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ABSTRACT 

 

Fifteen peach [Prunus persica (L.) Batsch] horticultural and fruit quality traits 

were evaluated for two years at Fowler, CA and one year at College Station, TX to 

estimate heritability and phenotypic correlations. Seedlings from nine F1 families along 

with parents used in crosses, were budded onto ‘Nemaguard’ rootstocks for evaluation. 

An all random effects model (REML) was used to estimate variance components and a 

multivariate model was used to estimate phenotypic correlations between traits. 

High and moderate to high heritability was estimated for bloom date (h2 = 0.62) 

and fruit ground color (h2 = 0.50), while ripe date, fruit development period (FDP), fruit 

weight, red in the flesh, firmness, soluble solids, titratable acidity (TA), and pit weight 

showed low narrow sense heritability (h2 = 0.05-0.24). These traits with low narrow 

sense heritability had moderate to high broad sense (H2) heritability, indicating an 

important non-additive genetic component. Intermediate values of heritability (h2 = 0.38 

– 0.46) were found for pubescence, blush, fruit diameter, fruit tip, and fruit shape. 

Two major genes had effects on additive heritability. Nectarine had a direct 

effect on heritability of fruit pubescence, while pantao shape and nectarine had 

pleiotropic effects on fruit diameter, resulting in higher estimates for both of these traits. 

Several traits (fruit red blush, fruit weight, fruit diameter, fruit tip, fruit shape, and fruit 

ground color, red in the flesh, fruit firmness, and soluble solids) were strongly affected 

by genotype by environmental interaction. Most traits exhibited substantial variability, 

which should allow for genetic improvement. Ripening date was strongly correlated (r = 



 

iii 

 

0.94) with FDP, while bloom date was negatively correlated with FDP (r = -0.45) and 

fruit tip (r = -0.40). Ripening date and FDP were moderately correlated with fruit weight 

(r = 0.54, r = 0.50) and fruit diameter (r = 0.46, r = 0.45). Both measures of fruit size 

were strongly correlated (r = 0.77). Soluble solids was somewhat weakly correlated with 

ripening date and FDP (r = 0.32, r = 0.33). Pit weight was moderately correlated with 

FDP, fruit weight, and fruit diameter (r = 0.33, r = 0.51, r = 0.31, respectively). 
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CHAPTER I 

INTRODUCTION 

Peach, Prunus persica (L.), is a small to medium deciduous fruit-bearing tree 

ranging from 4 to 10 meters in height in nature, although it is typically maintained at two 

to three for commercial production. It is a member of the sub-family Prunoideae in the 

Rosaceae family and is closely related to plum (Prunus saliciana (Lindl.) and Prunus 

domestica (L.)), apricot (Prunus armeniaca (L.)), and almond (Prunus dulcis (Mill.)) 

(Bassi and Monet, 2008). Cultivation of the fleshy fruit, which is classified as a drupe, 

was first reported over 3,000 years ago in its native China (Huang et al., 2008). Peach is 

a self-fertile fruit species that has been described as having low genetic variability, as 

compared to other crops, considering it is essentially derived from a single species 

(Scorza and Okie, 1990). Many of the fresh market peach cultivars developed in the 

United States in the 20th century are derived from a few accessions that were introduced 

into North America from Europe in the 18th century and a single introduction from 

China known as ‘Chinese Cling’ or ‘Shanghai’ (Scorza et al., 1985; Warburton and 

Bliss, 1996; Faust and Timon, 1995; Okie et al.,, 2008). The genetic variability of peach 

and nectarine is highest in its center of origin in China as compared to the rest of the 

world (Li et al., 2008; Yoon et al., 2006). 

Development of new peach cultivars is possible by either outcrossing or 

inbreeding, as peach is self-compatible and tolerant of inbreeding. From a breeder’s 
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perspective, peach does have several inherent disadvantages: relatively modest genetic 

variation compared to interspecific hybrid crops such as cotton, banana, and strawberry, 

and a long generation time compared to annual crops. Despite these challenges, peach is 

the most dynamic species among tree fruits with respect to the appearance of new 

cultivars in the market (Byrne, 2005; Fideghelli et al., 1998). Peach can be considered as 

a model genome because it is a diploid (2n=16) and has a small genome, which is 

approximately twice the size of the Arabidopsis genome (Abbott et al., 2002). Peaches 

are self-fertile, have little to no cross incompatibility either within or among related 

species, have relatively large flowers with accessible sexual organs, are precocious 

bearers compared to other perennial crops, and scion-types are clonally propagated. 

Within the US, peach is the third most important tree fruit crop in terms of value ($723 

million) and production with a total of 1,310,982 metric tons produced in 2010. World-

wide, about twenty million metric tons of peaches are produced ranking fourth after 

grapes, apples, and pears in production (FAO STAT, 2010). The fruit are eaten fresh, but 

can also be frozen, canned, or dehydrated for storage and are processed for use in an 

array of products, ranging from confectionaries and flavorings to cosmetics. 

The Texas A&M Stone Fruit Breeding Program focuses on both applied plant 

breeding and research studies related to the breeding and cultivation of the crop. The 

primary breeding target is the development of early-ripening, fresh market peaches and 

nectarines that require relatively low winter chilling. The ultimate goal of the applied 

program is the release of new commercial cultivars. The research part of the program 

focuses primarily on new technology and a better understanding of the crop’s genetics 
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and diversity, which in turn is used to make the breeding program more efficient. 

Unfortunately, peach, like most fruit, often suffers from lack of quality and consistency. 

In fact, over past decade, peach and nectarine per capita consumption has been static, if 

not slightly decreased in the US (Anon., 2004). The most common consumer complaint 

for peaches was over the need for improved flavor and texture (Bruhn et al., 1991; 

Crisosto and Crisosto, 2005; Byrne, 2005). Recently, much of the focus for development 

of new peach and nectarine cultivars has been on better fruit quality, post-harvest 

quality, and novel traits (Byrne, 2005). 

  

The objectives of this research were to determine: 

1) Variance components of several horticultural and fruit quality traits including 

date of full bloom, date of ripening, fruit development period (FDP), fruit crop, 

fruit pubescence, fruit red blush, fruit weight, fruit diameter, fruit tip, fruit shape, 

split pits, fruit ground color, red in flesh, red around pit, fruit firmness, soluble 

solids, titratable acidity (TA) and pit weight. 

2) Estimates of heritability in the narrow sense (h2) and broad sense (H2) for the 

above mentioned traits. 

3) Genetic and phenotypic correlations among horticultural and fruit quality traits. 
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CHAPTER II 

HERITABILITY AND PHENOTYPIC CORRELATIONS 

RELATING TO SEVERAL TREE AND FRUIT QUALITY TRAITS 

IN PEACH 

2.1 Synopsis 

Nine peach [Prunus persica (L.) Batsch] horticultural and fruit quality traits were 

evaluated for two years at Fowler, CA and one year at College Station, TX to estimate 

heritability and phenotypic correlations. Seedlings from nine F1 families along with 

parents used in crosses were budded onto ‘Nemaguard’ rootstocks for evaluation. An all 

random effects model (REML) was used to estimate variance components and a 

multivariate model was used to estimate phenotypic correlations between traits. Bloom 

date was highly heritable (h2 = 0.62), while ripening date, fruit development period 

(FDP), and fruit weight showed low narrow sense heritability (h2 <0.20). These traits 

with low narrow sense heritability had moderate to high broad sense (H2) heritability, 

indicating an important non additive genetic component. Intermediate values of 

heritability (h2 = 0.38 – 0.46) were found for pubescence, blush, fruit diameter, fruit tip, 

and fruit shape. Two major genes had effects on additive heritability. Nectarine had a 

direct effect on heritability of fruit pubescence, while pantao shape and nectarine had 

pleiotropic effects on fruit diameter, resulting in higher estimates for both of these traits. 

Several traits (fruit red blush, fruit weight, fruit diameter, fruit tip, and fruit shape) were 

highly influenced by genotype by environment effects. All traits exhibited substantial 
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variability, which should allow for genetic improvement. Ripening date was strongly 

correlated (r = 0.94) with FDP, while bloom date was negatively correlated with FDP (r 

= -0.45) and fruit tip (r = -0.40). Ripening date and FDP were moderately correlated with 

fruit weight (r = 0.54, r = 0.50) and fruit diameter (r = 0.46, r = 0.45). Both measures of 

fruit size were strongly correlated (r = 0.77). 

 

2.2 Introduction 

The objectives of this research were to determine: 

1) Variance components of several horticultural and fruit quality traits including 

date of full bloom, date of ripening, fruit development period (FDP), fruit crop yield, 

fruit pubescence, fruit red blush, fruit weight, fruit diameter, fruit tip, fruit shape, and 

split pits. 

2) Estimates of heritability in the narrow sense (h2) and broad sense (H2) for the 

above mentioned traits. 

3) Genetic and phenotypic correlations among horticultural and fruit quality traits. 

 

2.2.1 Review of literature relating to horticultural and fruit quality traits in peach 

Date of full bloom, typically recorded when 60% to 80% of flowers are open, is a 

reliable estimate of chilling (de Souza, 1996), and is controlled by both chilling 

requirement and heat unit accumulation (Rodriguez and Sherman, 1985). In peach, 

bloom time was reported to show a significant year effect (Cantin et al., 2009). 
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Heritability estimates range from moderate (h2 = 0.39) (Hansche et al., 1972) to high (h2 

= 0.78; 0.90) (de Souza et al., 1998b; Monet and Bastard, 1982), suggesting qualitative 

gene action with potential for rapid genetic improvement (de Souza et al., 1998b). 

Phenotypically, bloom time was reported to have a weak negative correlation (r = -0.24) 

with fruit shape (Fruit length: average fruit diameter ratio), as fruit shape was found to 

be less desirable among later blooming genotypes. The genetic correlation was much 

stronger for these traits (r = -0.41) (de Souza et al., 1998b). 

Date of ripening is affected by fruit crop load, cultural practices, weather 

conditions such as temperature, and genetics (Blake, 1930), and has been a focus of 

many breeding programs, particularly in the interest of developing earlier ripening 

varieties (Byrne, 2005). Estimates of heritability for date of ripening have ranged from 

high to very high (h2 = 0.79 - 0.94) (Hansche., 1986; Hansche et al., 1972; de Souza et 

al., 1998b) supporting evidence of qualitative gene(s) as has been previously suggested 

(Hesse, 1975; Vileila-Morales et al., 1981). Date of ripening had a strong positive 

correlation with fruit development period (FDP) (r = 0.91), a moderately strong negative 

correlation with percent blush (r = -0.57), and moderately weak correlations with soluble 

solids (r = 0.41) and titratable acidity (r = 0.32) (de Souza et al., 1998b).  

 Fruit development period (FDP) has been defined as the interval between date of 

bloom and date of harvest (Blake, 1930), and like date of ripening, is influenced by both 

genetic and non-genetic factors (Weinberger, 1948). FDP appears to be more heavily 

influenced by date of ripening than date of bloom (Boonprakob et al., 1992; de Souza et 

al., 1998b; Weinberger, 1948) as earlier blooming does not necessarily result in a longer 
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development period. FDP was estimated to be highly heritable (h2 = 0.73 - 0.98) (de 

Souza et al., 1998b; Monet and Bastard, 1982; Vileila-Morales et al., 1981). Fruit 

development period has a moderately weak correlation with titratable acidity (r = 0.37) 

and a strong correlation with the date of ripening (r = 0.91). The weak phenotypic 

correlation (r = 0.06) between FDP and fruit shape (length: average fruit diameter ratio) 

was much stronger as an estimate of only genetic correlation (r = -0.46). FDP was 

moderately correlated (r = 0.40) with soluble solids (de Souza et al., 1998b). 

 Fruit set is highly influenced by the environment, and environmental effects that 

can reduce fruit set include severe freezes during dormancy, late freezes during and 

following bloom, lack of chilling, warm winter temperatures, and high temperature and 

water stress during floral bud initiation. Ability for high fruit set following freeze  events 

at or after the onset of bloom appears to be quantitatively inherited (Hesse, 1975), and is 

related to an adequate amount of flower bud survival resulting in high bud set in 

unfavorable environments (de Souza et al., 1998a). Yield is also highly influenced by the 

environment to which a crop is subjected, both during the fruiting season as well as the 

one prior (Jimenez and Diaz, 2002). Fruit set was estimated to have low to moderate 

heritability (h2 = 0.09 - 0.53), suggesting possible potential for rapid genetic 

improvement (Perez, 1992; Rodriguez and Sherman, 1986; Jimenez and Diaz, 2002).  

High percentage of red blush coverage on fruit surface is desirable for fresh 

market sale of peaches and nectarines in the U.S. (Beckman et al., 2005; Hesse, 1975), 

and is affected by temperature, exposure to light, and other environmental factors 

(Corelli-Grappadelli and Coston, 1991; de Souza, 1996). The amount of coverage and 
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intensity of red blush results from the expression of anthocyanins on the fruit skin 

(Layne et al., 2001) and has been evaluated either by using a subjective scale (Sherman 

et al., 1984) or based on the percent coverage of red on the fruit exterior (Byrne and 

Bacon, 1991). Red blush on peach has long been reported to be under polygenic control 

with heritability estimates ranging from moderate (h2 = 0.41) to high (h2 = 0.68) (Blake, 

1932; Blake, 1940; Hansche, 1986; Weinberger, 1944; Hansche and Beres, 1980; de 

Souza et al., 1998b). Blush has shown a moderately strong negative correlation with 

time of ripening (r = -0.57) and fruit development period (r = -0.55), and a moderately 

weak negative correlation with soluble solids (r = -0.30) (de Souza et al., 1998b). In 

addition to these two recessive genes is a gene conditioning 100% blush (Beckman and 

Sherman, 2003), and another referred to as “high-lighter” that can suppress all red blush 

on fruit surface (Beckman et al., 2005). A major Quantitative Trait Loci (QTL) which 

explains 72% of the variation in blush has also been reported (Frett, 2012). Nectarines in 

some populations appear to have a higher percentage of red blush and darker shades of 

red than their peach siblings (Hesse, 1975; Wen, et al., 1995a; 1995b). 

Fruit size is an important characteristic for the development of new varieties of 

peach and is influenced by environmental factors such as temperature as well as cultural 

practices including thinning and irrigation (Scorzal et al., 1991). Fruit size in fruits is a 

function of both cell number and cell size (Westwood et al., 1967), and can be measured 

as both fruit weight and fruit diameter (de Souza, 1996). Fruit size in peach appears to be 

quantitatively inherited, and has historically been believed to exhibit dominance for 

smaller size fruit (Hesse, 1975), although this has also been suggested to be an illusion 
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resulting from multiplicative action among traits controlling fruit size and mass 

(Hansche et al., 1972). Like sugar content, fruit size is highly influenced by many 

environmental factors (Marini and Sowers, 1994). Heritability for fruit size measured 

either by suture diameter or fruit mass has been estimated as being low (h2 = 0.26 -0.29) 

to moderate (h2 = 0.32 – 0.60), (Hansche and Beres, 1980; de Souza et al., 1998b; 

Hansche, 1986; Monet and Bastard, 1982; Hansche et al., 1972). Fruit size (suture 

diameter and fruit mass) is reported to be moderately correlated with fruit shape (r = 

0.43 and 0.38 respectively) (de Souza et al., 1998b). Another study of segregating 

progeny found weak negative correlations for fruit mass and titratable acidity (r = -0.27) 

(Wu et al., 2003). Nectarine and pantao fruit consistently exhibited lower fruit size and 

mass compared to peach based on studies involving multiple crosses (Wang, 2009; Wu 

et al., 2003b) and another based on two peach cultivars and their respective nectarine 

mutants (Wen et at.,  1995b). 

Fruit shape is primarily a function of the prominence of the distil tip of the fruit 

as well as suture prominence. Fruit shape is influenced by chilling accumulation and 

temperature during fruit development, particularly during the early stages (de Souza et 

al., 1998b; Topp and Sherman, 1989b), and has traditionally been evaluated using a 

subjective scale (Rodriguez et al., 1986; Sherman et al., 1984; de Souza et al., 1998b). 

Fruit shape was estimated to be moderately heritable (h2 = 0.43) (de Souza et al., 1998b). 

Genetically, fruit shape was reported to have a moderately strong correlation with fruit 

size (cheek diameter) (r = 0.49). (de Souza et al., 1998b). The “Pantao” fruit shape is 

conditioned by a single gene, showing complete dominance for saucer-shape fruit over 
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round fruit, although the genotypes homozygous for “Pantao” appears to be lethal 

(Hesse, 1975). Pantao fruits also appear to have higher soluble solids, but lower 

titratable acidity, flesh firmness, and weight based on segregating progeny (Wang, 

2009). 

 

2.2.2 Variance component and heritability 

Overall peach fruit quality is a complex trait that is affected by genetics, the 

environment, environmental interaction with genetics, and cultural practices (Byrne, 

2005; Crisosto et al., 1997). When selecting for superior cultivars, it is important to 

better understand all forces that contribute to the phenotype of the plant, as well as how 

they interact. Elementary Yield, fruit size, tree productivity, and other traits are reported 

to be under polygenic control. At present, many of these traits appear to have low 

heritability (Sansavini et al., 2006), which might be overcome by increasing variability 

through introgression of new material with greater relative variability for a particular 

trait.  

An understanding of genetic parameters including variances, heritability, and 

relationships among traits can be very useful when attempting to make predictions of 

genetic progress over generations, particularly when selection of parents is based on 

their own performance (Falconer, 1989). One of the most important genetic concepts 

dealing with breeding is heritability, which partitions the genetic contribution to a plant’s 

phenotype from environmental effects. This will be a focus of this study.  
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Estimates of heritability can be used for predicting genetic progress for progeny 

when selection of parents is based on based on their own performance (de Souza et al., 

1998a). Some traits appear to be highly heritable, so that they can be reliably and 

accurately measured, such that expression of such traits is not heavily influenced by 

differential interaction effects with the environment, while others have low heritability 

(Moing et al., 2003). Examples of highly heritable fruit quality traits in peach are: the 

percentage of skin red blush (h2 = 0.68) (de Souza et al., 2000), the date of ripening 

(h2=0.94) and fruit development period (FDP) (h2 = 0.91) (de Souza et al., 1998b). Most 

studies on quantitative traits in peach have focused mainly on narrow-sense heritability 

(de Souza et al., 1998a) which considers only additive genetic variation and is most 

valuable to the breeder for making gains through selection. While these and other 

previously conducted studies have reported heritability and combining abilities in the 

case of tree fruit crops, most have consisted of progenies being evaluated on their own 

roots in the same location for multiple years. 

Although earlier studies have arrived at heritability estimates by interpreting the 

genetic variance of a given progeny based on the covariance among relatives , recent 

studies have focused on estimating heritability on a progeny-mean basis expressed as the 

proportion of genetic (VG or VA) variance among a progeny to that of the phenotypic 

variance (VP) (Bernardo, 2010). Linear regression of offspring performance on mid-

parent performance has also been a useful method (Falconer, 1989), but is only an 

accurate estimate when the inbreeding coefficient is equal to zero (Fernandez and Miller, 

1985). Although other methods of analysis based on variance components have been 
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used, most require robust experimental designs with reciprocal crossing and replications-

all of which have limited feasibility in tree crops (de Souza, 1996). 

Random effects models such as restricted maximum likelihood (REML) were 

developed and first used by animal geneticists (Searle, 1971; Henderson, 1983), and later 

by plant breeders (Vileila-Morales et al., 1981; McCutchan et al., 1985; Huber, 1994; 

Tancred et al., 1995). Studies by Vileila-Morales et al. (1981) and de Souza et al., (1998) 

have thus far been the only examples of using such a model for analyzing variance 

components in peach. In addition to providing generalized least squares estimation of 

fixed effects, providing flexibility in model specification for univariate and multivariate 

forms and correlated residual terms (Henderson, 1974; Huber, 1994), REML has 

critically proven to provide robust analysis with the use of unbalanced and non-normal 

data (Banks et al., 1985; Westfall, 1987).  

 

2.2.3 Phenotypic correlations 

Phenotypic correlation is determined from raw phenotypic values between two 

traits and accounts for both genetic and environmental correlations. Phenotypic 

correlations are mostly a function of environmental correlation when there is low 

heritability for a given trait (Falconer, 1989). Genetic correlations are primarily due to 

pleiotropy, but with low recombination, are also often the result of linkage. Genetic 

correlations are more useful when the heritability of the two measured traits is high (de 

Souza, 1996). Correlations between traits can be especially useful in plant breeding 

where indirect selection may be applied for a trait. For instance, selecting on a correlated 
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trait that is more easily measured than another highly correlated trait, assuming both 

traits have moderate to high heritability (Bernardo, 2010). Most correlations studies for 

peach and other fruit crops in the past have traditionally reported only on phenotypic 

correlations. It is important to keep in mind that the implication of phenotypic 

correlation in a breeding program is limited by the fact that both genetic and 

environmental correlations are included (de Souza et al., 1996). The same methods for 

estimating variance components such as mixed models can also be applied to calculate 

both phenotypic and genetic correlations, but parent-progeny models may also be used 

(Falconer, 1989).  Typically, a bivariate analysis is used to compute correlations, and is 

carried out two traits at a time (Henderson, 1983). 

 

2.3 Materials and methods 

2.3.1 Plant material 

Three hundred and ninety-six seedlings were randomly selected from nine F1 

families (Tables 1 and 2) created by crossing high sugar selections from the USDA Stone 

Fruit Breeding Program in Parlier, CA  and medium to low chill selections from the 

Texas A&M University breeding program. The number of seedlings in each family 

ranged from 8 to 90. Parents used for crosses (Table 1) have shown to vary in the 

concentration of solids, ranging from 10.7 to 13.0 °Brix, and in chill requirement from 

approximately 150 to 650 chilling units. Other traits segregating in these progenies 

include fruit type (peach versus nectarine, round versus flat shape), fruit shape 

(prominence of tip and suture), fruit color (flesh and skin), fruit size, bloom date, ripe  
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Table 1.  Parents and characteristics of peaches used in this study. 

Genotype Fruit type Date of full 
bloom 

Date of 
ripening 

Fruit red 
blush 

Fruit 
weight 

Fruit 
diameter 

Soluble 
solids 

Titratable 
acidity 

Notes 

Y426-371 Ne-Yel Feb 18 May 28 90 79.3 54.5 12.9 0.41  

Y434-40 Ne-Yel Feb 6 May 16 70-90 75.6 54.5 12.7 0.44  

Y435-246 Ne-Yel Feb 22 Jun 12 20-50 63.1 50.3 12.5 0.34  

Galaxy Pc-Wh Feb 19 Jun 12 40-70 140.9 76.9 12.6 0.24 PantaoY 

Victor Pc-Yel Feb 11 May 18 50-70 115.9 64.1 10.7 0.87  

TX2B136 Pc-Yel Feb 5 Jun 2 60-80 119.8 63.4 11.0 1.29  

TX3E213LW Pc-Wh Feb 20 Jun 7 70-80 118.2 62.3 13.0 0.33  

TXW1490-1 Pc-Yel Feb 5 Jun 8 30-40 107.6 61.9 12.2 1.0  

YPantao is heterozygous for round shape, homozygous pantao types do not survive 

Date of full bloom and date of ripening expressed in days; fruit red blush visually based on % coverage of red blush on skin; fruit weight in 
grams; fruit diameter in millimeters; soluble solids in °Brix; titratable acidity in Eq H+/1000 mL of juice 
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Table 2. Peach crosses and number of progeny evaluated. 

Female Male Progeny 

1 TX2B136 Y434-40 71 

2 TX2B136 Y435-246 30 

3 ‘Victor’ Y426-371 90 

4 ‘Victor’ Y435-246 36 

5 ‘Victor’ ‘Galaxy’ 36 

6 TX2B136 ‘Galaxy’ 50 

7 TX3E213LW Y434-40 50 

8 TXW1490-1 Y434-40 25 

9 TXW1490-1 Y435-246 8 
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date, productivity, and fruit development period.  

Scion wood was collected from the parents and the original seedlings from 

breeding plots in College Station, TX and Floresville, TX. These were budded onto 

'Nemaguard' peach rootstocks in the two evaluation plots in College Station, TX and 

Fowler, CA. Each site included one replicate of each seedling and three to four replicates 

of each parent. 

 

2.3.2 Plot establishment and design 

 At the College Station site, one replicate of the propagated seedlings were 

randomized with four replicates of each parent in a randomized block design. At the 

Fowler site, plants were grouped according to progeny with the three to four replicates of 

each parent. In both cases, experimental blocks had border trees at the ends of each row 

and border rows immediately adjacent to the outer two rows. Parental genotypes were 

replicated to gain a better assessment of the phenotypic variance attributed to 

environmental effects.  

Trees in the College Station plot were planted in staggered double-rows, with 

trees spaced 1.7 meters apart in double rows (0.67 meters apart). There were five meters 

between each group of double row (Figure 1). All trees were trained as a central leader.  

Trees in the Fowler plot were trained as a two-scaffold 'Y' system and spaced 
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Figure 1. Planting scheme for College Station, TX site. 
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approximately one meter apart in single rows, approximately 4 meters apart. At each 

location, irrigation, fertilization, pest and weed control, pruning, and fruit thinning were 

carried out according to typical commercial practice. 

Progenies and parents were evaluated at the two locations over two years (Table 

3). Fowler, near Fresno, CA, is located in the center of the stone fruit producing San 

Joaquin Valley in central California and is ideal for peach production with a semi-arid 

Mediterranean climate. It has long, hot, dry summers and mild, wet winters. Fresno 

receives an average 284 mm rainfall per year, with temperatures ranging from 3.56°C 

(min. ave. Jan. temp) to 35.89°C (max. ave. July temp.). Fowler receives on average 

80% of the total possible sunlight each year (Weather Underground, 2011). Situated in 

the middle of the Central Valley, the Fresno area has, for the most part, deep, alluvial 

sandy-loam soils with coarse texture and good internal drainage. 

College Station is located in East Central Texas where stone fruit production in 

terms of acreage is comparatively small due to marginal soil and climate. The climate is 

described as sub-humid and warm temperate with mild winters and warm to hot, humid 

summers. College Station receives an average of 1000 mm rain per year, with 

temperatures ranging from 4.4°C (Min. Ave. Jan. Temp.) to 35.6°C (Max. Ave. July 

Temp.). College Station receives 27% less sunlight in a given year than does Fresno, 

except during the winter and early spring (Weather Underground, 2011). The College 

Station area is geographically nearly flat to slightly rolling hills, with the typical topsoil 

type a shallow moderately coarse sandy-loam to loamy sand with good internal drainage.  
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Table 3. A comparison of geography and climate between two sites. 

 College Station, TX Fresno, CA 

Location 30°36'5'' N, 96°18’52'' W 36°44'52'' N, 119°46'21'' W 

Average Elevation 112 m 90 m 

Average Annual Rainfall 1000 mm 284 mm 

Min. Ave. January Temperature 4.4°C 3.56°C 

Max. Ave July Temperature 35.6°C 35.89°C 

Ave. sunlight hours received  2578 3550 

Climate  Sub-humid/warm temperate Semi-arid/Mediterranean 

Soil Clay-pan Alluvial sandy-loam 

Data based on historical soil survey (USDA) and historical climate records (Weather Underground, 2011). 
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The region is also plagued with heavy clay subsoil with very poor structure and very 

limited internal drainage and aeration. The College Station site is plagued with poor 

quality water for irrigation, with high alkalinity and sodium levels. Compared to Fresno, 

College Station is much more likely to experience late damaging spring freezes, extreme 

temperature swings, and inconsistent rainfall (drought or flooding). Less and sporadic 

amounts of chilling received from year to year as well as warm temperatures during fruit 

development can also be major problems. The College Station site has higher humidity 

(favoring disease), warmer night temperatures, and lower sunlight during fruit 

development period: these collectively often result in relatively smaller fruit size, color, 

and soluble solids compared to the San Joaquin Valley. This overall makes College 

Station much less suitable for stone fruit production, which could allow it to be 

considered a stress environment. 

 

2.3.3 Data collection 

At both locations, data was recorded on 11 tree and peach fruit quality traits 

(Table 4).  Data was collected for two years from the California plot (2011 and 2012) 

and one year from the Texas plot (2012) (Table 5). A severe drought and slow plant 

establishment resulted in no data being collected in Texas in 2011. Collection of data at 

the Texas site was conducted by the Texas A&M Stone Fruit Breeding Program. 

However, at the California site, the bloom data and fruit samples along with maturity 

data were collected by the staff of The Burchell Nursery where the block was planted. 

Pictures of each five fruit sample were taken of the exterior of the fruit from four  
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Table 4. Evaluation parameters of eleven peach tree and fruit quality traits. 

Trait: Parameter: Units: 
Date of full bloom When 60-80% flowers open Julian Days 

Date of ripening Determined by arrival of a few soft/edible fruit, remainder tree-ripe Julian Days 

Fruit development period (FDP) Difference between date of full bloom and date of ripening Days 

Fruit crop After normal thinning 0-9 scale  

Fruit pubescence Scored using 0-9 scale  

Fruit red blush Visually based on % coverage of red blush on skin using 0-5 scale  

Fruit weight Average of five fruit Grams 

Fruit diameter Across the cheek in mm, average of five fruit Millimeters 

Fruit tip Visually assessed using 0-9 scale  

Fruit shape Visually assessed using 0-9 scale (suture & tip)  

Split pits Presence of fruit with pits split to the exterior (0-1)  
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positions: top, cheek (one side), suture, and tip. Pictures were also taken by the Texas 

A&M Stone Fruit Breeding Program and Fruit Dynamics, Inc. following a combination 

of transverse and equatorial bisecting cuts revealing the interior of both remaining halves 

from each of the five cut fruit. Pictures were taken as possible of every entry at both 

locations. 

 

2.3.4 Field evaluations 

Full bloom date was visually assessed in the field and recorded when 

approximately 60% to 80% of the flowers had opened on each tree. Ripening date or 

maturity date was determined by the presence of a few fruit that were soft and able to be 

eaten off the tree, at which point a sample of five fruit were collected for further 

evaluation of other traits. Fruit were visually inspected in the field for maturity two times 

per week. Both full bloom date and maturity date were later converted to Julian days. 

Fruit development period (FDP) was calculated by subtracting the number of Julian days 

for full bloom date from that of maturity date. 

Prior to harvest, a crop or productivity rating was assigned to each tree relative to 

typical commercial crop load. Because of the practice of normal fruit thinning, values 

lower than that of normal would suggest low flower set or abortion of young fruit. This 

information could also be used in contrast to fruit size, fruit diameter, and fruit soluble 

solids which have all reportedly been negatively correlated with crop load. The presence 

of split pits was originally measured by calculating the percentage of fruit with visible 

splitting based on a twenty fruit sample. This data was later converted to a binary scale 
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to simply indicate if a tree produced fruit in which splitting was observed. 

 

2.3.5 Laboratory evaluations 

Following harvest, the samples of five fruit were placed in plastic zip-lock bags 

at Fowler and paper bags at College Station, and placed in cold storage at 1°-4° C. for 

later evaluation. A five fruit sample was used for evaluation of all qualitative traits 

visually assessed. If expression for such traits was not uniform among all fruit in a given 

sample, an average or approximation was recorded. This evaluation took place either 

inside the TAMU Stone Fruit Breeding Lab or inside the Burchell Nursery building at 

Fowler under normal fluorescent lighting. 

Fruit pubescence was visually evaluated on a 0-9 scale with 0 indicating an 

absence of fuzz and 9 as extremely fuzzy. Most modern commercial varieties were 

placed in the 3-5 range. Fruit red blush was characterized by the amount of red 

pigmentation on the outside of the fruit. Visual ratings were assigned based on 

observation of five fruit using the following scale: 0 = <1% blush, 1 = 1% to 20% blush, 

2 = 21% to 50% blush, 3 = 51% to 80% blush, 4 = 81% to 99% blush, 5 = 100% blush.  

 Fruit tip was subjectively evaluated on a 0-9 scale based on the prominence of 

the tip at the distal end of the fruit in which a lower number rating would indicate a more 

prominent tip, while a higher number would indicate a less prominent or more oblate tip. 

Fruit shape was also subjectively evaluated using a 0-9 scale in which a higher number 

rating would indicate a more desirable fruit shape with a less prominent suture bulge and 

oblate tip. 
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Fruit mass (grams) is the average weight of a five fruit sample. Weight 

measurements from the Fowler location were taken by the staff at Fruit Dynamics lab 

(2665 N. Air Fresno Dr. Fresno, CA 93727). Fruit diameter was determined by 

measuring across the fruit cheek using a standard caliper based on the average of five 

fruit and was reported in millimeters.  

 

2.3.6 Statistical analysis 

All statistical analyses were performed using JMP software, Version 9.0, SAS 

Institute Inc., Cary, NC, 1989 – 2010. 

Prior to statistical analyses, data were tested for normality using a Shapiro-

Wilcox test. Data from all traits proved to be non-normally distributed. An array of 

transformations were performed and tested for normality, all of which resulted in the 

assumption of normality not being met. In addition to testing the effectiveness of each 

transformation with regard to normality, the model for variance components was also 

run using the data resulting from each transformation. Output from the analysis model 

(below) was compared to that of the non-transformed data by evaluating the R2 value 

and the genotypic variance component value. In every case, these values were smaller 

than that of the non-transformed data. Therefore the non-transformed data were used 

throughout this study. 

The additive genetic (σ2
a), non-additive genetic (σ2

di), environmental (σ2
e), and 

genotype x environment (σ2
gxe) variances were estimated using a restricted maximum 

likelihood (REML) mixed model with all random effects. The variances are reported 
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from the covariance parameter estimate report in JMP. There were three sets of data: 

Fowler, 2011; Fowler, 2012; College Station, 2012.  Year 2012 was found to have 

differing effects in the CA and TX different locations, so year and location were treated 

as single environments including: CA-2011, CA-2012, and TX-2012. Parentage (male 

and female) was also taken into account for all progenies. 

Because there was no replication included in the model (only the parents were 

replicated), there was no residual and all variance was partitioned into one of the 

following components: σ2
a (additive genetic); σ2

di (non-additive genetic); (σ2
e) 

environmental; σ2
gxe (genotype x environment). 

 

Broad sense heritability estimates were calculated as: 
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Where, 

 2ˆ Aσ  = estimated additive genetic variance 

2ˆGσ = estimated genetic variance 
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 2ˆGEσ = estimated genotype x environment variance 

 e = number of environments 

A bivariate model was used to estimate phenotypic correlations. Correlations 

were computed on a pair-wise basis for all traits. Significance of correlation estimates 

were discussed based on the magnitude of the estimate because the sampling variances 

for the correlation estimates were not available (de Souza et al., 1998a). Thus, 

correlation estimate of ≥0.65 was considered strong to very strong; a correlation estimate 

between 0.50 and 0.64 was considered moderately strong; a correlation estimate between 

0.30 and 0.49 were considered moderately weak.  
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Table 5. Number of observations used in variance component and heritability estimates for 
eleven peach tree and fruit quality traits evaluated for two years at Fowler, CA and for one year 
at College Station, TX. 

Trait Number of observations 

Date of full bloom 726 

Date of ripening 805 

Fruit development period 715 

Fruit crop 639 

Fruit pubescence 721 

Fruit red blush 715 

Fruit weight 675 

Fruit diameter 679 

Fruit tip 711 

Fruit shape 716 

Split pits 502 
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2.4 Results and discussion 

2.4.1 Variance component and heritability 

A substantial amount of variability was associated with date of full bloom as 

indicated by the range (29 to 70 days) with a mean of 46.17 among progeny (Table 6). 

This was not unexpected as date of full bloom of parents used for crosses ranged from 

January 20 to March 1 (20 to 61 Julian Days) (Table 7) and by the fact that this trait is 

believed to be qualitative (de Souza et al., 1998b). Bloom, however appeared to have 

considerably less variability compared to date of ripening and fruit development period 

(FDP). Bloom date was strongly affected by the environment (Table 8), as trees bloomed 

approximately nine  and  seven days earlier on average at Fowler in 2011 and 2012, 

respectively, than at College Station in 2012 (Table 9). Although the average bloom date 

at College Station in 2012 was later than at Fowler for both years, both the range and 

standard deviation observed for this environment (Table 9) suggests that lack of chilling 

might have contributed to this difference. While low chill genotypes bloomed early, 

bloom of higher chill genotypes was delayed by insufficient chilling, which resulted in a 

higher mean bloom date at College Station in 2012. The College Station site received 

considerably less chilling in 2012 (530 chilling units) than did the Fowler site in 2011 

and 2012 (909 and 978 chilling units respectively). Date of full bloom was found to 

highly heritable, due to a high level  of additive inheritance (h2 = 0.62 (Table 8).This was 

intermediate between estimates previously reported (h2 = 0.39, 0.78, 0.90) (Hansche et 

al., 1972; de Souza et al., 1998b; Monet and Bastard, 1982). The appreciable genetic   
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Table 6. Descriptive statistics of nine peach tree and fruit quality traits evaluated for nine progeny for two years at Fowler, CA and one for year at 
College Station, TX. 

Traitw N Mean Phenotypic 
Variance 

Standard 
Deviation 

C.V. Min Max 

Date of full bloom 726 46.2 52.72 6.88 14.90 29.0 70.0 

Date of ripening 805 145.5 464.8 19.67 13.52 101.0 204.0 

FDP 715 98.4 555.62 21.86 22.21 50.0 159.0 

Fruit pubescence 721 3.5 3.43 1.82 52.30 0.0 7.0 

Fruit red blush 715 3.0 0.69 0.77 25.93 1.0 5.0 

Fruit weight 675 102.5 1201.96 32.06 31.27 12.0 250.0 

Fruit diameter 679 58.4 58.08 6.63 11.36 36.3 87.6 

Fruit tip 711 7.7 0.79 0.81 10.51 5.0 9.0 

Fruit shape 716 7.3 0.57 0.71 9.75 5.0 9.0 

N = Number of observations; C.V. = coefficient of variation; Min = minimum value; Max = maximum value. 
wDate of full bloom and date of ripening expressed in Julian Days; FDP = fruit development in days; fruit pubescence visually based 
on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red blush visually based on % 
coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 81%-99%, 5 = 
100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 
9 = completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no 
pronounced suture and oblate tip). 
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Table 7. Descriptive statistics of nine peach tree and fruit quality traits evaluated for eight parents for two years at Fowler, CA and one for 
year at College Station, TX. 
Trait w N Mean Phenotypic 

Variance 
Standard 
Deviation 

C.V. Min Max 

Date of full bloom 55 45.3 76.56 8.75 19.33 20.0 61.0 

Date of ripening 66 151.9 253.45 15.92 10.48 125.0 179.0 

FDP 55 106.1 281.90 16.79 15.83 66.0 133.0 

Fruit pubescence 64 2.5 4.20 2.05 81.35 0.0 6.0 

Fruit red blush 64 3.0 0.53 0.73 24.58 1.5 5.0 

Fruit weight 61 106.0 1090.98 33.03 31.17 43.0 175.0 

Fruit diameter 60 62.3 90.06 9.49 15.24 47.4 87.7 

Fruit tip 63 8.1 0.98 0.99 12.18 6.0 9.0 

Fruit shape 63 7.5 0.69 0.83 11.01 6.0 9.0 

N = Number of observations; C.V. = coefficient of variation; Min = minimum value; Max = maximum value. 
wDate of full bloom and date of ripening expressed in Julian Days; FDP = fruit development in days; fruit pubescence visually 
based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red blush visually based on 
% coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 81%-
99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very 
prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and 
prominent tip, 9 = no pronounced suture and oblate tip). 
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Table 8. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for nine peach tree and fruit quality traits evaluated for 
two years at Fowler, CA and for one year at College Station, TX. 

Trait w 
Variancesy 

H2 h2 
VA VDI VG VE VGxE VP 

Date of full bloom 17.86 5.62 23.48 13.56 15.68 52.72 0.82 0.62 

Date of ripening 17.24 222.11 239.35 158.91 66.55 464.8 0.92 0.07 

FDP 17.11 227.75 244.36 239.74 71.02 555.62 0.91 0.06 

Fruit pubescence 1.52 2.02 3.54 0.1 0.73 3.43 0.94 0.40 

Fruit red blush 0.18 0.08 0.26 0.02 0.40 0.69 0.66 0.46 

Fruit weight 96.59 358.62 455.21 217.95 528.81 1201.96 0.72 0.15 

Fruit diameter 17.64 14.16 31.62 4.63 21.83 58.08 0.81 0.45 

Fruit tip 0.18 0.13 0.31 0.12 0.36 0.79 0.72 0.42 

Fruit shape 0.09 0.02 0.11 0.07 0.39 0.57 0.46 0.38 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance 
wDate of full bloom and date of ripening expressed in Julian Days; FDP = fruit development period in days; fruit pubescence visually 
based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red blush visually ba 
sed on % coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 81%-
99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very prominent 
fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = 
no pronounced suture and oblate tip). 
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Table 9. Comparison of nine peach tree and fruit quality traits evaluated for nine progeny in three environments. 

 Fowler, CA 2011  Fowler, CA 2012  College Station, TX 2012 

Trait w Mean Min-Max 
 

Mean Min/Max 
 

Mean Min/Max 

Date of full bloom 42.4 36.0-59.0  44.2 36.0-51.0  51.4 29.0-70.0 

Date of ripening 155.6 119.0-204.0  148.3 125.0-195.0  131.0 101.0-185.0 

FDP 113.5 78.0-156.0  104.2 74.0-159.0  80.1 50.0-136.0 

Fruit pubescence 3.6 0.0-7.0  3.5 0.0-7.0  3.2 0.0-6.0 

Fruit red blush 3.1 2.0-5.0  2.8 1.00-5.00  3.1 2.0-4.5 

Fruit weight 116.8 52.0-250.0  105.5 31.6-204.4  89.2 12.0-185.2 

Fruit diameter 60.4 36.3-87.6  59.7 40.7-75.2  56.8 42.4-79.6 

Fruit tip 8.0 6.0-9.0  7.7 6.0-9.0  7.2 5.0-9.0 

Fruit shape 7.6 6.0-9.0  7.1 5.0-9.0  7.2 5.0-9.0 
wDate of full bloom and date of ripening expressed in Julian Days; FDP = fruit development in days; fruit crop as 
relative to commercial crop based on 0-9 scale (0 = no crop, 5 = full crop, 6 or higher = excess crop); fruit pubescence 
visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red blush 
visually based on % coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 
= 51%-80%, 4 = 81%-99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually based on 
0-9 scale (6 or lower = very prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 scale 
(6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture and oblate tip). 
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variability for this trait, along with its moderate heritability, should allow for genetic 

improvement. 

A great deal of variability was observed for both date of ripening and FDP, as 

evidenced by the wide range (101 to 204 days) for ripening and (50 to 159) for FDP 

among progeny (Table 6). These ranges were closely aligned with, but higher than those 

of the parents for ripe and FDP (125 to 179 and 66 to 133, respectively) (Table 7). This, 

along with the observation of transgressive segregation suggests very high variability.  

Both of these traits were affected strongly by the environment (Table 8). Fruit, on 

average, ripened approximately 25 and 17 days later and had development periods  that 

were approximately 34 and 24 days longer at Fowler in 2011 and 2012, respectively, 

than at College Station in 2012 (Table 9). This was likely an effect of cooler 

temperatures during the months of fruit development for 2011 and 2012 at Fowler 

(14.7°C and 15.3°C) relative to College Station (21.1°C) , based on averages of March 

and April mean temperatures (Appendix 7). Both date of ripening and FDP had low 

narrow sense heritability estimates (h2 = 0.07 and 0.06 respectively) (Table 8). This was 

very surprising considering that much higher estimates of heritability have been reported 

for both ripening date ( h2 = 0.79 to 0.94) (Hansche et al., 1986; Hansche et al., 1972; de 

Souza et al., 1998b) and fruit development period (0.73 to 0.98) (Monet and Bastard, 

1982; de Souza et al., 1998b; Vileila-Morales et al., 1981). It is important to note that 

broad sense heritability estimates were very high for the date of ripening and FDP (H2 = 

0.92 and 0.91, respectively) (Table 8). Although the additive genetic component 

accounted for approximately 4% and 3% of the total phenotypic variance for ripening 
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date and FDP, the non-additive genetic component was responsible for approximately 

51% and 44% of the variance for ripening date and FDP, respectively (Table 8). This 

discrepancy between the two estimates suggests that a strong non-additive genetic 

component may have masked the effects of the additive genes for these traits (Bernardo, 

2010). Nevertheless, rapid genetic improvement should be possible for both of these 

traits, given their high genetic variability, if the major genes can be selected for. 

Substantial variability was observed for pubescence as indicated by the wide 

range (zero to seven on a zero to nine scale) with a mean of 3.48 among progeny (Table 

6). These measures were similar to that among parents (zero to six on a zero to nine 

scale) (Table 7). Among peach genotypes, pubescence typically ranged from three to 

five. Variability might have been lower because the peach parents used in this study 

were the product of breeding programs in which selection against fuzzy fruit had been 

practiced for many generations. The nectarine phenotype has a major effect on 

pubescence, resulting in in the absence of fuzz and is inherited as a single recessive gene 

(Blake, 1932). Much of the variability observed was due to the effect of nectarine 

genotypes being scored as zero. In fact, the removal of nectarine seedlings from the 

analysis resulted in approximately 68% lower phenotypic variance as well as lower 

additive variance for fruit pubescence (Table 10). Overall, pubescence showed moderate 

additive inheritance (h2 = 0.40), while the broad sense estimate (H2 = 0.94) (Table 7) 

would suggest major gene action, based on analysis with all genotypes. The moderate 

heritability and appreciable variability associated with pubescence should allow for 

genetic improvement of this trait.  
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Substantial variability was associated with fruit red blush as indicated by the 

wide range (1.0 to 5.0 on a zero to five scale) with a mean of 2.97 among progeny (Table 

6). Both the range and mean (2.97) among parents were very similar to that of progeny 

(Table 7). Blush was subject to a strong genotype x environment interaction explaining 

approximately 58% of total phenotypic variance (Table 8). Fruit red blush was estimated 

to have moderate additive inheritance (h2 = 0.46) (Table 8). This value was intermediate 

between those reported previously for this trait (0.41; 0.68) (Hansche and Beres, 1980; 

de Souza et al. 1998b). Although red blush has been reported to be quantitative (Blake, 

1932; Blake, 1940; Hansche, 1986; Weinberger, 1944), recent studies have suggested the 

presence of major genes (Beckman and Sherman, 2003; Beckman et al., 2005; Frett, 

2012).  The possible existence of such major genes, particularly the one described by 

Frett (2012), along with the large variability observed in this population should allow for 

genetic improvement. 

Substantial variability was associated with fruit weight as evident in the higher 

range of fruit weight among progenies (12.0 to 250.0 grams) (Table 6) compared to the 

parents (43.0 to 175.0 grams) (Table 7). Fruit in Fowler were approximately 31% and 

18% heavier in 2011 and 2012 than in College Station in 2012 (Table 9) and this 

environmental effect was responsible for approximately 41% of the variation. However 

there were also substantial changes in rank across these environments and the genotype x 

environment effect for fruit weight accounted for 44% of phenotypic variance (Table 8). 

The narrow sense heritability estimate (h2 = 0.15) (Table 8) for fruit weight was lower 

than the previously reported moderate estimates (h2 = 0.32 to 0.60) (de Souza et al., 
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1998b; Hansche, 1986; Monet and Bastard, 1982), although broad sense heritability was 

estimated as being much higher (H2 = 0.72) (Table 8). Non-additive genetic variance 

component accounted for approximately 38% of phenotypic variance compared to only 

8% (Table 8) for the additive genetic component, and distribution of fruit weight was 

also skewed toward the lower end (Appendix 17). This, in conjunction with the high 

non-additive variance (Table 8), suggests dominance for smaller fruit in these 

populations as suggested earlier (Connors, 1923; Blake, 1940). Nonetheless, the large 

amount of variability should allow for steady genetic improvement through recurrent 

selection and carefully planned crosses. 

Fruit diameter displayed transgressive segregation in several progenies (Tables 6 

and 7) suggesting substantial genetic variability for this trait. Similar to fruit weight, the 

genotype x environment effect explained approximately 38% of the phenotypic variance 

(Table 8). Fruit diameter was found to be moderately heritable (h2 = 0.45) (Table 8) 

which was higher than previously reported (h2 = 0.29; 0.38) (Hansche et al., 1972; de 

Souza et al., 1998b). The broad sense estimate was approximately twice that of the 

narrow sense estimate for this trait (Table 8), indicating important non-additive effects. 

This moderate level of heritability should allow for genetic improvement, although fruit 

weight had greater variability in spite of its lower level of heritability. Fruit diameter is 

highly correlated with fruit weight (de Souza et al., 1998) and is generally the easier trait 

to measure, especially in the case of large samples. Fruit diameter’s moderate level of 

heritability (h2 = 0.45) (Table 8) should allow for better genetic improvement than  fruit 
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weight. Although fruit weight had greater variability the higher heritability of fruit 

diameter means that the measurement is more accurate and repeatable. 

Fruit tip and fruit shape both showed moderate to substantial variability as 

indicated by the broad range of scores observed for both traits (5 to 9 on zero to nine 

scale) with means of 7.71 for fruit tip and 7.28 for fruit shape among progeny (Table 6). 

These measures varied slightly from that of the parents (6 to 9 on a zero to nine scale) 

for both traits (Table 7). Both of these traits were affected by a genotype x environment 

effect that was responsible for approximately 46% and 69% of the total variance for tip 

and shape, respectively (Table 8). Moderate narrow sense heritability estimates were 

found for fruit tip (h2 = 0.42) and fruit shape (h2 = 0.38) (Table 8). These estimates were 

slightly lower than reported earlier (h2 = 0.45 and 0.43, respectively) for fruit tip and 

fruit shape by de Souza et al., (1998b). Despite the modest amount of variability 

exhibited for these two traits genetic advance should be possible, but probably slow as 

reported earlier (de Souza et al., 1998b). 

 

2.4.2 Genotype by environment interactions 

As mentioned earlier, several traits were affected by a strong genotype x 

environment (GxE) interaction. GxE interaction has been described as differential 

response of genotypes to the environment in which they are grown (Bernardo, 2010). If 

such interactions exist in the case of specific genotypes across specific environments, 

selection on the basis of performance for a given trait cannot be practiced in one 

environment if the plant is expected to perform the same in another (Allard and 
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Bradshaw, 1964). A stability analysis plotting progeny means across environments was 

generated to make this comparison easier (Appendices 8 through 12). 

Fruit red blush was strongly affected by GxE interaction that was responsible for 

approximately 58% of total phenotypic variance (Table 8). On average, fruit had 

approximately the same amount of red blush at Fowler in 2011 and College Station in 

2012, but approximately 5% less blush at Fowler in 2012 (Table 9). Two families, both 

of which had TX2B136 as common parents did not follow this trend, resulting in the 

interaction (Appendix 8). 

Fruit size, measured in two ways, was subject to a genotype x environment effect 

that accounted for approximately 44% and 38% of the total variance for fruit weight and 

fruit diameter.  (Table 8). Both measures of mean fruit size decreased across all three 

environments, with the Fowler-2012 and College Station-2012 environments reporting 

approximately 90% and 76% lower fruit weights, respectively, than Fowler-2011. 

Decreases in fruit diameter of approximately 1% and 6% were observed for Fowler-2012 

and College Station-2012 environments relative to the most favorable environment - 

Fowler in 2011 (Table 9). The trend for smaller size observed in the second year at 

Fowler appeared to be related to the higher yield, while the smaller size at College 

Station was most likely a result of less favorable environmental conditions such as 

shorter FDP (Table 9) resulting from warmer temperatures during fruit development  

(Appendix 7). Three families strongly deviated from the above described trend for both 

measures of size, and the response appeared to be related to parentage (Appendices 9 

and 10). All three families shared either TX2B136 or Y434-40 as common parents. 
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The strong GxE interaction associated with fruit tip and fruit shape was 

responsible for approximately 46% and 68% of the total variance for these traits (Table 

8). Mean fruit tip rating gradually decreased from Fowler-2011 to Fowler-2012 and then 

decreased more rapidly from Fowler-2012 to College Station-2012, whereas mean fruit 

shape rating was lower from Fowler-2011 to Fowler-2012, but higher at College Station 

in 2012 (Table 9). Both fruit tip and shape appearance become less desirable when fruit 

are exposed to lower chilling conditions and warm temperatures during the early part of 

development (de Souza et al., 1998b). A comparison of mean monthly temperatures for 

all three environments revealed that temperatures were slightly warmer at Fowler in 

2012 than 2011, and much warmer at College Station in 2012 during bloom and early 

fruit development (Appendix 7), which might explain why fruit tip ratings were lower 

for Fowler in 2012 and even lower at College Station in 2012, but not for fruit shape, 

which had a higher rating at College Station in 2012 due to less prominent sutures, 

despite receiving lower chilling and higher temperatures during fruit development. Much 

of the interaction for fruit tip appeared to result from of two families (progenies 7 and 9), 

which deviated strongly from the overall trend mentioned above, although few 

individuals were observed for progeny 9 at College Station (Appendix 11). Progeny 7 

also appeared to be the source of much of the interaction for fruit shape, as it deviated 

from the trend mentioned above by performing consistently more poorly across the three 

environments (Appendix 12).  
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2.4.3 Major gene effects on heritability 

Two major genes - pantao and nectarine can have strong pleiotropic effects on 

several traits related to fruit quality in peach including smaller size, rounder tip, and 

greater red blush (Wang, 2009; Wang et al., 2010; Wen et al., 1995a; 1995b; Wu et al., 

2003a; 2003b). Nectarine is inherited as a single recessive gene and produces fruit 

without pubescence (Blake, 1932). Pantao is inherited as a single dominant trait 

producing flattened or saucer-shape fruit (Scorza and Sherman, 1996). Because several 

of these progenies were segregating for one or both of these traits, the analysis was run 

without pantao, nectarine, or both types of seedlings to assess their influence on the 

heritability, particularly for pubescence, red blush, weight, diameter, and tip. 

Approximately 15% fewer data points were included with the exclusion of nectarine and 

approximately 7% fewer without pantao seedlings. 

Both narrow sense and broad sense estimates were much lower for pubescence 

(h2 = 0.28 and H2 = 0.54, respectively) (Table 10) as expected when nectarine genotypes 

were excluded, likely due to the loss of the lower extreme nectarine types, which were 

scored as zero. Narrow sense heritability for fruit red blush was also lower (h2 = 0.36) 

(Table 10) with the removal of nectarine genotypes, was also expected, as nectarines 

typically tend to have higher red blush (Wang et al., 2010; Wen et al., 1995a; 1995b). 

The pantao shape and the nectarine skin type, both conditioned by single genes, 

are reported to result in smaller fruit as compared to non pantao peaches (Oberle and 

Nicholson, 1953; Wang, 2009; Wang et al., 2010; Wen et al., 1995 a; 1995b; Wu, 
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Table 10. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for fruit pubescence and fruit red blush evaluated 
for two years at Fowler, CA and for one year at College Station, TX comparing the effect of the removal of nectarine, pantao, and both types of 
seedlings. 

Trait w 
Variancesy 

H2 h2 
VA VDI VG VE VGxE VP 

Fruit pubescence 1.52 2.02 3.54 0.1 0.73 3.43 0.94 0.40 

Fruit pubescencep 1.16 1.41 2.57 0.12 0.75 3.44 0.91 0.41 

Fruit pubescencen 0.14 0.13 0.27 0.15 0.68 1.10 0.54 0.28 

Fruit pubescencepn 0.13 0.14 0.27 0.17 0.69 1.13 0.54 0.26 

         
Fruit red blush 0.18 0.08 0.26 0.02 0.40 0.71 0.66 0.46 

Fruit red blushp 0.18 0.09 0.27 0.02 0.39 0.68 0.68 0.45 

Fruit red blushn 0.11 0.07 0.18 0.04 0.37 0.59 0.59 0.36 

Fruit red blushpn 0.11 0.08 0.19 0.04 0.37 0.60 0.61 0.35 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance. 
wfruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red 
blush visually based on % coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 
51%-80%, 4 = 81%-99%, 5 = 100%) 
pAnalysis run without pantao seedlings. 

nAnalysis run without nectarine seedlings. 
pnAnalysis run without both pantao and nectarine seedlings. 
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Table 11. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for fruit weight and fruit diameter evaluated for 
two years at Fowler, CA and for one year at College Station, TX comparing the effect of the removal of nectarine, pantao, and both types of 
seedlings. 

Traitw 
Variancesy 

H2 h2 
VA VDI VG VE VGxE VP 

Fruit weight 96.59 358.62 455.21 217.95 528.81 1201.96 0.72 0.15 

Fruit weightp 181.52 329.91 511.43 243.55 525.20 1280.19 0.74 0.26 

Fruit weightn -0.38 316.16 315.78 263.12 582.65 1163.92 0.62 0.00 

Fruit weightpn 148.19 323.18 471.37 310.85 565.82 1348.06 0.71 0.22 

         
Fruit diameter 
 

17.64 14.16 31.62 4.63 21.83 58.08 0.81 0.45 

Fruit diameterp 11.25 13.48 24.73 4.81 21.39 50.93 0.78 0.35 

Fruit diametern 8.95 11.34 20.29 5.40 24.15 49.85 0.72 0.32 

Fruit diameterpn 2.91 11.20 12.82 5.38 23.56 43.06 0.62 0.14 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance. 
wfruit weight in grams; fruit diameter in millimeters. 
pAnalysis run without pantao seedlings. 

nAnalysis run without nectarine seedlings. 

pnAnalysis run without both pantao and nectarine seedlings. 
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Table 12. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for fruit tip and shape evaluated for two years at 
Fowler, CA and for one year at College Station, TX comparing the effect of the removal of nectarine, pantao, and both types of seedlings. 

Trait w 
Variancesy 

H2 h2 
VA VDI VG VE VGxE VP 

Fruit tip 0.18 0.13 0.31 0.12 0.36 0.79 0.72 0.42 

Fruit tipp 0.18 0.09 0.27 0.12 0.35 0.75 0.70 0.47 

Fruit tipn 0.12 0.12 0.24 0.14 0.38 0.75 0.65 0.33 

Fruit tippn 0.10 0.07 0.17 0.13 0.37 0.67 0.58 0.34 

         
Fruit shape 0.09 0.02 0.11 0.07 0.39 0.57 0.46 0.38 

Fruit shapep 0.10 0.02 0.12 0.08 0.37 0.57 0.49 0.41 

Fruit shapen 0.09 0.01 0.10 0.07 0.39 0.55 0.43 0.39 

Fruit shapepn 0.08 0.02 0.10 0.08 0.36 0.45 0.45 0.36 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance. 
wfruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based 
on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture and oblate tip). 
pAnalysis run without pantao seedlings. 

nAnalysis run without nectarine seedlings. 
pnAnalysis run without both pantao and nectarine seedlings. 
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2003b). Additive variance was approximately twice as great and narrow sense 

heritability was slightly higher (h2 = 0.26) for fruit weight with the exclusion of pantao 

genotypes from the analysis (Table 11). Pantao fruit are typically lighter than round fruit 

(Wang, 2009; Wang et al., 2010). Additive variance and narrow sense heritability for 

weight were reduced to zero with the exclusion of nectarines (Table 10). This was 

possibly a result of the decreased variability resulting from the removal of nectarines, 

which tend to be smaller (Oberle and Nicholson, 1953; Wang, 2009; Wang et al., 2010; 

Wen et al., 1995a; 1995b; Wu, 2003b). Narrow sense heritability for fruit diameter was 

slightly lower when either pantao (h2 = 0.35) or nectarine (h2 = 0.32) genotypes were 

excluded, and was much lower (h2 = 0.14) when both genotypes were excluded from the 

analysis. Again, the broad sense estimate was about twice that of the narrow sense 

heritability estimate for diameter (Table 11). 

Additive inheritance for fruit tip was lower (h2 = 0.33 when nectarines were 

excluded. Nectarines tend to be rounder with less pronounced tips (Wang, 2009), the 

removal of which appears to have decreased additive variance for this trait by 

approximately 33% (Table 12). 

 

2.4.4 Phenotypic correlations 

It is important to remember that because phenotypic correlations are an estimate 

of the relationship between the two traits based on both environmental and genetic 

factors, thus their usefulness is limited (de Souza et al., 1998a). In addition, phenotypic 

correlation is mostly a function of environmental correlations when heritability is low 
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for a given trait (Falconer, 1989). The ultimate application for inter-trait correlation in 

plant breeding is indirect selection (Searle, 1965).  Correlations were computed on a 

pair-wise basis for all traits. Significance of correlation estimates were discussed based 

on the magnitude of the estimate because the sampling variances for the correlation 

estimates were not available (de Souza et al., 1998a). Thus correlation estimates of 

≥0.65, between 0.50 and 0.64, and between 0.30 and 0.49 were deemed as strong to very 

strong, moderately strong, and moderately weak, respectively. Estimates of ≤0.29 were 

considered weak and will not be discussed.  

Date of ripening was highly correlated (r = 0.94) (Table 13) with FDP, 

suggesting that it is a more reliable predictor of FDP than bloom date (de Souza et al., 

1998b) as the correlation with FDP was stronger for date of ripening compared to bloom 

date. Date of bloom was negatively correlated (r = -0.45) (Table 13) with FDP, 

suggesting that the early development period of fruit is delayed by cooler temperatures 

(Weinberger, 1948; Boonprakob et al., 1992; de Souza et al., 1998b). Not surprisingly, 

the correlation estimate for fruit weight and fruit diameter was very strong (r = 0.83) 

(Table 13) reaffirming the fact that both traits are an acceptable measure of size in fruit 

and can be used interchangeably in a selection program as discussed earlier. In fact, this 

estimate was even higher (r = 0.90) (Appendix 1) when lighter and wider pantao 

genotypes were removed from the analysis, supporting the conclusion that pantao fruit 

tend to be lighter than round fruit with the same diameter (Wang, 2009; Wang et al., 

2010). 
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Table 13. Phenotypic correlations among nine peach tree and fruit quality traits evaluated for two years at Fowler, CA and one year at College 
Station, TX.z 

Charactersy Bloom Ripe FDP Pub. Blush Weight Diam. Tip Shape 

Bloom --- -0.16 -0.45 0.31 0.05 -0.09 -0.07 -0.40 -0.24 

Ripe -0.16 --- 0.94 0.08 -0.31 0.54 0.55 0.05 0.04 

FDP -0.45 0.94 --- -0.02 -0.38 0.50 0.51 0.16 0.08 

Pubescence 0.31 0.08 -0.02 --- -0.04 0.26 0.22 -0.28 -0.22 

Blush 0.05 -0.31 -0.38 -0.04 --- -0.24 -0.24 0.04 0.18 

Weight -0.09 0.54 0.50 0.26 -0.24 --- 0.83 -0.04 0.07 

Diameter -0.07 0.55 0.51 0.22 -0.24 0.83 --- 0.12 0.08 

Tip -0.40 0.05 0.16 -0.28 0.04 -0.04 0.12 --- 0.36 

Shape -0.24 0.04 0.08 -0.22 0.18 0.07 0.08 0.36 --- 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were considered strong or very strong, moderately strong, 
moderately weak, and weak or very weak, respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development period in days; fruit pubescence visually based 
on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); fruit red blush visually based on % 
coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 81%-99%, 5 = 
100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 
9 = completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no 
pronounced suture and oblate tip. 
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The correlations of fruit red blush with date of ripening (r = -0.31) and FDP (r = -

0.38) (Table 13), although reported earlier (de Souza et al., 1998b) were relatively weak. 

This may also be the result of later ripening fruit developing less skin color due to a 

denser tree canopy later in the season. Fruit positioned deep in the tree canopy have less 

red blush (Bible and Singha, 1993; Lewallen and Marini, 2003). Both date of ripening 

and FDP were positively correlated with fruit weight (r = 0.54 and 0.50) (Table 13). 

Fruit diameter was also positively correlated with ripening date and FDP (r = 0.55 and 

0.51) (Table 13) suggesting that the later a fruit is on tree, the more resources can be 

sequestered and allocated to it.  

Fruit tip and fruit shape exhibited a moderately weak correlation (r = 0.36) 

(Table 13), which was much lower than previously reported by de Souza et al., (1998b). 

This relationship is not unexpected considering that the subjective scale used to evaluate 

fruit shape largely reflects both the tip rating and the appearance of the suture bulge. 

Values between these two traits were lower (r = 0.31) when nectarine genotypes were 

excluded, and higher (r = 0.41) when pantao genotypes were excluded from the analysis 

(Appendix 1). This was probably a result of nectarines generally having rounder tips and 

pantao receiving high tip ratings in spite of low ratings for overall shape because of 

irregular sutures. The negative correlation between bloom date and fruit tip (r = -0.40) 

(Table 13) supports the conclusion by de Souza et al. (1998b) and Topp and Sherman 

(1989) that cooler temperatures during early fruit development improve the appearance 

of fruit tip. 
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 The correlation of 0.31 (Table 13) between bloom date and pubescence was 

moderately weak, at best, and was much lower (r = 0.08) (Appendix 2) when nectarine 

genotypes where not considered. The progenies that segregated for nectarine were 

generally earlier blooming, and this was more likely a result of the genetic background 

of the nectarines and not a pleiotropic effect of the nectarine gene itself. 

 

2.5 Conclusions 

All traits evaluated were associated with large phenotypic variability, while fruit 

tip and fruit shape exhibited more moderate measures of variability. Variability is a 

major component in the estimation of heritability, and both are necessary for genetic 

improvement. Most traits were estimated to be moderately heritable on a narrow sense 

basis, while two showed low and one showed high additive inheritance. Given the 

appreciable variability and moderate heritability, some genetic advance should be 

possible for most traits evaluated. Heritability and genetic correlations are dependent on 

the specific germplasm and environments used in each investigation and the results of 

this study differ from some previous studies.  

Date of full bloom was highly heritable (h2 = 0.62) on a narrow sense basis, 

whereas date of ripening and FDP were associated with low heritability in spite of being 

widely reported as highly heritable traits. Broad sense estimates for these traits were 

high, suggesting an important non additive genetic component. Contrary to previous 

studies, fruit weight also showed low additive inheritance, although the broad sense 
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heritability was also high for this trait. Distribution of fruit weight was negatively 

skewed, suggesting dominance for small fruit size. 

Moderate narrow sense heritability was associated with all the other traits (fruit 

pubescence, fruit red blush, fruit diameter, fruit tip, and fruit shape) as expected from 

previous studies. Heritability ranged from 0.38 for fruit shape to 0.46 for fruit red blush. 

Most traits were not strongly influenced by environment: however,  date of full 

bloom, date of ripening, and FDP showed major differences across environments mainly 

due to temperature differences among environments. Trees typically bloomed earlier and 

fruit ripened later and over a longer period of time at Fowler than at College Station. 

Several traits were subject to strong genotype x environment effects, suggesting 

that, for these traits, selection should only be practiced where the plants are intended to 

be grown. Fruit red blush, fruit weight, fruit diameter, fruit tip, and fruit shape showed 

differential response with respect to genotype across different environments. For each 

trait, the interaction appeared to be the result of one or two progeny families behaving 

differently from the general trend across environments. 

 Several progenies were segregating for two major genes, pantao and nectarine, 

which have been reported to have pleiotropic effects on fruit size, fruit red blush, and 

shape, thus analysis was run without pantao, nectarine, and both types of seedlings for 

these traits. Removal of nectarine seedlings from the analysis resulted in lower 

heritability estimates for fruit pubescence, fruit red blush, fruit weight, and fruit tip. 

Heritability for fruit weight was higher with the removal of pantao seedlings, while fruit 

diameter showed a lower value when both pantao and nectarine were removed. The 
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exclusion of nectarine and pantao seedlings from the analysis resulted in approximately 

15% and 7% fewer data points for these traits. Overall, heritability was not strongly 

affected by these major genes, except in the case of fruit pubescence, which went from  

moderate to low heritability (h2) with the exclusion of nectarine seedlings as well as fruit 

diameter, which had the same response with the removal of both pantao and nectarine 

seedlings from the analysis. 

The ultimate implication of high correlations between traits is in the ability to 

practice indirect selection. Because phenotypic correlations were based on relationships 

between traits based on both genetic and environmental factors, their usefulness would 

be limited, especially when heritability is low for both related traits. None of the 

correlations were strong enough among traits to allow for selection for multiple traits, as 

most relationships were the result of environmental or physiological relationships, or 

were simply different measures of the same trait. 

Date of ripening and FDP were strongly correlated (r = 0.94), suggesting that 

ripening date is a reliable estimator of FDP. The negative correlation between date of 

full bloom and FDP (r = -0.45) suggests that earlier blooming during cool temperatures 

tends to extend fruit development period. The moderately weak negative correlations of 

fruit red blush with date of ripening (r = -0.31) and FDP (-0.38) were most likely a 

function of decreased blush caused by lower light exposure of fruit due to denser tree 

canopy later in the season. Date of full bloom and fruit tip were moderately and 

negatively correlated (r = -0.40) as reported previously, as earlier blooming seedlings 
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tend to produce rounder tip fruit in response to cooler temperatures during bloom and 

early development. 

Fruit weight and fruit diameter were moderately strongly correlated with date of 

ripening (r = 0.54; 0.55) and FDP (r = .50; 0.51) respectively. As previously reported, 

fruit size tends to increase as fruit ripens later as a result of greater resources available 

for growth. 

Fruit weight and fruit diameter were strongly correlated (r = 0.83) as expected, 

suggesting that both are reliable measures of fruit size. Fruit tip and fruit shape were 

moderately weakly correlated (r = 0.36) which was not surprising considering that 

overall fruit shape is partially a representation of fruit tip, and was weaker without 

rounder tip nectarines and stronger without pantao, which received high tip ratings, but 

often lower ratings for fruit shape based on irregular sutures.  
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CHAPTER III 

HERITABILITY AND PHENOTYPIC CORRELATIONS 

RELATING TO SEVERAL FRUIT QUALITY TRAITS IN PEACH 

3.1 Synopsis 

Six peach [Prunus persica (L.) Batsch] fruit quality traits were evaluated for two 

years at Fowler, CA and one year at College Station, TX to estimate heritability and 

phenotypic correlations. Seedlings from nine F1 families were budded onto ‘Nemaguard’ 

rootstocks along with the parents for evaluation. Variance components were estimated 

using an all random effects model (REML) and a multivariate model was used to 

estimate phenotypic correlations between traits. Moderate to high heritability was 

estimated for ground color (h2 = 0.50), while red in the flesh, firmness, soluble solids, 

titratable acidity (TA), and pit weight showed low heritability (h2 = 0.05-0.24). In 

contrast, the traits with low additive heritability showed moderate to high broad sense 

heritability (H2) indicating a significant non additive genetic component. Several traits 

(fruit ground color, red in the flesh, fruit firmness, and soluble solids) were strongly 

influenced by genotype by environment effects. A large amount of phenotypic 

variability was associated with fruit firmness, soluble solids, and TA, which should 

allow for genetic improvement of these traits. All significant correlations were between 

the six traits and those discussed in the previous paper. Soluble solids was moderately 

weakly correlated with ripe date and fruit development period (FDP) (r = 0.32, r = 0.33). 

Pit weight was moderately correlated with FDP, fruit weight, and fruit diameter (r = 
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0.33, r = 0.51, r = 0.31, respectively). None of the relationships represented by the 

correlations were strong enough to be taken advantage of in a multiple trait selection 

program. 

 

3.2 Introduction 

The objectives of this research were to determine: 

1) Variance components of several fruit quality traits including fruit ground 

color, red in flesh, fruit firmness, soluble solids, titratable acidity (TA), and 

pit weight. 

2) Estimates of heritability in the narrow sense (h2) and broad sense (H2) for the 

above mentioned traits. 

3) Genetic and phenotypic correlations among fruit quality traits. 

 

3.2.1 Review of literature relating to fruit quality traits 

Of all the biochemical compounds and physical attributes that affect quality, 

sugar content is unrivaled in its impact on fruit quality. Soluble sugars are attributed to 

many fruit quality traits such as flavor, as well as metabolism and overall nutrition 

(Cantin et al., 2009). Generally, high consumer acceptance is related to high soluble 

solid concentration (SSC) in peaches (Crisosto and Crisosto, 2005). Recent surveys have 

suggested that soluble solids levels must be greater than 10% for acidic cultivars and 

11% for low acid peaches/nectarines in order to be considered acceptable to consumers 

(Crisosto et al., 2003). The organoleptic quality of fleshy fruits is most strongly affected 
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by the content and composition of soluble sugars and organic acids (Dirlewanger et al., 

1999). Peaches contain several major sugars including sucrose, fructose, glucose, and 

sorbitol, with sucrose the most abundant (Cantin et al., 2009; Dirlewanger et al., 1999; 

Byrne, et al., 1991). 

Sugar content in peach, as measured by soluble solids concentration (SSC) is 

quantitatively inherited with heritability estimates ranging from low (h2=0.01) (Hansche 

et al., 1972) to moderate (h2 = 0.33; 0.43) (de Souza et al., 1998; Monet and Bastard, 

1982) to high, at over 0.72 (H2) (Brooks et al., 1993). SSC is influenced by the 

conditions under which the plant is grown, including: amount of light received, canopy 

position, available water during fruit development, plant nutrition, thinning practices, 

position in canopy, and temperature during fruit development (Westwood, 1993). 

Although sugar content will receive the most focus in this investigation, there are many 

traits that affect quality in peach.  

As with the development of new varieties for other crops, it is difficult to find a 

genotype that combines all the desirable traits. Both size and soluble solids are generally 

lower for peaches and nectarines with shorter fruit development periods, making 

development of early ripening cultivars that also have high quality difficult (de Souza et 

al., 1998b; Wu et al., 2003). There can also be interactions between qualitative and 

quantitative traits.  For example, nectarines and flat fruits showed a tendency of having 

higher SSC and total sugar content than peaches and round fruits, respectively (Cantin et 

al., 2009; Wang et al., 2010; Wen et al., 1995). Soluble solids had a negative genetic 

correlation with fruit mass (Wu et al., 2003). Red blush had a moderately weak and 
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negative phenotypic correlation with soluble solids (r = -030), although the genetic 

correlation was stronger (r=-0.56) (de Souza et al., 1998b). 

With regard to organoleptic quality, titratable acidity is probably the second most 

important component in peach after SSC (Crisosto, 2005). The sugar/acid ratio is an 

essential component of the organoleptic quality for fruits in the Rosaceae family. 

Expression of acidity in peach appears to be controlled by a single gene D that is 

completely dominant for low acid in peach (Dirlewanger et al., 2009). The D gene, 

controlling the non-acid trait in peach, is dominant and segregates as a Mendelian 

character (Boudehri et al., 2009). Wide variation within acid type progenies, however, 

suggests that the amount and type of acidity is under quantitative genetic control. Levels 

of specific acids such as malic, citric, and quinic vary widely (Byrne et al., 1991), and 

chemical analysis of these specific acids and sugars can aid in determining peach fruit 

quality (Colaric et al., 2005). Total acidity was reportedly higher in nectarine when 

compared to peach siblings (Wen et al., 1995a; 1995b) or within a germplasm collection 

(Wang, 2009). Heritability estimates for titratable acidity range from low (h2 ≤ 0.19) 

(Hansche, 1986; Hansche and Beres, 1980; Hansche et al., 1972) to moderate (h2 = 0.31) 

(de Souza et al., 1998b)  

Adequate fruit firmness is as absolute requirement for new commercial varieties 

of peach (Byrne, 2005), in order to allow for harvest at a later maturity level so that other 

fruit quality traits are not diminished  (Hough, 1985). Both the stony-hard and non-

melting flesh types are inherited as single genes (Haji et al., 2005). Recently, endoPG 

has been identified as the major enzyme responsible for cell wall degradation and 
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eventual melting. The study on the effects of pleiotropy of nectarine and pantao traits 

reported that firmness was considerably lower among genotypes that express the flat 

pantao trait (Wang, 2009), while nectarines had greater flesh firmness and were 

reportedly denser (Wang, 2009; Wen et al., 1995a). The heritability of flesh firmness 

among melting genotypes is reportedly low (h2 = 0.13) (Hansche et al., 1972). 

Ground color, closely related to flesh color, is a result of chlorophyll, 

carotenoids, anthocyanins, and other pigments (Lancaster and Lister, 1997), with 

carotenoids being the primary factor determining flesh color (Flesh color type, whether 

white or yellow, appear to have no effect on either titratable acidity or soluble solids 

(Wu, 2003). Green on the skin of mature fruit for fresh market use is undesirable. 

Ground color is also often used as a major determinant for harvest time of peach 

(Lewallen and Marini, 2003). Flesh color under the skin appears to be controlled by two 

genes resulting in white, yellow, and red phenotypes (Iezzoni, 1983). Recently, both 

concentration and distribution of red anthocyanins and carotenoids in the flesh and 

around the pit have been reported to be regulated by several genes at the ‘Cs’ locus 

(JiCheng et al., 2012). 

Pit weight is closely related, but not necessarily proportional to overall fruit 

weight (Chalmers and van den Ende, 1975), and large pit size is generally undesirable. 

Although pit size is appears to be under quantitative control, with no discrete categories 

among stone sizes, dominance of large stone size has been observed among crosses 

between some cultivars (Hesse, 1975). More recently, evidence suggesting the possible 

existence of a few major dominant genes has been reported (Bassi et al., 1989). Pit size 
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and fruit size are closely related, but not necessarily proportional to one another 

(Chalmers and van den Ende, 1975). 

Freestone and clingstone appear to segregate as a single loci, (Janick and Moore, 

1975), although intermediate phenotypes also exist. While the degree of adherence in 

these intermediate phenotypes has been reported to be seasonally influenced, it is 

possible that additional modifying genes also exist. Non-melting flesh type appears to be 

inherited with clingstone without fail, while most freestone fruit are also of the melting 

flesh type, although melting flesh fruit that are clingstone are not uncommon (Okie, 

1998).There has been debate for some time as to whether the often-associated freestone 

and melting traits are controlled by a single locus, or are closely linked. A recent 

molecular study suggests that the freestone and melting genes are located at the same 

locus and that there may be three alleles for the three phenotypic classes (Peace, et al., 

2005). 

 

3.2.2 Variance component and heritability 

Overall peach fruit quality is a complex trait that is affected by genetics, the 

environment, environmental interaction with genetics, and cultural practices (Byrne, 

2005; Crisosto et al., 1997). When selecting for superior cultivars, it is important to 

better understand all forces that contribute to the phenotype of the plant, as well as how 

they interact. Elementary Yield, fruit size, tree productivity, and other traits are reported 

to be under polygenic control. At present, many of these traits appear to have low 

heritability (Sansavini et al., 2006), which might be overcome by increasing variability 
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through introgression of new material with greater relative variability for a particular 

trait.  

An understanding of genetic parameters including variances, heritability, and 

relationships among traits can be very useful when attempting to make predictions of 

genetic progress over generations, particularly when selection of parents is based on 

their own performance (Falconer, 1989). One of the most important genetic concepts 

dealing with breeding is heritability, which partitions the genetic contribution to a plant’s 

phenotype from environmental effects. This will be a focus of this study.  

Estimates of heritability can be used for predicting genetic progress for progeny 

when selection of parents is based on based on their own performance (de Souza et al., 

1998a). Some traits appear to be highly heritable, so that they can be reliably and 

accurately measured, such that expression of such traits is not heavily influenced by 

differential interaction effects with the environment, while others have low heritability 

(Moing et al., 2003). Examples of highly heritable fruit quality traits in peach are: the 

percentage of skin red blush (h2 = 0.68) (de Souza et al., 2000), the date of ripening (h2 = 

0.94) and fruit development period (FDP) (h2 = 0.91) (de Souza et al., 1998b). Most 

studies on quantitative traits in peach have focused mainly on narrow-sense heritability 

(de Souza et al., 1998a) which considers only additive genetic variation and is most 

valuable to the breeder for making gains through selection. While these and other 

previously conducted studies have reported heritability and combining abilities in the 

case of tree fruit crops, most have consisted of progenies being evaluated on their own 

roots in the same location for multiple years. 
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Although earlier studies have arrived at heritability estimates by interpreting the 

genetic variance of a given progeny based on the covariance among relatives , recent 

studies have focused on estimating heritability on a progeny-mean basis expressed as the 

proportion of genetic (VG or VA) variance among a progeny to that of the phenotypic 

variance (VP) (Bernardo, 2010). Linear regression of offspring performance on mid-

parent performance has also been a useful method (Falconer, 1989), but is only an 

accurate estimate when the inbreeding coefficient is equal to zero (Fernandez and Miller, 

1985). Although other methods of analysis based on variance components have been 

used, most require robust experimental designs with reciprocal crossing and replications-

all of which have limited feasibility in tree crops (de Souza, 1996). 

Random effects models such as restricted maximum likelihood (REML) were 

developed and first used by animal geneticists (Searle, 1971; Henderson, 1983), and later 

by plant breeders (Vileila-Morales et al., 1981; McCutchan et al., 1985; Huber, 1994; 

Tancred et al., 1995). Studies by Vileila-Morales et al. (1981) and de Souza et al., (1998) 

have thus far been the only examples of using such a model for analyzing variance 

components in peach. In addition to providing generalized least squares estimation of 

fixed effects, providing flexibility in model specification for univariate and multivariate 

forms and correlated residual terms (Henderson, 1974; Huber, 1994), REML has 

critically proven to provide robust analysis with the use of unbalanced and non-normal 

data (Banks et al., 1985; Westfall, 1987).  
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3.2.3 Phenotypic correlations 

Phenotypic correlation is determined from raw phenotypic values between two 

traits and accounts for both genetic and environmental correlations. Phenotypic 

correlations are mostly a function of environmental correlation when there is low 

heritability for a given trait (Falconer, 1989). Genetic correlations are primarily due to 

pleiotropy, but with low recombination are also often the result of linkage. Genetic 

correlations are more useful when the heritability of the two measured traits is high (de 

Souza, 1996). Correlations between traits can be especially useful in plant breeding 

where indirect selection may be applied for a trait. For instance, selecting on a correlated 

trait that is more easily measured than another highly correlated trait, assuming both 

traits have moderate to high heritability (Bernardo, 2010). Most correlations studies for 

peach and other fruit crops in the past have traditionally reported only on phenotypic 

correlations. It is important to keep in mind that the implication of phenotypic 

correlation in a breeding program is limited by the fact that both genetic and 

environmental correlations are included (de Souza et al., 1996). The same methods for 

estimating variance components such as mixed models can also be applied to calculate 

both phenotypic and genetic correlations, but parent-progeny models may also be used 

(Falconer, 1989).  Typically, a bivariate analysis is used to compute correlations, and is 

carried out two traits at a time (Henderson, 1983). 
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3.3 Materials and methods 

3.3.1 Plant material 

Three hundred and ninety-six seedlings were randomly selected from nine F1  

families (Tables 14 and 15) created by crossing high sugar selections from the USDA 

Stone Fruit Breeding Program in Parlier, CA  and medium to low chill selections from 

the Texas A&M University breeding program. The number of seedlings in each family 

ranged from eight to 90. Parents used for crosses (Table 14) have been shown to vary in 

the concentration of solids, ranging from 10.7 to 13.0 °Brix, and in chill requirement 

from approximately 150 to 650 chilling units. Other traits segregating in these progenies 

include fruit type (peach versus nectarine, round versus flat shape), fruit shape 

(prominence of tip and suture), fruit color (flesh and skin), fruit size, bloom date, ripe 

date, productivity, and fruit development period.  

Scion wood was collected from the parents and the original seedlings from 

breeding plots in College Station, TX and Floresville, TX. These were budded onto 

'Nemaguard' peach rootstocks in the two evaluation plots in College Station, TX and 

Fowler, California. Each site included one replicate of each seedling and three to four 

replicates of each parent. 

 

3.3.2 Plot establishment and design 

At the College Station site, one replicate of the propagated seedlings were 

randomized along with four replicates of each parent in a randomized block design. At 

the Fowler site plants were grouped according to progeny along with the three to four 
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Table 14. Characteristics of peach parents used in this study. 

Genotype Fruit type Date of full 
bloom 

Date of 
ripening 

Fruit red 
blush 

Fruit 
weight 

Fruit 
diameter 

Soluble 
solids 

Titratable 
acidity 

Notes 

Y426-371 Ne-Yel Feb 18 May 28 90 79.3 54.5 12.9 0.41  

Y434-40 Ne-Yel Feb 6 May 16 70-90 75.6 54.5 12.7 0.44  

Y435-246 Ne-Yel Feb 22 Jun 12 20-50 63.1 50.3 12.5 0.34  

Galaxy Pc-Wh Feb 19 Jun 12 40-70 140.9 76.9 12.6 0.24 PantaoY 

Victor Pc-Yel Feb 11 May 18 50-70 115.9 64.1 10.7 0.87  

TX2B136 Pc-Yel Feb 5 Jun 2 60-80 119.8 63.4 11.0 1.29  

TX3E213LW Pc-Wh Feb 20 Jun 7 70-80 118.2 62.3 13.0 0.33  

TXW1490-1 Pc-Yel Feb 5 Jun 8 30-40 107.6 61.9 12.2 1.0  

YPantao is heterozygous for round shape, homozygous pantao types do not survive 

Date of full bloom and date of ripening expressed in days; fruit red blush visually based on % coverage of red blush on skin; fruit weight 
in grams; fruit diameter in millimeters; soluble solids in °Brix; titratable acidity in Eq H+/1000 mL of juice 
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Table 15.  Peach crosses and number of individuals evaluated. 

Female Male Progeny 

1 TX2B136 Y434-40 71 

2 TX2B136 Y435-246 30 

3 ‘Victor’ Y426-371 90 

4 ‘Victor’ Y435-246 36 

5 ‘Victor’ ‘Galaxy’ 36 

6 TX2B136 ‘Galaxy’ 50 

7 TX3E213LW Y434-40 50 

8 TXW1490-1 Y434-40 25 

9 TXW1490-1 Y435-246 8 
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replicates of each parent.  

In both cases, experimental blocks had border trees at the ends of each row and 

border rows immediately adjacent to the outer two rows. Parental genotypes were 

replicated to gain a better assessment of the phenotypic variance attributed to 

environmental effects. 

Trees in the College Station plot were planted in staggered double-rows, with 

trees spaced 1.7 meters apart in double rows (0.67 meters apart). There were five meters 

between each group of double row (Figure 1 in Chapter II). All trees were trained as 

central leader.  

Trees in the Fresno plot were trained as a two-scaffold 'Y' system and spaced 

approximately one meter apart in single rows, approximately 4 meters apart. At each 

location, irrigation, fertilization, pest and weed control, pruning, and fruit thinning were 

carried out as necessary according to typical commercial practice. 

Progenies and parents were evaluated at the two locations over two years (Table 

17). Fowler, near Fresno, CA is located in the center of the stone fruit producing San 

Joaquin Valley in central California and is ideal for peach production with a semi-arid 

Mediterranean climate. It has long hot, dry summers and mild, wet winters. Fresno 

receives an average 284 mm rainfall per year, with temperatures ranging from 3.56°C 

(min. ave. Jan. temp) to 35.89°C (max. July temp.). Fowler receives on average 80% of 

the total possible sunlight each year (Weather Underground, 2011). Situated in the 

middle of the Central Valley, the Fresno area has, for the most part, deep, alluvial sandy-

loam soils with coarse texture and good internal drainage. 
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  Table 16. A comparison of climate and geography between two sites. 

 College Station, Texas Fresno, California 

Location 30°36'5'' N, 96°18’52'' W 36°44'52'' N, 119°46'21'' W 

Average Elevation 112 m 90 m 

Average Annual Rainfall 1000 mm 284 mm 

Min. Ave. January Temperature 4.4°C 3.56°C 

Max. Ave July Temperature 35.6°C 35.89°C 

Ave. sunlight hours received  2578 3550 

Climate  Sub-humid/warm temperate Semi-arid/Mediterranean 

Soil Clay-pan Alluvial sandy-loam 

Data based on historical soil survey (USDA) and historical climate records (Weather Underground, 2011). 
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College Station, TX is located in East Central Texas where stone fruit production 

in terms of acreage is comparatively small due to marginal soil and climate. The climate 

is described as sub-humid and warm temperate with mild winters and warm to hot, 

humid summers. College Station receives an average of 1000 mm rain per year, with 

temperatures ranging from 4.4°C (Min. Ave. Jan. Temp.) to 35.6°C (Max. Ave. July 

Temp.). College Station receives 27% less sunlight in a given year than does Fresno, 

except during the winter and early spring (Weather Underground, 2011). The College 

Station area is geographically nearly flat to slightly rolling hills, with the typical topsoil 

type a shallow moderately coarse sandy-loam to loamy sand with good internal drainage. 

The region is also plagued with heavy clay subsoil with very poor structure and very 

limited internal drainage and aeration. The College Station site is plagued with poor 

quality water for irrigation, with high alkalinity and sodium levels. Compared to Fresno, 

College Station is much more likely to experience late damaging spring freezes, extreme 

temperature swings, and inconsistent rainfall (drought or flooding). Less and sporadic 

amounts of chilling received from year to year as well as warm temperatures during fruit 

development can also be major problems. The College Station site has higher humidity 

(favoring disease), warmer night temperatures and lower sunlight during fruit 

development period; these collectively often result in relatively smaller fruit size, color, 

and soluble solids compared to the San Joaquin Valley. This overall makes College 

Station less suitable for stone fruit production and makes it possible for it to be 

considered a stress environment. 
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3.3.3 Data collection 

 Data was collected for two years from the California plot (2011 and 2012) and 

one year from the Texas plot (2012) (Table 18). A severe drought and slow plant 

establishment resulted in no data being collected in Texas in 2011. Collection of data at 

the Texas site was conducted by the Texas A&M Breeding Program. However, at the 

California site, the bloom data and fruit samples along with maturity data were collected 

by the staff of The Burchell Nursery where the block was planted. Pictures of each five 

fruit sample were taken of the exterior of the fruit from four positions: top, cheek (one 

side), suture, and tip. Pictures were also taken by the Texas A&M Stone Fruit Breeding 

Program and Fruit Dynamics, Inc. following a combination of transverse and equatorial 

bisecting cuts revealing the interior of both remaining halves from each of the five cut 

fruit. Pictures were taken as possible of every entry at both locations. 

 

3.3.4 Qualitative traits 

A five fruit sample was used for evaluation of all qualitative traits being visually 

assessed. If expression of a given trait was not uniform among all fruit in a sample, an 

average or approximation was recorded. This evaluation took place either inside the 

TAMU Stone Fruit Breeding lab or inside the Burchell Nursery building at Fowler under 

normal fluorescent lighting. 

Fruit ground color describes the color of the fruit surface not covered by red 

blush and was visually recorded based on a standard color chart. This color was then 

assigned to one of the following: white, white-green, green, white-yellow, yellow, 
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Table 17. Parameters used for evaluation of nine peach fruit quality traits. 

   Trait:    Parameter:    Units: 
Fruit ground color Visually based on presence of green using 0-2 scale  

Flesh color Visually based on presence of green using 0-2 scale  

Red in flesh Visually based on % red overlay using 0-9 scale (0=0%, 1=10%)  

Red around pit Visually, reported as absent or present (0-1)  

Fruit firmness Using table mounted penetrometer average five fruits Pounds of force 

Flesh adherence Visually using 1-4 scale (1=free, 4=cling)  

Soluble solids Using temperature compensated refractometer, five fruit average Degree Brix 

Titratable acidity Manually with burette, 0.1 N NaOH to pH 8.1 Eq H+/1000 mL 
 

Pit weight Five fruit average Grams 
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yellow-green, yellow-orange, orange, red-orange, and red. Fruit flesh color describes the  

color of the inside of the fruit flesh or mesocarp not overlaid by red pigmentation. The 

same procedure for color assigning used to describe fruit ground color was used to 

describe fruit flesh color. Both fruit ground color and fruit flesh color were later 

classified using a score scale ranging from 0 to 2 to reflect presence of green color in 

which 0 indicated green color, 1 indicated a combination of green and another color, and 

2 indicated no green color. 

Red in flesh describes the amount of the cut flesh surface that is overlaid with red 

pigmentation and was based on a score scale ranging from 0 to 10 in which 0 indicates 

0% red overlay and 10 indicates 100% red overlay. Red around pit describes the 

presence of red pigmentation around the pit or endocarp. Samples were either classified 

as having red pigmentation present or absent using a binary 0-1 scale. 

Flesh adherence was subjectively evaluated on a 1- 4 scale  in which a score of 1 

indicated complete separation of flesh from endocarp (freestone) and a 4 indicated 

complete adherence or no separation of flesh from endocarp (clingstone). Scores of 2 

and 3 indicate intermediate degrees of flesh adherence, with 2 being closer to freestone 

and 3 closer to clingstone. 

 

3.3.5 Quantitative traits 

Fruit firmness measurements were done using a table-mounted penetrometer 

based on a five fruit average. A section of fruit peel was removed from the part of each 

fruit where the instrument tip was inserted to a standard depth into the fruit flesh. Effort 
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was taken to attempt that all fruit was of uniform maturity. The same procedure was used 

by the staff at the Fruit Dynamics lab for fruit from the Fowler location as for those from 

College Station. 

Soluble solids data was reported as degrees Brix and was measured using a 

temperature compensating refractometer. Measurements taken from the College Station 

location were done using a hand-held refractometer in which juice from individual fruit 

was measured and the average of fruits was recorded. This procedure was also used for 

both years at the Fowler location, but a different method was also used by the Fruit 

Dynamics staff. They used a composite sample consisting of macerated fruit pulp that 

was then centrifuged to collect juice from a five fruit sample.. Brix data obtained from 

the two procedures proved to be highly correlated, thus data from the two samples were 

averaged for entry. 

Titratable acidity was measured manually at both locations based on a five fruit 

sample. Samples from the Fowler location were stored in a cold room at approximately 4 

to 5 °C and evaluated by the Fruit Dynamics staff within two to five days in cold storage 

after harvest. Juice from the same composite fruit sample used for soluble solids 

measurement was used for titratable acidity. At the College Station location, fruit were 

squeezed by hand and the resulting juice stored in 60 mL plastic containers at 

approximately -20°C. Frozen samples were allowed to thaw at room temperature for 

approximately two hours prior to their immediate use. For samples from both locations, 

juice was filtered using a piece of cheese cloth. Ten grams of filtered juice was diluted 

with 30 mL of de-ionized water and placed in a 40 mL glass beaker. Samples were 
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titrated with 0.1 N NaOH to pH of 8.1. A two point calibration pH meter was used to 

determine the titration endpoint. Results were expressed as equivalents of anhydrous 

malic acid per 1000 millimeters of juice (eq H+/1000 mL). The following conversion 

formula was used: 

 

TA = [(ml NaOH x N x 0.067045) ÷ ml juice] x 1000 where, 

  ml NaOH = ml NaOH used in titration 

    N = Normality of NaOH 

   0.067045 = meq weight of malic acid 

  

Pit weight measurements were reported as the average mass from five pits after 

all flesh had been removed. The majority of all pits from clingstone fruit were removed 

of most bulk flesh and frozen for later use. Pits were later allowed to thaw at room 

temperature and immersed in 0.1% laboratory grade Polygalactoranse (a pectin 

degrading enzyme) for 24 hours to dissolve the remaining flesh from the outer pit 

surface. Any remaining flesh was removed by scrubbing and rinsing the pits. Pits were 

allowed to dry before weighing. 

 

3.3.6 Statistical analysis 

 All statistical analyses were performed using JMP software, Version 9.0, SAS 

Institute Inc., Cary, NC, 1989 – 2010. 
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Prior to statistical analyses, data were tested for normality using a Shapiro-

Wilcox test. Data from all traits proved to be non-normally distributed. An array of 

transformations were performed and tested for normality, all of which resulted in the 

assumption of normality not being met. In addition to testing the effectiveness of each 

transformation with regard to normality, the model for variance components was also 

run using the data resulting from each transformation. Output from the analysis model 

(below) were compared to that of the non-transformed data by evaluating the R2 value 

and the genotypic variance component value. In every case, these values were smaller 

than that of the non-transformed data. Therefore the non-transformed data were used 

throughout this study. 

The additive genetic (σ2
a), non-additive genetic (σ2

di), environmental (σ2
e), and 

genotype x environment (σ2
gxe) variances were estimated using a restricted maximum 

likelihood (REML) mixed model with all random effects. The variances are reported 

from the covariance parameter estimate report in JMP. There were three sets of data: 

Fowler, 2011; Fowler, 2012; College Station, 2012.  Year 2012 was found to have 

differing effects in the CA and TX different locations, so year and location were treated 

as single environments including: CA-2011, CA-2012, and TX-2012. Parentage (male 

and female) was also taken into account for all progenies. 

Because there was no replication included in the model (only the parents were 

replicated), there was no residual and all variance was partitioned into one of the 

following components: σ2
a (additive genetic); σ2

di (non-additive genetic); (σ2
e) 

environmental; σ2
gxe (genotype x environment). 
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Broad sense heritability estimates were calculated as: 
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Narrow sense heritability estimates were calculated as: 
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Where, 

 2ˆ Aσ  = estimated additive genetic variance 

2ˆGσ = estimated genetic variance 

 2ˆGEσ = estimated genotype x environment variance 

 e = number of environments 

 

A bivariate model was used to estimate phenotypic correlations. Correlations 

were computed on a pair-wise basis for all traits. Significance of correlation estimates 

were discussed based on the magnitude of the estimate because the sampling variances 

for the correlation estimates were not available (de Souza et al., 1998a). Thus, 

correlation estimate of ≥0.65 was considered strong to very strong; a correlation estimate  
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Table 18. Number of observations used in variance component and heritability estimates for 
nine peach fruit quality traits evaluated for two years at Fowler, CA and for one year at 
College Station, TX.  
Trait Number of observations 

Fruit ground color 711 

Flesh color 703 

Red in flesh 702 

Red around pit 701 

Fruit firmness 655 

Flesh adherence 700 

Soluble solids 687 

Titratable acidity 634 

Pit weight 530 
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between 0.50 and 0.64 was considered moderately strong; a correlation estimate between 

0.30 and 0.49 were considered moderately weak 

 

3.4 Results and discussion 

3.4.1 Variance component and heritability 

Variability among progeny was comparable to that of parents ranging from 0 to 2 

for ground color (Tables 19 and 20). Fruit ground color was subject to strong genotype x 

environment interaction that explained approximately 65% of the total phenotypic 

variance (Table 21). Fruit ground color exhibited moderately high heritability (h2 = 0.64) 

(Table 21) and genetic improvement of this trait should be possible. Green color in the 

fruit skin and flesh is undesirable, and a greater understanding of the genetic control for 

this trait would be very useful.  

Modest variability was associated with red in flesh. Variability for red in flesh 

was slightly higher among progeny (0 to 4 on a zero to ten scale) with a mean of 0.39 

(Table 19) than among parents (0 to 2 on a zero to ten scale) (Table 20). This trait 

appeared to have a strong genotype x environment effect accounting for approximately 

56% of the total variance (Table 21). Red in flesh exhibited low narrow-sense 

heritability (h2 = 0.20) and only moderate broad sense heritability (H2 = 0.40) (Table 

21). 

Both the means and measures of variability for fruit firmness among progeny 

were comparable to that of the parents (Tables 19 and 20). Firmness varied widely from 

a minimum of zero to a maximum of 17.1 among progeny with a mean of 7.61 (Table   
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Table 19. Descriptive statistics of six peach fruit quality traits evaluated for nine progeny for two years at Fowler, CA and for one year at College 
Station, TX. 

Trait N Mean Phenotypic 
Variance 

Standard 
Deviation 

C.V. Min Max 

Fruit ground color 711 1.8 0.23 0.45 25.71 0.0 2.0 

Red in flesh 702 0.4 0.35 0.58 148.72 0.0 4.0 

Fruit firmness 655 7.6 10.45 3.10 29.67 0.0 17.1 

Soluble solids 687 11.8 4.61 2.03 17.23 7.2 22.0 

Titratable acidity 634 0.7 0.14 0.36 52.94 0.16 2.18 

Pit weight 530 6.4 6.52 1.82 28.62 2.6 17.0 

N = Number of observations; C.V. = coefficient of variation; Min = minimum value; Max = maximum value. 
wFruit ground color expressed as amount of green color based on 0-2 scale (0 = green, 2 no green); red in flesh based on % red 
overlay of fruit flesh using 0-10 scale (0 = 0% red overlay, 10 = 100% red overlay); fruit firmness as pounds of force; soluble solids 
in °Brix; titratable acidity in Eq H+/1000 mL of juice; pit weight in grams. 
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Table 20. Descriptive statistics of six peach fruit quality traits evaluated for eight parents for two years at Fowler, CA and for one year at College 
Station, TX. 

Trait N Mean Phenotypic 
Variance 

Standard 
Deviation 

C.V. Min Max 

Fruit ground color 63 1.7 0.25 0.50 29.41 0.00 2.00 

Red in flesh 63 0.3 0.24 0.49 175.00 0.00 2.00 

Fruit firmness 36 6.3 14.14 3.76 59.87 0.00 12.04 

Soluble solids 63 12.3 2.89 1.70 13.84 9.70 17.00 

Titratable acidity 36 0.5 0.12 0.34 64.15 0.15 1.32 

Pit weight 40 6.4 3.13 1.77 27.66 4.00 13.00 

N = Number of observations; C.V. = coefficient of variation; Min = minimum value; Max = maximum value. 
wFruit ground color expressed as amount of green color based on 0-2 scale (0 = green, 2 no green); red in flesh based on % red 
overlay of fruit flesh using 0-10 scale (0 = 0% red overlay, 10 = 100% red overlay; fruit firmness as pounds of force; soluble solids 
in °Brix; titratable acidity in Eq H+/1000 mL of juice; pit weight in grams. 
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Table 21. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for nine progeny for six peach quality traits 
evaluated for two years at Fowler, CA and for one year at College Station, TX. 

Traitw 
Variancesy 

H2 h2 
VA VDI VG VE VGE VP 

Fruit ground color 0.07 0.02 0.09 0.01 0.15 0.23 0.64 0.50 

Red in flesh 0.03 0.03 0.06 0.03 0.27 0.35 0.40 0.20 

Fruit firmness 1.32 3.25 4.57 0.06 5.82 10.45 0.70 0.20 

Soluble solids 0.74 1.71 2.45 0.36 1.81 4.61 0.80 0.24 

Titratable acidity 0.01 0.1 0.11 0.00 0.03 0.14 0.92 0.08 

Pit weight 0.06 0.75 0.81 4.35 1.36 6.52 0.64 0.05 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance 
wFruit ground color expressed as amount of green color based on 0-2 scale (0 = green, 2 no green); red in flesh based on % red overlay 
of fruit flesh using 0-10 scale (0 = 0% red overlay, 10 = 100% red overlay; fruit firmness as pounds of force; soluble solids in °Brix; 
titratable acidity in Eq H+/1000 mL of juice; pit weight in grams. 
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Table 22. Comparison of six peach fruit quality traits evaluated for nine progeny in three environments. 

 
Fowler, CA 2011  Fowler, CA 2012  College Station, TX 2012 

Traitw Mean Min-Max 
 

Mean Min/Max 
 

Mean Min/Max 

Fruit ground color 1.9 0.0-2.0  1.7 0.0-2.0  1.7 0.0-2.0 

Red in flesh 0.5 0.0-3.0  0.2 0.0-3.0  0.6 0.0-4.0 

Fruit firmness 7.4 1.5-15.2  7.9 0.0-17.1  7.2 0.0-15.6 

Soluble solids 11.7 7.2-20.8  11.6 7.6-22.0  12.5 8.0-18.5 

Titratable acidity 0.7 0.2-1.8  0.7 0.2-2.1  0.6 0.2-1.1 

Pit weight 8.7 3.0-17.0  6.3 2.6-11.0  5.1 3.0-8.5 

wFruit ground color expressed as amount of green color based on 0-2 scale (0 = green, 2 no green); fruit flesh color 
expressed as amount of green color based on 0-2 scale (0 = green, 2 = no green); red in flesh based on % red overlay of 
fruit flesh using 0-10 scale (0 = 0% red overlay, 10 = 100% red overlay); soluble solids in °Brix; titratable acidity in 
Eq H+/1000 mL of juice; pit weight in grams. 
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19). Firmness was also subject to genotype x environment effect explaining 

approximately 56% of the total variance for this trait (Table 21). It is important to 

remember that peach is a climacteric fruit and firmness is highly subject to the subjective 

procedure for determining maturity as well as how quickly the trait was measured 

following harvest. Heritability for fruit firmness was low (h2 = 0.20) (Table 21), but still 

higher than the previous report of 0.13 by Hansche et al. (1972). Broad sense heritability 

for firmness was high (H2 = 0.70), suggesting an important non additive genetic 

component for this trait. Nevertheless, the moderate amount of variability should allow 

for genetic improvement of this trait. 

The range for soluble solids varied widely from 7.2 to 21.8 °Brix (Table 19). 

Greater variability was observed among progeny than parents, as reflected by the wider 

range among progeny (Tables 19 and 20). Genotype x environment interaction 

contributed to approximately 39% of total variance for soluble solids (Table 21). The 

low narrow sense heritability estimate of 0.24 (Table 21) for SSC was higher than that of 

0.01 reported by Hansche et al. (1972), but was considerably lower than most estimates 

(h2 = 0.33; 0.43; 0.72) (de Souza et al., 1998b; Monet and Bastard, 1982; Brooks et al., 

1993). Broad sense heritability was much higher (H2 = 0.80) (Table 21) supporting the 

conclusion that sugar content in peach is affected by major genes (Quilot-Turion and 

Gernard, 2009; Dirlewanger et al., 2009; Cantin et al., 2009). Distribution of soluble 

solids appeared to be skewed toward the lower end (Appendix 18) suggesting dominance 

for low sugar in these populations. Nevertheless, some genetic improvement for this trait 

should be possible, given the observation of transgressive segregation in some progenies, 
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especially if these genes that appear to be dominant for low SSC can easily be selected 

against. 

A substantial amount of variability was associated with titratable acidity (TA) as 

indicated by the range (0.16 to 2.18 ml Eq H+/1000 mL of juice) with a mean of 0.68 

(Table 19). Both the range and variance among progeny were comparable to that of the 

parents for this trait (Tables 19 and 20). Both environmental and genotype x 

environment effects were minimal for acidity and the non-additive genetic effect was 

responsible for approximately 71% of the total variance for this trait (Table 21). TA 

showed very low additive inheritance (h2 = 0.08) (Table 21), which was lower than the 

previous low (≤0.19) (Hansche et al., 1986; Hansche and Beres, 1980; Hansche et al., 

1972) to moderate (h2 = 0.31) (de Souza et al., 1998b) estimates. The estimate for broad 

sense heritability was high (H2 = 0.92) (Table 21) reflecting the fact that these 

populations were segregating for the D gene which conditions a low level of acidity 

(Boudheri et al. 2009 and Dirlewanger et al., 1999). Existence of this major gene in these 

populations is evident in the bimodal distribution associated with this trait (Appendix 

19). Selection for low acid genotypes is relatively easy, given the effect of the major 

dominant gene for low acidity. Selection for high acid fruit would also be possible by 

selecting against low acid genotypes. 

 The range for pit weight varied from 2.6 to 17.0 grams, and transgressive 

segregation was observed in several progenies. (Tables 19 and 20). Environmental 

effects accounted for approximately 67% of the total variance (Table 21) as reflected in 

the comparison that pit weight averaged approximately 72% and 24% greater at Fowler 
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in 2011 and 2012 than at College Station in 2012 (Table 22). Pit weight exhibited high 

broad sense heritability (H2 = 0.64) (Table 21).  Non-additive genetic component 

accounted for 92% of the genetic variance, supporting earlier conclusions that this trait, 

which has traditionally been considered quantitative, might be controlled by several 

major genes (Hesse, 1975) although the negatively skewed distribution of pit weight in 

these populations suggests dominance for small pit size (Appendix 20) rather than for 

large pits as suggested by Bassi et al. (1989). 

 

3.4.2 Genotype by environment interactions 

As mentioned earlier, several traits were affected by a strong genotype x 

environment (GxE) interaction. GxE interaction has been described as the differential 

response of genotypes to the environment in which they are grown (Bernardo, 2010). If 

such interactions exist in the case of specific genotypes across specific environments, 

selection on the basis of performance for a given trait cannot be practiced in one 

environment if the plant is expected to perform the same in another (Allard and 

Bradshaw, 1964). A stability analysis plotting progeny means across environments was 

generated to make this comparison easier (Appendix 13 through 16). 

Fruit ground color was strongly affected by genotype x environment interaction 

that was responsible for approximately 65% of the total phenotypic variance (Table 21). 

On a mean basis, ground color was slightly higher at Fowler in 2011 than at Fowler in 

2012. Ground color at College Station in 2012 was intermediate between the two Fowler 

environments (Table 22). This interaction appears to be the result of most families 
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observed generally not closely following this trend, with three families in particular, 

unrelated with respect to parentage, deviating severely from this overall trend (Appendix 

13). 

Red in flesh was also subject to strong genotype x environment effect accounting 

for approximately 56% of the total variance (Table 21). Red in flesh had an average 

value of 0.50 at Fowler in 2011 and was much lower at Fowler in 2012, with an average 

value of 0.23. The highest average value of for this trait was 0.59 at College Station in 

2012 (Table 22). The primary source of interaction appeared to be three families, all of 

which shared one common parent in Y434-40, that severely deviated from this trend 

(Appendix 14). 

Fruit firmness was strongly affected by genotype x environment interaction, 

which explained approximately 56% of the total variance for this trait. Average firmness 

was slightly higher the second year at Fowler (Table 22) with most families more or less 

adhering to this trend with little interaction (Appendix 15). Average firmness was 

slightly lower at College Station in 2012 than at Fowler in 2012 (Table 22). Much of the 

interaction appears to result from the erratic behavior among families between all three 

environments (Appendix 15). This behavior may be largely an effect of poor sampling, 

as there was no clear explanation for these interactions with respect to parentage. Fruit at 

the College Station site were not always harvested following as carefully and timely as 

at the Fowler site. As mentioned earlier, peach is a climacteric fruit, thus assessment of 

firmness is highly dependent on the precise sampling and timely measurement of this 

trait. 
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Soluble solids was also strongly affected by genotype x environment response 

that accounted for approximately 39% of total variance for this trait. Average soluble 

solids concentration was generally stable as a whole and with respect to performance of 

individual families across the Fowler environments as might be expected given the 

greater seasonable stability from year to year at this location (Appendix 16). Soluble 

solids at College Station in 2012 were on average approximately 7% and 8% higher than 

at Fowler in 2011 and 2012 (Table 22) likely due to greater environmental stresses 

afflicting this site such as shallow soils as well as smaller fruit size observed at this site 

(Table 9 in Chapter II)- all of which can result in higher soluble solids in peach 

(Veihmeyer and Hendrickson, 1949). Most of the genotype environment interaction 

appeared to result from deviation from this general trend by families splitting into two 

groups. Approximately half of the families, most of which shared ‘Victor’ as a parent, 

performed more favorably, while the other group, most of which were derived from the 

parent TX2B136, performed less favorably at College Station in 2012 relative to Fowler 

in 2012 (Appendix 16). On average, both of these groups of families had similar fruit 

development periods.      

 

3.4.3 Major gene effects on heritability 

Two major genes- pantao and nectarine can have strong pleiotropic effects on 

several traits related to fruit quality in peach, with nectarines tending to have greater 

firmness, soluble solids, and acidity, while pantao fruit typically have higher soluble 

solids, but lower firmness and acidity (Wang, 2009; Wang et al., 2010; Wen et al., 
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1995a&b; Wu, 2003a&b). Nectarine is inherited as a single recessive gene and produces 

fruit without pubescence (Blake, 1932). Pantao is inherited as a single dominant trait 

producing flattened or saucer-shape fruit (Scorza and Sherman, 1996). Because several 

of these progenies were segregating for one or both of these traits, the analysis was run 

without pantao, nectarine, or both types of seedlings to assess their influence on the 

heritability for these traits. Approximately 15% fewer data points were observed with the 

exclusion of nectarine, and approximately 7% fewer without pantao seedlings. 

Additive inheritance for soluble solids was lower when nectarine genotypes were 

excluded from the analysis (h2 = 0.13) (Table 23). Nectarines tend to have higher SSC 

compared to peaches (Cantin et al., 2009; Wang et al., 2010; Wen et al., 1995); 

therefore, removal of these higher sugar individuals resulted in the 78% lower additive 

variance when nectarines were removed (Table 23). Nectarine seedlings were on average 

2.04 °Brix or approximately 17% higher than peach seedlings among progenies 

segregating for this trait. 

Heritability of titratable acidity, estimated as narrow sense, was reduced to zero 

with the exclusion of nectarine alone and both pantao and nectarine genotypes from the 

analysis for titratable acidity (TA), and resulted from the rounded additive genetic 

variance being reduced to zero for these datasets (Table 23). Although the resulting loss 

of heritability was appreciable, the original estimate (h2 = 0.08) was already extremely 

low resulting in the same conclusion on heritability for this trait. 
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Table 23. Variance component, broad sense heritability (H2), and narrow sense heritability (h2) for soluble solids and titratable acidity evaluated for 
two years at Fowler, CA and for one year at College Station, TX comparing the effect of the removal of nectarine, pantao, and both types of 
seedlings. 

Traitw 
Variancesy 

H2 h2 
VA VDI VG VE VGxE VP 

Soluble solids 0.74 1.71 2.45 0.36 1.81 4.61 0.80 0.24 

Soluble solidsp 0.50 1.19 1.69 0.37 1.79 3.85 0.74 0.22 

Soluble solidsn 0.21 0.95 1.16 0.70 1.35 3.20 0.72 0.13 

Soluble solidspn 0.12 0.81 0.93 0.72 1.38 3.04 0.67 0.09 

         
Titratable acidity 0.01 0.10 0.11 0.00 0.03 0.14 0.92 0.08 

Titratable acidityp 0.01 0.09 0.10 0.00 0.03 0.13 0.91 0.09 

Titratable acidityn 0.00 0.07 0.07 0.00 0.02 0.10 0.91 0.00 

Titratable aciditypn 0.00 0.07 0.07 0.00 0.02 0.10 0.91 0.00 

yVA = additive genetic variance; VDI = non-additive genetic variance; VG = genetic variance (additive and non-additive); VE = 
environmental variance; VGxE = genotype x environmental variance; VP = phenotypic variance. 
wSoluble solids in °Brix; titratable acidity in Eq H+/1000 mL of juice. 
pAnalysis run without pantao seedlings. 
nAnalysis run without nectarine seedlings. 
pnAnalysis run without both pantao and nectarine seedlings. 
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3.4.4 Phenotypic correlations 

Phenotypic correlations are an estimate of the relationship between the two traits 

based on both environmental and genetic factors, limiting their application (de Souza et 

al., 1998b). Also, when heritability for a given trait is low, phenotypic correlation is 

primarily a function of environmental correlation (Falconer, 1989). The ultimate 

application for inter-trait correlation in plant breeding is indirect selection (Searle, 1965). 

Significance of correlation estimates were discussed based on the magnitude of the 

estimate because the sampling variances for the correlation estimates were not available 

(de Souza et al., 1998b). Thus, a correlation estimate of ≥0.65 was considered strong to 

very strong; a correlation estimate between 0.50 and 0.64 was considered moderately 

strong; a correlation estimate between 0.30 and 0.49 was considered moderately weak.  

Correlations of fruit firmness and soluble solids with date of ripening (r = 0.38; 

0.32) and FDP (r = 0.39; 0.33) (Table 24) were moderately weak. The correlations 

between soluble solids  and  both ripening date and FDP (Table 24) support earlier 

conclusions that it is more difficult to select for high sugar progeny that are earlier 

ripening or have a short development period (de Souza et al., 1998b; Wu, 2003).  

Pit weight showed moderately weak correlations with FDP (r = 0.33), fruit 

weight (r = 0.51), and fruit diameter (r = 0.38) (Table 24). The relationship correlation of 

fruit diameter and pit weight was stronger (r = 0.49) (Appendix 4) when pantao 

seedlings were removed from the analysis, which tend have smaller pits. This is to be 

expected given the positive relationships between pit weight and fruit size (Chalmers  
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Table 24. Phenotypic correlations among 14 peach tree and fruit quality traits for 
two years at Fowler, CA and one year at College Station, TX.z 

Charactersy Firmness S.S. T.A. Pit weight 

Bloom -0.01 0.02 -0.19 -0.21 

Ripe 0.38 0.32 -0.02 0.26 

FDP 0.39 0.33 0.04 0.33 

Pubescence -0.11 -0.44 -0.31 0.02 

Blush -0.20 -0.15 -0.09 -0.08 

Weight 0.19 -0.12 -0.14 0.51 

Diameter 0.25 -0.03 -0.10 0.38 

Tip 0.00 0.15 0.13 0.09 

Shape -0.14 0.15 0.06 0.06 

ZCorrelation values rp≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were 
considered strong or very strong, moderately strong, moderately weak, and 
weak or very weak, respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit 
development period in days; fruit pubescence visually based on 0-9 scale (0 
= no pubescence, 6 or higher = greater pubescence than modern cultivars); 
fruit red blush visually based on % coverage of red blush on skin using 0-5 
scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 
81%-99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; 
fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 
= completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or 
lower = large suture bulge and prominent tip, 9 = no pronounced suture and 
oblate tip; S.S. = soluble solids in °Brix; T.A. = titratable acidity in Eq 
H+/1000 mL of juice; pit weight in grams. 
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and van den Ende, 1975), and fruit size with FDP (Chapter II). The correlation between 

pit weight and FDP was higher (r = 0.39) (Appendix 4) when the smaller pit pantao 

genotypes were removed from the analysis. 

Pubescence with soluble solids and titratable acidity showed moderately weak 

negative correlations (r = -0.44; -0.31) (Table 24). As expected, these values were 

reduced substantially (r = -0.16; -0.09) (Appendix 5) when nectarines were removed 

from the analysis. Nectarines tend to have higher SSC and greater acidity than peaches 

(Cantin et al., 2009; Wang, 2009; Wang et al., 2010; Wen et al., 1995) in both 

segregating progenies and germplasm collections. 

   

3.5 Conclusions 

A large amount of variability was associated with all traits, except for fruit 

ground color and red in flesh, which exhibited low to moderate variability. Variability is 

a major component in the estimation of heritability, and both are necessary for genetic 

improvement. Although most traits had low narrow sense heritability, genetic 

improvement of these traits should be possible, given their appreciable phenotypic 

variability and high broad sense heritability. Slower progress should be expected for red 

in flesh, given its smaller variability and genetic variance components. Heritability 

and genetic correlations are dependent on the specific germplasm and environments used 

in each investigation and the results of this study differ from some previous studies. 

Only one trait, fruit ground color, showed moderate to high narrow sense 

heritability (h2 = 0.50). All other traits (red in flesh, fruit firmness, soluble solids, TA, 
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and pit weight) showed low additive inheritance as earlier reported, but had moderate to 

high broad sense heritability suggesting an important non additive genetic component for 

these traits. Broad sense estimate values ranged from 0.40 for red in flesh to 0.92 for 

acidity. Existence of dominance for small pit weight (contrary to a previous report) and 

low soluble solids was also suggested in these populations. 

Most traits were not strongly influenced by the environment; however, pit weight 

showed major differences between sites. Pit size, similar to fruit size, was consistently 

larger at Fowler than at College Station. 

Most traits were subject to genotype x environment effects, suggesting that, for 

these traits, selection should only be practiced where the plants are meant to be grown. 

All but two traits (TA and pit weight) showed differential response with respect to 

genotype across different environments. For fruit ground color, fruit firmness, and 

soluble solids the interaction appeared to be the result of most families behaving 

differently from the general trend across environments, while only two families appeared 

to deviate from the trend for red in flesh. 

Several progenies were segregating for two major genes, pantao and nectarine, 

which are reported to have a strong pleiotropic effects on fruit firmness, soluble solids, 

TA , and pit weight, thus the analysis was run without pantao, nectarine, and both types 

of seedlings. Removal of nectarine seedlings from the analysis resulted in a lower 

narrow sense estimate of heritability for soluble solids. Lower narrow sense heritability 

was associated with TA when pantao and pantao and nectarine seedlings were removed. 

The exclusion of nectarine and pantao seedlings from the analysis resulted in 
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approximately 15% and 7% fewer data points for these traits. Overall, heritability was 

not strongly affected by these major genes in terms of low or moderate heritability 

classifications. 

The ultimate implication of high correlations between traits is the ability to 

practice indirect selection. The usefulness of phenotypic correlations would be limited 

when heritability is low for both related traits because these correlations are based on the 

relationships between traits based on both genetic and environmental factors. None of 

the correlations discussed were strong enough, given the relatively low heritability 

among related traits, to be considered as useful for indirect selection. 
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CHAPTER IV 

CONCLUSION 

Most traits evaluated were associated with large phenotypic variability, while 

fruit tip and fruit shape exhibited more moderate measures of variability. Red in the flesh 

showed low to moderate variability. Variability is a major component in the estimation 

of heritability, and both are necessary for genetic improvement. The date of full bloom 

was highly heritable, whereas slightly less than half of the traits were estimated to be 

moderately heritable, and slightly more than half showed low and one showed high 

additive inheritance. Given the appreciable variability and moderate heritability, some 

genetic advance should be possible for most traits evaluated. Heritability and genetic 

correlations are dependent on the specific germplasm and environments used in each 

investigation and the results of this study differ from some previous studies. 

Date of full bloom and fruit ground color were highly and moderately heritable 

(h2 = 0.62, h2 = 0.50) on a narrow sense basis, whereas date of ripening and fruit 

development period (FDP) were associated with low heritability in spite of being widely 

reported as highly heritable traits. Several other traits (red in flesh, fruit firmness, soluble 

solids, TA, and pit weight) showed low additive inheritance as earlier reported. Broad 

sense estimates for all of these lowly heritable (h2) traits were moderate to high, 

suggesting an important non additive genetic component. Contrary to previous studies, 

fruit weight showed low additive inheritance, although the broad sense heritability was 

high for this trait. Distribution of fruit weight, pit weight, and soluble solids was 
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negatively skewed, suggesting dominance for small fruit and pit size and low soluble 

solids. Moderate narrow sense heritability was associated with all the other traits (fruit 

pubescence, fruit red blush, fruit pubescence, fruit diameter, fruit tip, and fruit shape) as 

expected from previous studies. Heritability ranged from 0.38 for fruit shape to 0.46 for 

fruit red blush. 

Several traits were strongly influenced by the environment (date of full bloom, 

date of ripening, and FDP) mainly in response to temperature differences between sites, 

as trees typically bloomed earlier and fruit ripened later at Fowler than at College 

Station.  Pit weight was consistently larger at Fowler than at College Station. 

Several traits were subject to strong genotype x environment effects, suggesting 

that, for these traits, selection should only be practiced where the plants are meant to be 

grown. Fruit red blush, fruit weight, fruit diameter, fruit tip, fruit shape, and red in flesh 

showed differential response with respect to genotype across different environments and, 

for these traits, the interaction appeared to be the result of one or two progeny families 

behaving differently from the general trend across environments. Several other traits 

were also influenced by this effect. For fruit ground color, fruit firmness, and soluble 

solids the interaction appeared to be the result of most families behaving differently from 

the general trend across environments. 

 Several progenies were segregating for two major genes, pantao and nectarine, 

which have been reported to have pleiotropic effects on fruit size, fruit red blush, and 

fruit shape; thus, the analysis was run without pantao, nectarine, and both types of 

seedlings for these traits. Removal of nectarine seedlings from the analysis resulted in 
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lower heritability estimates for fruit pubescence, fruit red blush, fruit weight, and fruit 

tip, and soluble solids. Heritability for fruit weight was higher with the removal of 

pantao seedlings, while fruit diameter showed a lower value when both pantao and 

nectarine were removed. Additive heritability was lower when nectarine, and both 

pantao types of seedlings were removed. The exclusion of nectarine and pantao 

seedlings from the analysis resulted in approximately 15% and 7% fewer data points for 

these traits. Overall, heritability was not strongly affected by these major genes, except 

in the case of fruit pubescence, which went from moderate to low heritability (h2) with 

the exclusion of nectarine seedlings as well as fruit diameter, which had the same 

response with the removal of both pantao and nectarine seedlings from the analysis. 

The ultimate implication of high correlations between traits is in the ability to 

practice indirect selection. Because phenotypic correlations are based on the 

relationships between traits, as influenced by both genetic and environmental factors, 

their usefulness would be limited, especially when heritability is low for both related 

traits. None of the correlations were strong enough among traits to allow for indirect 

selection, as most relationships were the result of environmental or physiological 

relationships, or were simply different measures of the same trait. 

Date of ripening and FDP were strongly correlated (r = 0.94), suggesting that 

ripening date is a reliable estimator of FDP. The negative correlation between date of 

full bloom and FDP (r = -0.45) suggests that earlier blooming during cool temperatures 

tends to extend the fruit development period. The moderately weak negative correlations 

of fruit red blush with date of ripening (r = -0.31) and FDP (-0.38) were most likely a 
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function of decreased blush caused by lower light exposure to fruit due to denser tree 

canopy later in the season. Date of full bloom and fruit tip were moderately and 

negatively correlated (r = -0.40) as reported previously, as earlier blooming seedlings 

tend to produce rounder tip fruit in response to cooler temperatures during bloom and 

early development. 

Fruit weight and fruit diameter were moderately strongly correlated with date of 

ripening (r = 0.54; 0.55) and FDP (r = 0.50; 0.51) respectively. As previously reported, 

fruit size tends to increase when fruit ripens later as a result of greater resources 

available for growth. 

Fruit weight and fruit diameter were strongly correlated (r = 0.83) as expected, 

suggesting that both are reliable measures of fruit size. Fruit tip and fruit shape were 

moderately weakly correlated (r = 0.36), which was not surprising considering that over 

all fruit shape is partially a representation of fruit tip, and was weaker without rounder 

tip nectarines and stronger without pantao, which received high tip ratings, but often 

lower ratings for fruit shape based on irregular sutures.  
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A-1. Phenotypic correlations among nine peach tree and fruit quality traits for two years at Fowler, 
CA and one year at College Station, TX. with pantao genotypes removed.z 

Traitsy Bloom Ripe FDP Pub. Blush Weight Diam. Tip Shape 

Bloom --- -0.15 -0.45 0.32 0.03 -0.11 -0.06 -0.41 -0.26 

Ripe -0.15 --- 0.94 0.09 -0.32 0.57 0.53 0.02 0.04 

FDP -0.45 0.94 --- -0.01 -0.39 0.53 0.50 0.12 0.08 

Pubesc. 0.32 0.09 -0.01 --- -0.06 0.26 0.22 -0.30 -0.24 

Blush 0.03 -0.32 -0.39 -0.06 --- -0.28 -0.24 0.11 0.18 

Weight -0.11 0.57 0.53 0.26 -0.28 --- 0.90 0.00 0.06 

Diam. -0.06 0.53 0.50 0.22 -0.24 0.90 --- 0.03 0.06 

Tip -0.41 0.02 0.12 -0.30 0.11 0.00 0.03 --- 0.41 

Shape -0.26 0.04 0.08 -0.24 0.18 0.06 0.06 0.41 --- 

ZCorrelation values rp≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were considered 
strong or very strong, moderately strong, moderately weak, and weak or very weak, 
respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development period 
in days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = 
greater pubescence than modern cultivars); fruit red blush visually based on % coverage of 
red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 
51%-80%, 4 = 81%-99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; 
fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = completely 
oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and 
prominent tip, 9 = no pronounced suture and oblate tip. 
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A-2. Phenotypic correlations among nine peach tree and fruit quality traits for two years at Fowler, CA 
and one year at College Station, TX. with nectarine genotypes removed.z 

Traitsy Bloom Ripe FDP Pub. Blush Weight Diam. Tip Shape 

Bloom --- -0.21 -0.50 0.08 0.17 -0.21 -0.20 -0.33 -0.17 

Ripe -0.21 --- 0.94 0.06 -0.28 0.55 0.54 0.09 0.08 

FDP -0.50 0.94 --- 0.03 -0.40 0.53 0.55 0.17 0.09 

Pubesc. 0.08 0.06 0.03 --- 0.21 0.02 -0.05 0.06 -0.04 

Blush 0.17 -0.28 -0.40 0.21 --- -0.21 -0.20 -0.01 0.18 

Weight -0.21 0.55 0.53 0.02 -0.21 --- 0.84 0.09 0.17 

Diam. -0.20 0.54 0.55 -0.05 -0.20 0.84 --- 0.28 0.19 

Tip -0.33 0.09 0.17 0.06 -0.01 0.09 0.28 --- 0.31 

Shape -0.17 0.08 0.09 -0.04 0.18 0.17 0.19 0.31 --- 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were considered strong 
or very strong, moderately strong, moderately weak, and weak or very weak, respectfully. 
Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development period in 
days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater 
pubescence than modern cultivars); fruit red blush visually based on % coverage of red blush 
on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 
81%-99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually 
based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = completely oblate fruit tip); fruit 
shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no 
pronounced suture and oblate tip. 
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A-3. Phenotypic correlations among nine peach tree and fruit quality traits for two years at Fowler, CA 
and one year at College Station, TX. with pantao and nectarine genotypes removed.z 

Traitsy Bloom Ripe FDP Pub. Blush Weight Diam. Tip Shape 

Bloom --- -0.20 -0.49 0.08 0.17 -0.23 -0.19 -0.32 -0.18 

Ripe -0.20 --- 0.94 0.06 -0.29 0.58 0.55 0.07 0.08 

FDP -0.49 0.94 --- 0.03 -0.41 0.57 0.56 0.13 0.09 

Pubesc. 0.08 0.06 0.03 --- 0.21 0.02 -0.06 0.07 -0.05 

Blush 0.17 -0.29 -0.41 0.21 --- -0.24 -0.20 0.05 0.18 

Weight -0.23 0.58 0.57 0.02 -0.24 --- 0.91 0.15 0.18 

Diameter -0.19 0.55 0.56 -0.06 -0.20 0.91 --- 0.19 0.18 

Tip -0.32 0.07 0.13 0.07 0.05 0.15 0.19 --- 0.35 

Shape -0.18 0.08 0.09 -0.05 0.18 0.18 0.18 0.35 --- 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were considered strong 
or very strong, moderately strong, moderately weak, and weak or very weak, respectfully. 
Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development period in 
days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater 
pubescence than modern cultivars); fruit red blush visually based on % coverage of red blush 
on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 
81%-99%, 5 = 100%); fruit weight in grams; fruit diameter in millimeters; fruit tip visually 
based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = completely oblate fruit tip); fruit 
shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no 
pronounced suture and oblate tip. 
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A-4. Phenotypic correlations among 14 peach tree and fruit quality traits evaluated nine 
progeny for two years at Fowler, CA and one year at College Station, TX with pantao 
genotypes removed.z 

Charactersy Firmness S.S. T.A. Pit weight 

Bloom 0.00 0.05 -0.19 -0.24 

Ripe 0.38 0.31 -0.03 0.31 

FDP 0.38 0.31 0.03 0.39 

Pubescence -0.12 -0.43 -0.31 0.03 

Blush -0.20 -0.12 -0.06 -0.13 

Weight 0.23 -0.10 -0.11 0.51 

Diameter 0.22 -0.10 -0.11 0.49 

Tip -0.08 0.08 0.10 0.19 

Shape -0.13 0.16 0.09 0.07 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were 
considered strong or very strong, moderately strong, moderately weak, and weak or 
very weak, respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development 
period in days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or 
higher = greater pubescence than modern cultivars); fruit red blush visually based on 
% coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 
2 = 21%-50%, 3 = 51%-80%, 4 = 81%-99%, 5 = 100%); fruit weight in grams; fruit 
diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very 
prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 
scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture 
and oblate tip; S.S. = soluble solids in °Brix; T.A. = titratable acidity in Eq H+/1000 
mL of juice; pit weight in grams. 
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  A-5. Phenotypic correlations among 14 peach tree and fruit quality traits evaluated for nine 
progeny for two years at Fowler, CA and one year at College Station, TX with nectarine 
genotypes removed.z 

Charactersy Firmness S.S. T.A. Pit weight 

Bloom -0.01 0.20 -0.14 -0.24 

Ripe 0.38 0.37 -0.04 0.24 

FDP 0.38 0.32 0.01 0.31 

Pubescence -0.14 -0.16 -0.09 0.12 

Blush -0.24 -0.14 -0.12 -0.07 

Weight 0.19 0.00 -0.05 0.55 

Diameter 0.26 0.11 0.00 0.39 

Tip -0.02 -0.05 0.05 0.11 

Shape -0.14 0.07 0.01 0.05 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 ≥ rp ≥ 0.30; rp <0.30 were 
considered strong or very strong, moderately strong, moderately weak, and weak or 
very weak, respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development 
period in days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or 
higher = greater pubescence than modern cultivars); fruit red blush visually based on 
% coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 
2 = 21%-50%, 3 = 51%-80%, 4 = 81%-99%, 5 = 100%); fruit weight in grams; fruit 
diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very 
prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 
scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture 
and oblate tip; S.S. = soluble solids in °Brix; T.A. = titratable acidity in Eq H+/1000 
mL of juice; pit weight in grams. 
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A-6. Phenotypic correlations among 14 peach tree and fruit quality traits evaluated for nine 
progeny for two years at Fowler, CA and one year at College Station, TX with pantao and 
nectarine genotypes removed.z 

Charactersy Firmness S.S. T.A. Pit weight 

Bloom 0.02 0.24 -0.13 -0.28 

Ripe 0.38 0.36 -0.05 0.28 

FDP 0.38 0.30 0.00 0.37 

Pubescence -0.15 -0.17 -0.08 0.14 

Blush -0.23 -0.13 -0.10 -0.11 

Weight 0.24 0.01 -0.03 0.54 

Diameter 0.23 0.04 -0.01 0.50 

Tip -0.13 -0.14 0.01 0.23 

Shape -0.13 0.04 0.02 0.08 

ZCorrelation values rp ≥ 0.65; 0.64 ≥ rp ≥ 0.50; 0.49 rp≥ 0.30; rp <0.30 were considered 
strong or very strong, moderately strong, moderately weak, and weak or very weak, 
respectfully. Correlation values ≥ are underlined. 
yDate of full bloom and date of ripening expressed in Julian Days; fruit development 
period in days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or 
higher = greater pubescence than modern cultivars); fruit red blush visually based on 
% coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 
2 = 21%-50%, 3 = 51%-80%, 4 = 81%-99%, 5 = 100%); fruit weight in grams; fruit 
diameter in millimeters; fruit tip visually based on 0-9 scale (6 or lower = very 
prominent fruit tip, 9 = completely oblate fruit tip); fruit shape visually based on 0-9 
scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture 
and oblate tip; S.S. = soluble solids in °Brix; T.A. = titratable acidity in Eq H+/1000 
mL of juice; pit weight in grams. 
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A-7. Minimum, average mean, and maximum temperatures (°C) by month for three environments. 

 Fowler, CA - 2011  Fowler, CA - 2012  College Station, TX - 2012 

  Months Min Mean Max  Min Mean Max  Min Mean Max 

Novembery -0.6 12.2 32.2  3.3 12.2 24.4  0.0 17.2 30.6 

Decembery -1.1 10.6 19.4  -2.2 7.8 20.6  -3.3 11.7 25.0 

January 0.6 8.3 17.2  -2.2 10.0 20.0  -2.2 13.3 26.1 

February -1.1 10.0 23.9  2.2 11.7 25.0  -0.6 14.4 31.1 

March 2.2 13.3 27.2  1.7 13.3 25.6  3.3 19.4 29.4 

April 2.8 16.1 30.0  3.3 17.2 35.6  10.0 22.8 32.8 

May 7.8 18.9 35.6  9.4 22.2 37.2  16.1 26.1 34.4 

June 9.4 23.9 41.7  11.1 25.6 42.8  20.0 29.4 41.1 

July 13.9 27.8 41.1  15.6 28.9 42.2  22.2 29.4 38.3 

August 16.1 28.3 40.0  15.6 30.6 43.9  22.2 30.6 40.6 

yPrevious year 
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APPENDIX B 
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B-1. Response of progenies on a mean basis for fruit red blush across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit red blush visually based on % coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 
51%-80%, 4 = 81%-99%, 5 = 100%). 
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B-2. Response of progenies on a mean basis for fruit weight across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit weight in grams. 
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B-3. Response of progenies on a mean basis for fruit diameter across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit diameter in millimeters. 
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B-3. Response of progenies on a mean basis for fruit tip across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = completely oblate fruit tip. 
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B-4. Response of progenies on a mean basis for fruit shape across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture and oblate tip. 
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B-5. Response of progenies on a mean basis for fruit ground color across environments: Fowler, 2011; Fowler, 2012; College Station 2012.  
 
Fruit firmness as pounds of force. Fruit ground color expressed as amount of green color based on 0-2 scale (0 = green, 2 no green); fruit flesh color 
expressed as amount of green color based on 0-2 scale (0 = green, 2 = no green). 



 

120 

 

 

 

B-6. Response of progenies on a mean basis for red in flesh across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Red in flesh based on % red overlay of fruit flesh using 0-10 scale (0 = 0% red overlay, 10 = 100% red overlay). 
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B-7. Response of progenies on a mean basis for fruit firmness across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Fruit firmness as pounds of force. 
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B8. Response of progenies on a mean basis for soluble solids across environments: Fowler, 2011; Fowler, 2012; College Station 2012. 
 
Soluble solids in °Brix 
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B-9. Distribution of fruit weight for nine progenies for two years at Fowler, CA and one year at College Station, TX. 
 
Fruit weight in grams. 
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B-10. Distribution of fruit soluble solids for nine progenies for two years at Fowler, CA and one year at College Station, TX. 
 
Soluble solids in °Brix. 
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B-11. Distribution of titratable acidity evaluated for nine progenies for two years at Fowler, CA and one year at College Station, TX. 
 
Titratable acidity expressed as Eq H+/1000 mL of juice. 
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B-12. Distribution of pit weight evaluated for nine progenies for two years at Fowler, CA and one year at College Station, TX. 
 
Pit weight in grams. 
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B-13a & B-13b. Left: Scatter plot depicting  correlation between date of full bloom and fruit development period. Right: Scatter plot depicting 
correlation between date of full bloom and fruit tip. 
 
Date of full bloom in Julian Days; fruit development period in days; fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = 
completely oblate fruit tip).  
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B-14a & B-14b. Left: Scatter plot depicting correlation between fruit red blush and date of ripening. Right: Scatter plot depicting correlation between 
fruit red blush and fruit development period. 
 
Fruit red blush visually based on % coverage of red blush on skin using 0-5 scale (0 = 0% red coverage, 1 = 1%-20%, 2 = 21%-50%, 3 = 51%-80%, 4 = 
81%-99%, 5 = 100%); date of ripening in Julian Days; fruit development period in days. 
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B-15a & B-15b. Left: scatter plot depicting correlation between fruit diameter and fruit development period. Right: scatter plot depicting correlation 
between fruit diameter and date of ripening. 
 
Fruit diameter in mm; fruit development period in days; date of ripening in Julian Days. 
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B-16a & B-16b. Left: scatter plot depicting correlation between fruit development period and fruit weight. Right: scatter plot depicting correlation 
between date of ripening and fruit weight. 
 
Fruit development period in days; fruit weight in grams; date of ripening in Julian Days. 
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B-17a & B-17b. Left: scatter plot depicting the correlation between date of ripening and soluble solids. Right: scatter plot depicting the correlation 
between fruit development period and soluble solids. 
 
Date of ripening in Julian Days; soluble solids in °Brix; fruit development period in days. 
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B-18a & B-18b . Left: Scatter plot depicting the correlation between date of ripening and fruit development period. Right: scatter plot depicting the 
correlation between fruit tip and fruit shape. 
 
Date of ripening in Julian Days; fruit development period in days; fruit tip visually based on 0-9 scale (6 or lower = very prominent fruit tip, 9 = 
completely oblate fruit tip); fruit shape visually based on 0-9 scale (6 or lower = large suture bulge and prominent tip, 9 = no pronounced suture and 
oblate tip. 
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B-19a & B-19b. Left: scatter plot depicting the correlation between date of full bloom and fruit pubescence. Right: scatter plot depicting the correlation 
between fruit development period and pit weight. 
 
Date of full bloom in Julian Days; fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern 
cultivars; fruit development period in days; pit weight in grams. 
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B-20a & B-20b. Left: scatter plot depicting the correlation between fruit development period and fruit firmness. Right: scatter plot depicting the 
correlation between date of ripening and fruit firmness. 
 
Fruit development period in days; firmness as pounds of force; date of ripening in Julian days. 
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B-21a & B-21b. Left: scatter plot depicting the correlation between fruit diameter and pit weight. Right: scatter plot depicting the correlation between 
fruit weight and pit weight. 
 
Fruit diameter in mm; pit weight in grams; fruit weight in grams. 
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B-22 a & B-22b. Left: scatter plot depicting the correlation between fruit pubescence and soluble solids. Right: scatter plot depicting the correlation 
between fruit pubescence and titratable acidity. 
 
Fruit pubescence visually based on 0-9 scale (0 = no pubescence, 6 or higher = greater pubescence than modern cultivars); soluble solids in °Brix; 
titratable acidity as H+/1000 mL of juice. 
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