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ABSTRACT 

 

In this dissertation, three devices are studied and devised for the applications in 

microwave and optical communication: (1) Multiband Patch Antenna, (2) Ultra-

Wideband Band Pass Ring Filter and (3) Plasmonic Waveguide Coupler with High 

Coupling Efficiency.  

First, the idea of a simple frequency reconfigurable patch antenna that operates at 

multiband from 2 GHz to 4.5 GHz is presented; by changing the position of the 

microstrip connecting elements on the antenna patches, the operating frequency will 

shift with fixed radiation patterns, which can be utilized in MIMO (Multiple IN Multiple 

Out) wireless data transmission.  

Next, a compact ultra-wideband (UWB) single-ring bandpass filter of 8GHz 

bandwidth with sideband and harmonics suppression achieved by forced boundary 

condition and step impedance filter is proposed. This approach provides a simple way 

for the design of ultra-wideband filters. Based on the transmission spectrum, it is known 

that the group delay variation in the pass-band is smaller than 0.3 ns, which indicates the 

proposed structure is very suitable for real applications.  

Finally, a short partially corrugated tapered waveguide for silicon-based micro-

slab waveguide to plasmonic nano-gap waveguide mode conversion at the optical 

communication frequency is investigated. The structure is designed to achieve mode 

matching between the silicon slabs and plasmonic waveguides. High coupling 
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efficiencies up to 87%~98% are demonstrated numerically. The results show that the 

corrugated structure will be helpful for realizing full on-chip silicon plasmonic devices.  
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CHAPTER I  

INTRODUCTION  

 

Wide band transmission has long been the goal pursued by engineering societies 

for the growing demand of high speed transmission of high volume of video and music 

data etc.. Therefore, there are many researches working on this issue to design devices or 

systems that can operate at a wide frequency range such as wide band antennas, filters 

for wireless communication or broad band switches for optical communication.  

In view of this big picture, in this dissertation, microwave and optical devices for 

broad band applications are studied. For microwave devices, patch antenna with 

frequency reconfigurable functionality and ultra wide band ring band pass filters are 

designed. On the other hand, for optical devices, recent hot topics about plasmonic 

waveguides that allow guiding waves with the device size much smaller than the signal 

wavelength are discussed; coupler for plasmonic waveguide feeding is designed with 

high coupling efficiency. The organization of this dissertation is listed as follows: 

Chapter II introduces the fundamental of the patch antenna first and then 

describes the designed detail, simulation and measurement results for the frequency 

changeable operation.  

Chapter III explains the idea of force boundary condition for the design of ultra 

wide band single ring band pass filter; the designed filter and measurement results are 

demonstrated at the end of it.  
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Chapter IV gives the reviews of FDTD (Finite Difference Time Domain) method 

and it’s algorithm for the simulation of wave propagation in dispersive media.      

Chapter V is the photonic part that outlines the background of surface plasmon 

polaritons and the surface wave propagation at metal-dielectric interface enabling the 

decrease of device size; in the end, the difficulty of photonic-plasmonic mode coupling 

is point out and a new coupler is design to improve the coupling efficiency. Finally, 

some details of current undergoing researches are not included in this dissertation. These 

works will be depicted in future publications when the final piece is completed.    
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CHAPTER II 

MULTI-BAND FREQUENCY RECONFIGURABLE PATCH ANTENNA* 

 

Introduction 

Recently, reconfigurable antenna has gained a lot of attention in the antenna 

design for multi-function-oriented wireless communication applications such as 

Software Defined Radio (SDR), Multiple-in-Multiple-out (MIMO) and RFID tag etc.. 

Frequency reconfigurability is one of the reconfigurable functions (polarization, 

radiation pattern, and operation band) in the reconfigurable antenna design. At present, 

some frequency reconfigurable antennas have been discussed in earlier literatures [1]-

[3]. In this chapter, the fundamental knowledge of microstrip antennas is introduced and 

then the design, simulation and measurement of a simple multi-band frequency 

reconfigurable antenna with microstrip connecting elements is discussed. The designed 

antenna can operate at multi-band from 2 GHz to 4.5 GHz and the operating frequency 

can be shifted with fixed radiation patterns when the position of connecting element on 

antenna gaps is changed. 

 

________________ 

* Reprinted with permission from “Multiband Frequency Reconfigurable Antenna by  
Changing the Microstrip Connecting Element Position” by Ya-Chi, Liu and Kai Chang, 
IEEE AP-S/URSI 2009. Copyright 2009 by IEEE. 
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Microstrip Antenna Fundamentals 

Microstrip antennas have received much attention in recent years, despite of 

some weakness, because of their many unique and attractive properties- low profile, 

light weight, compact structure, easy fabrication and flexible integration with solid-state 

devices. For above reasons, we study it for future application needs. There are usually 

two theoretical models used for the analysis and design of microstrip antennas; one is 

transmission line model (TLM) and the other is cavity model. Transmission line model 

is imposed for easy physical impedance analysis based on circuit theory, and cavity 

model is usually used for model analysis and also to attain the resonant frequency and 

field pattern. The most efficient way is to apply hybrid TLM-Cavity model for 

convenient analysis. In this chapter, hybrid TLM-Cavity model will be imposed in the 

antenna design. 

 

 

Feed Lines 

There are several different types of feed lines for microstrip antennas, namely 

aperture coupling, proximity coupling, coaxial probe, and microstrip line. Aperture 

coupling and proximity coupling are derivatives of the microstrip line and used to reduce 

the presence of high order transverse magnetic (TM) and transverse electric (TE) modes. 

The primary difference between the couplings is in how the dielectric surrounding the 

line is treated. The TM and TE modes cause cross polarization, a radiation pattern 

orthogonal to the intended polarized pattern. The coaxial probe is connected directly to 
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the antenna, which makes impedance matching more challenging. The microstrip line is 

etched on the same substrate and easily matched to the antenna. The choice of the feed 

line is based on the intended application of the antenna. Coaxial probe is adopted for the 

reconfigurable antenna design discussed in this chapter for simplicity and measurement 

convenience.  

 

 

Substrate 

Microstrip technology behaves differently based on the substrate dielectric and 

height [4]. Substrate used in antenna design have a range of dielectric constants between 

2.2 <= r <= 12 and heights are usually between 0.003 o <= h <=0.005 o. Choice of the 

correct substrate is crucial since the microstrip feed line and antenna are etched on the 

same substrate. Thick substrates with a low dielectric allow for increased antenna 

efficiency, bandwidth, physical size, and loosely bound radiated fields. Thin substrates 

with high dielectrics allow for tight radiated fields reducing unintended radiation and 

coupling, small bandwidths, reduction in size, and less efficiency. The latter are used 

primarily with microwave circuitry.    

The substrate chosen must minimize field fringing from the microstrip feed line. 

Field fringing causes the resonant frequency to shift, changing the operational frequency 

bandwidth. The RT/Durioid 5880 meets this requirement. The substrate chosen has a 

thickness of 0.317 cm and low dielectric constant of r = 2.20 +/- 0.02. Table 2-1 lists 
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the parameters for the substrate. The figure of the feed line and antenna, detailing the 

geometry and dimensions, are shown in Figure 2-1 and Figure 2-2.  

 

Table 2-1. Parameters for patch antenna substrate. 

 

 

 

 

Figure 2-1. Dimensions for the feed line and patch antenna. 
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Figure 2-2. Side view of the strip line. 
 

 

Feed Line Design 

  Microstrip lines have several favorable qualities: low cost, small size and simple 

production. The design of a microstrip line is straightforward and the only values 

computed are width, height, dielectric and characteristic impedance. A microstrip line 

has deterministic characteristic impedances, a reason it is used in transmission of 

microwave frequencies where conventional wiring and lumped circuit components are 

undesirable. The characteristic impedance of the feed line (FL), for this application 

needs to be 50 ohms to reduce standing waves, the possibility of arcing, and for 

maximum power transferred to the antenna. The width [5], Wf, of the microstrip line 

controls the characteristic impedance and is calculated by Equation (2-1).  
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The estimated width of the feed line was calculated to be 0.978273 cm with a 

characteristic impedance value of 50.28077 ohms. Equation (2-2) and Equation (2-3), 

used graphically and analytically [5], determined the width to be 0.986419 cm with a 

characteristic impedance of 50.00029 ohms as seen in Figure 2-3. This width provides an 

error accuracy of 10-3 ensuring good characteristic impedance. Graphing the impedance 

tells more about the line than the calculated solution does because in Figure 2-3, as the 

width of the line increases, the impedance drops exponentially. In this case, the length of 

the microstrip line was specified to be 4cm. The design parameters for the feed line are 

gathered in Table 2-2. 
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Table 2-2. Feed line parameters 

 

 

 

 

Figure 2-3. Characteristic impedance of the feed line. 
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Patch Antenna Design 

The microstrip antenna can be designed and built to fit many geometric shapes 

for the intended application. The rectangular or square geometry is very common and 

has a unique name, “patch”. Important variable qualities of a patch include resonant 

frequency, patch width, patch length, feeding position, substrate height and substrate 

index.  

A rectangular patch antenna resonates at the operating mode influences the 

resonant frequency. The resonant frequency is located where the imaginary part of the 

antenna impedance is zero and allows maximum radiated power. The mode with the 

lowest resonant frequency is called the dominant mode. The dominant mode for the 

model is the TM mnp
z =TM 010

z. This application of a patch antenna is designed between 

2-4GHz and with the resonate frequency at 3GHz. The length, L, as shown in Figure 2-4, 

of the patch controls the resonant frequency. The length of the patch is chosen to be L 

~= eff/2. The design of the patch requires selection of the dielectric constant, resonant 

frequency, and substrate height. This allows the design to be completed with following 

steps: 

1. Calculate the width by from Equation (2-4) for efficient radiation from the antenna.     

2. Determine the effective dielectric constant, εeff, which accounts for field fringing.  

3. Calculate the length extension, L, required to remove the complex impedance of the  

    patch and accounts for the patch being electrically longer due to the field fringing.  

4. Calculate the physical length of the patch based on step 1 to step 3.   
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5. Using transmission line model to get the feeding position yo to match the 50     

    impedance of feeding probe or strip line.  

Figure 2-4 shows the schematic diagram of the patch antenna and Table 2-3 lists 

the values of the design parameters in our designed case based on following equations. 
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Table 2-3. Values of the design parameters. 

 

 

 

 

Figure 2-4. The schematic diagram of the patch antenna. 
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The Transmission Line Model   

Transmission line model (TLM) treats rectangular patch antennas as a 

transmission line  and the radiation slots as circuit elements (G + j B). This model 

provides us an easy way to decide the input impedance and feeding position of the patch. 

Figure 2-5 shows the transmission line model of our designed patch antenna. The input 

impedance is a function of feeding position yo, as shown in Equation (2-15) and Figure 

2-6. From Figure 2-6, it is known that when yo is 1.263cm, the input impedance matches 

the 50  feed line. 

  
 

 (       )
(    (           ))          (2-15) 

 

 

 

Figure 2-5. Transmission line model of the patch antenna shown in Figure 2-4. 
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Figure 2-6.  Input resistance as a function of yo and Zin as a function of frequency. 
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When all of the parameters of the desired patch antenna are fixed and calculated, 

HFSS was utilized to check the VSWR and radiation pattern (Figure 2-7, 2-8 and 2-10) 

of our design structure. Finally, the radiation patterns (Figure 2-9 and 2-11) are 

measured and compared with the simulated results. From figures we can see that the 

simulated results match the experimental ones well. 

 

 

 

Figure 2-7. VSWR of the designed patch (HFSS). 
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Figure 2-8.  Radiation pattern for E plane (simulated). 
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Figure 2-9. Radiation pattern for E plane (measured). 
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Figure 2-10. Radiation pattern for H plane (simulated). 
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Figure 2-11. Radiation pattern for H plane (measured). 
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Reconfigurable Antennas 

Reconfigurable antennas provide the flexibility to change its resonant frequency 

or radiation pattern when needed. In this section, the reconfigurable antenna with 

resonant frequency operating at 3GHz and 3.5GHz is demonstrated for the design idea. 

PIN diodes are used as switches between 3GHz and 3.5GHz modes. When a PIN diode 

is used, its equivalent impedance should be imported into the transmission line model for 

analysis. The structure of this antenna is shown in Figure 2-12. When the switch is on, 

the antenna operates at 3.5 GHz. On the contrary, the antenna operates at 3 GHz when 

the switch is off. We make the patch width fixed and the length of the antenna 

switchable with PIN diodes that vary the resonant frequency. Figure 2-13 shows the 

transmission line model of our reconfigurable antenna with ideal switches. Table 2-4 

lists the parameters of this antenna based on the previously described procedure. To 

validate the design, HFSS is applied for the simulation. As shown in Figure 2-14, the 

simulated VSWR tells the resonant frequencies of the designed antenna are located at 

3GHz and 3.5GHz, which meets the design requirement with the parameters defined in 

Table 2-4. On the other hand, the transmission line model (TLM) also validates the 

design that gives the zero imaginary part of the input impedance around 3.5 GHz 

depicted in Figure 2-15.   
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Table 2-4. The design parameters for the frequency reconfigurable antenna I. 
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Figure 2-12. Schematic diagram of the frequency reconfigurable antenna. 
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Figure 2-13. Transmission line model of the reconfigurable antenna shown in Figure  
   2-12. 
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Figure 2-14. VSWR for the frequency reconfigurable antenna with ideal switch. When 
switch is on, the resonant frequency is 3 GHz; when the switch is off, the resonant 
frequency is 3.5 GHz. 
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Figure 2-15.  Input impedance v.s. frequency when the switch is on. 
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Multiband Frequency Reconfigurable Antenna  

Recently, reconfigurable antenna has gained a lot of attention in the antenna 

design for multi-function-oriented wireless communication applications such as 

Software Defined Radio (SDR), Multiple-in-Multiple-out (MIMO) and RFID tag etc.. 

Frequency reconfigurability is one of the reconfigurable functions (polarization, 

radiation pattern, and operation band) in the reconfigurable antenna design. There are 

some frequency reconfigurable antennas have been discussed in earlier literatures [6]-[8] 

and in previous section, the frequency reconfigurable antenna is introduced. In this 

section, the design, simulation and measurement of a simple multiband frequency 

reconfigurable antenna with microstrip connecting elements is discussed. It is found that 

the antenna can operate at multiband from 2 GHz to 4.5 GHz and the operating 

frequency can be shifted with fixed radiation patterns when the position of connecting 

element on antenna gaps is changed. 

The antenna structure and dimension parameters are shown in Figure 2-16 and 

Table 2-5, respectively. Two 0.5 mm gaps are placed between the inner driven element 

and outer parasitic element; four 0.5 mm x 0.5 mm microstrip connecting elements, 

which can be regarded as ideal switches, are placed on the gaps. Based on the 

transmission line model, the patch antenna is designed to operate at 3.5 GHz with patch 

length Lpl and 3 GHz with patch length Lp2 before the gaps are placed. Rogers RT5880 

Duroid (r = 2.2) of 30 mil thickness is used here as the substrate. The four connecting 

elements are located on the gaps with different positions D for the measurement of S11 

and radiation patterns. 



 

27 

 

 

 

 

Table 2-5. The design parameters for the frequency reconfigurable antenna II. 

 

 

 

 

Figure 2-16.  Left: The schematic of the antenna. Right: The top view and bottom view 
of the actual antenna appearance. 
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The S11 and radiation patterns with D = 0 mm and 5 mm are depicted in Figure 2-

17 and Figure 2-18, respectively. Figure 2-17 (a) shows the antenna works around 3.3 

GHz when there are no connecting elements on the gaps. When the connecting elements 

are placed, multiple resonant frequencies appear between 2 GHz and 4.5 GHz. In 

addition, when the position D shifts, the resonant frequencies also shift. According to 

Figure 2-17, the antenna can operate at frequencies which is lower than 3GHz (2.66 

GHz) or higher than 3.5 GHz (4.08 GHz). The position D of the connecting element 

gives another degree of freedom to reconfigure the operating frequency of antenna other 

than the originally designed 3 GHz and 3.5 GHz. With this property the antenna can 

work in a wider frequency range. On the other hand, the radiation patterns of the antenna 

remain the same as D and the operating frequency are changed, as shown in Figure 2-18. 

 

 

 

 

  



 

29 

 

 

 

Figure 2-17. (a) The measured S11 when there are no connecting elements. (b) S11 with 
D = 5 and 0 mm. Measured and simulated S11 when (c) D = 5 mm. (d) D =0mm. 
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Figure 2-18. Radiation patterns for (a) D = 5 mm. (b) D = 0 mm. 
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CHAPTER III 

COMPACT ULTRA-WIDEBAND RING BANDPASS FILTER*   

 

Introduction 

Microstrip ring circuits have many applications in the design of filters, 

oscillators, mixers, antennas, and couplers [9]-[11]. For filter applications, there are 

some different kinds of bandpass filters (BPFs): dual-mode ring BPFs [12]-[17], ring 

slow-wave BPFs [18], ring BPFs with two transmission zeros [19], wideband ring BPFs 

[20], and others [21]-[24]. Because of the narrow passband feature, additional circuits or 

microstrip configurations such as microstrip tuning stubs, cascade ring resonators, 

enhanced coupling stubs, or perturbation stubs are generally used in these structures to 

create a wider pass band. In this chapter, a compact, wideband ring BPF is proposed by 

using the harmonic suppression of the even or odd mode resonances with the use of via-

hole or slit-gap as the forced boundary condition of a single square ring resonator. It is 

found that a wide pass band can be created between two allowed half modes (with the 

side-band suppression greater than 30 dB when the feed-line coupling gaps are voided.  

 

________________ 

* Reprinted with permission from “Simple Wideband Microstrip Ring Bandpass Filter 
by Utilizing Forced Harmonic Suppression and Direct Feed Line Coupling” by Y. Liu 
and K. Chang, Microwave and Optical Technology Letter, vol. 54, 8, p.1968, 2012. 
Copyright 2012 by Wiley. 
 
* Reprinted with permission from "Compact Ultra-Wideband Single Ring Bandpass 
Filter with Sideband and Harmonic Suppression" by Ya-Chi, Liu and Kai Chang, IEEE 
AP-S/URSI 2012. Copyright 2012 by IEEE. 
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Therefore, the design procedure is simplified with no additional circuits and 

complex microstrip configuration mentioned above. Furthermore, the pass band can be 

switched to the adjacent band by exchanging the even and odd mode suppression and the 

bandwidth can be increased by reducing the ring size, which provide flexibility for the 

ring BPF design.  

 

 

Fundamental of Microstrip Ring Resonators 

The microstrip ring resonator was first proposed in 1969 by P. Troughton for 

microstrip line phase velocity and dispersion property measurement. The application of 

ring resonator initially falls on the measurements of the properties of microstrip line 

discontinuities and then following the antennas, filters, oscillators, mixers, 

optoelectronic components and couplers etc.. 

The ring resonator is a simple circuit that is easy to build. This structure only 

supports waves with wavelength that makes the circumference of the ring its integer 

multiples. Though the simplicity, many circuits still can be designed based on the ring 

resonator for different purposes such as integration with solid-state devices or switches.  

The basic structure of the ring includes feed lines and coupling gaps, as shown in Figure 

3-1. When the coupling gap is large, the coupling from the feed line to the ring is 

regarded as weak coupling. On the contrary, it becomes strong coupling when the 

coupling gap is small [25].  
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Figure 3-1. Microstrip ring resonator with coupling gaps and feed lines [25]. 
 

 

As mentioned above, when the circumference of the ring is equal to an integer 

multiples of the signal wavelength then the resonance is constituted. This relation is 

expressed as: 

                                                               2r = n g                                                   (3-1) 

where r is the mean radius of the ring, n is the mode number and g is the guided 

wavelength expressed as: 

g = c (eff)-1/2/ f                                                    (3-2) 

 

where c is the speed of light and eff is the effective dielectric constant. 

There are mainly two models of the ring resonators used for the analysis of the 

microstrip ring resonators:  magnetic wall model and transmission line model. The 

Coupling gap Feed Line
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magnetic wall model considered the ring resonator as a ring cavity with PEC (perfect 

electric conductor; electric wall) on the top and bottom of the ring and with PMC 

(perfect magnetic conductor; magnetic wall) on inner and outer side walls of it.  This 

model  reduces the error caused by the mean radius approximation and considers the ring 

curvature. The drawback of magnetic wall model is that it did not take the fringing field 

into account so when the permittivity of the dielectric material is low this model will 

provide less accuracy [25]. A modification that includes the fringing field effect in the 

magnetic wall method is required when the original model is inadequate [25]. 

The magnetic wall model is limited for that it cannot provide the information 

such as input impedance of the ring resonator. Therefore, transmission line model 

[30][31] is developed to work out the equivalent circuit of the ring resonator, as shown 

in Figure 3-2, so that the input impedance and resonant frequency can be determined 

easily for the circuit design.  As depicted in Figure 3-2, the feed lines, coupling gaps and 

the resonator are modeled as a section of a transmission line respectively and are 

combined together for the whole circuit.    

Here, in Figure 3-2 

Za = j Zo tan(l / 2)                         (3-3) 

Zb = j Zo csc(l )                 (3-4) 

C1= 1/2 Ceven                                 (3-5) 

C2= 1/2 (Codd - 1/2 Ceven)              (3-6) 

Codd= w (s/w)
mo

 e
ko                       (3-7) 

Ceven= 12 w (s/w)
me

 e
ke

                                    (3-8) 
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Where s is the coupling gap and w is the microstrip width. 

For  0.1 <= (s/w) <= 0.3 

me = 0.8675 

ke = 2.043(w/h)0.12 

Here, h is the substrate thickness. 

 

 

 

  Figure  3-2. Equivalent circuit of the ring resonator shown in Figure 3-1 [25]. 
 

 

Based on equation (3-3) to (3-8), the circuit for the ring resonator can be 

analyzed more precisely for the estimation of the input impedance, which is important 

for the microwave filter design.  

For the derivation of magnetic wall model and the transmission line model, 

further information can be found in [31][29][25]. In this chapter, the focus will mainly 
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put on the utilization of different resonant modes of the ring resonator for the filter 

design.  

 

 

Regular Resonant Modes and Forced Resonant Modes 

The regular resonant mode of a ring resonator means the circumference of the 

ring is the integer multiples of the resonance wavelength. As shown in Figure 3-3, the 

first four resonant modes and the transmission spectrum of a ring resonator are 

demonstrated. Based on the figure, it is known that the transmission bandwidth of a 

regular ring resonator is narrow, which is limited for the design of wide band filter. 

Besides regular resonant modes, there is another kind of modes called forced resonant 

modes, which are excited by forced boundary conditions on the microstrip ring [25]. The 

boundary condition can be short or open circuit that are achieved by placing via holes or  

cutting open slits at the desired location of the ring. To understand more clearly, Figure 

3-4 demonstrates a ring with a via hole (short circuit) placed g/4 away from the feed 

line. Therefore, E field is zero at the via hole. Based on this forced boundary condition, 

the resonant modes that can survive in the ring are odd harmonics and their half modes: 

0.5 fo, fo, 1.5 fo, 2.5 fo, 3 fo, 3.5 fo...etc.. On the contrary, when the via hole is replaced 

by an open slit at the same place of the ring, as shown in Figure 3-5, E field is maximum 

at the slit. Hence, the allowed resonant modes are even harmonics and their half modes: 

1.5 fo, 2 fo, 2.5 fo, 3.5 fo, 4 fo, 4.5 fo...etc.. With the presence of the forced boundary 
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condition, the transmission bandwidth of the ring resonator becomes wider. This 

property basically can be utilized for the design of wide band filter [27].  

 

 

 

 

Figure 3-3. The first four modes of a ring resonator. 
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Figure 3-4. A ring with a via hole (short circuit) placed g/4 away from the feed line. 
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Figure 3-5. A ring with a slit (open circuit) placed g/4 away from the feed line. 
 

 

Feed Line Coupling Gap 

The flatness of the pass band is one of the important issues for the design of band 

pass filters. For a ring resonator, the gap of the feed line controls the strength of the 

coupling to the ring. Figure 3-6 shows the simulation of the transmission spectrum of a 

ring with short circuit forced boundary condition. For the case with the feed line 

coupling gap, the three resonant modes are clearly seen on the spectrum. However, this 

pass band with ripple is not ideal to serve as a filter. To solve this problem, the coupling 

gap is removed. As shown in Figure 3-7, when the coupling gap is removed, the 

transmission band is flattened and can be utilized for the filter design, which will be 

discussed in the next section. 
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Figure 3-6.  The spectrum of a ring with coupling gaps. 
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Figure 3-7.  The spectrum of a ring without coupling gaps. 
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Filter Structure and Analysis 

Figure 3-8 shows two square ring resonators with a slit-gap and a via-hole at 

position g/4 away from the feed line, respectively, where g is the guided-wavelength of 

the fundamental resonance. The slit-gap and the via-hole are used to force the boundary 

condition of the ring resonator to be open and short, respectively. At the gap region 

(open circuit), the current distribution is minimum and hence the electric field is 

maximum. On the contrary, the current distribution is maximum and the electric field is 

minimum at the via-hole (short circuit). In the previous section, it is known that, in 

addition to regular modes, a ring resonator with coupling gaps can also support half 

modes when there is a perturbation at position g/4 away from the feed line [25], that is, 

the circumference of the ring resonator can be odd integer multiples of the resonant 

mode’s half wavelength. To have the qualified pass band, the feed line coupling gaps are 

voided to reduce the coupling loss and the transmission loss between two allowed half 

modes. As demonstrated in the previous section, without the presence of coupling gaps, 

a wide pass band will appear on the spectrum between the allowed half modes of a 

perturbed single ring resonator of which the structure is simpler than other proposed 

ring-based BPFs [12], [20], [17], [19], [23]. 
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Figure 3-8. Layout of the harmonic-suppression ring resonators: (a) Short circuit with a 
via hole (hole diameter ~ 0.3 mm). (b) Open circuit with a slit gap (gap width ~ 0.6 mm) 
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Experiment and Measurement Results 

The schematic diagram and designed parameters of the ring BPF are shown in 

Figure 3-8 and Table 3-1, respectively. Here, Rogers RT5880 Duroid substrate (r = 2.2) 

with 30 mil thickness is used in the circuit fabrication and the characteristic impedance 

of all microstrip sections are designed to be 50. For data comparison, two square ring 

resonators are designed with fundamental resonant frequencies (f0) at 2 and 4 GHz 

individually.  

The measured and simulated results are shown in Figures 3-9 and Figure 3-10. 

According to S21, for resonators with slit-gaps (open circuit), the odd resonant modes are 

suppressed, as depicted in Figure 3-9(a) and Figure 3-10(a). On the contrary, the even 

resonant modes are suppressed for resonators with via-holes (short circuit), as depicted 

in Figure 3-9(b) and Figure 3-10(b). The feed line coupling gaps are voided and the feed 

line position is slightly adjusted to reduce the reflection (S11) of the ring resonator so that 

the window between two aforementioned allow half modes can serve as the pass band of 

the BPFs.  

Additionally, from Figures 3-9 and Figure 3-10, it can be recognized that the pass 

bands of the odd-mode-suppressed BPF and the even-mode-suppressed BPF are 

complementary, which indicates the operating pass band can be adjusted to work at the 

adjacent band without changing the size of the ring resonator but swapping the via-hole 

and the slit-gap. Furthermore, owing to the bandwidth between two adjacent resonant 

modes is wider for a smaller ring, it is understandable that why the 3 dB bandwidth of 

the pass band is about 2 GHz for the for the resonator with f0 = 2 GHz and about 4 GHz 
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for the resonator with f0 = 4 GHz. Based on the measurement data, the return loss in the 

pass band is greater than 10 dB and the sideband suppression is around 30 dB or more. 

Finally, EM simulations with IE3D [26] are in good agreement with the measurement 

results.  

 

 

Table 3-1. Design parameters. 
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Figure 3-9. Measurement and simulation results for the resonator with f0 at 2 GHz: (a) 
Odd mode suppression (open circuit).The two allowed half modes are at f =1.5 f0 and f = 
2.5 f0. (b) Even mode suppression (short circuit). The two allowed half modes are at f = 
0.5 f0 and f =1.5 f0. Arrows are used to indicate the pass band. 
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Figure 3-10. Measurement and simulation results for the resonator with f0 at 4 GHz: (a) 
Odd mode suppression (open circuit).The two allowed half modes are at f =1.5 f0 and f = 
2.5 f0. (b) Even mode suppression (short circuit). The two allowed half modes are at f = 
0.5 f0 and f =1.5 f0. Arrows are used to indicate the pass band. 
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Side Band Suppression with Low Pass Filter 

In the previous section, the utilization of half modes of a ring resonator for the 

filter design is introduced. However, the unwanted side band sill has to be eliminated to 

validate the filter design. Therefore, additional circuits are needed to perform the side 

band suppression. In this section, a simple and compact ultra wide band bandpass filter 

from 4GHz to 12GHz designed by imposing a single microstrip ring resonator and 

stepped-impedance filter to achieve sideband suppression is studied. Both simulation and 

measurement data are in good agreement and the group delay variation in the pass-band 

is less than 0.3 ns [28].      

As shown in Figure 3-7, the sideband over 12 GHz still has to be suppressed to 

prevent the desired pass-band signal being interfered. To achieve the side band 

suppression, the ring and a 10th order maximum flat stepped-impedance low pass filter 

are cascaded together, as shown in Figure 3-11 with the structure parameters listed in 

Table 3-2. Figure 3-12 and Figure 3-13 are the simulation and measurement data of the 

transmission spectrum as well as group delay of the filter respectively.  Rogers RT5880 

Duriod substrate (r=2.2) with 30 mil thickness is used in the circuit fabrication and the 

characteristic impedance of different strip widths used in the design are 30 50 and 

135 respectively.  According to measurement data, within the pass band, the return 

loss is greater than 10dB between 4GHz and 12GHz and the transmission zeros aside are  

greater than 20dB; the group delay variation is less than 0.3ns. Both simulation and 

measurement data are in good agreement.   
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Figure 3-11. Layout of the UWB filter. 
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Table 3-1.  Structure parameters for the UWB filter depicted in Figure 3-11. 

 

 

 

 

Figure 3-12. Reflection and transmission spectrum of the designed UWB filter. 
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Figure 3-13. Measured and simulated group delay of the designed UWB filter. 
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Conclusion 

The design of a compact single-ring BPF with a broad pass band is discussed and 

demonstrated in this article. The via-hole and slit-gap are used as the forced boundary 

condition to introduce the even/odd mode harmonic suppression. Without the feed line 

coupling gaps, the transmission loss between two allowed half modes will be reduced 

and hence the pass band of the BPF is created. The proposed structure differs from the 

narrow-pass band nature of a single-ring resonator and thus provides an alternative 

approach for the design of ring based BPFs. 
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CHAPTER IV 

FDTD-FINITE DIFFERENCE TIME DOMAIN METHOD 

 

Introduction 

The Finite Difference Time Domain (FDTD) Method is greatly used in the study 

of microwave or optical structures for its simple algorithm. Compared with other 

numerical methods, FDTD offers a straight-forward way for programmers to do the 

simulation of wave propagation in time domain.  One only needs to rewrite Maxwell's 

Equations into finite difference equations and apply field iteration. In addition to its 

simple algorithm, FDTD is efficient for dealing with wide band simulations since it is 

time domain iteration. The broad band field information can be obtained by one single 

run with a short pulse excitation in time domain. 

The basic FDTD numerical techniques for solving EM waves directly in the time 

domain on a space grid was described by Yee in 1966 [32].  Yee proposed to sample the 

spatial vector components of the electric and magnetic fields in a staggered manner, as 

shown in Figure 4-1, which enables the differential or integral forms of Maxwell's 

equations in a robust manner.  In Yee's paper, the FDTD is second-order accurate in both 

time and space domains with the use of central difference for Maxwell's differential 

equations. Due to the finite difference form of the differential equations, numerical 

dispersion and numerical stability are the main issues need to be considered in FDTD, 

which are determined by the cell size in space and time. To maintain the numerical 

stability, generally the cell size has to be sufficiently small in comparison to the 
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wavelength (generally 1/20 to 1/30 of the wavelength).  This will be discussed further in 

later sections of this chapter.    

 

 

 

                                          Figure 4-1. Yee's Lattice [33]. 
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Yee's Algorithm and Maxwell Equations 

Consider a space having no electric or magnetic current sources but lossy electric 

or magnetic materials. The time-dependent Maxwell's Equations with differential form 

are given as: 

   ⃗    ⃗⃗  
  ⃗ 

  
 (Faraday’s Law)            (4-1) 

   ⃗⃗     
  ⃗⃗ 

  
 (Ampere’s Law)                (4-2) 

   ⃗⃗     (Gauss’s Law for electric field)           (4-3) 

   ⃗     (Gauss’s Law for magnetic field)        (4-4) 

where, 

 ⃗ : Electrical field intensity (V/m) 

 ⃗⃗ : Magnetic field intensity (A/m) 

 ⃗⃗ : Electric flux density (C/m2) 

 ⃗ : Magnetic flux density (Wb/m2) 

  : Electric current density (A/m2) 

 ⃗⃗ : Magnetic current density (V/m2) 

  : Electric charge density (C/m2) 

  : Magnetic charge density (Wb/m2) 

For linear, isotropic and non-dispersive materials, D and B are presented as follows: 

 ⃗⃗       ⃗    ⃗                                  

 ⃗       ⃗⃗    ⃗⃗                                   (4-5) 
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Substituting (4-5) into (4-1) and (4-2), the vector form Maxwell's curl equations 

for linear, isotropic, non-dispersive and source free with zero magnetic losses media 

become: 

   ⃗⃗    ⃗   
  ⃗ 

  
              (4-6) 

   ⃗    
  ⃗⃗ 

  
                     (4-7) 

The scalar form of (4-6) and (4-7) yields six coupled equations for Cartesian coordinate: 
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The above six partial differential equations are the government FDTD equations 

for the simulation of electromagnetic wave interacting with arbitrary 3D objects. Based 

on Yee's idea, the first order differentiation of Equations (4-8) to (4-13) with respect to 

space and time are approximated by central differences. Then all field components are 

worked out via the leapfrog iteration scheme. 

Based on Yee's mesh in space shown in Figure 1, Equation (4-8) to (4-13) can be 

expressed as follows:  
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Equation (4-14) to (4-19) then can be rearranged as the following update equations: 
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The above update equations then are solved by leapfrog scheme, as shown in 

Figure 4-2, which implies that electric and magnetic field are not updated at the same 

time but alternatively in real time scale since the time grids for E and H field are 

staggered with 0.5 t time spacing for numerical stability. The above updating equations 

denote that the newly updated H depends on current E and previously updated H. By the 

same way, the newly update E depends on current H and previous updated E. This 

updating process (or called iteration) is repeated until the last time step is reached.  
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Figure 4-2. Leapfrog scheme. 
 

 

 

Numerical Dispersion and Numerical Stability 

The central difference approximation of the differential form Maxwell Equations 

causes nonphysical dispersion of the simulated waves in a free-space computational 

lattice [34]. That is, the phase velocity of numerical wave modes can differ from c by an 

amount varying with the wavelength, direction of propagation in the grid, and grid 

demonetization. This phenomenon is called numerical dispersion, which must be taken 

into account in FDTD for accuracy consideration.  

For further understanding about numerical dispersion, now Maxwell Equation for 

TMz wave in 2-D is considered. 

                    (4-26) 

n n+1/2 n+1 n+3/2 n+2 n+5/2

H H H

n+1 n+3/2 n+2 n+5/2

E E E

n+1/2n

n: time index
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          (4-27) 

         (4-28) 

The finite difference equations of (4-26) to (4-28) with central difference approximation 

are: 

       (4-29) 

       (4-30) 

    (4-31) 

Because E and H are harmonic functions, the numerical En and Hn field can be expressed 

as complex exponential: 

                           (4-32) 

         (4-33) 

                   (4-34) 

Where kx, ky are numerical wave vector and  Ez, Hxo, Hyo are mode amplitude 

Substitute (4-29) to (4-31) into (4-32) to (4-34) yields the mode amplitudes 

         (4-35) 
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         (4-36) 

      (4-37) 

Substitute Hxo and Hyo in (4-37) with (4-35) (4-36) and then yields the following 

numerical dispersion relation: 

     (4-38) 

When t, x and y are 0, the above numerical dispersion relation is equal to the 

dispersion relation in real space and time. However, for real situation, the increment of 

space and time cannot be 0; therefore the error between numerical dispersion and real 

dispersion exists. The comparison between numerical dispersion with different cell size 

and real dispersion is shown in Figure 4-3, where  

   S= c t/ 

   N= c t/ 

From Figure 4-3, to maintain accurate phase velocity, the space cell size should 

be no more than 1/10 .  
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Figure 4-3. Phase velocity v.s. cell size [34]. 
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Numerical Stability  

Yee's algorithm for Maxwell's curl equations requires that t must be bounded 

relative to space increments to avoid numerical instability. The complete derivation of 

the stability condition can be found in Yee's paper [32]. In this paper, for the FDTD 

analysis based on central differencing, to maintain the numerical stability, the following 

inequity must be met: 

        (4-39) 

Where c is the velocity of light in free space. This equation is known as Courant- 

Freidrichs-Levy (CFL) Stability Criterion. For unstable condition, the computed E 

and H fields will increase boundlessly as time progresses.   

 

    

                                             FDTD for Dispersive Materials   

          In previous section, FDTD for non-dispersive material is introduced for the 

understanding of its basic algorithm. In this session, FDTD for dispersive material will 

be described for     the simulation of plasmonic devices, which is a kind of metamaterials 

with extra-ordinary physics properties such as negative refractive index and phase 

velocity.   

Metamaterials are characterized in terms of their effective material parameters 

like electric permittivity and magnetic permeability. The value of these parameters can 

http://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
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be either positive or negative. Figure 4-4 show the classification of materials, materials 

fall in the first quadrant are DPS (Double Positive) materials, materials fall in the second 

quadrant are ENG (Epsilon Negative) materials, materials fall in the third quadrant are 

DNG (Double Negative) materials (or Left-Handed Materials) and materials fall in the 

fourth quadrant are MNG (Mu Negative) materials.  Except for DPS materials, ENG, 

DNG and MNG are usually regarded as metamaterials. In this dissertation, ENG 

materials are studied since metals for plasmonic devices are regarded as ENG materials.  

There are several schemes have been proposed to include frequency dispersion into 

FDTD methods: the auxiliary differential equations (ADE) [35], the recursive 

convolution method (RC) [36], and the z-transform (ZT) method [37]. For simplicity, 

ADE method is adopted in this dissertation for the simulation of plasmonic devices. 
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Figure 4-4. Classification of materials. 
 

 

For dispersive media, the permittivity or permeability is a function of frequency 

and therefore the electric or magnetic flux density is a function of frequency as well. 

This relation constitutes the government equations of ADE method. 

Now, consider the interaction between TE incident wave (Ez, Hx and Hy) and 

left-handed media; the involved equations for 2D FDTD formulation with material 

dispersion are:  

                   (4-40) 
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                   (4-41) 

          (4-42) 

        (4-43) 

          (4-44) 

        (4-45) 

The representation of symbols shown in above equations are listed in Table 4-1. In 

frequency domain, the multiplication of j stands for time derivation in time domain.     

Therefore, (4-41) (4-43) and (4-45) in time domain are: 

              (4-46) 

    (4-47) 

    (4-48) 

By applying central difference (4-40), (4-42) and (4-44) are discretized into 

 

        (4-49) 



 

67 

 

     (4-50) 

      (4-51) 

The first and second order derivation with respect to time in Equation (4-46) to ( 4-48)  

can be approximated by second-order accurate central difference shown as follows: 

   

    
             

                  (4-52) 

   
          

    
          (4-53) 

The fields located at time point t=n t are approximated by a semi-implicit scheme: 

         (4-54) 

By applying (4-52) to (4-54) into (4-46) to (4-48), the explicit update equations are 

written as follow: 

  (4-55) 

Where M=2 and  

;   

   

  

    (4-56) 

    (4-57) 
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 Where M=2 and 

    

 

 

To implement this FDTD iteration for dispersive media, the procedure shown in 

Figure 4-5 has to be followed. Based on Figure 4-5, D is updated from H first and then D 

is converted to E at the same time step; finally H is updated from E and then B is 

converted to H. This cycle keeps running until the time iteration loop is ended [34]. 

 

 

 

Figure 4-5. FDTD field iteration procedure for dispersive media. 
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CHAPTER V 

SURFACE PLASMON POLARITONS AND PLASMONIC WAVEGUIDES* 

 

Introduction 

With the advances of nano fabrication technologies, plasmonic waveguide 

devices have attracted intensive research interest in recent years mainly due to their 

strong optical confinement property at the scale that is much smaller than the free space 

optical wavelength [60]-[68]. Such field confinement property provides a promising 

platform for the implementation of nano metallic devices for optical communication 

applications.  Based on this perspective, in this chapter, the properties surface plasmon 

polaritons and plasmonic devices will be studied for possible applications. 

 

 

Plasmons, Surface Plasmons and Surface Plasmon Polaritons 

In physics, plasmons are the quantization of free electron density wave 

oscillations embedded in immobile positive irons of metals [69]-[71]. Therefore, as one 

can expect, surface plasmons (SPs) are those oscillations confined at the the material 

interface. To be more specific, the interface between two materials with opposite sign of  

________________ 

* Reprinted with permission from "Plasmonic Coupler for Silicon-Based Micro-Slabs to 
Plasominc Nano-Gap Waveguide Mode Coversion Enhancement" by Y. Liu, Y. Lai, and 
K. Chang, IEEE Lightwave Technology, Journal of, vol.31, no.11, p.1708, June 2013. 
Copyright 2013 by IEEE. 
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of the dielectric index across the interface (e.g. metal sheet in air).   

When a SPs couple with photons, the resulting quasiparticles are called surface 

plasmon polaritons (SPPs). From the point of view of classical electromagnetic wave, 

SPP can be regarded as a kind of surface waves with exponential decayed fields, as 

shown in Figure 5-1, around the confining surface and can propagate along the metal-

dielectric surface until energy is lost either via absorption in the metal or radiation into 

free-space.  This surface-wave like property has attained a great attention among optics 

societies in recent years for its capability to shrink the size of optical devices. Therefore, 

in this dissertation, we will mainly focus on the surface wave property of SPPs for its 

application in the study. 

 

  

 

Figure 5-1. Field distribution of SPPs at metal-dielectric interface. 
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Lorenz Model -Light-Matter Interaction 

The interaction of the electromagnetic wave and the electrons in materials can be 

modeled by Lorenz model [72]. This model describes the electron motion in terms of a 

driven, damped and harmonic oscillator, as shown in Figure 5-2. As one can see in 

Figure 5-2, an electron and a nucleus are attached to a spring. Therefore, the incident 

electric field induces displacement to the electron that is under the influence of a spring-

like restoring force due to the nucleus.  

The motion of the electron can be express by the following equation: 

                      (5-1) 

Where x is the electron displacement,  is the damping constant, o is the resonant 

frequency, m is the mass of the electron and e is the electron charge.  

 

 

 

  Figure 5-2. Lorenz model. 
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In equation (5-1), the first left term corresponds to the acceleration of the 

charges, the second term corresponds to the damping mechanisms of the system, the 

third term corresponds to the restoring force and the last term corresponds to the driven 

force form the external electric field. 

Since equation (5-1) is a typical linear differential equation and E(t) as well as 

the solution x(t) are of the form: 

                                                           E(t)=E e(it)     (5-2) 

x(t)=A e(it)                   (5-3) 

By taking Fourier transform at both sides of equation (5-1), the following equation for 

frequency domain can be obtained: 

         (5-4)  

Rewrite the above equation, the electron displacement is expressed as  

                                    (5-5) 

The dipole moment for the electron displacement is  

              (5-6) 

For materials with N dipoles in a volume, the whole induced dipole moment is 

           (5-7) 

And 
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                 (5-8) 

Where  is the dielectric susceptibility. Therefore,  

                         (5-9)  

Here, Ne
2
/mo stands for the plasma frequency, p. 

Equation (5-9) is Lorenz model for the dielectric susceptibility, which is essential 

for the analysis of surface plasmon polaritons. When the acceleration term is small, that 

is, 2 →0, and Lorenz model can be reduced to Debye model; when the restoring force 

is negligible, 
2 →0, Lorenz model can be reduced to Drude model.  

Figure 5-3 and Figure 5-4 shows the real part and imaginary part of permittivity 

of gold respectively based on Drude model. For gold (Au), the plasma frequency is 

13.72*1015 (rad/s) and the damping frequency is 4.05*1013 (rad/s). According to Figure 

5-3 and Figure 5-4, for wavelength 1550nm (f =1.935 * 105), the permittivity of gold is 

r= -126+4.2i of which the real part is negative. Therefore, gold can be considered as a 

metamaterial (ENG) under this circumstance.  
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Figure 5-3. Real part of permittivity of gold. 
 

 

Figure 5-4. Imaginary part of permittivity of gold. 
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Surface Plasmon-Polariton at Single Surface  

Here we study the dispersion relation of surface plasmon polaritons with the TM 

polarized incident wave at a single flat metal-dielectric interface, as shown in Figure 5-5.   

 

 

 

Figure 5-5.  TM incident wave hits the single metal-dielectric interface. 
 

 

Consider an incident TM polarized filed from dielectric with field component Hy, 

Ex and Ey. At steady state, which means the state that the TM polarized field couples to 

the surface plasmon polaritons (SPPs), the field components of SPP in the dielectric 

region are expressed as: 

   (5-10) 

Where (0, A,0) stands for the field amplitude in x, y and z direction respectively, A is the 

incident field amplitude, kspp is the propagation constant of the surface plasmon 

polariton, kz is the SPP wave vector in z direction, d is the dielectric constant and  is 

the wave angular frequency. Similarly, the field components in the metal region are 

expressed as: 

x

y

z

m

d
kspp
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                     (5-11) 

Based on the boundary condition, at the interface, the normal electric flux density D, 

tangential H and tangential E field should be continuous [73]. Therefore, the following 

relations can be obtained: 

 

                                                                                                         (5-12) 

According to the above three equations, kspp is solved and expressed as: 

                                                                    (5-13) 

Figure 5-6 (a) and Figure 5-6 (b) shows the H field distribution and the SPP 

dispersion curve of at a single gold-air interface based on Equation (5-13). From the 

dispersion curve for SPP, it is known that kspp is larger than light line, which means the 

wave vector in z direction is imaginary. Therefore, fields of SPPs decay exponentially 

away from the material interface that enables the sub-wavelength confinement. 
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Figure 5-6 (a). Hz field of SPPs at gold-air interface (FDTD). 
 

 

 

Figure 5-6 (b).  SPP dispersion curve for gold. 
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Surface Plasmon-Polariton in Metal-Dielectric-Metal Structure 

Now we study the wave guidance property of the metal-dielectric-metal structure 

shown in Figure 5-7.  As what has been derived in last section, it is known that the fields 

of SPPs decay exponentially at the metal-dielectric interface. This is also true for the 

metal-dielectric-metal case.  Therefore, the procedure to obtain the field solution for 

SPPs in this structure is basically the same as that for single metal-dielectric surface 

[74], [72], [75].  

 

 

 

Figure 5-7. The metal-dielectric-metal structure. 
 

 

The format of TM mode field distribution for SPPs in the structure shown in 

Figure 5-7    for region I, region II and region III are defined as followed: 

For region I, z>d/2: 

Hy1= Hd e1 (z - d/2) e-jk
x

x                                                                                               (5-14) 

Ex1= -1/j1 Hd e1 (z - d/2) e-jk
x

x                                                                                  (5-15)                                  
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Dielectricd
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Ez1=-kx/j1 Hd e1 (z - d/2) e-jk
x

x                                                                                   (5-16) 

For region II, d/2>z>0: 

Hy2= Hm cosh(2 z) e-jk
x
x                                                                       (5-17) 

Ex2= -2/j2 Hd sinh(2 z) e-jk
x

x                                                         (5-18)                                  

Ez2=-kx/j2 Hd cosh(2 z) e-jk
x

x                                                   (5-19) 

For region III, z<-d/2: 

Hy3= Hd e1 (z + d/2) e-jk
x
x                                                                      (5-20) 

Ex3= -1/j1 Hd e1 (z + d/2) e-jk
x

x                                                         (5-21)                                  

Ez3=-kx/j1 Hd e1 (z + d/2) e-jk
x

x                                                     (5-22) 

Where Hm is the field amplitude, 2 is the permittivity of the metal, 1 is the permittivity 

of the dielectric, 1= (k2
x –2

1)1/2 and 2= (k2
x –2 

2)1/2 . 

Based on the boundary condition, the tangential E, H fields and normal electric 

flux density are continuous at the interface and the following relations can be obtained: 

Hd = Hm cosh(2 d/2)                                                                      (5-23) 

-1Hd/1= 2/2 Hm sinh(2 d/2)                                                            (5-24) 

Hence the dispersion relation is: 

tanh(2 d/2)= - 12/21                                                                         (5-25) 

Based on the above transcendental equation, the mode of SPPs can be solved. Figure 5-8 

shows the effective index of plasmonic TMo mode (fundamental mode) v.s. the thickness 

of the dielectric slab. One can see that as the slab thickness becomes smaller, the 

effective index becomes larger, which means the fields at the interface decay rapidly 
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with smaller slab thickness. This is why the plasmonic waveguide can guide waves in 

nano scale that is much smaller than the signal wavelength. Also, according to the 

transcendental equation, there is no cut-off frequency for plasmonc TMo mode operating 

below surface plasmon frequency, as shown in Figure 5-7. Therefore, plasmonic 

waveguide can also provide wide band operation. 

 

 

Plasmonic Waveguide Coupler 

Among all the required new technologies, efficient light coupling is one of the 

important issues for the design of plasmonic gap waveguides. Since the effective index 

of TM0  plasmonic mode is higher than the material indices of the waveguiding 

structure, the efficient coupling from waveguide mode to plasmonic mode becomes 

more difficult, especially when the effective mode index difference between the 

conventional waveguide mode and the plasmonic mode is large (i.e. mode mismatch). 
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 Figure 5-8. The effective index of plasmonic TMo mode v.s. the thickness of the  
dielectric slab. 
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So far, there are a couple literatures discussing the excitation of the non-silicon 

filled plasmonic gap waveguide mode by using a plasmonic gap taper [38], a nano-

antenna [39], a multi-section coupler [40] and a silicon slot waveguide [41]. However, 

none of these structures are aimed at the mode coupling of silicon filled plasmonic gap 

waveguides.  

To distinguish the complexity between silicon- based and silica-based plasmonic 

gap waveguide coupling via a slab waveguide, the effective mode index neff versus the 

waveguide width of the slab fundamental TM mode, the plasmonic TM0  mode and the 

plasmonic TM2  mode are plotted in Figure 5-9(a) and (b) for the silicon-based case and 

the silica-based case respectively.  

According to [38], due to the structure symmetry of the considered problem, the 

symmetry nature of the modes plays an important role here for mode coupling. Since the 

excitation mode (the slab fundamental TM mode) is an even TM mode, only its nearby 

even plasmonic TM modes, plasmonic TM0 and TM2, will be excited. Therefore, we just 

need to consider the mode coupling between the slab fundamental TM mode and 

plasmonic TM2 modes. This symmetry property can also be verified from Hz field 

profiles along y axis shown in Figure 5-9(c) and (d).  

As shown in Figure 5-9(a) and (c), one can see that most power of the 

fundamental TM mode of the silicon micro-slab will be coupled into the plasmonic TM2 

mode rather than the plasmonic TM0 mode because of the presence of the closer 

plasmonic TM2 mode and the larger effective index difference between the slab 

fundamental TM mode and plasmonic TM0  mode. On the contrary, from Figure 5-9(b) 
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and (d), one can observe that the fundamental TM mode of the silica micro-slab is easier 

to be coupled into the plasmonic TM0 mode than the plasmonic TM2 mode as the 

effective index of the slab fundamental is closer to that of plasmonic TM0 mode. This is 

why the high efficiency conversion between the fundamental TM mode of a micron/sub-

micron silicon slab and the plasmonic TM0 mode of a plasmonic gap waveguide is 

challenging in order to directly integrate the slab waveguide with the light source from 

an optical fiber or an on-chip laser for efficient light coupling.  

In the microwave regime, corrugated metal structures have long been proposed 

and utilized as waveguide mode converters between conventional guided modes [42], 

surface wave assisted structures [43], slow-wave structures [44] or filters [45]. In recent 

years, they draw attentions again in the emergent researches on slow-light and THz 

applications [46], for similar purposes such as dispersion controlling [47] and the so 

called spoof or designer surface plasmon assisted structures operating at low THz 

frequencies [48], [49], [50], which are actually surface waves existing on inductive 

corrugated surfaces formed by perfect electrical conductors (PEC) described in 

Electromagnetics books [43], [44]. 
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Figure 5-9. Effective mode indices of plasmonic TMo(black), slab fundamental TM 
(red) and plasmonic TM2 (green) modes for (a) silicon and (b) silica based slab 
waveguides and plasmonic gap waveguides. The Hz field coupling from a 1.25 m slab 
waveguide to 50 nm plasmonic gap waveguide with a 1.5 m taper for: (c) silicon based 
waveguides and (d) silica based waveguides. 
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Recently, grooved metal sidewalls [54] (or another name, corrugated horn 

structure [55]) with 6.2 µm input opening for metal-silicon-metal plasmonic gap 

waveguide coupling is reported with maximum 72% coupling efficiency. The coupling 

is achieved by exciting SPPs (Surface Plasmon Polaritons) at metal surfaces [55] with 

TM polarized light thus the groove number will affect the transmission efficiency 

dramatically (Figure 2 in [54]). In addition, the structure requires that (1) SPPs generated 

by adjacent grooves are in phase and (2) the incident lights falling on each groove are in 

phase for higher coupling efficiency. Therefore the corrugated metal surfaces have to be 

tapered at a specific angle (58o in [54], [55]) and the groove distance has to be kept at 

2spp once the metal material is decided. These restrictions may somehow constrain the 

coupler design freedom by that approach. 

Unlike open corrugated structures [48], [49], [50], [52], the waveguide dispersion 

of a corrugate waveguide (a closed structure), as shown in Figure 5-10(a), can extend 

across the light line [42], [44], [47], [51], [53]. This in principle can be utilized in the 

coupler design to transform the waveguide guided mode (<k) across the light line to 

match the plasmonic mode with >k. Here k is the wave number for the dielectric 

sandwiched between the grooved metal plates. As mentioned above, a corrugated 

metallic waveguide is known to be able to serve as a mode converter [42] between 

conventional guided modes due to its dispersion engineerable structure and low 

attenuation characteristics [51] at the microwave frequency. However, there is still no 

literature discussing the use of corrugated waveguide for optical guided mode to 

plasmonic mode coupling. In addition, at the optical frequency, metal is no longer a 
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perfect conductor and the signal propagation loss is considerable especially when the 

corrugated metal structure is incorporated in the design. Therefore, whether a metallic 

corrugated coupler with high coupling efficiency is feasible for conventional guided 

mode to plasmonic mode conversion at the optical regime still requires further 

investigation, which is the main objective of the present work. 

In this section, a short (~1.5m) gold partially corrugated tapered waveguide for 

mode coupling enhancement at the 1550 nm optical communication wavelength between 

a 1.25 µm silicon micro-slab and a plasmonic nano-gap waveguide is designed and 

analyzed for the first time. The coupling efficiency is examined to be able to reach 86% 

~ 98% with the plasmonic waveguide gap size ranging from 20 nm to 300 nm, which is 

comparable to or even higher than that of the previously referred non-silicon and silicon 

based cases. Finally, for comparison, we also use silver as the metal material in the 

design for different-size plasmonic gap waveguide coupling. The simulation results 

show that around 90% coupling efficiency on average can be achieved by using the 

corrugated tapered waveguide without the need to set the groove distance to be 2spp, 

which directly proves that the coupling mechanism of the corrugated waveguide studied 

here is different from that of the grooved metal sidewalls [54] or the corrugated horn 

structure [55]. Figure 5-10 shows a PEC periodic corrugated metallic parallel plate 

waveguide and its dispersion diagrams [42]. The period of the corrugation, the depth of 

the tooth, the width of the dielectric tooth, and the vertical distance between metal teeth 

are represented by p, h, t and g respectively, as depicted in the inset figure. One can see 

the corrugated waveguide can have modes across the light line [42], [44], [51], [53].  
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Figure 5-10. (a) Dispersion diagram of a corrugated parallel-plate waveguide. As shown 
in the red line, the waveguide can have modes with both >k and <k. Blue and green 
lines represent higher order TM modes. (b) Schematic diagram for the design idea. 
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Although the dispersion curves in Figure 5-10(a) is based on PEC corrugation as 

a periodic system (p ~ g) and its dispersion relation is different from PEC corrugation 

as a uniform systems (p<< g) [44], the relation between waveguide dispersion and the 

structure parameters (p, h, t and g) for these two cases still share the same features. 

Figure 5-11 shows the partially corrugated taper for the silicon filled plasmonic gap 

waveguide coupling. The width of the silicon slab w1 is set to be 1.25 µm and the gap of 

the plasmonic metal-silicon-metal waveguide w2 is set to be 20 nm in Figure 5-11(a), 50 

nm in Figure 5-11(b) and 300 nm in Figure 5-11(c) respectively. In the design 

simulation, the relative permittivity for silicon is si=12.25 while the complex relative 

permittivity of the metal (gold) is Au=-93+11i determined by the Lorenz-Drude model 

[56]. The simulation work is done by the commercial 2D Finite Element software, which 

is also the approach used in [54], [55]. The accuracy of the 2D FEM is compared with 

the coupling efficiency calculated by 2D FDTD published in [38], which is a silica-

based case with 6 µm taper and 50 nm gap. In [38], the calculated coupling efficiency is 

reported to be ~70% and our result based on 2D FEM simulation is 69.3%. The error is 

quite small in this case. However, for the silicon-based case, the numerical results 

generated by the open source FDTD code (MEEP) cannot converge well due to the 

staircasing approximation [57] introduced at the material interfaces with a large index 

contrast between the positive real part of the silicon and the negative real part of the 

metal. In contrast, for FEM, no staircasing approximation is required at the silicon-metal 

interfaces. Thus the field boundary conditions at the material interfaces can be treated 

precisely and the meshes in the nano gap can be extremely refined to achieve high 
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accuracy. Based on the above facts, previous literature [58] and our study [59], FEM 

should be more suitable than FDTD for plasmonic related problems especially when 

high material index contrast is involved.  

In the design, the corrugation period (p~0.14µm) is comparable to the effective 

wavelength (g~0.44 µm) of the slab fundamental mode and thus the formulation for the 

uniform system is not applicable here. In addition, since finite corrugation periods are 

incorporated in the design, strictly speaking the corrugated taper cannot be considered as 

a periodic structure. Nevertheless, the dispersion relation for periodic systems still can 

provide a basic idea to decide the size of p, h and t for the effective mode index of the 

corrugated waveguide that matches the effective index of the fundamental slab TM 

mode at the input end with g=1.25 µm and matches the effective index of the plasmonic 

TM0 mode with g~= 0.4µm  around which the plasmonic TM2  mode is cut off, as shown 

in Figure 5-9(a). In the design, p, t and the taper length are set to be around 0.14 µm, 0.1 

µm and 1.5 µm respectively. With given h and g,  is then estimated by Equation (5-26) 

[7].  

       (5-26) 

Here, k is the wave number for the dielectric sandwiched by the grooved metal plates 

and the value of h can be slightly optimized for better performance. According to 

Equation (5-30), for a specific operating frequency (that is, for a specific k0),  increases 

as g decreases, as shown in Figure 5-10(b). Therefore, as the slab TM mode passes 

through the corrugated region of the taper, it is transformed gradually into the mode with 
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k that can match the plasmonic TM0 mode (k) at the input of the non-corrugated 

taper. The reason why the taper is made partially corrugated is that only plasmonic TM0 

mode exists when the metallic gap size drops below ~0.4µm, as illustrated in Figure 5-

9(a). Under this situation, the loss will increase when the plasmonic TM0 mode keeps 

propagating on corrugated surfaces since the fields of the mode now concentrate more 

on the metal surfaces. 

Based on the FEM simulation, the coupling efficiencies for 20 nm to 300 nm 

metal-silicon-metal gaps, as shown in Figure 5-11(d), range from ~87% to ~98%, which 

proves that the corrugated waveguide structure can serve as the waveguide mode 

converter at the optical frequency with low attenuation as described in [51]. This is 

because most of the fields in the corrugated part of the taper are still confined at the 

waveguide center, as shown in Figure 5-11 (a)-(c). This fact directly proves that the 

coupling mechanism of the corrugated waveguide discussed here is not based on the 

excitation of SPPs on grooved metal surfaces shown in [54], [55]. Actually, according to 

[44], as a closed structure, the mode field pattern of the corrugated waveguide shown in 

Figure 5-10(a) is of the form of hyperbolic sinusoidal functions for both >k and <k. 

This is also true for the structure (closed structure as well) of our design, which supports 

that the field confined in the corrugated taper is not evanescent wave. This is why the 

propagation loss is low in the corrugated region of our design. 
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For the purpose of mechanism and performance comparison, the coupling 

efficiencies for silver based plasmonic gap waveguides with different gap sizes are 

provided in Figure 5-12(b). The relative permittivity used here is Ag =-143.49+9.52i 

[56], of which the imaginary part is larger than that used in [54]. According to Figure 5-

12(b), the overall coupling efficiency is obviously higher than the previous results 

(Figure 8(a) in [54]). For the 50 nm silver plasmonic gap waveguide shown in Figure 5-

12(a), the coupling efficiency is ~93% with 8 grooves, which is also much higher than 

the result reported in [54] (~50% with 4 grooves). Also note that the groove distance 

shown in Figure 5-12(a) is 0.15 µm (much smaller than 2spp=0.84m  proposed in [54], 

[55]) and the taper angle here is ~22o  (not 58o reported in [54], [55]). All facts point out 

again that the coupling mechanism of the corrugated waveguide reported in this work is 

different from those by exciting SPPs on metal surfaces depicted in [54], [55]. 
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Figure 5-11. 1.25 m silicon slab to gold plasmonic gap waveguide coupling with the 
plasmonic waveguide width w2 = (a) 20 nm, (b) 50 nm and (c) 300nm; the Hz fields are 
plotted. The coupling efficiencies are ~87%, ~89% and ~96% respectively. (d) Plot of 
the coupling efficiency versus the plasmonic waveguide gap size. 
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Figure 5-12. (a) 1.25 m silicon slab to 50 nm silver plasmonic gap waveguide coupling 
with the same structure configuration shown in Figure 5-11(b). The coupling efficiency 
is ~93%; the Hz field is plotted. (b) Plot of the coupling efficiency versus the plasmonic 
waveguide gap size. 

 

 

 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6497449#fig_3
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Conclusion 

In summary, contrasted to [54], [55], the proposed corrugation (with period < 

spp) in the present work is more efficient in coupling light (slab guided mode) into the 

plasmonic TMo mode for the silicon-based plasmonic metal-dielectric-metal structures. 

The high coupling efficiency is achieved through two main key points: (1) excellent 

mode matching to the plasmonic TMo mode with >k  is made possible by the use of 

corrugation and (2) the corrugation only introduces very small loss since most of the 

fields in the corrugated part of the taper are still confined at the waveguide center. 

Instead, the corrugation (with period 2spp) in [54], [55] is used for the excitation of 

SPPs with TM polarized light (not slab guided mode), which will introduce a larger 

amount of loss when the SPPs propagate on the grooved metal side walls. 
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CHAPTER VI 

SUMMARY  

 

This dissertation reports the study and design of microwave reconfigurable 

antenna, ultra wideband band pass filter and optical plasmonic waveguide coupler.  

The following achievements are reached: 

For the reconfigurable antenna, the idea of a simple frequency reconfigurable 

patch antenna that operates at multiband from 2 GHz to 4.5 GHz is designed. By 

changing the position of the microstrip connecting elements on the antenna patches, the 

operating frequency will shift with fixed radiation patterns.  

For the ultra-wideband band pass filter, a compact ultra-wideband (UWB) single-

ring band pass filter of 8GHz bandwidth with suppressed sideband and harmonics 

achieved by forced boundary condition and step impedance filter is proposed. Both 

measurement and simulated results are shown in good agreement. The group delay 

variation in the pass-band is measured less than 0.3 ns. 

For the plasmonic waveguide coupler, corrugated tapered waveguide for silicon-

based micro-slab waveguide to plasmonic nano-gap waveguide mode conversion at the 

optical communication frequency is devised. High coupling efficiency is demonstrated 

numerically.  
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