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ABSTRACT 

 

 

 The increasing amount of information accessible to a user digitally makes search 

difficult, time consuming and unsatisfactory. This has led to the development of active 

information filtering (recommendation) systems that learn a user’s preference and filter 

out the most relevant information using sophisticated machine learning techniques. To 

be scalable and effective, such systems are currently deployed in cloud infrastructures 

consisting of general-purpose computers. The emergence of many-core processors as 

compute nodes in cloud infrastructures necessitates a revisit of the computational model, 

run-time, memory hierarchy and I/O pipelines to fully exploit available concurrency 

within these processors. 

This research proposes algorithms & architectures to enhance the performance of 

content-based (CB) and collaborative information filtering (CF) on many-core 

processors. To validate these methods, we use Nvidia’s Tesla, Fermi and Kepler GPUs 

and Intel’s experimental single chip cloud computer (SCC) as the target platforms. We 

observe that ~290x speedup and up to 97% energy savings over conventional sequential 

approaches. Finally, we propose and validate a novel reconfigurable SoC architecture 

which combines the best features of GPUs & SCC. This has been validated to show 

~98K speedup over SCC and ~15K speedup over GPU.  
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1. INTRODUCTION 

 

The era of achieving a faster and more capable uniprocessor every 18 months has 

now ended. Moore’s law and Dennard’s scaling rules, which defined the design, 

manufacture and marketing of microprocessors over the past five decades no longer 

holds true. Chip manufacturers have realized that it is advantageous to add more cores to 

a chip rather than increase clock speeds. Therefore, while multi-core processors are now 

common, many-core processors in cloud infrastructures are on the horizon. 

 

 

Figure 1. Information Filtering in the Petabyte Era 
 

 

At the same time, the problems that we want to solve using these processors are 

increasing in size faster. This is especially true for problems in social network graphs 

and big-data problems. For instance, the amount of digital information created, captured 

or replicated worldwide is expected to reach 35000 Exabytes by 2020 [1] (Figure 1). It is 
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no longer sufficient to provide semantically accurate query results; users expect to be 

provided a somewhat intelligent choice of items based on their previously expressed 

preferences and those of “similar” users. This situation has led to the widespread use of 

information filtering systems most significant of which are Recommendation systems 

(RS) [2]. RS’s learn about a user’s preference and figure out the most relevant 

information for them using machine learning techniques. Driven by sophisticated 

algorithms, recommenders help consumers by selecting products they will probably like 

and might buy based on their past browsing, searches, purchases, and preferences. 

Almost all online e-commerce platforms deploy them to boost sales, drive and retain 

traffic; recommenders are already a huge and growing business. 

A multitude of recommendation techniques involving content-based and 

collaborative filtering have been developed in literature and this remains an active area 

of investigation. Such techniques are useful only with several thousand GB’s of training 

data and involve large-scale data-intensive computations to determine similarity between 

users and items, make predictions and recommendations. To be scalable, they are 

deployed in cloud infrastructures using distributed computing paradigms such as 

Mapreduce[3]. These frameworks split the computation into small partitions (key-value 

pairs), which can then execute independently on multiple nodes in parallel. A 

programmer has only to specify the serial parts necessary in transforming one key-value 

pair to another. An underlying parallel run-time is responsible for ensuring 

parallelization, inter-machine communication and failure-recovery. 
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Distributed computing frameworks such as MapReduce assume that compute 

nodes are single-core; limited extensions of these frameworks are available for shared 

memory multi-processor systems (multi-threaded). However, new challenges arise when 

a compute node is a many-core system; in itself capable of running a distributed 

computing run-time for enhanced performance. New highly parallel, energy-efficient 

many-core SoC architectures need to be created to run such information filtering 

applications on such compute nodes of the future. 

The key aim of this research, therefore, is to explore the fit, energy efficiency of 

such many-core architectures in the design of recommendation systems and search 

engines in cloud-data centers of the future. The research challenges that this thesis 

addresses are:  

1. How to map the data-intensive computational kernels of RS on Many-Core 

systems?  

2. How to exploit concurrency within the machine boundary efficiently?  

3. What is the appropriate application stack for RS on Many-Core processors?  

4. How to alleviate the computation and communication bottlenecks for RS on 

Many-core processors available today? 

5. How to design an energy-efficient parallel reconfigurable System-on-Chip (SoC) 

architecture for data-intensive information filtering applications?   

 

  



 

 4 

2. BACKGROUND AND MOTIVATION 

 

This chapter provides a high level overview of active information filters 

(recommendation systems), the algorithms used to realize them, an overview of many-

core platforms and a literature review of the efforts in academia for high performance 

information filtering. 

2.1 Recommendation Systems Overview 

Recommendation systems are active information filters. They help users discover 

new “information” (items) based on their past (implicit) or expressed (explicit) 

preferences. They add predictions/ratings to the information flowing to a user enabling 

them to “discover” new information. We live in an increasingly social and real-time 

world, the number of things to recommend & users expressing opinions (tastes) over the 

web and mobile are growing exponentially. Algorithms deployed by the industry to 

make predictions are already known to be accurate to within 0.5 stars (on a 1-5 star 

scale), 75% of the time. However, retraining a dataset of 1.4 Bi ratings takes over 48-

compute hours (Netflix’s Cinematch Recommender System) [4]. With this background, 

we introduce the two major classes of recommendation engines in operation today – the 

first based on the content/meta-data associated with the information item (semantics), 

the second based on peer-ratings (collaborative). 

2.1.1 Semantic Information Filtering 

The key hypothesis in a content-based (semantic) recommendation system is: 

“Recommend items to a user which have highest similarity in attributes to items 
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previously seen by him”. Search engines/information retrieval systems have traditionally 

deployed vector-based models as the underlying technology to calculate similarity, 

ignoring the semantics involved in representing a user’s query (intention) or a document 

[5, 6]. Consequently two phrases such as: “American woman likes Chinese food” and 

“Chinese woman likes American food” are considered similar because they contain the 

same keywords although they refer to distinct concepts. To alleviate this problem, new 

techniques have been proposed to represent composite meaning in the semantic 

computing community [7]. They rely on tensors (multi-dimensional vectors) to represent 

and successfully discriminate between complex concepts [8]. However, they have been 

shown to increase the problem size super-exponentially [9]. Consequently search 

engines such as Google have only been able to employ these techniques in a limited 

manner [10]. Performing hundreds of thousands of semantic (tensor) comparisons with 

each pair consisting of vectors of a similar magnitude is therefore, a computationally 

challenging problem and requires the exploration of many-core compute clouds. 

 

 

Figure 2. A Semantic Information Filtering System 
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Figure 2 describes the computational flow of a semantic information filtering 

system. It consists of four key stages – (1) creation of item profile, (2) creation of user 

profile, (3) calculation of similarity and (4) presentation of Top-K most similar items as 

recommendation. An item profile and a user profile are typically created from 

unstructured meta-data describing the information item. Unstructured data is then 

semantically processed using a natural language tool-chain to obtain their concept 

(syntactic/ontology) tree representations (involves sentence segmentation, tokenization, 

part-of-speech tagging, entity & relation detection) [11]. The leaves of such a concept 

tree contain terms whereas the tree itself encodes semantics or meaning. Mathematically, 

a concept tree is a hierarchical n-ary tree where the leaf nodes represent terms and the 

tree itself describes their inter-relationships (semantics) within the original document. 

Concept trees are abstract mathematical structures and can have arbitrary structures; 

therefore are unsuitable for further processing in a fine-grained manner. These trees 

undergo further transformation into an equivalent tensor representation using rules 

defined in [7, 8, 12] without loss of any semantic content (Tensor conversion phase in 

Figure 2). The tensor form can be represented as a table of terms and coefficients. The 

coefficients denote the relative importance of each term in describing an item. It is easy 

to see that the tensor representation of an item/user profile can be arbitrarily large. The 

final stage involves the computation of a semantic similarity score. This proceeds first 

with the identification of common terms in the user and item tensors followed by the 

multiplication of their corresponding coefficients and summation of these interim 
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products. The top-K items with the highest similarity to a user’s profile are returned as 

recommendations to a user. 

2.1.2 Collaborative Information Filtering 

A collaborative information filtering system takes an alternate approach. It makes 

no assumptions about the availability of additional information/meta-data describing the 

item or a user. Instead a large number of ratings are available as input, which could have 

been collected via explicit or implicit means. The key hypothesis is – “similar users tend 

to like similar items”. A similarity score is computed by mining existing user-item 

relationships. For example, two items are considered similar if a large number of users 

who have liked one item have also expressly liked (have given higher ratings) for 

another. 

 

 

Figure 3. A Neighborhood-based Collaborative Information Filtering System 
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Figure 3 shows the flow of a CF recommendation system. It consists of four key 

stages – (1) capture user data, (2) calculation of all-pairs similarity, (3) calculation of 

prediction and (4) identification of Top-K predictions. This thesis focuses on stages (2)-

(4) which we discuss with the aid of a mathematical model. 

Suppose there exist a set of m distinct users; U = {u1,u2, …, um} who have rated 

one or more of n distinct items; I= {i1,i2, …, in}. Each user u provides a rating rui for a 

subset of items in I (Iu), shown as grayed boxes in Figure 3. These ratings can be 

represented as an item-user matrix R of size nxm. Not all elements in this matrix will be 

filled in because most users will not have rated all items. Computation of sij proceeds by 

first identifying the set of users who have rated both i & j and then calculating a 

similarity metric (such as Pearson’s correlation coefficient). Once similarity for all i,j is 

available, the prediction for a user u for all unrated items can be obtained through a 

similarity matrix – user rating vector product (Figure 3). Once a prediction vector for a 

user is obtained the top-K highest items are returned as recommendations. This 

computation is effective only for large datasets and is both data and compute intensive.  

2.2 Many-core Platforms Overview 

 Increasing power consumption and complexity in design and verification has 

driven the microprocessor industry to integrate multiple cores on a single die. Dual, quad 

and oct-core processors are now common in the market now, available technology 

permits integrating 1000’s of cores on a single die/platform – a many core future. 

Consequently, several prototype architectures have been designed in industry and 

academia. They can be broadly classified into the following design styles [13]: (1) a 
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symmetric many-core processor that replicates a state-of the art superscalar processor on 

a die, (2) a symmetric many-core processor that replicates a smaller, more power-

efficient core on a die and (3) an asymmetric many-core processor with numerous 

efficient cores and one superscalar processor as the host processor. High-end multicore 

processor vendors such as Intel & AMD have chosen the first model in building early 

prototypes whereas conventional graphics processing units have been adapted to operate 

using the second approach. In this thesis, we first attempt to extract maximum available 

parallelism from existing/prototype many-core processors for data intensive applications 

and then use our findings to propose a new many core architecture that can provide 

higher performance than those proposed so far. We will now discuss a brief overview of 

the architecture and programming model of two representative many-core processors 

evaluated in this thesis.  

2.2.1 Graphical Processing Units (GPUs) 

GPU’s have continued to evolve for general-purpose usage as application-

coprocessors and are now widely used in high performance computing due to 

exceptional floating-point performance, memory bandwidth and power efficiency. GPU 

manufacturers have released API’s and programming models for application 

development and analysis – Nvidia’s implementation is Compute Unified Device 

Architecture (CUDA) [14] , AMD’s implementation is marketed under the name AMD 

Firestream [15]. One of the goals of this dissertation is to design an efficient 

computational technique to exploit available fine-grained parallelism on different GPU 

architectures, analyse their parallel performance for information filtering applications 
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discussed above. In this dissertation, we run our algorithms on three families of on 

Nvidia GPU’s – Tesla [14], Fermi [16] & Kepler [17]. They key architectural differences 

between the three families relevant to this dissertation are summarized in Table 1: 

 

Table 1.  Key Architectural Features of Nvidia's Tesla, Fermi & Kepler GPUs 

Characteristics C870 
(Tesla) 

Quadro 2000M 
(Fermi) 

GTX 680 
(Kepler) 

# of Cores 240 512 1536 
Base Clock (MHz) 648 772 1006 
Memory clock (MHz) 2484 4008 6008 
Memory B/W (Gbps) 76.8  192.4  192.26  
TDP (W) 170.0 244 195 
# of Transistors (Bi) 3.0 3.2 3.54 
Rated GFlops 1063 1581 3090 
# of Texture Units 80 64 128 

 

 

 

Figure 4. GPU Architecture for General-purpose Computing (GPGPU) 
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A horizontal block with several streaming processors (shown with dotted lines) is a 

streaming multiprocessor and additionally contains a control unit (blue) and cache 

(orange). There is a common shared off-chip DRAM (yellow & orange hatches), which 

is termed global memory. The key operating principle of GPU’s is to run numerous 

simple threads concurrently, not use cache at cores and use massive thread-level 

parallelism to mask memory latency. Massive TLP enables a GPU control until to run 

other threads when some are stalled waiting for memory. 

2.2.2 Single Chip Cloud Computer (SCC) 

 

 

Figure 5. Cluster-on-chip Architecture (Intel SCC, Xeon Phi) 
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inter-core communication. It can address up to 64 GB RAM and shares traits of both 

message passing and shared memory architectures. Data I/O is achieved via an off-chip 

FPGA that delivers packets from Ethernet/PCIe bus directly onto the on-chip network. 

Unlike a GPU, an SCC need not be run as a co-processor. Each of the cores can run a 

Linux operating system image and run application programs (written in C/C++). More 

information on Intel SCC architecture is available at [18]. Figure 5 shows the 

architecture of the Intel SCC. Each block marked in dotted lines represents a P54C core 

consisting of instruction dispatch/control unit, ALU and cache. A group of cores share a 

common memory controller for DRAM access. Unlike a GPU, the SCC architecture uses 

caches to mask memory access latency at individual cores. Since, memory coherency is 

difficult to achieve in hardware/software between 100’s of cores, this has not been 

implemented on the SCC necessitating the design of application software using a 

distributed memory-programming model. 

2.3 Research Overview 

The research leading to this dissertation is presented in the following manner:  

1. To design suitable data structures and computational algorithm for content-based 

semantic information filtering (CB) 

a. Validate algorithm’s energy efficiency on GPU & SCC, perform detailed 

architectural profiling to determine performance bottlenecks 

b. Use those insights to redefine computational algorithm or propose change 

in many-core architecture. 
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2. To design suitable data structures and computational algorithm for 

neighborhood-based collaborative information filtering (CF) 

a. Validate algorithm’s energy efficiency on GPU & SCC, perform 

architectural profiling to determine performance bottlenecks. 

b. use insights obtained to redefine computational algorithm or propose 

changes in many-core architecture. 

3. To design an appropriate distributed memory run-time to run on a many-core 

chip. Map the CF computational model to this run-time. 

a. Determine whether the distributed memory-computing model on the SCC 

is more energy efficient than Objective 2, perform stage-wise profiling to 

determine bottlenecks, determine the trade-off between computation & 

communication time for the application.  

b. If computation is determined to be a bottleneck, design lightweight IP 

cores, which could efficiently perform the same operation than a Pentium 

P54C core (on the SCC). 

4.  To design an energy-efficient parallel reconfigurable SoC architecture to run CB 

and CF algorithms  

a. This SoC should leverage the best features from existing many-core 

architectures and propose hardware designs to alleviate identified 

bottlenecks.  
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b. Design a Network-on-chip based interconnects for low latency, high 

bandwidth data I/O between memory & processing elements and between 

several processing elements.  

c. Design lightweight application-specific functional units that consume 

least die area and dissipate least power. The lightweight cores should be 

reconfigurable and at the least offer specific programmability. 
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3. SEMANTIC INFORMATION FILTERING ON MIC* 

 
3.1 Shared Memory Approach 

In this dissertation, we describe the design of a novel BF based computational 

kernel to compute semantic similarity on Nvidia’s Tesla GPU & Intel’s SCC [19]. This 

involved the creation of new data structures, validation of proposed algorithm when 

using a common shared memory between participating cores. 

3.1.1 Motivation 

Figure 6 shows a high-level overview of the semantic comparison methodology. 

Two example statements/descriptors need to be compared. This involves (1) conversion 

from textual representation into a concept tree, (2) conversion of concept tree into a 

tensor form and (3) representation of the tensor in a tabular form (semantic descriptor). 

The section marked in blue involves the comparison of two semantic descriptors and will 

be the focus of this chapter of this dissertation.  

We assume that two tensors (sizes n1, n2) are provided as input. The similarity 

metric used is cosine similarity; which will lie in [0, k] provided the coefficients are 

normalized within their respective tensors. 

                                                

* Parts of this section have been reprinted with permission from A. Tripathy, S. Mohan 
and R. Mahapatra, "Optimizing a Semantic Comparator using CUDA- enabled Graphics 
Hardware", in 5th IEEE International Conference on Semantic Computing (ICSC) 
September 18-22, 2011, Palo Alto, CA, USA. © IEEE 2011 
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Figure 6. Semantic Comparison Methodology 
 

  

We note that for a given a tensor pair; identification of common terms, 

multiplication of their coefficients, and summation of interim terms are independent 

atomic operations and will benefit from parallelism. Conventional sequential processors 

(including SMP systems) cannot provide the necessary parallelism available in this 

computation. In the following section, we discuss how a GPU based semantic 

comparator is designed to lower query latencies to acceptable, interactive levels. 
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3.1.2 Bloom Filters for Set Intersection 

 A Bloom filter [20] is a probabilistic, space efficient data structure that enables a 

compact representation of a set and computation of intersection between two sets. It is 

described in the form of an n-bit long bit vector. Elements of one set are inserted into an 

empty Bloom filter (all index positions “0”) using k independent hash functions. The 

hash functions generate k distinct index values for an item which are turned “1”. The 

resulting bit-vector after inserting m elements of a set is a compact representation of the 

set. Elements of a second set can now be tested against this Bloom filter using an 

analogous method. If all index positions due to a tested element are “1”, it is considered 

to be positive result. 

 

 

 

Figure 7. Bloom Filter (BF) Insertion 
 

 

Figure 7 describes a situation where m items: item1, item2, .. itemm from Set A are 

inserted into the Bloom filter. A bank of k hash functions operates on a string 

representation of an item to produce k distinct index values; each of which are turned “1” 
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in the Bloom filter. For example, item3, turns the BF[4]=BF[5]=BF[27]=BF[n-2] = 1. It 

is important to note that this insertion operation can be performed in parallel (one per 

processing element or thread) provided the Bloom filter is located in shared memory. 

 

 

 

Figure 8. Bloom Filter (BF) Lookup 
 

 

Figure 8 describes an analogous situation where elements of the second set (Set 

B) are tested with the Bloom filter created earlier. For simplicity of explanation, we have 

shown that two elements (item2 & item3) are actually common between Sets A&B. When 

item2 is passed through the hash functions, they generate the exact same index positions 

as before. All of them are guaranteed to have been turned on earlier 

(BF[1]=BF[2]=BF[6]=BF[n-1]=“1”). If all the index positions for an element of the test 

set (Set B) return a true from the BF, we claim that this element is present in A∩B. 

Testing whether an arbitrary element of the test set is present can result in false 

positives (return true, when the element is not present). It is guaranteed to never return a 
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false negative (return false, when an element is actually present). The probability of false 

positives (pfalse+ve) is given by: 

𝑝!"#$%!!" = (1− 1−
1
𝑛

!!

)! ≈ (1− 𝑒
!!"
! )! 

The probability of false +ve can be minimized by choosing appropriate values of size of 

BF (n), number of hash functions used (k), given that the number of distinct elements 

likely to be inserted in either set is m. Also, for a given dimensions of n & m, an 

optimum value of k can be determined (differentiating w.r.t. k) as: 

𝑘!"#$%&% ≈ 0.7×
𝑛
𝑚 

 

 

 

Figure 9. Probability of False Positives in a Bloom Filter 
 

 

Figure 9 shows the variation of pfalse+ve with varying n and m for koptimum. This 

shows that pfalse+ve  can be made arbitrarily low for a given number of elements to be 

inserted (m) by choosing a large size for the BF bit vector (n). For all our experiments in 
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this thesis, we choose the target pfalse+ve to be 0.001 and calculate n=f(m) as per the 

equation shown earlier. 

3.1.3 Phases of Semantic Comparison Kernel 

 The semantic comparison kernel (SCK) Algorithm is implemented in four 

phases. In Phase 1, the coefficient tables are copied to CUDA Global Memory. In Phase 

2, document tensor is encoded into the Bloom Filter using hashing. In Phase 3, the query 

tensor is tested with this Bloom filter to determine common terms. In Phase 4, the scalar 

coefficients corresponding to the filtered tensor are extracted, multiplied and summed to 

generate a similarity value. 

3.1.3.1 Phase A – Memory Copy to GPU 

 

 

Figure 10. Coalesced Copy from CPU to GPU Global Memory 
 

 

 In the first phase of the computation, Tensor Table-1 & 2 are copied to CUDA 

Global Memory. The data structure is internally flattened to ensure coalesced memory 

accesses. The flattening of the data structure is performed basically as a serialization of 

the data structure. By ensuring that the data can be read into the CUDA processor in a 

continuous stream, we accelerate the copy. This process is shown in Figure 10. The 



 

 21 

transformation into a coalesced memory layout ensures maximum usage of available of 

PCIe bandwidth for the GPU architectures we experiment with 

3.1.3.2 Phase B – Encode Tensor 1 in Bloom Filter 

 

 

 

Figure 11. Encoding Tensor1 in Bloom Filter 
 

 

 In this phase, we encode the contents of Tensor1 into the Bloom Filter. This is 

performed using a number of concurrent kernels (=n1) that run on the CUDA streaming 

cores. In each kernel, a given T1_Basis_Vectori is encoded into the Bloom Filter using 

two hash functions. As shown in Figure 11, we make n1 concurrent kernel calls 

(independent threads) so that each row of Table-1 is served by at least one CUDA 

thread. The CUDA occupancy calculator provided by NVIDIA as part of its CUDA 

toolkit allowed us to calculate the appropriate device parameters to ensure that each 

multiprocessor has a sufficient number of free registers (prevents blocking). The Bloom 
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filter bit vector is initially created in CUDA Global memory. For use in the subsequent 

stage, we transfer it to the GPU’s texture cache. 

 The k index positions for every tensor basis vector string (T1_Basis_Vectori) is 

used to organize Tensor1 into a parallel hash table in global memory (Cuckoo 

hashing[21]). This mechanism will be used to be able to lookup the corresponding 

coefficient of T1_Basis_Vectori in the subsequent stages if it is determined to be a 

matching term. This mechanism is used instead of sorting Tensor1 and accessing it via 

binary search. This is because binary search of a sorted tensor of size n1 will be expected 

to have log2(n1) probes in the worst case whereas lookup from a hash table can be made 

have O(1) number of probes. In addition the process of creating Bloom filter 

representations for every basis vector term already produces hash positions.      

 

 

Figure 12. Initial Insertion of Tensor Terms into Hash Table 
 

 

 Figure 12 shows the mechanism for inserting three elements the hash table. 

Elements marked A,B,C have the potential positions marked in gray (indicated by k 

index values). In this case, we store the (T1_Basis_Vectori,Coeffi) in consecutive 

memory locations.   
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Figure 13. Recursive Eviction Mechanism in Cuckoo Hashing 
 

 

 Figure 13 shows the mechanism for conflict resolution in Cuckoo hashing. For 

instance let’s assume that elements A,B,C,D are already inserted. A new element E is to 

be inserted and its first hash index h1(E) indicates a position which is already occupied 

(shown as A in this example). Our algorithm which is based on [22] follows a greedy 

approach immediately evicting A and placing it in a reinsertion queue. The same thread 

performs the reinsertion by looking into the next available position for item A, Since 

h2(A) was used, the next position indicated by h3(A) will be chosen next. In the example 

in Figure 13, the subsequent position was also occupied, but A is inserted in this 

position, thereby evicting B. Again B is placed in the reinsertion queue until a free 

location is provided. In case the kth position of an item is reached, the algorithm would 

round-robin back to position 1. This procedure ensures that every item inserted in the 

hash table can be located with a fixed number of probes keeping the number of memory 

access per retrieval low. The creation of the hash table is an efficient operation because 

separate threads can insert keys at the same time. Finally, we are taking reusing the hash 

functions used to probabilistically determine bloom filter indices to determine positions. 

The only cost associated with this approach is the additional space required to create the 
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table. We also experimentally determined that a memory allocation of 1.25xSize of 

Tensor1 was sufficient to store the tensors and that any item can be found after at most k 

probes leading to dramatic improvements in Phase D to be described subsequently.    

3.1.3.3 Phase C – Encode and Test Tensor 2 with Bloom Filter 

 

 

Figure 14. Testing Tensor2 with Bloom Filter 
 

 

 Figure 14 shows the process of testing Tensor 2 with the Bloom filter placed in 

CUDA global memory in Phase B. This stage is similar to Phase B with two differences:  

• Instead of setting a bit position in the Bloom Filter to 1, it tests for the presence 

(or absence) of the T2_Basis_Vectori that the kernel is operating on. 

• If all the bits indicated by the BF Index for a given T2_Basis_Vectori are “1” in 

the Bloom Filter, then the corresponding index i is stored in shared memory to be 

used in the next phase of computation. 
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We launch at least n2 concurrent kernels during this phase. Every kernel instance 

performs three steps (a) encodes a row of Table2, (b) tests with the previously encoded 

BF (Phase B) and (c) stores the index values of “matches found” in shared memory. 

3.1.3.4 Phase D – Compute Intermediate Sum and Perform Parallel Reduction 

 

 

Figure 15. Computation of Intermediate Sum & Parallel Reduction 
 

 

In this phase (Figure 15), we need to lookup and multiply the corresponding 

coefficients of the filtered elements (indexes of which were obtained in Phase C) from 

Table-1 and Table2. Phases A-C have enabled the “filtering” (identification) of the 

common basis vectors in nearly O(1) time. This stage begins by fetching the index of 

matching T2_Basis_Vectori and using it to fetch its coefficient from Tensor Table 2 i.e. 

2Coeffi (located at an offset of 64 bits, single memory lookup operation). We now know 

that its corresponding coefficient is likely (possibility of a false +ve still exists) present 

in Tensor Table1. This can be obtained using a linear lookup from the original Tensor1 
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or from its DHT representation as described in the previous section. Fetching from the 

DHT representation of Tensor 1 can also be accomplished with a limited number of 

probes and is expected to be more efficient as described earlier.  

 Once the corresponding coefficients have been identified (Coeff1, Coeff2), we 

generate an interim product (Step-4). The final step in this stage involves the summation 

of the interim products from each stage. This is done using the parallel reduction 

primitive discussed in [23]. 

3.1.4 Experimental Setup 

 The goal of the experiment is to experiment performance, energy efficiency of 

the proposed algorithm with a synthetic dataset on different contemporary GPU 

architectures as compared to the best known CPU algorithm and architecture. The 

baseline CPU used had an Intel Core i7-3770K processor.  Three kinds of GPUs were 

used to test the performance for semantic search - Tesla C870, Fermi Quadro 2000M, 

Kepler GTX 680. The semantic comparator on GPU was implemented in C++ using 

CUDA 5 for device programming. Each basis vector term of the tensor is represented by 

a unique 64-bit word. Each phase discussed above is implemented as a separate kernel 

and executed sequentially. The Bloom filter is represented by a byte array whose size 

depends on the tensor size. We experienced that bloom size should be at least one byte 

per term i.e. a tensor of size 10K resulting in a 10Kb bloom filter. The number of hash 

functions used is k=7.  
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Figure 16. Equipment Setup for Power Profiling 
 

 

The power monitoring was done using Watts’ Up Pro power analyzer from 

Electronic Educational devices. This measures overall system power consumption. This 

device is connected in line with the power supply to the host computer as shown in 

Figure 16. Table 2 reports system base power (no GPU installed) and with the GPU in 

cold shutdown and idle. We recognized that once the GPU (Tesla C870) is initiated once 

but not used subsequently, it reverts into a idle power state which is higher than in cold 

shutdown.  

Table 2. System Baseline Power Measurements 
System Base Power 115W 

System Idle Power (GPU cold shutdown) 150W 

System Idle Power (GPU Awake, Idle) 186W 

GPU Idle Power 36W 

 

Algorithm 1 lists the pseudo code for the semantic comparator used for our 

baseline measurements on the CPU: function computeTensorProduct().  The constituent 
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basis vectors from tensor Table1 are inserted as pairs into a Red-Black tree data structure 

(rbtree, line 2) leading to the creation of a self-balancing binary search tree in O(log n1) 

time. Next, the constituent basis vectors of tensor Table2 are tested with this BST (line 

5). If this test is successful, then Table2_BasisVector[j] is a common basis vector (Line 

6). Now their corresponding coefficients are pair-wise multiplied and summed (Line 7). 

The overall complexity for the latter search operation is O(n2 log n1). The balanced 

binary tree forms the basis for the C++ STL Map container and is expected to be the 

most efficient implementation for SMP systems. 

 

Algorithm 1: Semantic Comparator on Conventional Symmetric Multiprocessors 
inputs: Tensor Table1, Tensor Table2 
output: Semantic (dot) product 
function computeTensorProduct() 
 1: for i  0, (n1-1) do 
 2:  rbtree.insert(<Table1_BasisVector[i], Table1_Coeff[i]>) 
 3: end for 
 4: for j  0, (n2-1) do 
 5: rbtree_ptr  rbtree.find(Table2_BasisVector[j]) 
 6: if rbtree_ptr != NULL then 
 7:   dot  dot + (Table2_Coeff[j] x rbtree_ptr.value) 
 8: end if 
 9: end for 
 10: return dot 
end function 
 

3.1.4 Results and Discussion 

 In this section, we discuss the execution time and energy consumption obtained 

due to the proposed algorithms running on three Nvidia GPU families over the state of 

the art serial implementation. We also profile the semantic kernels to examine which 
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stage remains a bottleneck and examine how our proposed algorithms can help alleviate 

it.  

 

Figure 17. Speedup of Semantic Kernel (Linear Lookup) 
 

 

 Figure 17 shows the variation of speedup with varying tensor size and number of 

threads in use on an Nvidia GTX680. When we reach the maximum number of 

threads/block (=384) available on the Tesla GPU, we see a speedup of up to ~25x.  

 

 

Figure 18. Speedup of Semantic Kernel (Cuckoo Hashing) 
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Figure 18 in contrast shows the speedup possible with varying tensor size for the 

maximum number of threads in use for Tesla, Fermi and Kepler GPUs with the same 

baseline. In this case, we can observe a speedup of up to ~50x for the Tesla GPU as 

compared to ~25x in Figure 17. This shows that our choice of Cuckoo hashing is 

appropriate for the lookup of the matching coefficients in Phase D of the proposed 

algorithm.  

 

 

Figure 19. Power Consumption with Proposed Algorithm 
 

 

Figure 19 shows the bulk power consumption for the Tesla, Fermi and Kepler 

GPUs when running the proposed algorithms. No significant difference was observed 

between the linear and cuckoo hashing based lookup variations in Phase D. This is 

because GPU power consumption is directly proportional to the number of cores in use. 

It is also well known that GPUs are energy efficient but not necessarily power efficient – 
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GPU power approaches that of the CPU for larger data sizes. In addition, we also 

observe that GPU dynamic power for the Fermi family (released 2011) > Tesla (released 

2010) > Kepler (release 2013) for the same algorithm and data sizes.  

 

 

Figure 20. Profiling Semantic Kernels with Linear Lookup 
 

 

Figure 20 shows a phase-wise profiling of the execution time for the proposed 

algorithm with linear lookups in Phase D. This was done to understand which phase 

consumes the highest fraction of total execution time. It conveys the following 

information: (1) Filtering of the common basis vector terms (Phases 2, 3) take up an 

almost negligible fraction of the time, (2) IO (Phase 1) to and from the GPU is a 

bottleneck, (3) coefficient lookup (Phase 4) occupies the largest fraction of the total 

execution time (almost 80%). We alleviate this problem using the Cuckoo Hashing 

algorithm to reorganize Tensor1 in a DHT as described earlier in this section.  
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Figure 21. Profiling Semantic Kernels with Hash Lookup 
 

 

 Figure 21 shows a similar phase-wise profile generated for the Cuckoo hashing 

variation of the proposed algorithm. It shows that Phase D consumes a maximum of 40% 

of the execution time for the largest tensor size (=150k) which is significantly lower than 

the nearly ~90% observed with the linear lookup. This has enabled the realization of 

almost 50x speedup as opposed to 25x for the Tesla GPUs. Memory copy from the CPU 

to GPU remains a bottleneck with almost 50% of the execution time. Phases B & C 

which involve computation of the hash functions and reorganization of Tensor1 in a 

DHT continues to occupy minimal fraction of the execution time. The profile is similar 

for the three GPU families – Tesla, Fermi & Kepler.  

3.1.5 Related Work 

 To the best of our knowledge, this is the first work of its kind to enable semantic 

comparison on Nvidia’s Tesla, Kepler and Fermi architectures. Our prior work [9] was 

only able to demonstrate a limited 4x speedup on the Tesla architectures for tensors of 

up to 150k entries. There have been several other attempts to accelerate traditional  
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keyword based search  mechanisms on GPU’s. GPUminer [24] describes the 

implementation of k-means clustering and frequent pattern mining. Likewise [25] 

describes the process of adapting a document similarity classifier on two massively 

multi-core platforms: Tilera 64-core SoC and the Xilinx Virtex 5-LX FPGA. This work 

has been done in the context of web-security and demonstrates that an incoming data 

stream can be filtered using a TF-IDF based dictionary of known attack patterns. This 

work is interesting because it uses large array of Bloom filters, with each element 

representing a data-value in the dictionary. They have been able to demonstrate 

scalability of up 30x on the Tilera 64-core SoC and up to 166x using an FPGA. In 

sacrificing the accuracy of the similarity computation, they have been able to 

demonstrate up to 80x speedup over a serial software approach. This paper substantiates 

our claim of Bloom filters being an appropriate mechanism to quickly identify common 

terms. We differ from this work in that our Bloom filters are created dynamically for 

every pair of comparisons. Likewise, our previous work, [26] discusses the design of a 

fine-grained parallel ASIC for semantic comparison. While this custom ASIC design has 

demonstrated hypothetical similarity of up to 105 using a Bloom filter based algorithm, 

I/O issues have not been taken into consideration. Further the scalability has been 

demonstrated only with tensors of sizes <10240 elements.  A recent work on FPGAs 

[27] uses a Bloom filtering approach for accelerating traditional bag-of-words search and 

has been able to demonstrate a comparable 20-40x speedup over the best known serial 

implementation on multi-core CPUs. Our proposed approach with Cuckoo hashing has 
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superior speedup performance on a GPU and can be expected to improve the 

performance on an FPGA as well.  

3.1.6 Section Summary 

We have designed a novel multi-stage Bloom-filter based computational kernel 

to compute item-user semantic profile similarity on GPUs [9, 28]. We use Bloom filters 

[20] to quickly determine the common terms in two tensors. Once the matching terms 

have been identified, it is necessary to lookup their corresponding coefficients from 

memory. In case of Fermi and Tesla architectures, we radix sort Tensor1 whereas in case 

of Kepler architecture, we use Cuckoo hashing.  This demonstrates superiority of shared-

memory approach for CB when run on many-core processors. The baseline CPU used 

for comparison of results was the Intel Core i7-3770K processor.  Three kinds of GPUs 

were used to test the performance for semantic search - Tesla C870, Fermi Quadro 

2000M, Kepler GTX 680.  
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4. COLLABORATIVE INFORMATION FILTERING ON MIC * 

4.1 Shared Memory Approach 

In this dissertation, we describe the design of a novel counting based 

computational kernel to compute all-pairs similarity on Nvidia’s Tesla GPU & Intel’s 

SCC [19]. This involved the creation of new data structures to index the data, 

formulation of the all-pairs computation problem as a counting task amenable to 

efficient parallelization. We describe the motivation, proposed algorithm and the results 

in the following subsections.  

4.1.1 Motivation 

 The workflow for item-item CF can be described mathematically as follows. 

Suppose there exist a set of m distinct users; U = {u1,u2, …, um} who have rated one or 

more of n distinct items; I= {i1,i2, …, in}. Each user u ∈ U provides a rating rui for a 

subset of items in I (Iu ⊆ I). These ratings can be represented as an item-user matrix R of 

size nxm. Not all elements in this matrix will be filled in because most users will not 

have rated all items. Let the total number of ratings provided as input i.e. triples of type 

(itemID, userID, rating) be T (<< nxm). A row vector from R (Ri) is sufficient to 

describe an item i’s interaction history (i.e. all user ratings made for it) whereas a 

                                                

* Parts of this section have been reprinted with permission from A. Tripathy, S. Mohan 
and R. Mahapatra, "Optimizing a Collaborative Filtering Recommender for Many-Core 
Processors", in 6th IEEE International Conference on Semantic Computing (ICSC) 
September 19-21, 2012, Palermo, Italy. © IEEE 2012 &  
A. Tripathy, A. Patra, S. Mohan and R. Mahapatra, “Distributed Collaborative Filtering 
on a Single Chip Cloud Computer”, in Proc. IEEE Intl. Conf. on Cloud Engineering 
(IC2E ’13), Mar. 25, 2013, San Francisco, CA, USA. © IEEE 2013. 
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column vector (Ru) describes a user u’s interaction history (i.e. all item ratings made by 

him). 

4.1.1.1 Calculation of Item-Item All Pairs Similarity (sij) 

 

  

Figure 22. Calculation of Item-Item All Pairs Similarity 
 

 

Figure 22 shows a sparse item-user matrix Rnxm where a total of T ratings have 

valid entries (shown as grayed cells). Given two arbitrary items i,j ∈ I, their similarity 

metric is denoted as sij. Computation of sij proceeds by first identifying the set of users 

who have rated both i & j denoted as Uij ⊆ U. 𝑟! and 𝑟! denote the average rating of 

items I and j respectively. A similarity metric such as Pearson’s correlation coefficient 

can be defined to compute sij as follows:  
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Pearson coefficient sij  ∈ [-1,1]. In Figure 22, users denoted as u,v are common between 

items i  and j and form Uij. Therefore the ratings in the cells denoted by (i,u) and (j,u) 

will form rui whereas (i,v) and (j,v) will form ruj. The denominator terms of sij denote the 

standard deviations of rui and ruj respectively whereas the numerators represent their 

covariance.  

4.1.1.2 Estimation of Prediction 

 

  

Figure 23. Estimation of Prediction for User(u) 
 

 

Once the similarity for all i,j ∈ IxI is available, the prediction for an arbitrary 

user u ∈ U for an unrated item i ∈ I can be calculated (Figure 23). This uses the 

similarity matrix and his prior rating vector in the following formulation:  

𝑝!" = 𝑟! +
(𝑟!" − 𝑟!)×𝑠!"!∈!!  

𝑠!"!∈!!
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will have pui. This is shown in Figure 23 as the prediction vector with vertically hatched 

lines.  

4.1.1.3 Presentation of Recommendation 

 Once a prediction vector for user u has been computed (output of Figure 23) i.e. 

Pu (prediction vector for user u), we select the top-K from among them as his 

recommendations. The number of possible predictions for user u will be |I| - |Iu| = p. This 

is accomplished using a priority queue of size k. This operation can be completed in O(p 

log k) time since we have to rebuild a priority queue p times (each rebuild of the heap is 

an O(log k) operation. 

4.1.1.4 Key Challenge in All Pairs Similarity Computation 

 When |I|=n, the number of sij pairs is of O(n2). For a given (i,j) pair, the average 

number of ratings to be compared is equal to the average number of ratings per item = 

T/n. Therefore the overall complexity for the computation of all-pairs similarity is 

O(nxnxT/n) = O(nT). In case all pairs similarity between all user-pairs (suv) is to be 

computed, the overall complexity will be O(mT). We will consider user-user similarity 

to further analyze this problem and propose the intuition for our algorithm. The analysis 

will be analogous for item-item similarity; user-user variation is described in this thesis 

for ease of explanation.   

Let us hypothetically assume that distributing the computation of all-pairs item-

item similarity into p tasks is possible where p~n. The hypothetical complexity of this 

task would become O(nT/p)~O(T). The situation would appear as in the following 

simplified diagram (Figure 24):  
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Figure 24. Brute Force User-User Similarity 
 

 

Figure 24 shows users u1,u2,u3,..ul who have rated m,n,o,p items each. The pairs 

(u1,u2), (u1,u3), (u1,ul) are parallelized simultaneously (shown with dotted lines). For 

every such pair of items, say (u1,u2) the common items need to be identified. This is 

O(mxn) or in general O(T) in general.  Many-core systems such as GPU’s provide a 

natural choice to achieve the first level of parallelization described above. However, 

these architectures do not provide a second level of parallelization. Techniques using 

Bloom Filters [9] which were used to find the common items between two sets 

{A1,A2,..Am}and {B1,B2,…Bn}do not apply anymore since there is no second-level of 

parallelism.   

Contemporary works in this domain such as [29] take this approach and propose 

further improvements in parallelizing effectively in an architecture-aware manner: 

reducing memory bank conflicts in GPU’s, using multi-dimensional grids but ultimately 

resort to a brute force method of identifying common items in the Item set. Under these 

circumstances no performance better than O(nT/p) is possible. 
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4.1.1.4 Motivation for Proposed Algorithm 

The key contribution in this chapter is to recognize that it is indeed not necessary 

to compare the sets in a brute force manner. This only increases the number of redundant 

computations being performed in each parallel task/core. Our objective as per Equation 

(2) is to determine all items i ∈ Iuv. Therefore, for a given (u,v) pair, and the items rated 

by u and v; if we indexed all other users who have seen those Iu and Iv, we have solved 

our problem.  

 

  

Figure 25. Converting User-User Similarity into a Counting Problem 
 

 

This situation is demonstrated graphically through Figure 25. Consider a pair say 

(u1, u2) again. u1 proceeds through all items (A1,A2,…,Am) and seeks out all other users 

who have rated A1, A2, …, Am – for instance u10, u14. An intermediate data structure for 

(u1,u10) and (u1,u14) is updated with ru1,am, ru10,am  & ru1,a1,ru14,a1. These are the only two 

pairs relevant rating relevant to similarity computation for u1. In effect, this has reduced 

the problem of brute-force search into one of counting. The additional cost will be that 

of creating a suitable data structure, which can carry the necessary additional indices. 
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We have reduced our time requirement at the cost of increased space needed to store 

these index values. 

The complexity of this approach is now 𝑂(𝑛× !
!
× !
!
) Since 𝑛 ≪ !

!
, it reduces to 

𝑂(𝑛× !
!
). If this were to be parallelized in p parallel paths where n~p, the resulting 

complexity of the algorithm shall be only O(!
!
). Therefore this approach can expect to 

have an order of magnitude speedup. 

We next describe the implementation issues for this algorithm including, creation 

of the required data-structures, description of the algorithm and its mapping into two 

representative parallel architectures (Nvidia’s GPU’s and Intel’s SCC).  

4.1.2 Proposed Data Structures and Algorithms 

 This section outlines the algorithm and the necessary data-structures to realize 

the algorithmic framework described earlier. For a given user u, a list of items he/she has 

rated is stored in an array itemByUser, the ratings given is stored in a second array 

ratingByUser both indexed by the value in userIndexu and userIndexu+1. Likewise for an 

arbitrary item i, a list of users who have rated it is stored in a separate array userByItem, 

the corresponding ratings are stored in a second array ratingByItem both indexed by the 

values in itemIndexi and itemIndexi+1. This data structure is common for both item-item 

and user-user collaborative filtering. The data structures userIndex and itemIndex are 

maintained with the help of two HashTables. This situation is shown in Figure 26.  
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Figure 26. Designing the Required Data Structures 
 

 

 A single processing element (streaming multiprocessor on the GPU) or a 

processing core (on the SCC) operates on the ith item or uth user. Algorithm 2 shows the 

pseudo code for calculating user-user correlation.  

 Line 13 of Algorithm 2, indicates the initialization (to zero) of a three 

dimensional matrix (inter) with the dimensions Num_Users x Rating_Max x 

Rating_Max. Rating_Max indicates the highest range in the Rating dataset. In the 

datasets used in this paper, we have used Rating_Max = 5 (a range of 1-5). For instance, 

if user ui detects neighbors’ u10, u23 and the ratings that they share with ui are (5,1) and 

(2,3) respectively the following elements of (inter) will be incremented: [10][5][1] and 

[23][2][3]. The loop between lines 10-15 parses through all possible items rated by user 

ui. For each such item say i1, the inner loop 11-15 finds all possible users in the rating set 

that have rated it (through userByItem). For every such pair of users, an intermediate 3-

D matrix is updated.  
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Algorithm 2: Algorithm for User-User all pairs correlation 
1: load ratingByUser of size NUM_RECORDS 
2. load itemByUser of size NUM_RECORDS 
3. load ratingByItem of size NUM_RECORDS 
4. load userByItem of size NUM_RECORDS 
5. load userIndex of size NUM_USERS 
6. load itemIndex of size NUM_ITEMS 
9. copy all data structures from host to device memory 
10. for i=0 to i<NUM_USERS do  
11.  define inter[NUM_USERS][R_MAX][R_MAX] 
10.  for j = userIndex[i] to j< userIndex[i+1] do 
11. for k = itemIndex[itemID] to k<itemIndex[itemID+1] 
12.   if (userByItem[k] >=i) then 
13.    
 inter[userByItem][ratingByItem[k]][ratingByUser[j]]++ 
   end if 
14.  k++ 
15.  end for 
16. j++; 
17. end for 
18. for j=i; j < NUM_USERS do 
19.  for k=1 to k<=R_MAX do 
20.   for l=1 to l<R_MAX do 
21.        val = inter[j][k-1][l-1]  
22.         sum1 += l*val 
23.        sum2 += k*val 
24.        sumsq1 +=l*l*val 
25.        sumsq2 +=k*k*val 
26.        sumpr += k*l*val 
27.       num += val 
28.       l++ 
29.   end for 
30.  k++ 
31.  end for  
32.  top = (sumpr – (sum1*sum2/num))  
33.   

bottom = sqrt((sumsq1-sum1^2/num)* (sumsq1-sum1^2/num) 
34.  pearson = top/bottom 
35. j++ 
36. end for 
37. i++ 
38. end for 
endprocedure 
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/* In case of the SCC */ 
Follow Line 10 by : if (i%NUM_CORES==CURR_CORE) then  
Until Line 36: end if 
 
/*In case of the GPU */ 
Replace Line 10:  Launch kernel_parallel_i_i_corr(..) with all loaded data structures 
procedure kernel_parallel_i_i_corr(..) 
1: tid = (blockIDx.x*blocDim.x)+threadID.x 
2. Replace lines 11-34 
end procedure 
 
 

  

Once this parsing is complete, a second loop begins for the user ui (lines: 18-36). 

This loop walks through the intermediate matrix to generate the correlation coefficient. 

In this pseudo code, we have used a more computationally efficient to calculate suv as 

shown below. In this case, n is the number of common users identified.  

𝑠!" =
𝑟!"×𝑟!"!""  !∈!!"   /𝑛 − 𝑟!   − 𝑟!

𝑟!"! − ((𝑟!)
!)/𝑛!""  !∈!"# × 𝑟!"! − ((𝑟!)

!)/𝑛!""  !∈!"#

 

4.1.3 Results and Discussion 

 The goal of this section is to investigate the efficiency, execution time 

performance and power consumption of user-user and item-item collaborative filtering 

recommender when run on a GPU and SCC. The variables we can experiment with are: 

(1) Number of Items (or Number of Users), (2) Number of Users/Item (or Number of 

Items/User), (3) Number of Threads/Block (or Number of Cores used). The objective of 

our paper is not to measure the quality of recommendations; metrics such as accuracy, 
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quality, diversity etc. will not be used. The GPUs used in our experiments were NVIDA 

Tesla C870, Quadro 200M and Kepler GTX680. 

 The power monitoring on the GPU’s was done using Watts’ Up Pro power 

analyzer from Electronic Educational devices [30]. This measures bulk system power 

consumption (Host CPU+GPU). Measurement of Power consumed by the SCC cores is 

achieved via a Board Management Controller (BMC) that monitors the voltage and 

current drawn from the power rails feeding the SCC cores. These values are available 

through a series of system calls from the MCPC. We synchronize these calls with the 

execution of our algorithm, average the results. Execution Time on the GPU is measured 

using standard CUDA timers whereas wall clock is used on the CPU and SCC to 

measure the execution time of algorithms. 

 In the following section, we report & analyze overall execution time, power, 

energy, speedup for the recommender core on: (1) Intel’s experimental single chip cloud 

computer (SCC), (2) NVIDIA’s CUDA-enabled GPGPU acting as a co-processor and 

(3) traditional server class x86 (Xeon) processor. To be able to better control the 

behavior of our algorithm, we decided to implement a synthetic dataset where the first 

two parameters can be tuned. However, to verify whether our system would operate on 

real-world datasets, we used Flixster [31]. The Flixster dataset consists of 147,612 users 

who have rated a total of 48,794 unique movies (items) at least once. The total number 

of ratings available in the dataset is 8,196,077. Other datasets which have been used for 

functional correctness are: Bookcrossing [32] & Movielens [33].   
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Figure 27. Execution Time for Item-Item Correlation (Tesla C870) 
 

 

Figure 27 shows the overall execution time for a synthetic dataset by varying 

#items (n) while keeping #(users/item) constant at 10. Sequential execution performed 

by the CPU causes an exponential increase in the execution time as the number of items 

increases whereas the same operation on the GPU is faster ~30x on average. 

 

 

Figure 28. Speedup for Item-Item Correlation for Tesla, Kepler & Fermi GPUs 
 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

9 17
 

31
 

55
 

99
 

17
7 

31
5 

56
1 

99
9 

17
77

 

31
61

 

56
22

 

99
99

 

17
78

2 

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

 

Number of Items in synthetic dataset  
(#Users/Item=10, Threads/Block=Max(#Items/2,512)  

GPU_Exec_Time(ms)/

CPU_Exec_Time(ms)/

0 

10 

20 

30 

40 

50 

60 

70 

1M
i 

2M
i 

4M
i 

6M
i 

8M
i 

S
pe

ed
up

 

Number of Records (R) 

Tesla&(C870)&
Fermi&(Q2000M)&
Kepler&GTX&680)&



 

 47 

Figure 28 shows the experimentally determined speedup for item-item 

correlation as compared to the base-line i7 CPU core for the Tesla, Fermi & Kepler 

GPUs. In this case a synthetic dataset was used with varying number of items while 

keeping the  #(users/item) constant at 10. Sequential execution by the CPU causes an 

exponential increase in the execution time whereas the Tesla, Fermi & Kepler perform 

~30x, ~47x and ~63x better. 

 Figure 29 shows variation in execution time for a synthetic dataset due to 

increase in #Threads/Block from 2 to 512 with fixed #items = 10k & #Users/Item = 

1778. This corresponds to |R|=T=485k unique records. It demonstrates that the reduction 

in execution time for the algorithm is insignificant beyond #Threads/Block=32. 

 

 

Figure 29. Variation of Execution Time with varying Threads/block  
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Figure 30. Dynamic Power Consumption using Tesla GPU & Intel Xeon GPU 
 

 

Figure 30 shows the variation of power consumed by the CPU and GPU 

respectively with varying #items keeping all other parameters constant. This experiment 

was conducted with #users/item = 10. The dynamic power for the GPU is lower than that 

consumed by the CPU but approaches that of the CPU for large datasets. It is known that 

GPUs are energy efficient but not necessarily power-efficient.  

 

Table 3. Energy Savings with Proposed Algorithm on a GPU 

Number 
of Items 

(n) 

CPU 
Exec. 
Time 

tCPU (s) 

CPU 
Avg. 

Power 
(W) 

GPU 
Exec. 
Time 

tGPU(s) 

GPU 
Avg. 

Power 
(W) 

Speedup 
𝒕𝑪𝑷𝑼
𝒕𝑮𝑷𝑼

 

Energy 
Saved 
(%) 

 
1000 0.248 246 0.0078 204 31.79 97.39 
1778 0.730 247 0.022 219 33.16 97.32 
3162 1.174 250 0.0669 229 26.50 96.54 
5623 6.484 251 0.1995 235 32.50 97.11 
10000 20.22 253 0.6154 240 32.86 97.11 
17783 58.57 258 2.3279 241 25.15 96.28 
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Table 3 shows the execution time, average power consumption CPU and GPU 

respectively when using the Flixster dataset and constant #Threads/Block = 512.  The 

average energy savings is ~97% which is mostly due to the massive ~30x speedup in 

execution time (especially since the power levels of the GPU approach that of the CPU) 

 

  

Figure 31. Execution Time for Proposed Algorithm on Intel SCC 
 

 

Figure 31 shows execution time for the Flixster dataset by varying #items (n) 

while keeping #(users/item) constant at 10 on the SCC. Since the SCC cores are the 

much older 1st generation Pentium’s, it is not fair to compare them with the state-of-the-

art Xeon processors. We believe that the lower speedup (compared to ~30x on the GPU 

is due to the much lower available parallelism on the SCC). 
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Figure 32. Dynamic Power Consumption for Proposed Algorithm on Intel SCC 
 

 

Figure 32 shows the variation of power delivered by the SCC supply rails with 

increasing participation of cores in the computation. This power was measured via on-

board ADCs on the Board Management Controller. In this case, #Cores used = 1 to 48 

with fixed #users = 10k. The dynamic power consumed by the SCC is ~3-6x lower than 

that consumed by the GPU. 

 Table 4 shows the execution time, average power consumption of the SCC: 

single core (tSIN) and all 48 cores (t48) respectively when using the Flixster dataset and 

1K<#Users<10K. The average energy savings is ~82.62% which is primarily due to the 

~10.56x speedup in execution. 
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Table 4. Energy Savings with Proposed Algorithm on Intel SCC 

Number of 
Users 
(u) 

Single Core 
Exec. Time 
tSIN (s) 

Single Core 
Avg. Power 
(W) 

All 
Cores 
Exec. 
Time  
t48(s) 

All 
Cores 
Avg. 
Power 
(W) 

Speed
up 
𝒕𝑺𝑰𝑵
𝒕𝟒𝟖

 

Energy 
Saved 
(%) 

 

1000 26.238 40.04 3.470 76.176 7.561 74.83 
1778 74.789 41.24 8.893 78.454 8.409 77.37 
3162 334.23 43.87 22.669 74.548 14.743 88.47 
5623 1390.2 48.28 113.17 79.431 12.284 86.60 
10000 2874.7 52.35 291.965 73.157 9.846 85.80 

 

4.1.3 Related Work 

 The closest work to this paper is the CADAL Top-N recommender [34] which 

has been accelerated on a GPU. They perform user-user collaborative filtering and also 

use the Pearson correlation coefficient. They use a more recent Tesla C2050 GPU 

(however, maximum number of threads/block = 1024). We compare our results with that 

of the CADAL Top-N recommender in Table 5.  

 

Table 5. Comparison with Related Work 

Number of 
Users 
(u) 

Exec. Time 
tCADAL (s) 

Exec. 
Time 
tGPU (s) 

Speedup 
𝒕𝑪𝑨𝑫𝑨𝑳
𝒕𝑮𝑷𝑼

 

Exec. 
Time tSCC 
(s) 

Spee
dup  
𝒕𝑪𝑨𝑫𝑨𝑳
𝒕𝑺𝑪𝑪

 

1000 2.1 0.0005 4384 3.47 0.61 
2000 8.8 0.0007 12662 10.22 0.86 
4000 35.5 0.0012 29194 33.84 1.05 
8000 142.1 0.0021 67187 198.09 0.72 

 

 
Speedup for our GPU algorithm greatly exceeds that reported by CADAL. This 

demonstrates the superiority of our counting based method that greatly reduces 

redundant computations of the same items for a given user pair. This is because CADAL 
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performs the naïve user-user similarity matching as described earlier in this section. Our 

counting based method requires marginally more memory (additional index pointers 

need to be transferred to the GPU) but provides an order of magnitude larger speedup. 

Speedup for our counting method on the SCC is almost equal to that reported by the 

authors of CADAL. This is despite the much fewer number of cores in use (the degree of 

parallelization (p) is =48 compared to =1024 in case of the GPU). As discussed earlier in 

this chapter, this difference is because: the order of computation in our algorithm is 

𝑂(!
!
× !
!
) compared to 𝑂(!

!
×𝑇) for the CADAL system. 

4.2 Distributed Memory Approach 

 Sec. 4.1 described the design of the CF algorithm using a shared-memory model. 

This necessitated the loading of the entire dataset (including our custom indexes) into the 

main memory of each core, although each participating core was designed to operate 

only on a subset of the dataset. Although this enabled significant speedup, it requires the 

sharing of common index values in shared memory. This is not scalable for larger 

datasets due to the limited amount of shared memory available and the overhead in 

accessing them for a cluster-on-chip architecture like the Intel SCC. 

 

 

 

Figure 33. Conventional SCC Programming Model 
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Figure 33 shows the programming model that was used for Sec. 4.1. The 

application/algorithm was developed with the help of Intel provided software toolkit [18]  

operating on the physical hardware. The application was designed & and run with OS 

support (SCC Linux) using one-sided core-core communication library (RCCE) and 

other architecture specific libraries to achieve core-core synchronization. 

 The existing SCC programming model requires that an application developer 

significantly modify an existing parallel application or rebuild it from scratch using 

standard parallel programming constructs (like MPI, OpenMP etc.) with knowledge of 

the SCC architectural details. This will entail significant redevelopment costs for 

different applications. The development of a common base framework such as 

Mapreduce that abstracts away communication & synchronization primitives required 

for applications will allow for faster application development. Most significantly, this is 

likely to allow for cores to execute parts of the application independent of each other 

from their own allocated regions of DRAM/HDD.  

 

 

 

Figure 34. Proposed SCC Programming Model 
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4.2.1 Motivation for Proposed Approach 

We reused the commonly used MapReduce programming model (on distributed 

clusters) within the SCC chip itself and run our application on top of it (in a distributed 

manner). In the cloud computing community, a large number of applications (in various 

domains) already have been expressed using the MapReduce [3, 35] programming 

model. The addition of the MapReduce run-time and application layer (CF Mapreduce 

Application) on top of the standard SCC programming model is shown in Figure 34.  

 

 

 

Figure 35. Mapreduce Programming Model on Many-core Processors 
 

 

MapReduce [3] is a high-level parallel programming model which has become 

popular for data intensive computing on shared-nothing clusters. It requires a designer to 

specify two task primitives map and reduce which run on participating compute nodes. 
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Communication task primitives - partition, sort and group (the three together called 

shuffle) exchange and aggregate the intermediate output from map into reduce. Input 

data to be processed is split and stored block-wise across the machines participating in 

the cluster, often with replication for fault tolerance using a distributed file system 

(DFS). Mathematically the task primitives can be expressed as: 

Map: (𝑘!, 𝑣!)   → list(𝑘!, 𝑣!) 

Reduce:  (𝑘!, 𝑙𝑖𝑠𝑡(𝑣!))   → 𝐿𝑖𝑠𝑡(𝑣!) 

The execution of a typical MapReduce program can be expressed in four phases 

(Figure 35). In the beginning, the map function runs on parallel workers (all participating 

machines in the cluster; called mappers) to produce a set of intermediate (key,value) 

pairs: list(k2,v2). Next, a partition function exchanges intermediate data between the 

workers; a sort function sorts them at each worker node; a group function pools together 

all values for a key to produce (k2,list(v2)). Here, the shuffle stages (partition, sort, 

group) potentially require all-all communication and transform list(k2,v2) to (k2,list(v2)). 

Finally, the reduce function operates on this list(v2)’s for k2 at each parallel worker (now 

called reducers) to produce the final (key,value) output: (k3,v3). This final output from 

reduce is stored back into the DFS (i.e. the HDD at each compute node). This model has 

become popular because it abstracts details of parallelization, fault tolerance, locality 

optimization and load balancing away from an application developer. An application 

developer only has to define the content of the map (M), reduce (R), partition (P), sort 

(S) and group (G) functions and leave the rest of the process to the framework.  
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Figure 36. FPGA Interface to Intel SCC 
  

 

A key requirement for deploying the MapReduce model is the availability of a 

distributed file system, which can store the intermediate results from each stage. 

Unfortunately, there is no direct HDD interface to the cores of an SCC. Although the 

System FPGA (on the SCC motherboard, shown in Figure 36) has the capability to 

directly interface SATA hard disks, this capability has not been made available (as of 

writing of this thesis) and when made available would still constitute a bottleneck. 

Therefore, the only way a HDD can be used is via a NFS mounted share on the MCPC.  

This System FPGA (shown in Fig. 5) acts as a software-controlled port/router into the 

SCC’s on-die mesh routing programs & data as desired. It provides stand-alone Ethernet 

ports (called eMAC) and a PCIe interface to the MCPC. At this point, data I/O can be 

done either through the PCIe interface (called Ethernet over PCIe) or through Ethernet 

ports (called Ethernet over MAC) but not both simultaneously. Ethernet over PCIe 
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suffers from a known high-IO load bug; therefore we use Ethernet over eMAC in this 

paper (1Gbps). 

A second problem is that currently MapReduce run-times such as Apache 

Hadoop would use TCP/IP communication primitives. This will be inherently inefficient 

because packets will need to travel off-chip to the FPGA for routing and not take 

advantage of the on-die routing capabilities (though the message passing buffer and on-

chip routers available through the Intel provided RCCE library [18]. Thirdly JVM 

support for the first generation Pentium is deprecated, a plug-n-play of an open-source 

framework like Hadoop is out of the question and expected to be inefficient. It was 

hypothesized that a MapReduce model built from the ground up using architecture 

specific communication primitives may provide better performance. 

 The specific tasks that were performed are:  

1. Design a MapReduce runtime to operate on a many-core processor using first-

principles as described in [3]  using the standard software environment provided 

by Intel (sccKit v1.4.1.3), a modern linux kernel (2.6.38.3) and RCCE, the Intel 

one-sided communication library. 

2. Build an algorithmic framework (define stages) to perform scalable 

neighborhood-based CF top operate on the above run-time. 

4.2.2 Design of Mapreduce-on-chip Framework 

 We implemented MapReduce-on-chip using first-principles using the standard 

software environment provided by Intel (sccKit v1.4.1.3), a modern linux kernel 

(2.6.38.3) and RCCE, the Intel one-sided communication library. The lack of a DFS 
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does not impede progress; all intermediate data for a MapReduce stage is stored in main 

memory. 

 We next describe a four-stage Map-Reduce pipeline specific to the Intel SCC 

architecture. It consists of the stages: map, shuffle (partition, sort, group), reduce and 

merge. For simplicity of the design, we make all participating cores in the SCC (#cores) 

execute all stages. Barriers are placed in between stages to ensure that execution 

proceeds from one stage to another only if all cores have completed the execution of a 

stage. Since each core will operate on a different subset of the input data, it is likely to 

complete execution of a stage slightly sooner than a sister core. A typical MapReduce 

cluster would consist of heterogeneous nodes and use one of the participating nodes as a 

scheduler. Since, we are operating on a homogenous system, task allocation is un-

necessary and would actually be an overhead. 

4.2.2.1 Map Stage 

In this stage, we use a splitter function that splits the input data into as many 

parts as the number of participating cores (operating as mappers in this stage). Each core 

now executes the user-defined map function over its subset (chunk) of the input data 

(k1,v1) and produces (emits) a new key-value pair List(k2,v2) which is stored in a 

contiguous buffer per core; stored in off-chip DRAM – the fastest available memory.   

4.2.2.2 Partition Stage 

The intermediate (k2,v2) pairs from map need not all be processed by the same 

core in the reduce stage. An all-to-all exchange of the intermediate data is necessary to 

place them in their right cores. This is done using a user-defined partitioning function – 
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for ex. hash(key)mod(#cores). The resulting value determines the destination core for a 

(k2,v2) pair. Transmission is accomplished through pair-wise exchanges between cores 

through Intel’s RCCE [18] get-put communication library (which employs the MPB).  

4.2.2.3 Sort Stage 

Following transmission, the resulting intermediate buffer at each core may have 

the same key’s at different positions (corresponding to the other cores where they were 

received from). A Quick Sort is performed on this intermediate buffer in O(nlogn) time 

where n is the number of keys. We use the standard glibc provided quicksort and a user 

provided comparator function to perform this sorting. Although quick-sort operates in-

place, we take additional care to swap only pointers to the (k2,v2) pair making the cost of 

swap independent of the size of data. 

4.2.2.4 Group Stage 

This stage operates on the sorted list of (k2,v2) pairs to produce a list of values for 

one key i.e. (k2,list(v2)) Since the list of (key,value) pairs has been sorted, this stage is 

accomplished by iterating through the sort buffer and storing values sequentially until a 

new key is encountered. 

4.2.2.5 Reduce Stage 

The preceding three shuffle phases have enabled the creation of (k2,list(v2)) pairs. 

Every such pair is now passed through a user-defined reduce (aggregation) function 

which produces a List(v3) as the final output. 
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4.2.2.6 Merge Stage 

Since it is often necessary to write the resulting output to disk, we first need to 

bring them together from all participating cores into one. This can be accomplished by 

an all-to-one communication of (key,value) pairs to one pre-defined core. A more 

efficient version of the same is possible by merging them binomially (intermediate cores 

acting as temporary aggregators) as discussed in [36]. 

4.2.3 Modeling the Item-Item CF Computation through Mapreduce Jobs –Approach A 

 We express the item-item collaborative filtering problem (initially described in 

Sec. 2.1.2 of this dissertation) in 4 stages (6 mapreduce jobs).  A similar design for user-

user CF can be accomplished by replacing users by items in the following formulation: 

• (Stage 1) – Compute the average rating by all users for each item (i.e. calculate  

𝑟!) 

• (Stage 2) - Compute all item-pairs similarity (or correlation, producing sij) 

• (Stage 3) – Compute predictions for all items given a subset of users (i.e. ∀ u ∈ 

U produce pui) 

•  (Stage 4) – Select the Top-k predictions for a user and present them as a 

recommendation  
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Figure 37. Computational Flow for Item-Item CF on Intel SCC – Approach A 
 
 

 

Figure 37 shows the computational flowchart for Item-Item CF using 

MapReduce model suitable for the SCC (the four stages are shown with dashed blocks). 

Each stage may consist of more than one Map-Reduce job. The input and output of each 

stage consists of (key,value) pairs described using the notation <key;value>. When either 

the key or value in a pair consists of several distinct terms, commas separate it.  

ItemAvg (Map-A & Reduce-A) calculates average rating for all items. 

CommonUsers (Map-B & Reduce-B) identifies all pairs of items that have been rated by 

a common user and emits the deviation of their ratings from the average. SimPairs 

(Map-C & Reduce-C) operates on this to compute the similarity between all pairs of 

items.  
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Once an all-pairs correlation has been computed, it is possible to compute a 

prediction for a user u for an item i that he/she has not already rated. This requires 

finding all items already seen by a user u and the similarity vector for each of those 

items. CommonUsersSimPairs captures the similarity vector for each item (i) and emits 

the user who has already seen it (u), his rating (Ri,u), the average rating of the item (𝑅!) 

and its similarity vector (Si). This is fed as input to Prediction. Prediction (Map-E & 

Reduce-E) groups this data by user and makes a prediction for all users as per Eq. (3). A 

list of userID’s (u) and predictions for each unrated item (i.e. (i,Pui)) is fed  into 

Recommendation where top-K highest predicted items for a given user are identified 

using a priority queue and presented as recommendations. We will now explain each 

MapReduce stage in detail in the following sections with specific reference to our target 

platform. 

4.2.3.1 Calculation of Item Averages 

The input to the systems are tuples of type (i, u, Ri,u) which represent only the 

non-null ratings corresponding to user u for item i. Map-A emits <i;u,Riu>. This ensures 

that (userID, rating) tuples for the same itemID are shuffled to the same core. In 

database parlance, this corresponds to “group-by itemID” operation except that it is 

performed in a distributed manner. Once all tuples of the type (userID, rating) for a 

given itemID (say equal to numValues) are aggregated at a core, the Reduce function 

(Reduce-A) performs the averaging operation: 

𝑅! =
𝑅!,!!"#$%&"'(

!!!

𝑛𝑢𝑚𝑉𝑎𝑙𝑢𝑒𝑠  
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This stage emits two tuples; one consisting of the <itemID;ItemAverageRating> 

and the other <itemID;userID,rating, ItemAverageRating>. The latter is to be used 

immediately while the former is to be used during calculation of predictions. The output 

at each core is merged before it is written to disk. 

4.2.3.2 Calculation of All Pairs Similarity 

Computation of similarity between items i & j requires the identification of the 

set of users who have rated both items denoted as Uij ⊆ U. To do so, we“group by 

userID”. This will provide us all the items seen by a user. Taking all possible 

permutations of such items will give us all (i,j) pairs which have been seen by a user. 

Note that the same (i,j) pair may occur due to multiple users; in fact that is what we need 

to capture. This is an indirect and elegant way to form all-possible pairs that have been 

rated by a common user. This is accomplished through two MapReduce jobs as 

discussed below. 

4.2.3.2.1 CommonUsers Job 

Map-B operates on <itemID;userID,rating, ItemAverageRating> and emits 

<userID;itemID,rating, ItemAverageRating>. This ensures that the (itemID, 

rating,ItemAvgRating) triple for every userID is shuffled to the same core for the 

Reduce-stage. For every pair of itemID’s say (i,j) thereby available, we can compute sij. 

Given the limited memory capabilities of the SCC cores and that we do not know how 

many such pairs will be produced (this is data driven), it is better to save the required 

intermediate result for every such itemID pair into disk i.e. Reduce B stores the first two 

bracketed terms in the numerator and denominator in the equation for sij. 
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4.2.3.2.2 SimPairs Job 

Map-C acts as a pass through only aggregating all possible itemID pairs to the 

same core for the subsequent reduce stage. Since the key consists of multiple terms, we 

use a custom comparator for the partition, sort and group functions. Reduce-C operates 

on all similar (i,j) pairs and performs the summation in the numerator of the equation 

describing sij. 

4.2.3.3 Calculation of Prediction 

The calculation of prediction for a given user (say u) for an unknown item (say i) 

is performed in this stage. However, before this done, we need to associate the similarity 

of this unknown item (i) with all other unrated items i.e. the similarity vector Si. This 

matching up of item’s with their similarity vectors is done in CommonUserSimPairs job. 

The subsequent calculation of predictions is actually done in the Prediction job. It is 

important to note that in this stage we are not only calculating the prediction of a user for 

his non-rated items but rather the prediction for all users for all their non-rated items. 

This is expected to be the most computationally expensive operation, and is normally 

performed in a batch-wise manner i.e. calculate all predictions for non-rated items for a 

subset of users at a time. 

4.2.3.3.1 CommonUserSimPairs Job 

 Map-D operates on the output of Reduce-A and acts as a pass-through for the 

data. It only ensures that all (userID,rating, ItemAverageRating) triples for a given 

itemID are shuffled to the same core. Reduce-D actually picks up the similarity vector 
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for that itemID and aggregates them to the (userID,rating,ItemAverageRating) triple; the 

resultant quadruple is saved to disk following a merge. 

4.2.3.3.2 Prediction Job 

Map-E ensures that the quadruple of 

(itemID,rating,ItemAverageRating,ItemSimilarityVector) for every userID is shuffled to 

the same core. This is the minimum essential data to make a prediction for a user for an 

unknown item. Reduce-E calculates the intermediate values & performs the summation 

in the equation to compute pui. The result of this stage is a key value pair of the type <u; 

i,Pu,i>. This is stored back into disk following a merge. Although it is theoretically 

possible, to make the recommendation computation in Reduce-E itself, we prefer to do it 

in an independent MapReduce job given the limited memory constraints of the SCC. 

4.2.3.4 Calculation of Recommendation 

In this stage, Map-F shuffles (itemID,Prediction) tuples for every userID to the 

same core. In Reduce-F, the tuples are inserted into a priority queue implemented 

through a min-heap of size k. Since a total of O(i) insertions are possible and rebuilding 

the heap takes O(log K) time, the total complexity of identifying the items with highest 

predictions is O(ilog k). The output of Reduce-F is a list of k itemID’s with the highest 

predictions for a given user. Each core produces such a result for every call to Reduce-F. 

The list of predicted itemID’s for a user from every core are merged to a single core and 

then saved to disk. 
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4.2.3.5 Experimental Setup and Observations 

 In this section, we discuss the experiments conducted to determine the validity of 

our approach. The goal of this section has been (1) to demonstrate that collaborative 

filtering can be performed with scalability on a many-core processor using the 

MapReduce paradigm, (2) speedup, (3) energy saving with respect to the state-of-the-art. 

The goal of this dissertation is not to build a better recommendation system, therefore 

quality metrics such as precision & recall are not considered. We can experiment with: 

(1) size of the dataset (#records), (2) number of parallel computational elements. 

 Our experiments were performed on an Intel provided SCC and software 

environment: SCCKit 1.4.1.3, icc (version 8.1), tiles at 533 MHz, mesh interconnect at 

800 MHz, DRAM at 800 MHz. Our SCC had 32GB RAM for all 48 cores i.e. 640 MB 

per core. Execution time was measured using system calls and power was measured via 

an independent Board Management Controller (BMC) on the SCC motherboard. To 

compare this system, with a contemporary cluster, we used a 4-node cluster consisting of 

dual-core AMD Athlon-64 2GHz processors with 2GB DDR2 RAM. This cluster system 

ran Apache Hadoop 1.0.1. 

 To verify that our approach works on real-world datasets, we used a benchmark 

dataset from the GroupLens research project called Movielens [33] consisting of 100k & 

1 Mi ratings. This dataset is typically used in evaluating CF-based recommender 

systems. 
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4.2.3.6 Execution Time and Energy Analysis 

 We measure the execution time of each MapReduce stage separately. Since the 

partition and merge sub-stages involve inter-core communication, we report them 

together as communication time. Likewise, the map, reduce and sort sub-stages in each 

MapReduce job are the only ones which involve computation and are reported together. 

 

 

 

Figure 38. Execution Time for Calculation of All-pairs Similarity 
 

 

Figure 38 shows the split up of communication and computation times for the 

first three stages of the MapReduce chain on the SCC with a synthetic dataset with 

increasing number of items. Here #users/item = 10, 20% of possible pairs have 10% 

common users. 

1770 3150 5610 9990 17770
0

2

4

6

8

10

12

14

16

18

Number of Records

Tim
e (

ms
)

 

 

ItemAvg Communication Time (ms)
ItemAvg Computation Time (ms)

1770 3150 5610 9990 17770
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Records

Ti
m

e (
m

s)

 

 

CommonUsers Communication Time (ms)
CommonUsers Computation Time (ms)

1770 3150 5610 9990 17770
0

1

2

3

4

5

6

7

8

Number of Records

Ti
m

e (
m

s)

 

 

SimPairs Communication Time (ms)
SimPairs Computation Time (ms)



 

 68 

 

Figure 39. Execution Time for Calculation of Prediction & Recommendation 
 

 

Figure 39 shows the split up of communication and execution time for the last 2 

stages of the MapReduce pipeline on the SCC with a synthetic dataset with increasing 

number of items. Here, #users/item = 10, 20% of possible pairs have 10% common 

users. 

We observe that the CommonUsers & Prediction stages are computation 

dominated whereas ItemAvg, SimPairs, & Recommendation have an even split. It is 

possible for us to make this estimation because for this experiment we have used a 

synthetic dataset whose characteristics have been kept constant with increasing number 

of records. The communication v/s computation split in percent for the stages (a-e) are 

(30%-70%), (10%-90%), (30%-70%), (1%-99%) & (40%-60%) respectively on average. 

We have not been able to run larger datasets due to limited availability of memory at the 

SCC cores. This is because of the ~640MB per core, nearly ~320 MB is occupied by the 

OS layer. We believe that to alleviate this by: (1) running the MapReduce model on the 

SCC in a bare-metal mode[18] i.e. without OS support, (2) chaining the reduce output of 

one stage directly to the map input of the next without File IO. 
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Figure 40. Stage-wise Execution time for Proposed Algorithm 
 

 

Figure 40 shows the stage-wise timing (map, partition, sort, group & reduce) for 

ItemAvg, CommonUsers & SimPairs resp. using the Movielens-100k dataset (#distinct 

users=1000, #distinct items=1700, #userID’s/item~60). These stages are sufficient to 

compute all-pairs similarity (item-item) for the Movielens dataset. Timing data is 

captured per core (of the 48 cores used) and the average value reported. We observed 

that the timing for the all cores was similar. These results do not include data IO & setup 

time. These results show that more cores are not necessarily better. For instance, 

ItemAvg, CommonUsers & SimPairs do not show appreciable speedup beyond 20, 24 

and 16 cores respectively. This is expected and will be a characteristic of the dataset (i.e. 

sparsity (x,y) where x% of possible item pairs have y% of the users in common). 

Further, Figure 40 also provides additional insight into the behavior of the CF 

algorithm on the SCC using Mapreduce and confirms our hypothesis regarding the 
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sparsity of datasets (real and synthetic). For instance, in ItemAvg, the partition stage 

involving all-all communication between participating cores continues to remain a 

bottleneck when all 48 cores are used and the same is reflected in Figure 39 on the 

synthetic dataset with increasing records. On the other hand in SimPairs, the merge stage 

continues to dominate which contributes to the ~30% contribution of communication 

time for the synthetic dataset. Also, CommonUsers is almost entirely dominated by the 

map & reduce stages (Figure 40) which reflects in the ~90% execution time consumed 

for this stage (Figure 39) for the synthetic dataset. 

 

 

 

Figure 41. Energy Consumed by Proposed Algorithm on Intel SCC 
 

 

We have observed in the previous results that the power drawn by the SCC is 

directly proportional to the number of cores in use. However execution time improves at 

the same time. We experiment the first three stages (A-C) using the Movielens dataset 

consisting of 100k and 1 Million records (also recording the overhead of job setup, IO). 

It is interesting to see the impact of data IO on the overall execution time. For instance, 

in Figure 40, ItemAvg when operating with 4-cores requires ~0.3s for intra-core 
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communication and computation. However, when including IO to HDD, this takes up to 

2.4s (~87.5% due to IO alone). 

We also analyze the overall energy profile for the All-Pairs similarity 

computation (stages a-c) with varying number of cores (using Movielens-100k) to 

understand the power-performance tradeoffs (Figure 41). While overall power drawn 

increases from ~40W to ~60W in all cases, the consequent reduction in execution time 

(~1.2x, ~16x & ~6x) supersedes its effect providing an overall energy reduction. 

We record the execution time and average power drawn in Table 6 & Table 7 

respectively for the Movielens-100k and Movielens-1M datasets. The average energy 

consumed is calculated in Table 8 (in units of Ws). The energy saved in using an SCC as 

the compute node when executing the first 3 stages of CF on the SCC v/s conventional 

multiprocessor systems running MapReduce is ~94.3%. Since we include the data 

transfer times to disk after merging, the average speedup at the same time is a modest 

~2x over a conventional cluster. 

Table 6. Overall Execution Time for Proposed Approach on Intel SCC 
Dataseta 

ItemAvg CommonUsers SimPairs 
SCC Hadoop SCC Hadoop SCC Hadoop 

Movielens
-100k 2.4s 36s 137.8s 302s 210s 462s 

Movielens
-1M 12s 42s 394.4s 591s 487s 789s 

 

 

Table 7. Averaged Power Consumption for Proposed Approach on Intel SCC 
Dataseta 

ItemAvg CommonUsers SimPairs 
SCC Hadoop SCC Hadoop SCC Hadoop 

Movielens
-100k 46W 250W 46W 251W 46W 287W 

Movielens
-1M 47W 252W 48W 249W 48W 285W 
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Table 8. Averaged Energy Consumption (in J) for Proposed Approach on SCC 
Dataseta 

ItemAvg CommonUsers SimPairs 
SCC Hadoop SCC Hadoop SCC Hadoop 

Movielens
-100k 110 9k 6.3k 75.8k 9.6k 132.5k 

Movielens
-1M 578 10k 18.9k 147k 23k 224k 

 

 

4.2.4 Modeling the Item-Item CF Computation through Mapreduce Jobs – Approach B 

 The observations of the previous section indicated only a modest speedup of ~2x. 

This section outlines an alternate formulation of the Item-Item CF problem through 

Mapreduce jobs. The key idea for this approach is that it is not necessary to compute a 

similarity matrix as per the equation above. A recommendation can be obtained through 

the use of a co-occurrence matrix. Further the number of Mapreduce jobs and their 

computational complexity can be potentially reduced.   

 Therefore, we can restate the 5 stages for the item-item collaborative filtering 

problem can be restated as: (1) calculating an item vector (group-by itemID) (2) 

calculating a user vector (group by userID) (3) calculate an item-item co-occurrence 

vector producing countij
 (where i,j are item pairs which have at least one user in 

common), (4) computing predictions for all items for a user (i.e. ∀ u ∈ U produce pui) 

and finally (5) calculating predictions and selecting the top-k predictions for a user as 

recommendations.  
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Figure 42. Computational Flow for Item-Item CF on Intel SCC – Approach B 
 

 

Figure 42 shows the computational flowchart for Item-Item CF for these 5 stages. 

The input and output of each stage consists of <key;value> pairs. ItemVector is 

computed in a distributed manner on the SCC cores by Map-A and Reduce-A. 

UserVector consists of Map-B and Reduce-B and creates a vector of users and ratings 

(u,riu) seen by a item I.  Map-C and Reduce-C creates an item co-occurrence vector for 

every pair of items (say i & j) that have been rated by a common user u. Map-D and 

Reduce-D associates the co-occurrence vector of an item with its user vector. Map-E and 

Reduce-E makes the predictions and recommendations for a user u for an item I. In 
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Reduce-E, the top-K highest predicted items for a given user are identified using a 

priority queue and presented as recommendations. Although, this explanation has been 

made specific to Item-Item CF, an analogous design can be made using similar 

MapReduce constructs for User-User CF. 

4.2.4.1 Calculation of Item Vector (group by userID) 

Since the input data is typically sparse, we provide as an input tuples of type (i, u, 

Ri,u) which represent only the non-null ratings corresponding to user u for item i. Map-A 

emits <u;i,Riu>. This ensures that (itemID, rating) tuples for the same itemID are 

shuffled to the same core. 

4.2.4.2 Calculation of User Vector (group by itemID) 

Map-B emits <i;u,Riu>. This ensures that (userID, rating) tuples for the same 

userID are shuffled to the same core. While the earlier stage corresponded to a “group-

by userID”, this stage is equivalent to a “group-by itemID” operation. 

4.2.4.3 Creation of Co-occurrence Vector 

Computation of all-pairs similarity requires us to first identify the set of users 

who have rated both items i & j denoted as Uij ⊆ U (item-item co-occurrence vector). 

Map-C emits all possible permutations of all item pairs (i,j) which have been seen by a 

user. Reduce-C aggregates these pairs and produces a co-occurrence vector for every 

item. 

4.2.4.4 Calculation of Predictions 

The calculation of prediction is to be done for a given user (say u) for an 

unknown item (say i). For this to be done, we need to first associate every item with two 
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vectors: (1) the similarity (or co-occurrence) vector of this unknown item with all other 

items & (2) the user vector for an item. This data aggregation is done through Map-D 

and Reduce-D.   

4.2.4.5 Calculating Recommendations 

In this stage, Map-E shuffles (itemID,Prediction) tuples for every userID to the 

same core. In Reduce-E, the tuples are inserted into a priority queue implemented as a 

min-heap of size k. Since a total of O(p) insertions are possible and rebuilding the heap 

takes O(log K) time, the total complexity of identifying the items with highest 

predictions is O(p log k). The output of Reduce-E is a list of k itemID’s with the highest 

predictions for a given user. 

4.2.4.6 Execution Time and Energy Analysis 

 

 

Figure 43. Analyzing Computation, Communication & IO time (Approach B) 
 

Figure 43 shows the split up of communication, computation and IO times for 

each stage of the MapReduce chain on the SCC for the Movielens-100k dataset. Since 
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together as communication time. IO time includes the time required for load of data from 

the external HDD to DRAM, latency in access from DRAM to the cores, and setup time. 

Computation time includes only those operations where data is handled by the cores. We 

observe that ItemVector and UserVector stages have similar characteristics (they 

perform analogous operations). In contrast, Co-OccurenceVector is communication 

dominated and Prediction/Recommendation is computation dominated.  This is in tune 

with the expected behavior since the first two stages perform simple comparisons for the 

group-by operations, whereas the Prediction/Recommendation perform computation 

intensive operations on a large segment of data. The only stage where communication 

dominates computation is the Co-OccurenceVector stage. This is also expected since a 

large number of (i,j) tuples are exchanged between cores in the shuffle following the map 

operation. All stages are IO dominated (>50%). This demonstrates for further speedup 

using this computational model on the SCC, IO must be minimized significantly. 

4.2.5 Comparison with Related Work 

Prior work to this paper can be broadly split in two areas: one involving 

development of the MapReduce programming model on multi-core and many-core 

systems [37] and the second involving formulation of the CF problem in MapReduce on 

traditional clusters [38, 39]. To the best of our knowledge, this is the first work of its 

kind involving Collaborative Filtering on Many-Core systems using the MapReduce 

paradigm. In [37], a single-stage MapReduce implementation on the SCC was shown. 

Although this has been a key stepping stone for our research, its key differences with 

this paper are: (1) Applications limited to a few map-, partition- and sort- dominated 
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benchmarks, (2) no support for stage chaining. Also, we examine the design of a multi-

stage CF algorithm on top of this model. We differ from [38] in the following ways: (1) 

we use two MapReduce stages in calculation of similarity whereas they can achieve 

scalability with one. (2) we use two MapReduce stages in calculating prediction whereas 

they use one and (3) we model the final Recommendation calculation as a MapReduce 

step. A single stage calculation of similarity & prediction as envisaged in [38, 39] works 

well when using conventional compute nodes, which do not have limited main memory 

and have local storage (hard-disk). Since, we use main memory to store and operate 

upon intermediate data, we have had to redesign the computation in multiple phases to 

limit its requirement. 
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5. RECONFIGURABLE SOC FOR DATA INTENSIVE COMPUTING* 

 
5.1 Motivation 

 The results from the previous section have shown that GPUs outperform the Intel 

SCC for both semantic information filtering (CB) and collaborative information filtering 

(CF) algorithms despite their power inefficiency. The research question that remains to 

be addressed in this dissertation is whether we can achieve GPU-type performance with 

an SCC-like power budget for such data-intensive information filtering applications.   

 

 

 

Figure 44. Many-core Architectures for Data-intensive Computing 
  

                                                

* Parts of this section have been reprinted with permission from A. Tripathy, K.C. Ieong, 
A. Patra, R. Mahapatra, "A Reconfigurable Computing Architecture for Semantic 
Information Filtering", in Proc. IEEE Intl. Conf. on Big Data (BigData 2013), Oct. 6-9, 
2013, Santa Clara, CA, USA. © IEEE 2013 
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 Figure 44 shows the evolution of many-core architectures. On the one hand, a 

large number of legacy uniprocessors (Figure 44(e) such as x86) have been put together 

on the same die to form a cluster-on-chip (Figure 44(c)) such as the Intel’s Single Chip 

Cloud Computer [18] (SCC, commercialized as Intel Xeon Phi). These machines share 

off-chip memory access between a subset of cores and expect applications to 

synchronize via message passing (distributed memory MIC). On the other hand, 

Graphics Processing Units (GPU’s) have evolved for general-purpose usage as 

application-coprocessors (GP-GPU’s). GPU’s (Figure 44(d)) consist of large number of 

lightweight streaming processors and employ massive thread-level parallelism (TLP) to 

mask memory latency (shared-memory MIC). Cores in a GPU are actually scaled-up 

versions of what CPU manufacturers would have called an ALU (Figure 44(f)). This 

allows GPU’s to integrate a much larger number of cores on die compared to that of an 

SCC (1536 in Kepler [17] v/s 48 on the SCC) leading to a performance difference.  

 Semantic information filtering (SIF) as a big-data application has been explored 

on a GPU and SCC in this dissertation in Sec. 3.  Despite providing substantial speedups 

on both, they still remain memory-bound. Poor spatial and temporal locality of memory 

accesses leads to suboptimal performance levels (execution time dominated by memory 

latency) on cache-based (such as SCC) and GPU multiprocessors alike. Can this be 

improved? Second, is it possible to extract higher performance from each compute core 

by custom-designing its functionality in an application-aware manner. Third, is it then 

possible to build a reconfigurable many-core computing machine that is a hybrid both 

shared & distributed memory MIC’s? A provision for reconfigurability/programmability 
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will ensure wider applicability to similar problems. Will such an architecture be scalable, 

provide high-throughput and enable higher performance gains at a low energy budget for 

big-data applications?         

5.2 Contributions 

 In this section, we present a novel reconfigurable hardware methodology which 

addresses some of these challenges while considering semantic information filtering 

(SIF) as a case study. Our prototype System on Chip (SoC) reconfigurable processor 

core for SIF was designed from the ground up, evaluated on an industry-standard virtual 

prototyping platform for performance. We make four key contributions:  

1. A reconfigurable hardware architecture which decouples computation and 

communication thereby issuing multiple outstanding memory requests. 

2. A Bloom Filter based randomized algorithm for  

3. An in-depth performance evaluation with different sizes and characteristics of 

benchmark datasets, number of reconfigurable processing units, memory banks 

etc.  

4. A performance comparison of the proposed reconfigurable architecture to prior 

work in semantic information filtering using state-of-the-art CPU’s, GPU’s and 

SCC showing that our reconfigurable architecture outperforms HPC multi-core 

systems but also achive better performance scaling with respect to data size.  

5.3 Proposed Algorithm 

 As discussed in Sec. 2 and Sec. 3, semantic information filtering (SIF) proceeds 

with the accurate computation of similarity between every pair of user-item profiles 
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(represented in their tensor forms as T1 and T2). Computation of semantic similarity is 

done as a cosine product (s12). It is done with (1) identification of the common terms 

(say k) in the two tensors of size p,q respectively, (2) multiplication of the corresponding 

coefficients of the respective common terms to yield k interim products and (3) 

summation of these interim products to yield s12. The similarity metric will lie in the 

range [0,k] provided the coefficients are already normalized in the source tensors T1 and 

T2. In a real-world recommender system, computation of similarity between item-user 

profiles is done autonomously and continuously as batch jobs. Given the temporal nature 

of the underlying source – high performance and energy efficiency in computation of 

semantic similarity can result in large economic benefit and better user experience. 

If a sequential processor is used to compute semantic similarity on two tensors of 

size p,q respectively the identification of common terms has a time complexity of O(p 

logq) or O(pq) depending on whether or not a binary or linear search tree is used 

(Algorithm 3). Such a balanced BS tree is implemented in C++ STL’s highly optimized 

map container which implements Red-Black tree. However, for ease of massive 

parallelization on MICs and the potential of achieving a time complexity theoretically of 

O(1) with massive parallelization, we use a randomized algorithm using Bloom Filters 

(Algorithm 4). 
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Algorithm 3: Efficient Red-Black Tree Computation of SIF on SMP 

 Inputs: Tensor1(t1i,c1i), Tensor2(t2i,c2i) 
 Output: Semantic (dot) product s12 
1 foreach (t1i,c1i) ∈ Tensor1 do 
2  rbtree.insert(t1i,c1i) 
3 end for 
4 foreach (t2j,c2j) ∈ Tensor2 do 
5  rbtree_ptr  rbtree.find(t2j) 
6  if rbtree_ptr != NULL then 
7   s12 += (c2jx rbtree_ptr.value) 
8  end if 
9 end for 
10 return s12 
 
 

With the above analysis in mind, we can repurpose Algorithm 1 for efficient 

operation on massively parallel processors illustrated as Algorithm 2. This approach uses 

a common shared BF bit vector of size m to store a space efficient signature of the 

contents of Tensor1 (lines 1-3, BF set operation on Tensor1’s terms t1i). Since these are 

independent operations and can cause no race condition (BF is never set to 0), this can 

be delegated to every participating thread or core. Setting the BF would require fast hash 

functions to compute BF indices. An analogous test operation can then be performed on 

Tensor2’s terms t2j using the same hash bank (lines 6-7). This demonstrates our 

requirement for reconfigurability of the cores because the same IP block (BF Index 

generation) can be reused in both set and test phases. If all the k BF indices (BFIk) return 

true, t2j is a candidate match (there is a small probability of false positive defined 

earlier). Now we locate the corresponding coefficient of t2j in Tensor1 i.e c1m, if it exists 

(lines 8-11); multiply and sum this intermediate result. 
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Algorithm 4: Massively Parallel BF based SIF 

 Inputs: Tensor1(t1i,c1i), Tensor2(t2i,c2i) 
 Output: Semantic (dot) product s12 
1 parallel foreach t1i ∈ Tensor1 do 
2  compute ∀k, BFIk =hashk(t1i) 
3  ∀k BF[BFIk] = 1 
4 end for 
5 parallel foreach t2j ∈ Tensor2 do 
6  compute ∀k, BFIk =hashk(t2j) 
7  if ∀k BF[BFIk] = 1 then 
8   parallel foreach t1m ∈ Tensor1 do 
9    if t1m == t2j then 
10    s12 += (c2jxc1m) 
11    end if 
12   end for 
13  end if 
14 end for 
15 return 𝑠!" 
 
 

Locating this corresponding coefficient can be carried out using an off-chip 

content addressable memory [40] (CAM) lookup mechanism with t2j as the key; a single 

cycle operation. This eliminates the need for the loop between lines 8-12. However since 

the CAM lookup operation is going to be sporadic and involve significantly longer 

latencies, this stage has been pipelined. Further, lines 1 and 5 can be allocated to 

independent functional units (coarse-grained parallelism), and lines (2,3) and (6,7) can 

be internally parallelized (fine-grained parallelism). Each of these functional units would 

then retain only a partial sum. This sum can be obtained using parallel reduction or 

centrally on a host processor/controller. For simplicity of design, we chose to implement 

the parallel sum using the latter choice in this paper. With these design principles in 
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mind, we will now describe the reconfigurable computing template that we use to realise 

this computational flow.        

5.4 Template for Reconfigurable Computing 

 The computational and memory access requirements for large-scale data 

intensive problems are significantly different from mainstream parallel applications, 

requiring new architectural solutions for efficient parallel processing. Such data-

intensive problems are generally characterized by short parallel paths/threads with a 

small memory footprint, irregular, unpredictable and large memory access requirements. 

The need for a reconfigurable processor occurs because the same processing 

units can be reused to execute a different phase of the computation, while sharing the 

same interconnect network and conserving die area.  

5.4.1 Reconfigurable Processing Elements (RPE) 

 Designing application-specific reconfigurable processing elements (RPE’s) will 

result in efficient utilization of hardware resources in contrasts to a more general-

purpose processing element (as in a GPU or SCC). We can use high-level 

syndissertation tools to generate efficient implemntation of an individual RPE and 

provide spatial parallelism by replication.  

5.4.2 Combining Coarse and Fine-grained Parallelism 

 Instantiating a large number of RPE’s in hardware operating in a massively 

multi-threaded fashion will provide high coarse-grained parallelism. Additional 

parallelism required by an application can be provided by specialized functional units 

(SFU’s) in a fine-grained manner. 
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5.4.3 Multiple Concurrent Memory Requests 

 Data-intensive applications in general and SIF in particular does not reuse the 

same data – cache memories to hide memory latency are useless in this regard. It is 

advantageous to have a system with single memory hierarchy and make the RPE capable 

of issuing multiple outstanding memory requests to off-chip memory. Given a large 

number of parallel RPEs proposed, parallel memory banks will lead to superior memory 

access performance. Having said that, this paper currently uses state-of-the-art AMBA 

compliant crossbar interconnect (such as NIC-301), we recognize that an AMBA 

compliant packet-based interconnect will provide additional scalability and improve 

performance of the memory subsystem. 

5.4.4 Trading Clock Speed for Area 

 We recognize that the execution times for data-intensive applications and SIF in 

particular will be dominated mostly by memory latency; the RPE’s will be designed to 

stall when it waits for requests to return from main memory. Having a RPE operate at 30 

MHz or 300 MHz will make limited difference because we expect the RPE’s to stall for 

a majority of the time. Overall application speedup will be obtained mostly from higher 

parallelism (i.e. large number of RPE’s) than clock speeds. Therefore, in constraining 

clock speeds, we can enable the synthesis tool to optimize for area, leading to higher 

parallelism. 
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5.4.5 Decoupling Computation and Communication 

 We can create separate IP blocks for the RPE’s core functional units 

(application-dependent logic) and the application independent AMBA 4 Advanced 

eXtensible Interface (AXI) v2.0 master and slave interfaces. This facilitates reusability 

of the architectural template for different applications. This also enables the use of any 

AMBA compliant interconnect network (packet based or crossbar based from the ARM 

IP library).  

 

 

 

Figure 45. Reconfigurable Architecture Template for Data-intensive Applications 
 

 

The overall architecture of the reconfigurable computing solution is illustrated at 

a high level in Figure 45. It comprises of an execution controller (EC), multiple 

reconfigurable processing elements (RPEs), two distinct interconnection networks: core-
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core and memory-core. The RPE’s (shown with dotted lines) contain application-specific 

logic (which can be internally fine-grained), are replicated and can independently 

execute application logic.  

The RPE’s are to be configured based on context word(s) delivered to it (shown 

in blue as configuration registers) in a similar manner to coarse-grained reconfigurable 

arrays (CGRAs) [41]. However, there are two significant differences in the design of the 

proposed RPEs from a conventional CGRA: (1) the base processing elements (PE’s) in a 

CGRA contain ALU, multipliers, shift logic and registers whereas the RPE’s in the 

proposed architecture will contain application specific logic (described subsequently in 

this Section); (2) the interconnection structure of a PE array in a CGRA is pre-defined 

and fixed for ease of modeling generic applications whereas the proposed RPE’s can use 

common cross-bar or packet-based (NoC) interconnects and will be memory-mapped. 

Two distinct interconnection networks are specified because the memory-core 

load and core-core load are heavily application dependent – separate choices may be 

made for them based on throughput/latency constraints (crossbar or packet-based). The 

memory-core interconnect network links the RPE’s to off-chip memory banks. These 

memory banks may be filled in using the DMA controller independent of processor 

interaction. The RISC processor and DMA controller are bus masters whereas the 

reconfigurable co-processor array (RCA) may be considered as a slave device 

(Execution Controller). The EC manages the operations of the RPE’s, including 

orchestrating initialization, task assignment, synchronization; it also provides an 

interface to the host CPU processor.  
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Each RPE is also provided with a limited number of registers to act as private 

local memory. A group of RPE’s may also have shared memory accessible to more than 

one RPE. Each RPE is capable of independently reading and writing from/to its memory 

bank based on the configuration data sent to it. 

 The following section describes how we parallelized the SIF algorithm using the 

above reconfigurable architecture template with specific attention to the design of the 

RPE’s themselves, the bus interfaces, the interconnect and the co-design of the 

hardware-software interface to run the application at the processor end. ARM processor 

architecture and the AMBA bus protocol only as a case-study because of it is an open 

standard, and ease of integration with other AMBA-compatible IP blocks in our 

validation tool chain. 

5.5 Detailed Architectural Description 

 Figure 46 shows a high-level overview of the proposed SoC architecture that will 

be described in detail in this section. In particular, we have used ARM Cortex A9 as the 

low-power RISC processor. When designed with TSMC’s 65nm generic process, it can 

be clocked at 1 GHz and consume <250mW. The rest of the figure describes the RPE 

matrix (RPE0-RPE128). Each RPE is provided configuration instructions via an 

execution controller. The RPE’s have been designed to use the AMBA APB [42] bus to 

receive this configuration information (limited I/O required, few signals necessary). The 

execution controller has an AMBA AXI master interface which are translated into the 

APB domain using an AXI to APB bridge [43]. Each RPE consists of two AXI Master 

ports, which are connected via two independent interconnects (Memory-Core & CAM-
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Core) to the off-chip DRAM and CAM banks respectively. A separate 154-bit bus from 

each RPE feeds into a separate RPE-Sync block on the SoC. Each of the components 

and rationale for designing them is explained in the subsections below. 

 

Figure 46. Proposed Reconfigurable SoC for SIF 
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The host processor orchestrates the entire operation of the SoC, partitions and 

loads data into the memory units, delegates and responds to interrupts from the 

Execution Controller (EC) and performs the final sum operation. It is to be used as a 

stand-alone unit and generate configuration instructions for the RPE’s (delivered via the 

execution controller). Depending on user’s requirements and system constraints, it will 

partition the input tensor data (Tensor1 and Tensor2) into the RAM units via the DMA 
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Controller at different addresses (64-bit addressing is used in the system). Tensor1’s 

terms and coefficients (t1i,c1i) are loaded into the CAM unit whereas terms alone (t1i) are 

loaded into the RAM units at their respective start addresses. Tensor2’s terms and 

coefficients (t2j,c2j) are both loaded at consecutive addresses into the RAM units 

immediately following Tensor1. At the conclusion of the operation of each participating 

RPE, the execution controller generates an interrupt; triggering the core to issue a single 

AXI BURST_READ transaction to fetch the partial sums from the RPE’s and 

accumulates s12 (line 15 of Algorithm-4). 

5.5.2 Design of Execution Controller 

The execution controller is designed as an independent unit to: initialize the 

RPEs, deliver configuration information, monitor their progress and generate an 

interrupt to the host processor when the delegated task is complete. Its 3 key operations 

are summarized below: 

5.5.2.1 Configuration & Monitoring of BF Set Phase 

The EC sends the following configuration registers to the RPE : 

(read_start_address1, num_data1, operation_id ) – the address for where to read t1i’s 

from, how many entries to read and operation_id=32’h00000001. This is performed as a 

BURST3_WRITE transaction from AXI_Master ports on the EC  NIC-301  AXI to 

APB Bridge  RPE’s APB slave port. AMBA Advanced Peripheral (APB) bus is used 

because we need to send configuration data one-time, and it has a much reduced (5) 

signals – low complexity. The execution controller also receives a completion signal (32 
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bit, equal to operation_id) from the RPE’s once the BF set phase is complete. On 

receiving this signal, the EC proceeds to stage 2.  

5.5.2.2 Configuration & Monitoring of BF Test Phase 

 The EC delivers the following config. Registers to the RPE: 

(read_start_address2, num_data2, CAM_address, core_id, operation_id). These are 

similar in function to the above except that read_start_address and num_data now 

represent from where the RPE would read (t2j,c2j) and how many it would read. The 

operation_id=32’h00000002. Since several replicated CAM units are provided to reduce 

latency of the lookup operation (lines 8-11 of Algorithm 4), the EC would allocate a 

specific CAM unit to a core. Further, a core_id is also provided to the RPE’s by each EC 

as an identity notifier. The RPE would in turn transmit this core_id to the corresponding 

CAM unit to enable the CAM in turn to distinguish between several incoming lookup 

requests from several RPE’s. As earlier, the EC waits for the completion signal line from 

the core to learn that the BF test phase is complete and proceed to stage 3.  

5.5.2.3 Retrieving Intermediate Sum & Generating Interrupts    

The BF set phase will execute concurrently on all RPE’s unless there is a 

memory bottleneck. However, the BF test phase on the RPE’s will run asynchronously 

because it is data-dependent. If a particular RPE has a large number of potential matches 

(test_success=1), it will wait on the CAM units longer to return the corresponding 

coefficient(s) of the candidate matching tensor term(s) (c1m’s in line 10 of Algorithm 4). 

Thus different RPE’s will terminate at different times and will in that order inform the 



 

 92 

EC. The EC will generate an interrupt to the host processor, which in turn will fetch the 

partial sums (AXI BURST1_READ) from the terminated RPEs. 

5.5.3 Design of the RPE 

 

 

Figure 47. Reconfigurable Processing element (RPE) Design for SIF 
 

 

Figure 47 presents a schematic overview of the RPE design for the SIF kernel 

(Algorithm 4). The RPE consists of 5 distinct stages that are executed as part of two 

phases – set and test. During the set phase, stages 1,2 & 3 are executed serially whereas 

during the test phase stages 1,2,4 and 5 are executed serially. Configuration instructions 

dispatched from the EC are stored in 32-bit configuration registers (functionality 

discussed in earlier section). An APB slave subcomponent was implemented to obey the 

protocol standards. These configuration registers drive the RPE state machine (described 
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through Figure 48. Memory read requests to the memory banks are issued via the read 

channel of the AXI master component (also implemented ab-initio to obey protocol 

standards). We use the AXI_BURST_READ16 in the increment mode for highest 

throughput. Once a basis_vector term is received on the RDDATA lines, it is passed into 

an IP block to generate the required k Bloom Filter indices (BFI). Each BFIk is 22 bits 

long (corresponding to the bit-address of a m=222=4Mi wide BF bit-vector). We use k=7 

indices per basis_vector term, which corresponds to a BF_Address bus 154-bits wide. A 

BF_Address line for every core is routed externally to a BF-Sync module (described 

subsequently) for setting or testing a Bloom filter. Once a sufficient number of data 

(typically involving multiple AXI_BURST_READ16 transactions) the set phase is 

complete. 

The test phase proceeds in an analogous manner. In this phase however, each 

core is expected to read both the (basis_vector,coefficient c2j) corresponding to a subset 

of Tensor2 allocated to it by the EC (in turn the ARM Cortex A9 processor). The key 

difference being that once the BFIk bits for the test basis_vector are generated, they are 

now tested for prescence in the BF. In case, the Test_success is a true (shown as an input 

from the RPE_Sync module), it automatically triggers a lookup for the corresponding 

coefficient of Tensor1 (lines 8-11 of Algorithm 4). This lookup operation is issued by the 

RPE from its second AXI Master port as an AXI_BURST_READ1 on a 128-bit address. 

The lower 10-bits of the 128-bit address are used to identify the cores identity (coreID). 

The next 64-bits carry the basis_vector of the candidate match. The remaining 54 bits 

are sufficient to define the routing table for the interconnect. In case a CAM request is 
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issued, the core does not stall; it proceeds forward in testing the next basis_vector in 

queue (pipelined). When the CAM request is returned with the corresponding coefficient 

of the candidate basis_vector  i.e. c1m, it is then multiplied with c2j yielding the partial 

sum (line 10 of Algorithm 4). 

 

 

Figure 48. State Diagram for an RPE executing SIF Kernel 
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DJBHash, DEKHash etc. An alternate method to obtain k independent hash values is to 

combine the output of only two hash functions h1(x) and h2(x) with the formulation 

BFIk=h1(ti) + ih2(ti) where i ∈ 𝕀 without any degradation in false+ve probability [44]. In 

Table 9, we show different alternative mathematical operations that could be used to 

combine two initial hash functions and generate BFIk. ⨁, ×, + rot(A,j) represent the 

bitwise XOR operation, multiplication, addition and rotation of A by j bits. Each method 

was verified in a statistical simulator to experimentally measure its pfalse+ve.  

It was observed that multiplication (effectively a bit-shift to the left) introduces 

zeroes into vacated bit positions reducing the entropy. A subsequent XOR operation with 

these 0’s would retain the previous value, several bit-positions would become 

deterministic; thereby reducing the effectiveness of the bloom filter indices.  In contrast 

a circular rotation operation preserves the entropy in the original data. Further, bit-wise 

XOR has a significantly lower power draw than an adder; hence method 5 was chosen as 

the preferred method to generate BFIk. 

 

Table 9. Alternative Methods to generate Bloom Filter Indices (BFI) 
Method Operation Power Randomness 

1 h1(ti) + rot(h2(ti), i) 557 𝜇W Fair 
2 h1(ti) + i × h2(ti) 88 𝜇W Poor 
3 h1(ti) + 2i × h2(ti) 637 𝜇W Poor 
4 h1(ti) ⨁ i × h2(ti) 58 𝜇W Poor 
5 h1(ti) ⨁ rot(h2(ti), i) 61 𝝁W Excellent 
6 h1(ti) ⨁ 2i × h2(ti) 92 𝜇W Poor 
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 A further simplification can be done to efficiently generate the two primary hash 

functions h1(ti) and h2(ti). h1(ti) was generated as the Fowler/Noll/Vo (FNV) hash [45] of 

ti as opposed to the more popular MD5 or SHA2 because of its ease of implementation. 

The values of offset_basis and FNV_prime are defined in [45]. The second value h2(ti) is 

generated from the first value by XORing every octet of the first hash function (lines 9-

11). The initial value for h2(ti) in turn is obtained by XORing the offset_basis with the 

original string. Both the parallel foreach blocks operate on an octet of t1i (or t2i) and 

predefined constants; therefore they can be reliably realized as a single-cycle operation.  

The overall algorithm for the generation of the two hash functions h1(x) and h2(x) is 

shown as Algorithm 5.  

 

Algorithm 5: Generation of h1(ti) & h2(ti) for BFIk  

 Inputs: t1i (or t2i) 
 Output: h1(t1i) and h2(t1i) 
1 //Generate FNV_1A hash of t1i [45] 
2  h1(t1i) = offset_basis 
3  parallel foreach octet of t1i do 
4   h1(t1i) = h1(t1i) ⨁ octet(t1i) 
5   h1(t1i) = h1(t1i) × FNVprime 
6  end for 
7   h2(t1i) = offset_basis ⨁ t1i 
8  parallel foreach octet of h1(t1i) do 
9   h2(t1i) = h2(t1i) ⨁ octet(h1(t1i))  
10  end for 
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5.5.4 Design of the RPE-Sync Module 

 

 

Figure 49. Construction of the RPE-Sync Core 
 

 

 Figure 49 shows the internal construction of the RPE-Sync core. This core 
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single cycle. It should also be noted that whereas the address bus routing is for all cores, 

it is not necessary that all cores will be active at the same time (discussed subsequently). 

5.6 Analysis of Alternate Compute Models for Organization of RPEs 

 In this section we analyze three alternate compute models for the design of the 

RPE’s for SIF. This is intended to provide justification for our chosen compute flow for 

this application. Let’s assume that we have to process two tensors of sizes p=q=N 

(equality assumed for simplicity). This data is organized in r memory banks. Let’s also 

assume that the RPE’s can be logically organized in 𝛽 groups of 𝛼 RPE’s each. 

 

     

 

Figure 50. Alternative Computational Models for RPE organization 
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 A group of RPE’s could then be designated to be either homogenous and 

asynchronous (Hom-Async) or heterogenous and synchronous (Het-Sync) or 

homogenous and synchronous (Hom-Sync) with reference to the location of the Bloom 

Filter bit-vector. Figure 50 shows a representative example of the possible choices with 

𝛼=𝛽=4; i.e. total number of RPE’s (𝛼𝛽)=16. 

 

Table 10. Time Complexity of Set and Test Operations with SIF Compute Models  

Model Complexity 
(Set Operation) 

Complexity  
(Test Operation) 

Hom-Async 𝑂(
𝑁
𝛼𝛽) 

𝑂(𝑁) 

Het-Sync 𝑂(
𝑁
𝛼) 

𝑂(
𝑁
𝛼𝛽) 

Hom-Sync 𝑂(
𝑁
𝛼𝛽) 

𝑂(
𝑁
𝛼𝛽) 

 

 Table 10 shows the estimated time complexity for the set & test operations for 

alternate SIF compute models. This is explained in this section. In the homogenous 

asynchronous model (Hom-Async), each RPE is provided with its own independent BF. 

Each RPE can fetch data from its allocated memory banks and fill in its private BF 

during the set operation in 𝑂( !
!"
). However, during the test operation, each test tensor 

entry (out of N possible) will need to be tested at each of the 𝛼𝛽 RPE’s in O(N) time 

(inefficient). In contrast, for a heterogeneous synchronous model (Het-Sync), every 

group of 𝛼 RPE’s share a private BF. Each of the 𝛽 groups in Het-Sync will therefore 

create distinct fragments of the overall BF during the set phase. Since each of the 𝛼 
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RPE’s in a group will operate on different data, N entries can be processed by 𝛽 groups 

in 𝑂(!
!
) time. Since the BF’s becomes the same, all processing units in a group can now 

test N entries of the tensor in 𝑂 !
!"

 time. The least complexity (but densest 

interconnects) can be achieved with the homogenous synchronous model (Hom-Sync) 

where a single BF is shared by all participating RPE’s. This is the computational model 

followed in the previous section. Because of homogeneity of the cores, no distinction 

into groups is also necessary. Each of the 𝛼𝛽 cores can process independent row entries 

of the tensor during the set and test phases respectively. Although this dramatically 

reduces the complexity of the set and test operations to 𝑂 !
!"

, synthesis of the RPE-

Sync module will involve a large number of interconnects from the cores. We would 

also like to note that the Hom-Async and Het-Sync models will involve multiple copies 

of the BF bit vector – on-chip registers are expensive real-estate on-chip (inefficient). 

5.7 Validation Methodology 

 This section provides details of the virtual prototyping tool chain and 

experiments. Initial functional verification of the design was performed using ModelSim 

from Mentor Graphics after being implemented in RTL (Verilog). The core components 

of the design were then synthesized using Synopsys Design Compiler at a clock speed of 

3 GHz using the 90nm technology library from TSMC. Given the complexity of the 

reconfigurable IP and the need to examine its behavior in the context of a data-intensive 

application, a full SoC virtual prototype was created using Carbon Model Studio & 

Carbon SoC Designer from Carbon Design Systems [46].  
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Figure 51. SoC Validation Tool-chain 
 

 

Carbon Model Studio and Carbon Compiler enables the creation of a high-

performance linkable software object that contains a cycle and register accurate model of 

the hardware design directly from the RTL design files. An object library file, header 

and database with information on all signals, top-level I/O’s together are described as a 

Carbon Model. Such carbonized models were created for the RPE’s, RPE-G, BF-Sync 

and CAM modules (Figure 51), linked with gcc and then run on Carbon SoC Designer 

(essentially an Instruction Set Simulator). Carbon Models for additional components in 

the SoC such as the ARM Cortex-A9 processor, AXIv2 compliant memory units, 

memory controller and the AMBA compliant network infrastructure (NIC-301) was 

obtained with permission from ARM, configured adequately using AMBADesigner Lite 
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(to generate XML configuration files) and then custom built on Carbon’s online IP 

Exchange. These interconnects are pre-qualified and regression tested by ARM. This 

entire package of components were assembled and analyzed for system behavior. 

SoCDesigner provided us detailed visibility and step-by-step execution control of the 

design. It was particularly helpful to be able to model and examine the behavior of a 

complex bus architecture such as AMBA AXI, measure interconnect performance and 

drive real application traffic through the prototype SoC. Suitable design changes were 

actually made (such as pipelining the CAM lookup operation, separate interconnect and 

ports for data load and lookup operations) after exploring the design space alternatives 

and preliminary system integration results. Figure 51 also shows that the ARM processor 

model (μP model) is driven by source code/kernel firmware written in C/C++ compiled 

using ARM Design Studio tool chain.   

5.8 Results and Discussion 

 The experiments to validate the hypothesis of the previous section focus on 

parallelizing a single semantic comparison and were conducted considering the worst 

case p=q=N in mind. In a real-world search engine or recommender system either p or q 

is expected to be significantly smaller than the other. We experiment for (1) N varying 

from 100 to 160,000 rows and (2) similarity c varying between 10% to 100% (complete 

match), (3) the number of RPE’s αβ=n varying from 32 to 128. Initial functional 

validation & correctness was verified by comparing s12 computed using a functional 

simulator (written in C++) executing Algorithm 2 and the results from Carbon’s SoC 

Designer. 
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 Table 11 shows the constant latencies of some basic operations involving the 

AMBA AXI & APB protocols in the proposed architecture, latencies for the 

fundamental operations such as generation of Bloom Filter Index, set and test operation. 

This table is valid when the RPE has control on the corresponding bus.  

 

Table 11. Latencies of Basic Operations in Proposed Architecture 
 Basic Operations Latency 
1 RPE read from memory  

(AXI BURST_READx) 5 

2 RPE read from memory 
(AXI BURST_READ16 including 16 cycles for 

16 entries) 
16+5 = 21 

2 RPE read from CAM 
(AXI BURST_READ1, includes single-cycle 

CAM lookup) 
9 

3 RPE set configuration 
(AXI BURST_READ4) 10 

4 Processing delay at RPE 
(Multiplication, partial sum) ~1 cycle 

5 RPE calculate BFI 1 
6 CAM lookup 1 

 

5.8.1 Execution Time   

We measure the end-to-end execution time under varying conditions: (1) varying sizes 

of synthetic dataset, (2) change in characteristics of the dataset, (3) number of execution 

units (RPEs) αβ. 
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5.8.1.1 Execution Time with Varying Size of Dataset 

 Figure 52 shows the averaged overall and phase-wise execution time for Tensor 

sizes p=q=N=25k to 160k when using 32 RPE’s. This represents the worst case of the 

comparisons that RPE’s can be expected to perform since in real-life scenarios the two 

tensors will be expected to be p<<q. In this case, the number of RPEs used 𝛼𝛽=32 i.e. 

each RPE has access to an independent memory bank (r=32), an independent CAM bank 

(s=32) – an ideal case for the architecture.  

 

 

Figure 52. Execution Time with Varying Tensor Size (#Cores=32) 
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largest tensor size under experimentation. As described earlier, there is a latency of only 
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which is indeed the case. Likewise during the test phase, each core will receive 

(basis_vector,coefficient) data (for Tensor 2) from its dedicated memory bank for 

(5000*2)=10000 64-bit entries. This will take !""""
!"

= 625 BURST_READ16 

transactions in 10000+625*5=13125 cycles. Each core will then issue separate CAM 

lookup requests depending on the number of Test_success it receives (generation of 

Test_success happens in 1 cycle). In this case, a total of 16000 entries (10%) in Tensor2 

are expected to return it (distributed across the 32 cores). On an average, we determined 

that each core generates 858 Test_success. This yields an additional 858*9=7772 cycles. 

An additional latency of ~1 cycle (Processing delay at RPE) occurs for each of the 

10,000 elements. This value is quoted as ~1 cycle because of deep pipelining between 

the stages. Therefore the total cycles taken is 13125+7772+10000 = 30897 (agrees with 

the results above). 

 

 

 

Figure 53. Execution Time with Varying Tensor Size (#Cores=128) 
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 Figure 53 shows the overall and phase-wise execution time for Tensor sizes 

p=q=N=25k to 160k when using #cores = 128. We observe that the total execution time 

is lower by ~2x as compared to #cores=32. This is lower than the expected ~4x because 

of cores stalls. Since #Memory banks (r) and #CAM banks = 32 has been kept fixed, 

several cores are starved for data. The core stall is worse for the test-phase because it is 

reading a larger amount of data from memory (both basis_vector & coefficient for 

Tensor2). CAM lookup stalls also manifest for larger data sizes because of a higher 

probability of Test-success. 

5.8.1.2 Execution Time with Varying Percentage Similarity between Tensors 

 

 

Figure 54. Execution Time with Varying %Similarity 
 

 

 Figure 54 shows the sensitivity of the proposed architecture to variation in 

similarity (number of common basis vector terms) between two tensors of size 

0 

25000 

50000 

75000 

100000 

se
t 

te
st

 

to
ta

l 

se
t 

te
st

 

to
ta

l 

se
t 

te
st

 

to
ta

l 

se
t 

te
st

 

to
ta

l 

se
t 

te
st

 

to
ta

l 

10% 25% 50% 75% 100% 

E
xe

cu
tio

n 
Ti

m
e(

cy
cl

es
) 

Percent Similarity Between Tensor 1 & 2 - sim (with N=160k, 
αβ=32, r=32, s=32) 

Overall Execution Time 
Core Active(Test) 
Core Active(Set) 
Core Stall(CAM read) 
Core Stall(Mem read) 



 

 107 

p=q=N=50k. The execution time in the worst case (100% similarity) is ~60000 cycles 

decreasing to ~35000 cycles for 10% similarity. These experiments were performed with 

#cores=  𝛼𝛽=32. No core stalls are expected since each core has independent access to its 

own memory & CAM bank.  

5.8.1.3 Execution Time with Varying Number of Execution Units 

 

 

 

Figure 55. Variation of Execution Time with Varying Number of Cores 
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datacenter environments by increasing the number of off-chip memory banks or CAM 

units in use.  

5.8.2 Comparison with Contemporary Many-core Processors 

 In Table 12, we present a comparison of SIF on three contemporary many-core 

processors for p=q=N=160k, sim=10% and number of cores=32. We can see from the 

previous sections that the proposed architecture has been simulated to require ~10k 

cycles. The same algorithm when run on an Intel SCC, Nvidia Tesla C870 and Nvidia 

Kepler GTX680 require ~3.944 Gi, ~2.784 Gi and ~633 Mi cycles respectively. This 

provides us a speedup of ~98K, ~68K and ~15K respectively for the proposed many-

core SoC architecture over the Intel SCC, Nvidia Tesla C870 and Nvidia Kepler 

GTX680 respectively. This is despite the fact that Kepler GPUs have a significantly 

higher number of cores in use (512 v/s 128). The 48-core SCC performs worst because it 

requires a round-robin baton-passing algorithm to synchronize the BF across cores. 

Whereas the Nvidia Tesla & Kepler are by design shared-memory many-core 

processors, they lack a mechanism to perform the CAM lookup (lines 8-11 of Algorithm 

2) and the ability to compute Bloom filter indices in a single cycle (due to specialized 

functional units SFUs). Therefore, we can expect to have a significant performance 

improvement with the proposed SoC over contemporary many-core architectures.  
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Table 12. Comparison of Proposed Architecture with Intel SCC and Nvidia GPUs 
 Intel SCC [47] Nvidia 

Tesla [9] 
Nvidia Kepler 

[28] 
Core Architecture X86 Pentium - I C870 GTX680 

Technology 45 nm 90 nm 28 nm 
Number of Cores 48 128 512 

Main Memory 32 GB 4GB 6 GB 
Memory Bandwidth 800 Mbps 76.8 Gbps 192.4 Gbps 

Clock Speed 533 MHz 772MHz 1006 MHz 
Execution Time 

(Cycles) 3.944 Gi 2.784 Gi 633 Mi 

Speedup 98605 68700 15825 
 

5.9 Related Work 

Tensor analysis and large scale semantic information filtering has received 

considerable interest in literature. [25] describes the parallel implementation of a 

document similarity classifier using Bloom Filters on two contemporary many-core 

platforms: Tilera’s 64-core SoC and Xilinx Virtex 5-LX FPGA. This work has been 

done in the context of web-security and demonstrates that an incoming data stream can 

be filtered using a TF-IDF based dictionary of known attack patterns. Although this 

work does not use tensors (reverts to the conventional vector-based models to represent 

information), they use a large array of Bloom filters at each processing element. We also 

differ from this work because our Bloom filters are dynamically created on-chip based 

on input data whereas those in the paper are assumed to be statically generated, offline. 

Thirdly, we generate a semantic similarity value as an output, which can be used to 

recommend new items whereas the prior work generates only the filtered data stream. 

Kang et al [48] describe a MapReduce model to accelerating tensor analysis by 100x. As 

discussed earlier in this dissertation, a traditional cluster deployment may provide 
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scalability & performance improvement but at significant infrastructure cost. Our 

approach instead focuses on improving efficiency at the compute node-level when they 

are many-core processors. Our previous work [9, 28] describe a method to use a BF-

based algorithm on a GPU, which unfortunately is (1) limited by memory throughput, 

(2) uses general purpose cores to port the BF algorithm discussed above, (3) have no 

capability to implement custom logic on the cores or interface off-chip CAM to provide 

fast lookups. Consequently GPU deployments will suffer from an inability to parallelize 

lines 8-11 of Algorithm 2. Our previous work in [26] presents a fine-grained parallel 

ASIC to realize Algorithm-2. This does not demonstrate scalability beyond 

p=q=N=1024 and does not consider the impact of memory latency in presenting results. 

Secondly, the arbiters designed between the stages are not scalable for big-data 

workloads. Further, for big-data applications a reconfigurable computing template is 

favorable than a fixed-function ASIC. 

5.10 Section Summary 

Workload specific server configurations for Big-Data applications are already a 

reality [49-51]. With increasing sensitivity in industry and government about energy-

efficiency in big-data infrastructures, workload specific accelerators are expected soon. 

Workload specific accelerators for Big-Data will need to be reconfigurable to be 

applicable to a wide array of similar applications, provide extra-ordinary energy savings 

and high-performance to be a compelling alternative. In this paper, we described a novel 

reconfigurable computing architecture template and an application-specific architecture 

for efficient and scalable semantic information filtering. We have shown through 
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experiments that our approach is able to outperform the state-of-the-art SIF 

implementations on many-core processors such as a GPU and Intel’s SCC by more than 

~98K times for tensor sizes of 160000. To the best of our knowledge, we are the first in 

academia to investigate the design, undertake the hardware-software codesign effort to 

realize a many-core reconfigurable SoC for data intensive applications using industry 

standard tools. While the initial results are indeed promising, additional scalability 

benefits can be obtained by using AMBA compliant packet-based interconnects (NoC) 

for additional scalability and improved throughput, dynamic scheduling to improve 

workload balance. Other big-data applications in the information-filtering template such 

as collaborative filtering can also be designed.   
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Future Work 

This dissertation explored the design and interplay between a few of layers of the 

application stack at a many-core compute node for high performance information 

filtering applications. This dissertation explored the data structure and algorithms 

required, programming models that could be used, run-time systems that should be 

deployed, memory and IO pipelines that were necessary to achieve high performance.  

However, there are still several areas of research, which have not been explored. Some 

of the potential areas of future work are listed below.  

1. Hybrid Information Filtering – While this dissertation explored 

algorithms & architectures to accelerate content and collaborative 

information filtering separately, the same will need to be done for them 

together. New seminal works such as [52] have shown that further 

improvement in accuracy of recommendation algorithms is possible only 

due to their combination. In addition, this dissertation has explored the 

neighborhood based collaborative filtering methods; techniques to 

accelerate latent factor methods remain to be explored.  

2. Expansion of Information Filtering benchmarks – A few automated 

techniques to generate tensor representations from arbitrary sentences 

were demonstrated. Further improvements such as including discourse 

analysis can be added to further improve its effectiveness and scope. 

Human trials could be conducted to conclusively demonstrate the 
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superiority of the tensor method for semantic information filtering as 

compared to the traditional vector based methods.  

 

6.2 Conclusion 

 This research proposes techniques for mapping data-intensive computational 

kernels for semantic and collaborative information filtering on many-core architectures. 

Two representative many-core architectures - GPUs and Intel’s SCC have been 

examined, efficient data structures & algorithms have been designed, shared and 

distributed programming models/run-times designed, architectural features have been 

explored to exploit concurrency within the machine boundary efficiently. A computing 

run-time for distributed memory many-core processor (such as the Intel SCC) has been 

designed and information filtering applications modeled on this run time. Finally, a 

reconfigurable SoC template for data intensive applications has been proposed. This has 

been tested with semantic information filtering as the application context to obtain 

significant speedups. Therefore, we can claim that in applications where compute 

requirements are short; a scheme combining both fine-grained and coarse-grained 

parallelism can provide highest performance.    
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