
SCALABLE PARALLEL ALGORITHMS FOR MASSIVE SCALE-FREE

GRAPHS

A Dissertation

by

ROGER ALLAN PEARCE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Nancy M. Amato
Committee Members, Yoonsuck Choe

Lawrence Rauchwerger
Marvin L. Adams
Maya Gokhale

Head of Department, Nancy M. Amato

December 2013

Major Subject: Computer Science

Copyright 2013 Roger Allan Pearce

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79647867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Efficiently storing and processing massive graph data sets is a challenging prob-

lem as researchers seek to leverage “Big Data” to answer next-generation scientific

questions. New techniques are required to process large scale-free graphs in shared,

distributed, and external memory. This dissertation develops new techniques to

parallelize the storage, computation, and communication for scale-free graphs with

high-degree vertices. Our work facilitates the processing of large real-world graph

datasets through the development of parallel algorithms and tools that scale to large

computational and memory resources, overcoming challenges not addressed by exist-

ing techniques. Our aim is to scale to trillions of edges, and our research is targeted at

leadership class supercomputers, clusters with local non-volatile memory, and shared

memory systems.

We present three novel techniques to address scaling challenges in processing

large scale-free graphs. We apply an asynchronous graph traversal technique using

prioritized visitor queues that is capable of tolerating data latencies to the external

graph storage media and message passing communication. To accommodate large

high-degree vertices, we present an edge list partitioning technique that evenly parti-

tions graphs containing high-degree vertices. Finally, we propose a technique we call

distributed delegates that distributes and parallelizes the storage, computation, and

communication when processing high-degree vertices. The edges of high-degree ver-

tices are distributed, providing additional opportunities for parallelism not present

in existing methods.

We apply our techniques to multiple graph algorithms: Breadth-First Search,

Single Source Shortest Path, Connected Components, K-Core decomposition, Trian-

ii

gle Counting, and Page Rank. Our experimental study of these algorithms demon-

strates excellent scalability on supercomputers, clusters with non-volatile memory,

and shared memory systems. Our study includes multiple synthetic scale-free graph

models, the largest of which has trillion edges, and real-world input graphs. On a

supercomputer, we demonstrate scalability up to 131K processors, and improve the

best known Graph500 results for IBM BG/P Intrepid by 15%.

iii

DEDICATION

To my parents, for instilling in me the value of education.

To Olga, for your constant support.

To Zhanna, for showing me the joys of a child’s curiosity.

iv

ACKNOWLEDGEMENTS

I feel fortunate to have many supportive people who have helped me throughout

this work. I would like to thank my advisor, Dr. Nancy M. Amato, for her con-

tinual guidance during my graduate and undergraduate studies. She provided an

environment where I could explore many different research interests.

I would like to thank my committee members, Dr. Yoonsuck Choe, Dr. Lawrence

Rauchwerger, Dr. Marvin Adams, and Dr. Maya Gokhale, for their guidance and

suggestions throughout this work.

I would like to thank many people at Lawrence Livermore National Laboratory,

where I was a student intern and Lawrence Scholar. Maya Gokhale provided signif-

icant guidance on my research and future career paths. I would also like to thank

some of my other collaborators, in particular, Dr. Sasha Ames, Dr. Brian Van Essen,

Dr. Scott Lloyd, Dr. Craig Ulmer, Dr. Andy Yoo, and Dr. John May.

I would also like to thank the members of the Parasol Lab. Dr. Jinsuck Kim,

Dr. Marco Morales, and Dr. Jyh-Ming Lien, were my graduate student mentors as

I was starting my research as an undergrad and graduate student. I would also like

to thank some of my other collaborators, in particular, Dr. Sam Rodriquez, Olga

Pearce, Dr. Shawna Thomas, Dr. Lydia Tapia, Dr. Nathan Thomas, Dr. Timmie

Smith, Aimee Vargas, Dr. Xinyu Tang, Sam Jacobs. These students formed the

backbone of a strong research environment, and encouraged open collaboration.

Finally, I would like to thank my family for their constant support.

This work was partially performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-

07NA27344 (LLNL-TH-645698).

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Research Objective and Contributions 4
1.2 Outline . 5

2. PRELIMINARIES AND RELATED WORK 7

2.1 Terminology and Graph Representations 7
2.2 Graph Partitioning . 7

2.2.1 1D Partitioning . 8
2.2.2 2D Partitioning . 9

2.3 Scale-free Graphs . 11
2.3.1 Properties . 11
2.3.2 Examples . 13

2.4 Synthetic Graph Models . 14
2.4.1 Scale-Free Models . 15
2.4.2 Small World Models . 17

2.5 Processing Large Graphs . 17
2.5.1 Distributed Memory . 18
2.5.2 Multithreaded Shared Memory 18
2.5.3 External Memory . 19

2.6 Challenges for Processing Large Scale-Free Graphs 22
2.6.1 Dense Processor-Processor Communication 22
2.6.2 Power-law Degree Distribution 25

2.7 Graph Algorithms . 27
2.7.1 Breadth-First Search (BFS) 27
2.7.2 Single Source Shortest Path (SSSP) 28
2.7.3 Connected Components . 29

vi

2.7.4 Triangle Counting . 29
2.7.5 K-Core Decomposition . 29
2.7.6 PageRank . 29

3. ASYNCHRONOUS GRAPH TRAVERSAL 31

3.1 Asynchronous Visitor Queue . 31
3.2 Algorithms . 32

3.2.1 Breadth-First Search (BFS) and Single Source Shortest Path
(SSSP) . 33

3.2.2 SSSP Traversal Example . 36
3.2.3 Undirected Connected Components 37

3.3 Algorithmic Analysis . 39
3.4 Implementation Details . 39
3.5 Experimental Study . 41

3.5.1 Graph Types and Sizes . 41
3.5.2 Hardware Resources . 44
3.5.3 In-Memory Experiments . 45
3.5.4 Semi-External Memory Experiments 52

3.6 Summary . 57

4. BALANCED PARTITIONING WITH HIGH-DEGREE VERTICES 59

4.1 Edge List Partitioning . 60
4.1.1 Ghost Vertices . 62

4.2 Distributed Visitor Queue . 63
4.2.1 Visitor Abstraction . 63
4.2.2 Visitor Queue Interface . 63
4.2.3 Example Traversal . 64
4.2.4 Visitor Queue Design Details 65

4.3 Algorithms . 68
4.3.1 Breadth-First Search . 68
4.3.2 K-Core Decomposition . 70
4.3.3 Triangle Counting . 71

4.4 Asymptotic Analysis . 72
4.4.1 Analysis of BFS . 74
4.4.2 Analysis of K-Core . 75
4.4.3 Analysis of Triangle Counting 75

4.5 Experimental Study . 75
4.5.1 Experimental Setup . 76
4.5.2 Scalability on BG/P Supercomputer 76
4.5.3 Scalability of Distributed External Memory BFS 81
4.5.4 Topological Effects on Performance 84
4.5.5 Edge List Partitioning vs 1D 86
4.5.6 Use of Ghost Vertices . 87

4.6 Summary . 88

vii

5. DISTRIBUTED STORAGE, COMPUTATION, AND COMMUNICATION
OF HIGH-DEGREE VERTICES . 89

5.1 Distributed Delegates . 91
5.1.1 Delegate Partitioning in Visitor Framework 92
5.1.2 Distributed Delegate Partitioning 92

5.2 Asynchronous Visitor Queue . 95
5.2.1 Visitor Abstraction . 95
5.2.2 Visitor Queue Interface . 96
5.2.3 Controller and Delegate Coordination 97
5.2.4 Routed Point-to-Point Communication 98

5.3 Visitor Algorithms . 100
5.3.1 Breadth-First Search & Single Source Shortest Path 100
5.3.2 PageRank . 102
5.3.3 K-Core Decomposition . 104

5.4 Asymptotic Analysis . 106
5.5 Experiments . 107

5.5.1 Effects of Delegate Degree Threshold 108
5.5.2 Weak Scaling of BFS and PageRank 110
5.5.3 Weak Scaling of SSSP and K-Core Decomposition 112
5.5.4 Comparison to 1D and Edge Partitioning 112
5.5.5 Comparison to Previous Graph500 Gesults 112

5.6 Summary . 116

6. CONCLUSION . 117

REFERENCES . 120

viii

LIST OF FIGURES

FIGURE Page

2.1 Illustration of 1D partitioning a graph’s adjacency matrix. 10

2.2 Illustration of 2D partitioning a graph’s adjacency matrix. 12

2.3 Vertex degree distributions for a web graph [43] (a) and the Epinions
graph [64] (b). 13

2.4 Hub growth for scale-free RMAT and preferential attachment graphs. 16

2.5 Multithreaded random read I/O performance for three NAND Flash
configurations. 21

2.6 Illustration of 2D communicator routing of 16 ranks. 24

2.7 Weak scaling of partition imbalance for 1D and 2D partitioning; im-
balance computed for the distribution of edges per partition. 26

3.1 An example directed graph with poor parallelism for BFS and SSSP. 33

3.2 An example of an asynchronous Single Source Shortest Path (SSSP)
traversal of a simple weighted directed graph. 35

3.3 Maximum Vertex Degree for RMAT-A and RMAT-B graphs 43

3.4 Performance comparison of In-Memory Breadth First Search (BFS). . 47

3.5 Scalability of In-Memory Breadth First Search (BFS). 48

3.6 Performance comparison of In-Memory Singe Source Shortest Path
(SSSP). 50

3.7 Scalability of In-Memory Singe Source Shortest Path (SSSP). 51

3.8 Performance comparison of In-Memory Connected Components (CC). 52

3.9 Scalability of In-Memory Connected Components (CC). 53

3.10 Performance comparison of Breadth-First Search in Semi-External
Memory on three FLASH memory configurations. 55

ix

3.11 Performance comparison of Connected Components in Semi-External
Memory on three FLASH memory configurations. 56

4.1 Example of edge list partitioning for a graph with 8 vertices and 16
directed edges, split into 4 partitions. 61

4.2 Weak scaling of Asynchronous BFS on BG/P Intrepid. 77

4.3 Weak Scaling of kth-core on BG/P using RMAT graphs. 79

4.4 Weak scaling of triangle counting on BG/P using Small World graphs. 80

4.5 Weak scaling of distributed external memory BFS on Hyperion-DIT. 81

4.6 Effects of increasing external memory usage on 64 compute nodes of
Hyperion-DIT. 82

4.7 Effects of diameter on BFS performance. 84

4.8 Effects of vertex degree on Triangle Counting performance. 85

4.9 Comparison of edge list partitioning vs 1D. 86

4.10 Experiment showing the percent improvement of ghost vertices vs. no
ghost vertices. 87

5.1 Comparison of 1D partitioning vs. distributed delegates partitioning
for the same graph. 90

5.2 Illustration of 2D communicator routing of 16 ranks with distributed
delegate operations. 99

5.3 Effects of delegate degree threshold (dhigh) using 4096 cores on graphs
with 230 vertices. 109

5.4 Weak scaling of BFS on BG/P Intrepid. 110

5.5 Weak scaling of PageRank on BG/P Intrepid. 111

5.6 Weak scaling of delegate partitioned (a) SSSP and (b) K-Core on Cab
Linux cluster at LLNL. 113

5.7 Comparison of distributed delegates vs. edge list partitioning [60], 1D
partitioning, and PBGL [29]. 114

5.8 Weak scaling of delegate partitioned BFS on BG/P Intrepid. 115

x

LIST OF TABLES

TABLE Page

2.1 Graph Data Structures . 8

3.1 Properties of graph datasets used in experiments. 42

3.2 Graph500 results using NAND Flash in shared-memory. 57

4.1 Visitor Procedures and State . 64

4.2 November 2011 Graph500 results using NAND Flash. 83

5.1 Delegate Visitor Behaviors . 94

5.2 Controller Visitor Commands . 95

5.3 Visitor Procedures and State . 95

5.4 Comparison of 1D, Edge List Partitioning (ELP) and Distributed Del-
egates . 107

5.5 Analysis Parameters . 107

xi

1. INTRODUCTION

A graph is a powerful tool that can represent a set of objects and their rela-

tionships. Graphs are used in a wide range of fields including Computer Science,

Biology, Chemistry, and the Social Sciences. These graphs, sometimes known as net-

works, may represent complex relationships between individuals, proteins, chemical

compounds, etc. In a graph, relationships are stored using vertices and edges; a

vertex may represent an object or concept, and the relationships between them are

represented by edges. The power of the graph data structure lies in the ability to

encode complex relationships between data and provide a framework to analyze the

impact of the relationships.

Efficiently storing and processing large amounts of graph data is a challenging and

growing problem as researchers seek to leverage “Big Data” to answer next-generation

scientific questions. Many real-world graphs can be classified as scale-free, where the

distribution of vertex degrees follows a scale-free power-law [6]. The degree of a vertex

is the count of the number of edges connecting to the vertex. A power-law vertex

degree distribution means that the majority of vertices have small degree, while a

select few have a very large degree, with the distribution of the degrees following a

power-law distribution. These high-degree vertices are called hub vertices. Hubs have

the potential to create scaling issues for parallel and distributed algorithms, such as

load imbalance and communication bottlenecks, because the processing requirements

for a hub are significantly larger than for an average vertex.

This research develops new techniques to distribute and parallelize the storage,

computation, and communication of high-degree vertices in scale-free graphs. Our

work facilitates the processing of large real-world graph datasets through the devel-

1

opment of parallel algorithms and tools that scale to large computational and mem-

ory resources, overcoming challenges not addressed by existing techniques. Towards

this goal, we begin by identifying key challenges to storing and processing massive

scale-free graphs. Many important graph datasets have unstructured and irregular

topologies that perform poorly using multi-level memory hierarchies, including ex-

ternal memory. Irregular topologies and high-degree vertices often produce excessive

processor to processor, approaching all-to-all, communication when algorithms are

parallelized, leading to poor overall performance. These challenges are discussed in

depth in Chapter 2.

Many parallel graph algorithms operate on graphs that are partitioned amongst

a set of processors, and each processor is assigned a subset of the graph. The graph

partitioning problem is to subdivide the vertices and edges of a graph into roughly

equal sized groups, while minimizing the number of edges connecting vertices of dif-

ferent groups. The groups or partitions should be of roughly equal size to balance

the computation for each processor. Additionally, minimizing the number of edges

connecting vertices of different groups reduces the amount of inter-processor com-

munication and coordination required by graph algorithms. Graph partitioning is

challenging for many graphs, and is known to be NP-Complete [14]. Without good

graph separators, parallel algorithms will require significant communication.

Partitioning many scale-free graphs is difficult, and often not feasible, due to

their irregular topology and high-degree vertices. The simplest partitioning is called

1D or row-wise, in which the vertices of the graph are partitioned and all edges

adjacent to a vertex, including imbalanced hubs, are assigned to a single partition.

For scale-free graphs, the partitions to which high-degree vertices are assigned may

contain significantly more edges than the average partition. This edge partition

imbalance effects the data storage, computation, and communication costs, because

2

the processors will store and process an uneven number of edges. Current state-of-

the-art partitioning for sparse scale-free graphs into p partitions uses a 2D strategy

that partitions high-degree vertices across O(
√

(p)) partitions. 2D partitioning also

suffers from storage, computation, and communication imbalances.

We address these challenges by providing three novel techniques for processing

large scale-free graphs. First, we develop an asynchronous graph traversal technique

using visitor queues that is capable of expressing fine-grained parallelism at the

individual vertex level. Data latencies associated with the external graph storage

media and message passing communication are mitigated by the asynchrony of the

computation.

Second, we introduce a new partitioning technique that guarantees balanced par-

titions containing high-degree vertices. Previous partitioning strategies using 1D

and 2D partitioning may produce an imbalanced number of edges per partition for

scale-free graphs. Our edge list partitioning approach partitions the graph’s edges

such that each partition contains an equal number of edges, overcoming the storage

balance issues created by high-degree vertices.

Finally, we develop a technique we call distributed delegates to parallelize and

distribute the storage, computation, and communication of high-degree vertices. We

make a distinction between low and high degree vertices, and distribute the high-

degree vertices. The number of edges per partition is balanced, and the large amount

of computation and communication for the high-degree vertices is distributed over

the processors, leading to significantly improved performance.

Our techniques provide new tools to analyze large scale-free graph datasets on

a wide rage of data-intensive computational resources. Our research is targeted at

leadership class supercomputers containing significant distributed memory resources,

clusters with node-local non-volatile random access memory (NVRAM), and small

3

shared-memory systems containing large NVRAM storage devices. Our work breaks

new ground for using NVRAM in the high-performance computing (HPC) envi-

ronment for data intensive applications. We show that by leveraging distributed

NVRAM, significantly larger datasets can be processed with only moderate perfor-

mance degradation. We show that by exploiting both distributed memory processing

and node-local NVRAM, significantly larger datasets can be processed than with ei-

ther approach in isolation. Further, we demonstrate that our asynchronous approach

mitigates the effects of both distributed and external memory latency. The architec-

ture and configuration of NVRAM in supercomputing clusters is an active research

topic. To our knowledge, our work is the first to integrate node-local NVRAM with

distributed memory at extreme scale for important data intensive problems, helping

to inform the design of future architectures.

1.1 Research Objective and Contributions

The research contributions of this dissertation can be summarized as:

• Novel algorithmic techniques to process large scale-free graphs:

– An asynchronous computation model using prioritized visitor queues that

tolerates latencies associated with external memory and distributed mes-

sage passing;

– An edge list partitioning technique that guarantees balanced partitions

for scale-free graphs containing high-degree vertices;

– A technique we call distributed delegates to parallelize and distribute the

storage, computation, and communication of high-degree vertices;

• The application of these techniques to a variety of parallel graph algorithms

4

including: Single Source Shortest Path, Connected Components, K-Core de-

composition, Triangle Counting, and PageRank;

• Experimental results demonstrate the scalability of algorithms using our tech-

niques on leadership class supercomputers on up to 131K processors;

• Results that show that by leveraging node-local NAND Flash, algorithms us-

ing our techniques can process larger datasets with only modest performance

degradation over a DRAM-only solution.

Portions of our research were previously published and are currently under review.

The asynchronous visitor computation model and an initial evaluation in shared and

external memory was published at the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC) 2010 [59], presented here

in Chapter 3. This work led to two external memory experiments featured on the

Graph500, including a 7th place ranking on the June 2011 list, and was also used

as a data-intensive benchmark by Van Essen, et al. [25]. Our technique for par-

titioning graphs containing high-degree vertices was published at the International

Parallel and Distributed Processing Symposium (IPDPS) 2013 [60], presented here in

Chapter 4. This work led to two distributed-external memory experiments featured

on the Graph500 on the June 2012 list. Finally, our approach for parallelizing the

storage, computation, and communication of high-degree vertices is under review

[58], presented here in Chapter 5.

1.2 Outline

This dissertation describes our asynchronous framework for traversing massive

scale-free graphs in shared, distributed and semi-external memories. Chapter 2 de-

scribes many of the fundamental properties of real-world graphs, along with previous

5

work that is related to our asynchronous algorithms. Section 2.6 discusses the chal-

lenges of processing large scale-free graphs. Chapter 3 introduces our asynchronous

visitor computation model and an experimental study using shared-memory and

semi-external memory systems. Chapter 4 discusses partitioning graphs containing

high-degree hub vertices and an experimental study using distributed-memory sys-

tems. Finally, Chapter 5 discusses distributing the storage, computation, and com-

munication of high-degree hub vertices and an experimental study using distributed-

memory systems.

6

2. PRELIMINARIES AND RELATED WORK

In this chapter, we cover background topics and related work that will be re-

ferred to throughout the remainder of this dissertation. An introduction to graph

terminology and representations is discussed in Section 2.1. An overview of graph

partitioning is discussed in Section 2.6.1. Scale-free graphs and models of real-world

graphs are discussed in Section 2.3. An overview of related work on the parallel

processing of graphs is discussed in Section 2.5. The challenges associated with pro-

cessing scale-free graphs is discussed in Section 2.6. Finally, an introduction to the

graph algorithms and analytics that we investigated using our scaling techniques is

discussed in Section 2.7.

2.1 Terminology and Graph Representations

A graph G(V,E) is composed of a set of vertices V and a set of edges E, where

each edge e = (u, v), e ∈ E connects a pair of vertices, u, v ∈ V . Vertices and edges

may contain weights, or other forms of meta-data. The degree of a vertex is the

count of the number of edges connecting to the vertex.

Three common data structures used to represent a graph are an adjacency list,

an adjacency matrix, and a compressed sparse row. The features of these structures

are shown in Table 2.1.

2.2 Graph Partitioning

Many parallel graph algorithms operate on graphs that have been partitioned

amongst a set of processors, and each processor is assigned a subset of the graph.

The graph partitioning problem is to subdivide the vertices and edges of a graph

into roughly equal sized groups, while minimizing the number of edges connecting

7

Name Description Storage Cost

Adjacency List A list of edge targets stored for each
source vertex.

O(|V |+ |E|)

Adjacency Matrix A |V |x|V | matrix where entry
A[i, j] = 1 iff edge (i, j) exists. En-
tries may also contain edge weights.

O(|V |2)

Compressed Sparse Row
(CSR)

A concatenated array of adjacency
lists, with a source vertex look index.

O(|V |+ |E|)

Table 2.1: Graph Data Structures

vertices of different groups. The groups or partitions should be of roughly equal size,

to balance the cost of computation for each processor. Minimizing the number of

edges connecting vertices of different groups reduces the amount of communication

and coordination required by the processors. Edges connecting vertices of different

partitions are commonly called cut edges.

Graph partitioning is challenging for many graphs, and is known to be NP-

Complete [14]. Numerous heuristic techniques and libraries have been developed

to partitioning graphs approximately. Some of the most successful heuristics are

based on hierarchical multilevel techniques, which have been included in libraries

such as Chaco [34], Metis [36], Party [52], Scotch [62], KaFFPa [65], and Jostle [76].

Parallel and distributed versions of many of these libraries have also been developed

[37, 42, 61, 66, 77].

Currently, there are two approaches to partitioning a graph with the goal of evenly

distributing the graph, 1D and 2D. The techniques do not attempt to minimize edge

cuts, the number of edges between vertices in different partitions.

2.2.1 1D Partitioning

A simple way to partition a graph among p processors is to evenly partition the

vertices and their associated adjacency list into p partitions. This style of partitioning

8

is called 1D or row-wise, and is illustrated using an adjacency matrix in Figure 2.1. In

the figure, high-degree vertices in the graph form dense rows in the adjacency matrix.

Because the adjacency lists or rows of high-degree vertices are fully contained by a

single partition, the partitions may become significantly imbalanced. In this example,

the highlighted partitions p2 and p5 contain more edges (non zeros) that the average

due to the high-degree vertices contained.

When a graph is 1D partitioned into a set of P partitions, and

max
pi∈P

(
∑
v∈Vpi

degree(v)) > |E|
|P | , then at least one processor will process more than its

fair share of edges.

2.2.2 2D Partitioning

Recent work using 2D graph partitioning has shown the best results for traditional

large scale HPC systems [16, 83, 82]. In 2D partitioning, the graph is partitioned

according to a checkerboard pattern of the graph’s adjacency matrix, as illustrated

in Figure 2.2. The adjacency lists of high-degree vertices are split over O(
√

(p))

partitions, which greatly improves the partition balance.

Unfortunately, 2D partitioning has serious disadvantages at scale and with ex-

ternal memory. First, when processing sparse graphs, each 2D block may become

hypersparse, i.e., fewer edges than vertices per partition [15]. Specifically, partitions

become hypersparse when O(
√
p) > degree(g), where p is the number of distributed

partitions and g is the graph. In Figure 2.2, the highlighted partitions (p13, p14, p15)

illustrate hypersparse partitions, where there are fewer edges than vertices. For the

sparse Graph500 datasets with average degree of 16, this may occur for as low as 256

partitions and is independent of graph size. Second, under weak scaling, the amount

of algorithm state (e.g., Breadth-First Search level) stored per partition scales with

O(V√
p
), where V is the total number of vertices. This can ultimately hit a scaling

9

P0

P1

P2

P3

P4

P5

P6

P7

Figure 2.1: Illustration of 1D partitioning a graph’s adjacency matrix. High-degree
vertices form dense rows that when 1D partitioned row-wise create imbalance. The
highlighted partitions p2 and p5 contain more edges (non zeros) than average due to
the high-degree vertices contained.

10

wall where the amount of local algorithm state per partition exceeds the capacity of

the compute node.

Finally, with respect to our desire to use semi-external memory where the vertex

set is stored in in-memory and the edge set is stored in external memory, hypersparse

partitions are poor candidates to apply semi-external memory techniques, because

the in-memory requirements (proportional to the number of vertices) are larger than

the external memory requirements (proportional to the number of edges).

Our partitioning techniques, discussed in Chapters 4 and 5, address the shortcom-

ings of 1D and 2D partitioning for scale-free graphs containing high-degree vertices

by creating balanced partitions.

2.3 Scale-free Graphs

Many real-world graphs can be classified as scale-free, where the distribution of

vertex degrees follows a scale-free power-law [6]. A power-law vertex degree distribu-

tion means that the majority of vertices have small degree, while a select few have a

very large degree, with the distribution of degrees following a power-law distribution.

These high-degree vertices are called hub vertices, and create multiple scaling issues

for parallel algorithms, discussed further in chapter 2.6.

2.3.1 Properties

Power Law. A common property of many real world graphs is a power law distri-

bution of vertex degree. As an example, Figure 2.3 shows power law distributions

of vertex degree for a web graph [43] and the Epinions graph [64]. An effect of the

power law degree distribution is that while the vast majority of vertices have a low

degree, a select few vertices will have a very high degree. These high degree nodes

are often referred to as hub vertices, and can lead to significant load imbalance for

11

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

Figure 2.2: Illustration of 2D partitioning a graph’s adjacency matrix. The adja-
cency lists of high-degree vertices are split over O(

√
(p)) partitions, which greatly

improves the partition balance. Highlighted partitions (p13, p14, p15) illustrate hyper-
sparse partitions, where there are fewer edges than vertices.

12

100 101 102 103 104

100

101

102

103

104

105

Vertex Degree

C
ou

n
t

Degree Distribution for Web Graph

(a)

100 101 102 103

100

101

102

103

104

Vertex Degree

C
ou

n
t

Degree Distribution for Epinions Graph

(b)

Figure 2.3: Vertex degree distributions for a web graph [43] (a) and the Epinions
graph [64] (b).

parallel processing, discussed in Section 2.6.1.

Small Diameter. Although sparse, many graphs are connected into connected

components with small diameters. The diameter of a graph is the longest shortest-

path between two vertices. This property leads to a high-level of interconnectedness

that has been popularized by the phrase “six degrees of Kevin Bacon.”

2.3.2 Examples

Examples of scale-free graphs come from many important domains, including the

world wide web, social networks and intelligence networks.

World Wide Web (WWW) graph. Graphs that model the structure of the web

often consist of vertices representing webpages and directed edges representing the

hyperlinks between the webpages. The web graph has been the focus of numerous

13

studies aimed at detecting community structures and improving applications such as

web search [39, 13, 43]. The vertex degree distribution of a web graph is shown in

Figure 2.3 (a).

Social Networks. Graphs naturally model the relationships established by so-

cial interactions. These interactions could be on-line friendships, call-networks, etc.

Zachary [84] performed a now famous social network study in the 1970s, where he

constructed a network of friendships among members of a karate club. The network

was constructed by direct observation of 34 members’ interactions. Modern social

networking tools like Facebook and Twitter have dramatically increased the scale of

social network data to hundreds of millions of individuals. These tools and their ac-

companying social networks have garnered the attention of many social and network

scientists [40, 23, 63, 73]. The vertex degree distribution of a social network is shown

in Figure 2.3 (b).

Homeland Security. It has been estimated that graphs of interest to the De-

partment of Homeland Security will reach 1015 entities [38], providing a significant

challenge to analysts who wish to search them. The sheer size of this data dwarfs the

main-memory capacities of modern supercomputers, necessitating the use of external

memory devices.

2.4 Synthetic Graph Models

Throughout this work, we used three synthetic graph generators for our stud-

ies. Two of the generators, R-MAT and Preferential Attachment, generate scale-free

graphs, while the Watts-Strogatz model generates small world graphs with small

diameters. This section describes the models and their parameters used in our ex-

14

perimental studies.

2.4.1 Scale-Free Models

Chakrabarti et al. [18] introduced the R-MAT model that generates power law

vertex degree distributions. It is based on a recursive matrix model, and uses four

parameters, {a, b, c, d} where a+b+c+d = 1, to control how the matrix is recursively

subdivided. We follow the Graph500 V1.2 specification for generator parameters

[20]. R-MAT has been studied analytically and experimentally [68, 30], and has

become the de facto standard scale-free graph generator model in large part due to

its scalability to large graph scales. We used the open source RMAT implementation

provided by the Boost Graph Library [71].

The Barabási-Albert model generates scale-free graphs based on preferential at-

tachment [7]. The model simulates the growth of networks where the probability of

a new vertex attaching to an existing vertex is proportional to the vertex’s degree.

We used a generalized PA model by Móri [54], where the probability of connecting

to a vertex of degree d is proportional to d + β, where β > −16. By varying the

value of β, we can control the rate in which hubs grow. For our studies, we chose β

values of -12, -13, and -14. The β value of -12 was used to roughly match Graph500

RMAT’s hub growth, and the β values of -13 and -14 where chosen to increase hub

growth and stress the delegate approach. We parallelize the generation of large PA

graphs using similar techniques developed by Machta [46].

The growth of the largest hub vertex for the R-MAT and PA graph models is

shown in Figure 2.4.

15

231 232 233 234 235

108

109

Number of Vertices

M
ax

ve
rt

ex
d

eg
re

e

Scale-Free Hub Growth

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

Figure 2.4: Hub growth for scale-free RMAT and preferential attachment graphs.

16

2.4.2 Small World Models

The Watts-Strogatz [78] model does not generate scale-free graphs, however it

models the small world effect of small diameter. The model has a control parameter,

β, that interpolates between a ring lattice and an Erdös-Rényi [24] random graph.

The interpolating parameter β allows the number of triangles and the graph’s diam-

eter to be controlled during experiments.

2.5 Processing Large Graphs

Processing of large graphs is receiving increasing attention by the HPC commu-

nity as datasets quickly grow past the capacity of commodity workstations. Signif-

icant challenges arise for traditional HPC solutions because of the nature of these

datasets. These challenges can be categorized into unstructured memory access and

poor data locality [33, 45].

While graph algorithms have received tremendous attention for the RAM com-

putational model, many realistic datasets are too large to fit in the memory of a

single computer. To address this, researchers have explored using Distributed Mem-

ory and External Memory. Key challenges in processing large graphs come from the

non-contiguous access to the data structure. Distributed Memory approaches suf-

fer from poor load balancing due to the intrinsic nature of power-law distributions,

discussed in Section 2.6.1. External Memory approaches suffer the same issues as

distributed memory, and in addition, poor data locality and unstructured memory

accesses lead to poor performance for which techniques such as prefetching, blocking,

and pipelining generally provide little improvement. Some experiments have shown

that BFS designed for the RAM computation model runs orders of magnitude slower

when forced to use external memory [2].

17

2.5.1 Distributed Memory

A popular approach to graph processing in HPC has been to use Distributed

Memory computer clusters. Such clusters distribute the graph data amongst its

processors and memory and process the graph by exchanging messages during com-

putation phases. This approach works well when the graph exhibits nice load bal-

ancing properties (regular or uniformly random) [83] but suffers from significant load

imbalance when processing power-law graphs [29].

The most common approach for implementing graph algorithms in distributed

memory is with the Bulk-Synchronous Parallel (BSP) model [72]. In BSP, processors

iteratively work on their local data, and then participate in collective communication

operations. This type of approach is susceptible to load imbalance, because each BSP

step waits for the slowest processor with the largest load. We avoid BSP in our work,

and use an asynchronous approach that can exploit fine-grained parallelism.

Many distributed memory graph libraries have been developed, including the Par-

allel Boost Graph Library (PBGL), the STAPL Graph Library, and Pregel. PBGL

[29] applies the paradigm of generic programming to the domain of graph computa-

tions. It supports distributed memory through a bulk-synchronous message passing

communication. The STAPL Graph Library [32] provides a framework that abstracts

the user from data-distribution and parallelism and supports the expression of asyn-

chronous algorithms. The Pregel graph library [47] provides a vertex-centric visitor

model for implementing graph algorithms. The library provides a bulk-synchronous

computation model for the vertex visitors.

2.5.2 Multithreaded Shared Memory

Massive Multithreaded machines address the challenges of unstructured mem-

ory accesses and poor data locality by using little or no memory hierarchy. The

18

Cray XMT has been successful at processing large graph datasets; these specialized

supercomputers rely on massive multithreading to mask memory latency without us-

ing complex memory caches. The development of the Multithreaded Graph Library

(MTGL) for this specialized computing platform has been shown to address many

of the issues related to memory latency [9]. Our approach addresses the memory

latency issues using commodity hardware and storage devices (NAND Flash) that

are relatively slow compared with main memory. Small-world Network Analysis and

Partitioning (SNAP) [5] is another parallel graph library for shared memory which

utilizes OpenMP for parallelism.

2.5.3 External Memory

Many real world graphs are too large to fit into main memory of modern com-

puters, necessitating the use of external storage devices such as disk. Due to the

significant difference in access times between main memory and disk, many efficient

in-memory algorithms become impractical when using external storage. To analyze

the I/O complexity of algorithms using external storage, the Parallel Disk Model

(PDM) [75] has been developed. PDM’s main parameters are N (problem size), M

(size of internal memory), B (block transfer size), D (number of independent disks),

and P (number of CPUs). When designing I/O efficient algorithms, the key princi-

ples are locality of reference and parallel disk access. For an in-depth survey of EM

Algorithms, see [74].

In this dissertation, we are interested in graphs in a Semi-External Memory

(SEM) scenario. A graph is semi-external if there is enough main memory to store

algorithmic information about the vertices but not edges. In our SEM work, the full

graph structure is stored on the persistent storage device, and the visitor queues and

the output of the algorithms are stored in main memory.

19

Emerging technologies in persistent data storage are changing the way External

Memory algorithms are designed. Flash memory is a form of non-volatile random ac-

cess memory (NVRAM) that has become a commodity product through widespread

use in digital cameras, music players, phones, USB drives, etc. An overview of the

characteristics and performance of flash memory (namely NAND Flash) with respect

to algorithmic research is given in [1, 3]. The key differences from traditional rotating

media can be summarized as follows.

• Significantly faster random access time than disk (microseconds instead of 10’s

of milliseconds).

• Asymmetric read/write performance (writes are more costly than reads).

An important characteristic of NAND Flash devices not covered by [1, 3] is the

ability to service multiple concurrent I/O requests. To achieve maximum random

I/O performance, multiple threads must queue I/O requests. This requires External

Memory algorithms to be multithreaded to achieve maximum I/O performance. Fig-

ure 2.5 shows the multithreaded random read performance of the three NAND Flash

configurations that we test in chapter 3. For all configurations tested, significant

improvements in I/O per second (IOPS) are seen as an increasing number of threads

issue read requests. The Flash configuration details are discussed in Section 3.4.

In our previous work, we addressed the challenge of achieving DRAM-like per-

formance when some portion of the program state resides in I/O bus-connected

NVRAM capable of low latency random access [25]. We identified that high levels of

concurrent I/O are required to achieve optimal performance from NVRAM devices

(e.g., NAND Flash); this is the underlying motivation for designing highly concurrent

asynchronous graph traversals.

20

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1 2 4 8 16 32 64 128 256

R
a
n
d
o
m

 r
e
a
d
s
 p

e
r

s
e
c
o
n
d

Number of Threads

Multithreaded Random Reads on SSDs

FusionIO
Intel

Corsair

Figure 2.5: Multithreaded random read I/O performance for three NAND Flash
configurations. Configuration details discussed in Section 3.4.

We also identified that the Linux I/O system software introduces many bottle-

necks. This has led many application developers to use the O_DIRECT I/O flag to

bypass Linux’s default page cache system. For this work, we implemented a custom

page cache that resides in user space and provides a POSIX I/O interface. Our

custom page cache was designed to support a high level of current I/O requests,

both for cache hits and misses, and interfaces with NVRAM using direct I/O. The

design of our page cache is not the focus of this work, but was required to optimize

performance from the NAND Flash devices used in our studies.

21

NVRAM in the HPC environment. Node-local or node-near NVRAM is gaining

traction in the HPC environment, often motivated by improving the performance of

checkpointing in traditional HPC applications [53]. Our work leverages the NVRAM

for data-intensive applications. Examples of HPC systems with NVRAM include:

• Lawrence Livermore Nat. Lab.: Hyperion, Coastal;

• San Diego Supercomp. Center: Trestles, Flash Gordon;

• Tokyo Institute of Technology: TSUBAME2.

The architecture and configuration of NVRAM in supercomputing clusters is an

active research topic. To our knowledge, our work is the first to integrate node-local

NVRAM with distributed memory at extreme scale for important data intensive

problems, helping to inform the design of future architectures.

2.6 Challenges for Processing Large Scale-Free Graphs

In this section, we identify key challenges to storing and processing massive

scale-free graphs. Many important graph datasets have unstructured and irregular

topologies which thrash multi-level memory hierarchies, including external memory.

In Section 2.6.1 we describe how irregular topologies can produce dense processor-

processor, approaching all-to-all, communication for parallel algorithms, leading to

poor overall performance. In Section 2.6.2 we describe how the growth of high-

degree vertices provides significant challenges for balancing storage, computation,

and communication.

2.6.1 Dense Processor-Processor Communication

Partitioning scale-free graphs into equal sized partitions with minimal edge cuts

is difficult, and often not feasible. Many scale-free graphs lack good graph separators,

22

resulting in many cut edges when partitioned. When a graph is partitioned with a

large number of cut edges, parallel algorithms will require significant communication.

Recent work on partitioning scale-free graphs has developed techniques to partition

based on community structure [27, 44, 56]. However, these techniques often do not

attempt to create equal sized partitions when attempting to uncover the underlying

community structure. As such, these techniques are not well suited for partitioning

graphs for the purposes of parallel processing.

For scale-free graphs without good graph separators, parallel algorithms will re-

quire significant communication. Specifically, when the parallel partitioned graph

contains Ω(|E|α), where 0 < α ≤ 1, cut edges, a polynomial number of graph edges

will require communication between processors if an algorithm requires communica-

tion along the edges. Additionally, dense communication occurs when Ω(pα+1) pairs

of processors share cut edges, in the worst case creating all-to-all communication.

To mitigate the dense processor-processor communication, we apply communica-

tion routing and aggregation through a synthetic network. For dense communication

patterns, where every process needs to send messages to all p other processes, we

route the messages through a topology that partitions the communication. We have

experimented with 2D and 3D routing topologies. Figure 2.6 illustrates a 2D routing

topology that reduces the number of communicating channels a process requires to

O(
√
p). This reduction in the number of communicating pairs comes at the expense

of message latency because messages require two hops to reach their destination. In

addition to reducing the number of communicating pairs, 2D routing increases the

amount of message aggregation possible by O(
√
p).

Scaling to hundreds of thousands of cores requires additional reductions in com-

munication channels. Our experiments on the IBM BlueGene/P supercomputer use

23

S
en

d
R

an
k
s

Receive Ranks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0 1 2 3
1

2

3

4

4 5 6 7
5

6

7

8

8 9 10 11
9

10 Msg Router

11

12

12 13 14 15
13

14

15

Figure 2.6: Illustration of 2D communicator routing of 16 ranks. As an example,
when Rank 11 sends to Rank 5, the message is first aggregated and routed through
Rank 9.

24

a 3D routing topology, that is very similar to the 2D illustrated in Figure 2.6, and

is designed to mirror the BG/P 3D torus interconnect topology.

Recent work related to our routed communication has been explored by Willcock

[80], where active messages are routed through a synthetic hypercube network to

improve dense communication scalability. A key difference to our work is that their

approach has been designed for the Bulk Synchronous Parallel (BSP) model and is

not suitable for asynchronous graph traversals.

2.6.2 Power-law Degree Distribution

Underlying many of the scaling challenges is the growth of high-degree vertices in

the graph as the size of the graph increases. Hub vertices have degrees significantly

above average, and lead to imbalances in parallel computation and communication.

The hub growth for Graph500 R-MAT and Preferential Attachment scale-free graphs

is shown in Figure 2.4. While the average degree is held constant at 16, the number

of edges belonging to hubs continues to grow as graph size increases.

For scale-free graphs, 1D partitioning suffers from significant partition imbalance

in terms of the number of edges per partition, due to the high-degree vertices in

scale-free graphs. 2D partitioning is significantly better than 1D; however, 2D may

still create imbalanced partitions. The weak scaling of Graph500 partition imbalance

for 1D and 2D block partitioning is shown in Figure 2.7. 1D partition becomes over

ten times imbalanced, while 2D is only 20% imbalanced.

Our edge list partitioning, discussed in chapter 4, does not suffer from imbalances

due to high-degree vertices; it guarantees a balanced number of edges per partition.

25

8,192 32,768 131,072

0

2,000

4,000

6,000

8,000

10,000

Number of Partitions

P
a
rt

it
io

n
im

b
al

an
ce

(p
er

ce
n
ta

ge
)

1D Partition Imbalance

8,192 32,768 131,072

0

100

200

300

Number of Partitions

P
ar

ti
ti

on
im

b
al

an
ce

(p
er

ce
n
ta

ge
)

2D Partition Imbalance

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

Figure 2.7: Weak scaling of partition imbalance for 1D and 2D partitioning; imbal-
ance computed for the distribution of edges per partition. Weak scaled using 262,144
vertices per partition. The number of vertices per partition matches the experiments
on BG/P Intrepid shown in Sections 5.5.2 and 5.5.5. Both 1D and 2D partitioning
produce imbalanced partitioning, with the increased imbalance when the graph has
greater hub size (e.g. PA β = −14). 2D partitioning is significantly better than 1D
for all graphs in our studies, however our distributed delegates partitioning produces
perfectly balanced partitions for these weak scaled graphs.

26

2.7 Graph Algorithms

In this section, we provide an overview of the graph algorithms we explore in

this thesis. We focus on six important graph computations that are fundamental to

many other areas of graph analysis: Breadth-First Search, Single Source Shortest

Path, Connected Components, K-Core decomposition, Triangle Counting, and Page

Rank.

2.7.1 Breadth-First Search (BFS)

Breadth-First Search (BFS) is a simple traversal that begins from a starting

vertex and explores all neighboring vertices in a level-by-level manner. Taking the

starting vertex as belonging to level 0, level 1 is filled with all unvisited neighbors

of level 0. Level i + 1 is filled with all previously unvisited neighbors of level i; this

continues until all neighbors of level i have been visited. BFS runs in O(|V | + |E|)

time.

Many parallel versions of BFS are level synchronous [8, 5]. This means that all

threads of execution working on level i must finish and synchronize before starting to

work on level i+1. In some cases, additional work between the level synchronizations

is needed to merge the level sets.

BFS is an algorithm that is efficient when computing in-memory, but becomes

impractical in external memory. In-memory BFS incurs Ω(n+m) I/Os when using

external memory, and it has been reported that the in-memory BFS performs orders

of magnitude slower when forced to use external memory [2].

For general undirected graphs, Munagala and Ranade [55] improve the worst-

case I/O of BFS to O(n + sort(m)) by exploiting the fact that a node in BFS level

i can only have edges to nodes in level i − 1 or i + 1, removing the need to check

all previous BFS levels. The O(n) term in Munagala and Ranade’s algorithm is due

27

to non-contiguous access to the adjacency lists, requiring separate access. Mehlhorn

and Meyer [50] improved the adjacency list access by pre-processing the graph into

subgraphs of low diameter and storing their adjacency lists contiguously, leading to

sub-linear I/O complexity.

For general directed graphs, improvements over in-memory BFS and DFS have

not been made, their I/O complexity is O((n + m/B)lg(n/B) + sort(m)) [4]. This

is considered impractical for general sparse directed graphs. For an in-depth survey

of EM graph traversal algorithms, see [4].

2.7.2 Single Source Shortest Path (SSSP)

A Single Source Shortest Path (SSSP) algorithm computes the shortest paths in

a weighted graph from a single source vertex to every other vertex. In this work, we

only address non-negatively weighted graphs. Our approach to Single Source Shortest

Path (SSSP) can be viewed as a hybrid between Bellman-Ford [21] and Dijkstra’s

[22] SSSP. Bellman-Ford label-correcting computes SSSP by making |V | − 1 loops

over all vertices, relaxing the path length of each vertex. Dijkstra’s SSSP algorithm

also iteratively relaxes vertices, but proceeds in a greedy manner, relaxing only the

shortest-path vertex at each iteration. Dijkstra’s SSSP runs in O(|E|+ |V |log(|V |)),

and Bellman-Ford runs in O(|V | ∗ |E|) time.

We show comparisons to a distributed implementation of the ∆-stepping SSSP

algorithm [51] provided by PBGL [29]. This algorithm proceeds in bulk-synchronous

steps, where vertices within a delta of the shortest path are relaxed together.

Asynchronous algorithms for computing shortest paths in parallel have been pre-

viously studied [10, 31]. Our work builds on these techniques to create an asyn-

chronous approach that can overcome load imbalance and data latencies.

28

2.7.3 Connected Components

A connected component of an undirected graph is a subgraph in which all vertices

can be connected to all other vertices through pathways in the graph. In other words,

if two vertices are in the same connected component, then there exists a pathway

between them in the graph. The connected components of a graph can be computed

in O(|V |+ |E|) time.

The Shiloach-Vishkin parallel connectivity algorithm [70] is a well known PRAM

algorithm for computing connected components. We show comparisons to MTGL’s

[8] parallel implementation, which is an iterative algorithm covered in detail by JáJá

[35].

2.7.4 Triangle Counting

A triangle is a set of vertices A,B,C such that there are edges between A − B,

B−C, and A−C. Triangle counting is a primitive for calculating important metrics

such as clustering coefficient [78]. All triangles can be counted in O(d2max|V |) time,

where dmax is the maximum vertex degree in G.

2.7.5 K-Core Decomposition

The k-core of a graph is the largest subgraph where every vertex is connected

to at least k other vertices in the subgraph. The k-core subgraph can be found

by recursively removing vertices with less than degree k. K-Core has been used in

a variety of fields including the social sciences [67]. K-Core can be computed in

O(|V |+ |E|) time [49].

2.7.6 PageRank

PageRank is a network analysis tool that ranks vertices by their relative im-

portance [57]. Designed to rank pages on the Web, PageRank models a random

29

web surfer that randomly follows links with random restart. It is often iteratively

computed as a stochastic random walk with restart, where the starting distribution

is a uniform distribution across all vertices. Each iteration of PageRank runs in

O(|V |+ |E|) time.

30

3. ASYNCHRONOUS GRAPH TRAVERSAL ∗

In this chapter, we introduce an asynchronous approach for expressing graph

algorithms that can exploit fine grained parallelism. The motivation of our work is

to overcome costly parallel synchronizations that inhibit performance and scalability.

As clock speeds flatten and massive parallelism becomes mainstream, asynchronous

approaches will become necessary to overcome the increasing cost of synchronization.

Using currently accepted synchronous techniques, load imbalance may occur be-

tween the synchronization points, leading to performance loss. Many algorithms,

including those studied in our work, require multiple synchronizations with existing

techniques. We introduce the use of prioritized visitor queues to asynchronously

compute Breadth First Search (BFS), Single Source Shortest Paths (SSSP), and

Connected Components (CC). We show that our approach allows the computation

to proceed in an asynchronous manner, reducing the number of costly synchroniza-

tions.

Our asynchronous visitor queue is described in Section 3.1. Examples of asyn-

chronous traversal algorithms are discussed in Section 3.2, with a discussion of their

algorithmic complexity in Section 3.3. Finally, an experimental study follows in

Section 3.5.

3.1 Asynchronous Visitor Queue

The vertex visitor abstraction is a common way to abstract the process in which

a graph traversal visits the vertices of a graph. The visitor pattern is used by many

∗Part of the data reported in this chapter is reprinted with the kind permission of IEEE from
“Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory” in In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis (SC),
by R. Pearce, M. Gokhale, and N. M. Amato, 2010. Copyright 2010 by IEEE. [59]

31

graph libraries, including PBGL [29]. A visitor is a simple procedure that contains

the algorithmic operations performed for an individual vertex. Our approach allows

the visitors to traverse the graph asynchronously in parallel. We use the vertex visitor

pattern with prioritized work queues to form an asynchronous visitor queue. Each

processor is assigned a prioritized visitor queue, where pending visitors wait to be

processed.

An algorithm is started with an initial set of vertex visitors that evaluate and

potentially modify the state of the vertices. As the graph traversal proceeds, vertices

are visited and adjacent vertices to be visited (if needed) are dynamically queued

into the visitor queue. The traversal is complete when the visitor queues are empty,

and all visitors have completed.

In a multithreaded environment, the visitor queue can be implemented as a set

of priority queues with a hash function controlling the selection of an individual

queue. Using multiple queues with a hash function reduces lock contention when

multiple threads are inserting or removing from the queues. In our implementation

and experiments, each thread ‘owns’ a queue and the queue is selected based on a

hash of the vertex identifier. This adds an additional guarantee that a visitor has

exclusive access to a vertex when executing, removing the need for additional vertex-

level locking when visiting a vertex. Additionally, a near-uniform hash function

may improve load balance amongst the visitor queues as high-cost vertices will be

uniformly distributed across the queues.

3.2 Algorithms

We applied our asynchronous traversal techniques to Breadth First Search, Single

Source Shortest Path, and Connected Components. This section describes the design

of these algorithms.

32

0start 1 2 3 4

Figure 3.1: An example directed graph with poor parallelism for BFS and SSSP.

3.2.1 Breadth-First Search (BFS) and Single Source Shortest Path (SSSP)

Like Dijkstra’s SSSP [22], our approach traverses paths in a prioritized manner,

visiting the shortest path possible at each visit. Our approach does not introduce

synchronizations between steps; therefore, we cannot guarantee that the absolute

shortest-path vertex is visited at each step, possibly requiring multiple visits per

vertex. Like Bellman-Ford [21], our approach relies on label-correcting to compute the

traversal, and completes when all corrections are complete. In this work, we compute

a Breadth First Search (BFS) by applying our asynchronous SSSP algorithm with

all edge weights equal to 1.

Algorithms 1 and 2 outline an asynchronous SSSP traversal of a graphG = (V,E).

Each vertex is assigned a label representing the path length to that vertex, initialized

to ∞. The traversal starts at the source in Algorithm 1. For each vertex visited,

an instance of Algorithm 2 decides if the current path length needs to be corrected,

and queues the adjacent vertices if the path has been updated. A visitor corrects

the path length if it represents a shorter pathway than is currently assigned to the

vertex. The visitor queue is prioritized based on the visitors’ path lengths. After

starting the traversal, Algorithm 1 waits for all queued visitors to complete.

33

Algorithm 1 Single Source Shortest Path – Main

1: INPUT: g ← input weighted graph G(V,E)
2: INPUT: dist array← an array holding the path length to each vertex, initialized

to ∞
3: INPUT: parent array ← an array holding the path parent to each vertex, ini-

tialized to ∞
4: INPUT: start ← starting vertex for SSSP
5: pq visit ← a multithreaded visitor queue, prioritized by SSSPVertexVisitor’s

cur dist
6: pq visit.push(SSSPVertexVisitor(g, pq visit, dist array, parent array, start, 0,

start))
7: pq visit.wait() //wait for queued work to finish

Algorithm 2 Single Source Shortest Path – SSSPVertexVisitor

1: INPUT: g ← input weighted graph G(V,E)
2: INPUT: pq visit ← a multithreaded visitor queue
3: INPUT: dist array ← an array holding the path length
4: INPUT: parent array ← an array holding the path parent
5: INPUT: v ← vertex to visit
6: INPUT: cur dist ← tentative bound on min path length
7: INPUT: cur parent ← tentative shortest path parent
8: if cur dist < dist array[v] then
9: dist array[v] = cur dist //relax vertex information

10: parent array[v] = cur parent
11: adj list ← g.adj list(v)
12: for all vj ∈ adj list do
13: edge weight = g.edge weight(v,vj)
14: pq visit.push(SSSPVertexVisitor(g, pq visit, dist array, parent array, vj,

edge weight, v))
15: end for
16: end if

34

0,0

1,∞

2,∞

3,∞

4,∞

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5

(a)

0,0

1,2

2,5

3,∞

4,∞

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5 9

6 6

(b)

0,0

1,2

2,5

3,9

4,∞

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5 9 11

10 6 6

(c)

0,0

1,2

2,5

3,6

4,11

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5 9 11

10 6 6 8

7

14

(d)

0,0

1,2

2,5

3,6

4,8

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5 9 11

10 6 6 8

7

11

14

(e)

0,0

1,2

2,5

3,6

4,8

2

5 4 1

7

1

23

Visitor Queues

0 1 2 3 4

0 2 5 9 11

10 6 6 8

7

11

14

(f)

Figure 3.2: An example of an asynchronous Single Source Shortest Path (SSSP)
traversal of a simple weighted directed graph. Section 3.2.2 discusses the details of
this example.

35

3.2.2 SSSP Traversal Example

To illustrate how the asynchronous computation proceeds we describe SSSP as

seen in Algorithms 1 and 2. The path length for all vertices is initially set to ∞ and

the visitor queues are empty. The computation starts by queuing a visitor at the

source with cur dist = 0. Upon visiting a vertex, each visitor evaluates if the current

path length needs to be corrected. If the visitor updates the path, the visitor queues

new visitors for the vertex’s adjacent vertices.

Figure 3.2 gives a pictorial example for a simple weighted directed graph. In this

example, the weights were purposely selected to require multiple visits per vertex. In

a real-world context, the weights may represent distances between locations, strength

of association between agents, or any other domain-specific relationship information.

For simplicity, the computation is represented by 6 steps; however it is important

to note that no synchronization is introduced between the steps and the order of

the visitor queues is not guaranteed. For clarity, a visitor queue is shown for each

vertex; however in practice, a queue may represent a large subset of vertices. The

computation in Figure 3.2 proceeds as follows:

(a) All vertices initialize their path length to ∞. Vertex 0 initializes to a path

length of 0 and queues a visitor to vertex 1 with length 2, and a visitor to

vertex 2 with length 5.

(b) Vertex 1 is visited with length 2, updates its path length to 2, and queues a

visitor to vertex 2 with length 6, and a visitor to vertex 3 with length 9. Vertex

2 is visited with length 5, updates its path length to 5, and queues a visitor to

vertex 3 with length 6.

(c) Vertex 2 is visited with length 6; because length 6 is longer than its current

36

length 5, it does not update its path length; no new visitors queued. Vertex 3

has 2 visitors queued, however order is not guaranteed and it processes length 9

first, updates its path length to 9, and queues a visitor to vertex 0 with length

10 and visitor to vertex 4 with length 11.

(d) Vertex 0 is visited with length 10, and does not update its path length; no new

visitors queued. Vertex 3 is visited with length 6, updates its path length to

6, and queues a visitor to vertex 4 with length 8, and a visitor to vertex 0 with

length 7. Vertex 4 is visited with length 11, updates its path length to 11, and

queues a visitor to vertex 0 with length 14.

(e) Vertex 0 is visited with length 7, and does not update its path length; no new

visitors queued. Vertex 4 is visited with length 8, updates its path length to

8, and queues a visitor to vertex 0 with length 11.

(f) Vertex 0 is visited with length 11, and does not update its path length; no new

visitors queued. For the subsequent time step, vertex 0 is visited with length

14, and does not update its path length; no new visitors queued. End : The

computation terminates when all visitor queues are empty.

3.2.3 Undirected Connected Components

The asynchronous computation of the Connected Components (CC) of an undi-

rected graph is similar to that of SSSP. To compute the CCs, each vertex is labeled

by the smallest vertex descriptor that is reachable by a path in the graph, where the

vertex descriptor is an integer that labels the vertex. The computation is outlined

in Algorithms 3 and 4; in Algorithm 3, a visitor for each vertex is queued in parallel

with the vertex’s descriptor as the starting component id. When a vertex is visited,

if its component id can be updated to a smaller id, then it is updated and visitors for

37

all adjacent vertices are queued with the updated component id. The computation

is finished when all queued visitors complete.

Algorithm 3 Undirected Connected Components – Main

1: INPUT: g ← input graph
2: INPUT: ccid array ← an array holding the cc id for each vertex, initialized to
∞

3: pq visit ← a multithreaded visitor queue, prioritized by UCCVertexVisitor’s
cur ccid

4: for all v ∈ g.vertex list() parallel do
5: pq visit.push(UCCVertexVisitor(g, pq visit, ccid array, v, v))
6: end for
7: pq visit.wait() //wait for queued work to finish

Algorithm 4 Undirected Components – UCCVertexVisitor

1: INPUT: g ← input graph
2: INPUT: pq visit ← a multithreaded visitor queue
3: INPUT: ccid array ← an array holding the cc id
4: INPUT: v ← vertex to visit
5: INPUT: cur ccid ← tentative bound on min cc id
6: if cur ccid < ccid array[v] then
7: ccid array[v] = cur ccid //relax vertex information
8: adj list ← g.adj list(v)
9: for all vj ∈ adj list do

10: pq visit.push(UCCVertexVisitor(g, pq visit, ccid array, vj, cur ccid))
11: end for
12: end if

38

3.3 Algorithmic Analysis

The performance of Algorithms 1 and 2 is highly dependent on the structure of

the graph traversed. If the graph has multiple shortest-path pathways that can be

independently traversed, then the algorithm will have the opportunity to proceed in

parallel. However, without the independent pathways, the algorithm will traverse

the graph in a serialized manner. Figure 3.1 is an example of a directed graph with

poor parallelism when traversed starting from vertex 0.

More formally, the algorithm’s complexity can be represented byO((|E|/p)log(|V |/p)),

where V and E are the number of vertices and edges in the graph, respectively, and

p is the degree of parallelism the traversal can exploit. In the worst case, where

the traversal is serialized (p = 1), the algorithm reduces to Dijkstra’s SSSP with

a performance of O(|E|log|V |). From our experiments with scale-free graphs and

web-graphs, presented in Section 3.5, a significant amount of path parallelism exists

in these real-world graphs, giving rise to performance approaching the best case.

As with SSSP, the parallel performance of Algorithms 3 and 4 is highly dependent

on the underlying graph structure. A worst case graph with poor parallelism is similar

to that of SSSP in Figure 3.1, only undirected.

Our approach to CC can be viewed as performing parallel BFS starting from every

vertex. When two BFSs that started from different vertices merge, the BFS that

started from the lowest vertex identifier takes over the remainder of both traversals.

The end result is that all vertices in the graph are labeled with the smallest vertex

identifier connectable to them.

3.4 Implementation Details

We have created two similar implementations for In-Memory and Semi-External

Memory graphs.

39

Thread Oversubscription. Our implementation can benefit from using more

threads than cores. Because there is a prioritized queue per thread, with an as-

sociated lock, having more threads/queues than cores reduces queue lock contention.

From our experiments, using as many as 512 threads on 16 cores offers substantial

benefit.

In-Memory Implementation. For In-Memory graph storage, we used Boost’s

Compressed Sparse Row C++ library [71]. For POSIX thread support, we used the

Boost Thread library [81]. All code was compiled with g++ version 4.1.2 with -O3.

Semi-External Implementation. For Semi-External graph storage, we used a cus-

tom file-based storage implementing a compressed sparse row using explicit POSIX

standard I/O access. In the semi-external graph scenario, the algorithmic has enough

memory to store algorithmic information about the vertices but not edges. The en-

tire graph structure is stored on the persistent storage device, and the visitor queues

and the output of the algorithm are stored in main memory.

For POSIX thread support, we used the Boost Thread library [81]. All code was

compiled with g++ version 4.1.2 with -O3.

The only difference from the in-memory algorithm implementation is that the

prioritized visitor queues have an additional secondary sorting parameter, the vertex

identifier. This increases access locality to the storage devices by sorting the accesses.

Because we use a compressed sparse row graph format, the adjacency set for vertex

i will be close in terms of data locality to the adjacency set of vertex i + 1. When

the visitor queues are able to visit vertices with close identifiers, aggregate page-level

locality can be exploited. Using Breadth-First Search as an example, not only will

level 1’s vertices be processed before level 2’s, the vertices in level 1 will be visited

40

in a semi-sorted order to increase locality.

3.5 Experimental Study

We present an experimental study applying our technique to both In-Memory

(IM) and Semi-External Memory (SEM) graphs utilizing multi-core processors and

solid-state memory devices (SSDs). We provide a quantitative study comparing

our approach to existing implementations. Our experimental study evaluates both

synthetic and real-world datasets, and shows that our asynchronous approach is

able to overcome data latencies and provide significant speedup over alternative

approaches.

3.5.1 Graph Types and Sizes

We performed experiments using both synthetic and real graph inputs of various

sizes. For the three algorithms tested in this work, the input graphs were organized

as follows:

• BFS - Directed synthetic graphs, unweighted;

• SSSP - Directed synthetic graphs, two forms of random weights;

• CC - Undirected graphs, synthetic and real.

Synthetic Graphs. For synthetic graphs, we used scale-free graphs generated by

the RMAT [18] graph generator. The RMAT graph generator uses a ‘recursive

matrix’ model to create graphs that model ‘real-world’ graphs. We generated directed

graphs with unique edges ranging from 225−230 vertices and an average out-degree of

16. The vertex identifiers are permuted after graph generation. Undirected versions

of these graphs for use with Connected Components were created by adding reverse

41

Size on Flash Device

graph # nodes # edges # components directed undirected

RMAT-A

225 229 34,008 small
226 230 72,647 small
227 231 154,179 9 GB 17 GB
228 232 327,072 18 GB 34 GB
229 233 689,979 36 GB 68 GB
230 234 1,448,438 72 GB 136 GB

RMAT-B

225 229 13,739,228 small
226 230 28,448,613 small
227 231 58,757,785 9 GB 17 GB
228 232 121,037,055 18 GB 34 GB
229 233 249,937,778 36 GB 68 GB
230 234 510,267,039 72 GB 136 GB

ClueWeb09 [17] 1,667,267,985 7,939,647,897 3,149,668 n/a

it-2004 [12] 41,291,595 1,150,725,436 979 n/a

sk-2005 [12, 11] 50,636,155 1,949,412,601 126 n/a 14 GB

uk-union [12] 133,633,041 5,507,679,822 2,097,197 n/a 36 GB

webbase-2001 [12] 118,142,156 1,019,903,190 2,721,051 n/a

Table 3.1: Properties of graph datasets used in experiments.

42

225 226 227 228 229 230
104

105

106

107

Number of Vertices

M
ax

im
u

m
V

er
te

x
D

eg
re

e

Maximum Vertex Degree for RMAT

RMAT-B
RMAT-A

Figure 3.3: Maximum Vertex Degree for RMAT-A and RMAT-B graphs.

edges. Properties of the RMAT graphs are shown in Table 3.1. We generated 2 types

of RMAT graphs with different RMAT parameters:

• RMAT-A : a = 0.45, b = 0.15, c = 0.15, d = 0.25: This creates a scale-free

graph with medium sized hub vertices, shown in Figure 3.3;

• RMAT-B : a = 0.57, b = 0.19, c = 0.19, d = 0.05: This creates a scale-free

graph with large high degree vertices, shown in Figure 3.3. This is the RMAT

configuration for the Graph500 benchmark.

For weighted SSSP experiments, we added edge weights to the RMAT graphs in

the following manner:

• UW - uniform weights range from [0, num vertices)

43

• LUW - log-uniform weights range from [0, 2i), where i is chosen uniformly from

[0, lg(num vertices))

Real Graphs. For real graphs, we experimented with five different web traces that

were treated as undirected. Properties of the five web graphs are shown in Table 3.1.

3.5.2 Hardware Resources

Our implementation and experiments were performed using Linux computers at

Lawrence Livermore National Laboratory:

• AMD256GB – Single compute node; 16-core AMD Opteron(tm) 8356 with

256 GB of main memory. This machine is used for Async, MTGL, SNAP,

DIMACS-SSSP, and BGL discussed in 3.5.3.

• AMDCluster – Linux cluster; 16-core AMD Opteron(tm) 8356 with 32 GB of

main memory. This cluster is used only for PBGL discussed in 3.5.3.

• AMD16GB – Single compute node; 16-core AMD Opteron(tm) 8356 with 16

GB of main memory. In addition, this machine can be configured with 3

different types of NAND Flash storage.

Using the AMD16GB machine, we experimented with 3 types of NAND Flash

based storage:

• AMD16GB-FusionIO – 4x 80GB FusionIO SLC, PCI-E cards in a software

RAID 0 configuration. Our experiments show that this configuration is capable

of close to 200,000 random reads per second. This is the fastest device that we

have tested, and much of its speed is due to its PCI-E interface.

• AMD16GB-Intel – 4x 80GB Intel X25-M MLC, SATA SSDs in a software RAID

0 configuration. Our experiments show that this configuration is capable of

close to 60,000 random reads per second.

44

• AMD16GB-Cosair – 4x 128GB Corsair P128 MLC, SATA SSDs in a software

RAID 0 configuration. Our experiments show that this configuration is capable

of close to 30,000 random reads per second.

Our semi-external approach requires a high level of IOPS to achieve good perfor-

mance. For this reason, we have not studied our approach on traditional rotating

media. Figure 2.5 shows the multithreaded random I/O performance of the three

NAND Flash configurations that we test in this work.

3.5.3 In-Memory Experiments

In-Memory Graph Libraries. For experimental comparison, we show the perfor-

mance of the following graph libraries:

• Async – our asynchronous approach.

• MTGL [8, 9] – a shared memory parallel graph library primarily designed

for Cray’s massively multithreaded machines. For commodity SMP systems,

MTGL has implementations of BFS and CC that use the QThreads library

[79] for threading support. It is important to note that MTGL’s performance

on SMP systems does not reflect on its performance on the Cray XMT. Our

experiments use MTGL’s Subversion Trunk revision 2827.

• SNAP [5] – a parallel graph library for shared memory which utilizes OpenMP

for parallelism. Our experiments use SNAP version 0.3.

• PBGL [29] – a distributed memory parallel graph library. Direct comparisons

between distributed memory and shared memory implementations are not possi-

ble, however these experiments help to compare alternative techniques for large

graph processing. Our experiments use PBGL from version 1.43 of the Boost

45

library. PBGL experiments are performed on AMDCluster up to 2048-cores;

we report the core-count that performs optimally.

• BGL [71] – a serial graph library. BGL is used as an efficient serial baseline to

compute speedup. Our experiments use BGL from version 1.43 of the Boost

library.

• DIMACS-SSSP – an implementation of Goldberg’s multilevel bucket shortest

path algorithm [28]. It was used as the reference solver from the 9th DIMACS

Implementation Challenge on shortest paths.

3.5.3.1 Breadth First Search (BFS)

Figure 3.4 shows our asynchronous Breadth First Search (BFS) compared with

MTGL, SNAP, PBGL all normalized by BGL. Our approach, MTGL, SNAP and

BGL were tested on AMD256GB. PBGL is shown with the optimal number of cores

between 64-2048 and 128GB-4TB of memory tested on AMDCluster.

At full parallelism, our asynchronous BFS is roughly 1.6-1.8x faster than MTGL’s

and 2.3-5.3x times faster than SNAP’s BFS for our test cases. SNAP’s BFS struggles

with the highly skewed degree distribution of the RMAT-B datasets, leading to poor

scaling and speedup. MTGL’s and SNAP’s graph data structures are implemented

using 64-bit integers and are unable to fit the 229 and 230 vertex graphs in 256GB of

memory; our implementation can be configured to use 32 or 64-bit integers.

Using significant resources, 128-1024 cores with 256GB-2TB of memory, PBGL

can compute BFS on the 228, 229, and 230 vertex graphs the fastest. However, PBGL’s

parallel speedup is small relative to the number of cores used.

The scalability of Async, MTGL, and SNAP on AMD256GB is shown in Fig-

ure 3.5 for the 228 vertex graphs. The modest benefit of thread oversubscription for

46

 0

 5

 10

 15

 20

2
25

2
26

2
27

2
28

2
29

2
30

2
25

2
26

2
27

2
28

2
29

2
30

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B

RMAT-A RMAT-B

Speedup of In-Memory Parallel Breadth-First Search

2
5
6
-c

o
re

s

2
5
6
-c

o
re

s

2
5
6
-c

o
re

s

5
1
2
-c

o
re

s

5
1
2
-c

o
re

s

1
0
2
4
-c

o
re

s

1
2
8
-c

o
re

s

2
5
6
-c

o
re

s

2
5
6
-c

o
re

s 5
1
2
-c

o
re

s

5
1
2
-c

o
re

s

1
0
2
4

Async, AMD256GB
MTGL, AMD256GB
SNAP, AMD256GB
PBGL, AMDCluster

Figure 3.4: Performance comparison of In-Memory Breadth First Search (BFS).
Speedup shows parallel libraries normalized by BGL. For PBGL, we report the op-
timal core-count up to 2048.

Async can be seen here, as in all test cases 512 threads outperform 16 threads using

our approach; this indicates that further scaling is possible beyond 16-cores. MTGL

and SNAP do not benefit from thread oversubscription.

Overall, our approach outperforms MTGL and SNAP in all of our test cases, and

was competitive with PBGL which uses 4-64x the number of cores and up to 8x the

memory.

47

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B
(l
o
g
 s

c
a
le

)

Number of Threads (log scale)

Scalability of In-Memory Parallel Breadth-First Search
AMD256GB -- 2

28
 vertices, 2

32
 edges

Oversubscribed Threads
On 16-Cores

Async RMAT-A
Async RMAT-B
MTGL RMAT-A
MTGL RMAT-B
SNAP RMAT-A
SNAP RMAT-B

Figure 3.5: Scalability of In-Memory Breadth First Search (BFS). Scalability shows
shared-memory libraries only normalized by BGL.

48

3.5.3.2 Single Source Shortest Path (SSSP)

Figure 3.6 shows Async and PBGL normalized with the DIMACS-SSSP tested on

AMD256GB. PBGL’s ∆-stepping SSSP is shown with the optimal number of cores

between 64-2048 and 128GB-4TB of memory AMDCluster. These experiments use

the same directed graphs as the BFS experiments in Section 3.5.3.1 and add uniform

(UW) and log-uniform (LUW) edge weights.

PBGL’s ∆-stepping SSSP is unable to scale past 256-cores. The optimal core-

count was 64-256 cores for the UW graphs. An appropriate lookahead value could

not be found for the LUW graphs. For both the UW and LUW graphs, the default

heuristic for choosing a lookahead value was poor.

Again, we see that Async benefits from thread oversubscription as all tests per-

form best using 512 threads on 16 cores, which indicates that further scaling is

possible beyond 16-cores, shown in Figure 3.7. Async achieves a speedup of up to

15.3 on 16-cores when normalized to DIMACS-SSSP.

3.5.3.3 Connected Components

Figure 3.8 shows Async, MTGL, PBGL normalized by BGL on AMD256GB.

PBGL is shown with the optimal number of cores between 64-2048 and 128GB-4TB

of memory on AMDCluster.

Our asynchronous CC is 2.8-4.5x faster than MTGL in all synthetic cases tested.

For the real web-graphs, our asynchronous CC is 4-13 times faster than MTGL.

At 16 threads, our approach is consistently better than MTGL in our experiments.

Oversubscribing to 512 threads further improves performance in all cases, which again

indicates that further scaling is possible beyond 16-cores, shown in Figure 3.9

Using significant resources, PBGL is able to outperform both Async and MTGL

49

 0

 2

 4

 6

 8

 10

 12

 14

 16

2
25

2
26

2
27

2
28

2
29

2
25

2
26

2
27

2
28

2
29

2
25

2
26

2
27

2
28

2
29

2
25

2
26

2
27

2
28

2
29

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
D

IM
A

C
S

-S
S

S
P

 o
n
 A

M
D

2
5
6
G

B

UW LUW UW LUW
RMAT-A RMAT-B

Speedup of In-Memory Parallel Single Source Shortest Path

6
4
-c

o
re

s

6
4
-c

o
re

s

6
4
-c

o
re

s

1
2
8
-c

o
re

s

6
4
-c

o
re

s

6
4
-c

o
re

s

6
4
-c

o
re

s

1
2
8
-c

o
re

s

2
5
6
-c

o
re

s

2
5
6
-c

o
re

s

Async, AMD256GB
PBGL, AMDCluster

Figure 3.6: Performance comparison of In-Memory Singe Source Shortest Path
(SSSP). Speedup shows parallel libraries normalized by BGL. For PBGL, we report
the optimal core-count up to 2048.

50

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
D

IM
A

C
S

-S
S

S
P

 o
n
 A

M
D

2
5
6
G

B
(l
o
g
 s

c
a
le

)

Number of Threads (log scale)

Scalability of In-Memory Parallel Single Source Shortest Path
AMD256GB -- 2

28
 vertices, 2

32
 edges

Oversubscribed Threads
On 16-Cores

Async, RMAT-A-UW
Async, RMAT-A-LUW
Async, RMAT-B-UW

Async, RMAT-B-LUW

Figure 3.7: Scalability of In-Memory Singe Source Shortest Path (SSSP). Scalability
shows shared-memory libraries only normalized by BGL.

51

 0

 5

 10

 15

 20

 25

2
25

2
26

2
27

2
28

2
29

2
30

2
25

2
26

2
27

2
28

2
29

2
30

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B

RMAT-A RMAT-B WebGraphs

Speedup of In-Memory Parallel Connected Components

C
lu

e
W

e
b
0
9

it
-2

0
0
4

s
k
-2

0
0
5

u
k
-u

n
io

n

w
e
b
b
a
s
e
-2

0
0
1

2
5
6
-c

o
re

s

2
5
6
-c

o
re

s

5
1
2
-c

o
re

s

5
1
2
-c

o
re

s

5
1
2
-c

o
re

s

1
0
2
4

2
5
6
-c

o
re

s

5
1
2
-c

o
re

s

Async, AMD256GB
MTGL, AMD256GB
PBGL, AMDCluster

Figure 3.8: Performance comparison of In-Memory Connected Components (CC).
Speedup shows parallel libraries normalized by BGL. For PBGL, we report the op-
timal core-count up to 2048.

on three of the largest RMAT-A graphs. However, PBGL performs extremely poorly

on the RMAT-B and WebGraphs; in many cases it is unable to complete due to

memory limitations.

3.5.4 Semi-External Memory Experiments

This section describes our experiments traversing Semi-External Memory (SEM)

graphs stored on solid state FLASH devices on AMD16GB normalized to BGL run-

ning In-Memory on AMD256GB. It is important to note that the In-Memory BGL

performance numbers are used as a baseline to evaluate the Semi-External perfor-

52

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B
(l
o
g
 s

c
a
le

)

Number of Threads (log scale)

Scalability of In-Memory Parallel Connected Components
AMD256GB -- 2

28
 vertices, 2

32
 edges

Oversubscribed Threads
On 16-Cores

Async, RMAT-A
Async, RMAT-B
MTGL, RMAT-A
MTGL, RMAT-B

Figure 3.9: Scalability of In-Memory Connected Components (CC). Scalability
shows shared-memory libraries only normalized by BGL.

53

mance. Also, the processors and motherboard on AMD16GB and AMD256GB are

identical (only memory size differs), so a direct comparison between IM and SEM

can be made.

The ability to process large graphs in semi-external memory at comparable or

better to in-memory performance is important. The cost of solid state devices like

NAND Flash SSDs can be significantly less than DRAM costs, and offers persistent

data storage. Our SEM experiments show that for moderate and fast SSDs, our

asynchronous approach is consistently faster than a serial In-Memory alternative

like BGL, with even the slowest SSD tested performing comparable to BGL.

3.5.4.1 Breadth First Search

Figure 3.10 shows our Semi-External asynchronous BFS compared with the In-

Memory BGL BFS. Using the FusionIO or Intel SSDs, we typically outperform the

serial BGL which requires a larger amount of memory to store the graph in-memory.

The FusionIO drive offers the highest random I/O access speed and typically out-

performs other SSDs we have tested. Even the Corsair, the slowest of the SSDs we

tested, shows performance comparable to BGL’s in-memory performance.

3.5.4.2 Connected Components

Figure 3.11 shows our Semi-External asynchronous CC compared with the In-

Memory BGL CC. As with BFS, our semi-external approach to connected compo-

nents can outperform BGL’s in-memory using the FusionIO and Intel SSDs. Again,

the FusionIO drive typically offers the highest semi-external performance.

54

 0

 1

 2

 3

 4

 5

2
27

2
28

2
29

2
30

2
27

2
28

2
29

2
30

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B

RMAT-A RMAT-B

Speedup of Semi-External Parallel Breadth-First Search

Async, AMD16GB-FusionIO
Async, AMD16GB-Intel

Async, AMD16GB-Corsair

Figure 3.10: Performance comparison of Breadth-First Search in Semi-External
Memory on three FLASH memory configurations. Async performance in semi-
external memory normalized by In-Memory BGL’s serial version on AMD256GB.

55

 0

 1

 2

 3

 4

 5

2
27

2
28

2
29

2
30

2
27

2
28

2
29

2
30

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
B

G
L
 o

n
 A

M
D

2
5
6
G

B

RMAT-A RMAT-B WebGraphs

Speedup of Semi-External Parallel Connected Components

s
k
-2

0
0
5

u
k
-u

n
io

n

Async, AMD16GB-FusionIO
Async, AMD16GB-Intel

Async, AMD16GB-Corsair

Figure 3.11: Performance comparison of Connected Components in Semi-External
Memory on three FLASH memory configurations. Async performance in semi-
external memory normalized by In-Memory BGL’s serial version on AMD256GB.

56

Name Configuration Graph Storage Num Vertices TEPS

Kraken 32-cores, 512GB DRAM
DRAM 231 104.6 MTEPS

Fusion-io 234 55.6 MTEPS

Leviathan 40-cores, 1TB DRAM Fusion-io 236 52 MTEPS

Table 3.2: Graph500 results using NAND Flash in shared-memory. Scale 36 is a
graph with over 1 trillion edges.

3.5.4.3 Graph500: Breadth-First Search

In 2011, we submitted two entries to the Graph500 benchmark that highlighted

our work using NVRAM as semi-external memory. The two systems, kraken and

leviathan, were located at Lawrence Livermore National Laboratory and their per-

formance results in shown in Table 3.2. On Kraken, we showed that using NVRAM

our approach can process a graph 8 times larger with only a 50% drop in performance

in Traversed Edges Per Second (TEPS).

3.6 Summary

We developed a novel asynchronous approach for graph traversal and demonstrate

it by performing Breadth First Search (BFS), Single Source Shortest Paths (SSSP),

and Connected Components (CC) computations for large graphs in shared mem-

ory. Our approach allows the computation to proceed in an asynchronous manner,

reducing the number of costly synchronizations.

We show an experimental study applying our technique to both In-Memory (IM)

and Semi-External Memory (SEM) graphs utilizing multi-core processors and solid-

state memory devices (SSDs). We provide a quantitative study comparing our ap-

proach to existing implementations such as the Boost Graph Library (BGL) [71],

the Parallel Boost Graph library (PBGL) [29], the Multithreaded Graph Library

(MTGL) [8], and the Small-world Network Analysis and Partitioning library (SNAP)

57

[5]. Our experimental study evaluates both synthetic and real-world datasets, and

shows that our asynchronous approach is able to overcome data latencies and provide

significant speedup over alternative approaches. Our In-Memory experiments show

that our asynchronous BFS is 1.6-1.8x faster than MTGL’s BFS and 2.3-5.3x faster

than SNAP’s BFS. Our BFS was competitive with PBGL which used 4-64x the num-

ber of cores and up to 8x the memory. Our asynchronous CC is 2.8-13x faster than

MTGL’s CC; the wide range is attributable to differences in the graph structure.

Our Semi-External Memory experiments show that for moderate and fast SSDs, our

asynchronous approach is consistently faster than a serial In-Memory alternative like

BGL, with even the slowest SSD tested being competitive with BGL.

58

4. BALANCED PARTITIONING WITH HIGH-DEGREE VERTICES ∗

Partitioning a graph amongst p distributed processes becomes challenging with

the presence of high-degree hub vertices. As discussed in Section 2.6.1, high-degree

vertices can cause significant partition imbalance leading to degraded performance.

In this chapter, we present our edge list partitioning (ELP) approach that evenly

partitions a graph’s edges, mitigating the adverse effects of high-degree vertices. ELP

solves the issues if partition imbalance present with 1D and 2D partitioning. An input

graph is initially represented as a sorted edge list, and evenly distributed across the

partitions. This leads to a balanced number of edges assigned per partition; however,

vertices may have edges spanning multiple partitions. Our visitor queue technique

manages the visitation of vertices whose edges span multiple partitions, and we show

its application on three graph algorithms: Breadth-First Search, K-Core and Triangle

Counting.

We demonstrate the scalability of our approach on up to 131K cores of BG/P

Intrepid, and we show that by leveraging node-local NAND Flash, our approach

can process 32x larger datasets with only a 39% performance degradation traversal

performance.

Our approach is discussed in section 4.1. Our implementation using a distributed

visitor queue is discussed in section 4.2. Examples of algorithms using edge list

partitioning are discussed in section 4.3, followed by a complexity analysis in sec-

tion 4.4. An experimental study performed on distributed-memory systems is shown

in section 4.5.

∗Part of the data reported in this chapter is reprinted with the kind permission of IEEE from
“Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory” in 2013
IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS), by R. Pearce,
M. Gokhale, and N. M. Amato, 2013. Copyright 2013 by IEEE. [60]

59

4.1 Edge List Partitioning

To maintain a balance of edges across p partitions with ranks 0 to p − 1, we

designed a partitioning based on a sorted edge list. In this work, the graph’s edge list

is first sorted by the edges’ source vertex, then evenly distributed. This causes many

of the adjacency lists (including hubs) to be partitioned across multiple consecutive

partitions. Our edge list partitioned graph supports the following partition-related

operations:

• min owner(v) – returns the minimum partition rank that contains vertex v;

• max owner(v) – returns the maximum partition rank that contains vertex v.

These operations can be performed in constant time by preserving the rank owner

information with the identifier v, or by a O(log(p)) binary search. We choose to store

the owner information as part of the identifier v. The underlying storage of each edge

list partition is flexible; we choose to store each local partition as a compressed sparse

row.

An example of edge list partitioning is illustrated in Figure 4.1. In this example,

vertices 2 and 5 have adjacency lists that span multiple partitions: min owner(2) = 0,

max owner(2) = 2, min owner(5) = 2, max owner(5) = 3.

Requiring the edge list to be globally sorted is an additional step that is not

needed by 1D or 2D graph partitioning. There exists many distributed memory and

external memory sorting algorithms, and in many graph file formats the edge list is

already sorted.

Each partition that contains v also contains the algorithm state for v (e.g., BFS

level). This means that state is replicated for vertices whose adjacency list spans

multiple partitions. The min owner partition is the master partition with all others

60

P0

P0

V0

V3V2

V4
V6

V5 V7

V1
P0

P0

P1

P1

P1

P1

P2

P2

P2

P2

P3

P3

P3

P3

source 0 1 1 2 2 2 2 2 2 3 4 5 5 6 7 7
target 1 0 2 1 3 4 5 6 7 2 2 2 7 2 2 5

partition p0 p1 p2 p3

Figure 4.1: Example of edge list partitioning for a graph with 8 vertices and
16 directed edges, split into 4 partitions. The edge list is globally sorted by the
sources, then evenly partitioned. For illustration, each edge is labeled according
to its partition. In this example vertices 2 and 5 have adjacency lists that span
multiple partitions. min owner(2) = 0, max owner(2) = 2, min owner(5) = 2,
max owner(5) = 3.

61

acting as replicas. The algorithms for controlling access to each replica are discussed

in Section 4.2.4. The global number of partitioned adjacency lists is bounded by

O(p), where each partition contains at most two split adjacency lists.

4.1.1 Ghost Vertices

The ratio of the number of incoming edges to hub vertices in scale-free graphs

can grow very large, significantly larger than the total number of edges per partition.

To mitigate the communication hotspots created by hubs, we selectively use ghost

information. Ghosts can be used to filter excess visitors, reducing the communication

hotspots created by high in-degree hubs.

Ghost information replicates distributed state to avoid communication. By repli-

cating the state of vertices with large in-degree, the communication hotspot associ-

ated with that vertex can be reduced. The ideal case is to reduce the communication

from hundreds of millions down to O(p), where each partition only requires commu-

nicating once per hub vertex.

The ghost information is never globally synchronized, and represents only the

local partitions’ view of remote hubs. Each partition locally identifies high-degree

vertices from its edges’ targets to become ghost vertices. Ghosts cannot be used for

every algorithm, so each algorithm must explicitly declare ghost usage.

We investigate the useful number of ghosts in our experimental study in Sec-

tion 4.5.6. The number of ghosts required for scale-free graphs is small, because the

number of high-degree vertices is small.

Ghosts can only be used as an imprecise filter for algorithms such as BFS, because

the ghosts are not globally synchronized. Algorithms that require precise counts of

events, such as K-Core and Triangle Counting discussed in Section 4.3, cannot use

ghosts.

62

4.2 Distributed Visitor Queue

The driver of our graph traversal is the distributed asynchronous visitor queue;

it provides the parallelism and creates a data-driven flow of computation. Traversal

algorithms are created using a visitor abstraction, which allows an algorithm designer

to define vertex-centric procedures to execute on traversed vertices with the ability to

pass visitor state to other vertices. The visitor pattern is discussed in Section 4.2.1.

Each asynchronous traversal begins with an initial set of visitors, which may cre-

ate additional visitors dynamically depending on the algorithm and graph topology.

All visitors are asynchronously transmitted, scheduled, and executed. When the vis-

itors execute on a vertex, they are guaranteed exclusive access to the vertex’s data.

The traversal completes when all visitors have completed, and the distributed queue

is globally empty.

4.2.1 Visitor Abstraction

In our initial work [59], we used an asynchronous visitor pattern to compute

Breadth-First Search, Single Source Shortest Path, and Connected Components in

shared and external memory. We used multi-threaded prioritized visitor queues to

perform the asynchronous traversal.

We build on the asynchronous visitor pattern with modifications to handle edge

list partitioning and ghost vertices. The required visitor procedures and state are

outlined in Table 4.1.

4.2.2 Visitor Queue Interface

The visitor queue has the following functionality that may be used by a visitor

or initiating algorithm:

• push(visitor) – pushes a visitor into the visitor queue.

63

Required Description

pre visit() Performs a preliminary evaluation of the
state and returns true if the visit should
proceed; this can be applied to ghost ver-
tices.

visit() Main visitor procedures.
operator<() Less than comparison used to locally pri-

oritize the visitors in a min heap priority
queue.

vertex Stored state representing the vertex to be
visited.

Table 4.1: Visitor Procedures and State

• do traversal() – initializes and runs the asynchronous traversal to completion.

This is used by the initiating algorithm.

When an algorithm requires dynamic creation of new visitors, they are pushed

into the visitor queue using the push(visitor) procedure. When an algorithm begins,

an initial set of visitors is pushed into the queue, then the do traversal() procedure

is invoked and runs the asynchronous traversal to completion.

4.2.3 Example Traversal

To illustrate how an asynchronous traversal algorithm works, we will discuss

Breadth-First Search (BFS) at a high level. The details of BFS are discussed in

Section 4.3.1. The visitor is shown in Algorithm 12, and the initiating procedure is

shown in Algorithm 13.

BFS begins by setting an initial path length for every vertex to∞ (Alg. 13 line 4).

A visitor is queued for the source vertex with path length 0, then the traversal begins

(Alg. 13 lines 9–11). As the visitors proceed, if they contain a lower path length which

is currently known for the vertex, they update the path information and queue new

visitors for the outgoing edges (Alg. 12 lines 14–18).

64

4.2.4 Visitor Queue Design Details

In this section, we discuss the design of the distributed visitor queue. The visitor

queue has the following functionality, which will be discussed in detail in the following

subsections and is shown in Algorithm 5.

• push(visitor) – pushes a visitor into the distributed queue;

• check mailbox() – receives visitors from mailbox and queues them locally;

• global empty() – returns true if globally empty;

• do traversal() – runs the asynchronous traversal.

mailbox: The communication occurs though a mailbox abstraction with the follow-

ing functionality:

• send(rank, data) – Sends data to rank, using the routing and aggregation

network;

• receive() – Receives messages from any sender.

ghost information: Our graph has the following ghost related operations used by

the distributed visitor queue:

• has local ghost(v) – returns true if local ghost information is stored for v;

• local ghost(v) – returns ghost information stored for v.

push(visitor): This function pushes newly created visitors into the distributed vis-

itor queue; the details are shown in Algorithm 5 (line 5). If the ghost information

about the visitor’s vertex is stored locally, it is pre visited (line 8). If the pre visit re-

turns true or no local ghost information is found, then the visitor is sent to min owner

65

Algorithm 5 Distributed Visitor Queue
1: state: g ← input graph
2: state: mb ← mailbox communication
3: state: my rank ← local partition rank
4: state: local queue ← local visitor priority queue

5: procedure push(visitor)
6: vertex = visitor.vertex
7: master partition = g.min owner(vertex)
8: if g.has local ghost(vertex) then
9: ghost = g.local ghost(vertex)

. pre visit locally stored ghost
10: if visitor.pre visit(ghost) then
11: mb.send(master partition, visitor)
12: end if
13: else
14: mb.send(master partition, visitor)
15: end if
16: end procedure

17: procedure check mailbox
18: for all visitor ∈ mb.receive() do
19: vertex = visitor.vertex
20: if visitor.pre visit(g[vertex]) then
21: local queue.push(visitor)
22: if my rank < g.max rank(vertex) then

. forwards to next replica
23: mb.send(my rank + 1, visitor)
24: end if
25: end if
26: end for
27: end procedure

28: procedure global empty . quiescence detection [48]
29: return true if globally empty, else false
30: end procedure

31: procedure do traversal(source visitor)
32: push(source visitor)
33: while !global empty() do
34: check mailbox()
35: if !local queue.empty() then
36: next visitor = local queue.pop()
37: next visitor.visit(g, this)
38: end if
39: end while
40: end procedure

66

using the mailbox (lines 11, 14). This functionality abstracts the knowledge of ghost

vertex information from the visitor function. If local ghost information is found, the

visitor is applied to the ghost. The ghosts act as local filters, reducing unnecessary

visitors sent to hub vertices.

check mailbox(): This function checks for incoming visitors from the mailbox, and

forwards visitors to potential edge list partitioned replicas. The details are shown

in Algorithm 5 (line 17). For all visitors received from the mailbox (line 18), if the

visitor’s pre visit returns true, the visitor is queued locally (line 21). Additionally, if

the vertex is owned by ranks larger than the current rank, the visitor is forwarded to

the next replica (line 22). This forwarding chains together vertices whose adjacency

lists span multiple edge list partitions. The replicas are kept loosely consistent be-

cause visitors are first sent to the master and then forwarded to the chain of replicas

in an ordered manner.

global empty(): This function checks if all global visitor queues are empty, re-

turning true if all queues are empty, and is used for termination detection. It is

implemented using a simple O(lg(p)) quiescence detection algorithm based on visitor

counting [48]. The algorithm performs an asynchronous reduction of the global vis-

itor send and receive count using non-blocking point-to-point MPI communication.

It is important to note that to check for non-termination is an asynchronous event,

and only becomes synchronous after the visitor queues are already empty.

do traversal(): This is the driving loop behind the asynchronous traversal process

and is shown in Algorithm 5 (line 31). The procedure assumes that a set of initial

visitors has been previously queued, then the main traversal loops until all visitors

globally have been processed (line 33). During the loop, it checks the mailbox for

incoming visitors (line 34), and processes visitors already queued locally.

67

4.2.4.1 External Memory Locality Optimization

The less than comparison operation used for local visitor ordering is defined by the

algorithm. When using external memory, if two visitors have equal order priority,

then they are prioritized to improve locality. In our experiments, the graphs are

stored in a compressed sparse row format. To improve page-level locality, we order

visitors by their vertex identifier when the algorithm does not define an order for a

set of visitors. This additional sorting by the vertex identifier improves page-level

locality for the graph data stored in NVRAM.

4.3 Algorithms

In this section we discuss three algorithms implemented using our distributed

visitor queue framework: breadth-first search, k-core decomposition, and triangle

counting. In Section 4.4, we describe an asymptotic analysis framework to express

the complexity of the asynchronous traversal in terms of the number of visitors.

4.3.1 Breadth-First Search

The visitor used to compute the BFS level for each vertex is shown in Algo-

rithms 12 and 13. Before the traversal begins, each vertex initializes its length to

∞, then a visitor is queued for the source vertex with length = 0.

When a visitor pre visits a vertex, it checks if the visitor’s length is smaller

than the vertex’s current length (Alg. 12 line 14). If smaller, the pre visit updates

the level information and returns true, signaling that the main visit function may

proceed. Then, the main visit function will send new bfs visitors for each outgoing

edge (Alg. 12 line 18).

The less than comparison procedure orders the visitors in the queue by length

68

Algorithm 6 BFS Visitor

1: visitor state: vertex ← vertex to be visited
2: visitor state: length ← BFS length
3: visitor state: parent ← BFS parent

4: procedure pre visit(vertex data)
5: if length < vertex data.length then
6: vertex data.length← length
7: vertex data.parent← parent
8: return true
9: end if

10: return false
11: end procedure

12: procedure visit(graph, visitor queue)
13: if length == graph[vertex].length then
14: for all vi ∈ out edges(g, vertex) do
15: new vis← bfs visitor(vi, length+ 1, vertex)
16: visitor queue.push(new vis)
17: end for
18: end if
19: end procedure

20: procedure operator < ()(visitor a, visitor b)
. Less than comparison, sorts by length

21: return visitor a.length < visitor b.length
22: end procedure

Algorithm 7 BFS Traversal Initiator

1: input: graph← input graph G(V,E)
2: input: source← BFS traversal source vertex
3: input: vis queue← Visitor queue

4: for all v ∈ vertices(graph) parallel do
5: graph[v].length←∞
6: graph[v].parent←∞
7: end for
8: source visitor ← bfs visitor(source, 0, source)
9: vis queue.push(source visitor)

10: vis queue.do traversal()

69

(Alg. 12 line 26). When a set of visitors all contain equal length, then the BFS

algorithm does not specify an order and the framework can order based on locality,

discussed in Section 4.2.4.1.

4.3.2 K-Core Decomposition

Algorithm 8 K-Core Visitor

1: visitor state: vertex ← vertex to be visited
2: static parameter: k ← k-core requested

3: procedure pre visit(vertex data)
4: if vertex data.alive == true then
5: vertex data.kcore← vertex data.kcore− 1
6: if vertex data.kcore < k then
7: vertex data.alive← false
8: return true
9: end if

10: end if
11: return false
12: end procedure

13: procedure visit(graph, visitor queue)
14: for all vi ∈ out edges(g, vertex) do
15: new visitor ← kcore visitor(vi)
16: visitor queue.push(new visitor)
17: end for
18: end procedure

. No visitor order required

To compute the k-core decomposition of an undirected graph, we asynchronously

remove vertices from the core whose degree is less than k. As vertices are removed,

they may create a dynamic cascade of recursive removals as the core is decomposed.

70

Algorithm 9 K-Core Traversal Initiator

1: input: graph← input graph G(V,E)
2: input: k ← k-core requested
3: input: vis queue← Visitor queue

4: kcore visitor :: k ← k . Set static visitor parameter
5: for all v ∈ vertices(graph) parallel do
6: graph[v].alive← true
7: graph[v].kcore← degree(v, graph) + 1
8: end for
9: for all v ∈ vertices(graph) parallel do

10: vis queue.push(kcore visitor(v))
11: end for
12: vis queue.do traversal()

The visitor used to compute the k-core decomposition of an undirected graph is

shown in Algorithms 16 and 9. Before the traversal begins, each vertex initializes its

k-core to degree(v) + 1 and alive to true, then a visitor is queued for each vertex.

The visitor’s pre visit procedure decrements the vertex’s k-core number and

checks if it is less than k (Alg. 16 line 8). If less, it sets alive to false and returns true,

signaling that the visitors’s main visit procedure should be executed (Alg. 16 line 10).

The visit function notifies all neighbors of vertex that it has been removed from the

k-core (Alg. 16 line 18). After the traversal completes, all vertices whose alive equals

true are a member of the k-core.

4.3.3 Triangle Counting

The visitor used to count the triangles in an undirected graph is shown in Algo-

rithms 10 and 11. Each vertex maintains the count of the number of triangles for

which the vertex identifier is the largest member of, initialized to zero.

The visitor’s pre visit always returns true; every visitor will execute its visit

procedure. The visit procedure (Alg. 10) has three main duties: first visit (line 8),

71

length-2 path visit (line 15), and search for closing edge of length-3 cycle (line 22).

At each step, the vertices of the triangle are visited in increasing order (lines 10, 17)

to prevent the triangle from being counted multiple times. If the closing edge is

found, num triangles is incremented (line 24). The global number of triangles can

be accumulated after the traversal completes (Alg. 11 line 14).

This algorithm can be extended to count the number of triangles amongst a subset

of vertices, or for individual vertices. It can also be extended to use approximate

sampling based triangle counting methods [69].

4.4 Asymptotic Analysis

Here we analyze the upper bounds on the number of visitors required for each

algorithm. We simplify the analysis by assuming the computation proceeds in syn-

chronized rounds ; this models the ideal case for the asynchronous system. Our

analysis makes the following assumptions, for a graph G(V,E) using p processors:

Parallel Rounds. The asynchronous algorithm proceeds in synchronized paral-

lel rounds, in which each processor executes at most one visitor. There is a single

shared visitor queue that all p processors access without contention. At the end of

each round, the visitor queue is updated with newly queued visitors as necessary.

The transmission latency for newly queued visitors is instantaneous, occurring at

the end of the round. During a parallel round only one visitor can be selected per

vertex, guaranteeing the visitor private access to the vertex. The analysis proceeds

by bounding the number of parallel rounds required by the algorithm.These assump-

tions remove the complexities of distributing a graph amongst p processors, and the

communication latencies that may be between the processors. We focus our analysis

on the number of visitors required, and the complexity of the visitors.

72

Algorithm 10 Triangle Count Visitor

1: visitor state: vertex ← vertex to be visited
2: visitor state: second ← initialized to ∞
3: visitor state: third ← initialized to ∞

4: procedure pre visit(vertex data)
5: return true
6: end procedure

7: procedure visit(graph, visitor queue)
8: if second ==∞ then . Visiting first vertex
9: for all vi ∈ out edges(graph, vertex) do

10: if vi > vertex then
11: new vis← tri count vis(vi, vertex)
12: visitor queue.push(new vis)
13: end if
14: end for
15: else if third ==∞ then . Visiting second vertex
16: for all vi ∈ out edges(graph, vertex) do
17: if vi > vertex then
18: new vis← tri count vis(vi, vertex, second)
19: visitor queue.push(new vis)
20: end if
21: end for
22: else . Search for closing edge
23: if third ∈ out edges(graph, vertex) then
24: graph[vertex].num triangles + = 1
25: end if
26: end if
27: end procedure

. No visitor order required

73

Algorithm 11 Triangle Count Traversal Initiator

1: input: graph← input graph G(V,E)
2: input: vis queue← Visitor queue

3: for all v ∈ vertices(graph) parallel do
4: graph[v].num triangles = 0
5: end for
6: for all v ∈ vertices(graph) parallel do
7: vis queue.push(tri count vis(v))
8: end for
9: vis queue.do traversal()

10: local count = 0
11: for all v ∈ vertices(graph) parallel do
12: local count+ = graph[v].num traingles
13: end for
14: global count = all reduce(local count, SUM)
15: return global count

Graph Properties. The underlying graph properties may have a significant impact

on the complexity of algorithms. We use the following list of graph properties to

parameterize our analysis:

• D – The Graph’s diameter;

• doutmax – Maximum out-degree, max
v∈V

(out-degree(v));

• dinmax – Maximum in-degree, max
v∈V

(in-degree(v)).

4.4.1 Analysis of BFS

Each parallel round executes up to p visitors, however only one of the visitors is

guaranteed to belong to a shortest or critical path. For a connected graph, the length

of the shortest path, and also the number of required parallel rounds is proportional

to the diameter of the graph. The total number of parallel rounds is bounded by

Θ(D + |E|
p

+ dinmax) without the use of ghosts. When using ghosts, the term dinmax

74

decreases to p, because the ghosts filter the high-degree visitors to one per partition.

With ghosts, the number of parallel rounds is bounded by Θ(D + |E|
p

+ p).

4.4.2 Analysis of K-Core

Similarly to BFS, each parallel round executes up to p visitors, however only

one of the visitors is guaranteed to belong to the critical path. For a connected

graph, the length of the critical path, and the number of required parallel rounds,

is proportional to the diameter of the graph. Unlike BFS, k-core cannot use ghost

vertices for filtering, therefore the largest hub will require processing dinmax visitors

The total number of parallel rounds is bounded by Θ(D + |E|
p

+ dinmax).

4.4.3 Analysis of Triangle Counting

The visitor for triangle counting performs three basic duties: first visit, length-

2 path visit, and search for closing edge of length-3 cycle. The first visit duty

is performed for every vertex in the graph, and these visitors create length-2 path

visitors. Each edge in the graph will have a corresponding length-2 path visitor,

and these visitors will create at most O(doutmax) visitors to search for the enclosing

length-3 cycle. Triangle counting cannot use ghost vertices for filtering, discussed

in Section 4.1.1 therefore the largest hub will require processing dinmax visitors. The

total number of parallel rounds is bounded by O(|E|d
out
max

p
+ dinmax).

4.5 Experimental Study

In this section we experimentally evaluate the scalability of our approach both

in distributed memory and distributed external memory. We demonstrate that our

approach is scalable in two dimensions: it is scalable to large processor count for

leadership class supercomputers, and it is scalable to distributed external memory

using emerging HPC clusters containing node-local NVRAM. We also demonstrate

75

the effects of using edge list partitioning and ghosts to mitigate the effects of high-

degree hubs.

Currently, large scale HPC clusters with node-local NVRAM are not readily

available; therefore we demonstrate scalability using two sets of experiments. To

show scalability to large core count, we performed experiments using IBM BG/P

supercomputers up to 131K cores; these experiments do not use the external mem-

ory aspect of the algorithm. BG/P experiments were performed using Intrepid at

Argonne National Laboratory and uDawn at Lawrence Livermore National Labo-

ratory. Next, to demonstrate external memory scalability on distributed memory

clusters, we performed experiments on Hyperion-DIT at LLNL; Hyperion has node-

local NVRAM.

4.5.1 Experimental Setup

We implemented our distributed visitor queue and routed mailbox in C++ using

only non-blocking point-to-point MPI communication. For our external memory

experiments, where the graph data is completely stored in NVRAM, we used our

custom user-space page cache to interface with NVRAM, discussed in Section 2.5.3.

We show experiments using three synthetic graph models discussed in Section 2.4.

4.5.2 Scalability on BG/P Supercomputer

We demonstrate the scalability using IBM BG/Ps at the Argonne National Labo-

ratory and Lawrence Livermore National Laboratory. Intrepid was ranked 5th on the

November 2011 and 15th June 2012 Graph500 list, with an efficient high performance

custom implementation of the benchmark.

76

8,192 32,768 131,072

10

100

Number of Cores

G
T

E
P

S
B

il
li

on
s

of
T

ra
ve

rs
ed

E
d

ge
s

p
er

S
ec

. Weak scaling of Async BFS on BG/P Intrepid

Async BFS
Ideal Weak Scaling

Graph500 June’12 [19]

Figure 4.2: Weak scaling of Asynchronous BFS on BG/P Intrepid. Compared to
Intrepid BFS performance from the Graph500 list. There are 218 vertices per core,
with the largest scale graph having 235.

77

4.5.2.1 BFS

We have scaled our BFS algorithm up to 131K cores using the 3D routed mailbox

discussed in Section 2.6.1. We achieved excellent weak scaling as shown in Figure 4.2.

In addition to showing weak scalability, we demonstrate the efficiency of our imple-

mentation by comparing to the current best known Graph500 result for Intrepid from

the June 2012 list [19]. Our approach, designed to use portable MPI and external

memory, achieved 64.9 GTEPS with 235 vertices, which is only 19% slower than the

best known BG/P implementation.

We use this experiment to establish the scalability of our approach, and the

efficiency of our implementation. This experiment forms the basis for the NVRAM

vs. DRAM experiments we performed on Hyperion-DIT.

4.5.2.2 K-Core Decomposition

We show weak scaling of k-core decomposition on BG/P up to 131K cores using

RMAT graphs in Figure 4.3. The time to compute the cores 4 and 16 are shown

for each graph size. Our techniques enable near linear weak scaling for computing

k-core.

4.5.2.3 Triangle Counting

We show weak scaling of triangle counting on BG/P up to 131K cores using Small

World graphs in Figure 4.4. We show the time to count the triangles on small world

graphs with rewire probabilities 0%, 10%, 20%, and 30%. The small world generator

creates vertices with a uniform vertex degree (in this case 32). As will be discussed

in Section 4.5.4, the performance of triangle counting is dependent on the maximum

vertex degree of the graph. For this weak scaling study, we use small world graphs

78

2,048 8,192 32,768 131,072
0

0.1

0.2

0.3

0.4

0.5

Number of processing cores

T
im

e
(s

ec
on

d
s)

Weak Scaling KCore on BG/P - RMAT

k = 16 kcore
k = 4 kcore

Figure 4.3: Weak Scaling of kth-core on BG/P using RMAT graphs. Time shown
to compute cores 4 and 16. There are 216 vertices and 220 undirected edges per core;
at 131K cores, the graph has 233 vertices and 237 edges.

79

2,048 8,192 32,768 131,072
0

2

4

6

8

10

Number of Cores

T
im

e
(s

ec
on

d
s)

Weak Scaling Triangle Counting on BG/P – Small World

Rewire = 0%
Rewire = 10%
Rewire = 20%
Rewire = 30%

Figure 4.4: Weak scaling of triangle counting on BG/P using Small World graphs.
Performance shown at with different small world rewire probabilities. There are 212

vertices and 216 undirected edges per core; at 131K cores, the graph has 229 vertices
and 233 edges.

80

8 16 32 64

128

256

512

Number of compute nodes (8-cores per node)

M
T

E
P

S
M

il
li

on
s

of
T

ra
ve

rs
ed

E
d

ge
s

p
er

S
ec

.

Weak scaling of Async BFS on Hyperion-DIT
Distributed External Memory

Async BFS
Ideal Weak Scaling

Figure 4.5: Weak scaling of distributed external memory BFS on Hyperion-DIT.
Each compute node has 8-cores, 24GB DRAM, and is using 169GB NAND Flash to
store graph data. There are 17B edges per compute node; the largest scale graph
has over one-trillion edges and 236 vertices.

to isolate the effects of hub growth that would occur with PA or RMAT graphs.

4.5.3 Scalability of Distributed External Memory BFS

We demonstrate the distributed external memory scalability of our BFS algorithm

on the Hyperion-DIT cluster at Lawrence Livermore National Laboratory (LLNL).

The Hyperion-DIT is an 80-node subset of Hyperion that is equipped with node-local

Fusion-io NAND Flash. Each compute node has 8 cores, 24 GB DRAM, and 600

GB NVRAM.

We performed a weak scaling study, in which each compute node stores 17 billion

81

231 232 233 234 235 236

600

700

800

900

1,000

Number of Vertices

M
T

E
P

S
M

il
li

on
s

of
T

ra
ve

rs
ed

E
d

ge
s

p
er

S
ec

.

Data scaling of Async BFS on Hyperion-DIT
Distributed External Memory

NVRAM graph storage
DRAM graph storage

Figure 4.6: Effects of increasing external memory usage on 64 compute nodes of
Hyperion-DIT. At 236, which is 32x larger data than DRAM-only, the NVRAM
performance is only 39% slower than DRAM graph storage.

82

Machine Name Location Machine Type Graph Storage |V | MTEPS

Hyperion-DIT LLNL 64 nodes, 512 cores
DRAM 231 1,004

Fusion-io 236 609

Trestles SDSC 144 nodes, 4608 cores SATA SSD 236 242

Leviathan LLNL single node, 40 cores Fusion-io 236 52

Table 4.2: November 2011 Graph500 results using NAND Flash. Scale 36 is a graph
with over 1 trillion edges.

edges on its local NVRAM, roughly 169GB in a compressed sparse row format. The

results of the weak scaling are shown in Figure 4.5; at 64 compute nodes the graph has

over one trillion undirected edges and 236 vertices, twice the size as experiments on

BG/P Intrepid. We expect our approach to continue scaling as larger HPC clusters

with node-local NVRAM become available.

To experiment with the effects of increasing NVRAM usage per compute node,

we performed an experiment where the computational resources are held constant

while the data size increases. The results of our data scaling experiment are shown in

Figure 4.6. As the data size increases, from 34 billion to 1 trillion edges (10.8 TB),

the additional data we store on NVRAM results in only a moderate performance

reduction. The overall performance reduction from DRAM-only to 32x larger graph

stored in NVRAM is only 39%. This is a significant increase in data size with only

a moderate performance degradation.

Results using our distributed external memory BFS for the Graph500 are shown

in Table 4.2. In addition to the Hyperion-DIT cluster, we performed experiments on

Trestles at the San Diego Supercomputing Center (SDSC) and Leviathan (LLNL).

Each compute node in Trestles has commodity SATA SSDs, and shows that our

approach is not limited to enterprise class NVRAM. Leviathan is a single-node system

using implementations from our previous multithreaded work [59]. Leviathan has

83

0 500 1,000 1,500 2,000

0.5

1

1.5

2

2.5 0.6%

0.019%

0.01%

0.005%

0.002%

0.001%

BFS level depth (average of 10 searches)

G
T

E
P

S
B

il
li

on
s

of
T

ra
ve

rs
ed

E
d

ge
s

p
er

S
ec

.

Effects of Diameter on BFS
Small World, 4096 cores, BG/P

Figure 4.7: Effects of diameter on BFS performance. Small World graph model with
varying random rewire probabilities (shown above each point). BFS level depth used
for x-axis. Computational resources fixed at 4096 cores of BG/P. Graph size is fixed
at 230 vertices and 234 undirected edges.

1TB of DRAM and 12TB of Fusion-io in a single host. These represent 3 of 8 total

systems on the November 2011 Graph500 list traversing trillion-edge graphs.

4.5.4 Topological Effects on Performance

The performance of BFS and triangle counting are dependent on topological

properties of the graph. For BFS, the performance is dependent on the diameter

(the longest shortest-path) of the graph. Using the Small World graph generator,

we show the effects of increasing diameter on BFS in Figure 4.7. By decreasing the

small-world random rewire probability while keeping the size of the graph constant,

84

0 20 40 60 80 100 120 140

500

1,000

100% 80%
70%

60%

50%

40%

30%

20%

Maximum vertex degree (in thousands)

T
im

e
(s

ec
on

d
s)

Effects of Degree on Triangle Counting
Preferential Attachment, 4096 cores, BG/P

Figure 4.8: Effects of vertex degree on Triangle Counting performance. Preferential
Attachment graph model with varying random rewire probabilities (shown above
each datapoint). Maximum vertex degree used for x-axis. Computational resources
fixed at 4096 cores of BG/P. Graph size is fixed at 228 vertices and 232 undirected
edges.

85

256 512 1,024 2,048 4,096

0.25

0.5

1

2

Number of Cores

G
T

E
P

S
B

il
li

on
s

of
T

ra
ve

rs
ed

E
d

ge
s

p
er

S
ec

.

Edge List Partitioning vs. 1D
Weak Scaling BFS on BG/P

Edge List Partitioning
1D Partitioning

Figure 4.9: Comparison of edge list partitioning vs 1D. Performance of BFS on RMAT
graphs shown on BG/P. Important note: the graph sizes are reduced to prevent 1D
from running out of memory. There are 217 vertices and 221 undirected edges per
core.

the diameter of the graph increases. The increasing diameter causes the performance

of BFS to decrease. Similarly, the performance of triangle counting is dependent on

the maximum vertex degree. Using the Preferential Attachment graph generator

with an added step of random rewire, we show the effects of increasing hub degree

while keeping the graph size constant in Figure 4.8. The topological effects can also

be seen in the algorithm analysis in Sections 4.4.1 and 4.4.3.

4.5.5 Edge List Partitioning vs 1D

To demonstrate the effects of edge list partitioning vs. traditional 1D partitioning

we show the weak scaling of both with BFS on RMAT graphs on BG/P in Figure 4.9.

86

1 4 16 64 256
12

14

16

18

20

Number of Ghosts per Partition

P
er

ce
n
t

im
p

ro
ve

m
en

t

Effects of Ghost Vertices

Ghost(s) vs No Ghost

Figure 4.10: Experiment showing the percent improvement of ghost vertices vs. no
ghost vertices. Results from 4096 cores of BG/P on a graph with 230 vertices.

Because 1D partitioning suffers from data imbalance, the graph sizes in the experi-

ments were reduced to prevent 1D from running out of memory. The weak scaling of

edge list partitioning is almost linear, while 1D suffers slowdowns from the partition

imbalance.

4.5.6 Use of Ghost Vertices

We experimented with the effects on BFS performance of choosing a different size

k on a graph with 230 vertices on 4096 cores of BG/P. The results of this experiment

are shown in Figure 4.10, where the percent improvement of k ghosts per partition vs.

no ghosts is shown. Using a single ghost shows more than a 12% improvement, and

512 ghosts shows an 19.5% improvement. This improvement is highly dependent on

87

the graph, and as hubs grow to larger sizes it may have a larger effect. For scale-free

graphs, when degree(v) > p, there is an opportunity for ghosts to have a positive

effect, because at least one partition will have multiple edges to v. All other BFS

experiments in this work use 256 ghost vertices per partition.

4.6 Summary

Our work focuses on an important data intensive problem of massive graph traver-

sal. We aim to scale to trillion-edge graphs using both leadership class supercom-

puters and node-local NVRAM that is emerging in many new HPC systems.

We address scaling challenges, created by scale-free power-law degree distribu-

tions, by applying an edge list partitioning strategy, and show its application to

three important graph algorithms: BFS, K-Core, and triangle counting.

We demonstrate the scalability of our approach on up to 131K cores of BG/P

Intrepid, and we show that by leveraging node-local NAND Flash, our approach can

process 32x larger datasets with only a 39% performance degradation in TEPS.

Our work breaks new ground for using NVRAM in the HPC environment for data

intensive applications. We show that by exploiting both distributed memory pro-

cessing and node-local NVRAM, significantly larger datasets can be processed than

with either approach in isolation. Further, we demonstrate that our asynchronous

approach mitigates the effects of both distributed and external memory latency. The

architecture and configuration of NVRAM in supercomputing clusters is an active re-

search topic. To our knowledge, our work is the first to integrate node-local NVRAM

with distributed memory at extreme scale for important data intensive problems.

88

5. DISTRIBUTED STORAGE, COMPUTATION, AND COMMUNICATION

OF HIGH-DEGREE VERTICES

In this chapter, we present new techniques to distribute the storage, computation,

and communication for hubs in large scale-free graphs. To balance the processing

workload, we distribute hub vertex data structures and related computation among

a set of delegates. An illustration of a graph before and after partitioning the hub

is shown in Figure 5.1. Each partition containing a portion of the hub is assigned a

local representative of the hub. One representative is distinguished as the controller,

and the others are the delegates. The controller and its delegates coordinate using

asynchronous broadcast and reduction operations rooted at the controller.

Our delegate technique leads to significant communication reduction through the

use of asynchronous broadcast and reduction operations. For hubs whose degree is

greater than the number of processing cores, p, using delegates reduces the required

volume of communication. This reduction occurs because a broadcast, rooted at the

controller, requires only O(p) communication, while without delegates the volume of

communication is proportional to the degree of the hub.

Our distributed delegate approach extends our previous work of an asynchronous

visitor model [59, 60], discussed in Chapters 3 and 4. Using the visitor computa-

tion model, the controller may broadcast visitors to all its delegates. Similarly, the

delegates may participate in an asynchronous reduction rooted at the controller.

We demonstrate the approach and evaluate performance and scalability using

Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decom-

position, and PageRank on synthetically generated scale-free graphs. The data-

intensive community has identified BFS as a key challenge for the field and estab-

89

e1

V2

V3V1

V4

V5

V6
V7

V8

V0

P1P0 P2

e2
e3 e4 e5

e6
e7

(a) 1D Partitioning

e1

V2

V3V1

V4

V5

V6
V7

V8

V0
C

P1P0 P2

e2
e3 e4 e5

e6
e7

V0
D1

V0
D0

(b) Distributed Delegates Partitioning. P1 contains the controller.

e1

V2

V3V1

V4

V5

V6

V7

V8

V0
C

P1P0 P2

e2
e3

e4
e5

e6
e7

V0

D1

V0

D0

(c) Distributed Delegates Partitioning after balancing.

Figure 5.1: Comparison of 1D partitioning vs. distributed delegates partitioning
for the same graph. In 1D partitioning (a), V0 is a high-degree vertex that maps to
a single partition and may lead to imbalances. In distributed delegates partitioning
(b), V0 is distributed across multiple partitions while low-degree vertices remain 1D
partitioned. V0C is the controller assigned to P1. Delegates V0D0 and V0D1 are
assigned to P0 and P2. After balancing (c), edges e3 and e5 have been relocated to
balance the partitions, and are now delegate cut edges.

90

lished it as the first kernel for the Graph500 benchmark [20]. We demonstrate scal-

ability up to 131K cores using the IBM BG/P supercomputer, and show portability

on a standard HPC Linux cluster. We compare our work to existing approaches for

processing scale-free graphs in distributed memory, most notably 2D graph partition-

ing, [16, 82] by comparing our algorithm to the best known Graph500 performance

on IBM BG/P Intrepid supercomputer at Argonne [19].

Summary of contributions presented in this chapter:

• We present a new algorithmic technique, distributed delegates, designed to

load balance the computation, communication, and storage associated with

high-degree vertices;

• We demonstrate our techniques using Breadth-First Search (BFS), Single Source

Shortest Path (SSSP), K-Core Decomposition, and Page-Rank;

• We demonstrate excellent scalability up to 131K cores on BG/P Intrepid, and

portability on a standard HPC Linux cluster;

• Our algorithm improves the best known Graph500 results for BG/P Intrepid,

a custom BG/P implementation, by 15%.

5.1 Distributed Delegates

To balance the storage, computation, and communication of high-degree hubs,

we distribute hub data structures and related computation amongst many partitions.

Each partition containing a portion of the hub data structure is assigned a local

representative; one representative is distinguished as the controller, and the others

are designated as delegates. An illustration of a delegate partitioned graph is shown

in Figure 5.1(b). The controller and its delegates communicate via asynchronous

broadcast and reduction operations rooted at the controller.

91

The delegates maintain a copy of the state for the vertex and a portion of the

adjacency list of the vertex. Because a delegate only contains a subset of a ver-

tex’s edges, the operations performed may need to be coordinated across multiple

delegates.

5.1.1 Delegate Partitioning in Visitor Framework

We have integrated delegate partitioning into our asynchronous visitor frame-

work. Vertices with degree greater than dhigh are distributed and assigned delegates,

while vertices with low-degree are left in a basic 1D partitioning. When a visitor

visits a delegate, it only operates on the subset of adjacent edges managed by the

delegate; it does not operate on the entire distributed adjacency list.

Ideally, the outgoing edges of high-degree vertices are stored at the edges’ target

vertex location. Such edges are called co-located because their delegate and target

vertex reside on the same partition. Co-located edges do not require additional

communication beyond the delegates’ broadcast and reduction communication, so

having multiple co-located edges per individual delegate leads to an overall reduction

in communication.

This technique alone is not sufficient to produce balanced partitions. In some

cases, including our experiments, simply storing high-degree edges at the edges’

target vertex location can lead to imbalance amongst the delegates. To balance

partitions, the delegated edges belonging to high-degree vertices can be moved to

any partition at the cost of additional communication for the non-co-located edges.

5.1.2 Distributed Delegate Partitioning

In this section, we describe a simple technique to partition an input graph using

distributed delegates. A distributed input graph, G(V,E) with vertex set V and

edge set E, is partitioned into p partitions in three steps. First, the high degree

92

vertices in G are identified. Second, the edges in E belonging to low-degree vertices

are 1D partitioned such that all of a low-degree vertex’s edges reside on a single

partition. The edges in E belonging to high-degree hubs are partitioned according

to the partition of the edge target vertex. Finally, the partitions are balanced by

offloading delegate edges from partitions with an above average number of edges.

The input distributed edge set, E, is assumed to be unordered, and is distributed

over the p partitions. Undirected edges are represented by creating directed forward

and backward edges that may reside on different partitions.

First, the high-degree vertices with degree larger than a threshold, dhigh, are

identified. Then the distributed edge set, E, is partitioned into two distributed edge

sets: Ehigh for edges whose source vertex is high-degree, and Elow for edges whose

source vertex’s degree is less than dhigh. Delegates are created on all partitions for

high-degree vertices. The degree of every vertex must be accumulated to identify the

high-degree vertices, which may require an all-to-all exchange amongst the partitions.

The second step uses a simple vertex-to-partition mapping (e.g., round-robin) to

define a 1D partitioning. The edges in Elow are distributed according to the parti-

tion mapping of the source vertex of each edge. The edges in Ehigh are distributed

according to the target vertex partition mapping of each edge. In the worst case,

every edge will need to be relocated to a new partition which may require an all-to-all

exchange amongst the partitions.

The third step attempts to correct partition imbalances. The number of edges

locally assigned to each partition (both Ehigh and Elow) can be imbalanced. An edge

in Ehigh may be reassigned to any partition, because the edge’s source is a delegated

vertex. A new distributed edge set Eoverflow is created and filled with edges of Ehigh

from partitions with greater than |E|
p

edges. The edges in Eoverflow are distributed

such that the local partitions’ sum of edges |Elow| + |Ehigh| + |Eoverflow| = |E|
p

. For

93

Behavior Description Complexity Examples

pre visit parent Visitor is sent to parent delegate
and executes pre visit. If pre visit
returns true, visitor continues to
visit parents until the controller is
reached.

O(htree) BFS, SSSP

lazy merge parent Lazily merges visitors using an asyn-
chronous reduction tree. Merges vis-
itors locally, and sends to parent
in reduction tree when local visi-
tor queue is idle. When controller
is reached, normal visitation pro-
ceeds. Requires that visitors provide
a merge function.

O(htree) k-core

post merge Visitors are merged into parent re-
duction tree after traversal com-
pletes. Requires that visitors pro-
vide a merge function.

O(htree) PageRank

Table 5.1: Delegate Visitor Behaviors

performance reasons, minimizing the size of Eoverflow is desirable, because the edges

are located on different partitions than their targets. An illustration of a delegate

partitioned graph after edge balance is shown in Figure 5.1. Here, edges e3 and e5

have been relocated to partition p1 to balance the partitions, and edges e3 and e5 are

now delegate cut edges. In the worst case, each partition will either send or receive

overflow edges and may require an all-to-all exchange amongst the partitions.

The complete partitioning can be accomplished in three parallel operations over

the edges, O(|E|
p

). In the worst case, each step may require all-to-all communication,

O(p2). This partitioning cost is asymptotically the same as partitioning an unorga-

nized edge set using 1D or 2D partitioning. In our weak-scaling experiments shown

in section 5.5.2, the delegate partitioning produced evenly balanced partitions.

94

Behavior Description Complexity

bcast delegates Controller broadcasts the current visitor to
all delegates.

O(htree)

terminate visit Controller terminates the current visitor
without sending to delegates.

Θ(1)

Table 5.2: Controller Visitor Commands

Required Description

pre visit() Performs a preliminary evaluation of the state
and returns true if the visitation should pro-
ceed, this can be applied to delegate vertices.

visit() Main visitor procedures.

operator<() Less than comparison used to locally priori-
tize the visitors in a min heap priority queue.

vertex Stored state representing the vertex to be vis-
ited.

delegate behavior Desired delegate visitation behavior, see Ta-
ble 5.1.

merge(visitor a, visitor b) Returns the merge of two visitors. Used for
lazy merge parent and post merge behaviors.

Table 5.3: Visitor Procedures and State

5.2 Asynchronous Visitor Queue

The driver of our graph traversal is the distributed asynchronous visitor queue [60];

it provides the parallelism and creates a data-driven flow of computation. Traversal

algorithms are created using a visitor abstraction, which allows an algorithm designer

to define vertex-centric procedures to execute on traversed vertices with the ability

to pass visitor state to other vertices.

5.2.1 Visitor Abstraction

In our earlier work presented in Chapter 4, we used an asynchronous visitor pat-

tern to compute Breadth-First Search, Single Source Shortest Path, Connected Com-

95

ponents, k-core, and triangle counting in shared, distributed and external memory.

We used edge-list partitioning and ghosts to address the scaling challenges created

by high-degree vertices [60]. We showed these techniques to be useful, however the

application of ghosts was limited to simple traversals such as BFS.

In this chapter, we build on the asynchronous visitor pattern and introduce new

techniques designed to handle distributed delegates. The coordination of the con-

troller and its delegates must be considered when designing a visitor for an algo-

rithm. The algorithm developer must specify a delegate behavior for each visitor,

and controller commands must be specified at the return of the visitor’s procedure.

A list of delegate behaviors is described in Table 5.1, and a list of controller com-

mands is described in Table 5.2. There are three types of reduction operations,

pre visit parent, lazy merge parent, and post merge, that allow algorithms to dis-

tribute computation amongst the delegates. For the controller, there is a broadcast

operation, bcast delegates, that broadcasts a visitor to all the delegates of the con-

troller.

The visitor procedures required by our asynchronous visitor queue framework are

summarized in Table 5.3. When executing, the visitors have exclusive access to the

vertex’s data.

5.2.2 Visitor Queue Interface

The visitor queue has the following functionality that may be used by a visitor

or initiating algorithm:

• push(visitor) – pushes a new visitor into the distributed queue.

• do traversal() – initializes and runs the asynchronous traversal to completion.

This is used by the initiating algorithm.

96

When an algorithm needs to dynamically create new visitors, they are pushed

onto the visitor queue using the push() procedure. When an algorithm begins, an

initial set of visitors are pushed onto the queue, then the do traversal() procedure is

invoked which runs the asynchronous traversal to completion.

To support efficient broadcast and reduction operations, the distributed delegates

for a vertex are arranged in a tree structure (a delegate tree) with the root of the

tree defined as the controller. The height of the delegate tree is denoted by htree,

and the value of htree for out experiments is discussed in Section 5.2.4.

5.2.3 Controller and Delegate Coordination

Operations on the controller and its delegates are coordinated through asyn-

chronous broadcast and reduction operations. The return value of the visit procedure

notifies the framework which controller action it is required to perform. A controller

can broadcast commands to all delegates of a vertex by returning bcast delegates

from the visit procedure. The controller may choose to not broadcast a visitor by

returning terminate visit from the visit procedure.

Delegates can lazily participate in reductions by using the lazy merge parent be-

havior. This instructs the visitor framework to locally merge visitors, and send a

merged visitor to the parent in the reduction tree when local visitor queue is idle.

We show K-Core decomposition as an example algorithm using this behavior. To

fully reach the controller, requires O(htree) visits.

Asynchronous filtering can be performed using the pre visit parent behavior. This

tells the framework to immediately send the visitor to the delegate’s parent where

the pre visit procedure will be executed. If the pre visit returns true the visit will

proceed up the delegate tree. We show Breadth-First Search as an example algorithm

using this behavior.

97

Post-traversal reductions are performed when the visitor’s behavior is set to

post merge. This tells the framework to merge the visitors into the parent reduction

tree after the traversal completes. PageRank is an algorithm using this behavior.

5.2.4 Routed Point-to-Point Communication

In our earlier work, we applied communication routing and aggregation through a

synthetic network to reduce dense communication requirements [60]. For dense com-

munication patterns, where every processor needs to send messages to all p other

processors, we route the messages through a topology that partitions the communi-

cation. Figure 5.2 illustrates a 2D routing topology that reduces the number of com-

municating channels a processor requires to O(
√
p). This reduction in the number

of communicating pairs comes at the expense of message latency because messages

require two hops to reach their destination. In addition to reducing the number

of communicating pairs, 2D routing increases the amount of message aggregation

possible by O(
√
p).

In this technique, we embed the delegate tree into the synthetic routed commu-

nication topology, as illustrated in Figure 5.2. In this example, delegates residing on

Rank 11 are assigned delegate parents on Rank 9 when the controller is on Rank 5. A

pre visit parent originating on Rank 11 is sent to the parent on Rank 9 before being

sent to the controller on Rank 5. An illustration of a broadcast tree is also shown

for Rank 5. When Rank 5 broadcasts, it first sends to the first level {4,5,6,7}. The

second level of the broadcast is illustrated for Rank 7, which sends to {12,13,14,15}.

The value of htree is 2 when using 2D partitioning; with 3D it is 3.

Scaling to hundreds of thousands of cores requires additional reductions in com-

munication channels. Our experiments on IBM BG/P use a 3D routing topology

that is very similar to the 2D illustrated in Figure 5.2, and on the BG/P, our routing

98

S
en

d
R

an
k
s

Receive Ranks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0 1 2 3
1

2

3

4

4 5 6 7
5

6

7

8

8 9 10 11
9

10 Msg Router

11 Delegate Parent

12

12 13 14 15
13

14

15

Figure 5.2: Illustration of 2D communicator routing of 16 ranks with distributed delegate
operations. As an example, when Rank 11 sends to Rank 5, the message is first aggregated
and routed through Rank 9. Delegate tree operations are also embedded onto this topology.
In this example, delegates residing on Rank 11 are assigned delegate parents on Rank 9
when the controller is on Rank 5. A pre visit parent originating on Rank 11 is sent to
the parent on Rank 9 before being sent to the controller on Rank 5. An illustration of a
broadcast tree is also shown for Rank 5. When Rank 5 broadcasts, it first sends to the first
level {4,5,6,7}. The second level of the broadcast is illustrated for Rank 7, which sends to
{12,13,14,15}.

99

is designed to mirror the 3D torus interconnect topology.

5.3 Visitor Algorithms

In this section we discuss three algorithms implemented using distributed dele-

gates: Breadth-First Search, Single Source Shortest Paths, K-Core Decomposition,

and PageRank.

5.3.1 Breadth-First Search & Single Source Shortest Path

The visitor used to compute the BFS level or SSSP for each vertex is shown in

Algorithms 12 and 13. Before the traversal begins, each vertex initializes its length

to∞ (Alg. 13, line 4); then a visitor is queued for the source vertex with length = 0

(Alg. 13, line 8).

When a visitor pre visits a vertex, it checks if the visitor’s length is smaller

than the vertex’s current length (Alg. 12, line 14). If smaller, the pre visit updates

the level information and returns true, signaling that the main visit function may

proceed. Then, the main visit function will send new bfs visitors for each outgoing

edge (Alg. 12, line 18). The less than comparison procedure orders the visitors in

the queue by length (Alg. 12, line 26).

The delegate behavior is configured to pre visit parent (Alg. 12, line 4), which

means that visitors of delegated vertices traverse up the delegate tree before reach-

ing the controller. Forcing visitors to traverse up the delegate tree provides the

opportunity to filter out visitors that are not part of the shortest path.

When a visitor successfully updates the controller’s state, the controller broad-

casts the visitor to all of its delegates (Alg. 12, line 20). If the visitor does not update

the controller’s state, then the visitor is terminated (Alg. 12, line 22).

100

Algorithm 12 BFS & SSSP Visitor

1: visitor state: vertex ← vertex to be visited
2: visitor state: length ← path length
3: visitor state: parent ← path parent

4: delegate behavior: pre visit parent

5: procedure pre visit(vertex data)
6: if length < vertex data.length then
7: vertex data.length← length
8: vertex data.parent← parent
9: return true

10: end if
11: return false
12: end procedure

13: procedure visit(graph, visitor queue)
14: if length == graph[vertex].length then
15: for all vi ∈ out edges(g, vertex) do

. Creates and queues new visitors
16: new len← length+ edge weight(g, vertex, vi)

. edge weight equals 1 for BFS
17: new vis← bfs visitor(vi, new len, vertex)
18: visitor queue.push(new vis)
19: end for
20: return bcast delegates
21: else
22: return terminate visit
23: end if
24: end procedure

25: procedure operator < ()(visitor a, visitor b)
. Less than comparison, sorts by length

26: return visitor a.length < visitor b.length
27: end procedure

101

Algorithm 13 BFS & SSSP Traversal Initiator

1: input: graph← input graph G(V,E)
2: input: source← BFS traversal source vertex
3: input: vis queue← Visitor queue

4: for all v ∈ vertices(graph) parallel do
5: graph[v].length←∞
6: graph[v].parent←∞
7: end for
8: source visitor ← bfs visitor(source, 0, source)
9: vis queue.push(source visitor)

10: vis queue.do traversal()

5.3.2 PageRank

The visitor used to asynchronously compute the PageRank for each vertex is

shown in Algorithms 14 and 15. For our experiments, we are concerned with the

performance of a single PageRank iteration. Many iterations may be required for

convergence, depending on the topology of the graph. Before the asynchronous

PageRank begins, a temporary sum is initialized to 0 for all vertices, and a visitor

containing the initial PageRank value is queued for every vertex (Alg. 15, line 9).

When a visitor pre visits a vertex, it simply increments the PageRank sum for the

vertex (Alg. 14, line 4). The delegate behavior is set to post merge which requires a

visitor merge function, that also simply returns a sum (Alg. 14, line 16). When every

vertex is initially visited with the initial PageRank value, new visitors are queued

for every outgoing edge (Alg. 14, line 12). When a controller is visited, it broadcasts

the visitor to all its delegates (Alg. 14, line 14).

When the traversal completes, and the delegates have merged their visitors, the

final PageRank value has been calculated for every vertex (Alg. 15, line 15).

102

Algorithm 14 Page-Rank Visitor (pr visitor)

1: visitor state: vertex ← vertex to be visited
2: visitor state: rank ← partial Page-Rank value

3: delegate behavior: post merge

4: procedure pre visit(vertex data)
5: vertex data.sum += rank
6: return false
7: end procedure

8: procedure visit(graph, visitor queue)
9: for all vi ∈ out edges(g, vertex) do

. Creates and queues new visitors
10: edge rank ← rank / out degree(g, vertex)
11: new vis← pr visitor(vi, edge rank)
12: visitor queue.push(new vis)
13: end for
14: return bcast delegates
15: end procedure

16: procedure merge(visitor a, visitor b)
17: visitor a.rank += visitor b.rank
18: return visitor a
19: end procedure

. No visitor ordering required

103

Algorithm 15 Page-Rank Initiator (single iteration)

1: input: graph← input graph G(V,E)
2: input: vis queue← Visitor queue
3: input: damp← Page-Rank damping factor (e.g., 0.85)
4: input: init rank ← initial rank for every vertex
5: output: out rank → output rank for every vertex

6: for all v ∈ vertices(graph) parallel do
7: graph[v].sum = 0
8: vis← pr visitor(v, init rank[v])
9: vis queue.push(vis)

10: end for

11: vis queue.do traversal()
. Traversal complete, delegate visitors’ merged

12: for all v ∈ vertices(graph) parallel do
13: vertex sum = graph[v].sum
14: V = num vertices(graph)
15: out rank[v] = (1− damp)/V + (damp ∗ vertex sum)
16: end for

5.3.3 K-Core Decomposition

To compute the k-core decomposition of an undirected graph, we asynchronously

remove vertices from the core whose degree is less than k. As vertices are removed,

they may create a dynamic cascade of recursive removals as the core is decomposed.

The visitor used to compute the k-core decomposition of an undirected graph is

shown in Algorithm 16. Before the traversal begins, each vertex initializes its k-core

to degree(v) + 1 and alive to true, then a visitor is queued for each vertex with ntrim

set to 1.

The visitor’s pre visit procedure decrements the vertex’s k-core number by ntrim,

and checks if it is less than k (Alg. 16, line 8). If less, it sets alive to false and returns

true, signaling that the visitors’s main visit procedure should be executed (Alg. 16,

104

Algorithm 16 K-Core Visitor

1: visitor state: vertex ← vertex to be visited
2: visitor state: ntrim ← count of edges trimmed
3: static parameter: k ← k-core requested

4: delegate behavior: lazy parent merge

5: procedure pre visit(vertex data)
6: if vertex data.alive == true then
7: vertex data.kcore← vertex data.kcore− ntrim
8: if vertex data.kcore < k then
9: vertex data.alive← false

10: return true
11: end if
12: end if
13: return false
14: end procedure

15: procedure visit(graph, visitor queue)
16: for all vi ∈ out edges(g, vertex) do
17: new visitor ← kcore visitor(vi, 1)
18: visitor queue.push(new visitor)
19: end for
20: return bcast delegates
21: end procedure

22: procedure merge(visitor a, visitor b)
23: visitor a.ntrim += visitor b.ntrim
24: return visitor a
25: end procedure

. No visitor order required

line 10). The visit function notifies all neighbors of vertex that it has been removed

from the k-core (Alg. 16, line 18). After the traversal completes, all vertices whose

alive equals true are a member of the k-core.

The delegate behavior is configured to lazy merge parent (Alg. 16, line 4), which

means that visitors of delegated vertices are lazy merged up the delegate tree before

reaching the controller. Visitors are merged using the procedure shown in Alg. 16,

105

line 22. Merging visitors before visiting the controller reduces the number of times

the controller is required to execute the pre visit procedure.

5.4 Asymptotic Analysis

We build on the analysis framework discussed in Section 4.4 to analyze the com-

plexity of algorithms using distributed delegates. When high degree vertices are

delegated, their storage, computation, and communication are parallelized and dis-

tributed. The algorithmic effects are:

• High-degree storage reduces from O(dmax) to O(dmax

p
). The storage of high-

degree vertices is now evenly stored across the partitions. This enables all

partitions to participate in the computation and communication of high-degree

vertices.

• High-degree computation reduces from O(dmax) to O(dmax

p
). The computation

for high-degree vertices is now evenly distributed across the partitions.

• High-degree communication performed through the delegate tree reduces from

O(dmax) to O(p) communication and O(htree) steps. The communication of

high-degree vertices is performed using tree based broadcasts and reductions.

A comparison of the BFS and PageRank using 1D, Edge List Partitioning (ELP),

and Distributed Delegates is shown in Table 5.4, and analysis parameters are de-

scribed in Table 5.5. For BFS, the pre visit parent delegate behavior replaces the

cost of ELP’s ghosts (O(p)) with delegate tree operations (O(htree)). For PageRank,

the post merge delegate behavior adds reductions for high-degree vertices, reducing

ELP’s O(dinmax) with delegate tree operations (O(htree)).

106

Alg. 1D ELP Delegates

BFS O(D + pmax + dinmax + doutmax) O(D + |E|
p

+ p) O(D + |E|
p

+ htree)

PageR. O(pmax + dinmax + doutmax) O(|E|
p

+ dinmax) O(|E|
p

+ htree)

Table 5.4: Comparison of 1D, Edge List Partitioning (ELP) and Distributed Dele-
gates

Variable Description

D The Graph’s diameter

doutmax Maximum out-degree, max
v∈V

(out-degree(v))

dinmax Maximum in-degree, max
v∈V

(in-degree(v))

p Number of processors

pmax Maximum partition size

htree Height of delegate tree

Table 5.5: Analysis Parameters

5.5 Experiments

In this section we experimentally evaluate the performance and scalability of

our approach. We use the IBM BG/P Intrepid supercomputer at Argonne National

Laboratory [26] up to 131K processors to show scalability to large core count. We

also use Cab [41] at Lawrence Livermore National Laboratory, which is a standard

HPC Linux cluster with an Infiniband interconnect. We begin by exploring the

effects of varying the delegate degree threshold. Next, we show a weak scaling study

for Breadth-First Search, Single Source Shortest Path, K-Core Decomposition and

PageRank, followed by comparisons to our previous edge list partitioning [60] and

1D partitioning. Finally, we compare performance to the best known Graph500

performance for Intrepid which uses a 2D partitioning approach [19].

For this experimental study, the only optimization specific to IBM BG/P is

107

matching the routed communication topology to the 3D torus as discussed in Sec-

tion 5.2.4. We use the Graph500 performance metric of Traversed Edges per Second

(TEPS) for both BFS, SSSP and PageRank. Similar to TEPS, we used the rate of

trimmed edges per second as the performance metric for K-Core Decomposition.

5.5.1 Effects of Delegate Degree Threshold

The delegate degree threshold (dhigh) is the threshold at which vertices are se-

lected to be delegated. Vertices whose degree is less than dhigh are 1D partitioned,

while those above the threshold are delegate partitioned.

We explore the scaling effects of dhigh on overall performance, number of co-

located edges, and partition imbalance, shown in Figure 5.3. For a fixed graph size

of 230 vertices, using 4096 cores, we demonstrate the performance effects of (a) BFS

and (b) PageRank as dhigh is scaled. The best performing degree threshold for both

BFS and PageRank is 4096 (equal to the number of cores). Decreasing dhigh results

in a higher percentage of co-located edges (Fig. 5.3(c)). However, when the thresh-

old decreases below 4096, the broadcasts to all partitions become wasteful as many

delegates will have zero edges on some partitions. At large values of dhigh, the parti-

tioning reduces to a 1D partitioning with fewer vertices selected to become delegates.

In addition to reducing overall performance, the partition imbalance increases when

few delegates are created (Fig. 5.3(d)). The percentage of vertices selected to be

delegated is small for all values of dhigh (Fig. 5.3(e)); this means that the additional

overhead of managing delegate information is also small.

The optimal dhigh is roughly equal to the number of cores (p), so for the remainder

of our delegate experiments we set dhigh equal to p. This means that dhigh increases

during our weak-scaling studies.

108

103 104 105 106 107
1

2

3

4

Delegate Degree ThresholdB
il
li
on

s
of

T
ra

v
er

se
d

E
d
ge

s
p

er
S
ec

.
(G

T
E

P
S
)

Breadth-First Search

(a)

103 104 105 106 107

2

3

4

5

Delegate Degree ThresholdB
il
li
on

s
of

T
ra

v
er

se
d

E
d
ge

s
p

er
S
ec

.
(G

T
E

P
S
)

PageRank

(b)

103 104 105 106 107

0

20

40

60

80

Delegate Degree Threshold

P
er

ce
n
ta

ge
of

co
-l

o
ca

te
d

ed
ge

s

Percentage of co-located edges

(c)

103 104 105 106 107

0

50

100

150

200

250

Delegate Degree Threshold

P
ar

ti
ti

on
Im

b
al

an
ce

(p
er

ce
n
ta

ge
)

Partition Imbalance

(d)

103 104 105 106 107

0

0.1

0.2

Delegate Degree Threshold

P
er

ce
n
ta

ge
of

D
el

eg
at

ed
V

er
ti

ce
s

Percentage of Delegated Vertices

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

(e)

Figure 5.3: Effects of delegate degree threshold (dhigh) using 4096 cores on graphs
with 230 vertices. The performance effects of (a) BFS and (b) PageRank, (c) the
effects on the percentage of co-located edges, (d) partition imbalance, and (e) the
percentage of delegated vertices are shown.

109

8,192 32,768 131,072

10

100

Number of CoresB
il

li
on

s
o
f

T
ra

v
er

se
d

E
d

ge
s

p
er

S
ec

.
(G

T
E

P
S

)

Weak scaling of BFS on BG/P Intrepid

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

Figure 5.4: Weak scaling of BFS on BG/P Intrepid. There are 218 vertices per core,
with the largest scale graph having 235.

5.5.2 Weak Scaling of BFS and PageRank

The weak scaled performance using distributed delegates on BG/P Intrepid is

shown in Figures 5.4 and 5.5 for BFS and PageRank, respectively. The approach

demonstrates excellent weak-scaling up to 131k cores with 235 vertices. There are

218 vertices per core, with the largest scale graph having 235.

110

8,192 32,768 131,072

10

100

Number of CoresB
il

li
on

s
of

T
ra

v
er

se
d

E
d

ge
s

p
er

S
ec

.
(G

T
E

P
S

)

Weak scaling of PageRank on BG/P Intrepid

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

Figure 5.5: Weak scaling of PageRank on BG/P Intrepid. There are 218 vertices per
core, with the largest scale graph having 235.

111

5.5.3 Weak Scaling of SSSP and K-Core Decomposition

The weak scaled performance using distributed delegates on Cab at LLNL is

shown in Figure 5.6 for SSSP and K-Core decomposition. In addition to good scaling,

this demonstrates the portability of our approach to a broader class of HPC resources.

For SSSP, edges are randomly weighted with integers ranging [1, 230).

5.5.4 Comparison to 1D and Edge Partitioning

We compare distributed delegate partitioning to our previous work on edge-list

partitioning [60] and 1D partitioning in Figure 5.7. 1D partitioning is widely used

by many graph libraries such as PBGL [29], and is used in these experiments as a

baseline. For this experiment, the number of vertices per core have been reduced to

prevent 1D partitioning from exhausting local partition memory due to imbalance.

Also, the experiments are limited to 4096 cores due to increasing hub growth causing

additional imbalance. At 4096 cores, our delegate partitioning is 42% faster than

edge-list partitioning and 2.3x faster than 1D. PBGL was not able to run with more

than 512 processors without exhausting available memory. At 512 cores, our delegate

partitioning is 5.6x faster than PBGL.

5.5.5 Comparison to Previous Graph500 Gesults

We compare distributed delegates to the best known performance for Intrepid

[19] on the Graph500 list in Figure 5.8. Our approach demonstrates excellent weak

scaling, and achieves 93.1 GTEPS on a Scale 35 Graph500 input using 131k cores.

The delegates approach outperforms the current best known Graph500 performance

for Intrepid by 15%.

112

256 1024 4096

1

10

Number of CoresB
il
li
on

s
of

T
ra

v
er

se
d

E
d
ge

s
p

er
S
ec

.
(G

T
E

P
S
)

SSSP weak scaling on Linux cluster

PA β = −14
PA β = −13

Graph500 RMAT
PA β = −12

(a)

256 1024 4096

1

10

Number of Cores

B
il
li
on

s
of

T
ri

m
m

ed
E

d
ge

s
p

er
S
ec

.

K-Core weak scaling on Linux cluster

Graph500 RMAT, k = 16
Graph500 RMAT, k = 4

(b)

Figure 5.6: Weak scaling of delegate partitioned (a) SSSP and (b) K-Core on Cab
Linux cluster at LLNL. There are 220 vertices per core, with the largest scale graph
having 232 vertices. For SSSP, edges are randomly weighted with integers ranging
[1, 230).

113

256 512 1,024 2,048 4,096

0.5

1

Number of CoresB
il

li
on

s
of

T
ra

v
er

se
d

E
d

ge
s

p
er

S
ec

.
(G

T
E

P
S

) Delegates vs Edge List vs. 1D
Weak Scaling BFS on BG/P

Distributed Delegates

Edge List Partitioning [60]
1D Partitioning

PBGL (1D Partitioning) [29]

Figure 5.7: Comparison of distributed delegates vs. edge list partitioning [60], 1D
partitioning, and PBGL [29]. Performance of BFS on RMAT graphs shown on
BG/P. Important note: the graph sizes are reduced to prevent 1D from running out
of memory. There are 217 vertices and 221 undirected edges per core.

114

8,192 32,768 131,072

10

100

Number of CoresB
il

li
on

s
of

T
ra

v
er

se
d

E
d

ge
s

p
er

S
ec

.
(G

T
E

P
S

)

Graph500 weak scaling on BG/P Intrepid

Distributed Delegates

Edge List Partitioning [60]

Graph500 Nov’12 [19]

Figure 5.8: Weak scaling of delegate partitioned BFS on BG/P Intrepid. Compared
to Intrepid BFS performance from the Graph500 list. Delegate Partitioning is 15%
faster than best results published for Intrepid on the Graph500 list. There are 218

vertices per core, with the largest scale graph having 235 vertices.

115

5.6 Summary

In this chapter, we present a novel technique, distributed delegates, to parallelize

the storage, processing, and communication of high-degree vertices in large scale-free

graphs. To balance the processing workload, we distribute hub data structures and

related computation among a set of delegates. Computation is coordinated between

the delegates and their controller through a set of commands and behaviors.

Our delegate technique leads to significant communication reduction through the

use of asynchronous broadcast and reduction operations. For hubs whose degree is

greater than the number of processing cores, p, using delegates reduces the required

volume of communication.

We demonstrate the approach and evaluate performance and scalability using

Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decompo-

sition, and PageRank on synthetically generated scale-free graphs. We demonstrate

scalability up to 131K cores using the IBM BG/P supercomputer, and show porta-

bility on a typical HPC Linux cluster. Our algorithm improves the best known

Graph500 results for BG/P Intrepid, a custom BG/P implementation, by 15%.

116

6. CONCLUSION

Efficiently storing and processing large amounts of graph data is a challenging

problem in data intensive computing as researchers seek to leverage “Big Data”

to answer next-generation scientific questions. This dissertation presents new tech-

niques to parallelize the storage, computation, and communication of high-degree

vertices in scale-free graphs. Our work facilitates the processing of large real-world

graph datasets through the development of parallel algorithms and tools that scale

to large computational and memory resources, overcoming challenges not addressed

by existing techniques. Towards this goal, we begin by identifying key challenges to

storing and processing massive scale-free graphs. Many important graph datasets

have unstructured and irregular topologies with data locality which thrashes multi-

level memory hierarchies, including external memory. These irregular topologies

produce dense processor-processor, approaching all-to-all, communication when al-

gorithms are parallelized, leading to poor overall performance. Also, the growth of

high-degree vertices, also known as hubs, provides significant challenges for balancing

storage, computation, and communication.

We address these challenges with three novel techniques for processing large scale-

free graphs. First, we developed an asynchronous graph traversal technique capable

of expressing fine-grained parallelism at the individual vertex level [59]. Data laten-

cies associated with the external graph storage media and message passing commu-

nication are mitigated by the asynchronism of the computation.

Second, we created a new partitioning technique that guarantees balanced parti-

tions containing challenging high-degree vertices [60]. Previous partitioning strate-

gies using 1D and 2D partitioning may produce an imbalanced number of edges per

117

partition for scale-free graphs. Our approach partitions the graphs edges such that

each partition contains an equal number of edges, overcoming the storage balance

issues created by high-degree vertices.

Finally, we developed a technique to parallelize and distribute the storage, com-

putation, and communication of high-degree vertices [58]. We make a distinction

between low and high degree vertices, and distribute the high-degree vertices. The

number of edges per partition is balanced, and the large amount of computation and

communication for the high-degree vertices is distributed over all of the processors.

Our techniques provide new tools to analyze large scale-free graph datasets on

a wide rage of data-intensive computational resources. Our research is targeted at

leadership class supercomputers containing significant distributed memory resources,

clusters with node-local non-volatile random access memory (NVRAM), and small

shared-memory systems containing large NVRAM storage devices.

The research contributions of this dissertation can be summarized as:

• We developed novel algorithmic techniques to process large scale-free graphs:

– An asynchronous computation model using prioritized visitor queues that

tolerates latencies associated with external memory and distributed mes-

sage passing [59];

– An edge list partitioning technique that guarantees balanced partitions

for scale-free graphs containing high-degree vertices [60];

– A technique we call distributed delegates to parallelize and distribute the

storage, computation, and communication of high-degree vertices [58];

• We demonstrated our techniques using: Breadth-First Search, Single Source

Shortest Path, Connected Components, K-Core decomposition, Triangle Count-

118

ing, and PageRank;

• We demonstrate the scalability of our approach on leadership class supercom-

puters using 131k processors;

• We show that by leveraging node-local NAND Flash, our approach can process

larger datasets with only modest performance degradation over a DRAM-only

solution.

In the future, we plan to extend this work to new classes of graph algorithms

that require distributed set operations. Set operations can be used to represent

communities or clusters of vertices. High-degree vertices also create challenges when

maintaining the set relationships, and we plan to extend our delegate approach to

address the challenges.

119

REFERENCES

[1] Deepak Ajwani, Andreas Beckmann, Riko Jacob, Ulrich Meyer, and Gabriel

Moruz. On computational models for flash memory devices. In Experimental

Algorithms, pages 16–27, 2009.

[2] Deepak Ajwani, Roman Dementiev, and Ulrich Meyer. A computational study

of external-memory BFS algorithms. In SODA ’06: Proceedings of the seven-

teenth annual ACM-SIAM symposium on Discrete algorithm, pages 601–610,

New York, NY, USA, 2006. ACM.

[3] Deepak Ajwani, Itay Malinger, Ulrich Meyer, and Sivan Toledo. Characterizing

the performance of flash memory storage devices and its impact on algorithm

design. In Proceedings of the 7th International Workshop on Experimental Al-

gorithms (WEA), pages 208–219, 2008.

[4] Deepak Ajwani and Ulrich Meyer. Design and engineering of external memory

traversal algorithms for general graphs. In Algorithmics of Large and Complex

Networks: Design, Analysis, and Simulation, pages 1–33, Berlin, Heidelberg,

2009. Springer-Verlag.

[5] D.A. Bader and K. Madduri. SNAP, Small-world Network Analysis and Parti-

tioning: an open-source parallel graph framework for the exploration of large-

scale networks. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on, pages 1–12, 2008.

[6] A.L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.

120

[7] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-

works. Science, 286(5439):509–512, 1999.

[8] B.W. Barrett, J.W. Berry, R.C. Murphy, and K.B. Wheeler. Implementing a

portable multi-threaded graph library: The MTGL on Qthreads. In Proceedings

of the 2009 IEEE International Symposium on Parallel &Distributed Processing

(IPDPS), pages 1–8. IEEE, 2009.

[9] Jonathan W. Berry, Bruce Hendrickson, Simon Kahan, and Petr Konecny. Soft-

ware and algorithms for graph queries on multithreaded architectures. In Par-

allel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-

tional, pages 1–14, March 2007.

[10] D. P. Bertsekas, F. Guerriero, and R. Musmanno. Parallel asynchronous label-

correcting methods for shortest paths. J. Optim. Theory Appl., 88(2):297–320,

1996.

[11] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-

crawler: A scalable fully distributed web crawler. Software: Practice & Experi-

ence, 34(8):711–726, 2004.

[12] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression

techniques. In Proc. of the Thirteenth International World Wide Web Confer-

ence (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[13] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure

in the web. Computer Networks, 33(1–6):309 – 320, 2000.

[14] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge

partitions is np-hard. Inf. Process. Lett., 42(3):153–159, May 1992.

121

[15] A. Buluç and J.R. Gilbert. On the representation and multiplication of hyper-

sparse matrices. In IEEE International Symposium on Parallel and Distributed

Processing (IPDPS), pages 1–11. IEEE, 2008.

[16] A. Buluç and K. Madduri. Parallel breadth-first search on distributed memory

systems. In High Performance Computing, Networking, Storage and Analysis

(SC), 2011 International Conference for, pages 1–12. IEEE, 2011.

[17] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09 data set. http://www.

lemurproject.org/clueweb09/, 2009.

[18] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recur-

sive model for graph mining. In Fourth SIAM International Conference on Data

Mining, April 2004.

[19] Fabio Checconi, Fabrizio Petrini, Jeremiah Willcock, Andrew Lumsdaine, Ana-

mitra Roy Choudhury, and Yogish Sabharwal. Breaking the speed and scalability

barriers for graph exploration on distributed-memory machines. In Supercom-

puting, 2012.

[20] Graph 500 Steering Committee. The graph500 benchmark. http://www.

graph500.org, 2010.

[21] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[22] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[23] N.B. Ellison, C. Steinfield, and C. Lampe. The benefits of facebook “friends:”

social capital and college students’ use of online social network sites. Journal of

Computer-Mediated Communication, 12(4):1143–1168, 2007.

122

http://www.lemurproject.org/clueweb09/
http://www.lemurproject.org/clueweb09/
http://www.graph500.org
http://www.graph500.org

[24] Paul Erdös and A Rényi. On the evolution of random graphs. Publ. Math. Inst.

Hungar. Acad. Sci, 5:17–61, 1960.

[25] Brian Van Essen, Roger Pearce, Sasha Ames, and Maya Gokhale. On the role of

NVRAM in data-intensive architectures: an evaluation. In International Parallel

and Distributed Processing Symposium (IPDPS), Shanghai, China, May 2012.

[26] Argonne Leadership Computing Facility. IBM BG/P Intrepid. http://www.

alcf.anl.gov/intrepid, 2013.

[27] Michelle Girvan and Mark EJ Newman. Community structure in social and bio-

logical networks. Proceedings of the National Academy of Sciences, 99(12):7821–

7826, 2002.

[28] Andrew V. Goldberg. A simple shortest path algorithm with linear average time.

In ESA ’01: Proceedings of the 9th Annual European Symposium on Algorithms,

pages 230–241, London, UK, 2001. Springer-Verlag.

[29] Douglas Gregor and Andrew Lumsdaine. The parallel BGL: A generic library

for distributed graph computations. In In Parallel Object-Oriented Scientific

Computing (POOSC), 2005.

[30] Chris Groër, Blair D Sullivan, and Steve Poole. A mathematical analysis of the

r-mat random graph generator. Networks, 58(3):159–170, 2011.

[31] F. Guerriero and R. Musmanno. Parallel asynchronous algorithms for the k

shortest paths problem. Journal of Optimization Theory and Applications,

104(1):91–108, 2000.

[32] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchwerger. The

STAPL Parallel Graph Library. In Int. Workshop on Languages and Compilers

for Parallel Computing (LCPC), 2012.

123

http://www.alcf.anl.gov/intrepid
http://www.alcf.anl.gov/intrepid

[33] Bruce Hendrickson and Jonathan W. Berry. Graph analysis with high-

performance computing. Computing in Science and Engineering, 10(2):14–19,

2008.

[34] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning

graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing

(CDROM), page 28. ACM, 1995.

[35] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1992.

[36] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–

392, 1998.

[37] George Karypis and Vipin Kumar. Parallel multilevel series k-way partitioning

scheme for irregular graphs. Siam Review, 41(2):278–300, 1999.

[38] T. Kolda, D. Brown, J. Corones, T. Critchlow, T. Eliassi-Rad, L. Getoor,

B. Hendrickson, V. Kumar, D. Lambert, C. Matarazzo, K. McCurley, M. Mer-

rill, N. Samatova, D. Speck, R. Srikant, J. Thomas, M. Wertheimer, and P. C.

Wong. Data sciences technology for homeland security information management

and knowledge discovery: Report of the dhs workshop on data sciences. Techni-

cal Report UCRL-TR-208926, Jointly released by Sandia National Laboratories

and Lawrence Livermore National Laboratory, September 2004.

[39] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.

Trawling the web for emerging cyber-communities. Computer Networks, 31(11–

16):1481 – 1493, 1999.

124

[40] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In Proceedings of the 19th international

conference on World wide web, WWW ’10, pages 591–600, New York, NY,

USA, 2010. ACM.

[41] Lawrence Livermore National Laboratory. Cab at LLNL. http://computing.

llnl.gov/resources, 2013.

[42] Dominique LaSalle and George Karypis. Multi-threaded graph partitioning.

In International Parallel and Distributed Processing Symposium (IPDPS), May

2013.

[43] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.

Community structure in large networks: Natural cluster sizes and the absence

of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[44] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison

of algorithms for network community detection. In Proceedings of the 19th

international conference on World wide web, pages 631–640. ACM, 2010.

[45] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan W.

Berry. Challenges in parallel graph processing. Parallel Processing Letters,

17(1):5–20, 2007.

[46] Benjamin Machta and Jonathan Machta. Parallel dynamics and computational

complexity of network growth models. Phys. Rev. E, 71:026704, Feb 2005.

[47] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of data, pages 135–146. ACM, 2010.

125

http://computing.llnl.gov/resources
http://computing.llnl.gov/resources

[48] Friedemann Mattern. Algorithms for distributed termination detection. Dis-

tributed Computing, 2:161–175, 1987. 10.1007/BF01782776.

[49] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. J. ACM, 30(3):417–427, July 1983.

[50] Kurt Mehlhorn and Ulrich Meyer. External-memory breadth-first search with

sublinear i/o. In ESA ’02: Proceedings of the 10th Annual European Symposium

on Algorithms, pages 723–735, London, UK, 2002. Springer-Verlag.

[51] U. Meyer and P. Sanders. δ-stepping: a parallelizable shortest path algorithm.

Journal of Algorithms, 49(1):114–152, 2003.

[52] Burkhard Monien and Stefan Schamberger. Graph partitioning with the party li-

brary: Helpful-sets in practice. In Computer Architecture and High Performance

Computing, 2004. SBAC-PAD 2004. 16th Symposium on, pages 198–205. IEEE,

2004.

[53] A. Moody, G. Bronevetsky, K. Mohror, and B.R. De Supinski. Design, modeling,

and evaluation of a scalable multi-level checkpointing system. In High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2010 International

Conference for, pages 1–11. IEEE, 2010.

[54] Tamás F Móri. On random trees. Studia Scientiarum Mathematicarum Hun-

garica, 39(1):143–155, 2002.

[55] Kameshwar Munagala and Abhiram Ranade. I/O-complexity of graph algo-

rithms. In SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium

on Discrete algorithms, pages 687–694, Philadelphia, PA, USA, 1999. Society

for Industrial and Applied Mathematics.

126

[56] Mark EJ Newman. Modularity and community structure in networks. Proceed-

ings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[57] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-

ank citation ranking: bringing order to the web. 1999.

[58] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Faster parallel traversal

of scale free graphs at extreme scale with vertex delegates. In (Under Review).

[59] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Multithreaded asyn-

chronous graph traversal for in-memory and semi-external memory. In 2010

International Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC), pages 1 –11, Nov. 2010.

[60] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Scaling techniques for

massive scale-free graphs in distributed (external) memory. In International

Parallel and Distributed Processing Symposium (IPDPS), May 2013.

[61] François Pellegrini. Scotch and libscotch 5.1 user’s guide. 2008.

[62] François Pellegrini and Jean Roman. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs. In

High-Performance Computing and Networking, pages 493–498. Springer, 1996.

[63] J. Raacke and J. Bonds-Raacke. Myspace and facebook: Applying the uses and

gratifications theory to exploring friend-networking sites. CyberPsychology &

Behavior, 11(2):169–174, 2008.

[64] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust manage-

ment for the semantic web. In The Semantic Web-ISWC 2003, pages 351–368.

Springer, 2003.

127

[65] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning

algorithms. In Algorithms–ESA 2011, pages 469–480. Springer, 2011.

[66] Peter Sanders and Christian Schulz. Distributed evolutionary graph partition-

ing. In ALENEX, pages 16–29, 2012.

[67] Stephen B. Seidman. Network structure and minimum degree. Social Networks,

5(3):269 – 287, 1983.

[68] C Seshadhri, Ali Pinar, and Tamara G Kolda. An in-depth study of stochas-

tic kronecker graphs. In Data Mining (ICDM), 2011 IEEE 11th International

Conference on, pages 587–596. IEEE, 2011.

[69] Comandur Seshadhri, Ali Pinar, and Tamara G. Kolda. Triadic measures on

graphs: The power of wedge sampling. In SIAM International Conference on

Data Mining, 2013.

[70] Yossi Shiloach and Uzi Vishkin. An o(logn) parallel connectivity algorithm.

Journal of Algorithms, 3(1):57 – 67, 1982.

[71] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Li-

brary: user guide and reference manual. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2002.

[72] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,

33(8):103–111, August 1990.

[73] B. Viswanath, A. Mislove, M. Cha, and K.P. Gummadi. On the evolution of

user interaction in facebook. In Proceedings of the 2nd ACM workshop on Online

social networks, pages 37–42. ACM, 2009.

[74] Jeffrey Scott Vitter. Algorithms and data structures for external memory.

Found. Trends Theor. Comput. Sci., 2(4):305–474, 2008.

128

[75] Jeffrey Scott Vitter and Elizabeth A.M. Shriver. Algorithms for parallel memory

I: Two-level memories. Algorithmica, 12(2-3):110–147, 1994.

[76] Chris Walshaw and Mark Cross. Mesh partitioning: a multilevel balancing

and refinement algorithm. SIAM Journal on Scientific Computing, 22(1):63–80,

2000.

[77] Chris Walshaw and Mark Cross. Parallel optimisation algorithms for multilevel

mesh partitioning. Parallel Computing, 26(12):1635–1660, 2000.

[78] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 393:440–442, Jun 1998.

[79] K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for programming

with millions of lightweight threads. In Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium on, pages 1–8, 2008.

[80] J.J. Willcock, T. Hoefler, N. Edmonds, and A. Lumsdaine. Active pebbles:

parallel programming for data-driven applications. In Proceedings of the Inter-

national Conference on Supercomputing, pages 235–244. ACM, 2011.

[81] Anthony Williams and Vicente J. Botet Escriba. BOOST Threads. http:

//www.boost.org/doc/libs/release/libs/thread/, 2013.

[82] A. Yoo, A.H. Baker, R. Pearce, and V.E. Henson. A scalable eigensolver for

large scale-free graphs using 2d graph partitioning. In High Performance Com-

puting, Networking, Storage and Analysis (SC), 2011 International Conference

for, pages 1–11. IEEE, 2011.

[83] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hen-

drickson, and Umit Catalyurek. A scalable distributed parallel breadth-first

search algorithm on BlueGene/L. In Supercomputing, 2005. Proceedings of the

129

http://www.boost.org/doc/libs/release/libs/thread/
http://www.boost.org/doc/libs/release/libs/thread/

ACM/IEEE SC 2005 Conference, page 25, Washington, DC, USA, 2005. IEEE

Computer Society.

[84] W.W. Zachary. An information flow model for conflict and fission in small

groups. Journal of Anthropological Research, pages 452–473, 1977.

130

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Research Objective and Contributions
	Outline

	Preliminaries and Related Work
	Terminology and Graph Representations
	Graph Partitioning
	1D Partitioning
	2D Partitioning

	Scale-free Graphs
	Properties
	Examples

	Synthetic Graph Models
	Scale-Free Models
	Small World Models

	Processing Large Graphs
	Distributed Memory
	Multithreaded Shared Memory
	External Memory

	Challenges for Processing Large Scale-Free Graphs
	Dense Processor-Processor Communication
	Power-law Degree Distribution

	Graph Algorithms
	Breadth-First Search (BFS)
	Single Source Shortest Path (SSSP)
	Connected Components
	Triangle Counting
	K-Core Decomposition
	PageRank

	Asynchronous Graph Traversal
	Asynchronous Visitor Queue
	Algorithms
	Breadth-First Search (BFS) and Single Source Shortest Path (SSSP)
	SSSP Traversal Example
	Undirected Connected Components

	Algorithmic Analysis
	Implementation Details
	Experimental Study
	Graph Types and Sizes
	Hardware Resources
	In-Memory Experiments
	Semi-External Memory Experiments

	Summary

	Balanced Partitioning with High-Degree Vertices
	Edge List Partitioning
	Ghost Vertices

	Distributed Visitor Queue
	Visitor Abstraction
	Visitor Queue Interface
	Example Traversal
	Visitor Queue Design Details

	Algorithms
	Breadth-First Search
	K-Core Decomposition
	Triangle Counting

	Asymptotic Analysis
	Analysis of BFS
	Analysis of K-Core
	Analysis of Triangle Counting

	Experimental Study
	Experimental Setup
	Scalability on BG/P Supercomputer
	Scalability of Distributed External Memory BFS
	Topological Effects on Performance
	Edge List Partitioning vs 1D
	Use of Ghost Vertices

	Summary

	Distributed Storage, Computation, and Communication of High-Degree Vertices
	Distributed Delegates
	Delegate Partitioning in Visitor Framework
	Distributed Delegate Partitioning

	Asynchronous Visitor Queue
	Visitor Abstraction
	Visitor Queue Interface
	Controller and Delegate Coordination
	Routed Point-to-Point Communication

	Visitor Algorithms
	Breadth-First Search & Single Source Shortest Path
	PageRank
	K-Core Decomposition

	Asymptotic Analysis
	Experiments
	Effects of Delegate Degree Threshold
	Weak Scaling of BFS and PageRank
	Weak Scaling of SSSP and K-Core Decomposition
	Comparison to 1D and Edge Partitioning
	Comparison to Previous Graph500 Gesults

	Summary

	Conclusion
	REFERENCES

