

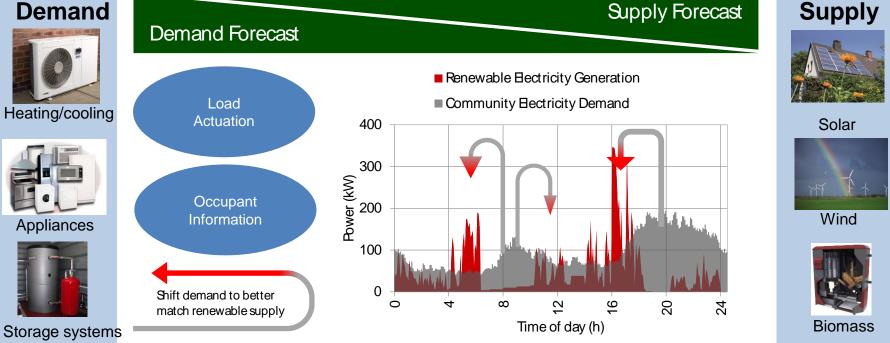
Orchestration of Renewable Integrated Generation in Neighbourhoods

Development of a detailed simulation model to support evaluation of water load shifting across a range of use patterns

Dr Nick Kelly, Dr Aizaz Samuel, Dr Paul Tuohy Energy Systems Research Unit, University of Strathclyde, Glasgow, UK

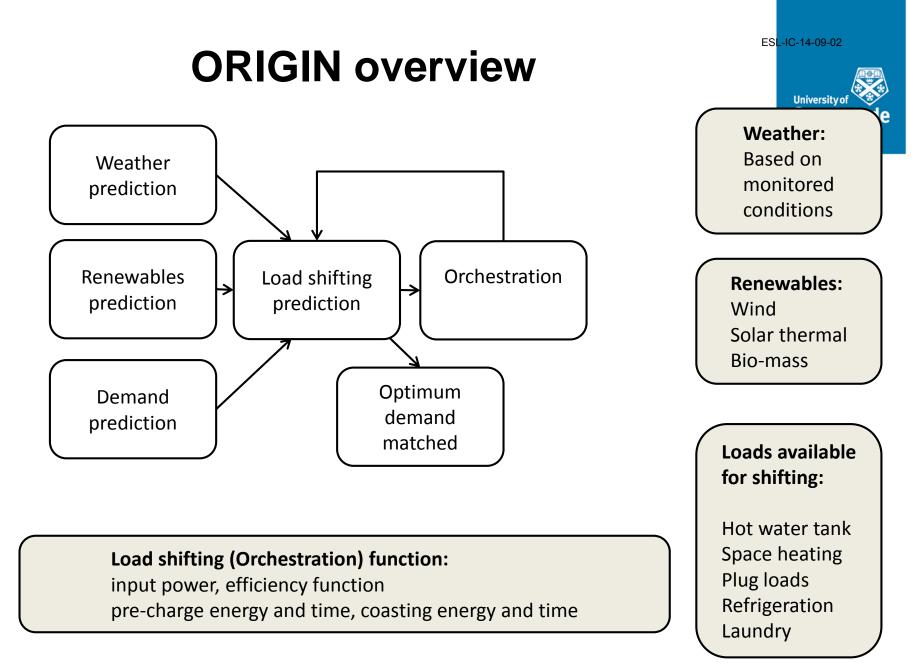
Orchestrate energy demand to better match renewable generation

Maximise economic revenues from renewable generation

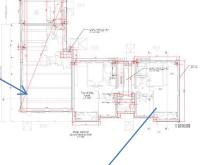

Reduce CO₂ emissions

ESL-IC-14-09-02

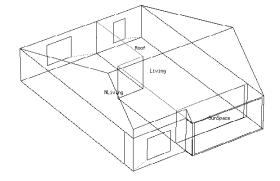
Work with each community to develop appropriate demand response architecture and systems

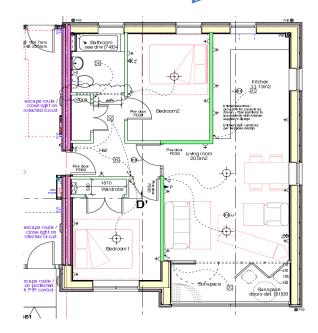

Supply Forecast

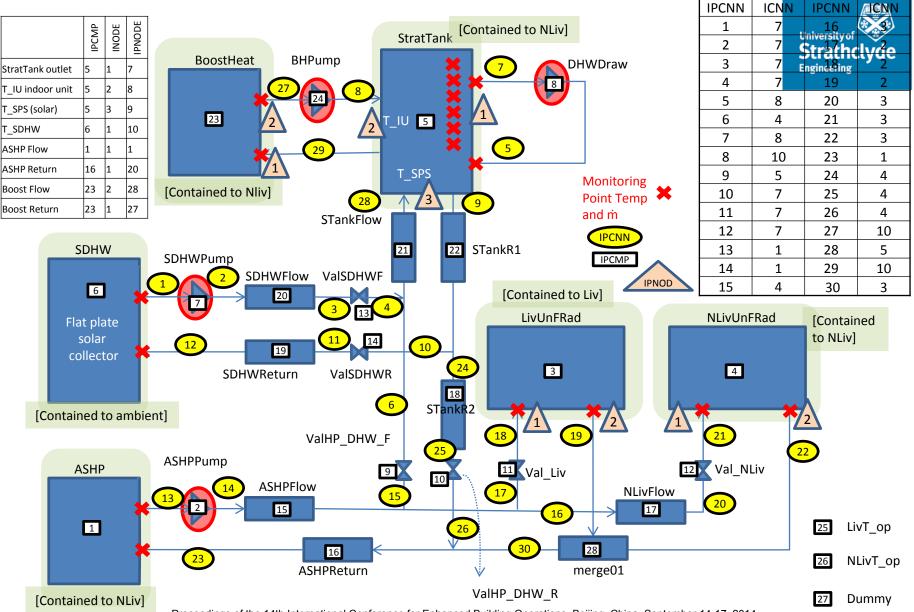
Demand



DHW demand / supply matching

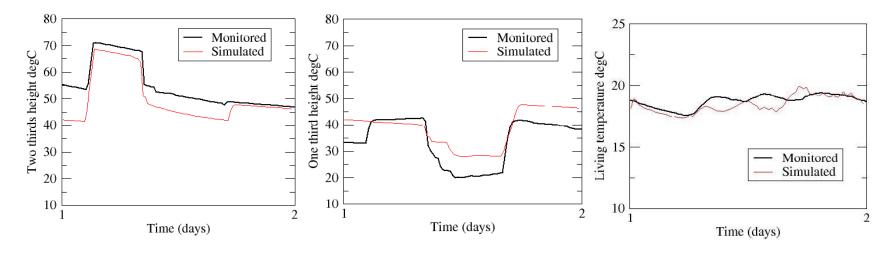






ESP-r coupled building, systems and flow schematic

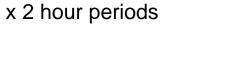
MFN – PLN connection mapping

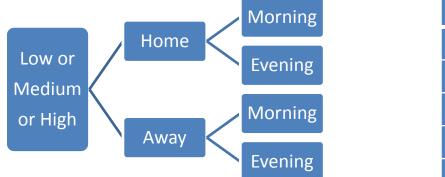

Decision flow of heating the domestic water by heat pump or by solarckit 9-02

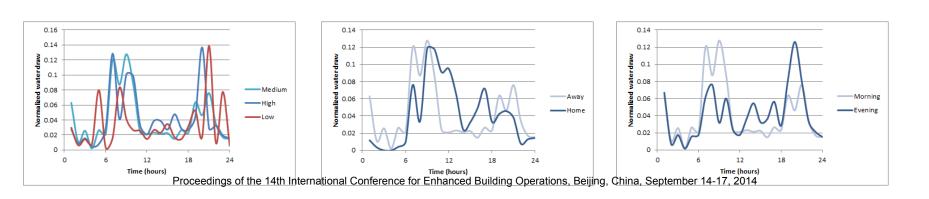
Loop #	Sensor/Normal Co		al Control descri	ption	Control law		
1	Sensor ON if T_S			/ > T_SPS + 10	Multi-sensor		
2	Senso	or	ON if T_IU <=]	ON if T_IU <= T_ASHPFlow [ON temperature] N			
3	Sensor		ON if T_SPS >	ON if T_SPS > T_max			
4	Sensor (timer)		ON if ASHP tin	ON if ASHP timer is ON i.e. 7-9 & 16-23			
5	Sensor		ON if T_IU <= "	ON if T_IU <= T_BHON			
6	Senso	or (timer)	ON if BH timer	ON if BH timer is ON i.e. 0-6 & 16-24			
7	Senso	or	ON if BH delay	ON if BH delay time is finished			
8	Senso	or	!S1	Multi-s		IOT	
9	Sensor !S2				Multi-sensor N	IOT	
10	Sen	ien 18 Normal Sens: Top Liv Act: Val Liv [11]				ON-OFF or P	
11	Sen	19	Normal	Sens: Top NLiv Act: Val NLiv [12]	ON-OFF or P		
12	Sen	20*	Sensor	S2 & S4 (no solar priority)	Multi-sensor		
13	Sen	20	(DHW by ASHP)	IS1 & S2 & S4 (solar priority)			
14	Sen	21	Sensor	S18 S19 S20	Multi-sensor		
15	Sen	22	Normal	Sens: S21 Act: ASHP [1]	ON-OFF or P		
16	Nor		Normal	Sens: S21 Act: ASHP Pump [2]	ON-OFF		
17	Nor	23	Normal	Sens: S20 Act: ASHP-DHW valves [9&1	ON-OFF		
	maximur	24*	Sensor	S1 & IS3 & IS2 (no solar priority)	Multi-sensor		
I	domestic tank tem		(DHW by SDHW)	S1 & IS3 (solar priority)			
DHW heating by solar kit		25*	Sensor	S1 & IS3 & S2 & IS4 (no solar priority)		Multi-sensor	
			(DHW by SDHW)	ON (solar priority)			
		26	Sensor	S24 & S25	Multi-sensor		
SDHW			Normal	Sens: S26 Act: SDHW [6]		ON-OFF	
			Normal	I Sens: S22 Act: SDHW Pump [7]		ON-OFF	
			Normal	Sens: S22 Act: SDHW valves [13&14]	ON-OFF		
	Proceedings of the 14th International Contenence Dordenna Presific Lididg Openations, Contenence 14-17, 2014 ON-OFF						
	* These leaps change from solar priority to be solar priority						

* These loops change from solar priority to no solar priority

Model validation




		Mean (°C)	Std Dev (°C)			z	ed	s r	rank vn nt	たち
2/3	Monitored	54.8	8.3			S error	malized IS error	ırson's elation fficient	าลท's ra elation fficient	Inequality coefficient
	Simulated	50.0	9.2			RMS	RMS	Pear corre coeff	spearm corre coeff	Inec
	Monitored	34.0	8.6		2/2	0.62	0.01	0.01		0.00
1/3	Simulated	38.8	7.0		2/3	0.63	0.01	0.91	0.42	0.06
Space	Monitored	18.7	0.5		1/3	0.65	0.02	0.88	0.58	0.09
	Simulated	18.5	0.8		Space	0.07	0.00	0.61	0.55	0.02

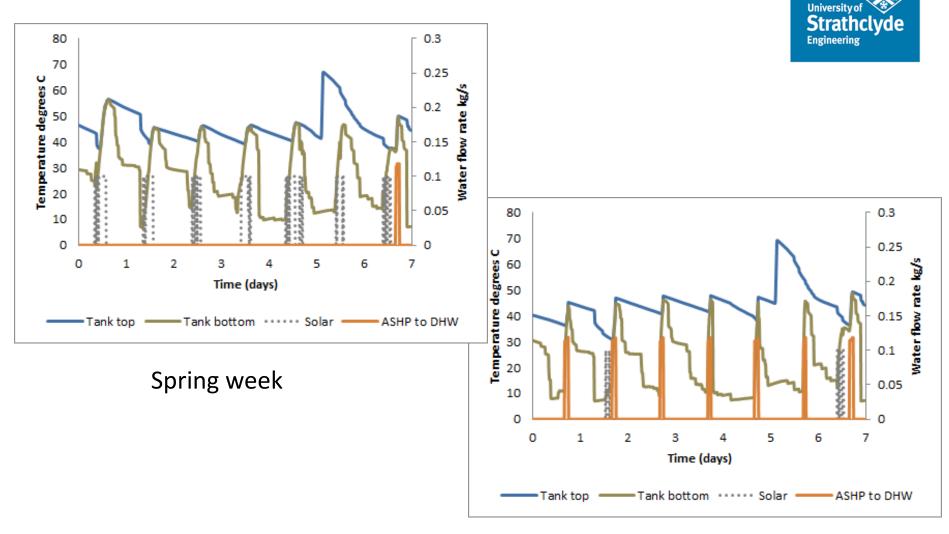

Water draw profiles and heating patterns

Water draw profiles: 3 use levels x 2 space occupancy levels x 2 time bias = 12 profiles

Heating hours: 5 x 2 hour periods

Heating hours

0000-0200

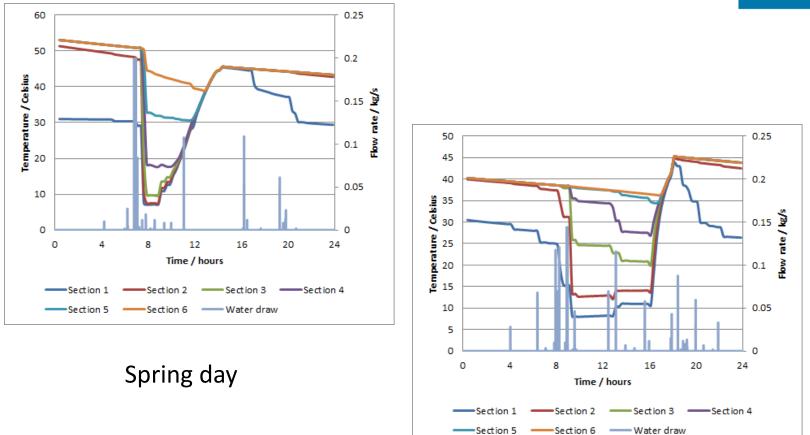

0600-0800

1000-1200

1600-1800

2000-2200

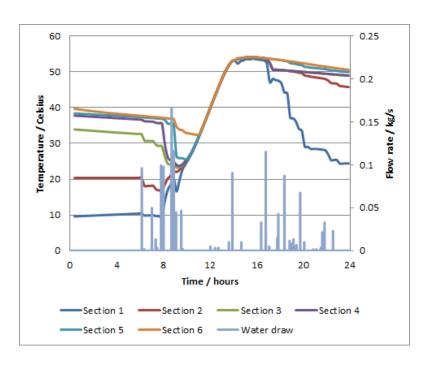
Results

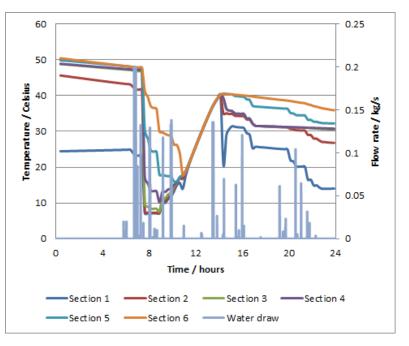


Winter week

ESL-IC-14-09-02

Results

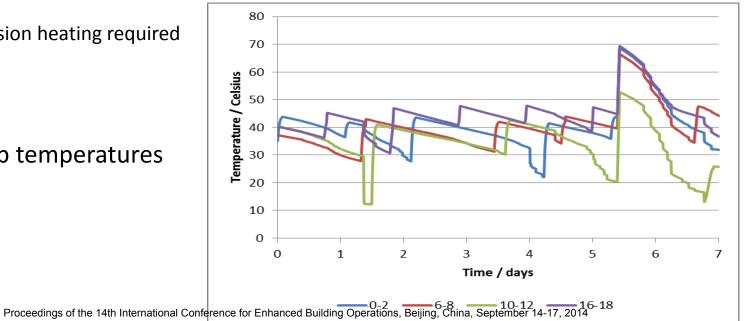



Winter day

Results

Spring day

Next Spring day


University of Strathclyde Engineering

Heating hours	Heating kWh	Electrical kWh
0000-0200	19.7	6.2
0600-0800	18.5	5.6
1000-1200	18.1	7.0*
1600-1800	18.0	5.8
2000-2200	18.9	5.9

Results

* Immersion heating required

Tank top temperatures

Conclusions & Recommendations

ESL-IC-14-09-02

- Many influencing factors
- Detailed DSM exist to adequately describe the problem
- All draw profiles can be supplied by solar energy in summer
- High use profiles require ASHP in spring
- Evening biased profiles utilize more solar energy
- Range of shifting benefits is 10-15% of standard heating energy
- Individual use patterns monitored and behaviour learnt to tailor shifting strategy to individual households
- Demand / supply cost matching is a function of many parameters

University of Strathclyde Glasgow

The University of Strathclyde is a charitable hody, registered in Scotland, with segistration number Scotlands, Beijing, China, September 14-17, 2014