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ABSTRACT

Seismic ray tracing is a common method for understanding and modeling seismic

wave propagation. The wavefront construction (WFC) method handles wavefronts

instead of individual rays, thereby providing a mechanism to control ray density on

the wavefront.

In this thesis we present the design and implementation of a parallel wavefront

construction algorithm (pWFC) for seismic ray tracing. The proposed parallel algo-

rithm is developed using the stapl library for parallel C++ code.We present the idea

of modeling ray tubes with an additional ray in the center to facilitate parallelism.

The parallel wavefront construction algorithm is applied to wide range of models such

as simple synthetic models that enable us to study various aspects of the method

while others are intended to be representative of basic geological features such as salt

domes. We also present a theoretical model to understand the performance of the

pWFC algorithm.

We evaluate the performance of the proposed parallel wavefront construction

algorithm on an IBM Power 5 cluster. We study the effect of using different mesh

types, varying the position of source and their number etc. The method is shown to

provide good scalable performance for different models.

Load balancing is also shown to be the major factor hindering the performance of

the algorithm. We provide two load balancing algorithms to solve the load imbalance

problem. These algorithms will be developed as an extension of the current work.
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1. INTRODUCTION

Numerous applications in the field of geophysics rely on seismic data for estima-

tion of the structure and the properties of subsurface geologic formations. Recent

advances in 3D seismic data acquisition have increased the input data volume by

several fold. In addition, processing methods have changed for high resolution pro-

cessing which results in an increase in the computational cost. With this change

in requirements, there is an increased need for parallel algorithms to provide high

resolution processing for large data volumes.

Seismic waves are waves of energy that travel through the earth. These waves

can be generated as a result of an earthquake, explosion, or some other process.

Seismic waves can be distinguished by a number of properties including the speed

the waves travel, the direction that the waves move particles as they pass by, etc.

P waves (primary waves) are compressional waves that are longitudinal in nature.

S waves (secondary waves) are shear waves that are transverse in nature. Shear

waves typically follow compressional waves during an earthquake and displace the

ground perpendicular to the direction of propagation. Depending on the direction of

propagation, the wave can take on different surface characteristics; for example, in

the case of horizontally polarized S waves, the ground moves alternately to one side

and then the other.

Seismic data is used both before and during the production of hydrocarbons from

a reservoir. Figure 1.1 illustrates a process by which seismic data is collected. Given

the location of a source of seismic waves, the seismometers (receivers) measure the

physical properties of rays such as their arrival time, amplitude and direction of

propagation etc.
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Figure 1.1 A simple earth structure with source and the receivers [1].

Forward modeling, the comparison of synthetic seismograms with recorded seis-

mic data, is one very important application. A hypothetical earth model (material

properties and features such as salt domes) is then developed on which seismic ray

tracing algorithms are used to simulate the propagation of rays. Seismic data col-

lected in field using seismometers is compared with the data produced by synthetic

seismograms (simulation results). If the results match, the hypothetical earth model

would match the experimental model. Otherwise, the hypothetical earth model is

iteratively refined to match the experimental model.

Potentially even more significant than forward modeling are the seismic inver-

sion and imaging methods that produce images of the subsurface from seismic data

acquired to study the Earth’s crust [2, 3, 4, 5, 6, 7]. These applications are very

important because they produce images of subsurface geologic structure or directly

estimate the properties such as seismic wave velocity. These subsurface images are

some of the most important data used to guide hydrocarbon exploration efforts. To-

mographic reconstruction is routinely used to develop two- and three-dimensional
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models of the variations of rock properties [8].

Several types of computational methods are used for seismic modeling such as

finite-difference methods and ray tracing methods. The finite-difference method

(FDM) [9] attempts to solve exact elastic or acoustic wave equations by discretizing

the model and applying finite-differences techniques to solve partial differential equa-

tions. This method can obtain the complete solution (total wavefield) [10, 11]. How-

ever, the wavefield simulated by finite-difference methods can be very complicated

and difficult to interpret [12]. Also, the finite difference method is comparatively

slow and requires significant memory resources.

In contrast to the finite-difference method, ray tracing methods solve simpler

equations resulting from a high-frequency approximation. Using a ray tracing method

[13, 14], we can calculate the travel-times and the amplitudes for different wave types

independently. Ray tracing methods are faster compared to finite-difference methods,

and are widely used in earthquake seismology as well as seismic imaging. Although

ray tracing is relatively faster and less expensive than finite difference methods, con-

ventional ray tracing has some limits in practical application. One of the well known

difficulties is the two-point problem, which involves finding an exact ray path be-

tween source and receiver points [12]. Also, it is difficult to determine an initial

number of and distribution of rays such that they can appropriately cover the areas

where the rays diverge rapidly. An initial distribution of rays may not be adequate

to provide material information for a portion of the model leading to the artificial

shadow problem.

The wavefront construction method (WFC) [15, 16, 17, 18, 19, 20, 21] is an ex-

tension of the conventional ray tracing technique. Wavefront construction based ray

tracing considers an entire wavefront instead of tracing individual rays and adaptively

controls the ray density on the wavefront. The method was developed to improve the

3



computational efficiency and to overcome conventional ray tracing inherent problems

such as the two-point problem and possible artificial shadow problems [22]. By using

wavefront based ray tracing, it is possible to avoid artificial shadows typical of con-

ventional ray methods. Earlier WFC algorithms were designed for isotropic (having

identical values of a property in all directions) media [16, 17, 19] and subsequently

several authors have introduced anisotropic (having different values of a property in

different directions) WFC algorithms [20, 23, 24, 25].

The wavefront construction method interpolates the rays on the wavefront which

may introduce errors. Very similar to the wavefront construction method, wavefront

oriented ray tracing interpolates new rays from the source point when the ray density

is less than the preset threshold at a wavefront [26, 25]. An advantage of wavefront

oriented ray tracing over the wavefront construction method is the higher accuracy

due to a reduction of possible errors from ray interpolation. Both methods are based

on similar strategies, so if the wavefronts are constructed with enough rays, the

difference between the two methods should be minimal.

1.1 Contributions

The objective of this work is to design and implement a parallel version of the

wavefront construction method (pWFC). One modification introduced in pWFC to

facilitate parallelism is to add an additional ray central to each adjacent set of four

rays. As will be discussed in detail later, this was done to increase locality and reduce

synchronization requirements.

The pWFC algorithm dynamically adds or removes rays from the wavefront as

needed to maintain the desired density. The dynamic nature of the algorithm may

lead to processor load imbalance resulting in loss of efficiency. To prevent perfor-

mance degradation, we propose two dynamic load balancing strategies, one central-
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ized and one decentralized. These algorithms will be further developed as future

extensions of the pWFC algorithm.

The pWFC algorithm is developed using the stapl library for parallel C++

code [27, 28, 29, 30, 31, 32, 33, 34, 35]. stapl provides a wide range of generic

parallel data structures, called pContainers, suitable for use in shared memory or

distributed memory architectures. The pWFC algorithm uses the stapl pGraph to

represent the wavefront. The load balancing strategies are implemented using the

element migration capabilities provided by the stapl pContainers.

We study the performance of the pWFC algorithm on an IBM cluster with p575

SMP nodes (16 processor cores per node) available at Texas A&M University (P5-

cluster). We study the effect various factors such as the initialization method,

the number of sources, material type, etc. We study the performance of the pWFC

algorithm on a range of models including simple synthetic models that enable us to

study various aspects of the method and on models intended to be representative

of basic geological features such as salt domes. The pWFC algorithm is shown to

provide scalable parallel performance. Load imbalance is shown to be a major factor

for the performance loss, making the future development of load balancing algorithms

imperative.

1.2 Outline of Thesis

Section 2 describes the basics of the sequential wavefront construction algorithm

and provides a summary of the related work. It also provides an overview of stapl

and its components. Section 3 and Section 4 describe the design and implementation

of the parallel wavefront construction algorithm, respectively. Section 5 shows the

performance of the proposed algorithms. Section 6 concludes this work.
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2. PRELIMINARIES AND RELATED WORK

This chapter presents preliminaries and related work. First, the sequential wave-

front construction algorithm is sketched. Next, related work on parallel algorithms

for a variety of seismic computations is summarized. Then we briefly describe the

stapl parallel C++ library which is used to implement the parallel wavefront con-

struction algorithm.

2.1 The Sequential Wavefront Construction Method

Rays are used to model the propagation of seismic waves. A ray is a collection

of ray segments, where a segment can be of the P or S wave type. Ray segments are

traced in discrete time steps of size dtray. When a ray segment hits a region boundary,

based on the surface properties and the algorithm input parameters, reflected or

transmitted segments can be created. Figure 2.1 shows a ray with different ray

segments.

A wavefront is defined as a surface connecting points with the same travel-time

(ratio of distance traveled to the seismic wave speed) on the rays. The wavefront is

composed of elementary geometric subdivisions of adjacent rays. Elementary geo-

metric subdivisions are called wavefront mesh cells or wavefront mesh elements. We

use quadrilateral shapes to define the wavefront mesh cell (Figure 2.2).

The wavefront construction method (WFC) [22, 12] is one implementation of the

ray tracing method. The basic difference between the WFC method and conventional

ray tracing is how individual rays are implemented. Instead of tracing a specified

set of rays from a source to the boundary of a model, the WFC method begins with

a few rays at the source and then adaptively adds/removes rays as the wavefront

propagates away from the source. The major steps in the wavefront construction
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algorithm are:

1. Initialization: The initial mesh in the wavefront construction method de-

scribes the geometric distribution of initial rays. The initial mesh can be re-

garded as a set of initial conditions for each of the ray directions. In this work,

we use two geometries to generate the initial mesh: sphere and cube [12].

2. Propagation of the Wavefront: Figure 2.2 shows the wavefront composed

of quadrilateral cells propagating through the model space. New rays are in-

terpolated (Figure 2.3) or removed as needed to maintain a certain level of ray

density. Thus, it adaptively controls the density of the rays by adding rays

when the accuracy is below a threshold and removing rays when the accuracy

is high.

The sequential wavefront construction algorithm in sketched in Algorithm 1.

Algorithm 1 Sequential WFC algorithm [22, 12]

Input: Earth model, mesh description, number of sources and their position
1: Initialize the rays using the specified geometry
2: for i = 0 to maximum wavefront index do
3: Trace the rays by one wavefront timestep
4: If the ray segments intersect a surface in the earth model, then create new ray

segments if needed
5: Propagate the wavefront and add/remove rays as needed
6: end for

2.2 Parallel Seismic Computation

Parallel algorithms have been developed for a variety of problems in the field of

geophysics. However, to the best of our knowledge, there is no publication discussing
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Figure 2.2 Wavefront mesh elements at two different time step τi (white point) and
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Figure 2.3 Rays are diverging with wave propagation and new rays are inserted at
the interpolated points on the wavefront to satisfy accuracy criteria and constant
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a parallel algorithm for the wavefront construction method. In the following, a brief

summary of the work done in the area of parallel computing for seismic applications

is given.

Seismic tomography is an inverse problem which aims to build a global seismic

wave velocity model of the Earth’s interior. Grunberg et al. [36, 37] presented a par-

allel seismic tomography algorithm that implemented a fast seismic ray tracing in

an Earth mesh [36]. Their ray-tracing algorithm is based on the Snell-Descartes law

in spherical geometry. They use a master slave model for their parallel algorithm.

Each process receives a description of the mesh and a set of rays to trace from the

master process. Each process then starts to compute its rays. Subsequent phases

such as data exchange (all-to-all communication) and concatenation (all-to-one com-

munication) combine and send the result of computation to the master process.

Migration [38, 39] of seismic data involves repositioning the measured data to

determine accurately the topology of the subsurface reflectors. Migration is an in-

verse process in which the recorded waves are propagated back to their source by

systematically solving the wave equation for each successive layer. In [40] a coarse

grained paradigm for computation on parallel computers is presented. Their work fo-

cused on approximate algorithms for 2D frequency domain migrations on hypercube

interconnect networks. They partition rows/columns of the matrices and distribute

them among the processors. Balanced load across the processors further improves

the efficiency of their algorithm.

The Hierarchical Object Oriented Parallel Environment (HOOPE) [41] is a paral-

lel application framework for pre-stack time migration (PSTM) [38, 39] and pre-stack

depth migration (PSDM) [38, 39]. They use a parallel abstraction layer, based on

MPI [42], which provides a set of parallel arrays with a global indexing mechanism.

Components in this layer also provide necessary functionality for data decomposition
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and inter-processor communication.

Some of the recent work on three-dimensional pre-stack time/depth migration

[43] focuses on using common azimuth migration (CAM) for the treatment of marine

data acquisition. In [43], the frequencies are distributed across MPI tasks and use

shared memory parallelism for the low-level loops using OpenMP [44].

Recently, General Purpose Processing on Graphics Processing Units (GPGPU)

have also been studied [45, 46, 47] for solving some of these problems. In [46], an

implementation of a Reverse Time Migration algorithm [48] on a GPU cluster is

presented. They consider a finite difference approach on a regular mesh, in both 2D

and 3D.

2.3 STAPL

With the increasing availability of multiprocessor and multicore architectures,

there is a growing need to more complex and larger problems which make parallel

programming crucial for application development. The Standard Template Adaptive

Parallel Library (stapl) [27, 28, 29, 30, 31, 32, 33, 34, 35] is being developed to help

programmers address the difficulties of parallel programming. stapl (Figure 2.4) is

a parallel C++ library with functionality similar to stl, the ISO adopted C++ Stan-

dard Template Library [49]. stl is a collection of basic algorithms, containers and

iterators that can be used as high-level building blocks for sequential applications.

Similar to stl, stapl provides a collection of parallel algorithms (pAlgorithms),

parallel and distributed containers (pContainers), and pViews to abstract the data

access in pContainers.

pContainers, are the thread-safe distributed equivalent of stl containers. These

containers are concurrent objects, i.e., shared objects that provide parallel methods

that can be invoked concurrently. pContainerscan be composed and extended by
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Figure 2.4 STAPL overview.

users via inheritance. Currently, stapl provides distributed counterparts of all stl

containers (e.g., pArray, pVector, pList, pMap, etc.), and pContainers that do not

have stl equivalents: parallel matrix (pMatrix) and parallel graph (pGraph) [35].

While the pContainer data may be distributed, the programmers are provided a

shared object view, i.e., a shared data structures with a global address space. Ob-

ject translation method internally handle this and are able to transparently locate

both local and remote elements. stapl can automatically choose the physical distri-

bution of a pContainer data or user can specify it. Individual pContainer elements

can be redistributed as needed to provide optimized performance. The pWFC algo-

rithm uses a pMap to represent the collection of rays and a pGraph to represent the

wavefront.

It is a common practice in generic programming to decouple the data structures

and the algorithms. This abstraction is achieved by stl, the C++ Standard Tem-

plate Library, using iterators. These provide a generic interface for algorithms to

access data which is stored in containers. This allows the same algorithm to work on

different containers. The stapl pView generalizes the iterator and corresponds to a

collection of elements. The stapl pView have reference semantics, meaning that a
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pView simply references to the data and does not own it. pViews enable parallelism

by providing random access in the partitioned data space which is essential for the

scalability of stapl programs. The pWFC algorithm uses pViews provided for pMap

and pGraph parallel container.

A pAlgorithm is the parallel counterparts of an stl algorithm. stapl in-

cludes a large set of parallel algorithms, including parallel equivalent of stl al-

gorithms. Similar to stl algorithms that use iterators, stapl pAlgorithms use

pViews. pContainer can present multiple interfaces to its users using pViews, e.g.,

enabling the same pMatrix to be viewed (or used) as a row-major or column-major

matrix or even as a linearized vector [35]. The pWFC algorithm uses the two parallel

algorithms, namely map and map reduce.
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3. PARALLEL WAVEFRONT CONSTRUCTION METHOD

In this chapter, we present the parallel wavefront construction method (pWFC).

While the overall algorithm is patterned after the sequential algorithm, it includes

some modification to help facilitate parallelism. A theoretical model for the pWFC

algorithm is also presented.

3.1 Algorithm Overview

In this section, we provide a high level description of the pWFC algorithm. Each

individual step of the algorithm is described in more depth in the following sections.

Like numerous other scientific computations, the parallel wavefront construction al-

gorithm uses a iterative algorithm. The first step of the pWFC algorithm (refer to

2) is to initialize a coarse level grid of rays starting from a point in space (source).

There may be multiple source locations each generating a different set of rays and

ray tubes (line 1-3). Take-off angle mesh and Cubed sphere mesh are the two most

widely used algorithms to construct the initial course level grid. Rays start from the

source and go through the discretized points on the course grid.

If only the initial set of rays were to be used for computation, they may not be

enough to validate that the earth model is correct or not. We may need a larger

or a smaller set of rays to achieve the desired accuracy. Wavefront construction

algorithm is an adaptive algorithm that can add/remove rays to keep the desired

accuracy. Wavefront construction algorithm uses a set of four adjacent rays (forming

a quadrilateral) to compute the accuracy of the wavefront. These four points when

viewed at different times, give it an appearance of a tube which is referred as ray

tube. To compute the accuracy, the rays are traced for
dtray tube

dtray
time steps (line 6-

12), i.e., the ratio of the time step size of the ray tube (also the time step size of the
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wavefront) to the time step size of the ray. This is the minimum number of times a

ray should be stepped so that information is generated for stepping the ray tubes by

one time step. Next, all the ray tubes are stepped by one time step. This may result

in interpolation/coarsening of the ray tubes (line 13-16). Load balancing algorithm

may used to balance the load among the processors when imbalance is detected (line

17-19). This process is repeated until there are no more ray tubes left (line 4) or

until we have reached the maximum simulation time.

Algorithm 2 Parallel WFC algorithm

Input: Earth model, mesh description, number of sources S and their position
1: parallel for each source in S
2: Initialize the rays in R and the ray tubes in RT using the specified geometry
3: end parallel for
4: while(RT != ∅)
5: for i = 0 to

dtray tube

dtray

6: parallel for each ray ∈ R
7: Trace the rays by one time step
8: if Ray segments intersect a surface in the earth model
9: Create new ray segments if needed
10: end if
11: end parallel for
12: end for
13: parallel for each ray tube ∈ RT
14: Step the ray tube by one time step
15: Interpolating/coarsening the ray tube if necessary
16: end parallel for
17: if Load balancing needed
18: Use load balancing algorithm
19: end if
20: end while
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3.2 Mesh Initialization

In this work, we have considered two methods for the initialization of the rays

and the ray tubes: (i) Take-off angle mesh [14] and (ii) Cubed sphere mesh [12]. In

the sphere geometry, the initial conditions or the take-off directions of each ray are

specified with two ray parameters, γ1 and γ2. The third ray parameter can be the

travel-time, γ3 = τ , or arclength, γ3 = s, along the ray path [14]. The initial mesh

is then constructed by connecting the points sharing the same travel-time along the

ray paths (γ1 = ψ, γ2 = φ, and γ3 = τ0) (Figure 3.1(a)). Constructing the initial

mesh with take-off angles is natural and straightforward to visualize and implement.

However, this mesh coordinate system always has geometric poles at the top and the

bottom (declination angle, ψ = ±90), where the population of rays is very dense and

it is computationally inefficient [12]. Furthermore, when we compute ray derivatives

near or at the pole, it is numerically unstable [12].

As we can use any physical quantity for the ray parameters as long as it can

specify the ray uniquely, we can design different types of mesh generation schemes

by choosing another set of ray parameters. An alternative choice of ray parameters

is the cubed sphere mesh (Figure 3.1(b)), which uses an imaginary cube (focal cube)

centered at the source point. Initial rays are projected from the source point for

a unit travel-time, passing through the discretized points on each face of the cube.

The cube is constructed with a unit length and discretized by NxN points for each

face where N is the number of discretized points along an edge.

The initialization method is also dependent on the nature of the wave that is used

for simulation. qP waves are longitudinal waves and the particles in the solid have

vibrations along or parallel to the travel direction of the wave. qS waves are transverse

waves and their motion is perpendicular to the direction of wave propagation. qS
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(a) Take-off angle mesh (b) Cubed sphere mesh

Figure 3.1 Different mesh initialization geometries (a) Take-off angle mesh coordi-
nate, the ray parameters are defined as γ1 = ψ(declination), γ2 = φ(azimuth), and
γ3 = τ(travel-time). (b) Suppose we have a unit cube centered at the source point,
then a ray can be traced from the source point through an evenly discretized point
on the face of the focal cube face. The coordinates of discretized points on the face
of focal cube are new ray parameters defined as γ1 = xi (x1 component of a face),
γ2 = xj (x2 component of a face), and γ3 = τ (travel-time).

waves form two different wavefronts, namely qSA and qSB. The initialization step

is fairly straightforward for qP wave simulation. For qS wave simulation, there are

some dependencies that have to be respected to initialize the mesh correctly. The

dependencies for the qS mesh creation are shown in Figure 3.2(a). First, we create

two rays corresponding to the minimum azimuth and minimum declination angle

and assign them to either the qSA or the qSB wavefront arbitrarily. Using these rays

as the reference, the rays belonging to the minimum declination (leftmost column)

can be assigned a wavefront type. Finally, all the rays in the row can be assigned a

type using the previous ray in the same row as the reference. Figure 3.2(b) shows

the mesh after the ray tubes have been created.
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(a) Dependencies (b) Mesh after the initialization.

Figure 3.2 qS mesh creation algorithm (a) Dependencies for the qS mesh creation
algorithm and (b) Mesh after the creation of rays and ray tubes. Each vertex is a
ray and each square is a ray tube.

3.3 Wavefront Propagation

The wavefront created in the initialization phase is then propagated through

the model. As described in the overview (Section A), various steps are involved in

stepping the wavefront by one time step. These include tracing the rays, following

the ray tube while maintaining numerical accuracy and load balancing as needed.

These are described in the next few sections.

3.3.1 Tracing Rays

Rays are used to model the propagation of the wavefront. Each ray is identified

using a pair of integers (r, c). Rays are traced in discrete time steps of size dtray. Ray

path of the individual rays can be obtained by solving a set of ordinary differential

equations. The current implementation uses the 5th order Runge-Kutta [12] method

to numerically solve the ordinary differential equations; other numerical solvers such

as Hammings predictor-corrector method or Adams-Moulton predictor formula can

be used [12]. Note that ray tracing is not limited to any particular numerical solver

as long as we can compute physically valid rays. Also, ray tracing can be performed

with different approaches such as the graphical ray method or simple geometric ray
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tracing for a multi-layered model with isotropic homogeneous layers.

Algorithm 3 presents the steps involved for tracing the ray by one time step. The

first step of the algorithm is to step all the rays by one time step (dtray time). Note

that each ray can be stepped independently (in parallel) of the other rays. Next,

we need to make sure that the ray segment does not intersect with any surface as

it is traced by one time step (ray behavior depends on material properties). This

can be done by checking if the line segment formed by joining the position of the

ray segment at time τ and τ + dtray intersects with any surface (region boundary).

Since ray segments are traced based on the material properties of the region in which

they are present, we need to determine the first surface with which a ray segment

intersects. This is the position where the ray segment may enter into a region with

different material properties. Finally, the result of the intersection query is used by

the ray segment. If the ray segment was found to hit a surface, new segments are

created based on the properties of the surface.

Algorithm 3 Ray trace algorithm

1: parallel for each ray ∈ R
2: for each ray segment ∈ collection ray segments for the ray
3: Step the ray segment of the ray by dtray time
4: Find intersecting surface for the line segment (ray[τ ] and ray[τ+dtray ])
5: if Intersection is found
6: Create ray segments based on the properties of the surface
7: end if
8: end for
9: end parallel for

If there were n rays distributed uniformly among p processors and cray is the time

needed to step one ray by one time step, then the time to trace all the rays by one
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time step is O(n∗cray
p

).

3.3.1.1 Line Segment Intersection

Given a ray segment (start and end point), at each time step we need to query if

it intersects any surface (region boundary). This problem is known as line segment

intersection query. Since these queries are performed whenever a ray segment steps

by one time step, it is necessary to have an efficient method to solve these queries. A

brute force solution would be to check if the line segment intersects with any object

in the model. There are two general strategies of intersection culling which do this

more efficiently by restricting the number of intersection tests: hierarchical bounding

volumes [50, 51] and space partitioning [52, 53, 54]. The hierarchical bounding

volumes approach is based on the idea of enveloping complicated objects that take

a long time to intersect with simpler bounding volumes that are much easier to

intersect, such as spheres [50] or axis aligned bounding boxes [51]. Before intersecting

the complicated object, the bounding volume is first tested for intersection. If there

is no intersection with the bounding volume, then there is no need to intersect the

complicated object, thus saving time. The space partitioning approach for reducing

intersection tests is to partition the space itself into voxels. Each voxel has a list of

objects that are in that voxel. If an object spans several voxels it is in more than

one list. In this approach, it is first determined which voxel contains the object

of interest and then it is intersected with all objects contained in the voxel. Well

known method for space partitioning include KD-tree [55], quad tree (2D models)

and octree (3D models).

We use the octree [56] data structure to represent the model information. The

octree is one of the best known space partitioning method used for speeding-up

of intersection tests with a set of objects in an environment. The algorithm for
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the line intersection test is straightforward (see Algorithm 4). The first step is to

determine the octant which contains the starting point of the line segment. The line

segment is then tested for the intersection with the objects in the octant. If the line

segment did not intersect with any object in the octant its end point lies inside in the

octant, it implies the line segment did not intersect with any object. Otherwise, the

neighboring octant containing the line segment is determined and the line segment is

intersected with the objects in that octant. This process is repeated until we either

find an intersection or we are certain line segment does not intersection with any

object. If multiple intersections are found in an octant, the intersection point closest

to the starting point is determined as the intersection point.

Figure 3.3 provides an example of how the KD data structure works. For sim-

plicity of illustration, the example uses a quad tree data structure. First, the start

point of the line segment is located in partition 3 of the model. The line segment is

intersected with objects in the quadrant (octant in 3D) but no intersection is found.

The line segment passes through quadrant 5 (neighbor of quadrant 3). There also

no intersection is found with any object. The line segment passes through quadrant

6 and an intersection is found with an object.
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Figure 3.3 Intersection of line segment with objects partitioned in 2D space. Parti-
tions are numbered 1 through 7 and line segment is represented by dotted lines.

Algorithm 4 Intersection algorithm(start point, end point)

1: start = start point
2: octant = Find bounding box(start)
3: while line segment(start, end point) does not intersect any object contained in

octant do
4: if end point lies in the octant then
5: return no intersection
6: else
7: octant = neighboring octant containing the line segment
8: end if
9: end while
10: return intersection point
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3.3.2 Following Ray Tubes

In the pWFC algorithm, the initial wavefront propagates through the model

space by controlling the ray density of a wavefront to ensure numerical accuracy.

The density of the rays is monitored using the ray tube construct. Like a ray, a ray

tube is a collection of ray tube segments. A ray tube is formed by four corner rays.

The quadrilateral formed by joining points on the rays of a ray tube at time t create

a wavefront cell. Collection of all the wavefronts at time t create the wavefront at

time t. Ray tube segments follow the ray segments and check for errors (patch test)

at time step dtray tube. The error computation determines if new rays need to be

added or if they can be removed. We can use several quantities to determine the

error values such as the distance between adjacent rays, the area defined by adjacent

four rays (a cell on a wavefront), or other quantities. Figure 2.2 shows the ray tube

segment propagation and interpolation/insertion of new rays.

In order to compute the error, ray tubes access some property of the rays at

the different time steps.
dtray tube

dtray
is the minimum number of times a ray should be

stepped so that the ray tubes advance by one time step. The ray tube segment then

determines the error value for the wavefront element. Based on the result of the patch

test, the ray tube segment may be interpolated or coarsened. These two processes

are described in the following sections. The interpolated rays and ray tubes start at

the previous ray tube time step because the error was within the acceptable bounds

at the previous time step. Hence, ray tubes that did not interpolate and the newly

interpolated ray tubes are at different time steps. In our computation, we do not

bring the interpolated rays and interpolated ray tubes to the same wavefront time

(no synchronization) for the following reasons. These rays and ray tubes can proceed

independently of each other. This is very beneficially for the parallel algorithm as it
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allows the algorithm to work asynchronously. Also it may happen that the ray tube

interpolated at time step t, may need further interpolation to reach acceptable error

values. If the algorithm were to be of synchronous nature, a lot of processors would

waste idle time waiting (load imbalance) for a few ray tubes to interpolate.

k = lmax − l

ray ids = {(r ∗ 2k, c ∗ 2k),

(r ∗ 2k, (c+ 1) ∗ 2k),

((r + 1) ∗ 2k, c ∗ 2k),

((r + 1) ∗ 2k, (c+ 1) ∗ 2k)}

Each ray is identified using a pair of integers (r, c). The identifiers of the rays are

assigned in a manner such that the identifier of an interpolated ray between two rays

is the mean of the identifier of the two rays. This way, we can assign the identifiers

to rays once and they do not need to change as the ray tubes interpolate or coarsen.

Each ray tube has an identifier triplet (l, r, c) where 0 ≤ l ≤ lmax. There exists a

closed form solution from the ray tube identifier to the identifier of the rays with

which the ray tube works. The identifiers of the rays that the ray tube works with

are

3.3.2.1 Interpolation

As the rays start propagating through the earth model, ray tubes are used to

control and ensure the numerical accuracy of the results. When interpolating a ray

tube segment, five new ray segments and four new children ray tube segments are

created. The interpolation process for the ray tubes with four rays is shown in
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Figure 3.4. Once the segments have been created, they can be added to the rays.

The algorithm for interpolation of the ray tube segment working with four rays is

presented in Algorithm 5. Note that once the segments have been created, the work

of adding the rays and the ray tubes can be done independently and completely

asynchronously.

Algorithm 5 Interpolation of ray tube

1: Create interpolated ray segments and ray tube segments
2: for i = 1 to 5 do
3: Add-Ray-Segment(interpolated ray idi, interpolated ray segmenti)
4: end for
5: if Ray tube has not been previously interpolated then
6: Create children ray tube
7: end if
8: for i = 1 to 4 do
9: Add the interpolated ray tube segmenti to the child ray tubei
10: end for
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Figure 3.4 Interpolation of the ray tube working with four rays.

When, ray tube RT = (l, r, c) (where lmax is the maximum interpolation level)
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is interpolated, the identifiers of the children ray tubes are provided by the following

equation.

ray tube ids = {(l + 1, 2 ∗ r, 2 ∗ c),

(l + 1, 2 ∗ r, 2 ∗ c+ 1),

(l + 1, 2 ∗ r + 1, 2 ∗ c),

(l + 1, 2 ∗ r + 1, 2 ∗ c+ 1)}

3.3.2.2 Coarsening

Coarsening of the mesh is the inverse of interpolation. While interpolation is a

necessary operation to ensure numerical accuracy, coarsening of the ray tubes reduces

the work and space requirements. In some regions, the rays diverge rapidly and many

rays and ray tubes are interpolated creating more work. It may happen that these

interpolated ray tubes cross into a region where fewer rays and ray tubes are needed.

If we stop tracing the extra rays and following the unnecessary ray tubes, we can

reduce the extra work and improve the execution time of the application.

The pWFC algorithm removes the rays segments and ray tubes segments if they

ray tube segment has relatively low numerical error. In the following section, we

describe an algorithm to determine if wavefront coarsening can be done. We do this

by tracking the state of the ray tube segments. Ray tube segments can be in one of

the three states, a) can b) wait and c) try. The state transitions are shown in Figure

3.5. When a ray tube segment is created, it starts in the can state. If the error value

is less than the threshold value while the segment is in the can state, it informs the

parent ray tube segment that it wants to coarsen (coarsen request) and itself makes
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Figure 3.5 State transition diagram for ray tubes.

a transition to the wait state. When the parent ray tube segment receives a coarsen

request from all of its children ray tubes, it informs its children ray tube segments to

transit to the try state. In the try state, if the ray tube segment finds that the error

value is less than the threshold value, it provides the information necessary to re-

create (coarsen re-create) the parent ray tube segment and itself makes a transition

to the can state. Once the information (coarsen re-create) from all four child ray

tube segments has been received, the parent ray tube checks if the four children ray

tube segments want to coarsen at the same wavefront time and are located in the

same region of the earth model. If yes, the parent ray tube deletes the children ray

tube segments. It also stops the tracing of ray segments that lie inside the parent

ray tube.

Figure 3.6 shows an example of coarsening of ray tubes. Child tubes 1, 2, 3 and

4 are removed and their parent ray tube (bigger square) is recreated. There are a

lot of different cases when the ray tube segment cannot coarsen back into the parent

ray tube. For example (a) if all the four children ray tube segment inform the parent

ray tube that they want to coarsen but they are in different regions and (b) if at

least one of the children ray tube segment does not inform the parent ray tube at
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Figure 3.6 Coarsening of ray tubes.

wavefront time τ1.

3.4 Ray Tube with Additional Ray

One important method for controlling the numerical accuracy of a ray tube is the

central finite difference method. The method requires information from the neigh-

boring rays of the mesh element (Figure 3.7). Book-keeping of the neighbor ray

information is costly in storage and may require communication with other proces-

sors. Instead, of maintaining information related to neighbors, we propose a ray

tube with an additional ray in the center. This allows us to use the central finite

difference method without the neighbor information. Figure 3.8 shows a ray tube

segment being patch tested at the various time steps. Ray tube segment failed the

patch test at time step τ4 and is interpolated at the previous time step τ3.

Even though the additional ray in the center provides the necessary number rays

for the central finite difference method, the method cannot be applied directly. The

method requires that (a) central ray’s parameters differ with each of the four cor-

ner rays in only one ray parameter (b) ray parameters of the diagonally opposite

corner rays should also differ in one parameter. In the next two sections, we pro-

vide the modifications for the take-off angle mesh and cube sphere mesh generation
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Figure 3.7 Ray tubes are shown in 2D. Dotted rectangle encloses the ray tube that
is to be patch tested using the central finite difference method. The dotted circle
represents the neighbor ray and black dots represent the ray which should be used
for patch test. (a) All the neighboring rays exist that were needed for the patch test.
(b) The required left adjacent neighbor of the central ray (black dot) does not exist
(c) Both the horizontal and the vertical neighboring rays are not the required rays.
Note that the required rays have not been interpolated.

Figure 3.8 Wavefront element with an additional ray in the center. Wavefront mesh
element failed the patch test at τ4 time step and gets interpolated at time step τ3.

algorithms.

3.4.1 Rotated Take-Off Angle Mesh

First, we describe the rotated take-off angle mesh which is a modification of the

take-off angle mesh (as shown in Figure 3.9). Let ψi be the azimuth angle for rays

1 ≤ i ≤ nψ where nψ is the number of rays in azimuth direction. Let φj be the

declination angle for rays 1 ≤ j ≤ nφ where nφ is the number of rays in declination

direction. Let γ1 = ψ (declination) and γ2 = φ (azimuth) be the ray parameters for
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a ray in the original ray parameter space.

To achieve the desired ray parameter properties, we rotate the ray parameter

space such that an axis goes through a diagonal of the rectangle (equations 3.1 to

3.4, Figure 3.9(b)). Mesh generation algorithms may generate ray tubes such that

the difference of the ray parameters δψ 6= δφ on the two axis is not the same. For

this reason, the mesh cell corresponding to a particular ray tube will be rectangular

(Figure 3.9(a)). In redefining the ray coordinates, we therefore apply a shear factor

that rescales one coordinate so that the final result is a mesh with cells of equal

length in both directions. This simplifies finite difference calculations on the mesh

(equations 3.5 to 3.6, Figure 3.9(c)). Equation 3.6 provides the ray parameters γ1′′

and γ2′′ for the ray in the modified ray parameter space.

δψ = max (ψi)−min (ψi)
nψ− 1

(3.1)

δφ = max (φi)−min (φi)
nφ− 1

(3.2)

θ = arctan δψ
δφ

(3.3)

γ1′ = γ1 ∗ cos(θ)− γ2 ∗ sin(θ), γ2′ = γ1 ∗ sin(θ) + γ2 ∗ cos(θ) (3.4)

sf = δφ2−δψ2

δφ2+δψ2 (3.5)

γ1′′ = γ1′+ sf ∗ γ2′, γ2′′ = γ2′ (3.6)

3.4.2 Rotated Cubed Sphere Mesh

The rotated cubed sphere mesh is a modification of the cubed sphere mesh. Since

the face of the cube is uniformly discretized on both the axis, we only have to rotate

the ray parameters space to align the diagonals of the ray tube with the axis of

the ray parameter space (Figure 3.10). Note that for the edge of the faces, we add

29



Figure 3.9 Transformation for the rotated take-off angle mesh. (a) ray tube with ray
parameters in original space (b) ray tube with ray parameters space rotated (c) ray
tube with ray parameter space rotated and then sheared.

duplicate rays (one for each face) as allows us to have a closed formed solution from

the ray tube id to the ray ids (each ray belongs to a unique face).

Let P = (x, y, z) be any discretized point on the surface of the cube. Equa-

tions 3.8, 3.9 and 3.10 provide the modified ray parameters for point P on the face

perpendicular to the x, y, z axis respectively.

θ = π
4

(3.7)

γ1 = y ∗ cos(θ)− z ∗ sin(θ), γ2 = y ∗ sin(θ) + z ∗ cos(θ) (3.8)

γ1 = z ∗ cos(θ)− x ∗ sin(θ), γ2 = z ∗ sin(θ) + x ∗ cos(θ) (3.9)

γ1 = x ∗ cos(θ)− y ∗ sin(θ), γ2 = x ∗ sin(θ) + y ∗ cos(θ) (3.10)

3.4.3 Ray Tube Interpolation

If the ray tube works with five rays, then the identifiers of the rays for a given ray

tube RT = (l, r, c) (where lmax is the maximum interpolation level) are provided

by the following equations.
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Figure 3.10 Transformation for the cubed sphere mesh. (a) face of the cube with z
= 1 (b) ray parameters for the rays in the rotated ray parameters space.

k = lmax − l + 1

ray ids = {(r ∗ 2k, c ∗ 2k),

(r ∗ 2k, (c+ 1) ∗ 2k),

((r + 1) ∗ 2k, c ∗ 2k),

((r + 1) ∗ 2k, (c+ 1) ∗ 2k),

((2 ∗ r + 1) ∗ 2k−1, (2 ∗ c+ 1) ∗ 2k−1)}

When interpolating a ray tube working with five rays, eight new ray segments

are created and four new children ray tube segments. The interpolation process for

a ray tube with five rays is shown in Figures 3.11. The identifiers for the children

ray tubes are not affected by the addition of a ray to the ray tube.

3.5 Theoretical Model

In this section, we present a theoretical model for the pWFC algorithm. Since we

do not have any other implementation to compare our results, we develop this model
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Original rays

Interpolated rays

Figure 3.11 Interpolation of the ray tube working with five rays.

to understand the effectiveness of the pWFC algorithm. We work with a simplified

model in which we do not have to worry about the dynamic nature of the algorithm.

The model assumes that the mesh is uniformly interpolated lex times at source where

lex is the maximum level of interpolation (determined from experiments). Note that

this is not the same as initial mesh refinement, we do this to avoid any interpolation

or collapsing of ray tubes and to have balanced load in the theoretical model.

Let n, m be the number of rows and column in the mesh respectively. Also, the

processors are laid out in a 2D grid of pn x pm size. Suppose we had 8 ray tubes (2 x

4 mesh) created during the initialization phase. If one ray tube is refined three times

while the others are refined only one time, the theoretical model assumes all the ray

tubes were refined 3 times at the start of the computation. Thus, we assume we had

a constant grid of size (32 x 16) propagating during the computation. Figure 3.12

presents a partitioning of the 2D mesh among 8 processors (2 x 4 processor grid).

Each processor works on its sub-grid (area of the partition) and communication

happens at the perimeter of sub-grid.

Let wij be the number of the ray tubes processed by the jth processor in the

ith iteration of a computation (experimental data). The processors communicate

only across the boundary (perimeter) of their partition (equation 3.12). We com-
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Figure 3.12 Mesh of size n x m partitioned among 8 processors (2 x 4 processor grid).
Shaded portion represents the work assigned to a processor. Processors communicate
with their neighbors.

pute theoretical scalability (Sp) that can be achieved for a problem instance based

on the model of communication and computation (equation 3.13). This is diffi-

cult to achieve because of the load imbalance in the application. We then deter-

mine the load imbalance ratio based on the data collected from actual experiments.

Load imbalance ratio is defined as the ratio between the sum of maximum work done

in all the iterations of the algorithm to the average work done by all the processors

in all iterations of the algorithm (equation 3.14). If all processors have equal amount

of work in all iterations, the load imbalance ratio = 1. If there is a high degree of

imbalance, the maximum work done by a processor would much greater than average

work and hence the load imbalance ratio would be greater than 1. Next, we scale

down the theoretical scalability (Sp) by the load imbalance ratio. This gives us the

scalability that can be achieved with the given load imbalance (equation 3.14).

commp = n
pn

+ m
pm

(3.11)

Sp = comp1
compp+ commp

(3.12)
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load imbalance ratio =

#iter∑
i=0

max
0≤j<p

wij

1
p

#iter∑
i=0

p∑
j=0

wij

(3.13)

S′p = Sp
load imbalance ratio

(3.14)

To help understand the model better, let us consider an example. Let us have

a 4 x 2 mesh grid partitioned among four processors (2 x 2). The maximum level

of interpolation for interpolation lex = 3. Also, let us assume that observed load on

four processors for three iterations were {2, 4, 8}, {2, 4, 8}, {2, 4, 8} and {2, 8, 16}.

Based on the initial mesh size and observed maximum interpolation level, we

assume we had a mesh of size 32 x 16 which was partitioned among four processors.

Based on the mesh size and processor grid, we first determine the communication

cost (equation 3.16). Maximum theoretical scalability (equation 3.18) is then com-

puted considering the communication that happens across the perimeter of a mesh

partition. The load imbalance ratio (equation 3.20) is computed based on the load

profiles collected during computation. The maximum scalability (equation 3.22) with

load imbalance is computed by scaling down the theoretical scalability by the load

imbalance ratio.

comm4 = 32
2

+ 16
2

(3.15)

= 24 (3.16)

S4 = 32 X 16
32 X 16

4
+24

(3.17)

= 3.37 (3.18)

load imbalance ratio = max{2,2,2,2}+max{4,4,4,8}+max{8,8,8,16}∑
2,2,2,2+

∑
4,4,4,8+

∑
8,8,8,16

4

(3.19)
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= 1.53 (3.20)

S′4 = 3.37
1.53

(3.21)

= 2.20 (3.22)
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4. IMPLEMENTATION IN STAPL

In this section we discuss the implementation of the pWFC algorithm in stapl.

First, we describe the parallel data structures used in parallel algorithm. Then,

we discuss the implementation of the parallel algorithm described in the previous

section.

4.1 Ray Collection

The ray collection data structure is one of the most important parallel data

structures. The main operations the data structure provides are

• adding rays in the container, and

• supporting interpolation of a new ray between two existing rays.

To support these operations, we need a parallel data structure that provides

random access and mapping from identifiers to the elements. We use the parallel

container pMap provided by the stapl library, for storing the rays. The data struc-

ture is convenient as it allows the user to access the elements based on identifiers.

To achieve this, we use inheritance to derive from pMap and provide the required

interfaces. Since the ray collection data structure is a type of mapping container

with no relationship between elements, we choose inheritance to preserve the ”type

of” relationship.

1 template <class Key , class Value , class Compare ,

2 class Par t i t i on=Default , class Tra i t s=Default>

3 class p map ;
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The pMap is an associative container that provides a mapping from key to value

where compare is a used to compare the keys. Similar to other stapl pContainers,

users can specify an optional partition and traits.

1 template <class Ray , class Interpo lat ion Manager>

2 class r a y c o l l e c t i o n : public p map<Ray Id ,

3 Ray ,

4 l e s s<Ray Id> >

The ray collection takes two template parameters, ray and interpolation manager.

The ray data structure represents a seismic ray and interpolation manager provides

methods to create an interpolated ray using the properties of the existing rays. Less

is a class that enables lexicographic comparison of the identifiers of the rays.

We first look at the interface used to add the ray in the pContainer. All stl

equivalent methods for map require a return type, which in general translates into a

synchronous (blocking) method. For this reason, the stapl pMap provides a set of

non-blocking methods, e.g., insert async and erase async. These asynchronous

methods enable the stapl RTS to reduce the communication overhead by aggre-

gating messages and allow better allow for better communication/computation over-

lap. We use the insert async method which allows addition of an element to the

pContainer in a non blocking manner. The complexity of the method is based on

the complexity of the pMap insert async method O(log(N)) where N is the number

of rays in the pContainer. This method to add the rays in the pContainer is used

when the initial mesh is constructed.

1 // FUNCTION TO ADD THE RAY ASYNCHRONOUSLY

37



2 void add ray async ( r a y d e s c r i p t o r t yp e const& desc ,

3 ray type const& new ray ) {

4

5 i n s e r t a s yn c ( make pair ( desc , new ray ) ) ;

6 }

The interpolation of rays is a complex operation is parallel as neighboring ray

tube may attempt to add the same ray at the same time. Also different ray tube

segments may add different ray segments to the same ray. These operations must

be handled carefully in a parallel algorithm to ensure the integrity of the wavefront.

Ray collection provides an insert async method inherited from pMap. This function

can be used to interpolate the rays (see following code snippet, line 13-16). The

method requires a pair of an identifier (key) and a ray (value) along with a functor.

If the ray associated with the unique key is not present, then the ray is added to

the pMap. If the ray is present, then the functor is invoked (line 1-12). The functor

receives the old ray and the new ray. The functor calls the combine method of the

ray class (line 10). This function checks if the old ray contains the ray segments that

are contained in the new ray. If the segments are already present, then the old ray is

not modified as already has the required ray segments. Otherwise, the ray segments

of the new ray are added to the old ray.

The complexity of the method is based on the complexity of the pMap insert async

method O(log(N)) where N is the pContainer size. Stopping a ray segment from

being traced is a much simpler operation than interpolation. This requires modifying

the state of a ray segment contained in ray which can be uniquely identified. Since

we only need to operate on an element (ray) and we do not need any return value,

we use asynchronous methods provided by pContainers.
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1 // FUNCTOR

2 class add functor {

3

4 public :

5

6 template <class T>

7 r e s u l t t y p e operator ( ) (T& old ray ,

8 T const& new ray ) const {

9

10 o ld ray . second . combine ( new ray . second ) ;

11 }

12 } ;

13

14 // ADD THE INTERPOLATED RAY

15 i n s e r t a s yn c ( make pair ( i n t e r p o l a t e r a y i d , i n t e r p o l a t e r a y ) ,

16 add functor ( ) ) ;

Tracing of rays from one wavefront to next is another important operation that

is done on the collection of the rays objects. This can be achieved by a simple

pAlgorithm is stapl (see following code snippet, line 17.) For this, we specify a

view over the elements of the ray collection (line 14) and the specify the work (using

a work function) that should be applied to each ray object (line 1-11.) Since we want

to advance all the rays by one time step, we create a view over all the ray objects

(entire domain) in the container. The work function receives a view over a ray (line

7) and in turn calls the ray object’s trace function (line 9) to advance it by one time

step. Since the ray is a container that holds ray segments, it calls the trace method

for the ray segments it contains. stapl provides a p for each algorithm that applies
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a work function to each element in a container, our ray collection. The complexity

of the operation is O(N
P

) where N is the pContainer size and P is the number of

locations.

1 // WORK FUNCTION

2 class s t ep ray wf {

3

4 public :

5

6 template <typename View>

7 void operator ( ) (View const& element ) const {

8

9 element . s t ep ray ( dt ray ) ;

10 }

11 } ;

12

13 // VIEW ON THE pCONTANER

14 map view view ( r a y c o l l e c t i o n , dom type ( r a y c o l l e c t i o n ) ) ;

15

16 // CALL TO PALGORITHM

17 p f o r e a ch ( view , s t ep ray w f ( dt ray ) ) ;

4.2 Ray Tube Collection

The ray tube collection is another important parallel data structure. The main

operations that the ray tube collection data structure provides are

• stepping the ray tubes by one time step, and
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• refining and coarsening the wavefront mesh by interpolating or removing the

ray tubes.

For managing the collection of the ray tubes, we use the parallel container pGraph

provided by the stapl library. Each initial mesh element is the root of a tree and

the pGraph is used as a forest. This way we can model the parent child relationship

of the ray tubes.

The stapl pGraph is a generic data structure that consists of a collection of

vertices and relations between vertices called edges. The pGraph associates a vertex

property with each vertex and an edge property with each edge. These are template

arguments that are passed by the user when instantiating a pGraph. Additionally,

using template arguments, users can indicate if the graph is directed (directedness)

and if the graph allows multiple edges between the same source and destination

(multiplicity). Similar to other stapl pContainers, users can specify an optional

partition and traits. The pGraph declaration is the following:

1 p graph<Directnedss ,

2 Mu l t i p l i c i t y ,

3 ve r t ex prope r ty=no property , // op t i ona l

4 edge proper ty=no property , // op t i ona l

5 p a r t i t i o n=default , // op t i ona l

6 t r a i t s=d e f a u l t t r a i t s // op t i ona l

7 >

Similar to how the ray collection parallel data structure inherits from pMap, the

raytube collection inherits from the pGraph. We use ray tubes as the vertex prop-

erty. The parent and the child vertices are connected by directed edges. Edges from
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a parent ray tube to the four children ray tubes have unique identifiers 0, 1, 2, 3 to

distinguish among them. The ray tube data structure is also passed as a template

argument.

1 template <class Raytube Type>

2 class r a y t ub e c o l l e c t i o n : public p graph <DIRECTED,

3 MULTIEDGES,

4 Raytube Type ,

5 int> {

The pGraph provides an add vertex method to add a vertex. The add raytube

function uses this interface and provides an intuitive interface to the user. The com-

plexity of the method is based on the complexity of the pGraph method, and can be

O(1) amortized time if a hash table used as pGraph’s base container.

1 // Function to add a ray tube wi th an id

2 d e s c r i p t o r t yp e add raytube ( raytube type const& new tube ) {

3

4 return add vertex ( new tube ) ;

5 }

Next, we show how all the ray tubes are stepped by one time step. Ray tubes

read the properties of the rays at different time steps and use this information to

determine if they need to interpolate or coarsen. The rays which are accessed may

not always be local, which may result in a remote access. To avoid blocking on the

remote access, we use a common strategy of breaking the operation in two parts. In

the first step, the ray tube (asynchronously) requests the information from the rays

(see following code snippet, line 5). The rays asynchronously write the requested
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information to memory allocated for the ray tube. Later, this information is directly

used by the ray tube for computation (line 12). The complexity of the operation is

O(N
P

) where N is the pContainer size and P is the number of processors.

1 // CREATE A VIEW OVER THE RAY TUBES

2 r a y t ub e c o l l e c t i o n v i ew view ( r a y t ub e c o l l e c t i o n ) ;

3

4 // WORKFUNCTION TO READ THE RAY PROPERTY AND WRITE IT

5 raytube read wf read wf (max time , ray data ) ;

6

7 // CHECK IF NO RAY TUBES IS LEFT TO PROCESS

8 i f ( map reduce ( read wf , l o g i c a l o r <bool>() , view ) == fa l se )

9 break ;

10

11 // WORKFUNCTION TO USE THE DATA

12 raytube consume wf consume wf (max time , ray data , view ) ;

13

14 // CALL THE MAP FUNCTION

15 map func ( raytube consume wf , view ) ;

When operating on the ray tubes, some of the operations require working on the

parent or child of the ray tube. Here, we show how the coarsen req information is

provided to the parent of a ray tube asynchronously. Other methods are similar to

this. The method iterates over the edges for the ray tube. (see following code snip-

pet, line 9-23). It searches for the edge to the parent ray tube (line 13). Once the

edge is found, it synchronously applies an functor representing coarsen req action to

the parent ray tube (line 21).
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1 void add coa r s en r e q i n f o ( r ay tube de s c r i p t o r& raytube id ,

2 c o a r s e n r e q i n f o& i n f o ) {

3

4 // GET THE ITERATOR OVER THE RAY TUBE ( ve r t e x )

5 i t e r a t o r r ay tub e i t = f i nd v e r t e x ( raytube id ) ;

6 a d j e d g e i t e r a t o r e i t c u r = (∗ r a y tub e i t ) . begin ( ) ;

7 a d j e d g e i t e r a t o r e i t e nd = (∗ r a y tub e i t ) . end ( ) ;

8

9 // CHECK THE EDGE LIST FOR THE RAY TUBE

10 for ( ; e i t c u r != e i t e nd ; ++e i t c u r ) {

11

12 // GET THE EDGE TO THE PARENT

13 i f ( (∗ e i t c u r ) . property ( ) == EDGE TO PARENT) {

14

15 // GET THE PARENT RAY TUBE DESCRIPTOR

16 r ay tube de s c r i p t o r parent de sc = (∗ e i t c u r ) . t a r g e t ( ) ;

17

18 add c o a r s e n r e q i n f o f un c t o r t yp e func to r ( i n f o ) ;

19

20 // ASYNCHRONOUSLY ADD INFORMATION TO PARENT RAY TUBE

21 vp apply async ( parent desc , func to r ) ;

22 }

23 }

24 }
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5. PERFORMANCE EVALUATION

This chapter examines the performance of the pWFC algorithm on an IBM cluster

available at Texas A&M University. The pWFC algorithm has two separate phases

(1) mesh initialization and (2) wavefront propagation. We discuss the performance

of each of these phases in the following sections.

5.1 Machine Specification

We conduct our experimental study on an IBM cluster with p575 SMP nodes

available at Texas A&M University (P5-cluster). The machine has 52 compute

nodes with 16 cores and 25 GB of memory available for applications per node. Table

5.1 shows the details of the configuration of the machine.

Table 5.1 Machine specifications about P5-cluster.

Configuration P5-cluster

Number of compute nodes 52

Processor cores per node 16

Number of compute processor cores 832

Processor Core type 1.9GHz Power5+ proces-
sor

System theoretical peak (compute nodes only) 6.3 TFlop/sec

Physical memory per compute node 32 GB

Memory usable by applications per node 25 GB

Switch Interconnect 2-plane HPS (IBM’s High
Performance Switch)

Operating System AIX 5.3
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5.2 Experimental Measurement

For the purpose of measuring time taken by various phases of the pWFC algo-

rithm, we use GetTimeOfDay (accuracy of 1 ∗ 10−6 sec) function. Since the time

taken in experiments is larger by a few order of magnitudes, the function provides

relatively low error in measurements. We also repeat the experiments 32 times to

gather enough data points and compute 95% confidence interval.

5.3 Earth Models and Input Parameters

In this section, we provide the description of the models that were used to study

the performance of the pWFC algorithm. We also provide a description of the various

input parameters that may influence the performance of pWFC algorithm.

5.3.1 Earth Models

The models include simple synthetic models that enable us to study various

aspects of the method and others that are intended to be representative of basic

geological features such as salt domes.

The homogeneous model has only one region and no surfaces (Figure 5.1). We

use three different material properties for this model to study the effect of the ma-

terial properties (Table 5.2) on the performance of the pWFC algorithm. The lay-

ered model (Figure 5.2 and Table 5.3) and the ledge model (Figure 5.3 and Table

5.4) are synthetic models designed to study the geometrical properties of wavefront

propagating through isotropic-isotropic medium, isotropic-anisotropic medium and

anisotropic-anisotropic medium. The salt canopy model (Figure 5.4 and Table 5.5)

[57] and the salt dome model (Figure 5.5 and Table 5.6) [58] provide approximation

of representative salt structures. They also show how seismic velocities typically

depend on depth in areas such as the Gulf of Mexico (GOM).
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Figure 5.1 Model 1: Homogeneous model

Table 5.2 Model 1: Homogeneous model

Isotropic medium Vp=3 km/s, Vs=1.73 km/s, ρ=2.67

Weak anisotropic
medium



25.9 6.825 7.075 0. 0. 0.

6.825 25.9 7.075 0. 0. 0.

7.075 7.075 23.775 0. 0. 0.

0. 0. 0. 7.325 0. 0.

0. 0. 0. 0. 7.325 0.

0. 0. 0. 0. 0. 9.525


ρ=2.5

Strong anisotropic
medium



59.6738 25.8196 25.8196 0. 0. 0.

25.8196 93.6941 36.0941 0. 0. 0.

25.8196 36.0941 93.6941 0. 0. 0.

0. 0. 0. 28.8001 0. 0.

0. 0. 0. 0. 23.1444 0.

0. 0. 0. 0. 0. 23.1444


ρ=2.7
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Figure 5.2 Model 2: Layered model

Table 5.3 Model 2: Layered model

Region 1 Vp=2.5 km/s, Vs=1.44, ρ=2.2

Region 2 Vp=3 km/s, Vs=1.73, ρ=2.5

Region 3 Vp=3.2 km/s, Vs=1.8, ρ=2.5

Region 4 Vp=3.6 km/s, Vs=1.8, ρ=2.67

Region 5 Vp=4 km/s, Vs=2.2, ρ=2.7

Figure 5.3 Model 3: Ledge model
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Table 5.4 Model 3: Ledge model

Region 1



25.9 6.825 7.075 0. 0. 0.

6.825 25.9 7.075 0. 0. 0.

7.075 7.075 23.775 0. 0. 0.

0. 0. 0. 7.325 0. 0.

0. 0. 0. 0. 7.325 0.

0. 0. 0. 0. 0. 9.525


ρ=2.5

Region 2 Vp=2.8 km/s, Vs=1.5, ρ=2.6

Region 3 Vp=2.8 km/s, Vs=1.5, ρ=2.6

Figure 5.4 Model 4: Salt canopy model [57]

Figure 5.5 Model 5: Salt dome model [58]
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Table 5.5 Model 4: Salt canopy model [57]

Region 1 Vp=3 km/s, Vs=1.73 km/s, ρ=2.5

Region 2



20.28 13.104 15.028 0. 0. 0.

13.104 20.28 15.028 0. 0. 0.

15.028 15.028 22.542 0. 0. 0.

0. 0. 0. 4.498 0. 0.

0. 0. 0. 0. 4.498 0.

0. 0. 0. 0. 0. 3.588


ρ=2.4

Region 3



25.9 6.825 7.075 0. 0. 0.

6.825 25.9 7.075 0. 0. 0.

7.075 7.075 23.775 0. 0. 0.

0. 0. 0. 7.325 0. 0.

0. 0. 0. 0. 7.325 0.

0. 0. 0. 0. 0. 9.525


ρ=2.5

Region 4 Vp=3.4 km/s, Vs=1.83 km/s, ρ=2.67

Region 5 Vp=3.8 km/s, Vs=1.9 km/s, ρ=2.7

Region 6 & 7 Vp=4.78 km/s, Vs=2.7 km/s, ρ=2.2

Table 5.6 Model 5: Salt dome model [58]

Region 1 Vp=2.7 km/s, Vs=1.5 km/s, ρ=2.55

Region 2 Vp=3 km/s, Vs=1.73 km/s, ρ=2.5

Region 3 Vp=3.2 km/s, Vs=1.8 km/s, ρ=2.55

Region 4 Vp=3.3 km/s, Vs=1.9 km/s, ρ=2.7

Region 5 Vp=3.4 km/s, Vs=1.9 km/s, ρ=2.67

Region 6 Vp=3.6 km/s, Vs=2.1 km/s, ρ=2.7

Salt dome Vp=4.78 km/s, Vs=2.7 km/s, ρ=2.2
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5.3.2 Input Parameters

The two main steps of the pWFC algorithm are (a) initialization of the mesh,

and (b) propagation of the wavefront. Initialization of the mesh is dependent on the

initial mesh size. Bigger mesh sizes would require more time as more rays and ray

tubes have to be initialized.

Many factors may influence the performance of the propagation phase. For exam-

ple, tracing a ray segment by one time step in an isotropic medium needs much less

time than tracing the segment in an anisotropic medium as it requires much simpler

equations to propagate in isotropic medium. Furthermore, ray segments may inter-

sect the surfaces at different time steps. Ray tubes are also influenced in a similar

way based on the material properties. Ray tube segments may additionally interpo-

late or coarsen in different iterations. To complete these operations, additional time

is needed by the ray tubes. Furthermore, interpolation or coarsening changes the

number of rays and ray tubes a partition of the mesh may have. This may lead to

some processors being overloaded with work and some underloaded. Another major

factor that can effect the performance of the parallel algorithm is the position of

the source in the model. Some rays may reach the boundary of the model in fewer

time steps while others may take many more time steps. As shown in Figure 5.6,

the source is located at the center of the model. After a certain number of iterations

( 1√
3
∗ ni, where ni = total # iterations) some rays reach the model boundary. Thus

some processors (locations) may become idle leading to load imbalance.

5.4 Results

This section provides performance results for the pWFC algorithm. First, we

investigate the parameters that may affect the performance of the initialization phase.

Next we look at the factors that influence the wavefront propagation phase.
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Coordinates of the source

cube edge length 2a

(a, a, a)

(0, 0, 0)

(2a, 2a, 2a)

distance = sqrt(3) *a

distance = a

Figure 5.6 Distance from the source point to different points on the model boundary.

5.4.1 Mesh Initialization

The first step of the pWFC algorithm is to create a mesh. The time spent in this

phase is dependent only on the initial mesh size and the number of processors. For

this reason, we present the running time independent of the earth model. We run

experiments with different mesh sizes 320 x 64 and 920 x 192 to see the performance

characteristics with the varying problem size. Figure 5.8 presents the time spent

to initialize different mesh sizes. Figure 5.7 provides strong scaling results for the

initialization phase. From the plots, we can observe that we achieve better scalability

for a mesh size of 960 x 192 mesh size than for 320 x 64 mesh. As the problem size

is increased, the overhead of the parallelism becomes less significant and leads to

improved scalability.

5.4.2 Wavefront Propagation

In this section, we study the performance of the wavefront propagation phase

of the pWFC algorithm. Wavefront propagation is dependent on a wide range of

factors. In this section, we present effect of these factors in isolation.
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Figure 5.7 Strong scaling of initialization phase.

(a) 320 x 64 mesh size (b) 960 x 192 mesh size

Figure 5.8 Execution time for the initialization phase.

5.4.2.1 Mesh Type

First, we study how different initial mesh types may affect the performance of

the wavefront propagation. The mesh initialization method describes the geometric

distribution of the rays. A better distribution should result in lower execution time
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while ensuring the desired numerical accuracy. Here, we compare the performance

of a take-off angle mesh and a cubed sphere mesh. We start with same number of

rays in homogeneous model with anisotropic medium. For the take-off angle mesh,

we generate 256 rays in the azimuth direction from [-180◦, 180◦] and 96 rays in the

declination direction from [-89.9◦, 89.9◦]. For the cubed sphere mesh, we generate

a 64 x 64 mesh for all six faces of the cube. As shown in Figure 5.9, the wavefront

initialized with a cubed sphere mesh takes less time to propagate in the model than

the take-off angle mesh. The rays are concentrated near the poles of the sphere for

the take-off angle mesh which makes the rays farther apart near the horizontal. Thus

more interpolation is needed near the horizontal for take-off angle mesh, making it

more load unbalanced. Hence, for the rest of our experiments, we use a cubed sphere

mesh for initializing the mesh.

(a) p = 1 to 16 (b) p = 16 to 128

Figure 5.9 Execution time varying with the mesh type.
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5.4.2.2 Ray Tube Type

Second, we study the effect of using ray tubes with five rays and four rays. For

this we use homogeneous model with anisotropic medium. We generate one cubed

sphere mesh (320 x 64) positioned at (5, 4.5, 4.5). Figures 5.10 and 5.11 present

the execution time and scalability for the propagation phase, respectively. Note that

an additional ray is created for each 5-ray ray tube created. This might imply that

more time would be required for the mesh to propagate. However, the time taken is

almost the same for 4-ray and 5-ray ray tubes (see Figure 5.10). The reason for this

is that ray tubes with an additional ray have relatively lower numerical errors than

ray tubes with four rays. This reduces the number of ray tube interpolations which

reduces the time spent propagating the wavefront.

(a) p = 1 to 16 (b) p = 16 to 128

Figure 5.10 Execution time varying with ray tube type.
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(a) p = 1 to 16 (b) p = 16 to 128

Figure 5.11 Strong scaling for different ray tube type.

5.4.2.3 Position of Source

Next, we study the effect of the position of the source on the performance of the

parallel algorithm. We ran experiments on a single region model with no interpolation

or coarsening. The position of the source is kept at the center (5, 5, 5) of the model

and gradually moved towards a boundary (5, 5, 7) and (5, 5, 9).

Figure 5.12 presents the execution time varying with the position of the source.

The execution time is minimum for the source at z=5 and maximum for the source at

z=9. The scalability for these different cases is shown in Figure 5.13. As the source

is moved away from the center, the scalability reduces. This is based on the fact that

load imbalance increases as the source is moved closer to the model boundary.

To study the load imbalance we collected the number of ray tube processed by

each processor in each iteration. Load profile shows mean, minimum and the max-

imum number of ray tubes processed by a processor in an iteration. Processors

becomes idle when the minimum number of ray tubes processed by it is equal to
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(a) p = 1 to 16 (b) p = 16 to 128

Figure 5.12 Execution time varying with the position of the source.

Figure 5.13 Scalability varying with the position of the source.

zero. Figure 5.14 shows the load profiles for various cases. Initially the load is bal-

anced among the processors. The load start to decrease when ray tubes reach the

model boundary. Ray tubes reach the model boundary after (a) 41 iterations for

source at (5, 5, 5), (b) 36 iterations for source at (5, 5, 7), and (c) 15 iterations for

source at (5, 5, 9). Thus, the load is more balanced when the source is at the cen-
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ter of the model. As the imbalance increases, the performance is adversely affected

motivating the need of load balancing techniques.

(a) Source position = (5, 5, 5) (b) Source position = (5, 5, 7)

(c) Source position = (5, 5, 9)

Figure 5.14 Load profiles for different positions of the source in the model (number
of processor p = 64). Initially the load is balanced among the processors. The load
start to decrease when ray tubes reach the model boundary.

5.4.2.4 Number of Sources

The pWFC algorithm also supports using different number of sources. Creating

an initial mesh for different sources is independent of each other (completely paral-
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lel.) Also working with different number of sources, we initialize earth model and

other data structures once. For this experiment we use homogeneous model with

anisotropic medium. We generate one, three and five cubed sphere mesh (320 x 64).

Note that the number of sources that can be used in an experiment is limited by the

memory available for each core. The scalability results for the experiment are pre-

sented in Figure 5.15. The graph clearly shows that the pWFC algorithm provides

good scalability even when we use different number of sources.

(a) p = 1 to 16 (b) p = 16 to 128

Figure 5.15 Strong scaling for varying number of sources.

5.4.2.5 Material Type

Next, we show the effect of material properties on the pWFC algorithm. For

this experiment we use a single region model with one source positioned at (5, 4.5,

4.5). Material properties influence interpolation and coarsening of ray tubes which

directly leads to load imbalance. We use a single region model with three different

material types namely (a) isotropic medium, (b) weak anisotropic medium, and (c)
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strong isotropic medium. Figure 5.16 presents the scalability results for the different

material properties.

Figure 5.16 Scalability varying with the material type.

The load profile for the three material types is shown in Figure 5.17. For isotropic

medium the wavefront is a sphere and for anisotropic medium the wavefront is more

curved (velocity of the ray is dependent on its direction in anisotropic medium).

Because of this some rays may be farther apart from their neighboring rays than

others. Thus more interpolations may be required for anisotropic medium. Figure

5.17(c), shows that there is severe load imbalance in strong anisotropic medium

motivating the future work on using load balancing techniques.

5.4.2.6 Multi-Region Models

In our previous experiments, we had focused on factors that may affect the per-

formance of the pWFC algorithm. We now focus on using models that have multiple

regions separated by surfaces. For the experiment we created one cubed sphere mesh

positioned at (6, 5, 5.9) for Model 4, at (6.9, 6.4, 8.6) for Model 5 and at (5, 4.5, 4.5)
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(a) Isotropic medium (b) Weak anisotropic medium

(c) Strong anisotropic medium

Figure 5.17 Load profiles for different material types in a model (p=64).

for Models 1-3. Figure 5.18 presents the execution time for the propagation phase

for the various earth models.

Strong scaling results for different models and varying initial mesh size are pre-

sented in Figure 5.19. To help us explain these results, we also provide the observed

load varying with the iterations of the algorithm (the number of ray tube segments

processed by a location) for p = 64 (see Figure 5.20).

First, let us consider Model 2: Layered model. As shown in Figure 5.20(a),

after the first few iterations, the load on the processors starts to increase because of
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(a) Model 2: Layered model (b) Model 3: Cylindrical inclusions model

(c) Model 4: Salt canopy model (d) Model 5: Salt dome model

Figure 5.18 Execution time for different models with surfaces.

(a) 320 x 64 mesh size (b) 960 x 192 mesh size

Figure 5.19 Strong scaling for different initial mesh sizes.
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(a) Model 2: Layered model (b) Model 3: Cylindrical inclusions model

(c) Model 4: Salt canopy model (d) Model 5: Salt dome model

Figure 5.20 Load profiles for different models with surfaces (p=64).

interpolation of the ray tubes. The load imbalance is present in all further iterations.

Around the 40th iteration some of the rays reach the model boundary and locations

start to become idle, thus worsening load imbalance. Model 3: Layered model (Figure

5.20(b)) has behavior similar to Model 2. However, there is more load imbalance in

this model. Also, after a few ray tubes reach the model domain, some other parts of

mesh interpolate, increasing the load imbalance. Model 4: Salt canopy and Model 5:

Salt dome have the source near the boundary. For this reason, processors become idle

after the first few iterations. Also for these two models, many rays terminate at the

region boundaries. This further increases the load imbalance across the processors.
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All these factors adversely affect the scalability of the algorithm.

5.5 Comparison with Theoretical Model

In the previous section, we presented the scalability plots for different models and

load profiles for (p = 64). These plots indicated that load imbalance is adversely

affecting the performance of the parallel algorithm. In this section, we show that

load imbalance is a major cause for the performance loss. To prove this, we use

the theoretical model presented in section 3.5. We claim that if the nature of the

two scalability plots (experimental and theoretical scalability with load imbalance)

matches, then load imbalance is the main factor adversely affecting the performance

of the proposed parallel algorithm. In our theoretical model, the only factor that

can adversely affect the performance is load imbalance. Hence, if the nature of the

graphs matches, then our theoretical model is correct.

Figure 5.21 provides the graphs comparing the theoretical and the experimental

scalability for different earth models. In all the graphs, we can observe that the

nature of the two scalability plot matches. For plots (a) and (b), we observe that

the theoretical scalability is greater than the observed scalability. In these cases,

the mesh was refined gradually over the iterations and only a few processors had

refined their mesh to the observed maximum interpolation level (lex). Also with

the refinement of the mesh, the ratio of computation to communication increases

(area to perimeter) which increases scalability. Thus, the gap between the observed

and theoretical scalability. For the plots (c) and (d) not only the shape but also

the scalability values almost match. In these two geometries, the mesh was rapidly

refined in the first few iterations and many more processors worked with the mesh

at the observed maximum interpolation level.

Thus, based on the plots provided in Figure 5.21 we were able to provide some
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evidence that load imbalance is a major cause for the performance loss.

(a) Model 2: Layered model (b) Model 3: Cylindrical inclusions model

(c) Model 4: Salt canopy model (d) Model 5: Salt dome model

Figure 5.21 Comparison of experimental scalability and theoretical scalability with
load imbalance.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we presented a parallel wavefront construction algorithm. We

described the design and implementation of the parallel algorithm using stapl. The

parallel algorithm provides dynamic addition and removal of rays and ray tubes. We

also introduced the concept of a ray tube with additional ray in the center, which

was seen to reduce communication and improve numercial accuracy. Modifications

are also provided to initialize the mesh for the two most widely used geometries.

In our experimental study we investigated the performance of the proposed par-

allel wavefront construction algorithm on a wide range of earth models. We study

the effect of various factors such as the position of the source and material properties

on the performance of the parallel algorithm. We also investigate the performance

of the parallel algorithm on some of the widely used model such as the salt dome

model. The various phases are shown to provide good parallel performance. Using

our theoretical model, we were able to show that load imbalance is a major reason

for the performance loss.

In the future, load balancing should be used to improve the scalability of the

parallel algorithm. Load balancing algorithms can be generalized and provided as

the part of stapl to improve the parallel performance. Finally, the proposed parallel

algorithm and its implementation solves the seismic ray tracing problem. It would

be interesting to investigate if the implementation can be generalized to solve other

problems such as seismic tomography etc.
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APPENDIX A

LOAD BALANCING

In the pWFC algorithm the interpolation and coarsening of the wavefront may

lead to load imbalance. Load imbalance exists whenever there is an non-uniform dis-

tribution of work among processors. This leads to some processors being overloaded

with work while other under loaded processors may remain idle. Load balancing is

a generalization of the multiprocessor scheduling problem and is known to be NP-

complete [59]. The load balancing problem has been widely studied. Dynamic load

balancing methods can be classified into two main categories: centralized [60, 61] and

distributed [62, 63]. In centralized schemes, the load information of the various pro-

cessors is collected at one processor which decides how to distribute (load balance)

the load among the processors. The major disadvantage of centralized schemes is that

the processor that makes the load distribution decisions becomes a potential bottle-

neck. Distributed methods are more scalable than centralized methods. For example,

in a distributed method, processors might communicate only with the neighbors and

diffuses fractions of workload to underloaded neighbors and receive workload from

overloaded neighbors. Global balance is achieved by successive migration of workload

from overloaded processors to underloaded processors. Distributed schemes employ

the neighboring information to redistribute the load between adjacent processors,

thereby requiring multiple diffusive steps to achieve global load balance. Distributed

schemes generally provide better results for the problems in which imbalance occurs

globally throughout the computational domain, while centralized schemes may be ad-

vantageous to the problems in which high magnitude imbalance occurs in localized

regions.

75



Figure A.1 presents one possible instance of load imbalance for the pWFC algo-

rithm. The major issues to be addressed are the identification of the overloaded and

underloaded processors, the quantity of data to be transferred from overloaded pro-

cessors to underloaded processor and which transfer to make. Some important issues

include how to (i) measure the load on the on a processor and (ii) determine if there

is a load imbalance. Once load imbalance has been identified, we need to determine

how much, what part of the work load should be moved and to where in order to

achieve better load balance. Another important consideration while designing the

load balancing algorithm is the granularity of the work load. We chose a coarse

grain approach for determining the load with each ray tube segment accounting for

a unit of load. This approach has a trade-off that we can update and determine the

load on each processor quickly and thus reduce the overhead of the load balancing

algorithm. However, the decision to move the load may be sub-optimal. With fine

grain accounting (increased memory and time overhead), a better decision could be

made.

In this work we study two load balancing strategies: one centralized and one

decentralized. The centralized method employs one of the most frequently used

strategies for balancing the load known as GreedyLB [61] which is also a part of the

Charm++ language [64]. It computes the most overloaded and the most underloaded

processor and balances the load between them. For the decentralized scheme, we

use Neighborhood load balancing: NeighborLB [64], in which the load information

is only sent to the neighbors. A processor is overloaded if its load is greater than

the average load of its immediate neighbors. This prevents an underloaded processor

from transferring its load to its neighbors. The amount of the load that is transferred

is directly proportional to the difference of the load between the two processors.

Once the overloaded and underloaded processors have been determined, we need
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Figure A.1 Possible load imbalance situation in the seismic ray tracing application.

Table A.1 Processor load varying with time for example shown in Figure A.1.

Processor id Initial load Current load

1 6 34

2 5 40

3 7 85

4 6 41

to determine how much data has to be moved and what should be moved. For this we

use either of two strategies. Our strategies are based on a commonly used heuristic

to preferentially put the migrated load back to the original processor.

1. Strategy 1: If the ratio of the number of the ray tube segments between the

overloaded and the underloaded processor load(pov)
load(pun)

is higher than some preset

threshold value tn, then we need to distribute the load between the processors.
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If the currently overloaded processor had received a portion of the wavefront

from the currently under loaded processor, then the overloaded processor first

transfers ray tubes that were received from the currently underloaded processor.

If it cannot find enough load, then it transfers a portion of its load to the

currently underloaded processor.

2. Strategy 2: Two different threshold ratios tp and tn are used such that 1 < tp <

tn. If the load on an overloaded processor pov is greater than the load on the

underloaded processor pun such that tp <
load(pov)
load(pun)

< tn, then processor pov only

transfers from the load that originally belonged to the current underloaded

processor pun. This way, we preferentially send back the load to its home

location in case of smaller load imbalance with the aim of reducing the graph

cut (reduced communication cost). If load balance imbalance ratio is greater

than tn, the strategy 1 (in the above paragraph) is used (possibly increasing

communication cost for better load balance).

Let us consider two scenarios (a) Two processors 1 and 2 (see Figure A.2 (a))

with current load of 30000 and 35000 respectively with tp = 1.1 and tn = 1.3 (1.1 <

35000
30000

< 1.3) and assume that a part of the mesh was migrated to processor 2 in

an attempt to balance load in a previous iteration. (b) two processors 1 and 2 (see

Figure A.2 (b)) with current load of 30000 and 35000 respectively with tp = 1.1 and

tn = 1.3 (1.1 < 35000
30000

< 1.3).

If we use the strategy 1 in scenario (a), the load imbalance ratio is less than the

threshold and no re-balancing is done. To achieve a balanced distribution, we would

consider using a lower threshold value. A lower threshold for strategy 1 posses a

risk of frequent load movement which may lead to increased graph cut (increased

communication cost). If we consider strategy 2 in scenario (a), processor 2 would
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Processor 1

Load: 30000

Processor 1

Load: 30000

Processor 2

Load: 35000

Processor 2

Load: 35000

Part of mesh migrated
(a)

(b)

Figure A.2 Load balancing strategy (a) First load imbalance scenario bashed box
represents part of mesh migrated to processor 2 in a previous step. The current load
on processor 1 and 2 is 30000 and 35000 respectively. (b) Second scenario where
the no part of mesh is migrated and current load on processor 1 and 2 is 30000 and
35000 respectively.

return the load (migrated to it from processor 1) back to processor 1 which would

improve load balance. Also in scenario (b) the second strategy would not transfer

load to processor 1. Thus, based on the two scenarios we can say that strategy 2

should provide better load balance.
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APPENDIX B

LOAD PROFILES

In this section, we present the processor load varying with the iteration of the

parallel wavefront construction algorithm. These plots provide the mininum, maxi-

mum and average load. Number of processors (p) is provided in the caption of the

load profiles.
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.1 Processor load varying with the iterations for various earth models (p=2).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.2 Processor load varying with the iterations for various earth models (p=4).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.3 Processor load varying with the iterations for various earth models (p=8).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.4 Processor load varying with the iterations for various earth models (p=16).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.5 Processor load varying with the iterations for various earth models (p=32).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.6 Processor load varying with the iterations for various earth models (p=64).
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(a) Model 1: Isotropic medium (b) Model 1: Weak Anisotropic medium

(c) Model 1: Strong Anisotropic medium (d) Model 2: Layered model

(e) Model 3: Cylindrical inclusions model (f) Model 4: Salt canopy model

(g) Model 5: Salt dome model

Figure B.7 Processor load varying with the iterations for various earth models
(p=128).
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