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ABSTRACT 

 

The housing market plays a significant role in shaping the economic and social 

well-being of U.S. households. It helps spur U.S. economic growth when house prices 

rise, and drags the economic growth when house prices drop. In this dissertation,   an 

analysis is conducted to project the direction of the U.S. housing market and to discover 

how it interacts with economic fundamentals. New pieces of information are found, 

which are deemed to facilitate decision making for both policy makers and investors.  

In the first part of the dissertation, the groupings of U.S. housing markets are 

studied using cluster and discriminant analysis. Three clusters are found, which are 

located in the central, the east coast, and the west coast of US. There are no price signals 

transmitted among these housing market clusters, nor within each cluster. Thus, the 

communication of information in the housing market is through the process of utility 

convergence of marginal residents, and no price convergence across regions is found.  

Next, the impact of credit constraint on the house prices is examined with the 

stochastic components of the price series being considered. Both a simulation technique 

and a DAG approach are employed. The resulting causal pattern shows that credit 

constraints affect the house prices directly and positively. Moreover, credit constraints 

work as an intermediary, passing the influence of the house investor, household income, 

and user cost onto house prices, which suggests that the credit relaxation policy should 

be carried out with caution when house inventory and household income send 

inconsistent signals. 
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Last, the model selection for house price analysis is discussed from the 

perspective of large-scale models—dynamic factor (DFM) model and large-scale 

Bayesian VAR (LBVAR) model. The LBVAR models are found to have superior 

performance compared to the DFM model throughout the prediction period. Also, it is 

found that the combined forecasts do not necessarily outperform individual forecasts. 

Even though independent information from different individual models improves the 

forecast accuracy, the benefit gained from marginal information is offset by the larger 

error brought by such combination.   
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NOMENCLATURE 

 

ADF Augmented Dickey Fuller Test 
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1 INTRODUCTION 

 

The housing market is of great importance to the economy. House construction 

and renovation boost the economy by increasing in aggregate expenditures, employment 

and the volume of house sales. They also stimulate the demand for related industries 

such as household durables. The oscillation of house prices affects the value of asset 

portfolio for most households for whom a house is the largest single asset. Moreover, 

price movements influence the profitability of financial institutions and the soundness of 

the financial system. Recent studies further justify the necessity of house price analysis, 

concluding that the housing sector plays a significant role in acting as a leading indicator 

of the real sector of the economy and that assets prices help forecast both inflation and 

output (Forni, Hallin, Lippi, and Reichlin, 2003; Stock and Watson, 2003; Das, Gupta, 

and Kabundi, 2009a; Kim, Leatham, and Bessler, 2007). Thus, a comprehensive and 

systematic analysis for the housing market can provide valuable information to policy 

makers and help them better control inflation and design more effective policies. Also, 

these analyses can guide individual market participant to make wise investment 

decisions.  

This dissertation examines the U.S. housing market from three perspectives: the 

patterns of price movement, the impacts of credit constraint on house price, and the 

large-scale model selection for house price analysis.  

The first essay studies the clustering of U.S. housing markets and the patterns of 

price movement between and within those clusters. Cluster analysis is used to classify 
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housing markets into three clusters based on economic fundamentals and housing 

attributes. Discriminant analysis validates the clustering results and suggests that all the 

economic and amenity variables contribute to grouping homogenous markets and 

separating distinct ones. Time series econometric models are used to estimate the 

interaction of house prices. Both between- and within-cluster analysis are conducted. 

The error terms derived from these models are further analyzed by a directed acyclic 

graph (DAG) approach to examine the patterns of price movement. For both between- 

and within-cluster models, there exist no statistically significant causal flows of 

innovation among the examined metropolitan areas. The shock in one area due to local 

factors is not going to cause fluctuation in house price in other areas. Thus, house prices 

in different regions may move together and converge over time under the effect of 

macroeconomic fundamentals, but there is no cross-sectional communication of house 

price.  

In the second essay, the interaction between credit constraints and house prices is 

studied based on inverted demand approach (Duca, Muellbauer and Murphy, 2011(b)). 

Under this approach, the house price is assumed to be a function of house supply, 

income, user costs and credit constraint. We model the dependence among the stochastic 

components of house price, credit constraints, user costs of owning a house and other 

variables using multivariate copulas distribution (MVC). Based on the simulated data, 

several quantile values are derived, which provide more information for political or 

investment decision than single point estimation does. The causation between house 

price and credit constraint is also examined using a DAG approach, and the resulting 
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causal pattern suggests that credit constraint not only directly affects house price, it also 

works as the intermediate passing the influence of other factors onto house price, which 

complicates the enactment of credit policy.  

The third essay focuses on model selection for analyzing house price in US 

metropolitan areas from the perspective of large-scale models. This study lends support 

to the superior performance of the LBVAR model compared to DFM model throughout 

the prediction period. Also, our study suggests that combined forecasts do not 

necessarily outperform individual forecasts. Even though independent information from 

different individual models improves the forecast accuracy, the benefit gained from 

marginal information is offset by the larger error brought by such combination.   
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2 TRANSMISSION OF PRICE CHANGES BETWEEN AND WITHIN 

CLUSTERED U.S. HOUSING MARKETS 

 

2.1 Background 

 

In the last three decades, residential house prices in U.S. metropolitan areas 

exhibit considerable fluctuations over time and across regions. However, these 

fluctuations follow very different patterns. After examining the house prices of 40 

metropolitan areas over the 1980-2004 periods, Himmelberg, Mayer and Sinai (2005) 

find three patterns exist for U.S. housing market: (1) house price peaked in the late 

1980s, fell to a trough in the 1990s, and rebounded by 2004; (2) a “U” shape history-- 

high in the early 1980s and high again by the end of the sample; (3) house prices have 

declined since 1980 and have not fully recovered. They divide the 40 metropolitan areas 

into three groups with each group following one of the three patterns. The interesting 

point is that those areas in the same group are not necessarily geographically adjacent, 

and the areas adjacent to each other are not always in the same group. For example, the 

house price of Fort Worth follows the third pattern, while the price of its neighbor-- 

Dallas follows the first one. New Orleans, instead, shares the same house price pattern 

with Fort Worth. 

Therefore, geographical proximity fails to warrant the homogeneity of housing 

markets. More factors need to be considered in the process of identifying homogeneous 

housing groups so as to enact suitable policy for each group, to diversify debt and equity 
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portfolio, as well as to hedge the housing market risk. There are many literatures provide 

support to the standpoint that economics dominates geography in terms of differentiating 

housing markets (Gyourko and Voith, 1992; Jud and Winkler, 2002; Chan, Ng and 

Ramchand, 2012). House prices are found to facilitate classifying homogeneous housing 

market and so are other elements such as unemployment rate, household income, 

dwelling size, housing unit quality and neighborhood quality.  

The urban economics suggests that house demands and house prices across cities 

should adjust so that no household will wish to move and marginal residents of all 

locations receive identical utility (Rosen, 1979; Roback, 1982). Because theoretically it 

is utility that converges rather than incomes, house prices, or city amenities, there is little 

theoretical support for the idea that house prices should converge (Kim and Rous, 2012). 

However, while regional per capita incomes are converging, it is tempting to conjecture 

that this phenomenon may, in turn, be driving convergence in regional house prices. In 

addition, other factors like labor and capita mobility may also be contributing to regional 

house price convergence (Clark and Coggin, 2009). Thus, homogenous housing markets 

that share similar economic fundamentals and amenities may experience house price 

convergence among themselves. In order to determine the interrelationship of house 

prices across regions, it is important to understand the transmission of price signal within 

groups of homogeneous housing markets as well as between those groups. 

The objective of this essay is to study the pattern and strength of price signals 

transmitted among homogeneous groups of housing markets, as well as within each 

group. Cluster analysis is conducted to classify twenty-nine U.S. metropolitan areas 
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(MSAs) into homogeneous groups based on variables capturing housing attributes and 

economic environment. Discriminant analysis is employed next to validate the grouping 

results from the cluster method. A directed acyclic graphs (DAG) approach is used last 

to identify the pattern of price movements across the grouped housing markets, and to 

infer housing market integration based on the resulting patterns from the graphs.  

The contributions of this essay are two-fold. First, previous researches identify 

the clustering of housing prices in a limited manner (Lu, 2009). By applying cluster 

analysis and discriminant analysis, this essay investigates the grouping patterns of the 

U.S. housing market and analyzes whether housing attributes and economic factors 

contribute to the identification of homogeneous groups for housing markets. Second, this 

essay extends the understanding of the price movement and convergence between and 

within homogeneous groups of housing markets based on a DAG approach, which 

makes no a priori assumptions on the causal patterns of the movements. The information 

obtained from these analyses can be used in investment portfolio construction to reduce 

the unsystematic risk of the portfolio.  

The rest of the essay is organized as follows. Section 2 provides a literature 

review. Section 3 introduces the cluster method and discriminant analysis techniques, as 

well as the causal modeling under the DAG approach. Section 4 discusses the data. 

Section 5 presents results. Section 6 concludes and discusses the limitations of this study. 
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2.2 Literature Review 

 

This section reviews previous literature from three aspects. First, it reviews the 

studies examining the fluctuations of house prices across cities. The purpose of these 

studies were to find the impact of local and national circumstances on the volatility of 

house prices, and provide support to the hypothesis that patterns of house prices are 

driven by macroeconomic factors. The second part of this section discusses the 

application of cluster analysis in economic studies, especially in real estate areas. The 

third part reviews econometric techniques used to discover the patterns of price 

movement across regions, and compares traditional models with a DAG approach to 

justify the use of it in this essay. 

The variations in the house prices across regions have been examined by a large 

body of literature. For example, Fik, Ling and Mulligan (2003) present an interactive 

variables approach and test its ability to explain price variations in an urban residential 

housing market. They find that accessibility indices, distant gradients and locational 

dummies cannot fully account for the influence of absolute location on the market price 

of housing because there are an indeterminable number of externalities (local and 

nonlocal) influencing a given property at a given location. They suggest this approach be 

used when estimating the value of housing for geographic areas where very little is 

known a prior about the neighborhoods or submarkets. McGreal and De La Paz (2013) 

estimate the role of attributes in asking price formation for housing market. They use 

hedonic model and apply STAR methodology to avoid the bias generated by 
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autocorrelation and control for spatial dependence. Their results show that the pricing of 

attributes varies by geographical region and over time with property size and economic 

and demographical attributes being the key variables explaining asking price formation.  

The paper by Capozza, Hendershott, Mack and Mayer (2002) explores the 

explanations for momentum and cyclical behavior of house prices. They find the 

variation in the cyclical behavior of real house prices across metropolitan areas is 

attributable to more than just variation in local economies. Also, they discover that real 

house prices react differently to economic shocks depending on such factors as the 

growth rates of the underlying population and real income in the area, the size of the area, 

and construction costs. Sutton (2002) employs a small VAR model to examine the extent 

to which house price fluctuations can be attributed to fluctuations in national incomes, 

interest rates and stock prices. The author finds that favorable economic developments 

captured by these variables appear to have played an important role in house price gains. 

There is one major finding of the above papers and of many other papers not 

reviewed in detail here (Gyourko and Voith, 1992; Jud and Winkler, 2002; Abraham and 

Hendershott, 1996; Lu, 2009). That is, geographical factors are not sufficient to explain 

the fluctuation in house prices, and economic and demographical attributes help the 

explanation to a large extent. To summarize, the variables found to contribute to the 

pattern of house price fluctuation include but are not limited to employment growth, 

population growth, income growth, construction costs, interest rates, property size and 

stock price. Thus, in order to classify housing markets into homogeneous groups, these 

variables should be considered in the group identification process. 
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Cluster analysis is the most common method to classify data into a set of 

categories, and it has been applied in a wide variety of fields, such as engineering, 

computer sciences, life and medical sciences, astronomy and earth sciences, and social 

sciences (Xu and Wunsch, 2009). There are also a number of applications of cluster 

analysis in economic area. For example, the San Diego Association of Governments 

(2002) uses the cluster method to explore the representation of local industry drivers and 

regional dynamic. Chicago Metropolitan Agency for Planning (2009) applies cluster 

analysis to identify industries that are geographically concentrated or of a similar nature, 

and that make use of related buyers, suppliers, infrastructure and workforce. 

Cunningham and Maloney (2001), based on the results from cluster analysis, try to find 

the heterogeneity among microenterprises and explain why small firms exist in Mexico. 

Gupta and Huefner (1972) use cluster analysis to find the correspondence between 

financial ratios and basic industrial attributes, and Yang and Hu (2008) examine regional 

disparity in China using cluster analysis.  

The application of cluster method to house price analysis is limited but becomes 

popular in the recent decade. Abraham, Goetzmann and Wachter (1994) use the K-

means clustering algorithm to explore the interrelationship of housing market returns 

using the returns to house price indices data in 30 metropolitan areas. Goetzmann and 

Wachter (1995b) apply cluster analysis to examine portfolio diversification for 21 

metropolitan areas. Case, Clapp, Dubin and Rodrigues (2004) employ a hedonic model 

that includes homogeneous within-county distincts created on the basis of cluster 

analysis. Bourassa, Cantoni and Hoesli (2008) use districts defined by the local property 
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tax assessment office as well as a classification of census tracts generated by principal 

components and cluster analysis to analyze the impacts of alternative submarket 

definitions when predicting house prices. Lu (2009) applies cluster method to study how 

housing attributes impact house price across cities based on variables such as 

employment rate, household income and neighborhood quality. Shimizu and Watanable 

(2010) conduct a cluster analysis with Ward’s method to observe spatial relationships 

between house price fluctuations for regions in US and Japan. Besides the studies on U.S. 

housing markets, cluster method is also applied to the examination of housing markets in 

many other countries. For example, Chan, Ng and Ramchand’s study (2012) for 

Singapore; Leung, Chow and Han’s study (2008) for Hong Kong; Apergis, Simo-

Kengne and Gupta’s study (2013) for South Africa; Kim and Park’s study (2005) for 

Korea; Hensen and Vatansever’s study (2012) for Turkey. 

Previous studies employ a variety of methods to identify the patterns in house 

price fluctuation across regions. For example, Hiebert and Roma (2010) test for price 

convergence and analyze key factors explaining price differentials in a panel regression 

framework. Favara and Song (2013) use a user-cost model to study how dispersed 

information affects the equilibrium house price. Gyourko, Mayer and Sinai (2006) use a 

simple two-location model allowing for differences in the elasticities of supply across 

locations to show how inelastic land supply can link the stylized patterns in house price. 

Capozza, Hendershott, Mack and Mayer (2002) explore the dynamics of real house 

prices by estimating serial correlation and mean reversion coefficients from a panel data 

set of 62 metropolitan areas. To examine long-run house price convergence across US 
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states, Holmes and Otero’s modeling strategy (2011) employs a probabilistic test statistic 

for convergence based on the percentage of unit root rejections among all state house 

price differentials. Hirata, Kose, Otrok and Terrones (2013) evaluate the roles played by 

a variety of global shocks, including shocks to interest rates, monetary policy, 

productivity, credit, and uncertainty, in explaining house price fluctuations using a wide 

range of factor-augmented vector autoregressive models.  

The methods employed by the above papers have two points in common. First, 

they examine the dispersion or convergence of house price across regions based on the 

interaction between house price and other variables, such as construction cost, land 

supply and policies. However, not all the variables impacting house prices are included 

in their models, so only the part of house price movement related to the examined 

variables is explained. Modeling price variables across regions and overtime directly 

may provide more information regarding price discovery of housing market, and such 

model is free of the concerns about incomplete set of variables. Second, the relationships 

between house price and other variables are estimated with econometric models, and 

then tests are conducted to verify the significance of the coefficients and the a priori 

assumed patterns. While such a priori assumption models about price movement may 

serve as a reasonable starting point for analysis, they by no means govern the way that 

observational data must interact in reality. This is all just to say, simply, that one should 

be cognizant of the fact that the conclusions which flow from such models are not 

independent of the a priori assumptions inherent in their construction. Insofar that this is 

the case, the results from this framework can be misleading if this fact is forgotten.  Thus, 
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we employ a DAG approach in this study to overcome such problems inherent in the a 

priori assumption approach in order to estimate the transmission of house price signal 

across regions.  

To sum up, in the examination of the patterns of price movement across regions, 

geographical factors are not sufficient to explain the flows of price signals, and 

economic and demographical attributes help the explanation to a large extent. Based on 

those economic and demographical variables, cluster analysis can efficiently divide 

housing markets into homogeneous groups. When sorting out the causal flow of price 

signal across groups of housing markets and within each group of markets, modeling 

with price variables directly may provide more information and is free of the concerns 

about incomplete set of variables. Also, in the process of search for patterns, a DAG 

approach shows innovation over traditional modeling techniques by making no a priori 

assumptions on the price movement pattern and let the data speaks for itself, which is 

deemed to provide information from a new perspective. 

 

2.3 Methodologies 

 

2.3.1 Cluster Analysis 

 

One of the most important of the myriad of data analysis activities is to classify 

or group data into a set of categories or clusters (Xu and Wunsch, 2009). A cluster 

should be described in terms of internal homogeneity and external separation. In other 
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words, data objects in the same cluster should be similar to each other, while data objects 

in different clusters should be dissimilar from one another (Gordon, 1999; Hansen and 

Jaumard, 1997; Jain and Dubes, 1988). Both the similarity and the dissimilarity should 

be elucidated in a clear and meaningful way.  

According to Xu and Wunsch (2009), four basic steps should be followed when 

carrying out cluster analysis. The first step is feature selection or extraction. In this step, 

distinguishing features from a set of candidates should be chosen. Generally, ideal 

features should be of use in distinguishing patterns belonging to different clusters, 

immune to noise, and easy to obtain and interpret. In this essay, we select the housing 

attributes and economic factors which are proved by previous studies to be important in 

explaining the fluctuation of house price across regions. The second step is clustering 

algorithm design or selection. This step consists of determining an appropriate proximity 

measure and constructing a criterion function. Here, Ward’s method is used to assess the 

similarity between clusters. The object of Ward’s method is to minimize the increase of 

the within-class sum of the squared errors, 

(1)                                                     
2

1
,

x
x m

i k

K

i k
k C

E
= ∈

= −∑ ∑  

caused by the merge of two clusters. In this expression, K is the number of clusters and 

mk is the centroid of cluster kC  defined as 1
x

m x
i

i
Cin ∈

= ∑ , where in is the number of data 

points belonging to the cluster. So, the distance between cluster iC and jC  can be 

represented as 
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(2)                                         
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The distance between a cluster lC and a new cluster ( )ijC formed by the merge of iC and

jC is then written as  
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The third step is cluster validation. In this essay, discriminant analysis is 

employed to test the robustness of cluster analysis (Yu, 2009; Hoesli, Lizieri, and 

Macgregor, 1997). The last step is to interpret the results so as to gain meaningful 

insights from the original data.  

There are two types of clustering, known as partitional and hierarchical 

clustering. In this essay, agglomerative hierarchical clustering is employed. 

Agglomerative clustering starts with N clusters, each of which includes exactly one data 

point. A series of merge operations is then followed that eventually forces all objects 

into the same group. There are four steps involved in this clustering method. First, one 

starts with N singleton clusters and calculates the proximity matrix for the N clusters. 

Second, in the proximity matrix, one searches the minimal distance

, ,
( , ) min ( , )i j m ll m l n m n

D C C D C C
≤ ≤ ≠

= , where D(.,.) is the distance function, and combine 

cluster iC and jC  to form a new cluster ijC . Third, one updates the proximity matrix by 

computing the distances between the cluster ijC  and the other clusters. Fourth, one 

repeats steps 2 and 3 until only one cluster remains (Xu and Wunsch, 2009). 



 

15 
 

 

 

2.3.2 Directed Acyclic Graph (DAG) Approach 

 

Empirical studies in economics have primarily relied on economic theory or 

researchers’ intuitions in order to identify the structure and parameters of economic 

models (Kwon and Bessler, 2011). However, theory is oftentimes too heterogeneous to 

provide a conclusive causal structure or does not provide sufficient information to 

identify the underlying causal structure. Moreover, such a priori models fail to define 

the way observational data must interact and may provide incorrect causal inference. 

Distinguished from “Deductive Causation”, which arises from either innate ideas or 

from mathematics on assumed behavior, “Inductive Causation” relies on observational 

data and infers a causal graph from conditional independencies among variables. As a 

basis for inductive causal inference in econometrics, the DAG method has been applied 

to many research topics, e.g., environmental and economic sustainability (Bessler, 2005), 

market integration and price discovery (Bizimana, Angerer and Bessler, 2012), price 

dynamics in agricultural markets (Bessler, Yang and Wongcharupan, 2003; Bessler and 

Akleman, 1998), and interest rate transmission (Oxley, Reale and Wilson, 2009) among 

others. 

A directed graph uses arrows and vertices to illustrate the causal relationships 

among variables, whose values are measured in non-time sequence. Vertices connected 

by an edge are said to be adjacent. A directed edge is an edge which has an arrow 

indicating its causal direction, while undirected edge does not have a causal direction. If 
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we have a set of vertices {A, B, C, D}, the undirected graph contains only undirected 

edges, for example AB. A directed graph contains only directed edges, for example 

CD. An acyclic graph is one for which there is no path from any given variable which 

leads back to that variable. For example, the path ABCA is labeled as “cyclic” 

because we move from A to B, but then return to A by way of C. A directed acyclic 

graph is a directed graph that contains no directed cyclic paths. Because cyclic graphs 

are not identifiable, only acyclic graphs are discussed in this essay. The terms from 

genealogy are used when referring to variables in causal model. For example, in the path 

ABC, the variables A and B are ancestors of variable C. Variable C is the 

descendent of variables A and B. Variable A is the grandparent of variable C and parent 

of variable B. 

There are several algorithms discussed in the machine learning literature that can 

be used to identify DAGs. This study employs the PC algorithm (Bessler, 2003). Three 

conditions should be satisfied to apply the PC algorithm. First, the causal Markov 

condition, which states that given its parents, a variable should be conditionally 

independent of its non-descendants. The second condition requires that no variable is 

omitted which causes two or more other variables selected for analysis. The last 

condition requires that a zero correlation between variables should not be the results of 

cancellations of deeper parameters connecting these variables.  

The PC algorithm determines the causal pattern among a set of variables in three 

steps. First, starting with a completely undirected graph, each variable in the set is 

connected to every other variable via an undirected edge. Next, edges between variables 
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are removed if the null hypothesis cannot be rejected that the correlation between any 

two variables is not significantly different from zero. Edges that remain are said to 

survive “zero order conditioning”, and these edges are subjected to a series of first order 

conditioning tests with the null hypothesis that the conditional correlation between any 

two variables on a third variable is not significantly different from zero. Edges are 

removed if the null hypothesis cannot be rejected. The test of second and higher order 

conditioning then continues following the same rule. Last, an arrow (direction) is 

assigned to each of the surviving edges according to the directional separation (d-

separation) definition, which is given in Pearl (2000): 

Definition: X, Y, and Z are three disjoint sets of variables. A path p is said to be d-

separated by a set of nodes Z if and only if (1) p contains a chain i m j→ →  or a 

fork i m j← → such that the middle node m is in Z, or (2) p contains an inverted 

fork (or collider) i m j→ ← such that the middle node m is not in Z and such that 

no descendant of m is in Z. A set Z is said to d-separate X from Y if and only if Z 

blocks every path from a node in X to a node in Y. 

The reasoning of sorting out causal patterns by d-separation can be illustrated by 

a simplified example. There are four variables {A, B, C, D}, and corr (A, D) =0 and corr 

(A, C)≠ 0. Assume we find that corr (A, D| B)≠ 0 and corr(A, C| B)=0, which means 

variables A and D are d-connected while variables A and C are d-separated. According 

to the d-separation definition, there exists three possible directed acyclic graphs for 

variables A and C, which are A B C,  A B C, and A B C→ → ← ← ← → . Using only 

this information we cannot determine which graph presents the true causal pattern 
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between variables A and C, however, when coupled with the unique directed graph for 

variable A and D ( A B D→ ← ), a complete directed graph can be drawn for these four 

variables as the one shown in Figure 1. 

When analyzing real world problems, a large number of variables are tested and 

the causal patterns are much more complicated. TETRAD IV, a software program 

developed at Carnegie Mellon University, is employed for the estimation in this essay.  

While DAG has gradually demonstrated its usefulness to address such 

identification issues (Kwon and Bessler, 2011), there are some limitations of the method 

and the PC algorithm as well. First, DAG may give misleading results when one 

attempts to infer causal relations among variables where one or more of the variables has 

an infinite variance (Bessler, 2005). Second, variables used in a DAG model need to 

follow a multivariate normal distribution for the model to be fully efficient. Third, the 

PC algorithm result depends on the significance level chosen by the researcher in 

determining edges. Namely, in order for the algorithm to converge to all correct 

decisions with probability of 1, the significance level used in making the decisions 

should decrease as the sample size increases. Thus, the use of higher significance levels 

may improve performance in small sample sizes (Spires, Glymour and Scheines, 2000).   

 

2.4 Data 

 

The data used in this analysis are obtained from American Housing Survey (AHS) 

for metropolitan statistical areas (MSAs) in 2011, the latest survey available. The AHS is 
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sponsored by the Department of Housing and Urban Development (HUD) and conducted 

by the U.S. Census Bureau. It is the most comprehensive national housing survey in the 

United States, and provides current information on a wide range of housing subjects, 

including size and composition of the nation’s housing inventory, vacancies, fuel usage, 

physical condition of housing units, characteristics of occupants, equipment breakdowns, 

home improvements, mortgages and other housing costs, persons eligible for and 

beneficiaries of assisted housing, home values, and characteristics of recent movers 

(AHS, 2011).  

There are 29 metropolitan areas reported in the 2011 AHS, and thus used in this 

analysis. Table 1 lists all these metropolitan areas. The selection of variables is based on 

previous literature which has shown significant interaction between the included 

variables and fluctuation in house price. All variables used for cluster analysis are 

reported in Table 2, and they are housing value, unemployment rate, tax payment, 

mortgage rate, household income, unit size, rooms, crowding, neighborhood quality 

rating and unit quality rating. Data for all these variables are available in 2011 AHS 

except for unemployment rate, which is obtained from Bureau of Labor Statistics. Since 

cluster analysis is sensitive to the scales of variables, data used in the analysis is 

standardized with a mean of zero and a standard deviation of one. 
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2.5 Results 

 

2.5.1 Cluster Analysis  

 

Table 3 presents the cluster history of Ward’s Minimum Variance Cluster 

Analysis. The first column of the table lists the number of clusters, and the second 

column lists the variables or clusters that merge into a new cluster. The Frequency 

column gives the number of elements in the cluster. Semi-partial R-squared (SPRSQ) 

shows the decrease in the proportion of variance accounted for resulting from joining the 

two clusters, and equals the between-cluster sum of squares divided by the corrected 

total sum of squares. SPRSQ is a measure of the homogeneity of merged clusters, so 

SPRSQ is the loss of homogeneity due to combining two clusters to form a new cluster. 

Thus, the SPRSQ value should be small to imply that we are merging two homogeneous 

groups. R-square (RSQ) is the proportion of variance accounted for by clusters. It 

measures the extent to which clusters are different from each other (so when there is 

only one cluster, the RSQ value is zero). This RSQ value should be high.  

The hierarchical clustering analysis starts with 29 clusters, with each 

metropolitan area consisting of a cluster. The cluster history shows that Kansas City and 

St. Louis are the two metropolitan areas closest to each other based on the value of 

distance function. So these two cities are combined together to form a new cluster, with 

totally 28 clusters left. The Frequency is two because the newly formed cluster has two 

elements: Kansas City and St. Louis. The SPRSQ is 0.0022, which means the proportion 
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of variance decreases by 0.22% by joining Kansas City and St. Louis together as a new 

cluster (CLS 28). Cluster combination continues in the same way until all the cities are 

in the same cluster. Taking cluster 24 as another example, compared to the value of 

distances function between Virginia Beach and other MSA or other cluster, the value of 

distance function between Virginia Beach and cluster 28 is the smallest. This suggests 

combining Virginia Beach with Kansas City and St. Louis together, the two MSAs in 

cluster 28, to form a new cluster (CLS 24), with 24 clusters left. By doing this, the 

proportion of variance decreases by 0.52%.  

The number of clusters best summarizing the similarity and dissimilarity of data 

is determined based on the decrease of SPRSQ, since it is a measure of homogeneity of 

merged clusters. Figure 2 presents a plot of number of clusters versus SPRSQ. There is 

not a defined cut-off point suggested by any literature. But, from the plot, we can see 

that SPRSQ drops fast from one cluster to three clusters, and the curve tends to be flat 

after three clusters. Thus, three clusters perform best in grouping homogeneous cities 

together while separating dissimilar ones into different groups.  

Figure 3 presents the results of cluster analysis in a tree diagram (dendrogram). 

The between-cluster sum of squares is plotted on the y-axis. The larger this value is, the 

more distinct the two MSAs are. For example, Kansas City and St. Louis are most 

similar to each other compared to other possible combination and have the smallest 

between-cluster sum of square. Thus, they are grouped first (CLS 28). Then, they are 

grouped further with Virginia Beach to form a cluster of three MSAs. This dendrogram 

presents the same information as in the cluster history table, but in a more visual-
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convenient way. By dividing MSAs into three groups, we obtain the following group 

identification. The first cluster contains 19 MSAs: Birmingham, Virginia Beach, Kansas 

City, St. Louis, Cincinnati, Columbus, Phoenix, Indianapolis, Portland, Buffalo, 

Pittsburgh, Cleveland, New Orleans, Milwaukee, Atlanta, Denver, Dallas, Fort Worth 

and Memphis. The second cluster consists of four MSAs: Providence, Sacramento, 

Riverside and Charlotte. The third cluster is comprised of six MSAs: Oakland, San 

Diego, Los Angeles, San Jose, San Francisco and Anaheim.  

The cluster identification of the 29 MSAs is shown on a U.S. map in Figure 4. 

The MSAs in the first cluster are marked with red dots. The MSAs in the second cluster 

are marked with blue dots, and the ones in the third cluster are marked with green dots. 

The remaining dark grey dots represent the MSAs not in the analysis due to data 

unavailability. From the figure, several interesting findings can be obtained. First, the 

MSAs in the first cluster are located in the central area of US. Compared to the MSAs in 

the other two clusters, these MSAs have the lowest values in household income, 

unemployment rate, tax payment and housing value, and they have the highest level of 

interest rate. From the perspective of housing attributes, these MSAs have the largest 

square footage per unit and the largest number of rooms, and thus they have the lowest 

level of crowding. However, these MSAs have the worst overall opinions of 

neighborhood (lowest rating of neighborhood compared to other clusters). These 

characteristics of the first cluster are consistent with the economic conditions and 

geographical traits of these MSAs. For example, the majority of heavy manufacturing 

industries and old-style farming are located in the central US, and these sectors hire less-
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educated labor force and provide low income. Also, the pressure on land use is small in 

the central US, and thus houses are generally larger and cheaper.  

Second, the MSAs in the second cluster are close to coasts of US, mostly east 

coast. They have the highest unemployment rate, the smallest square footage of unit and 

the best overall opinion of both housing structure and neighborhood. For the rest of the 

economic and housing attributes, this cluster is between the first and the third clusters. 

The MSAs in this cluster are more developed than those in the first cluster, and people in 

these areas have higher level of income and require higher living quality. 

Third, the MSAs in the third cluster are located along west coast of U.S. and all 

in the state of California. This state has very strong performance in financial service, 

trade, transportation education and manufacturing. With its advantage in high-tech 

industries, high-educated labor force and convenient transportation, California attracts a 

large amount of capital and a large number of companies to its markets, which results in 

keen competition of land use. Thus, the MSAs in this cluster have the highest value in 

household income, tax payment and housing value. Also expected is the highest degree 

of crowdedness of their houses.  

Fourth, the clustering pattern of the examined MSAs supports that not only 

economic factors but also geographical factors matter in the formation of homogeneity 

in U.S. housing market. Moreover, housing attributes are shaped by local geographical 

and economic factors. Thus, our finding supports a complementary relationship between 

economy and geography in terms of differentiating housing markets, instead of an 

economy dominating geography relationship suggested by some of previous studies.  
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2.5.2 Discriminant Analysis 

 

We employ discriminant analysis to validate the results from hierarchical cluster 

analysis. The basic purpose of discriminant analysis is to estimate the relationship 

between a single categorical dependent variable and a set of quantitative independent 

variables. This analysis is widely used to identify the group to which an object belongs. 

Its difference from cluster analysis is that the number of clusters is known in 

discriminant analysis while the number of clusters is unknown in cluster analysis. Since 

the number of clusters is determined by cluster analysis as three, we try to assign the 29 

MSAs into three groups and check whether the membership of each group is the same as 

indicated by cluster analysis.  

Based on Fisher’s linear discriminant analysis, we want to derive the linear 

combinations of the economic factors and housing attributes that will discriminate best 

between defined groups. Each of the linear combination is known as a discriminant 

function, which takes the following form: 

(4)                                                          xwy T
ii =  

iy  is a 291× row vector of discriminant scores for the thi linear combination, one score 

for each MSA. iw  is a 110×  column vector of the discriminant weight for the thi  linear 

combination. x  is a 2910×  matrix since we have 10 economic and amenity variables 

and 29 observations, one for each MSA. For the three-cluster problem we are facing, we 
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need to seek two linear combinations that maximize the separability of the discriminant 

scores syi '  (i=1, 2). 

 Table 4 reports the discriminant weights for the two linear combinations which 

best separate clusters. Wilks’ lambda (P-value<0.0001), Hotelling-Lawley trace (P-

value<0.0001), and Pillai’s trace (P-value<0.0001) statistics all suggest that the 

discriminatory power of the discriminant functions are statistically significant at 5% 

significance level. Error count estimate for clusters is zero, which means the grouping 

result from the discriminant analysis is the same as that from cluster analysis. Figure 5 

presents the results of discriminant analysis graphically. A number (1, 2 or 3) denotes 

which cluster an observation belongs to in the hierarchical cluster analysis. We can see 

that the discriminant functions work well in separating the three clusters (no overlapping 

in the distribution) and the assignment of each MSA is the exactly the same as the 

assignment from cluster analysis. Thus, we conclude that the results from hierarchical 

cluster analysis are valid. 

 

2.5.3 Error Correction Model and DAG  

 

The causal flows of price signal are sorted out by DAGs based on the residuals 

from a vector autoregression (VAR) model. Thus, we estimate the correct form of VAR 

before conducting the DAG analysis.  

There are three clusters found for U.S. housing markets, and we want to examine 

the transmission of price signal both among the clusters and within each cluster. Thus, 
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four VAR models are to be estimated. For the between-cluster estimation, three series of 

quarterly average housing values of MSAs are examined, one for each cluster. The data 

is from 1991:Q1 to 2013:Q1, for a total of 89 observations. For the within-cluster 

estimations, the data used are quarterly housing values of each MSA over the same 

period.  

In the estimation of between-cluster model, let tX  denotes a vector of average 

quarterly housing values. First, we need to determine whether tX  is stationary based on 

Augmented Dickey-Fuller (ADF) test. The results of ADF test on level and first 

differences of housing values are reported in 

From the results, we can conclude that all the three series of average housing 

values are I(1). Next, loss metrics on lag lengths from VARs on housing values are 

calculated and reported in Table 6. HQC has the lowest values with three lags and SBC 

has the lowest value with two lags. Since the lag selections indicated by different loss 

metrics are not consistent, we adopt the largest indicated lag length (k=3) in model 

specification.  

Thus, we can model these three series in an error correction model (ECM) as 

following: 

(5)                                          i
i
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where Π  and iΓ are parameter matrices to be estimated, µ  is a constant vector and ie is 

a vector of white noises. If Π  is of full rank, then tX is stationary in levels and model (5) 

can be rewritten as a VAR in level model. If Π has zero rank, then model (5) can be 
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reduced to a VAR in first difference model. If the rank of Π  is a positive number but Π  

is not of full rank, there exist matrices of adjustment coefficientα and matrices of long-

run parameter β , such that βα ′=Π . Johansen cointegration test is conducted to 

determine the rank of Π , and its results are reported in Table 7, which indicates that the 

rank of Π  is one. So, an ECM model is appropriate for between-cluster estimation, and 

there exists one long-run stationary relation in the three clusters. However, under ideal 

open market conditions, two long-run or cointegrating relationships would have been 

found (Engle and Granger, 1991). Thus, there are some types of constraints to 

information flow or market imperfections are preventing full adjustment to long-run 

equilibrium in these areas (Vitale and Bessler, 2006). The estimated ECM is not reported 

here. Table 8 reports the contemporaneous correlation matrix between the residual terms 

from the ECM model. From this table, we notice that all three clusters are positively 

correlated. The third cluster shows relatively high correlation with innovations from the 

second cluster (0.6010), but relatively low correlation with the first cluster (0.2702).  

PC algorithm is applied to the correlation matrix presented in Table 8, and results 

are given in figure 5. We can see that there is not price information flowing among the 

three clusters. A Chi-square test is conducted on the null hypothesis of completely 

disconnected graph and p-value is reported to be 1.0000. Due to the data size, a 

significance level of 10% is used based on Spires, Glymour and Scheines’ (2000) 

suggestion. Thus, we cannot reject the null hypothesis and conclude that the three 

clusters are significantly independent of each other in terms of price movement at 10% 

significance level. The result conforms to our expectation. Even though the housing 
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markets are integrated gradually under the influence of new transportation technology, 

developed infrastructure and more mobile resources, especially talent and brains, the 

house prices are still determined locally by economic and geographical conditions, such 

as type of major industry, employment and competition for land use. There is no 

transmission of price signals between regions with different combination of economic 

and geographical conditions.  

While DAG indicates there exists no price signals across clusters, the 

decomposition of forecast error variance provides support to some price communication 

among these clusters across time. Table 9 reports the proportion of prediction error 

covariances by variable. These numbers partition the price uncertainty in each cluster at 

horizons of zero, one and twelve quarters ahead. Partition results can be provided at any 

horizon, but to save space we focus just on three periods. The lead column shows how 

many step-ahead the forecast is made for. For example, the uncertainty associated with 

current house price of cluster 1 is explained by surprises in the current period from its 

own cluster. No other cluster is responsible for current period innovations in the cluster 1. 

If we move ahead to one quarter, the uncertainty in the house price in cluster 1 is 

primarily influenced by its own one period innovation (98.98%) and there are trivial 

influences from innovations from cluster 2 (1.00%). Finally, at the long horizon of three 

years, uncertainty in house price in cluster 1 is explained by earlier innovation from 

cluster 2 (13.23%) and cluster 3 (10.34%), as well as its own previous surprises 

(76.43%). Overall, cluster 1 is the dominant cluster for price discovery in these three 

clusters. Innovation in Cluster 2 has greater influence on the uncertainty in house price 
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of cluster 3 as time go by, and dominates in accounting for price uncertainty in cluster 3 

in the long run (77.81%). Thus, there is price signals transmitted over time among these 

clusters, but no contemporaneous price communication across clusters.  

Next, we want to find out whether price movement exists between MSAs within 

homogeneous clusters. The analysis for cluster 2 and 3 follows the same procedure as 

the between-cluster analysis. However, cluster 1 contains 19 MSAs (variables), which 

cause over-parameterization problem based on only 89 observations. Thus, we adopt 

Bayesian VAR (BVAR) model to analyze cluster 1. The results of ADF tests, loss 

metrics and Johansen cointegration tests for cluster 2 and 3 are provided in Table 11 and 

Table 12 respectively. The p-values reported in Table 10 indicate that all the housing 

value series are I(1) no matter which cluster they belong to. The loss metrics reported in 

Table 11 suggest that a lag length of four is most appropriate for the VAR model of 

cluster 2 and a lag length of five works best for the model of cluster 3. The results of 

Johansen cointegration tests reported in Table 12 show that the cointegration rank of 

cluster 2 is two and the cointegration rank of cluster 3 is four. This suggests that ECM 

model is appropriate for the estimation of both clusters. Also, it implies that constraints 

to information flow or market imperfections exist for MSAs in both clusters and prevent 

full adjustment to long-run equilibrium in these areas. Table 13 reports the 

contemporaneous correlation matrix for cluster 1 from BVAR model and Table 14 and 

Table 15 report the contemporaneous correlation matrixes for cluster 2 and 3 from ECM 

models, respectively.  
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The results from PC algorithm for the three clusters are given in figure 6 to 8. For 

these cases, Chi-square tests are conducted on the null hypothesis that the population 

covariance matrix over all of the measured variables is equal to the estimated covariance 

matrix over all of the measured variables written as a function of the free model 

parameters. Again, due to the data size, a significance level of 10% is used based on 

Spires, Glymour and Scheines’ (2000) suggestion. For cluster 1, there exist some causal 

flows between the innovations of the 19 MSAs, and the patterns of causal flows divide 

the MSAs in cluster 1 into smaller groups. Several MSAs (New Orleans, Dallas and 

Cleveland) are not part of any innovation interaction. The p-value of the resulting causal 

patterns is zero, so we reject the null hypothesis and conclude that the resulting patterns 

are not reliable and fail to warrant the significance of these communications of 

innovation. There is not adequate information to draw conclusion about the economic 

significance of these patterns on price movement. But even if they are economic 

significant, the interaction of innovations for the MSAs are small scale and only between 

a small number of MSAs. The same situation exists for cluster 2 and 3. From figure 7 

and 8, we can see that the communications of innovation are only between two or three 

MSAs, and the p-values of these two causal patterns suggest that the resulting causal 

patterns are not reliable and fail to warrant the significance of price movement between 

MSAs from statistical perspective. Thus, just like in the between-cluster analysis, house 

prices are determined locally by economic and geographical conditions, and there is no 

transmission of price signal between regions. This is consistent with urban economic 

theory, which advocates that trend in utility convergence carries information flows in 
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housing markets while house price convergence across regions is not happening due to 

such communication of market information.  

Forecast error variance decompositions for cluster 2 and cluster 3 are reported in 

Table 16 and Table 17. Because cluster 1 has 19 variables, its decomposition table is too 

large to be reported in the essay, we only present here the major findings for cluster 1 

along with the findings for the other two clusters. For both cluster 1 and 2, there exists 

no dominant MSA for price discovery in the short-run and long-run. The uncertainty 

associated with the house price of each MSA is explained primarily by surprises in its 

own region. For cluster 3, Los Angeles is the dominant MSA, and San Francisco is the 

second mover at the long run. Thus, we conclude that there is little price communication 

over time in among MSAs in cluster 1 and 2. However, there is price signal transmitted 

among MSAs in cluster 3. As the two largest cities in California, Los Angeles and San 

Francisco are the two dominant MSAs, whose innovations in house price will contribute 

to the uncertainty in house price in other MSAs (also in California) in the same cluster.  

To sum up, even though the clustered MSAs share similar economic and amenity 

attributes, there is no statistically significant innovation communication among these 

areas, no matter between or within clusters. The common moving trends shared by these 

MSAs are the results of external economic fundamentals, such as income and 

employment. The price shock in one area due to local factors will not cause price 

fluctuations in its neighborhood areas. Thus, price information is independent across 

regions while local economic fundamentals are considered. Also, we find that US 

housing markets are not integrated and some types of constraints to information flow or 
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market imperfections are preventing full adjustment to long-run equilibrium in housing 

market. The communication of housing market information may be a result of utility 

convergence as suggested by urban economic theory, and such communication will not 

result in house price convergence across region. Over time, price signals are transmitted 

between clusters and within cluster 3. 

However, because PC algorithm requires that all the input variables follow 

normal distribution, the results regarding causal flows among innovation need to be 

interpreted with caution. Jarque-bera test for normality is conducted and only part of the 

residuals from ECM and BVAR models are found to follow normal distribution. Thus, 

the correlation matrixes of these residuals fail to convey all the information about the 

interaction between them. In this case, the derived causal flows are an approximate of 

the true causal patterns. 

 

2.6 Conclusion 

 

This essay aims to examine the U.S. housing market from the perspective of 

market clustering and regional price movement. Cluster analysis is conducted to classify 

29 U.S. metropolitan areas into three homogeneous clusters based on variables capturing 

housing attributes and economic environment. Discriminant analysis is employed next to 

validate the clustering results. It finds that all the economic and amenity variables 

significantly contribute to the assignment of a MSA into one of the three clusters. Also, 

the three clusters are separated far away from each other and no overlapping occurs 
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between clusters. The three clusters are located in the central, east coast and west coast 

of US respectively and the pattern of clustering is consistent with both economic 

conditions and geographical traits of the MSAs. Thus, the MSAs share similar economic 

and geographical characteristics are more likely to have similar attributes of housing 

market. However, this does not warrant price signal flowing across these MSAs.  

A directed acyclic graphs approach is used to identify the pattern of price 

movements across the clustered housing markets. We find no statistically significant 

innovation communication among these MSAs, no matter between or within clusters. 

The price shocks in one area due to local factors will not introduce price fluctuations in 

other areas. We also find that U.S. housing markets are not integrated well and some 

types of constraints to information flow or market imperfections are preventing full 

adjustment to long-run equilibrium in housing market. Thus, the spatial equilibrium 

proposed in the urban economics does not yet exist in US housing market. However, the 

trend of utility convergence proved by urban economic theory may be the reason driving 

information flowing among housing markets, while price convergence across regions is 

not a result of such information communication.  

The findings in this essay have several policy implications. First of all, policy 

control over central housing market does not have overflow effect on housing markets in 

coast areas, because there is no causal flow of house price innovations across these 

regions. Second, house prices in MSAs are cointegrated to some extent, so they are 

moving together due to convergence of economic fundamentals, investment behavior 

across regions and intelligence mobility. But the US housing market is not fully 
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integrated and policy incentives should be put into practice to encourage information and 

resource flow and fasten the adjustment to long-run equilibrium in housing market as 

suggested by urban economic theory. These policy incentives may include subsidies to 

the production in certain regions and tax benefit to building houses in some areas.  

Even though the patterns of price movements across the clustered housing 

markets are not statistically significant, the economic significance of these patterns 

needs to be examined further. There are some limitations of this essay. First, the 

metropolitan areas include both central cities and suburbs, and are widely distributed 

geographically. However, the metropolitan area survey data are not necessarily 

representative of the whole housing markets (Lu, 2009). Second, there are 47 

metropolitan areas in US, but only 29 of them are examined in the essay due to data 

availability. Thus, the representativeness of the results is weakened. Third, cluster 

analysis is cross-sectional type of method. Once the economic fundamentals and housing 

attributes changes significantly over time, the clustering pattern of US housing market is 

expected to change as well. However, the lack of integration and price movement in 

housing market is expected to persist over a long time.  
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3 LINKAGE BETWEEN THE U.S. HOUSING MARKET AND CREDIT 

STANDARDS 

 

3.1 Background 

 

The roots of the sub-prime mortgage crisis have been investigated a lot in the 

recent years. The declining real interest rate, lower credit standards, unreliable credit 

scoring technology, new structured mortgage products and easy monetary conditions are 

among those to be blamed. All these factors working together fueled the credit boom and 

housing bubble in U.S. during 2002 to early 2007.   

As Greenspan suggested, the housing bubble was fundamentally engendered by 

the decline in real long-term interest rate. After the federal funds rate was reduced from 

3.5% to 3.0% in 2001 after terrorist attack, it was further lowered to 1.0% after the 

accounting scandals in 2002. This decline to the historical low encouraged the home 

sales and refinancing. Adjustable rate mortgage (ARM) surged, which has its interest 

rate adjusted based on the market interest rate. At the same time, new structured 

mortgage products, such as collateralized debt obligations (CDOs) and mortgage-backed 

securities (MBSs), became increasingly popular among both domestic and foreign 

investors. These products securitize a pool of illiquid assets, including mortgage loans, 

and investors are paid back using proceeds or payments from those assets. The false 

AAA ratings of those structured products apparently convinced investors of the ability of 
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the products to meet their financial commitment. Thus, money kept flowing into the 

market and funding the housing bubble. 

The low federal interest rate and increasing popularity of securities backed by 

subprime mortgages convinced lenders to lower their credit standards and extend loans 

to many borrowers with low down-payments and poor credit histories. As a result, 

housing demand got larger and so did the housing bubble. A large portion of subprime 

loan was ARMs, which at first benefited from the low federal funds rate over 2001-2003. 

But the fast increase in treasury interest rates starting from the second half of 2004 

caused many subprime ARMs be reset at a much higher interest rate, and thus resulted in 

difficulties for many homebuyers to pay off their mortgages. The home loan default rates 

rose and it was hard for structured securities to sustain their values. During 2006-2007, 

more than three-quarters of the AAA-rated CDO bonds were downgraded (Bloomberg 

report, 2008), which further depressed the structured securities market. As a result, much 

less CDOs and private-label MBSs were issued, which in turn reduced the demand of 

outstanding mortgage and housing, and the housing bubble burst. 

After the housing bubble, house price collapsed in 2007, and millions of 

American households became underwater on their mortgage. Because house is the 

largest single asset for most people, the contraction in housing wealth inevitably had a 

significant impact on consumer demand and on the aggregate economy. The recovery of 

the whole housing market seemed to be tied to the recovery of the general economy, so 

enormous government stimulation, low interest rate, tax credit and other forms of 

modification of loans were put into practice to get housing market back on track. The 
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housing market is on its way to recovery, but, because of what happened during the 

subprime mortgage crisis, lenders are reluctant to make home mortgage loan easy to 

borrowers. According to the Federal Reserve’s April survey of senior officers, officers 

are not loosening up their tight credit requirements while their banks are seeing stronger 

demand for home loans.  

Credit standards, along with interest rate and investment in structured securities, 

played an important role in the chaos and recovery of U.S. housing market. So this essay 

is aimed to discover the interactions between credit constraint and house price.  

There are two objectives of this essay. First is to model the dependence among 

the stochastic components of house price, credit standard and other variables using 

multivariate copulas distribution (MVC). While correlation is only appropriate in 

measuring dependence for variables following multivariate normal distribution 

(Embrechts, McNeil, and Straumann, 1999), copula works well in separating a joint 

distribution into dependence structure and marginal distributions without normality 

assumption. The second objective is to forecast and simulate the underlying distribution 

of house prices based on the modeled dependence, and discover the causal flows 

between variables based on the simulated error terms. Directed acyclic graphs are used 

to find the causal patterns.         

The reminder of the essay is organized as follows. The second section reviews 

previous literature. The third section discusses methodologies, and data is explained in 

the section 4. Models and results are presented and discussed in section 5. Section 6 

concludes this essay, and the limitation in the analysis is discussed as well. 
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3.2 Literature Review 

 

Traditional models analyzing house price usually only account for the impact 

from treasury interest rate and other economic fundamentals, but fail to consider credit 

standard in the models. House price models omitting credit constraints perform poorly in 

the 2000s (Duca, Muellbauer and Murphy, 2011 (b); Gallin, 2006). Magne and Rady 

(2006) replicate the facts that credit constraints delay some household’ first home 

purchase and identify the ability of young households to afford the down payment on a 

starter home as a powerful driver of the housing market. Ariccia, Igan, and Laeven (2008) 

prove that the sharp increase in delinquency rates in the U.S. subprime mortgage market 

over 2006-2008 is related to the past credit boom and loosening credit standards. The 

close linkage between housing market and credit standard is also supported by Duca, 

Muellbauer and Murphy (2011(a), 2011(b)). All these studies lend support to the 

importance of credit standard in house market analysis.  

In this essay, we employ time series econometric model to estimate the 

interaction of house price with credit constraint, as well as with other variables 

suggested by the inverted demand approach. What distinguish our estimation from 

previous literatures is that risk measure is incorporated into the model, and both credit 

constraint and house price are treated as stochastic random variables. Therefore, a 

distribution, rather than a point value, of house price for a certain level of credit standard 

will be derived.  
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According to Clements, Mapps and Eidman (1971), simulating uncertainty 

without realistically representing the covariance between related variables may introduce 

bias and variability into the analysis. They discuss a procedure that can correlate two 

events in the simulation model. Richardson and Condra (1978) extend the method of 

Clements, Mapp and Eidman, and report a general procedure for correlating random 

values of exogenous variables that is not distribution specific. In both of these 

procedures, the correlation matrix is calculated as the starting point. However, the 

correlation fails to convey the dependence structure when variables do not follow a 

multivariate normal distribution. In such cases, copulas offer a more flexible way to 

model dependence structure by not restricting the underlying uniform marginal 

distribution to be linearly correlated (Woodard, Paulson, Vedenov, and Power, 2011). 

Thus, in this essay, multivariate copulas distribution is used to simulate the stochastic 

components for both house price and credit constraint.  

 

3.3 Models 

 

3.3.1 Multivariate Copulas Simulation 

 

Supported by Sklar’s theorem, copulas separate a multivariate distribution 

function into the marginal distributions and the underlying dependence structure. It 

follows that  

(6)                                   1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))n n nF x x x C F x F x F x=  or                                 
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(7)                                   1 1
1 2 1 1( ) ( , ,..., ) ( ( ),..., ( ))n n nC u C u u u F F u F u− −= =                                

where F(.) is the joint distribution function, (.)iF  is the marginal distribution for the thi

variables, and C is the copula distribution. 

In this essay, the Frank copula is used. It belongs to the class of Archimedean 

parametric copulas. According to Woodard et al. (2011), Archimedean copulas are a 

relatively flexible class of copulas that can adequately model a wide range of alternative 

dependence structures, and most have analytical solutions. The Frank copulas take the 

form  

(8)                                                1
1 2

1
( , ,..., ) ( ( ))

n

n i
i

C u u u uϕ ϕ−

=

= ∑                                           

where 1( ) ln
1

tet
e

α

αϕ
−

−

−
= −

−
 with \{0}α ∈ . The Frank copulas can be simulated by first 

generating independent standard uniformly distributed variables, and then inverting the 

conditional copula density to generate random draws. The detailed method and 

algorithm used for Frank copulas simulation follows the one described by Embrechts, 

McNeil, and Straumann (1999). Let  

(9)                                  1 2 1( , ,..., ) ( ,..., ,1,...,1), 2,..., 1   i i iC u u u C u u i n= = −                           

represents i-dimensional marginal distribution of 1 2( , ,..., )iC u u u , and write 1 1 1( )C u u=

and 1 2 1( , ,..., ) ( ,..., )n n nC u u u C u u= . Suppose that '
1( ,..., ) ~nU U C ; the conditional 

distribution of iU given the values of the first i-1 components of '
1( ,..., )nU U  can be 

written in terms of derivatives and densities of the i-dimensional marginal 
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(10)                              
1 1 1 1 1 1

1 1
1 1 1 1

1 1 1 1

( | ,..., ) ( | ,..., )

( ,..., ) ( ,..., )
... ...

                          

i i i i i i i
i i

i i i i

i i

C u u u P U u U u U u
C u u C u u
u u u u

− − −

− −
− −

− −

= ≤ = =

∂ ∂
=

∂ ∂ ∂ ∂
                          

provided both numerator and denominator exist. To simulate a value from 

1 1( | ,..., )i i iC u u u − , generally a u is simulated from uniform(0,1) and then calculate 

1
1 1( | ,..., )i iC u u u−

− . The specific steps for Frank copulas simulation are: 

    Step 1: simulate a value 1u  from U(0,1), 

    Step 2: simulate a value 2u  from 2 2 1( | )C u u , 

    Step 3: continue in this way, 

    Step 4: simulate a value nu  from 1 1( | ,..., )n n nC u u u − . 

In this essay, the =MVCOPULA( ) Simetar Stochastic function is used, which is 

programmed to return correlated uniform random numbers generated from an 

Archimedean copula. 

According to the simulation algorithm, 1U  is set as an independent variable by 

default. 2U is assumed to be granger caused by 1U , and 3U  is assumed to be granger 

caused by 1U and 2U , etc. In the first run of copulas simulation, the house price is set as 

the thn variable, which is reasonable because it is expected to be granger caused by all 

the other n-1 variables. An arbitrary order is assigned to each of the rest n-1 variables, 

and their orders will be updated using the causal patterns derived by directed acyclic 

graph method. Another run of copulas simulation will be conducted to incorporate the 
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causal information. This process of updating simulation order can repeat several times 

until a stable causal pattern and simulation order is obtained. 

 

3.3.2 Directed Acyclic Graph (DAG) Method 

 

DAGs uncover contemporaneous causal orderings among variables using arrows 

and vertices. Arrows represent the direction of information flow between variables, and 

there is no path that is from a variables and return to that same variables. There are 

several algorithms discussed by Pearl (2000) that can be used to identify and estimate 

the casual structure embedded in innovations, and the PC algorithm is used in this article. 

This algorithm starts with a completely undirected graph, i.e. each variable in the set is 

connected to every other variable by an undirected edge. Then, correlation and partial 

correlation are calculated for each pair of variables. If they are not significantly different 

from zero according to some critical statistic, then no significant relationship is defined 

for this pair of variables, and the edge between them is removed. Last, the remaining 

edges are believed to have directions, and an arrow (direction) is assigned to each of the 

edges according to the directional separation (d-separation) definition, which is given in 

Pearl (2000). TETRAD IV, software developed at Carnegie Mellon University, is used 

to determine causal patterns with a correlation based approach. 

Empirically, PC algorithm requires a relatively large number of observation 

( 100n ≥ ) to ensure the reliability of the derived contemporaneous causal patterns. 
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Simulation can be used to overcome this problem by generating 1000 of data from the 

estimated distribution.   

 

3.4 Data 

 

According to the inverted demand approach, the variables are house price, house 

inventory, income, credit standard and imputed rental cost per dollar house price. In 

order to place these variables on a common scale, we divide each variable by its standard 

deviation. Quarterly data are used, which cover the time period from 1993:Q1 to 

2010:Q4. Detail description of these variables and data is given next.  

 

3.4.1 Housing Prices and Inventory  

 

Median house prices for newly sold single family houses are collected from the 

census data of U.S. Department of Commerce. We adjust these nominal house prices 

with the Consumer Price Index (CPI-U), which is compiled by the Bureau of Labor 

Statistics and is based on a 1982 base of 100. The resulting real house prices are used in 

the analysis. Housing vacancies is used as the proxy for inventory. The number of year-

round vacant, for sale houses (in thousands) is reported by the U.S. Census Bureau.  
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3.4.2 Income and Credit Standard 

 

Disposable income is used, which is the amount of income left to an individual 

after taxes have been paid and available for spending and saving. Data for real 

disposable personal income is reported by the Bureau of Economic Analysis. Loan to 

value (LTV) ratio is considered as a good proxy for credit standard (Ariccia, Igan and 

Laeven, 2008; Duca, Muellbauer and Murphy, 2011(a), (b)). The LTV data is obtained 

from the historical summary data from the Federal Housing Finance Agency’s monthly 

survey of rates and terms on conventional single-family non-farm mortgage loans. 

 

3.4.3 Imputed Rental Cost per Dollar House Price.  

 

Imputed rental cost measures the cost of owning a house, which compares the 

value of living in that property with the lost income that one would have received if the 

owner has invested that capital in an alternative investment. According to Himmelberg, 

Mayer, and Sinai (2005), the computation of imputed rental cost should take into 

account differences in risk, tax benefits from owner occupancy, property taxes, 

maintenance expenses, and any anticipated capital gains from owning the home. It can 

be written as: 

(20)              Imputed rental cost= , , 1( )t f t t t t t m t t t t t t t tPr P P r P Pg Pω τ ω δ γ++ − + + − +                    

where ,f tr and ,m tr is the risk-free interest rate and mortgage rate respectively, tω is the 

property tax rate, tτ represents the marginal income tax rate, and tδ is the depreciation 
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rate. 1tg +  is the expected capital growth rate during the year t+1, and the last term tγ  is 

the risk premium per dollar house price for compensating the higher risk of owning a 

house instead of renting one. 

The first term is the interest that the homeowner could have earned from other 

investment other than a house. The second term is the cost of property taxes. The third 

one is the tax shield benefit from property taxes and mortgage interest payment. These 

two payments can be itemized when filing federal income taxes and they are deductible 

from total taxable income. The fourth term is the house maintenance costs, estimated as 

a fraction 𝛿𝑡of house value. The fifth component is the expected capital gain during the 

year𝑔𝑡+1, and the last term is the total risk premium for compensating the higher risk 

assumed by homeowner by owning a house instead of renting one. 

Imputed rental cost per dollar house price is the ratio of imputed rental cost to 

house price, and can be calculated as 

(21)                                   , , 1( )t f t t t m t t t t tuc r r gω τ ω δ γ+= + − + + − +                                  

The data for risk-free interest rates are the yield on Treasury bill at maturity of one year. 

The mortgage rate data is the conventional single-family mortgage rate that report by 

Federal Housing Finance Agency. Marginal tax rate of a typical home buyer is 25%τ = . 

The depreciation rate is 2.5%δ =  and the risk premium is 2%γ = (Himmelberg, Mayer, 

and Sinai, 2005). The expected capital growth rate is calculated as the average capital 

growth rate over the previous four periods.  
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3.5 Results 

 

Based on the inverted demand approach suggested by Duca, Muellbauer and 

Murphy (2011, (b)), we model house price as a function of house supply, income, user 

costs and credit standard, i.e. ( , , , )t t t t tP f Inv DPI UC LTV= , where t is a time index, P is 

real house price, Inv represents house inventory, and DPI is real disposable person 

income. UC represents imputed rental cost per dollar house price. These variables are 

assumed to follow a multivariate copulas (MVC) distribution. Let 

( , , , , )t t t t t tY P Inv DPI UC LTV ′= , we can write the model as : 

(22)                                                        ˆ
t t tY Y ε= +                                                                 

tY  is stochastic with t̂Y  as its deterministic component and tε  as its stochastic 

components. t̂Y  is estimated using econometric model and tε  is simulated using MVC 

distribution. From now on, we denote our random variable as itY  with i indicating the 

position (order) of the variable in the tY vector. For example, variable tP  is denoted as 1tY

for being the first variable in the tY vector. 

The steps for estimating the parameters for the MVC distribution of tY  are 

similar to the steps for parameter estimation for multivariate empirical distribution 

illustrated by Richardson (2010), which are: 

      (1) Calculate the best econometric model to predict each of the random variables îtY . 

      (2) Calculate the residuals, îtε , from the econometric estimates as ˆ
ît it itY Yε = − . 
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      (3) Calculate the 5 5× Kendall’s tau concordance matrix using the unsorted residuals. 

      (4) Simulate a 5 1×  vector of correlated uniform standard deviates or CUSD’s using 

Frank copulas. 

      (5) Calculate the fractional residuals for each variable as ˆ
ˆˆ

it it ite Yε ε=
 
and then sort 

these values for each of the random variables. Denote the sorted fractional residuals as 

ˆ ˆ( )
it it

S sorted eε ε= . Calculate the pseudo minimums and maximums for each variable 

using the sorted fractional residuals. 

      (6) Assign probabilities to each of the sorted fractional residuals including a zero to 

the pseudo minimum and a one to the pseudo maximum. Denote the resulting CDF of 

the sorted fractional residuals as ˆ( )
it

F Sε . 

After estimating the parameters for the MVC distribution of tY , we can simulate 

tY  as follow: 

(23)                                     ˆ ˆ
ˆ (1 ( , ( ), ))

it itit it iY Y EMP S F S CUSDε ε= × +                                   

where EMP( ) is a Simetar Simulation function used to generate empirical random 

variable based on the three inputs. By using the format of iS  as fractional deviates from 

a forecast, we insure the relative risk of the random variables to remain constant over the 

simulation period.  

Next, we will present the estimation and simulation results step by step. 

In the first step of selecting the best econometric model to estimate the 

deterministic component îtY , we consider multivariate time series models and Johansen 

cointegration test is conduct to facilitate model selection. Times series itY  might be 
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stationary in levels or first differences, i.e. I(0) or I(1). Rather than pretesting these for 

unit roots, the Johansen procedure formulates the question within the model. For the 

model being tested in this essay, 

(24)                                           1
1

p

t t i t i t
i

Y c Y Y ε− −
=

∆ = +Π + Γ ∆ +∑                                           

if the cointegration test fails to reject the null of cointegration rank r=0, the inference is 

that the error-correction coefficient Π  is zero and the error correction model (ECM) 

reduced to a VAR model in first differences. If the cointegration test rejects all the 

cointegration ranks r less than n (number of random variables), the inference is that Π

has full rank and tY  is stationary in levels which can be modeled with VAR in levels.  

Both trace and maximum eigenvalue tests are conducted to determine the rank of 

Π , and the test statistics are reported in Table 18. Both test statistics indicate that we 

cannot reject the null of cointegration rank is zero at 5% statistical significance level. 

Thus, first differences are used in VAR model to estimate the random variables t̂Y . 

We also applied the cointegration rank search method discussed in Bessler and 

Wang (2005), and jointly select the lag length and cointegration rank based on Schwartz 

information criterion (SIC) and Hannan and Quinn’s Φ  measures (Φ ). The information 

criterion statistics are listed in Table 19, and they indicate a VAR model in first 

differences with four lags is the most preferred model. Based on the results of the 

Johansen cointegration test and the statistics of SIC and Φ , the VAR (4) model in first 

differences is estimated. The estimated c and iΓ (i=1,…,4) is reported in Table 20.  
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Kendall’s Tau concordance matrix is calculated based on the residuals from the 

VAR model, and it is reported in Table 21. Kendall’s Tau correlation coefficient is a 

non-parametric statistic used to measure the association between variables. When the 

sample fails to follow normal distribution or sample size is small, this measure of rank 

correlation is a robust alternative, which does not rely on any assumptions on the 

distribution of variables. For example, assume X and Y are two joint random variables, 

any pair of observation ( ix , iy ) and ( jx , jy ) are said to be concordant if the ranks for 

both elements agree: that is, if both ix > jx  and iy > jy  or if both ix < jx  and iy < jy . They 

are said to be discordant, if ix > jx  and iy < jy  or if ix < jx  and iy > jy . If ix = jx  or iy =

jy , the pair is neither concordant nor discordant. The Kendall’s tau coefficient is 

defined as:  

(25)               ( ) ( )
1 ( 1)
2

       number of concordant pairs number of discordant pairs

n n
τ −
=

−
 

and the coefficient must be in the range 1 1τ− ≤ ≤ . From Table 21, we can see that LTV 

is moderately associated with house price (0.1460), house inventory (0.1326) and 

disposable household income (0.1535). Except for LTV, house price has weak 

association with other variables. Thus, if house price interacts with other variables, LTV 

might serve as an intermediary between them.  

Following the steps (4)-(6) discussed earlier in this section, we forecast tY∆   for 

2011:Q1 based on the last four observations (2010:Q1-2010:Q4) in our data set as: 
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(26)                      
4 5

ˆ ˆ, ,
1 1

ˆˆ( ) (1 ( , ( ), ))
it iti t i jk k t j i

j k
Y c Y EMP S F S CUSDε ε−

= =

∆ = + Γ ∆ × +∑∑                   

and simulate it for 1000 times. 

The summary statistics of the simulated random variables are reported in Table 

22. Also reported are the historical mean and standard deviation of the variables. We can 

see that the historical and simulated means and standard deviations are very close to 

each other, so we expect the simulation results are valid and capture the major 

characteristics of historical data. To further validate the simulation a comparison is made 

between the simulated series and historical series, and the resulting statistics are listed in 

Table 23. According to these statistics, we fail to reject the null that the mean vectors are 

equal, and also fail to reject the null that the covariance matrices are equivalent. Thus, 

the conclusion that the simulated distribution is valid can be made. 

For each iteration, random variables ,i tY and residuals itε  are recovered as  

(27)              
4 5

ˆ ˆ, , 1 ,
1 1

ˆˆ( ) (1 ( , ( ), ))
it iti t i t i jk k t j i

j k
Y Y c Y EMP S F S CUSDε ε− −

= =

= + + Γ ∆ × +∑∑  and            

(28)                         
4 5

ˆ ˆ,
1 1

ˆˆ( ) ( , ( ), ))
it itit i jk k t j i

j k
c Y EMP S F S CUSDε εε −

= =

= + Γ ∆ ×∑∑                       

respectively. Thus, we have 1000 out-of-sample forecast for house price in 2011:Q1. 

Based on these data, a CDF graph is obtained and presented in figure 9. Different from 

previous studies only giving a point forecast of house price, the graph specify the 

distribution of forecasted median house price, based on which we can derive the value of 

certain quantiles of interest. Some important quantile values are calculated and 

summarized in Table 24. For example, the median housing prices for 2011:Q1 have 5% 
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chance of dropping below $211,779.6, and 5% chance of rising above $245,679.2 (95% 

confidence interval). The median value of the simulated house price is $228,729.4, 

which is very close to the observed median house price $226,900 for that time period. 

With a 5-step-ahead forecast based on the VAR model, we simulate the 

distribution of forecasted tY  at 2012:Q1. Its CDF graph is presented in figure 10 and 

several quantile values are listed in Table 24. We predict that the median housing prices 

have 5% chance of going below $206,775.3, and 5% chance of shooting up beyond 

$239,874.2 at 2012:Q1. The median value of the median housing price in that period is 

forecasted to be around $223,324.8, which is again very close to the observed median 

house price $ 225,750.   

Based on the tables and figures discussed above, the simulation of stochastic 

components retains all the importation information about the variables and their 

interactions. Together with the forecast of VAR-in-difference model, it not only gives a 

close point forecast for median house price, but also describes the underlying 

distribution of it, which provides more information to both policy makers and housing 

market investors. For example, policy makers can conduct scenario analysis by changing 

the value and level of fluctuation of LTV or house inventory to explore the change in the 

distribution of house price so as to better control the level of house price and its 

fluctuation. Investors can adjust their investment portfolio based on the risk indicated in 

the house price distribution and their risk appetite to find their optimal portfolio on the 

capital market line.   
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The last thing we consider is the contemporaneous causal patterns between house 

prices, credit standard and other factors. From the VAR in first difference estimation, we 

have 68 5× matrix of residuals, which contains the contemporaneous causal information 

for the five variables. This residual matrix is used as the input of DAG model, and the 

causal flows sorted out by PC algorithm is presented in Figure 12 Contemporaneous 

Causal Patterns among the Five Random Variables, 2011:Q1The resulting causal pattern 

is consistent with the one obtained based on the simulated residuals. This conforms to 

our expectation because the complete homogeneity test suggests the equivalence of 

correlation matrixes of estimated residuals and simulated residuals. In other words, the 

estimated residuals and simulated residuals convey the same contemporaneous causal 

information among the five variables. A chi-square test is formulated in the PC 

algorithm to test the null hypothesis that “the population covariance matrix over all of 

the measured variables is equal to the estimated covariance matrix over all of the 

measured variables written as a function of the free model parameters” (TETRAD IV 

User’s Manual). Since indicated p-value is 0.915, greater than 0.05, we fail to reject the 

null and conclude that the derived causal pattern is statistically significant at 5% 

significance level. The pattern reveals that the credit standard is the only direct causal 

variable to house price. The other three variables affect house price indirectly, and all of 

them have credit standard working as their messenger.  

The positive causal relationship between LTV and house price confirms that 

relaxing credit standard will cause an increase in the house price. The easier it is to get a 

home loan, the more likely people will choose to buy a house instead of renting one. 
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Thus, the larger demand drives up the house prices. The positive correlation between the 

DPI and LTV is consistent to the general expectation. People with higher disposable 

income usually have lower default risk, and thus less strict credit constraints are imposed 

upon them leading to higher LTV. A possible explanation for the positive causal flow 

from house inventory to LTV is: as house inventory goes up, house supply may exceed 

house demand, so LTV may be brought up to encourage house purchase behavior to 

reduce the vacant houses. Similarly, as house ownership costs increase, LTV may be 

adjusted upward to make it more attractive for families without a lot of liquid funds to 

enter the market.  

The causal information conveyed in Figure 12 can be very helpful for policy 

making. For example, when government notices a phenomenon of oversupply of houses, 

it should consider relaxing credit constraints to encourage the house buying behavior so 

as to stimulate the housing market and related industries. But, this decision should be 

made with disposable household income taken into account as well. If household income 

is decreasing in the presence of oversupply of houses, relaxing credit constraints is not 

suggested and should be carried out with caution. Low dispensable household income 

indicates low capability of households to pay off their mortgage on time and higher risk 

of foreclosure, which increases the expected loss to the economy as a whole. Thus, LTV 

should be watched closely and assigned a value to balance the oversupply of house 

inventory and the risk of too many sub-prime mortgages.  

The housing bubble that occurred in 2007 is an example that disposable 

household income was not considered in the presence of thriving housing market. 
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During those days, value of assets owned by a household, instead of dispensable 

household income, was the major consideration in loan decision. Loan agents were over-

optimistic about the future of housing market, and believed that house prices would keep 

rising which warranted the ability of household to pay off their mortgage. If disposable 

household income was considered, loan agents would be cautious regarding how much 

cash, instead of collaterals, they could get back and whether the payments would be on 

time. Therefore, the knowledge of causal relationship found here can help set credit 

standard responsibly and avoid going down the same road of subprime mortgage crisis in 

2007.   

However, there are two sources of biases in the derived causal patterns. First, PC 

algorithm requires that no variable is omitted which causes two or more other variable 

selected for analysis. But, there might exist economic fundamentals we fail to consider 

which influence two or more of the variables in our model. Second, variables used in a 

DAG model need to follow a multivariate normal distribution for the model to be fully 

efficient. But, the result of Jarque-bera Test for normality shows that only parts of the 

residuals from the model are normally distributed. Therefore, the derived causal pattern 

is an approximate of the true causal relationship among variables.  

 

3.6 Conclusion 

 

The occurrence of subprime mortgage crisis brought attention to the interaction 

between relaxing credit standard and housing market bubble. In this essay, we use 
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multivariate copulas (MVC) distribution to model the dependence among the stochastic 

components of house price and credit constraint, as well as other variables. Also, we 

forecast and simulate the underlying distribution of house price based on the modeled 

dependence. There are two improvements over the previous studies. First, dependence, 

instead of correlation, among variables is examined with MVC. Correlation is only 

appropriate in measuring dependence for variables following multivariate normal 

distribution, while copula works well in separating a joint distribution into dependence 

structure and marginal distributions with no normality assumption. Therefore, MVC is a 

better way to examine dependence when variables do not follow multivariate normal 

distribution. Second, instead of a point value, we forecast the full distribution of house 

price. To accomplish this, stochastic simulation is applied. Based on the simulated data, 

several quantile values are derived, which can be useful input for political or investment 

decision. Moreover, we can change the values for parameters to simulate for alternative 

scenarios and see how the distribution or risk changes across difference scenarios, which 

is an interest topic to address in future research. 

This essay also improves our understanding about interaction between house 

price and credit standard by sorting out their causal patterns. Causation usually contains 

more information than correlation. The derived causal patterns show that, more than just 

being correlated with house prices, reduced credit standard causes increase in housing 

price. Furthermore, we find that other factors, such as disposable income, housing 

inventory and cost of house ownership, impose their impacts on house price through 

their influence on LTV. In other words, credit standard not only directly affects house 
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price, it also works as the intermediate passing the influence of other factors onto house 

price. This finding suggests policy makers take extra caution when considering relaxing 

credit standard to stimulate housing market and its related industries. If both oversupply 

of houses and decreasing disposable household income is observed, housing bubble 

might exist and relaxing credit standard to reduce house oversupply might be devastating.  

There is a limitation of this essay regarding the causal pattern analysis. DAG 

only works to sort out contemporaneous causal flows, so all the data input are for the 

same time t and the resulting causal pattern is valid for that time t only. When causal 

flows vary over time, they have to be re-estimated for each time period.  
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4 FORECASTING HOUSE PRICES: DYNAMIC FACTOR MODEL VERSUS 

LBVAR MODEL 

 

4.1 Background 

 

The housing market is of great importance to the economy. Housing construction 

and renovation boost the economy by increasing in aggregate expenditures, employment 

and the volume of house sales. They also stimulate the demand for related industries 

such as household durables. The oscillation of housing prices affects the value of asset 

portfolio for most households for whom a house is the largest single asset. Moreover, 

price movements influence the profitability of financial institutions and the soundness of 

the financial system. Recent studies further justify the necessity of housing price analysis, 

concluding that the housing sector plays a significant role in acting as a leading indicator 

of the real sector of the economy and that assets prices help forecast both inflation and 

output (Forni, Hallin, Lippi, and Reichlin, 2003; Stock and Watson, 2003; Das, Gupta, 

and Kabundi, 2009a). Thus, a timely and precise forecast for housing prices can provide 

valuable information to policy makers and help them better control inflation and design 

more effective policies. Also, these forecasts can direct individual market participants to 

make wise investment decisions. In light of the economic recession started by the sub-

mortgage crisis, analyzing the influence of the burst of the housing price bubble and 

predicting its future moving trend is more important than ever. 
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Unlike the financial market, the housing market is illiquid and heterogeneous 

physically and geographically, which makes forecasting house prices a difficult task. 

Moreover, the subtle interactions between house prices and other macroeconomic 

fundamentals further complicate predictions. The change in house prices can either be 

attributed to a national phenomenon, such as the effect of monetary policy, or to regional 

factors, such as local taxation. Changing housing prices can also either indicate changes 

in the real sector, such as labor input and production of goods, or be affected by 

activities in the nominal sector, such as financial market liberalization (Gupta, Miller, 

and Van Wyk, 2010).  

Many previous studies find empirical evidence supporting the significant 

interrelationships between house prices and economic variables, such as income, interest 

rates, construction costs and labor supply (Linneman, 1986; Wheaton, 1999; Quigley, 

1999; Tsatsaronis and Zhu, 2004). However, because house price is a leading indicator 

of inflation and output, they are expected to interact with a much wider range of real and 

nominal variables. Thus, the quantification of these interrelationships is not enough for a 

precise estimation or prediction of house prices in a way that small-scale models 

potentially omit information contained in thousands of variables. In other words, a large 

number of economic variables help predict the growth of real house prices (Rapach and 

Strauss, 2009). 

This essay aims to discuss the model selection for analyzing recent house price in 

40 metropolitan areas in the United States from the perspective of large-scale models, 

i.e., the Dynamic Factor Model (DFM) and the Large-scale Bayesian Vector 
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Autoregressive (LBVAR) model. There are three major contributions of this essay. First, 

the most recent data to 2012:M6 are used for the estimation, which updates the 

understanding of U.S. housing market and the forecast performance of large-scale 

models. Second, for the DFM model, a dynamic component approach is used, which has 

one half of the estimation error as a static component approach. Finally, an 

encompassing test is conducted, and the forecast combination of DFM and LBVAR 

models is found to improve forecast accuracy half of the time. In the other half of the 

time, the results are mixed. This suggests that each of the two models contains marginal 

information that is not used in the prediction of its counterpart. In other words, a 

combined forecast may contain more relevant information, which makes it a better 

forecast alternative to an individual prediction. 

The remainder of this paper is organized as follows. Section 2 provides a 

literature review. Section 3 introduces and illustrates the DFM and LBVAR models, as 

well as encompassing tests. Section 4 discusses the data. Section 5 evaluates and 

compares individual and combined forecasts. Section 6 concludes the paper and 

discusses the limitations of the employed models. 

 

4.2 Literature Review 

 

The advantages of large-scale models over small-scale counterparts are proved 

and discussed by many scholars (Forni, Hallin, Lippi, and Reichlin, 2005; Das, Gupta, 

and Kabundi, 2008, 2009b, 2011; Gupta and Kabundi, 2008a; Gupta, Kabundi, and 
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Miller, 2009a; Stock and Watson, 2004; Bloor and Matheson, 2010).  Thus, this section 

is placed in the context of research using large-scale models for housing price prediction. 

The most popular methodologies for analyzing large-scale datasets include DFM, 

LBVAR (spatial or non-spatial), Factor-Augmented Vector Autoregressive (FAVAR) 

model, Dynamic Stochastic General Equilibrium (DSGE) model, and forecast 

combination methods. Their forecasting performances have been examined and 

compared in many previous studies, but the conclusions vary to a large extent.  

First, the forecasting performances between DFM and LBVAR are discussed by 

Das, Gupta, and Kabundi (2008), Das, Gupta, and Kabundi (2009a), and Gupta and 

Kabundi (2008a).  These three papers examine the housing market in South Africa but 

with different aggregation levels. Das, Gupta, and Kabundi (2008) and Gupat and 

Kabundi (2008a) claim that DFM is the better model to base one’s forecast, while Das, 

Gupta, and Kabundi (2009a) obtain the opposite conclusion, i.e., LBVAR outperform 

DFM. Second, the forecasting performances between FAVAR and LBVAR are 

discussed in the studies of Das, Gupta, and Kabundi (2009b) and Gupta, Kabundi, and 

Miller (2009a, 2009b). The housing price growth rate in nine census divisions of the 

U.S., U.S. real house price index, and the housing prices in twenty U.S. states are studied 

in these three papers. The first and third papers show evidence supporting that FAVAR 

is better suited for forecasting house price growth. But the second paper concludes that 

small-scale BVAR model outperforms both FAVAR and LBVAR in terms of forecasting. 

Third, the comparison of forecasting power between DSGE and other large-scale models 

are discussed in the paper by Gupta, Kabundi, and Miller (2009a) and Gupta and 
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Kabundi (2008b). The first and second papers are conducted under the background of 

U.S. and South Africa housing markets, respectively. The result of the first paper shows 

that DSGE model forecast a turning point more accurately than the FAVAR and 

LBVAR models, while the second paper suggests that DFM performs significantly better 

than DSGE. Last, forecast combination methods are discussed by Stock and Watson 

(2003). The authors find that the combination forecasts performed well when compared 

to forecasts constructed using DFM framework, but they also attribute the poor 

performance of the DFM forecasts to the relatively small number of series examined. 

The contradictive conclusions regarding the forecasting power of these popular 

large-scale models indicate that there is not a large-scale model that performs 

consistently better than its other alternatives. The superior forecasting performance of a 

model is defined with respect to the time period examined and the specific object studied. 

When the examined time period and study object change, the forecasting power of a 

model might be strengthened or weakened. This explains why some models are best for 

U.S. market but not for the South Africa market and why the best-suited models for data 

of metropolitan level, census division level and states level are different even for the 

same country. For the same reason, results from the studies using old data are becoming 

less convincing as time goes by. Since the observations of 2006:Q4 is the most recent 

data used in the previous papers examining U.S. housing market, the results from those 

papers obviously can no longer be applied to current housing market, especially after the 

sub-prime mortgage crisis. Our paper uses the most updated data to 2012:M6, and 
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examines the housing market by metropolitan areas. Thus, it updates and extends the 

understanding of U.S. housing market. 

In all the reviewed papers which apply DFM framework to U.S. housing market 

analysis, static principal component approach (PCA) is used, which estimates the 

common component by projecting onto the static principal components of the data. 

However, based on contemporaneous covariances only, it fails to exploit the potentially 

crucial information contained in the leading and lagging relationships between the 

elements of the panel (Forni et al., 2005). In this paper, we use the dynamic component 

approach proposed by Forni et al. (2005). This approach obtains estimates of common 

and idiosyncratic variance-covariance matrices at all leads and lags as inverse Fourier 

transforms of the corresponding estimated spectral density matrices, and thus overcomes 

the limitation of static PCA.  

 

4.3 Models 

 

Economy-wide forecasting models are generally formulated as Vector 

Autoregressive (VAR) model or Vector Autoregressive Moving Average (VARMA) 

models. But the over-  parameterization problem embedded in these model results in 

multi-colinearity and loss of degrees of freedom which can lead to inefficient estimates 

and large out-of-sample forecasting errors (Dua and Ray, 1995). Therefore, these models 

are no longer appropriate for cases with a large number of cross-sectional variables, and 

Dynamic Factor Model (DFM) and Bayesian Vector Autoregressive (BVAR) are 
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proposed to overcome the over-parameterization problem. The first two parts of this 

section discuss these two models, and the third part discusses the encompassing test used 

to combine the forecasts.  

 

4.3.1 Dynamic Factor Model (DFM)  

 

Within DFM framework, each time series in the panel is structured as the sum of 

two mutually orthogonal components: the common component and the idiosyncratic 

component. The common component is strongly correlated with the rest of the panel and 

has reduced stochastic dimension, while the idiosyncratic component is either mutually 

orthogonal or “mildly cross-correlated” across the panel. In the DFM, multivariate 

information is used for forecasting the common component, and the idiosyncratic can be 

predicted reasonably well by means of traditional univariate methods, i.e., AR (4) model.  

The DFM used in this paper follows the framework developed by Forniet al. 

(2005), which has three desirable characteristics. First, it adopts the dynamic principal 

component (PC) method, which has smaller estimation errors than its static counterpart 

proposed by Stock and Watson (1999). Instead of using only contemporaneous 

covariances, the dynamic PC method bases its estimation on the common and 

idiosyncratic variance-covariance matrices at all leads and lags. Second, this DFM 

method obtains its h-month-ahead forecast as the projection of the h month observation 

onto the estimated generalized principal components, which overcome the two-sided 

filtering problem of the DFM method proposed by Forni, Hallin, Lippi, and Reichlin 
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(2000). Two-sided filtering is not a problem for within-sample estimation, but it does 

cause some difficulties in the forecasting context due to the unavailability of future 

observation. Third, this DFM method allows for cross-correlation among the 

idiosyncratic components, because orthogonality among these components is an 

unrealistic assumption.  

Consider a double sequence { , ,ity i t∈Ν ∈Ζ}. Suppose that { , ,itx i t∈Ν ∈Ζ } is 

the standardized version of { ity }, i.e. the n-dimensional vector process { , }n nt t= ∈Ζx x , 

where 1 2( ... ) 'nt t t ntx x x=x    , is zero mean and stationary for any n. According to Forniet 

al. (2005), ntx  can be written as the sum of two orthogonal components: 

(29)                            1 1 2 2( ) ( ) ... ( )it i t i t iq qt it it itx b L u b L u b L u ξ χ ξ= + + + + = +                       

where tu is a 1q× of dynamic factors and L stands for the lag operator. The variables itχ  

and itξ  represent the common and idiosyncratic components respectively. itχ is 

unobservable and needs to be estimated. Forniet al. (2000) have shown that the 

projection of itx  on all leads and lags of the first q dynamic principal components of nx , 

obtained from the population spectral density matrix nΣ , converges to itχ  in mean 

square as n tends to infinity, i.e., ,

p

it n itχ χ→ , where ,it nχ  denoted this projection. 

Empirically, we construct the finite-sample counterpart of ,it nχ , which is based on the 

estimated spectral density matrix Σ̂n  , call it ,ˆit nχ . By combining the convergence of ,it nχ

to itχ  with the fact that ,ˆit nχ  is a consistent estimator of ,it nχ  for any n as T goes to 
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infinity, it can be derived that ,ˆit nχ  is a consistent estimator of itχ  as any n as T tends to 

infinity. Thus, equation (29) can be re-written as ,
ˆˆˆit it n itx χ ξ= + , where îtξ  is a consistent 

estimator of itξ based on a traditional univariate method.  

The h-month ahead forecast of , |i T h Ty +  is computed as follows: 

(30)                                 , | , | , | , |
ˆˆˆ ˆ ˆ ˆ ˆ ˆ( )i T h T i i T h T i i i T h T i T h T iy xσ µ σ χ ξ µ+ + + += + = + +                           

where ˆiσ  and ˆiµ  are the sample variance and sample mean of the thi  variable and T is 

the sample size. , |î T h Tξ + can be estimated using a traditional univaritate method, i.e., 

AR(4). , |ˆi T h Tχ + is obtained by the dynamic PC analysis, which starts with the estimation 

of the sample autocovariance matrix of 1 2( ... ) 'nt t t ntx x x=x    , i.e., , , ,
1

1ˆ 'Γ x x
T

n k n t n t
t kT k = +

=
− ∑ .    

Then the spectral density matrix of ,Γ̂n k is calculated through discrete Fourier 

transform ,
1ˆ ˆ( )

2
Σ Γ h

M
i k

h k n k
k M

w e θθ
π

−

=−

= ∑ , where kw is Barleet-lag window estimator weight

1
1k

k
w

M
= −

+
, and 2

2 1h h
M
πθ =
+

, h=-M, …, M. To ensure the consistency of results, M 

is a function of T and should satisfy two conditions that ( )  as M T T→∞ →∞ and 

3limsup ( ) /  as T M T T T→∞ < ∞ →∞ . Empirically, M T= is usually used. 

Then a two-step procedure proposed in the study of Forniet al. (2005) follows. 

First step is to obtain estimates of common and idiosyncratic variance-covariance 

matrices at all leads and lags as inverse Fourier transforms of the corresponding 

estimated spectral density matrices. At a given frequencyθ , there exists 
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(31)                                               ˆ( ) ( ) ( ) ( )V Σ D Vθ θ θ θ=                                                  

where ( )D θ is a diagonal matrix having the eigenvalues of ˆ ( )Σ θ on the diagonal and 

( )V θ is the n n× matrix whose columns are the corresponding row eigenvectors. Based 

on the central idea of PC analysis which claims that the first few (q) largest PCs 

(dynamic factors) will account for most of the variation in the original variables (Jolliffe, 

2002), the spectral density matrix of the common component have the following 

relationship with the first q largest eigenvalues and their corresponding eigenvectors: 

(32)                      ˆ( ) ( ) ( ) ( )V Σ D Vq q qχθ θ θ θ= or ˆ ( ) ( ) ( ) ( )Σ V D Vq q qχ θ θ θ θ=                      

where Vq
  denotes the conjugate transpose of Vq . The spectral density matrix of the 

idiosyncratic component is the estimated as ˆ ˆ ˆ( ) ( ) ( )Σ Σ Σξ χθ θ θ= − . The covariance 

matrices of common and idiosyncratic parts are estimated respectively through the 

inverse Fourier transform of spectral density matrices as following: 

(33)                      
2ˆ ˆ ( )

2 1
Γ Σ h

M
ik

k h
j M

e
M

θχ
χ

π θ
=−

=
+ ∑ and

2ˆ ˆ ( )
2 1

Γ Σ h

M
ik

k h
j M

e
M

θξ
ξ

π θ
=−

=
+ ∑               

The second step is to use these estimates to construct the contemporaneous linear 

combinations of itx ’s that minimize the idiosyncratic-common variance ratio, and the 

linear combination gives the estimate of ,ˆit nχ . The resulting aggregates can be obtained 

as the solution of a generalized principal component problem: 0 0
ˆ ˆV Γ D V ΓG G G
χ ξ= , where 

GD is a diagonal matrix having the generalized eigenvalues of the pair ( 0 0
ˆ ˆ,Γ Γχ ξ ) on the 

diagonal and VG is the n n× matrix whose columns are the corresponding row 
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eigenvectors. The thj generalized PCs are defined as , ,P̂ v xG
t j G j nt= , where ,vG j  is the thj  

generalized row eigenvector corresponding to the thj  largest generalized eigenvalues. 

Based on the PC theory, the r aggregates ,P̂G
t j  , j=1, …, r, preserves most of the 

information of xn . Consider a space r∆ spanned by the r aggregates, ˆitχ is the projection 

of itx onto this space, i.e., ˆ ( | )it it rproj xχ = ∆ . The h-month ahead forecast , |ˆi T h Tχ + is 

based on the information available at time T and is estimated as the projection of iTx on 

to the space spanned by the r aggregates ,P̂G
T j , j=1, …, r. Thus, the estimates of , |ˆi T h Tχ + is: 

(34)                                            , | 0
ˆ ˆˆ -1Γ V (V Γ V ) V xi T h T h Gr Gr Gr Gr nT
χχ + =                                        

where VGr  is the n r×  matrix whose columns are the generalized row eigenvectors 

corresponding to the r largest generalized eigenvalues. The , |ˆi T h Ty +  can be obtained by 

plugging , |ˆi T h Tχ + into equation (3). 

 

4.3.2 Large-Scale BVAR (LBVAR) Model 

 

LBVAR is another alternative to VAR to accommodate large-scale variables and 

overcome the over parameterization problem. As described in Litterman (1981), Doan, 

Litterman, and Sims (1984), Todd (1984), Litterman (1986), and Spencer (1993), instead 

of estimating longer lags and/ or less important variables, the Bayesian technique 

imposes restrictions on these coefficients by assuming that these are more likely to near 

zero than the coefficients on shorter lags and/or more important variables. If, however, 
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there are strong effects from longer lags and/or less important variables, the data can 

override this assumption. This method supplements the data with prior information on 

the distribution of the coefficients. With each restriction, the number of observations and 

degrees of freedom are increased by one in an artificial way. Therefore, the loss of 

degrees of freedom due to over parameterization associated with a VAR model is not a 

concern in LBVAR model.  

The restrictions are imposed by specifying normal prior distributions with means 

zero and small standard deviations for all coefficients with decreasing standard 

deviations on increasing lags. The exception is the coefficient on the first own lag of a 

variable that has a mean of unity. This prior is called the “Minnesota prior” and takes the 

form 2(1, )
ii N ββ σ and 2(0, )

jj N ββ σ , where iβ  represents the coefficients associated 

with the lagged dependent variables in each equation of the LBVAR and jβ  represents 

any other coefficient. The standard deviation of the prior distribution for lag m of 

variables j in equation i is specified as 
ˆ

( , , ) [ ( ) ( , )]
ˆ

i

j

i j m w g m f i j σ
σ

σ
= × × , where

1,
( , )

, (0 1)
                         
   
if i j

f i j
k other wise k

=
=  < <

 , ( ) ( 0)dg m m d−= >  and ˆiσ  is the standard error of 

an univariate autoregression for variable i. The ratio ˆ ˆ/i jσ σ  scales the variables to 

account for differences in units of measurement and allows the specification of the prior 

without consideration of the magnitudes of the variables. The parameter w is the 

standard deviation on the first own lag and describes the overall tightness of the prior. 

The tightness on lag m relative to lag 1 is given by the function g(m), and is assumed to 
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have a harmonic shape with decay factor d. The tightness of variable j relative to 

variables i in equation i is represented by the function f(i, j). The value of f(i, j) 

determines the importance of variable j relative to variable i, with higher values implying 

greater interaction. A tighter prior occurs by decreasing w, increasing d, and/or 

decreasing f(i, j).  

In the analysis, both regional and national data are used. Realizing that national 

variables affect both national and regional variables, and regional variables primarily 

influence only other regional variables, the LBVAR should be estimated with 

asymmetric priors. Following Das, Gupta, and Kabundi (2009b), the weight, i.e. ( , )f i j , 

of a national variable in a national equation, as well as a regional equation, is set at 0.6. 

The weight is fixed at 0.1 and 0.01 in other regional and national equations, respectively.  

Last, the weight of the regional variables in its own equation is 1.0. In the standard 

Minnesota-type prior, the overall tightness (w) takes the values of 0.1, 0.2, and 0.3, while 

the lag decay (d) is generally chosen to be equal to 0.5, 1.0, and 2.0. 

 

4.3.3 Encompassing Test 

 

A linear combination of multiple forecasts may often yield more accurate 

forecasts than using an individual prediction to the extent that the component forecasts 

contain useful and independent information (West, 2001; Newbold and Harvey, 2002; 

Fang, 2003; Wang and Bessler, 2004; Kisinbay, 2007; Costantini and Pappalardo, 2008). 

In order to further enhance predictive power, Kisinbay (2007) and Costantini and 
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Pappalardo (2008) suggest reducing the number of available forecasts before combining 

them, and encompassing tests usually are conducted to fulfill this task. 

Following West (2001), the encompassing test used here is one in which the 

explained variable is regressed on competing out-of-sample predictions. Suppose there 

are two models, model i and j. The encompassing regression is written as 

1 2ˆ ˆt it jt ty y yβ β ε= + + , where ty is the variable being explained by the competing models, 

ˆity ( ˆ jty ) is the forecast of ty from model i(j). Model i is said to encompass model j if 

1 0β ≠ , 2 0β =  because model j does not contain marginal information helpful in 

explaining ty , conditional on model i. Similarly, model j is said to encompass model i if 

1 0β = , 2 0β ≠ . In other cases, no conclusion can be drawn regarding which model 

encompasses the other one.  

Usually, root mean square error (RMSE) is the measurement used to judge the 

forecast performance of competing models. However, a forecast with smaller RMSE 

does not necessarily contain all the information of the one with larger RMSE. Thus, 

RMSE and encompassing tests should be working together as complementary forecast 

criteria (Ericsson, 1992). According to the algorithm described by Costantini and 

Pappalardo (2009), the encompassing test and forecast combination are carried out as 

following. First, calculate the RMSE of the out-of-sample forecast for each model using 

out-of-sample forecasts and observed values. Rank the models according to their 

performance based on RMSE. Second, pick the model with the lowest RMSE, and test 

sequentially whether this model encompasses other models, using the West test showed 
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above. Any model that is encompassed is deleted from the list. Third, repeat step 2 but 

pick the model with the second lowest RMSE if it is still in the list. Next, continue with 

the model with the third lowest RMSE, and so on, until no encompassed model remains 

in the list. Last, using several forecast combining methods with all models previously 

selected to obtains the combined forecast.  

Three well-known forecast combination methods are used to generate alternative 

combined forecasts: RMSE-weighted combinations, rank-weighted combinations and 

the thick modeling approach. All these methods calculate the combined forecast ˆ c
ty as 

1

ˆ ˆ
m

c
t i it

i
y yω

=

=∑ , where iω is the weight of the combination for model i. The definition of 

iω  is what distinguishes one combination method from another. For RMSE-weighted 

combinations, the weight of model i is defined as 

1

(1/ )ˆ
(1/ )

i
i m

j
j

RMSE

RMSE
ω

=

=

∑
. For rank-

weighted combinations, the weight of model i is calculated as 

1

(1/ )ˆ
(1/ )

i
i m

j
j

rank

rank
ω

=

=

∑
, where 

irank  is the rank of the ith model based on its RMSE. The thick-modeling approach 

keeps the top α  percent of the best performers in the forecast combination, but there is 

no theoretical guideline on how to chooseα . Thus, in this paper, an arithmetic average 

of all the forecasts from surviving models is used as the combined forecast for this 

method.  
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4.4 Data 

 

The DFM and LBVAR models are estimated based on 162 quarterly series, 

which comprise of 40 house price index series and 122 macroeconomic series. The 

quarterly house price index figures for the 40 metropolitan areas are obtained from the 

Federal Housing Finance Agency (FHFA). The data for macroeconomic indicators are 

taken from the DRI/McGraw Hill Basic Economics Database provided by IHS Global 

Insight. Each of the series is listed with details in appendix. Data between 1981:Q1 and 

2007:Q4 are used for the in-sample estimation, and the data between 2008:Q1 and 

2012:Q2 are used for the out-of-sample forecast of the housing price growth of the 40 

metropolitan areas in the US. The out-of-sample forecast is done for one to twelve 

months ahead. With the motivation to examine the U.S. housing market during and after 

the sub-prime mortgage crisis and to compare the forecasting power of large-scale 

models for this time period, the choice of 2008:Q1 as the onset of forecast horizon 

emerges naturally.,  

According to Himmerlberg, Mayer, and Sinai (2005), over the 1980-2004 periods, 

the 40 metropolitan area house prices have followed one of three patterns: (1) house 

price peaked in the late 1980s, fell to a trough in the 1990s, and rebounded by 2004;(2) a 

“U” shape history: high in the early 1980s and high again by the end of the sample;(3) 

house prices have declined since 1980 and have not fully recovered. The 40 metropolitan 

areas are divided into three groups with each group following one of the three patterns 

respectively, and they are reported in Table 25.  
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The number of dynamic factors (q) in the DFM is determined using the criterion 

proposed by Forniet al. (2000). The criterion suggests there should be a substantial gap 

between the variances explained by the thq and the ( 1)thq + principal component. A pre-

assigned minimum, such as 5%, for the explained variance, could be used as a practical 

criterion for the determination of the number of dynamic factors to be retained. A 5% 

limit is suggested by Forni et al. (2000) in an empirical exercise.  

 

4.5 Results 

 

The optimal number of dynamic factors is determined to be 10 based on the 

criterion discussed at the end of last section. The LBVAR model is estimated with 4 lags 

to account for seasonality. Given the specifications of DFM and LBVAR models, we 

estimate them over the period of 1981:Q1 to 2007:Q4, and calculate the out-of-sample 1- 

through 6-quarter-ahead forecasts for the period of 2008:Q1 to 2012Q2. In the standard 

Minnesota-type prior, the overall tightness (w) takes the values of 0.1, 0.2, 0.3, and the 

lag decay (d) is generally chosen to be equal to 0.5, 1.0, and 2.0.Thus there are nine 

LBVAR models estimated, each with a difference combination of w and d. Together 

with DFM, we have 10 competing models and the forecast performances of these 

alternative models are compared. The forecast accuracy is measured with RMSEs, and 

encompassing tests are employed as a complementary measurement. We consider 1- to 

2-quarter-ahead forecast as short term forecast, 3- to 4-quarter-ahead forecast as middle 

term forecast and 5- to 6-quarter-ahead forecast as long term forecast. Discussion of the 
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forecasting results is carried out according to the prediction terms. Results from RMSE-

comparison are discussed first, and results of encompassing test follows. 

Table 26 reports the RMSEs of 1- through 6-quarter ahead forecasts from the 10 

competing models for metropolitan (metro) areas in the group 1. Figure 12 graphically 

present the information in the Table 26. There are several interesting findings for this 

metro group. First, the DFM model underperforms all the LBVAR models throughout 

the forecast period. Its RMSE in the 1-quarter ahead forecast is 64.85% higher than that 

of the best model, and this difference in RMSEs widens as the prediction period 

increases. For example, the RMSE of DFM model is 152.31% higher than the RMSE of 

the best model for the 6-quarter-ahead forecast. Second, LBVAR(0.1,2.0) model 

performs the best in the short to middle-term forecast, i.e. 1- to 3-quarter ahead forecast. 

Many other LBVAR models outperform it in the long-run (4- to 6-quarter ahead), but the 

differences in their RMSEs is quiet small (0.0504). Third, there is not a single model 

consistently dominates other models over the forecast period. The performance of the 

model doing well in the short-term forecast deteriorates gradually as predicting period 

gets longer. Fourth, a t-test for two sample assuming unequal variances is conducted to 

see whether the difference between forecasts from DFM and LBVAR models is 

significantly different from zero. A significant difference is indicated, which conforms to 

our expectation based on their large difference in RMSE. 

Similarly, Table 27 and figure 13 present the results of RMSEs comparison for 

metro group 2.  For this group, the DFM model still underperforms all the LBVAR 

models, and its performance get worse as prediction period gets longer. Its RMSE in the 
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1-quarter ahead forecast is 19.40% higher than that of the best model, and its RMSE in 

the 6-quarter ahead forecast becomes 118.12% higher than that of the best model. The 

LBVAR(0.1,2.0) model still performs best in the short-run, but LBVAR(0.2,2.0) and 

LBVAR(0.3,2.0) forecast most accurately in the middle-term and long-term respectively. 

In the long run, the RMSEs of most LBVAR models converge to 2.135. So their 

difference is very subtle. T-tests for two sample assuming unequal variances are 

conducted, and all LBVAR forecasts are not significantly different from each other at 6-

quarter-ahead forecast. However, forecast from DFM model is significantly different 

from the forecast from the best model no matter in the short-, or middle- or long-term.  

Table 28 and figure 14 show the resulting RMSEs for metro group 3. The 

findings for this group differ somehow to the findings for the other two groups. First, the 

forecast from DFM model is not significantly different from the forecasts from 

LBVAR(0.1,0.5), LBVAR(0.1,1.0), and LBVAR(0.1,2.0), which are the models with 

relatively small RMSEs. However, forecast performance of DFM model again 

deteriorates fast as predicting period gets longer. Second, in the group of LBVAR 

models, LBVAR(0.3,0.5) underperforms others in the short- and middle-run, but it 

performs well in the long-run. Third, the forecasts from LBVAR for this group are closer 

to each other than for the other two groups. However, similar to the other two groups, 

there is no one model consistently dominates other models in either short-term forecast 

or long-term forecast. Next, the results of encompassing test are discussed.  

The results of encompassing tests for metro group 1 are presented in Table 29. 

For this group, the DFM model is not encompassed by other models only in the 3- and 5-
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quarter ahead forecast, indicating that it contains marginal information that LBVAR 

models do not have for these forecasts. However, the benefit of marginal information 

from the DFM models is eliminated by the additional errors brought by it, because the 

combined forecasts do not have lower RMSEs than individual forecasts. In the 6-quarter 

ahead forecast, LBVAR(0.2,2.0) dominates all the other models, so combined forecasts 

are the same as the forecast from LBVAR(0.2,2.0). 

Table 30 reports the results of encompassing tests for metro group 2. First, in the 

short- to middle-term prediction (2- to 4-quarter ahead forecast), DFM is not 

encompassed by any other models and contains additional information to LBVAR 

models. But, again, the accuracy gained by adding marginal information from DFM 

model to LBVAR models is offset by the larger error introduced by the DFM model. So, 

combined forecasts fail to outperform individual forecast throughout the predicting 

period.  

Table 31 shows the results of encompassing tests for metro group 3. From the 

table, we can see that the DFM model is one of the dominant models in the short-term 

and middle-term forecast. The combined forecast for the 1-quarter ahead forecast 

outperforms all the individual models. However, the combined forecasts for other 

predicting periods underperform individual models due to the larger errors introduced by 

multiple models when combining them together.  

After examining the results from RMSE calculation and encompassing test 

separately, we now summarize the major findings with the information from both sides. 

For metro group 1, the DFM model underperforms all the LBVAR models throughout 
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the forecast period. The difference in RMSE of the DFM model and the RMSE of the 

best model widens as the prediction period increases. LBVAR(0.1,2.0) model performs 

the best in the short to middle-term forecast. Some other LBVAR models outperform it 

in the long run, but the difference in their RMSE is small. No single model consistently 

dominates other models over the forecast period, and the performance of the model 

doing well in the short-term forecast deteriorates gradually as predicting period gets 

longer. Moreover, t-test for two sample assuming unequal variances is conducted and 

suggests that the difference between forecasts from DFM and LBVAR models is 

significantly different from zero. The DFM model contains marginal information that 

LBVAR models do not have in the 3- and 5-quarter ahead forecast. However, the benefit 

from marginal information is eliminated by the additional errors brought at the same 

time. So, the combined forecasts do not have lower RMSEs. 

For metro group 2, the DFM model still underperforms all the LBVAR models, 

and its performance get worse as prediction period get longer. The LBVAR(0.1,2.0) 

model still performs the best in the short run, but LBVAR(0.2,2.0) and LBVAR(0.3,2.0) 

forecast most accurately in the middle-term and long-term respectively. In the long run, 

the RMSEs of most LBVAR models converge, so their difference is very subtle. T-tests 

also prove that all LBVAR forecasts are not significantly different from each other at 6-

quarter-ahead forecast. However, forecast from DFM model is significantly different 

from the forecast from the best model no matter in the short-, or middle- or long-term. In 

the short- to middle-term prediction (2- to 4-quarter ahead forecast), DFM contains 

additional information to LBVAR models, but the accuracy gained by adding marginal 
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information from DFM model to LBVAR models is offset by the larger error introduced 

by the DFM model. So, combined forecasts fail to outperform individual forecast 

throughout the prediction period.  

For metro group 3, the forecast from the DFM model is not significantly different 

from the forecasts from LBVAR(0.1,0.5), LBVAR(0.1,1.0), and LBVAR(0.1,2.0), 

which are the models with relatively small RMSEs. But, the forecast performance of 

DFM model again deteriorates fast as predicting period gets longer. The forecasts from 

LBVAR for this group are closer to each other than for the other two groups. However, 

similar to the other two groups, there is no one model consistently dominates other 

models in either short-term forecast or long-term forecast. The DFM model is one of the 

dominant models in the short-term and middle-term forecast. The combined forecast for 

the 1-quarter ahead forecast outperforms all the individual models. However, the 

combined forecasts for other predicting periods underperform individual models due to 

the larger errors introduced by multiple models when combining them together.  

 

4.6 Conclusion 

 

This essay discuss the model selection for analyzing housing prices in 40 

metropolitan areas in the United State from the perspective of large-scale models, which 

are Dynamic Factor Model (DFM) and Large-scale Bayesian Vector Autoregressive 

(LBVAR) model. These models accommodate a large panel data comprising 162 

quarterly series for the U.S. economy, and an in-sample period of 1980:Q1 to 2007:Q4 
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are used to forecast 1- to 6-quarters-ahead house price growth rate over the out-of-

sample horizon of 2008:Q1 to 2012:Q2. The 40 metropolitan areas can be divided into 

three groups based on their house price moving patterns. The forecast evaluation for the 

two large-scale models is based on two complementary criteria: RMSE and 

encompassing test. 

Examining both the RMSE measures and the results from encompassing tests, we 

have several interesting findings. First, the DFM model underperform the LBVAR 

models most of the time in all three groups, and its forecasting power deteriorates fast as 

predicting period gets longer. For example, the difference in RMSE of the DFM model 

and the RMSE of the best model widens as the prediction period increases. T-tests 

suggest that the differences are significantly different from zero. Second, there is not a 

single model consistently outperform other models over the whole prediction period. 

The model forecasting better in the short run performs worse in the long run. However, 

the forecasts from LBVAR models converge in the long run, and t-test suggests that they 

are not significantly different from each other. Third, the DFM model is not 

encompassed by other models in the short-term and long-term. However, the accuracy 

gained by adding marginal information from DFM model to LBVAR models is offset by 

the larger error introduced by the DFM model. So, combined forecasts fail to outperform 

individual forecast. The only exception is the 1-quarter ahead forecast for group 3.  

Overall, our study lends support to the superior performance of the LBVAR 

model compares to DFM model throughout the prediction period. Also, our study 

suggests that combined forecasts are not necessarily outperform individual forecasts. 
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Even though independent information from different individual models improves the 

forecast accuracy, the benefit gained from marginal information is offset by the larger 

error brought by such combination.   

Although DFM has its advantage in the long-term forecast, there are two caveats 

in its application. First, if there are structural changes of the economy, both the in-the-

sample forecast and the out of the sample forecast would be inaccurate. In this essay, 

Chow tests are conducted to evaluate the stability of the estimated coefficients, and test 

statistics indicate that structure changes at the end of 2007 exist for half of the variables. 

However, the data size is too small to conduct estimation for period after 2007. So, the 

estimation in this easy is the best we can do. In future, when more data are available, an 

analysis with new data set should be conducted to update the results and to mitigate 

estimation bias due to data unavailability. Second, the estimation procedures used are 

linear in nature, and hence, they fail to take into account of the nonlinearities in the data 

(Das, Gupta, and Kabundi, 2009a). Meanwhile, LBVAR model has two major 

limitations. First, the forecast accuracy is sensitive to the choice of the priors. So if the 

prior is not well specified, an alternative model used for forecasting may perform better. 

Secondly, the selection of the prior based on some objective function for the out-of-

sample forecasts may not be ‘optimal’ for the time period beyond the period chosen to 

produce the out-of-sample forecasts (Das, Gupta, and Kabundi, 2008, 2009a) 
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5 SUMMARY  

 

The housing market plays a significant role in shaping the economic and social 

well-being of U.S. households. It helps spur U.S. economic growth when house price 

rises, and drags the economic growth when house price drops. In this dissertation, we 

conduct analysis to project where the U.S. housing market is headed and to discover how 

it interacts with economic fundamentals. New pieces of information are found, which are 

deemed to facilitate decision making for both policy makers and investors.  

In the first part of the dissertation, the grouping patterns of U.S. housing markets 

are studied using cluster and discriminant analysis. Three clusters are found, which are 

located in central US, east coast and west coast of US. There is no price signal 

transmitted among these housing market clusters, nor within each cluster. Thus, the 

communication of information in housing market is through the process of utility 

convergence of marginal residents, and no price convergence across regions is found in 

this process.  

Next, the impact of credit constraint on the house price is examined with 

stochastic components of series considered. Both a simulation technique and a DAG 

approach are employed. The resulting causal pattern shows that credit constraint affects 

the house price directly and positively. Moreover, credit constraints work as an 

intermediary passing the influence of house inventor, household income, and user cost 

onto house price, which suggest credit relaxation policy be carried out with caution 

when house inventory and household income send inconsistent signals. 
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Last, the model selection for house price analysis is discussed from the 

perspective of large-scale models—dynamic factor (DFM) model and large-scale 

Bayesian VAR (BVAR) model. The LBVAR models are found to have superior 

performance compare to the DFM model throughout the prediction period. Also, it is 

found that the combined forecasts do not necessarily outperform individual forecasts. 

Even though independent information from different individual models improves the 

forecast accuracy, the benefit gained from marginal information is offset by the larger 

error brought by such combination. 

  



 

83 
 

 

REFERENCES 

 

Abraham, J.M., W.N. Goetzmann and S.M. Wachter. “Homogeneous Groupings of 

Metropolitan Housing Markets”, Journal of Housing Economics 3(September 

1994):186–206. 

Abraham, J.M., and P.H. Hendershott. “Bubbles in Metropolitan Housing Markets”, 

Journal of Housing Research 7(1996):191-206. 

Apergis, N., B.D. Simo-Kengne, and R. Gupta. “Convergence in Provincial-Level South 

African House Prices: Evidence from the Club Convergence and Clustering 

Procedure.” Working paper No. 2013-22, Dept. of Econ., University of Pretoria, 

South Africa, 2013. 

Ariccia, G.D., D. Igan, and L. Laeven. “Credit Booms and Lending Standards: Evidence 

from the Subprime Mortgage Market.” IMF working paper No. WP/08/106, 

April 2008. 

Bessler, D.A. and D.G. Akleman. "Farm Prices, Retail Prices, and Directed Graphs: 

Results for Pork and Beef." American Journal of Agricultural Economics 

80(December 1998):1144-49.  

Bessler, D.A., J. Yang, and M. Wongcharupan. "Price Dynamics in the International 

Wheat Market: Modeling with Error Correction and Directed Acyclic Graphs," 

Journal of Regional Science 43(February 2003): 1-33.  

Bessler, D.A. On World Poverty: Its Causes and Effects. Rome, Italy: Food and 

Agricultural Organization of the United Nations, Research Bulletin, 2003.  



 

84 
 

 

Bessler, D.A. “On Modeling Environmental and Agricultural Interfaces with Directed 

Acyclic Graphs.” Comments for OECD Conference, Paris France, June 30-July, 

2005.  

Bizimana, J., J.P. Angerer, and D.A. Bessler. "Cattle Markets Integration and Price 

Discovery in Three Developing Countries of Mali, Kenya, and Tanzania," Paper 

presented at AAEA annual meeting, Seattle, Washington, August 12-14, 2012.  

Bloor, C., and T. Matheson. “Analyzing Shock Transmission in a Data-Rich 

Environment: A Large BVAR for New Zealand.” Empirical Economics 39(2010): 

537-558. 

Bourassa, S.C., E. Cantoni, and M. Hoesli. “Predicting House Prices with Spatial 

Dependence: Impacts of Alternative Submarket Definitions.” Research paper No. 

08-01, Swiss Finance Institute, Swiss, 2008. 

Capozza D.R., P.H. Hendershott, C. Mack, and C.J. Mayer. “Determinants of Real 

House Price Dynamics.” Working paper 9262, National Bureau of Economic 

Research, Cambridge, 2002. 

Case, B., J. Clapp, R. Dubin, and M. Rodrigues. “Modeling Spatial and Temporal House 

Price Patterns: A Comparison of Four Models.” Journal of Real Estate Finance 

Economics 29(September 2004):167-191. 

Chan, L., H.T. Ng, and R. Ramchand. “A Cluster Analysis Approach to Examining 

Singapore’s Property Market.” Property Markets and Financial Stability. BIS 

Papers, Bank for International Settlements 64(March 2012):43-53. 



 

85 
 

 

Chicago Metropolitan Agency for Planning. “Industry Cluster Analysis: Regional 

Economic Base Analysis.” Technical Document, Chicago, 2009. 

Clark, S.P., and T.D. Coggin. “Trends, Cycles and Convergence in U.S. Regional House 

Prices.” The Journal of Real Estate Finance and Economics 39( May 2009):264-

283. 

Clements, A.M., H.P. Mapp, and V.R. Eidman. “A Procedure for Correlating Event in 

Farm Firm Simulation Models.” Oklahoma Agricultural Experiment Station, 

Technical Bulletin No. T-131, August 1971. 

Costantini, M., and C. Pappalardo. “Combiantion of Forecast Methods Using 

Encompassing Tests.” Economic Series 228, Institute for Advanced Studies, 

2008. 

Cunnuingham, W.V., and W.F. Maloney. “Heterogeneity among Mexico’s 

Microenterprises: An Application of Factor and Cluster Analysis.” Economic 

Development and Cultural Change 50(October 2001):131-156. 

Das, S., R. Gupta, and A. Kabundi. “Is a DFM Well-Suited in Forecasting Regional 

House Price Inflation?” Working paper No. 200814, Dept. of Econ., University of 

Pretonia, 2008. 

Das, S., R. Gupta, and A. Kabundi. “Could We Have Predicted the Recent Downturn in 

the South African Housing Market?” Journal of Housing Economics 

4(2009a):325-335. 



 

86 
 

 

Das, S., R. Gupta, and A. Kabundi. “The Blessing of Dimensionality in Forecasting Real 

House Price Growth in the Nine Census Divisions of the US.” Working paper No. 

200902, Dept. of Econ., University of Pretonia, 2009b. 

Das, S., R. Gupta, and A. Kabundi. “Forecasting Regional House Price Inflation: A 

Comparison between Dynamic Factor Models and Vector Autoregressive Models.” 

Journal of Forecasting 30(2011): 288-302. 

Doan, T.A., R.B. Litterman, and C.A. Sims. “Forecasting and Conditional Projection 

Using Realistic Prior Distributions.” Econometric Reviews 3(1984): 1-100. 

DRI BASIC Economics. Macroeconomic Database, machine-readable data file. 1946 - 

present. Lexinton, MA, DRI/McGraw-Hill, 1996. 

Duca, J.V., J. Muellbauer, and A. Murphy. “Housing Prices and Credit Constraints: 

Making Sense of the U.S. Experience.” Federal Reserve Bank of Dallas, working 

paper No. 1103, April 2011(a). 

Duca, J.V., J. Muellbauer, and A. Murphy. “Shifting Credit Standards and the Boom and 

Bust in U.S. House Prices.” Federal Reserve Bank of Dallas, working paper No. 

1104, April 2011(b). 

Dua, P., and S.C. Ray. “A BVAR Model for the Connecticut Economy.” Journal of 

Forecasting 14(1995):167-180. 

Embrechts, P., A. McNeil, and D. Straunmann, “Correlation: Pitfalls and Alternatives.” 

A short, non-technical article, RISK Magazine (May 1999): 69-71. 

Engle, R.F., and C.W.J. Granger. Long Run Economic Relationships. Oxford: Oxford 

University Press, 1991. 



 

87 
 

 

Ericsson, N.R. “Parameter Constancy, Mean Square Forecast Errors, and Measuring 

Forecast Performance: An Exposition, Extensions, and Illustration.” Journal of 

Policy Modeling 14(1992): 465-495. 

Fang, Y. “Forecasting Combination and Encompassing Tests.” International Journal of 

Forecasting 19(2003): 87-94. 

Favara, G., and Z. Song. “House Price Dynamics with Dispersed Information.” Journal 

of Economic Theory 148(May 2013): in press. 

Fik, T.J., D.C. Ling, and G.F. Mulligan. “Modeling Spatial Variation in Housing Prices: 

A Variable Interaction Approach.” Real Estate Economics 31(November 

2003):623-646. 

Forni, M., M. Hallin, M. Lippi, and L. Reichlin. “The Generalized Dynamic-Factor 

Model: Identification and Estimation.” The Review of Economics and Statistics 

4(2000): 540-554. 

Forni, M., M. Hallin, M. Lippi, and L. Reichlin. “Do financial variables help forecasting 

inflation and real activity in the euro area?” Journal of Monetary Economics 

6(2003): 1243-1255. 

Forni, M., M. Hallin, M. Lippi, and L.Reichlin. “The Generalized Dynamic Factor 

Model, One Sided Estimation and Forecasting.” Journal of the American 

Statistical Association 100(2005): 830-840. 

Gallin, J. “The Long-Run Relationship between Home Prices and Income: Evidence 

from Local Housing Markets.” Real Estate Economics 34(2006): 417-38. 



 

88 
 

 

Goetzmann, W.N., and S.M. Wachter. “Clustering Methods for Real Estate Portfolios”, 

Real Estate Economics 23(Fall 1995):271–310. 

Goetzmann, W. N., and S. M. Wachter. “The Global Real Estate Crash: Evidence from 

an International Database.” A Global Perspective on Real Estate Cycles. S.J. 

Brown and C.H. Liu, eds. Boston: Kluwer Academic Publishers, 1995b. 

Gordon, A. Classification, 2nd ed. London, UK: Chapman and Hall/CRC Press, 1999. 

Gupta, M.C., and R.J. Huefner. “A Cluster Analysis  Study of Financial Ratios and 

Industry Characteristics.” Journal of Accounting Research 10(Spring 1972):77-

95. 

Gupta, R., A. Kabundi. “Forecasting Macroeconomic Variables Using Large Datasets: 

Dynamic Factor Model versus Large-Scale BVARs” Working paper No. 200816, 

Dept. of Econ., University of Pretonia, 2008a. 

Gupta, R., A. Kabundi. “A Dynamic Factor Model for Forecasting Macroeconomic 

Variables in South Africa.” Working Paper No. 200815, Dept. of Econ., 

University of Pretonia, 2008b. 

Gupta, R., A. Kabundi, and S.M. Miller. “Forecasting the US Real House Price Index: 

Structural and Non-Structural Models with and without Fundamentals.” Working 

paper No. 200927, Dept. of Econ., University of Pretonia, 2009a. 

Gupta, R., A. Kabundi, and S.M. Miller. “Using Large Data Sets to Forecast Housing 

Prices: A Case Study of Twenty US States.” Working paper No. 200905, Dept. of 

Econ., University of Pretonia, 2009b. 



 

89 
 

 

Gupta, R., S.M. Miller, D.V. Wyk. “Financial Market Liberalization, Monetary Policy, 

and Housing Price Dynamics.” Working paper No. 201009, Dept. of Econ., 

University of Pretonia, 2010. 

Gyourko, J., and R.Voith. “Local Market and National Components in House Price 

Appreciation.” Journal of Urban Economics 32(July 1992):52-69. 

Gyourko, J., C. Mayer, and T. Sinai. “Superstar Cities.” Working paper No. 12355, 

National Bureau of Economic Research, Cambridge, MA, 2006. 

Hansen, P., and B. Jaumard. “Cluster Analysis and Mathematical Programming.” 

Mathematical Programming 79(1997):191-215. 

Hepsen, A., and M. Vatansever. “Using Hierarchical Clustering Algorithms for Turkey 

Residential Market.” International Journal of Economics and Finance 4(January 

2012):138-150. 

Hiebert, P., and M. Roma. “Relative House Price Dynamics across Euro Area and US 

Cities Convergence or Divergence?” Working paper No. 1206, European Central 

Bank, Washington DC, 2010. 

Himmelberg, C., C. Mayer, and T. Sinai. “Assessing High House Prices: Bubbles, 

Fundamentals and Misperceptions.” Journal of Economic Perspectives 19(Fall 

2005):67-92. 

Hirata, H., M.A. Kose, C. Otrok, and M.E. Terrones. “Global House Price Fluctuations: 

Synchronization and Determinants.” Working paper, International Monetary 

Fund, Washington DC, 2013.  



 

90 
 

 

Hoesli, M., C. Lizieri, and B.D. Macgregor. “The Spatial Dimensions of the Investment 

Performance of UK Commercial Property.” Urban Studies 34(August 

1997):1475–1494.  

Holmes, M.J., J. Otero, and T. Panagiotidis. “Investigating Regional House Price 

Convergence in the United States: Evidence from a Pair-wise Approach.” 

Working paper, The Rimini Center for Economic Analysis, Italy, 2011. 

Jain, A., and R. Dubes. Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice 

Hall, 1988. 

Jud, G.D., and D.T. Winkler. “The Dynamics of Metropolitan Housing Prices.” The 

Journal of Real Estate Research 23(January/April 2002): 29-42. 

Jolliffe, I.T. (2002). Principal Component Analysis. New York: Springer-Verlag. 

Kim, J.W., D.J. Leatham, and D.A. Bessler “REITs’ Dynamic under Structural Change 

with Unknown Break Points.” Journal of Housing Economics 16(April 2007):37-

58. 

Kim, K., and J. Park. “Segementeation of the Housing Market and Its Determinants: 

Seoul and Its Neighboring New Towns in Korea.” Australian Geographer 

32(2005):221-232. 

Kim, Y.S., and J.J. Rous. “House Price Convergence: Evidence from US State and 

Metropolitan Area Panels.” Journal of Housing Economics 21(February 

2012):169-186. 

Kisinbay, T. "The Use of Encompassing Tests for Forecast Combinations," IMF 

Working Papers 07/264, International Monetary Fund, 2007. 



 

91 
 

 

Kwon, D. and D. Bessler. “Graphical Methods, Inductive Causal Inference, and 

Econometrics: A Literature Review.” Computational Economics 38(2011):85-

106.  

Leung, F., K. Chow, and G. Han. “Long-term and Short-term Determinants of Property 

Prices in Hong Kong.” Working paper No. 0815, Hong Kong Monetary 

Authority, Hong Kong, 2008. 

Linneman, P. “An Empirical Test of the Efficiency of the Housing Market.” Journal of 

Urban Economics 20(1986): 140-154. 

Litterman, R.B. “Forecasting with Bayesian Vector Autoregression- Five Years of 

Experience.” Journal of Business and Economic Statistics 4(1986):25-38. 

Litterman, R.B. “A Bayesian Procedure for Forecasting with Vector Autoregressions.” 

Working paper, Federal Reserve Bank of Minneapolis, 1981. 

Lu, Y. “Analysis of Residential Housing Markets in Large U.S. Metropolitan Areas.” 

Ph.D. dissertation, University of Missouri, Columbia, December 2009. 

Magne, F.O., and S. Rady. “Housing Market Dynamics: On the Contribution of Income 

Shocks and Credit Constraints.” Review of Economic Studies 73(2006):459-485. 

McGreal, S. and P.T. De La Paz. “Implicit House Prices: Variation over Time and Space 

in Spain.” Urban Studies 50(February 2013):1-20. 

Newbold, P., and D.I. Harvey. “Forecasting combination and encompassing”. A 

Companion to Economic Forecasting. M.P. Clements and D.F. Hendry, eds. 

Oxford: Blackwells, 2002. 

Pearl, J. Causality. Cambridge, UK: Cambridge University Press, March, 2000.  



 

92 
 

 

Quigley, J.M. “Real Estate Prices and Economic Cycles.” International Real Estate 

Reviews 2(1999): 1-20. 

Oxley L., M. Reale, and G.T. Wilson. “Constructing Structural VAR Models with 

Conditional Independence Graphs.” Mathematics and Computers in Simulation 79 

(2009): 2910-2916. 

Rapach, D.E., and J.K. Strauss. “Difference in Housing Price Forecast Ability across 

U.S. States.” International journal of Forecasting 25(2009): 351-372. 

Richardson, J.W., and G.D. Condra. “A General Procedure for Correlating Events in 

Simulation Models.” Working paper, Department of Agricultural Economics, 

Texas A&M University, 1978. 

Richardson, J.W. “Simulation for Applied Risk Management with an Introduction to 

SIMETAR.” Working paper, Department of Agricultural Economics, Texas 

A&M University, 2010. 

Roback, J. “Wages, Rents, and the Quality of Life.” Journal of Political Economy 

90(December 1982):1257-1278. 

Rosen, S. Wage-based Indexes of Urban Quality of Life. Mieszkowski, P., Straszheim, 

M. eds. Baltimore, U.S.: Johns Hopkins University Press, 1979:74-104. 

San Diego Association of Governments. “Understanding Cluster Analysis.” 2002. 

Shimizu, C., and T. Watanable. “Housing Bubbles in Japan and the United States.” 

Public Policy Review 6(March 2010):431-472. 

Smith, E.B. “‘Race to Bottom’ at Moody’s, S&P Secured Subprime’s Boom, Bust.” 

Bloomberg, September 2008. 



 

93 
 

 

Spencer, D.E. “Developing a Bayesian Vector Autoregression Forecasting Model.” 

International Journal of Forecasting 9(1993): 407-421. 

Sprites, P., C. Glymour, and R. Scheines. Causation, Prediction, and Search, 2nd. ed. 

Boston: MIT Press, 2000.  

Stock, J.H., and M.W. Watson. “Macroeconomic Forecasting Using Diffusion Indexes.” 

Journal of Business and Economic Statistics 2(2002): 147-162. 

Stock, J.H., and M.W. Watson. “Forecasting Output and Inflation: The Role of Asset 

Prices.” Journal of Economic Literature 3(2003):788-829. 

Sutton, G.D. “Explaining Changes in House Prices.” BIS Quarterly Review (September 

2002):46-55. 

Todd, R.M. “Improving Economic Forecasting with Bayesian Vector Autoregression.” 

Quarterly Review (Federal Reserve Bank of Minneapolis) (Fall, 1984): 18-29. 

Tsatasaronis, K., and H. Zhu. “What Drives Housing Price Dynamics: Cross-Country 

Evidence.” BIS Quarterly Review March, 2004:65-78. 

U.S. Department of Housing and Urban Development. 2011 American Housing Survey 

(AHS) Washington DC, 2012. 

Vitale, J., and D.A. Bessler. “On the Discovery of Millet Prices in Mali.” Papers in 

Regional Science 85(March 2006):139-162. 

Wang, Z., and D.A. Bessler. “Forecasting Performance of Multivariate Time Series 

Models with Full and Reduced Rank: An Empirical Examination.” International 

Journal of Forecasting 20(2004): 683-695. 



 

94 
 

 

Wang, Z., and D.A. Bessler. “A Monte Carlo Study on the Selection of Cointegrating 

Rank Using Information Criteria.” Economic Theory 21(2005): 593-620. 

West, K.D. "Tests For Forecast Encompassing When Forecasts Depend On Estimated 

Regression." Journal of Business and Economic Statistics 19(January 2001): 29-

33. 

Wheaton, W.C. “Real Estate ‘Cycle’: Some Fundamentals.” Real Estate Economics 27 

(1999): 209-230. 

Woodard, J.D., N. Paulson, D. Vedenov, and G. Power. "Efficiency in the Modeling of 

Dependence Structures: An Application of Alternative Copulas to Agricultural 

Insurance Rating," Agricultural Economics 42-IS1 (November 2011): 101-112.   

Xu, R., and D.C. Wunsch. Cluster. New Jersey: IEEE Press, 2009. 

Yang, Y., and A. Hu. “Investigating Regional Disparities of China’s Human 

Development with Cluster Analysis: A Historical Perceptive.” Social Indicators 

Research 86(2008): 417-432. 

 

 

 

 



 

95 
 

 

APPENDIX 

 

In the chapter 4, 122 data series are used to compare the forecasting performance 

between DFM and LBVAR models. These data series are taken directly from 

DRI/McGraw Hill Basic Economics Database. Each of the series is listed with following 

details: series number; series mnemonic in the database; data span; transformation code 

and series description in the database. Format follows Stock and Watson (2002) paper. 

The transformation codes are: 1- no transformation; 2- first difference; 4- logarithm; 5- 

first difference of logarithm. 

 

 OUTPUT -------------- real output and income 

1 IPS11.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL 

2 IPS299.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS 

3 IPS12.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  CONSUMER 
GOODS 

4 IPS13.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  DURABLE 
CONSUMER GOODS 

5 IPS18.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  NONDURABLE 
CONSUMER GOODS 

6 IPS25.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  BUSINESS 
EQUIPMENT 

7 IPS32.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  MATERIALS 

8 IPS34.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS 
MATERIALS 

9 IPS43.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  MANUFACTURING 
(SIC) 

10 IPS67.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  MINING  NAICS=21 

11 IPS68.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  ELECTRIC AND 
GAS UTILITIES 

12 IPS10.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX 

13 IPS307.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION  INDEX -  RESIDENTIAL 
UTILITIES 

14 IPS316.M 1980:1  -  2012:6 5  INDUSTRIAL PRODUCTION  INDEX -  BASIC METALS 

15 PMI.M 1980:1  -  2012:6 5  PURCHASING MANAGERS' INDEX (SA) 

16 PMP.M 1980:1  -  2012:6 5  NAPM PRODUCTION INDEX (PERCENT) 

17 YPR.M 1980:1  -  2012:6 5  PERS INCOME CH 2005 $,SA-US 

18 YP@V00C.M 1980:1  -  2012:6 5  PERS INCOME LESS TRSF PMT CH 2005 $,SA-US 
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 EMP ------------------- employment and hours 

19 LHEM.M 1980:1  -  2012:6 4  CIVILIAN LABOR FORCE: EMPLOYED, TOTAL 
(THOUS.,SA) 

20 LHNAG.M 1980:1  -  2012:6 5  CIVILIAN LABOR FORCE: EMPLOYED, 
NONAGRIC.INDUSTRIES (THOUS.,SA) 

21 LHUR.M 1980:1  -  2012:6 5  UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & 
OVER (%,SA) 

22 LHU680.M 1980:1  -  2012:6 1  UNEMPLOY.BY DURATION: 
AVERAGE(MEAN)DURATION IN WEEKS (SA) 

23 LHU5.M 1980:1  -  2012:6 1  UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS 
THAN 5 WKS (THOUS.,SA) 

24 LHU14.M 1980:1  -  2012:6 1  UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 
WKS (THOUS.,SA) 

25 LHU15.M 1980:1  -  2012:6 1  UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS 
+ (THOUS.,SA) 

26 LHU26.M 1980:1  -  2012:6 1  UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 
WKS (THOUS.,SA) 

27 CES0000000001.M 1980:1  -  2012:6 5  TOTAL NONFARM EMPLOYMENT.SA 

28 CES0500000001.M 1980:1  -  2012:6 5  TOTAL PRIVATE EMPLOYMENT.SA 

29 CES0600000001.M 1980:1  -  2012:6 5  GOODS PRODUCING EMPLOYMENT.SA 

30 CES1000000001.M 1980:1  -  2012:6 5  MINING AND LOGGING EMPLOYMENT.SA 

31 CES2000000001.M 1980:1  -  2012:6 5  CONSTRUCTION EMPLOYMENT.SA 

32 CES3000000001.M 1980:1  -  2012:6 5  MANUFACTURING EMPLOYMENT.SA 

33 CES3100000001.M 1980:1  -  2012:6 5  DURABLE GOODS MANUFACTURING 
EMPLOYMENT.SA 

34 CES3200000001.M 1980:1  -  2012:6 5  NONDURABLE GOODS MANUFACTURING 
EMPLOYMENT.SA 

35 CES0700000001.M 1980:1  -  2012:6 5  SERVICE PROVIDING EMPLOYMENT.SA 

36 CES4000000001.M 1980:1  -  2012:6 5  TRADE,TRANSPORTATION, AND UTILITY 
EMPLOYMENT.SA 

37 CES4200000001.M 1980:1  -  2012:6 5  RETAIL TRADE EMPLOYMENT.SA 

38 CES4142000001.M 1980:1  -  2012:6 5  WHOLESALE TRADE EMPLOYMENT.SA 

39 CES5500000001.M 1980:1  -  2012:6 5  FINANCIAL ACTIVITIES EMPLOYMENT.SA 

40 CES0800000001.M 1980:1  -  2012:6 5  PRIVATE SERVICE PROVIDING EMPLOYMENT.SA 

41 CES9000000001.M 1980:1  -  2012:6 5  GOVERNMENT EMPLOYMENT.SA 

42 CES3000000009.M 1980:1  -  2012:6 1  AVG WEEKLY OT,PROD WORKERS: MFG,SA-US 

43 PMEMP.M 1980:1  -  2012:6 1  NAPM EMPLOYMENT INDEX (PERCENT) 

       

 HSS ------------------ housing starts and sales   

44 HSFR.M 1980:1  -  2012:6 4  HOUSING STARTS:NONFARM(1947-58);TOTAL 
FARM&NONFARM(1959-)(THOUS.,SA) 

45 HSNE.M 1980:1  -  2012:6 4  HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 

46 HSMW.M 1980:1  -  2012:6 4  HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 

47 HSSOU.M 1980:1  -  2012:6 4  HOUSING STARTS:SOUTH (THOUS.U.)S.A. 

48 HSWST.M 1980:1  -  2012:6 4  HOUSING STARTS:WEST (THOUS.U.)S.A. 

49 HSBR.M 1980:1  -  2012:6 4  HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING 
UNITS (THOUS.,SAAR) 

50 HMOB.M 1980:1  -  2012:6 4  MOBILE HOMES: MANUFACTURERS' SHIPMENTS 
(THOUS.OF UNITS,SAAR) 

       

 INV -------------------- real inventories and inventory-sales ratios 
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51 PMNV.M 1980:1  -  2012:6 1  NAPM INVENTORIES INDEX (PERCENT) 

       

 ORD ------------------ orders and unfilled orders 

52 PMNO.M 1980:1  -  2012:6 1  NAPM NEW ORDERS INDEX (PERCENT) 

53 PMDEL.M 1980:1  -  2012:6 1  NAPM VENDOR DELIVERIES INDEX (PERCENT) 

54 MOCMQ.M 1980:1  -  2012:6 5  NEW ORDERS (NET) - CONSUMER GOODS & 
MATERIALS, 1996 DOLLARS (BCI) 

55 MSONDQ.M 1980:1  -  2012:6 5  NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 
DOLLARS (BCI) 

       

 SPR ------------------- stock prices 

56 FSPCOM.M 1980:1  -  2012:6 5  S&P'S COMMON STOCK PRICE INDEX: COMPOSITE 
(1941-43=10) 

57 FSPIN.M 1980:1  -  2012:6 5  S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS 
(1941-43=10) 

58 FSDJ.M 1980:1  -  2012:6 5  COMMON STOCK PRICES: DOW JONES INDUSTRIAL 
AVERAGE 

       

 EXR ------------------- exchange rates 

59 EXRSW.M 1980:1  -  2012:6 5  FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS 
FRANC PER U.S.$) 

60 EXRJAN.M 1980:1  -  2012:6 5  FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 

61 EXRUK.M 1980:1  -  2012:6 5  FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS 
PER POUND) 

62 EXRCAN.M 1980:1  -  2012:6 5  FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ 
PER U.S.$) 

       

 INT --------------------- interest rates 

63 FYFF.M 1980:1  -  2012:6 1  INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER 
ANNUM,NSA) 

64 FYGM3.M 1980:1  -  2012:6 1  INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-
MO.(% PER ANN,NSA) 

65 FYGM6.M 1980:1  -  2012:6 1  INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-
MO.(% PER ANN,NSA) 

66 FYGT1.M 1980:1  -  2012:6 1  INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-
YR.(% PER ANN,NSA) 

67 FYGT5.M 1980:1  -  2012:6 1  INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-
YR.(% PER ANN,NSA) 

68 FYGT10.M 1980:1  -  2012:6 1  INTEREST RATE: U.S.TREASURY CONST 
MATURITIES,10-YR.(% PER ANN,NSA) 

69 RMMBCAAANS.M 1980:1  -  2012:6 1  YIELD ON MOODY'S AAA CORP BONDS-US 

70 RMMBCBAANS.M 1980:1  -  2012:6 1  YIELD ON MOODY'S BAA CORP BONDS-US 

71 SFYGM3 1980:1  -  2012:6 1  SPREAD FYGM3-FYFF 

72 SFYGM6 1980:1  -  2012:6 1  SPREAD FYGM6-FYFF 

73 SFYGT1 1980:1  -  2012:6 1  SPREAD FYGT1-FYFF 

74 SFYGT5 1980:1  -  2012:6 1  SPREAD FYGT5-FYFF 

75 SFYGT10 1980:1  -  2012:6 1  SPREAD FYGT10-FYFF 

76 SBCAAA 1980:1  -  2012:6 1  SPREAD BCAAA-FYFF 

77 SBCBAA 1980:1  -  2012:6 1  SPREAD BCBAA-FYFF 

 MON ------------------ money and credit quantity aggregates 

78 FM1.M 1980:1  -  2012:6 5  MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER 
CK'ABLE DEP)(BIL$,SA) 
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79 FM2.M 1980:1  -  2012:6 5  MONEY STOCK: M2(M1+O'NITE RPS,EURO$,G/P&B/D 
MMMFS&SAV&SM TIME DEP), BIL$ 

80 FMNC2.M 1980:1  -  2012:6 5  MONEY STOCK: NONTRANSACTION COMPONENTS IN 
M2 (BIL$,SA) 

81 MNY2@00.M 1980:1  -  2012:6 5  MONEY SUPPL-M2 IN 2005 $,SA-US 

82 FMFBA.M 1980:1  -  2012:6 5  MONETARY BASE, ADJ FOR RESERVE REQUIREMENT 
CHANGES(MIL$,SA) 

83 FMRRA.M 1980:1  -  2012:6 5  DEPOSITORY INST RESERVES:TOTAL,ADJ FOR 
RESERVE REQ CHGS(MIL$,SA) 

84 FCLBMC.M 1980:1  -  2012:6 1  WKLY RP LG COM'L BANKS:NET CHANGE COM'L & 
INDUS LOANS(BIL$,SAAR) 

85 CCINRV.M 1980:1  -  2012:6 5  CONSUMER CREDIT OUTSTANDING - 
NONREVOLVING(G19) 

86 ALCIBL00.M 1980:1  -  2012:6 5  COML&IND LOANS OUTST IN 2000 $,SA-US 

       

 PRI -------------------- price indexes 

87 PMCP.M 1980:1  -  2012:6 1  NAPM COMMODITY PRICES INDEX (PERCENT) 

88 PWFSA.M 1980:1  -  2012:6 5  PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 

89 PWFCSA.M 1980:1  -  2012:6 5  PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS 
(82=100,SA) 

90 PWIMSA.M 1980:1  -  2012:6 5  PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & 
COMPONENTS(82=100,SA) 

91 PWCMSA.M 1980:1  -  2012:6 5  PRODUCER PRICE INDEX:CRUDE MATERIALS 
(82=100,SA) 

92 PUNEW.M 1980:1  -  2012:6 5  CPI-U: ALL ITEMS (82-84=100,SA) 

93 PU83.M 1980:1  -  2012:6 5  CPI-U: APPAREL & UPKEEP (82-84=100,SA) 

94 PU84.M 1980:1  -  2012:6 5  CPI-U: TRANSPORTATION (82-84=100,SA) 

95 PU85.M 1980:1  -  2012:6 5  CPI-U: MEDICAL CARE (82-84=100,SA) 

96 PUC.M 1980:1  -  2012:6 5  CPI-U: COMMODITIES (82-84=100,SA) 

97 PUCD.M 1980:1  -  2012:6 5  CPI-U: DURABLES (82-84=100,SA) 

98 PUXF.M 1980:1  -  2012:6 5  CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 

99 PUXHS.M 1980:1  -  2012:6 5  CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 

100 PUXM.M 1980:1  -  2012:6 5  CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 

101 PUH.M 1980:1  -  2012:6 5  CPI-U: HOUSING (82-84=100,SA) 

102 PU803.M 1980:1  -  2012:6 5  CPI-U:ENERGY (82-84=100,SA) 

       

 AHE ------------------- average hourly earnings 

103 CES0500000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: TOTAL PRIV,SA-US 

104 CES4422000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: UTILITIES,SA-US 

105 CES4300000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: TRNSPRT&WHSE,SA-US 

106 CES4000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: 
TRADE,TRNSPRT,&UTILITIES,SA-US 

107 CES4200000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: RETAIL TRADE,SA-US 

108 CES6000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: PROF&BUS SVC,SA-US 

109 CES0800000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: PRIV SVC,SA-US 

110 CES8000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: OTH SVC,SA-US 

111 CES3200000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: NON-DUR,SA-US 

112 CES1000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: MINING&LOGGING,SA-US 
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113 CES3000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: MFG,SA-US 

114 CES7000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: LEIS&HOS,SA-US 

115 CES5000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: INFO,SA-US 

116 CES0600000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: GDS PRODUCING,SA-US 

117 CES5500000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: FIN ACT,SA-US 

118 CES6500000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: ED&HEALTH SVC,SA-US 

119 CES3100000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: DUR,SA-US 

120 CES2000000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: CONSTR,SA-US 

121 CES4142000030.M 1980:1  -  2012:6 5  AWE,PROD WORKERS: WSALE,SA-US 

       

 OTH ------------------ miscellaneous 

122 U0M083.M 1980:1  -  2012:6 1  BUSINESS CYCLE INDICATORS, CONSUMER 
EXPECTATIONS,NSA-US (COPYRIGHT,UINV. OF 
MICHIGAN) 
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Figure 1 The Directed Acyclic Graph for the Simple Example 

 

 

 

 

 

  

 



 

101 
 

 

Figure 2 Plot of Number of Clusters Versus Semi-Partial R-Square Using Ward’s 

Cluster Analysis 

 

Note: A dot represents the level of semi-partial R-square with the corresponding number 
of clusters. The red line is a contour line and the two blue lines are the confidence limit 
lines.  
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Figure 3 Results of Cluster Analysis-Tree Diagram 

 
Note: The root node of the tree diagram represents the whole data set, and each leaf node 
is read as a data point. The intermediate nodes describe the extent to which the objects 
are proximal to each other, and the length of the tree diagram expresses the distance 
between each pair of data points or clusters, or a data point and a cluster (Xu and 
Wunsch, 2009).Three clusters are obtained by cutting the tree diagram at an appropriate 
level. 
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Figure 4 Results of Cluster Analysis-Metropolitan Map 
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Figure 5 Results of Discriminant Analysis 

 

Note: a number (1, 2 and 3) indicates the cluster to which a MSA is assigned in cluster 
analysis. Can1 and Can2 are the two linear discriminant analysis (LDA) projections 
which maximize the separability of the discriminant scores of MSAs. We can see that 
the two LDA projections work well and there is no distribution overlapping between the 
three clusters. Also, the clustering pattern is consistent with the results from cluster 
analysis.  
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Figure 6 Graph from DAG Approach for Between-Cluster Analysis 

 

Note: X1, X2 and X3 represent cluster one, two and three, respectively. 
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Figure 7 Graph from DAG Approach for Cluster 1 
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Figure 8 Graph from DAG Approach for Cluster 2 
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Figure 9 Graph from DAG Approach for Cluster 3 
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Figure 10 CDF Graph of the Forecasted Housing Price, 2011:Q1 
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Figure 11 CDF Graph of the Forecasted Housing Price, 2012:Q1 
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Figure 12 Contemporaneous Causal Patterns among the Five Random Variables, 

2011:Q1 

 

Note: HP, Inv, DPI, UC and LTV are house price, house inventory, disposable household 

income, user cost and loan-to-value, respectively. 
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Figure 13 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts from DFM and LBVAR Models for 

Metropolitan Areas in the Group 1 

 

Note: group one includes metropolitan areas with housing price that peaked in the late 1980s, fell to a trough in the 1990s, and 
rebounded by 2004. 
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Figure 14 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts from DFM and LBVAR Models for 

Metropolitan Areas in the Group 2 

 

Note: group two includes metropolitan areas with housing price that were high in the early 1980s and were high again by the 
end of 2004. 
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Figure 15 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts from DFM and LBVAR Models for 

Metropolitan Areas in the Group 3 

 

Note: group three includes metropolitan areas with housing prices that declined since 1980 and did not fully recovered by the 
end of 2004. 
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Table 1 Metropolitan Statistical Areas Examined 

Anaheim Atlanta Birmingham Buffalo Charlotte 

Cincinnati Cleveland Columbus Dallas Denver 

Fort Worth Indianapolis Kansas City Los Angeles Memphis 

Milwaukee New Orleans Oakland Phoenix Pittsburgh 

Portland Providence Riverside Sacramento San Diego 

San Francisco San Jose St. Louis Virginia Beach  
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Table 2 Variables Used in Cluster Analysis 

Variables Descriptions 

Housing value Current value of unit 

Unit size Size of the unit (in square feet) 

Rooms Number of rooms in the unit (including bedrooms, 

bathrooms, living rooms, kitchens, family rooms, office, 

and other rooms) 

Crowding Number of persons per room 

Unit quality rating Rating of unit as a place to live (scale from 1(worst) to 

10(best)) 

Neighborhood quality rating Rating of neighborhood as a place to live (scale from 

1(worst) to 10(best)) 

Unemployment rate Rate of unemployment 

Tax payment Yearly real estate taxes payment 

Mortgage rate Current interest rate on primary mortgage (in %) 

Household income Expected household income in next twelve months 
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Table 3 Cluster History 

Number 
of 

Clusters 
(CL#) Clusters Joined Frequency 

Semipartial 
R-Square 

R-
Square 

28 Kansas City St. Louis 2 0.0022 0.998 
27 Dallas Fort Worth 2 0.0033 0.995 
26 Buffalo Pittsburgh 2 0.0035 0.991 
25 Cincinnati Columbus 2 0.0038 0.987 
24 Virginia Beach CL28 3 0.0052 0.982 
23 CL26 Cleveland 3 0.0064 0.976 
22 Phoenix Indianapolis 2 0.0068 0.969 
21 Birmingham CL24 4 0.0076 0.961 
20 Providence Sacramento 2 0.0097 0.952 
19 Oakland San Diego 2 0.0104 0.941 
18 CL25 CL22 4 0.0120 0.929 
17 San Jose San Francisco 2 0.0122 0.917 
16 Atlanta Denver 2 0.0128 0.904 
15 CL21 CL18 8 0.0164 0.888 
14 CL20 Riverside 3 0.0185 0.869 
13 CL15 Portland 9 0.0186 0.851 
12 CL23 New Orleans 4 0.0194 0.831 
11 CL19 Los Angeles 3 0.0220 0.809 
10 CL12 Milwaukee 5 0.0263 0.783 
9 CL27 Memphis 3 0.0315 0.751 
8 CL17 Anaheim 3 0.0337 0.718 
7 CL13 CL10 14 0.0340 0.684 
6 CL14 Charlotte 4 0.0431 0.641 
5 CL11 CL8 6 0.0472 0.594 
4 CL7 CL16 16 0.0558 0.538 
3 CL4 CL9 19 0.0597 0.478 
2 CL3 CL6 23 0.1112 0.367 
1 CL2 CL5 29 0.3669 0.000 

Note: CL# is the cluster formed when there are # clusters remain (number of cluster 
equals to #). For example, CL28 comprises Kansas City and St. Louis. With this cluster 
formed, there are totally 28 clusters remain.  
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Table 4 Discriminant Weight Vectors 

Variable Weight 1 Weight 2 

Housing value 1.4737 2.8016 

Unemployment 2.0061 -2.1986 

Taxes 0.2677 0.2568 

Interest rate 0.2644 -0.2440 

Income 1.1047 -1.7720 

Unit size -0.9206 0.6096 

Rooms -0.3772 0.7309 

Crowd -0.1940 1.3158 

Unit Quality 0.5460 0.0014 

Neighborhood 0.1597 -0.5708 
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Table 5 Results of Augmented Dickey-Fuller (ADF) Tests on Levels and First-

Differences for Between-Cluster Analysis 

 

Levels First Differences 

Cluster t-stat p-value t-stat p-value 

1 -1.31 0.1945 -2.07 0.0414 

2 -1.54 0.1288 -2.15 0.0351 

3 -1.3 0.1992 -2.12 0.0373 

Note: the p-values for ADF tests on levels are larger than 0.05, which indicates that the 
null hypothesis of existence of unit root cannot be rejected. In other words, the series of 
housing values for all three clusters are not stationary. However, the p-values for ADF 
tests on first-difference are smaller than 0.05, so the null hypothesis can be rejected. We 
can conclude that these series of housing values are I(1). 
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Table 6 Loss Metrics on Lag Length from VARs on Housing Values for Between-

Cluster Analysis 

 

Information Criteria 

Lag Length k HQC SBC 

1 4.6509 4.8526 

2 3.0792 3.4348* 

3 3.0101* 3.5217 

4 3.0491 3.7191 

5 3.2759 4.1066 

Note: TTkSBC /)))(log13(log( ++Σ=  and TTk /))log(log)13(2log( ++Σ=Φ . Σ is 
the error covariance matrix estimated with 3k+1 regressors in each equation. T is the 
number of observations on each series. The symbol “| |” denotes the determinants 
operator and log is the natural logarithm. The asterisk (“*”) indicates minimum. Thus lag 
length of three is chosen. 
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Table 7 Tests of Cointegration among Housing Values for Between-Cluster Analysis 

H0: Rank=r H1: Rank>r Eigenvalue Trace 5% Critical Value 

0 0 0.2123 38.4435 34.8 

1 1 0.1531 18.1571 19.99 

2 2 0.0464 4.036 9.13 

Note: r is the number of cointegrating vectors. We fail to reject the null hypothesis when 
trace statistic is smaller than its 5% critical value. Thus, there exists one cointegrating 
vector among the housing values of the three clusters.  
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Table 8 Correlation Matrix of Innovations from ECM Model for Between-Cluster 

Analysis 

Variable Cluster1 Cluster2 Cluster3 

Cluster1 1.0356 0.4398 0.2702 

Cluster2 0.4398 2.0781 0.6010 

Cluster3 0.2702 0.6010 5.7988 
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Table 9 Forecast Error Variance Decomposition for Between-Cluster Analysis 

Horizon Variable Cluster 1 Cluster 2 Cluster 3 

0 Cluster 1 1.0000 0.0000 0.0000 

 Cluster 2 0.1934 0.8066 0.0000 

 Cluster 3 0.0730 0.2882 0.6388 

1 Cluster 1 0.9898 0.0100 0.0001 

 Cluster 2 0.1577 0.8346 0.0077 

 Cluster 3 0.1660 0.4421 0.3919 

12 Cluster 1 0.7643 0.1323 0.1034 

 Cluster 2 0.0858 0.8166 0.0976 

 Cluster 3 0.1909 0.7781 0.0310 

Note: Forecast error variance decompositions are based on observed innovations from 
the estimated error correction model. The entries sum to one in any row. The 
interpretation of any row is as follows: looking ahead at the horizon, given in the left-
hand-most column (0, 1, 12-period-ahead), the uncertainty in house prices of the cluster 
in variable column is attributed to variation in innovations arising in each cluster in each 
column heading.  
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Table 10 Results of Augmented Dickey-Fuller Tests on Levels and First-Differences for MSAs in Each Cluster 

Cluster1 Levels 
First 

Differences Cluster2 Levels 
First 

Differences Cluster3 Levels 
First 

Differences 
Atlanta 0.7407 0.0129 Charlotte 0.8738 0.0008 Los Angeles 0.1593 0.0170 

Birmingham 0.8371 0.0008 Providence 0.8684 0.0432 Oakland 0.4638 0.0110 
Buffalo 0.9782 0.0008 Riverside 0.9012 0.0157 San Diego 0.6040 0.0176 

Cincinnati 0.7716 0.0008 Sacramento 0.9089 0.0117 San Francisco 0.9297 0.0008 
Cleveland 0.6483 0.0034 

   
San Jose 0.8462 0.0008 

Columbus 0.8294 0.0039 
   

Anaheim 0.8358 0.0480 
Dallas 0.9501 0.0008 

      Denver 0.8973 0.0008 
      Fort Worth 0.9369 0.0008 
      Indianapolis 0.8378 0.0001 
      Kansas City 0.8356 0.0008 
      Memphis 0.7966 0.0008 
      Milwaukee 0.8320 0.0153 
      New Orleans 0.8976 0.0008 
      Phoenix 0.1415 0.0232 
      Pittsburgh 0.9635 0.0008 
      Portland 0.7873 0.0034 
      St. Louis 0.8590 0.0127 
      Virginia Beach 0.8323 0.0050 
  

  
   Note: the p-values for ADF tests on levels are larger than 0.05, which indicates that the null hypothesis of existence of unit 

root cannot be rejected. In other words, the series of housing values are not stationary. However, the p-values for ADF tests on 
first-difference are smaller than 0.05, so the null hypothesis can be rejected. We can conclude that these series of housing 
values are I(1). 
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Table 11 Loss Metrics on Lag Length from VARs on Housing Values for Cluster 2  

and 3 

 Information Criteria 

 
Cluster 2 Cluster 3 

Lag Length k HQC SBC HQC SBC 

1 9.0023 9.2712 15.99496 16.60012 

2 7.2534 7.7951 14.42922 15.64823 

3 7.4091 8.2276 14.09721 15.93897 

4 7.0862* 8.1856* 13.57872 16.05239* 

5 7.1487 8.5331 13.08026* 16.19523 

6 7.1544 8.8282 13.27063 17.03654 

7 7.1024 9.0699 13.18086 17.60763 

Note: TTkSBC /)))(log14(log( ++Σ=  and TTk /))log(log)14(2log( ++Σ=Φ for 
cluster 2. TTkSBC /)))(log16(log( ++Σ=  and TTk /))log(log)16(2log( ++Σ=Φ for 
cluster 3. Σ is the error covariance matrix estimated with 4k+1 regressors in each 
equation for cluster 2 and with 6k+1 regressors in each equation for cluster 3. T is the 
number of observations on each series. The symbol “| |” denotes the determinants 
operator and log is the natural logarithm. The asterisk (“*”) indicates minimum. Thus, 
lag length of four is chosen for cluster 2 and lag length of 5 is chosen for cluster 3.  
 

 

 



 

126 
 

 

Table 12 Tests of Cointegration among Housing Values for Cluster 2 and 3 

  Cluster 2 Cluster 3 

H0: 

Rank=r 

H1: 

Rank>r Eigenvalue Trace 

5% Critical 

Value Eigenvalue Trace 

5% Critical 

Value 

0 0 0.4514 83.3266 47.21 0.5581 206.8011 93.92 

1 1 0.2229 32.2891 29.38 0.5112 138.2092 68.68 

2 2 0.0972 10.8511 15.34 0.3646 78.0799 47.21 

3 3 0.0251 2.1584 3.84 0.2622 39.9883 29.38 

4 4    0.1492 14.4485 15.34 

5 5    0.0104 0.8803 3.84 

Note: r is the number of cointegrating vectors. We fail to reject the null hypothesis when trace statistic is smaller than its 5% 
critical value. Thus, there exist two cointegrating vectors among the housing values of cluster 2 and four cointegrating vectors 
among the housing values of cluster 3.  
 

 



 

127 
 

 

Table 13 Correlation Matrix of Innovations from Bayesian VAR Model for Cluster 1 

 

 

  Atlanta Birming 
ham Buffalo Cincinnati Cleveland Columbus Dallas Denver Fort 

Worth Indianapolis Kansas 
City Memphis Milwaukee New 

Orleans Phoenix Pittsburgh Portland St 
Louis 

Virginia 
Beach 

Atlanta 1.0000                   

Birmingham 0.4057 1.0000                  

Buffalo 0.1210 0.0894 1.0000                 

Cincinnati 0.3557 0.4448 0.0969 1.0000                

Cleveland 0.4569 0.3032 0.1168 0.2940 1.0000               

Columbus 0.1581 0.2762 -
0.0737 0.2817 0.3759 1.0000              

Dallas 0.3686 0.1771 0.3213 0.2333 0.2796 0.1990 1.0000             

Denver 0.4413 0.1904 0.0972 0.3383 0.3397 0.1237 0.3730 1.0000            

Fort Worth 0.5099 0.3772 0.0521 0.4392 0.4948 0.3480 0.2532 0.3981 1.0000           

Indianapolis 0.4702 0.4257 -
0.0886 0.3818 0.2758 0.3209 0.2458 0.2359 0.3962 1.0000          

Kansas City 0.3716 0.3899 -
0.0007 0.4705 0.3786 0.4796 0.3399 0.2920 0.5481 0.3375 1.0000         

Memphis 0.4393 0.3117 0.0865 -0.0425 0.2423 0.1473 0.2358 0.2909 0.0658 0.1946 0.1740 1.0000        

Milwaukee 0.4264 0.2389 0.2198 0.4430 0.1711 -0.0200 0.4041 0.4146 0.3969 0.3812 0.3648 0.0823 1.0000       
New 
Orleans 0.0806 0.2045 -

0.1271 0.3505 0.2517 0.2307 -
0.0543 0.1162 0.2914 0.0606 0.3782 -0.0992 0.0655 1.0000      

Phoenix 0.4856 0.4722 0.2939 0.3174 0.0061 -0.0174 0.2239 0.1762 0.2769 0.2782 0.3065 0.2074 0.3533 0.0392 1.0000     

Pittsburgh 0.3395 -
0.0122 0.3672 0.3120 0.0507 -0.0818 0.1475 0.1546 0.2361 0.1574 0.0749 -0.0378 0.3031 0.0648 0.1810 1.0000    

Portland 0.6439 0.4170 0.1098 0.2020 0.3224 0.1450 0.3014 0.2703 0.3113 0.5071 0.3044 0.3216 0.2907 -
0.0822 0.3439 0.0871 1.0000   

St. Louis 0.4880 0.4401 0.1639 0.4854 0.2287 0.3077 0.2634 0.2730 0.4431 0.3249 0.4305 0.2087 0.3653 0.3115 0.1951 0.2774 0.4033 1.0000  
Virginia 
Beach 0.1665 0.2708 0.1592 0.2097 -0.1344 0.0283 0.0796 0.1247 0.0092 0.1706 0.1365 0.1117 0.1623 0.2252 0.4171 0.0286 0.3386 0.2360 1.0000 
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Table 14 Correlation Matrix of Innovations from ECM Model for Cluster 2 

  Charlotte Providence Riverside Sacramento 

Charlotte 1.0000 

   Providence 0.0428 1.0000 

  Riverside 0.1948 0.0652 1.0000 

 Sacramento -0.0108 0.2463 0.5359 1.0000 
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Table 15 Correlation Matrix of Innovations from Bayesian VAR Model for Cluster 3 

 Los Angeles Oakland San Diego San Francisco San Jose Anaheim 

Los Angeles 1.0000      

Oakland 0.4432 1.0000     

San Diego 0.1487 0.3191 1.0000    

San Francisco 0.1684 0.2397 0.1582 1.0000   

San Jose 0.3156 0.3629 0.0549 0.3693 1.0000  

Anaheim 0.6470 0.2912 0.3752 -0.0057 0.3364 1.0000 
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Table 16 Forecast Error Variance Decomposition for Cluster 2 

Lead Variable Charlotte Providence Riverside Sacramento 

0 Charlotte 1.0000 0.0000 0.0000 0.0000 

 Providence 0.0030 0.9970 0.0000 0.0000 

 Riverside 0.0002 0.0600 0.9601 0.0000 

 Sacramento 0.0002 0.0600 0.2873 0.6526 

1 Charlotte 0.9919 0.0041 0.0005 0.0004 

 Providence 0.0216 0.9552 0.0006 0.0226 

 Riverside 0.0379 0.0022 0.8675 0.0923 

 Sacramento 0.0006 0.0197 0.0952 0.8845 

12 Charlotte 0.8647 0.0463 0.0714 0.0175 

 Providence 0.0152 0.8918 0.0062 0.0869 

 Riverside 0.0699 0.0581 0.8374 0.0345 

 Sacramento 0.0528 0.0530 0.0966 0.7976 

Note: Forecast error variance decompositions are based on observed innovations from 
the estimated error correction model. The entries sum to one in any row. The 
interpretation of any row is as follows: looking ahead at the horizon, given in the left-
hand-most column (0, 1, 12-period-ahead), the uncertainty in house prices of the cluster 
in variable column is attributed to variation in innovations arising in each cluster in each 
column heading.  
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Table 17 Forecast Error Variance Decomposition for Cluster 3 

Lead Variable Los Angeles Oakland San Diego San Francisco San Jose Anaheim 
0 Los Angeles 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 Oakland 0.1902 0.8098 0.0000 0.0000 0.0000 0.0000 
 San Diego 0.0219 0.0831 0.8950 0.0000 0.0000 0.0000 
 San Francisco 0.0284 0.0286 0.0072 0.9359 0.0000 0.0000 
 San Jose 0.0969 0.0422 0.0044 0.0914 0.7651 0.0000 
 Anaheim 0.4183 0.0000 0.0855 0.0200 0.0515 0.4248 
1 Los Angeles 0.9270 0.0282 0.0178 0.0266 0.0000 0.0005 
 Oakland 0.2842 0.6904 0.0000 0.0067 0.0186 0.0000 
 San Diego 0.1805 0.2409 0.5401 0.0243 0.0079 0.0064 
 San Francisco 0.0173 0.1304 0.0064 0.9708 0.1408 0.0344 
 San Jose 0.0827 0.0792 0.0027 0.0939 0.7374 0.0040 
 Anaheim 0.6091 0.0547 0.0330 0.0336 0.0186 0.2511 
12 Los Angeles 0.4123 0.0317 0.1998 0.3096 0.0147 0.0319 
 Oakland 0.2113 0.0904 0.3152 0.2749 0.0980 0.0102 
 San Diego 0.0939 0.0330 0.5526 0.2643 0.0555 0.0007 
 San Francisco 0.0623 0.0572 0.2654 0.0676 0.4615 0.0861 
 San Jose 0.2108 0.0628 0.1194 0.0999 0.4006 0.0664 
 Anaheim 0.2848 0.0487 0.3313 0.2830 0.0432 0.0089 

Note: Forecast error variance decompositions are based on observed innovations from the estimated error correction model. 
The entries sum to one in any row. The interpretation of any row is as follows: looking ahead at the horizon, given in the left-
hand-most column (0, 1, 12-period-ahead), the uncertainty in house prices of the cluster in variable column is attributed to 
variation in innovations arising in each cluster in each column heading.  
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Table 18 Statistics for Trace Test and Maximum Eigenvalue Test 

 
Trace Max Eigenvalue 

rank statistic p-value statistic p-value 

0 20.5892 0.7174 44.8178 0.8364 

1 14.9627 0.7523 24.2349 0.9374 

2 4.496 0.9978 9.2722 0.9889 

3 4.1824 14.2644 4.7762 0.8320 

4 0.5938 0.5987 0.5938 0.5987 

Note: based on p-values, the null hypothesis of rank=0 cannot be rejected by either trace 
or eigenvalue test.  
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Table 19 Schwarz Information Criterion and Hannan and Quinn’s Φ  on VAR Model in First Differences and ECM Model 

 
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 

Rank SIC Φ  SIC Φ  SIC Φ  SIC Φ  SIC Φ  

r=0 -94.2824 -94.3742 -60.0524 -60.2376 -60.1825 -60.4626 -94.5801* -94.9567* -59.4289 -59.9037 

r=1 -59.8731 -60.0583 -60.3530 -60.5382 -60.6799 -60.9600 -89.0565 -89.4331 -60.3077 -60.7825 

r=2 -60.1746 -60.2664 -59.9919 -60.0838 -60.3686 -60.6486 -61.0643 -61.4409 -61.1545 -61.6293 

r=3 -60.2984 -60.3902 -91.8459 -92.0311 -61.1949 -61.4750 -89.5318 -89.9084 -60.9447 -61.4195 

r=4 -60.5460 -60.6378 -60.0597 -60.2449 -61.9640 -62.2441 -62.0282 -62.4048 -88.9113 -89.3861 

Note: log( (5 1)(log )) / ,SIC k T T= Σ + +  and log( 2(5 1) log(log )) / .k T TΦ = Σ + +  Σ is the error covariance matrix estimated 
with 5k+1 regressors in each equation. T is the number of observations on each series. The symbol “| |” denotes the 
determinants operator and log is the natural logarithm. The asterisk (“*”) indicates minimum. 
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Table 20 Parameter Estimation of c and iΓ (i=1,…, 4) for the VAR(4) Model in First Differences (Equation 24) 

    1Γ   2Γ  

  c  P Inv DPI UC LTV  P Inv DPI UC LTV 
P  -0.0056  -0.2675 -0.0417 0.1460 -0.0133 -0.0692  0.0707 0.0086 0.4243 0.0058 -0.3035 

Inv  -0.0116  -0.2431 -0.1320 -0.1512 0.0144 2.5641  0.0701 -0.1472 -0.3650 -0.0061 0.4494 
DPI  0.0020  0.0100 0.0344 -0.3415 0.0034 -0.0030  -0.1013 -0.0052 0.0339 0.0031 0.0848 
UC  -0.0284  1.7067 0.3189 5.4613 -0.4950 -3.8404  -3.2651 0.9069 3.0805 0.0368 8.1705 

LTV  -0.0024  -0.0024 0.0151 -0.0086 -0.0004 -0.1149  0.0787 0.0149 -0.0991 0.0016 0.0946 

               
    3Γ   4Γ  

    P Inv DPI UC LTV  P Inv DPI UC LTV 
P    0.2233 0.0581 0.2651 0.0098 -0.0191  0.2911 0.1206 -0.7692 -0.0067 0.2318 

Inv    -0.0260 -0.0332 1.3452 -0.0178 -1.2384  -0.4085 0.1531 0.9514 -0.0018 -0.1771 
DPI    -0.1001 0.0015 0.1277 0.0044 0.2689  -0.0287 0.0174 -0.0066 0.0039 0.3546 
UC    -4.7185 2.0143 6.6380 -0.0464 -0.5456  1.9972 -0.8143 4.1447 -0.2246 -8.0833 

LTV    0.0591 0.0192 -0.0966 0.0018 -0.1306  0.0021 0.0196 -0.0975 0.0003 0.1061 

Note: HP, Inv, DPI, UC and LTV are house price, house inventory, disposable household income, user cost and loan-to-value, 
respectively.
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Table 21 Kendall’s Tau Concordance Matrix Estimated Based on the Residuals from the 

VAR(4)  Model in First Differences (Equation 24) 

 
P Inv DPI UC LTV 

P 0.9946 0.0580 0.0957 0.2551 0.1460 

Inv 
 

1.0000 0.0105 -0.0422 0.1326 

DPI 
  

1.0000 0.0825 0.1535 

UC 
   

1.0000 -0.0317 

LTV 
    

0.9996 

Note: HP, Inv, DPI, UC and LTV are house price, house inventory, disposable household 
income, user cost and loan-to-value, respectively. 
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Table 22 Summary of Statistics of Simulated and Historical Data for the Five Random 

Variables ( ,i tY∆  ) as Calculated in Equation 25 

  
HP Inv DPI UC LTV 

Simulated 

Mean 0.00904 0.01177 0.00432 0.49404 -0.00009 

StDev 0.03048 0.05949 0.00882 4.17988 0.01335 

CV 337.14260 505.47815 204.30024 846.06331 -15521.97574 

Min -0.06338 -0.13350 -0.02516 -7.41774 -0.04492 

Max 0.10287 0.15328 0.02464 36.24186 0.03138 

Historical 
Mean 0.00889 0.01179 0.00426 0.49519 -0.00009 

StDev 0.03060 0.05927 0.00884 4.39360 0.01337 

Note: HP, Inv, DPI, UC and LTV are house price, house inventory, disposable household 
income, user cost and loan-to-value, respectively. 
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Table 23 Comparison of the Simulated and Historical Distributions of the Five Random 

Variables 

 
Test Value Critical Value P-Value 

2 Sample Hotelling T2 Test 0.01 11.15 1.000 

Box's M Test 9.24 25.00 0.864 

Complete Homogeneity Test 9.60 31.41 0.975 

Note: Test confidence level is 95%. 
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Table 24 Some Quantile Values for Forecasted Median Housing Price, 2011:Q1 and 

2012:Q1 

 
Median Housing Price 

Quantile 2011:Q1 2012:Q1 

0.05 211779.61 206775.30 

0.15 215546.24 210453.00 

0.25 219312.86 214130.60 

0.50 228729.42 223324.80 

0.75 238145.98 232518.90 

0.85 241912.61 236196.50 

0.95 245679.23 239874.20 

Note: The observed median house price is $226,900 in 2011:Q1, which is very close to 
the median value (50th perentaile). The observed median house price is $225,750 in 
2012:Q1.
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Table 25 Metropolitan Areas with Three Price Patterns 

Group One     

Markets where house prices peaked in the late 1980s and had a trough in the 1990s: 

Atlanta, GA Dallas, TX Oakland, CA Raleigh-Durham, NC San Francisco, CA 

Austin, TX Jacksonville, FL Philadelphia, PA Richmond, VA San Jose, CA 

Baltimore, MD Los Angeles, CA Phoenix, AZ Sacramento, CA Seattle, WA 

Boston, MA New York, NY Portland, OR San Diego, CA  

     

Group Two     

Markets where house prices were high in the early 1980s and rebounded in the 2000s: 

Charlotte, NC Columbus, OH Indianapolis, IN Milwaukee, MN St. Louis, MO 

Chicago, IL Denver, CO Kansas City, KS Minneapolis, MN Tampa, FL 

Cincinnati, OH Detroit, MI Memphis, TN Orlando, FL  

Cleveland, OH Fort Lauderdale, FL Miami, FL Pittsburgh, PA  

     

Group Three     

Markets where house prices have declined since the early 1980s and never fully rebounded: 

Fort Worth, TX Houston, TX New Orleans, LA   
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Table 26 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts 

from DFM and LBVAR Models for Metropolitan Areas in the Group 1 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM 2.8260 3.2595 3.5125 3.1514 5.0514 5.2435 
LBVAR(0.1,0.5) 1.7984 2.2235 2.2015 2.1628 2.1711 2.1972 
LBVAR(0.1,1.0) 1.7446 2.1270 2.1276 2.1367 2.1472 2.1285 
LBVAR(0.1,2.0) 1.7143 2.0713 2.0850 2.1402 2.1793 2.1453 
LBVAR(0.2,0.5) 1.9388 2.4229 2.3830 2.2690 2.2667 2.3276 
LBVAR(0.2,1.0) 1.8842 2.2840 2.2491 2.1261 2.0958 2.1365 
LBVAR(0.2,2.0) 1.8545 2.1959 2.1750 2.0836 2.0569 2.0782 
LBVAR(0.3,0.5) 2.0394 2.6033 2.5543 2.4285 2.4654 2.5242 
LBVAR(0.3,1.0) 1.9990 2.4483 2.3916 2.2193 2.1900 2.2542 
LBVAR(0.3,2.0) 1.9907 2.3342 2.2954 2.0991 2.0428 2.0949 

Note: (1) For each month-ahead-forecast, the model with the smallest RMSE is denoted 
with red shadow. (2) Group one includes metropolitan areas with housing price that 
peaked in the late 1980s, fell to a trough in the 1990s, and rebounded by 2004. 
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Table 27 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts 

from DFM and LBVAR Models for Metropolitan Areas in the Group 2 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM 2.5377 2.8026 3.0240 3.1722 4.1099 4.6109 
LBVAR(0.1,0.5) 2.1604 2.4706 2.3861 2.2761 2.2680 2.1736 
LBVAR(0.1,1.0) 2.1314 2.3491 2.2580 2.2222 2.2149 2.1397 
LBVAR(0.1,2.0) 2.1254 2.2705 2.1795 2.1919 2.1846 2.1345 
LBVAR(0.2,0.5) 2.2238 2.5785 2.4787 2.2279 2.2203 2.1585 
LBVAR(0.2,1.0) 2.1792 2.4061 2.3044 2.1282 2.1552 2.1140 
LBVAR(0.2,2.0) 2.1669 2.2740 2.1672 2.0864 2.1419 2.1192 
LBVAR(0.3,0.5) 2.2922 2.7100 2.5892 2.2635 2.2682 2.2692 
LBVAR(0.3,1.0) 2.2445 2.5098 2.3921 2.1187 2.1515 2.1639 
LBVAR(0.3,2.0) 2.2315 2.3358 2.2223 2.0482 2.1152 2.1341 

Note: (1) For each month-ahead-forecast, the model with the smallest RMSE is denoted 
with red shadow. (2) Group two includes metropolitan areas with housing price that 
were high in the early 1980s and were high again by the end of 2004. 
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Table 28 Root Mean Square Errors (RMSEs) of 1- through 6-Quarter-Ahead Forecasts 

from DFM and LBVAR Models for Metropolitan Areas in the Group 3 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM 1.647588 2.288181 2.237336 2.010204 2.53924 3.176274 
LBVAR(0.1,0.5) 1.620543 1.536548 1.556344 1.641213 1.392705 1.388699 
LBVAR(0.1,1.0) 1.604821 1.492624 1.477015 1.499096 1.337302 1.3796 
LBVAR(0.1,2.0) 1.597208 1.462635 1.422795 1.408373 1.32015 1.39663 
LBVAR(0.2,0.5) 1.697171 1.644292 1.617239 1.658264 1.415927 1.30713 
LBVAR(0.2,1.0) 1.654114 1.572179 1.503271 1.536133 1.376871 1.315256 
LBVAR(0.2,2.0) 1.653304 1.506692 1.40308 1.4057 1.351962 1.380111 
LBVAR(0.3,0.5) 1.810195 1.799779 1.707888 1.653442 1.430466 1.297837 
LBVAR(0.3,1.0) 1.72393 1.67696 1.563224 1.546582 1.38678 1.286885 
LBVAR(0.3,2.0) 1.712892 1.593261 1.44394 1.426769 1.370468 1.357489 

 
1.597208 1.462635 1.40308 1.4057 1.32015 1.286885 

Note: (1) For each month-ahead-forecast, the model with the smallest RMSE is denoted 
with grey shadow. (2) Group three includes metropolitan areas with housing prices that 
declined since 1980 and did not fully recovered by the end of 2004. 
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Table 29 Results of Encompassing Test for Metropolitan Areas in the Group 1 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM 
  

X 
 

X 
 LBVAR(0.1,0.5) 

  
X X 

  LBVAR(0.1,1.0) 
  

X X 
  LBVAR(0.1,2.0) X, 1.7142 X, 2.0713 X, 2.0850 X X 

 LBVAR(0.2,0.5) 
  

X 
   LBVAR(0.2,1.0) 

  
X 

   LBVAR(0.2,2.0) X 
  

X, 2.0836 
 

X, 2.0782 
LBVAR(0.3,0.5) 

  
X X 

  LBVAR(0.3,1.0) 
   

X X 
 LBVAR(0.3,2.0) X X 

  
X, 2.0428 

 RMSE-weighted 1.8220 2.1614 2.2308 2.1205 2.1981 2.0782 
Rank-weighted 1.7496 2.0918 2.1397 2.0932 2.1031 2.0782 
Thick-modeling 1.8292 2.1692 2.2602 2.1237 2.4402 2.0782 

Note: (1)For each month-ahead-forecast, the models that are not encompassed by other 
models are marked with ‘X’; (2) the smallest RMSE from the 10 competing models is 
reported after ‘X’ in the convenience of comparing to the RMSEs from three 
encompassing tests; (3) the smallest RMSE among those from both individual and 
combined forecasts is denoted with grey shadow. (4) Group one includes metropolitan 
areas with housing price peaked in the late 1980s, fell to a trough in the 1990s, and 
rebounded by 2004. 
 

 

 

 

 



 

144 
 

 

Table 30 Results of Encompassing Test for Metropolitan Areas in the Group 2 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM 
 

X X X 
  LBVAR(0.1,0.5) 

   
X 

 
X 

LBVAR(0.1,1.0) X 
   

X 
 LBVAR(0.1,2.0) X, 2.1254 X, 2.2705 

  
X 

 LBVAR(0.2,0.5) 
 

X X 
 

X 
 LBVAR(0.2,1.0) 

    
X X, 2.1140 

LBVAR(0.2,2.0) 
  

X, 2.1672 
  

X 
LBVAR(0.3,0.5) 

 
X X 

   LBVAR(0.3,1.0) 
    

X 
 LBVAR(0.3,2.0) 

   
X, 2.0482 X, 2.1152 

 RMSE-weighted 2.1405 2.2816 2.1967 2.1994 2.1646 2.3914 
Rank-weighted 2.1364 2.3210 2.2633 2.1323 2.1588 2.2217 
Thick-modeling 2.1406 2.2821 2.1979 2.2730 2.1653 2.6941 

Note: (1)For each month-ahead-forecast, the models that are not encompassed by other 
models are marked with ‘X’; (2) the smallest RMSE from the 10 competing models is 
reported after ‘X’ in the convenience of comparing to the RMSEs from three 
encompassing tests; (3) the smallest RMSE among those from both individual and 
combined forecasts is denoted with grey shadow. (4) Group two includes metropolitan 
areas with housing price high in the early 1980s and high again by the end of 2004. 
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Table 31 Results of Encompassing Test for Metropolitan Areas in the Group 3 

 

1-Quarter-
Ahead 

2-Quarter-
Ahead 

3-Quarter-
Ahead 

4-Quarter-
Ahead 

5-Quarter-
Ahead 

6-Quarter-
Ahead 

DFM X X X X 
  LBVAR(0.1,0.5) X X X X X 

 LBVAR(0.1,1.0) X X X X X 
 LBVAR(0.1,2.0) X X, 1.4626 X X X, 1.3202 
 LBVAR(0.2,0.5) X X X X X X 

LBVAR(0.2,1.0) X X X X X X 
LBVAR(0.2,2.0) X X X, 1.4031 X, 1.4057 X 

 LBVAR(0.3,0.5) X X X X X X 
LBVAR(0.3,1.0) X X X X X X, 1.2869 
LBVAR(0.3,2.0) X X X X X 

 RMSE-weighted 1.5686 1.5529 1.4875 1.4577 1.3507 1.2912 
Rank-weighted 1.5514 1.5000 1.4411 1.4288 1.3321 1.2879 
Thick-modeling 1.5708 1.5652 1.4960 1.4571 1.3514 1.2913 

Note: (1)For each month-ahead-forecast, the models that are not encompassed by other 
models are marked with ‘X’; (2) the smallest RMSE from the 10 competing models is 
reported after ‘X’ in the convenience of comparing to the RMSEs from three 
encompassing tests; (3) the smallest RMSE among those from both individual and 
combined forecasts is denoted with grey shadow. (4) Group three includes metropolitan 
areas with housing prices declining since 1980 and not fully recovered at the end of 2004 
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