and nonlinear (NL) optical susceptibilities are 

assumed to be constant when dealing with propagating coupled electromagnetic fields. 

This approximation is not adequate for the passive THz DFG in the current work. As a 

matter of fact, pump intensities vary in a complicated way depending on doping 

densities in the nonlinear section, detunings, and incident pump powers.  

In addition, the conventional approach to nonlinear mixing problems [112-114] 

based on Eq. (1.1) or coupled field equations does not take into account the variation of 

subband populations, electronic states of multiple quantum well structures and matrix 

elements of intersubband transitions affected by initial pumping powers, detunings, and 

the propagation of coupled fields. In this dissertation, we present the results of a fully 

self-consistent approach which incorporates all these effects by solving the Schrödinger 

equation, the Poisson equation, the density matrix equations, and the coupled field 

equations.  
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4.2   Self-Consistent Calculations of the Coupled Field Propagation 

and Electronic States of MQW Heterostructure 

 

We consider the DFG in a GaInAs/AlInAs multiple quantum well structure as an 

example, although our approach can be applied to any heterostructures. A schematic 

picture of the energy levels (E1, E2, E3), propagating pump fields (e1, e2) or the Rabi 

frequencies (1 = d12e1/ħ, 2 = d13e1/ħ), and detunings (1 = E21 - ħω1, 2 = E31 - ħω2) 

are shown in Fig. 1-4. The difference (ω3 = ω2 - ω1) between the frequencies of the two 

pump fields corresponds to the THz frequency.  

Two external pump fields and generated THz difference frequency field are 

interacting with each other as they are propagating through a waveguide structure. The 

pump fields are decaying due to the free carrier absorption and the resonant absorption. 

Their contributions to the total absorption depend on the initial pump intensity and 

confinement factors of pump fields in specific waveguide structures. For qualitative 

understanding, one can derive an analytic expression for the THz power as shown in 

APPENDIX E; very weak and very strong pump power regimes. The former 

corresponds to the system which all populations are located in the ground subband. 

Since the population difference between the ground state and excited states is maximal 

in this case, the resonant absorption contributes dominantly than the free carrier 

absorption for pump fields. On the other hand, in the latter case, electrons are equally 

distributed over subbands, and it results in negligible resonant absorptions. Then, the 

major contribution to the total absorption comes from the free carrier absorption. In both 
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cases, the resonant absorption of THz field becomes negligible because of nearly zero 

population difference between E2 and E3, and the linear susceptibility becomes nearly 

zero.  

In reality, the initial intensities of the pump fields and their varying amplitudes 

upon propagation modify the strength to excite electrons to upper states. A stronger 

dipole moment and pump intensity between two states and longer relaxation time in the 

upper state better push up electrons to the excited state. If the pumping frequency is off-

resonant with some detunings, then pumping strength is diminished. In this way, free 

electrons supplied by doping are redistributed over the subband levels, modifying the 

band edge profiles at the same time. Consequently, the electronic states of a multiple 

quantum well structure are modified along with dipole moments and relaxation rates. 

These changes influence back to the subband electron density. This response of the 

medium to the external pump fields can be represented by optical susceptibilities. 

Particularly, the imaginary part of the linear susceptibility is proportional to the resonant 

absorption of propagating fields. Then, the intensity of pump fields is reduced by the 

absorption, and subsequently the above process is circulated (see Fig. 4-1). Externally 

pumped THz DFG system inherently possesses such extreme complication, and the 

problem is highly nonlinear. Therefore, to correctly predict the performance of THz 

DFG devices, the system should be dealt by the self-consistent approach in a rigorous 

way.   
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Fig. 4-1. The complexity of THz DFG system. Multiple quantum well 

(MQW) electronic states respond to external pump fields in a complicated 

way. The responses are represented by the optical susceptibilities, which 

provide the source of pump power depletion as well as THz field 

generation. 

  

As shown in Fig. 4-2, the procedure of the self-consistent calculation for THz 

DFG is the following: first, electronic states are found in the flat one band model with 

nonparabolicity described by Eq. (4.1), which provides a good approximation near the Γ-

point of the conduction band structure. 

 

 

          



















EsgEsg

p

zSOEzzEzLHEzE

zE
F

zEm 
0

*

12

3
21

,

1
 

   

            
















EsgEsg

p

zSOzEzEzLHEzE

zQzE





0

4

3
 (4.1) 



 81 

where 

 
zzyyxx

eee
b

Q 2
2




 

)(

)()(

topa

topabottoma
e

c

cc

xx


  

xxzz
C

C
e 

11

12
2

  

and Ep is the interband matrix element between the conduction band and the valence 

band, F is the Kane parameter, Eg is the band gap, LHs and SOs are the light hole and the 

spin-orbit band edge shifts due to strain respectively, ij is the strain tensor, ac is the 

hydrostatic deformation potentials, Cij is the elastic constant, and E is the subband eigen-

energies in a heterostructure. (2) has been derived from the 8-band k • p model [15] 

based on the second order perturbation theory with the spin degeneracy and the in-plane 

momentum k|| = 0. 

 

 

 

 

 

 

 



 82 

End

Yes
Coupled wave

eqns

Propagation

End?

Yes
initial

e1, e2, e3

 nn

converged?

Density matrix eqns

Average
relaxation time, e-ph

(electron-LO phonon)

dnm, Ennm

One-band model

w/ e-dependent effm

+ Poisson eqn
Find En, 

e-density

Update

 nn

m*(E), En, 

Dipole moments

dnm

No

for each 

subband

No

 
 

Fig. 4-2. The flow diagram of the self-consistent calculation for THz 

DFG. It incorporates the Poisson equation, the density matrix equation, 

and the coupled wave equation in a unified way. The updated field 

amplitudes affect subband populations. Sequentially optical 

susceptibilities, band edge profiles, dipole moments, and relaxation times 

are updated.  

 

Then, the free carriers in a ground state are spatially redistributed by fulfilling the 

charge neutrality through solving the Poisson equation [136] until reaching the 

equilibrium of subband level positions. It modifies the band edge profiles over the 

sample growth direction or the confinement direction. Next, the subband levels and 

envelope functions are utilized to obtain dipole moments and relaxation rates [140, 141], 

which depend on the separation of energy levels, the overlap of envelope functions, and 

electron distributions. Particularly, the latter is obtained by averaging over occupied and 

unoccupied momentum vectors between subbands with the Fermi-Dirac distribution. 

After that, they become input parameters together with given initial amplitudes of 
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coupled fields in the density matrix equation (APPENDIX E) [142, 143], and all 

subband populations are obtained in the effective three level medium. The above 

sequence over the Poisson equation and the density matrix equation is repeated until the 

subband electron densities are reached to equilibrium. Once it is done, the three coupled 

first order differential equations for the fields (A. 37) ~ (A. 39) are solved for the next 

propagating coordinate, resulting in updated amplitude of the coupled fields. All of the 

above procedures are continuously repeated until the last propagating coordinate is 

reached.  

The populations in the three subband levels correspond to the diagonal 

components of a 33 density matrix, found by solving nine algebraic coupled density 

matrix equations (see APPENDIX E). The off-diagonal components are related to the 

polarization field as shown in (E.9). However, they can not be directly used since the 

polarization fields are affected by the confinement factors and the nonlinear overlap 

integral of coupled fields for specific waveguide structures. Accordingly, each off-

diagonal element should be re-expressed by expanding the polarization field in terms of 

susceptibilities, as shown in (E.11).  

All non-zero propagating coordinate-dependent linear and nonlinear 

susceptibilities, affected by the variation of subband populations averaged over the 

sample growth direction, have been derived in (E.20) ~ (E.33). They are proportional to 

the doping density in the nonlinear region, assuming that all donor impurities are ionized 

and produce free carriers. The linear susceptibility is responsible for varying resonant 

absorptions of the fields in the propagation direction, and the second order term among 
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the non-zero nonlinear susceptibilities has the major contribution to the conversion of 

pump fields to THz DFG field. The linear and the second order optical responses are 

actual sources of the variation of propagating coupled fields amplitudes. The 

susceptibilities higher than the second order have negligible effects on both pump laser 

fields and THz DFG. Also, the band edge profile is influenced by the variation of 

subband populations upon the propagation of pump fields, and the modification of dipole 

moments and relaxation rates are accompanied due to the change of electronic states. 

But they are weak enough to be neglected. 

 

 

4.3   Waveguides 

 

We consider a simple ridge waveguide structure, and the stacked layer sequence 

is shown in Fig. 4-3. The nonlinear region, consisting of GaIn0.52As0.48/AlIn0.53As0.47 

multiple quantum well, is sandwiched between 0.4 m-thick highly doped InP contact 

layer (N = 2 10
18

 cm
-3

) on the top and 1.2 m-thick InP cladding layer on the bottom. 

The cladding layer is located right above InP substrate. The gold is used for the metal 

contact, and Si3N4 is used for coating material.  

 



 85 

InP Substrate

InP Cladding

GaInAs/AlInAs MQW

InP contact layer

Au contact

Si3N4

InP Substrate

InP Cladding

GaInAs/AlInAs MQW

InP contact layer

Au contact

Si3N4

 
 

Fig. 4-3. The cross section of a schematic ridge waveguide structure for 

passive THz DFG with 60 m-width. The nonlinear region, which 

consists of multiple periods of GaInAs/AlInAs double quantum wells 

shown in Fig. 4-4, is followed on the lightly doped InP cladding which is 

positioned on the top of substrate. Highly doped 0.4 m-thick InP contact 

layer and Au contact are sequentially stacked above the nonlinear region. 

Si3N4 is the coating material. 

 

To accommodate the confined fundamental THz DFG mode in the nonlinear 

region with smooth mode profiles and to avoid its leakage into the substrate, the material 

refractive indices are required to satisfy the following inequality based on COMSOL 

simulations for modes. 

n (NL region) > n (substrate) > n (contact layer) 

By varying doping densities on each layer, this condition can be easily achieved. But it is 

ideal to minimize the doping density in the substrate [144] to prevent large absorptions 

of THz DFG mode. 
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Here, we vary the doping density as well as the thickness in the nonlinear region 

to investigate the various aspects of THz DFG conversion efficiency. Roughly speaking, 

when a doping density in a semiconductor becomes higher, the refractive index goes 

smaller based on the Drude model. Therefore, upon the variation of a doping density in 

the nonlinear region, one needs to properly modify the refractive index in the substrate 

by changing the doping density to make sure that a THz DFG mode is a surface-plasmon 

guiding mode [144] in the nonlinear section, not in the substrate. Here doping densities 

are changed from 0.7  10
17

 to 3  10
17

 cm
-3

 in the substrate depending on doping 

densities in the nonlinear region while approximately keeping the same level of 

refractive index difference among the highly doped InP contact layer, the 

GaInAs/AlInAs nonlinear region, and the InP substrate. The modal parameters of a 60 

m-wide and 4 m-thick ridge waveguide, schematically shown in Fig. 4-3, are given in 

Table IV-1 with changing the average doping density in the nonlinear region. 

The lightly doped cladding layer in the waveguide structure is critical for 

reducing the free carrier absorption of THz DFG mode, particularly when the thickness 

of the nonlinear region is reduced. Without the cladding layer, a THz DFG mode is 

extended into the substrate, and most of the mode resides in the substrate, in which the 

lower bound of the doping density is determined by the refractive index of the nonlinear 

region. This results in a huge free carrier absorption. Even in the waveguide structure 

which has a nonlinear region thick enough to encompass most of THz DFG mode, it is 

better to put a cladding layer since it also plays a role of reducing the free carrier 
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absorption although the reduction is not as dramatic as for the waveguide with a thin 

nonlinear region. 

 

Table IV-1: Modal parameters of the ridge waveguide in Fig. 4-3 with varying average 

modulation-doping densities in the nonlinear region. For the confinement of fundamental 

THz DFG mode, the doping density in the substrate has been also changed to keep the 

same level of refractive index differences between the InP contact layer, the nonlinear 

region, and the substrate while keeping the inequality; n (NL region) > n (substrate) > n 

(contact layer). 

 

 Average doping density (10
17

cm
-3

) 

 0.25 0.5 1 

pump 0.828 0.829 0.821 

THz DFG 0.544 0.524 0.391 

 0.325 0.309 0.266 

fcapump 
26.4 30.8 37.5 

(cm
-1

) 

fcaTHz DFG 
168 325 461 

(cm
-1

) 

THz DFG mode 

150 180 270 cross section 

(m
2
) 

Pump mode 

120 120 120 cross section 

(m

) 

 

The free carrier absorption (fca) of THz radiation always gives a important 

contribution [115] to the total absorption of a field. It is generally true that as free carrier 

densities become larger in the regions where a mode is located, the free carrier 

absorption increases at the same time. Therefore, if the nonlinear region is highly doped 
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and thick, then the larger mode confinement leads to a larger free carrier absorption. The 

resonant absorption in the nonlinear region also has a similar dependence on the modal 

confinement.  

The modal parameters with varying the thickness of the nonlinear region are 

given in Table IV-2. They are obtained by COMSOL for the 60 m-wide ridge 

waveguide structure in Fig. 4-3 and a fixed average doping density N = 10
17

 cm
-3

 in the 

nonlinear region. Also, the doping densities in the cladding and the substrate are N = 7  

10
16

 , and 1.8  10
17

 cm
-3

 respectively.  

In the next section, we show the effect of resonant pump fields on electronic 

states of a quantum well heterostructure and a general trend of THz DFG output 

intensities in terms of incident pump intensities based on freely varying modal 

parameters regardless of specific waveguide structures and doping densities in the 

nonlinear region. Also, we investigate the dependence of THz DFG output powers from 

detunings, incident pump powers, and doping densities based on several specific 

waveguide structure parameters.  

 

 

4.4  THz DFG Conversion Efficiency 

 

The effects of incident pump fields on electronic states of a double quantum well 

(DQW) heterostructure (Fig. 4-4) are shown in Fig. 4-5 with neglecting the propagation 

of coupled fields. The subband energy levels are compared between two cases; with and 
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without pumping by varying the modulation-doping density. The discrepancy between 

those two cases becomes larger when the average doping density increases. Both the 

doping density in the nonlinear region and the intensity of pump fields affect the 

electronic states of quantum well heterostructures. It is originated from the excitation of 

electrons to upper subbands. However, the variation of intersubband transition energies, 

caused by varying incident intensities of pump fields for given doping densities, can be 

neglected within the available power range of current mid-infrared quantum cascade 

laser sources. The dipole moments and relaxation rates of the DQW structure in Fig. 4-4 

are given in Table IV-3. 

 

Table IV-2: Modal parameters, obtained by COMSOL, for the 60 m-wide ridge 

waveguide in Fig. 4-3 with a fixed average doping density N = 10
17

 cm
-3

 and varying the 

thickness of the nonlinear region. The doping densities in InP contact layer, cladding, 

and substrate are N = 2  10
18

, 7  10
16

 , and 1.8  10
17

 cm
-3 

respectively. Throughout 

the paper, we assume that a quasi-phase matching between pump and THz DFG modes 

is achieved by proper choice of the waveguide dimensions or the grating structure of 

nonlinear region.  

 

  Nonlinear section thickness (m) 

  1 4 12 

pump 0.12 0.821 0.982 

THz DFG 0.146 0.391 0.643 

 0.054 0.266 0.229 

fcapump (cm
-1

) 29.5 37.5 19.5 

fcaTHz DFG (cm
-1

) 393 461 530 

z-DFG cross 

section (m
2
)

210 270 350 

Pump mode cross 

section (m

) 

180 120 210 
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Fig. 4-4. Ga0.47In0.53As/Al0.48In0.52As DQW structure for THz DFG. The 

resonant frequency of THz field corresponds to E32 = E3 - E2. The average 

modulation doping density is N = 10
17

 cm
-3

, and the intensity of pump 

fields is 2.3 MW/cm
2
 with assuming a modal refractive index 3.2. The 

DQW layer sequence is 50/35/31/92/50, in which doping layers are 

underlined. The excitation of electrons due to pump fields has been taken 

into account.  

 

Table IV-3: The dipole moments and relaxation rates of the DQW heterostructure shown 

in Fig. 4-4 obtained by the self-consistent calculation over the Poisson equation and the 

density matrix equation with using the average doping density N = 10
17

 cm
-3

. 

 

  (ps
-1

)   (Å) 

r12 0 z12 9.2 

r13 0 z13 18.7 

r21 0.132 z23 32.3 

r31 0.919   

r23 0.01   

r32 0.032     
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Fig. 4-5. The intersubband transition energies are varied as a function of 

average modulation-doping densities in the DQW structure shown in Fig. 

4-4, and they are compared for two cases: (1) all electrons are located in 

the ground state (dashed). (2) electrons are distributed over excited states 

by pumping fields of intensity 2.3 MW/cm
2 

and frequencies 120 and 140 

meV, which are equal to E21 and E31 respectively. The discrepancy 

between those two cases becomes larger when the doping density 

becomes larger. No propagation effects are included. 

 

Now we include the propagation of the coupled fields in the nonlinear medium 

which possesses the non-zero second order susceptibility. As the two incident pump 

fields, which have modified the electronic states of the DQW heterostructure, propagate 

along the waveguide with depletions, a THz-difference frequency field is generated and 

varies together with subband populations and the second order optical susceptibility as 

shown in Fig. 4-6, in which the average doping density in the nonlinear region is 10
17

cm
-

3
, and the corresponding modal parameters used are shown in Table IV-1. The optimal 

waveguide length can be recognized to be about 27 m for the specific waveguide 

structure and the doping density. The stronger depletion of the pump field resonant with 

E31 is occurred due to a stronger resonant absorption, originated from the nearly two 
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times larger dipole moment z31 than z21, as well as a larger population difference N31 (= 

N3 - N1) than N21. (see APPENDIX E) As a result of the pump field depletion upon 

propagation, the electron populations in the excited states are reduced, and this further 

increases the resonant absorption.  

 

 
 

Fig. 4-6. As a function of propagation coordinate, (a) THz DFG output 

power, (b) subband populations (solid: ground, dashed: second, dash-dot: 

third subband level), (c) the second order optical susceptibility, and (d) 

two pump powers are shown. Here diamond, circle, and square indicate 

THz DFG field, and pump fields resonant with E21 and E31 respectively. 

The doping density in the nonlinear region is 10
17

cm
-3

, and the 

corresponding modal parameters are shown in Table IV-1. 
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THz DFG output powers also depend on incident pump powers as shown in Fig. 

4-7, in which analytic solutions are compared with that obtained by the fully self-

consistent calculation. The derivation for the former is given in APPENDIX E, and the 

THz DFG power can be expressed as (E.42) and (E.43). It is clear that THz DFG powers 

are quadratically increasing with respect to incident pump powers in the very weak 

pump power regime. On the other hand, in the very strong pump power regime, the 

analytic solution predicts that THz DFG powers decrease proportionally to the inverse 

square of incident pump powers.  

 

 
 

Fig. 4-7. Using the modal parameters corresponding to the average 

doping density of 10
17 

cm
-3 

in Table IV-1 and the waveguide length of 30 

m, THz DFG output powers obtained by two analytical limiting cases; 

very weak (square) and very strong (circle) pump fields, are compared 

with that by the fully self-consistent calculation (solid line).  

 

THz DFG output powers can be affected by the variation of the doping density in 

the nonlinear region as shown in Fig. 4-8, in which all other parameters are fixed except 

for doping density. For incident pump powers less than 2 W, the THz DFG conversion 

efficiency is worst for the highest average doping density, N=1 10
17

 cm
-3

, among the 
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three cases. However, the situation becomes opposite when the incident pump power 

becomes larger than 4 W. One should be aware that the optimal doping density in the 

nonlinear region is also affected by the modal parameters of waveguides. As shown in 

Fig. 4-9, in which the change of parameters such as the confinement factors and the 

overlap integrals affected by the doping density variation in the nonlinear region have 

been taken into account, the optimal average doping density is now N = 0.25 10
17

 cm
-3

 

rather than N = 0.5  10
17

 cm
-3 

(see Fig. 4-8) at the input pump power of 1W. It can be 

mostly attributable to the lower free carrier absorption of the THz field. 

 

 
 

Fig. 4-8. THz DFG output power as a function of incident pump power 

for three different average doping densities (N) in the nonlinear region; N 

= 0.25 (diamond), 0.5 (square), and 1 10
17

 cm
-3 

(circle). All other 

parameters have been fixed, and modal parameters from Table IV-1, 

corresponding to average doping density 1 10
17

 cm
-3 

in the nonlinear 

region, are used. The ridge waveguide structure is assumed to be 100 m-

long. The conversion efficiencies at the peaks are 0.93, 1.87, and 2  10
-5

 

W
-1

 for average doping densities N = 0.25 (diamond), 0.5 (square), and 

1 10
17

 cm
-3 

(circle) respectively. In the simulation, the variation of other 

parameters which may occur due to the change of the doping density in 

the nonlinear region has not been taken into account. Figure 4-8 can be 

compared to Fig. 4-9, in which such approximation is not assumed. 
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Fig. 4-9. THz DFG output power as a function of incident pump power 

for three different average doping densities (N) in the nonlinear region; N 

= 0.25 (diamond), 0.5 (square), and 1 10
17

 cm
-3 

(circle). The 4 m-

thick, 60 m-wide, and 100 m-long ridge waveguide structure is used. 

Contrary to Fig. 4-8, the change of modal parameters, affected by varying 

average doping density, has been taken into account. The modal 

parameters for each doping density are shown in Table IV-1. 

 

The introduction of detunings in pump frequencies can increase the THz DFG 

output power when incident pump power is larger than a certain value, which is slightly 

larger than the power at saturation, as shown in Fig. 4-10. For the incident pump powers 

of 10.1 W (circle), the THz DFG output power is increased by ~ 18% or from 0.61 to 

0.72 W at ~ 15 meV detuning, compared to zero detunings. However, for intermediate 

incident pump powers, zero detunings are the optimal condition for maximal THz DFG 

output power. 
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Fig. 4-10. THz power and the total absorptions of pump fields as a 

function of detunings are shown with four different incident pump 

powers; 0.5 (square), 1.1 (cross), 10.1 (circle), and 50 W (triangle). The 

60 m-wide and 30 m-long ridge waveguide is used with the 4 m-thick 

nonlinear region doped by N = 10
17

 cm
-3

 in average. The modal 

parameters are given in Table IV- 1.  

 

Also, optimal waveguide lengths should be chosen depending on incident pump 

powers. In Fig. 4-11, the THz output power is shown for four different waveguide 

lengths with the fixed width of 60 m, the nonlinear region thickness of 4 m, and the 

average doping density of N = 10
17

 cm
-3

. Its modal parameters are given in Table IV-1. 

When incident pump power becomes smaller, shorter waveguides perform better 

because the pump field experiences stronger absorption in longer waveguides.  
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For a given incident pump intensity, THz DFG output power as a function of 

waveguide length is shown in Fig. 4- 12 for two different doping densities in the 

nonlinear region.  

 

 
 

Fig. 4-11. THz DFG output power as a function of incident pump power 

is shown for four different waveguide lengths. The waveguide has the 4 

m-thick and 60 m-wide nonlinear region doped with N = 10
17

 cm
-3

, and 

the modal parameters are given in Table IV-1. When incident pump 

powers are smaller, shorter waveguides yield higher conversion 

efficiency. 

 

 
 

Fig. 4-12. THz DFG output power as a function of waveguide length for 

average doping densities N = 0.25  10
17

 cm
-3

 (square) and 1  10
17

 cm
-3

 

(circle) in the 4 m-thick nonlinear region. The incident pump power is ~ 

1 W. 



 98 

To see the general dependence of THz DFG output intensity as a function of 

incident pump intensity with varying modal parameters such as the confinement factors 

of coupled fields and the nonlinear overlap integral, we vary each of those parameters 

with all the other parameters fixed. Figure 4-13 (a, b) shows the dependence of the 

output THz DFG intensity and resonant absorption of the pump field 2 (see Fig. 4-1) on 

incident pump intensities for three different confinement factors of pump fields in a 40 

m-long waveguide. For smaller confinement factors, input pump intensities are smaller 

to reach the same THz DFG intensity before the maximal peaks, which correspond to the 

values slightly larger than saturation intensity.  

Figure 4-14 is obtained by using the same set of parameters as in Fig. 4-13 but 

with a 100 m-long waveguide. The peak positions are shifted to higher incident pump 

intensities for the longer waveguide structure, compared to those in Fig. 4-13. According 

to Fig. 4-13 and Fig. 4-14, larger resonant absorptions of pump fields do not always 

mean smaller absolute output THz powers. The optimal confinement factors of pump 

fields depend on incident pump powers.  
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Fig. 4-13. (a) THz DFG output intensity as a function of incident pump 

intensity, (b) Resonant absorption of the pump field, which are nearly 

resonant with subband level difference E31 (= E3 - E1) in Fig. 4-4. For the 

constant confinement factor (THz = 0.1) of the THz DFG field and the 

nonlinear overlap integral equal to 0.01, the confinement factor (pump) of 

the pump fields is varied; pump = 0.1 (circle), pump = 0.5 (square), and 

pump = 0.9 (diamond), for a 40 m-long waveguide with the average 

doping density of 10
17

cm
-3

 in the nonlinear region. Here the constant free 

carrier absorptions of 30 and 460 cm
-1

 for pumps and THz DFG field are 

used respectively.  
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Fig. 4-14. THz DFG intensities and the resonant absorptions of 2 as a 

function of incident pump intensity for three different confinement factors 

of the pump field 2 with the same set of parameters except the 

waveguide length of 100 m (see Fig. 4-13 for parameters).  

 

The dependence of THz DFG output intensity on the nonlinear overlap integral is 

shown in Fig. 4-15. For larger values of the overlap integral, the THz DFG output 

intensity becomes stronger. This is the result well anticipated. 

 

 
 

Fig. 4-15. THz DFG output intensity as a function of incident pump 

intensity for different values of the nonlinear overlap integral: 0.05 

(diamond), 0.1 (square), 0.2 (cross), and 0.3 (circle). The other 

parameters are the same as in Fig. 4-11 for average doping density N = 

10
17

cm
-3

. 
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An obvious way to obtain a large nonlinear overlap integral is to increase the 

thickness of the nonlinear region. Unfortunately it leads to increasing the confinement 

factors of all modes at the same time, which increases their absorptions. Also, a thicker 

nonlinear region requires using higher incident pump power to reach the same intensity. 

Therefore, there must be an optimal waveguide thickness. Figure 4-16 shows THz DFG 

powers in a 100-m long waveguide for three different thicknesses of the nonlinear 

region. The conversion efficiencies for 1, 4, and 12 m-thick nonlinear regions are 3  

10
-6

, 2  10
-5

, and 3  10
-6

 W
-1

 respectively as shown in Fig. 4-16. The waveguide with 

the 4 m-thick nonlinear region is best performing. 

 

 
 

Fig. 4-16. THz DFG output powers and resonant absorptions as a function 

of incident pump intensity are shown for three different thicknesses 

(triangle: 1m, circle: 4 m, square: 12 m) of the nonlinear region in the 

60 m-wide and 100 m-long ridge waveguide structure shown in Fig. 4-

3. Their modal parameters are given in Table IV-2. 
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5.   SUMMARY AND CONCLUSIONS
‡
 

 

We presented a theoretical modeling of electronic, magnetic and optical 

properties of ferromagnetic GaMnAs using the mean-field Zener model and the 30- and 

8-band k • p methods. Particularly, the 30-band k • p model allows us to simultaneously 

incorporate the modification of the valence band interaction with remote bands upon 

including the spin exchange interaction, epitaxial strain, the phenomenological Coulomb 

interaction, and disorder effect since the Luttinger parameters are not required. Also, the 

dielectric response tensor in the interband transition region is calculated over the whole 

first Brillouin zone. Our calculation of MOKE spectra of thin-film ferromagnetic 

GaMnAs samples in the metallic regime is in good qualitative agreement with the 

experimental spectra.  

In the two dimensional heterostructure quantum system based on III-V binary 

and ternary compound semiconductors, new methodologies for finding eigensolutions 

has been proposed in the real space with three different approaches, so called, the delta 

function method (DFM), the Fourier grid Hamiltonian method (FGHM), and the 

modified version of the FGHM (MFGHM). They have been tested in the one-band, the 

6-valence band, and the 8-band k  p models. The application of the methods can be 

extended to general n-band k • p models within the envelope function approximation.  

 

____________ 
‡
Part of this section is reprinted from “Above-bandgap magneto-optical Kerr effect in 

ferromagnetic Ga1−xMnxAs” by C. Sun, J. Kono, Y.-H. Cho, A. K. Wojcik, A. Belyanin, 

and H. Munekata, (2011), Physical Review B, 83, 125206, Copyright © 2011 by 

American Physical Society (APS). 
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The inherent advantages of the method include the treatment of the boundary 

conditions that are automatically satisfied, an extreme simplicity, transparency, the high 

accuracy of true eigen solutions, and the unified explanation and removal of spurious 

solutions.  

Based on our self-consistent calculation incorporating electronic states of 

semiconductor multiple quantum well heterostructures and the propagation of coupled 

fields, we systematically characterized the THz DFG output power in passive devices, 

taking into account the variation of subband populations, incident pump powers, 

detunings, doping densities in the nonlinear region, dipole moments, waveguide 

geometry, and modal parameters. Once an incident pump power is chosen for a given 

device, all other parameters can be optimized to yield the highest THz power. Generally, 

the pump power of 1-3 W is enough to reach the highest conversion efficiency. We 

obtained approximately ~10
-3

 W
-1

 in conversion efficiency and the milliwatt level of 

THz DFG output power at the incident pump power of ~ 1W. 
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APPENDIX A 

THE 8×8 K • P HAMILTONIAN MATRIX [15] 

 

In the non-relativistic limit, the Hamiltonian has the form as shown in (A.1), in 

which the spin-orbit interaction term is added to the Schrödinger equation and with bare 

electron mass m. The effect of the spin-orbit interaction becomes more pronounced for 

heavier semiconductors. 
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Using the definition of  V
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 and (A.1), then (A.3) is simplified as 
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Using the perturbation theory, 
kn

E  and the periodic part of the Bloch function 

kn
u  can be expanded up to the second order and the first order respectively with respect 

to small k. Using the zeroth order of the eight periodic parts (A.5) of the Bloch function 

that are determined by the symmetry of orbitals, corresponding to 6C(CB), 8V(HH, 

LH) and 7V(SO) (the double point group notation) in the  symmetry point, in which 

the Kramer’s degeneracy is taken into account, the resulting Hermitian Hamiltonian 

becomes the 8×8 k • p Hamiltonian as shown in (A.6). The higher bands that are cut off 

in this band model are effectively included in the second order terms through the 

Luttinger parameters 
3,2,1

  and the Kane parameter F. 

 S
c

21,21 ,  S
c

21,21 , 

  


 iYX
i

2
23,23 ,    iYX

i

2
23,23 , 

   ZiYX
i

2
6

21,23 ,   








 ZiYXi

3

2

6

1
21,23 , 

  








 ZiYXi

3

1

3

1
21,21 ,    ZiYX

i

3
21,21  

(A.5) 

 



 116 

               

   

   

 

   

   

 

   

    





















































































































































Ez

Ez

E

Ez

Ez

E

zzEg

zzEg

GF
HFGHIPkPk

GF
IHFG

H
PkPk

HIFHIPk

FGHHGIPkPk

HFGIGHPkPk

I
H

IHFPk

PkPkPkPkPkF
m

k
E

PkPkPkPkPkF
m

k
E

H

















2

''
0'

2

1
''

2

1
'

2

3
'2

3

1

3

2
21,21

0
2

''
'2'

2

3
''

2

1

2

'

3

2

3

1
21,21

'
2

1
'2'''0023,23

''
2

1
'

2

3
''0'

3

2

3

1
21,23

'
2

3
''

2

1
'0''

3

1

3

2
21,23

'2
2

'
0'''023,23

3

1

3

2

3

2

3

1
021

2
021,21

3

2

3

1
0

3

1

3

2
021

2
21,21

21,2121,2123,2321,2321,2323,2321,2121,21

****

**

*

****

**

*

0

22

0

22

88





 (A.6) 

where Eg is the band gap and  is the spin orbit split-off energy, 
E

  is the potential 

energy due to an external electric field,   
yx

ikkk 
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21 , and other parameters are 

defined as follows; 
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where m0 is the bare electron mass, ħ is the Plank constant, p is the -component of the 

momentum, 222

|| yx
kkk  , 

0
  is the band edge energy for corresponding band, originated 

from H0 in (A.4), S is the s-like orbital and the linear combination of X, Y, and Z is the 

p-like orbital, 
rc

  and 
r

  represent all CB edge energies higher than the first CB and all 

remote band edge energies respectively.  
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In the Luttinger parameters L

3,2,1
 , the free carrier energy term 

0

22
2mk  in (A.4) 

is already included. Since the CB is explicitly included in the band model, its 

contributions are subtracted from the Luttinger parameters L

3,2,1
 , giving the modified 

Luttinger parameters 
3,2,1

 . 
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APPENDIX B 

THE s,p-d SPIN EXCHANGE HAMILTONIAN MATRIX  

IN THE 8-BAND BASIS 

 

Based on the virtual crystal approximation [54], the spin exchange interaction 

Hamiltonian can be written as (also see (2.3)). 
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(B.1) 

where n denotes Mn sites, Js,p-d is s,p-d spin exchange coupling constant, N0 is Ga 

concentration, SM
BMn

xgN 
0

  [54], 
B

  is Bohr magneton, 
Mn

g  is 2, , S is 5/2 in III-

Mn-V, s is free carrier spin vector, and x is Mn nominal fraction. 

 To obtain the Hamiltonian matrix, we take the inner product of (B.1), 
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,

J
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 , by using the Bloch basis functions 
J

mJ ,  of the 8-band k • p 

model as given in APPENDIX A and the Pauli matrix for free carrier spin, i.e.,  
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For example, the spin operator acted on spin-up or spin down states can be calculated as 
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First of all, for the projection on the x-direction of the magnetization, the 

Hamiltonian matrix becomes 

 ','ˆ,','ˆ,
JxJxJxxJ

mJsmJMmJMsmJ  

               

 

 

 

 

 

 

 

  0
66

1
0

23

1
00021,21

6
00

23

1
0

6

1
0021,21

6

1
00

32
000023,23

0
23

1

32
0

3
00021,23

23

1
00

3
0

32
0021,23

0
6

1
00

32
00023,23

0000000
2

1
21,21

000000
2

1
021,21

21,2121,2123,2321,2321,2323,2321,2121,21

xxx

xxx

xx

xxx

xxx

xx

x

x

M
i

MM

M
i

MM

MM
i

MM
i

M
i

MM
i

M
i

MM
i

M

M













 

In the similar fashion, the Hamiltonian matrices for the rest of projection directions can 

be obtained as follows: 
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 The above three matrices can be combined to a single compact expression by 

using the spherical coordinates for the magnetization direction with respect to the crystal 

axis, i.e., 
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where   and   indicate the polar and azimuthal angles for crystal axes respectively. The 

resulting Hamiltonian matrix is read as 
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APPENDIX C 

DERIVATION OF THE HELMHOLTZ FREE ENERGY 

 

In the thermal-pressure reservoir of the canonical ensemble, the Gibbs free 

energy is given as 

PVTSUG            (C.1) 









NG

TSUF


            (C.2) 

where G is Gibbs free energy, U is internal energy, T is temperature, S is entropy, P is 

pressure, V is volume,  is Chem. potential, N is the number of particles, and F is 

Helmholtz free energy.  

By using (C.1) and (C.2), the Helmholtz free energy F can be re-expressed as  

NPVF            (C.3) 

And in the canonical ensemble, the product of pressure and volume can be written as 
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where kB is the Boltzman constant,  is 1/kBT. By substituting (C.4) into (C.3) and 

replacing the notations 
F

   and pN  , in which it is assumed that the temperature 

is low enough to be neglected, and p stands for hole density. Then, (C.3) becomes 
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In the limit of strong degeneracy, i.e., 
  

 ie1 , 

   peNdF
FF

          



 123 

  pepNd
FF

          

   Nd          

 
p

Mpdp
0

,' '                                                       (C.6) 

 

 

 

 

 

 



 124 

APPENDIX D 

DERIVATION OF THE MOMENTUM MATRIX ELEMENT 

 

We are interested in calculating the momentum (D.1) of a quasi-particle 

incorporated in the multi-band k • p band model. 
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where n and n’ are band indices, k and k’ are wave number vectors, m0 is bare electron 

mass, and   is total wavefunction or Bloch function, i.e.,  
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n
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u  represents the periodic part of the Bloch function. Based on the perturbation 

theory expanded up to second order, the k • p Hamiltonian can be expressed as  
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By substituting 
kn

u  expanded up to first order (D.3) into the Bloch function, one 

obtains (D.4). 
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The subsequent use of (D.3) and (D.2) on (D.4) leads to  
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It is important to notice that (D.6) can be rewritten as 
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Therefore, the momentum matrix elements between occupied a  and unoccupied states 

b  become 
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Fig. D-1. shows an example of 
x

HHCB
p


 for the interband transition between the 

conduction band and the heavy hole band with magnetization direction [100], spin 

exchange interaction in unstrained GaMnAs. 
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Fig. D-1. Momentum matrix elements in the interband transition between 

CB and HH band based on the 8-band k • p model for GaMnAs. 
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APPENDIX E 

E.1   DERIVATIONS OF OPTICAL SUSCEPTIBILITIES AND  

COUPLED WAVE EQUATIONS IN A LOSSY MEDIUM 

 

From the Maxwell equations for a single mode in non-magnetic materials with 

the assumption that the dielectric constant and the conductivity do not depend on time in 

the linear response regime, the wave equation for transverse components can be written 

in the SI unit as 
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where the time derivative t  was replaced by ti
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 , and the dielectric constant is 
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Now we take into account the wave equation with free carrier losses, i.e., 
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where we have used that NL
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  , and the nonlinear optical susceptibilities are in 
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and substituting them into (E.4) with assuming that )( xe
n

 is slowly varying with respect 

to the propagating direction x, then neglecting the second derivative with respect to x, 

(E.4) can be written as  
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Note that the same exponential terms are equated in (E.7), causing to drop the 

other complex conjugate terms. Using (E.3), (E.7) is simplified to 
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where 
n

k  is the solution of (E.3). Since now the complex conjugate terms are absent 

through (E.7~8), the trace is not taken, i.e., 
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Here N indicates the total free carrier density in a structure, 
nm

d  is the dipole moment 

between subbands n and m, and 
mn

σ  is the off-diagonal element of the density matrix 

between subbands m and n. 
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where x is the propagating direction of fields, and z is the sample growth direction. The 

polarization is expanded in terms of the susceptibilities )( m
 as 

NL

nnnmlnnnn
PEEEEP 

)1(

0

)2(

0

)1(

0
               (E.11) 
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where the confinement factor for the linear term is defined as 
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and the first term and the real part of the second term represent the free carrier losses and 

the resonant losses respectively. 

The density matrix equations
31, 32

 for the three-level medium schematically 

shown in Fig. 1-4 take the following form: 
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where  
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 
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  is the line broadening at the half width at half 

maximum (HWHM), and 
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  is the intersubband transition frequency, and 
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field frequency. 
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By keeping terms up to the first order with respect to the difference frequency 

field e3 since it is much weaker compared to pump fields, the off-diagonal elements are 
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All non-zero susceptibilities are obtained by equating (E.9) and (E.11) along with 

replacing 
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  by (E.14) ~ (E.16) and approximating that 
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Using (E.11) with the above non-zero optical susceptibilities, the coupled wave 

equation (E.12) is explicitly expressed as,  
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If the contribution of terms higher than the second order is much smaller than the 

second order term, the coupled wave equations can be written in more compact forms.  
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where sub-index n indicates each field. 

 

 

E.2   THz DFG POWER IN LIMITING PUMP POWERS 

 

Now we express the DFG output power with a single analytical expression in 

two limiting cases: a very weak and a very strong pump power. Basically, the difference 
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where we assumed zero-detuning, 0
1312
 rr , and 

3221
rr  . By substituting these into 

(E.20) for each limiting case, the linear susceptibilities for pump fields become 
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and, as a result, pump field amplitudes can be written as  
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where N is the average doping density in the nonlinear active region, and we used the 

following with the approximation that 
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By substituting the above pump amplitudes, the linear and the second order 

susceptibility of limiting cases into (E.39) and solving for the DFG field, then the DFG 

power becomes  
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where 
3

  and A are the modal refractive index and the modal cross section of the 

difference frequency field respectively, and Z0 is the free space impedance. Note that 
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DFG output power depends on 4

0
e  and 4

0


e  in the very weak and the very strong pump 

power regimes respectively.  
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