

HIGH PERFORMANCE INFORMATION FILTERING ON MANY-CORE

PROCESSORS

A Dissertation

by

AALAP TRIPATHY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Rabi N. Mahapatra
Committee Members, Gwan S. Choi
 Yoonsuck Choe
 James Caverlee
Head of Department, Nancy Amato

December 2013

Major Subject: Computer Engineering

Copyright 2013 Aalap Tripathy

 ii

ABSTRACT

 The increasing amount of information accessible to a user digitally makes search

difficult, time consuming and unsatisfactory. This has led to the development of active

information filtering (recommendation) systems that learn a user’s preference and filter

out the most relevant information using sophisticated machine learning techniques. To

be scalable and effective, such systems are currently deployed in cloud infrastructures

consisting of general-purpose computers. The emergence of many-core processors as

compute nodes in cloud infrastructures necessitates a revisit of the computational model,

run-time, memory hierarchy and I/O pipelines to fully exploit available concurrency

within these processors.

This research proposes algorithms & architectures to enhance the performance of

content-based (CB) and collaborative information filtering (CF) on many-core

processors. To validate these methods, we use Nvidia’s Tesla, Fermi and Kepler GPUs

and Intel’s experimental single chip cloud computer (SCC) as the target platforms. We

observe that ~290x speedup and up to 97% energy savings over conventional sequential

approaches. Finally, we propose and validate a novel reconfigurable SoC architecture

which combines the best features of GPUs & SCC. This has been validated to show

~98K speedup over SCC and ~15K speedup over GPU.

 iii

DEDICATION

To my parents

 iv

ACKNOWLEDGEMENTS

Working towards my Ph.D. and writing this dissertation would have been

impossible without the guidance of many individuals who in their own unique ways

helped me persevere through my graduate school experience. It is a great privilege to be

able to convey my gratitude to you all in this document.

First and foremost, I would like to thank my advisor & committee chair, Prof.

Mahapatra for believing in my ability, supporting and guiding me through the course of

this research. I shall always remain indebted to my committee members, Prof. Choi,

Prof. Choe and Prof. Caverlee, for their valuable feedback & guidance at critical points

of this research and in completing my Ph.D.

I would not even have embarked on this journey had it not been for the firm

belief and encouragement of my parents. I would like to thank them for their support,

prayers and advice through the ups-and downs of the graduate school experience.

Conversations with them helped me keep my sanity intact and reinforce the belief that I

could get through it.

Many thanks are due to my present and former colleagues in the Embedded

Systems Co-design Group especially Amitava, Suneil, Atish, Deam, Suman, Nikhil,

Ron, Jagannath, Jason. Conversations with some you that began with “Do you have a

minute?” led to debugging of a critical piece of code or pointing me in direction of a new

approach, much of which forms part of this document. You have helped me understand

 v

what research meant and how it should be done right. I shall forever remain indebted to

you all.

Thanks also go to my friends and colleagues and the department faculty and staff

for making my time at Texas A&M University a great experience. Thank you Dave,

Jeremy, Brad, Tony, Bruce and everyone at CSG who fixed things up and patiently

answered the many hundred problems I may have come to you with over the years.

Thank you for being so awesome! Thank you Tina, Marilyn, Sybil and rest of the

Advising, Accounting and Administrative staff of the Department.

I also want to extend my gratitude to Carbon Design Systems, ARM Inc, Intel

Inc. Nvidia Inc., Synopsys Inc., Mentor Graphics & Cypress Semiconductor Inc. who

provided their tools, libraries and resources for research use.

Thank you Prof. Gutierrez, Prof. Song, Prof. Shell & Prof. Choe for having me as

your Teaching Assistant for CSCE 483 & CSCE 312. Working for you has been an

incredible experience, which I would not trade for another. You not only helped me

realize what it takes to deliver quality teaching but also gave me the autonomy to shape

it. I shall remain forever indebted to you for your support. Lastly, thanks Prerna for your

patience and understanding during the final stretch.

 vi

NOMENCLATURE

API Application Programming Interface

BF Bloom Filter

CF Collaborative Filtering

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFS Distributed File System

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

JVM Java Virtual Machine

MCPC Management Controller Personal Computer

MPB Message Passing Buffer

NFS Networked File Sharing

Pfalse+ve Probability of False Positives

RAM Random Access Memory

SATA Serial Advanced Technology Attachment

SCC Single Chip Cloud Computer

SMP Symmetric Multiprocessor

SoC System-on-Chip

TF-IDF Term Frequency – Inverse Document Frequency

TLP Thread-level parallelism

 vii

TABLE OF CONTENTS

 Page

ABSTRACT ... ii	

DEDICATION ... iii	

ACKNOWLEDGEMENTS .. iv	

NOMENCLATURE .. vi	

TABLE OF CONTENTS ... vii	

LIST OF FIGURES ... ix	

LIST OF TABLES ... xii	

1. INTRODUCTION .. 1	

2. BACKGROUND AND MOTIVATION ... 4	

2.1	
 Recommendation Systems Overview ... 4	

2.2	
 Many-core Platforms Overview .. 8	

2.3	
 Research Overview ... 12	

3. SEMANTIC INFORMATION FILTERING ON MIC ... 15	

3.1	
 Shared Memory Approach .. 15	

4. COLLABORATIVE INFORMATION FILTERING ON MIC 35	

4.1	
 Shared Memory Approach .. 35	

4.2	
 Distributed Memory Approach ... 52	

5. RECONFIGURABLE SOC FOR DATA INTENSIVE COMPUTING 78	

5.1	
 Motivation ... 78	

5.2	
 Contributions ... 80	

5.3	
 Proposed Algorithm .. 80	

5.4	
 Template for Reconfigurable Computing ... 84	

5.5	
 Detailed Architectural Description .. 88	

5.6	
 Analysis of Alternate Compute Models for Organization of RPEs 98	

 viii

5.7	
 Validation Methodology ... 100	

5.8	
 Results and Discussion .. 102	

5.9	
 Related Work .. 109	

5.10	
 Section Summary .. 110	

6. CONCLUSIONS AND FUTURE WORK .. 112	

6.1	
 Future Work .. 112	

6.2	
 Conclusion ... 113	

REFERENCES ... 114	

 ix

LIST OF FIGURES

 Page

Figure 1. Information Filtering in the Petabyte Era ... 1	

Figure 2. A Semantic Information Filtering System .. 5	

Figure 3. A Neighborhood-based Collaborative Information Filtering System 7	

Figure 4. GPU Architecture for General-purpose Computing (GPGPU) 10	

Figure 5. Cluster-on-chip Architecture (Intel SCC, Xeon Phi) .. 11	

Figure 6. Semantic Comparison Methodology .. 16	

Figure 7. Bloom Filter (BF) Insertion .. 17	

Figure 8. Bloom Filter (BF) Lookup .. 18	

Figure 9. Probability of False Positives in a Bloom Filter ... 19	

Figure 10. Coalesced Copy from CPU to GPU Global Memory 20	

Figure 11. Encoding Tensor1 in Bloom Filter ... 21	

Figure 12. Initial Insertion of Tensor Terms into Hash Table ... 22	

Figure 13. Recursive Eviction Mechanism in Cuckoo Hashing 23	

Figure 14. Testing Tensor2 with Bloom Filter ... 24	

Figure 15. Computation of Intermediate Sum & Parallel Reduction 25	

Figure 16. Equipment Setup for Power Profiling ... 27	

Figure 17. Speedup of Semantic Kernel (Linear Lookup) ... 29	

Figure 18. Speedup of Semantic Kernel (Cuckoo Hashing) .. 29	

Figure 19. Power Consumption with Proposed Algorithm .. 30	

Figure 20. Profiling Semantic Kernels with Linear Lookup .. 31	

Figure 21. Profiling Semantic Kernels with Hash Lookup .. 32	

Figure 22. Calculation of Item-Item All Pairs Similarity ... 36	

 x

Figure 23. Estimation of Prediction for User(u) .. 37	

Figure 24. Brute Force User-User Similarity ... 39	

Figure 25. Converting User-User Similarity into a Counting Problem 40	

Figure 26. Designing the Required Data Structures ... 42	

Figure 27. Execution Time for Item-Item Correlation (Tesla C870) 46	

Figure 28. Speedup for Item-Item Correlation for Tesla, Kepler & Fermi GPUs 46	

Figure 29. Variation of Execution Time with varying Threads/block 47	

Figure 30. Dynamic Power Consumption using Tesla GPU & Intel Xeon GPU 48	

Figure 31. Execution Time for Proposed Algorithm on Intel SCC 49	

Figure 32. Dynamic Power Consumption for Proposed Algorithm on Intel SCC 50	

Figure 33. Conventional SCC Programming Model .. 52	

Figure 34. Proposed SCC Programming Model ... 53	

Figure 35. Mapreduce Programming Model on Many-core Processors 54	

Figure 36. FPGA Interface to Intel SCC .. 56	

Figure 37. Computational Flow for Item-Item CF on Intel SCC – Approach A 61	

Figure 38. Execution Time for Calculation of All-pairs Similarity 67	

Figure 39. Execution Time for Calculation of Prediction & Recommendation 68	

Figure 40. Stage-wise Execution time for Proposed Algorithm 69	

Figure 41. Energy Consumed by Proposed Algorithm on Intel SCC 70	

Figure 42. Computational Flow for Item-Item CF on Intel SCC – Approach B 73	

Figure 43. Analyzing Computation, Communication & IO time (Approach B) 75	

Figure 44. Many-core Architectures for Data-intensive Computing 78	

Figure 45. Reconfigurable Architecture Template for Data-intensive Applications 86	

Figure 46. Proposed Reconfigurable SoC for SIF .. 89	

 xi

Figure 47. Reconfigurable Processing element (RPE) Design for SIF 92	

Figure 48. State Diagram for an RPE executing SIF Kernel ... 94	

Figure 49. Construction of the RPE-Sync Core ... 97	

Figure 50. Alternative Computational Models for RPE organization 98	

Figure 51. SoC Validation Tool-chain ... 101	

Figure 52. Execution Time with Varying Tensor Size (#Cores=32) 104	

Figure 53. Execution Time with Varying Tensor Size (#Cores=128) 105	

Figure 54. Execution Time with Varying %Similarity .. 106	

Figure 55. Variation of Execution Time with Varying Number of Cores 107	

 xii

LIST OF TABLES

 Page

Table 1. Key Architectural Features of Nvidia's Tesla, Fermi & Kepler GPUs 10	

Table 2. System Baseline Power Measurements .. 27	

Table 3. Energy Savings with Proposed Algorithm on a GPU .. 48	

Table 4. Energy Savings with Proposed Algorithm on Intel SCC 51	

Table 5. Comparison with Related Work ... 51	

Table 6. Overall Execution Time for Proposed Approach on Intel SCC 71	

Table 7. Averaged Power Consumption for Proposed Approach on Intel SCC 71	

Table 8. Averaged Energy Consumption (in J) for Proposed Approach on SCC 72	

Table 9. Alternative Methods to generate Bloom Filter Indices (BFI) 95	

Table 10. Time Complexity of Set and Test Operations with SIF Compute Models 99	

Table 11. Latencies of Basic Operations in Proposed Architecture 103	

Table 12. Comparison of Proposed Architecture with Intel SCC and Nvidia GPUs 109	

 1

1. INTRODUCTION

The era of achieving a faster and more capable uniprocessor every 18 months has

now ended. Moore’s law and Dennard’s scaling rules, which defined the design,

manufacture and marketing of microprocessors over the past five decades no longer

holds true. Chip manufacturers have realized that it is advantageous to add more cores to

a chip rather than increase clock speeds. Therefore, while multi-core processors are now

common, many-core processors in cloud infrastructures are on the horizon.

Figure 1. Information Filtering in the Petabyte Era

At the same time, the problems that we want to solve using these processors are

increasing in size faster. This is especially true for problems in social network graphs

and big-data problems. For instance, the amount of digital information created, captured

or replicated worldwide is expected to reach 35000 Exabytes by 2020 [1] (Figure 1). It is

 2

no longer sufficient to provide semantically accurate query results; users expect to be

provided a somewhat intelligent choice of items based on their previously expressed

preferences and those of “similar” users. This situation has led to the widespread use of

information filtering systems most significant of which are Recommendation systems

(RS) [2]. RS’s learn about a user’s preference and figure out the most relevant

information for them using machine learning techniques. Driven by sophisticated

algorithms, recommenders help consumers by selecting products they will probably like

and might buy based on their past browsing, searches, purchases, and preferences.

Almost all online e-commerce platforms deploy them to boost sales, drive and retain

traffic; recommenders are already a huge and growing business.

A multitude of recommendation techniques involving content-based and

collaborative filtering have been developed in literature and this remains an active area

of investigation. Such techniques are useful only with several thousand GB’s of training

data and involve large-scale data-intensive computations to determine similarity between

users and items, make predictions and recommendations. To be scalable, they are

deployed in cloud infrastructures using distributed computing paradigms such as

Mapreduce[3]. These frameworks split the computation into small partitions (key-value

pairs), which can then execute independently on multiple nodes in parallel. A

programmer has only to specify the serial parts necessary in transforming one key-value

pair to another. An underlying parallel run-time is responsible for ensuring

parallelization, inter-machine communication and failure-recovery.

 3

Distributed computing frameworks such as MapReduce assume that compute

nodes are single-core; limited extensions of these frameworks are available for shared

memory multi-processor systems (multi-threaded). However, new challenges arise when

a compute node is a many-core system; in itself capable of running a distributed

computing run-time for enhanced performance. New highly parallel, energy-efficient

many-core SoC architectures need to be created to run such information filtering

applications on such compute nodes of the future.

The key aim of this research, therefore, is to explore the fit, energy efficiency of

such many-core architectures in the design of recommendation systems and search

engines in cloud-data centers of the future. The research challenges that this thesis

addresses are:

1. How to map the data-intensive computational kernels of RS on Many-Core

systems?

2. How to exploit concurrency within the machine boundary efficiently?

3. What is the appropriate application stack for RS on Many-Core processors?

4. How to alleviate the computation and communication bottlenecks for RS on

Many-core processors available today?

5. How to design an energy-efficient parallel reconfigurable System-on-Chip (SoC)

architecture for data-intensive information filtering applications?

 4

2. BACKGROUND AND MOTIVATION

This chapter provides a high level overview of active information filters

(recommendation systems), the algorithms used to realize them, an overview of many-

core platforms and a literature review of the efforts in academia for high performance

information filtering.

2.1 Recommendation Systems Overview

Recommendation systems are active information filters. They help users discover

new “information” (items) based on their past (implicit) or expressed (explicit)

preferences. They add predictions/ratings to the information flowing to a user enabling

them to “discover” new information. We live in an increasingly social and real-time

world, the number of things to recommend & users expressing opinions (tastes) over the

web and mobile are growing exponentially. Algorithms deployed by the industry to

make predictions are already known to be accurate to within 0.5 stars (on a 1-5 star

scale), 75% of the time. However, retraining a dataset of 1.4 Bi ratings takes over 48-

compute hours (Netflix’s Cinematch Recommender System) [4]. With this background,

we introduce the two major classes of recommendation engines in operation today – the

first based on the content/meta-data associated with the information item (semantics),

the second based on peer-ratings (collaborative).

2.1.1 Semantic Information Filtering

The key hypothesis in a content-based (semantic) recommendation system is:

“Recommend items to a user which have highest similarity in attributes to items

 5

previously seen by him”. Search engines/information retrieval systems have traditionally

deployed vector-based models as the underlying technology to calculate similarity,

ignoring the semantics involved in representing a user’s query (intention) or a document

[5, 6]. Consequently two phrases such as: “American woman likes Chinese food” and

“Chinese woman likes American food” are considered similar because they contain the

same keywords although they refer to distinct concepts. To alleviate this problem, new

techniques have been proposed to represent composite meaning in the semantic

computing community [7]. They rely on tensors (multi-dimensional vectors) to represent

and successfully discriminate between complex concepts [8]. However, they have been

shown to increase the problem size super-exponentially [9]. Consequently search

engines such as Google have only been able to employ these techniques in a limited

manner [10]. Performing hundreds of thousands of semantic (tensor) comparisons with

each pair consisting of vectors of a similar magnitude is therefore, a computationally

challenging problem and requires the exploration of many-core compute clouds.

Figure 2. A Semantic Information Filtering System

Create item
profile

Create user
profile

Calculate
Similarity

Present top-
K similar

items

Interim
productsΣConcept

Tree
conversion

Tensor1

Tensorm1

Tensor1

Tensorm2

Tensor
conversion

Term1 Coeff1

Term2 Coeff2

Termq Coeffq

Table
Aggregation

Common1 Coeffq×Coeff2

Commonk Coeff1×Coeffp

Identification of
Common Terms

Calculation of
Similarity (s12)

Semantic
Processing

Item Profile

User Profile

Term1 Coeff1

Term2 Coeff2

Termp Coeffp

 6

Figure 2 describes the computational flow of a semantic information filtering

system. It consists of four key stages – (1) creation of item profile, (2) creation of user

profile, (3) calculation of similarity and (4) presentation of Top-K most similar items as

recommendation. An item profile and a user profile are typically created from

unstructured meta-data describing the information item. Unstructured data is then

semantically processed using a natural language tool-chain to obtain their concept

(syntactic/ontology) tree representations (involves sentence segmentation, tokenization,

part-of-speech tagging, entity & relation detection) [11]. The leaves of such a concept

tree contain terms whereas the tree itself encodes semantics or meaning. Mathematically,

a concept tree is a hierarchical n-ary tree where the leaf nodes represent terms and the

tree itself describes their inter-relationships (semantics) within the original document.

Concept trees are abstract mathematical structures and can have arbitrary structures;

therefore are unsuitable for further processing in a fine-grained manner. These trees

undergo further transformation into an equivalent tensor representation using rules

defined in [7, 8, 12] without loss of any semantic content (Tensor conversion phase in

Figure 2). The tensor form can be represented as a table of terms and coefficients. The

coefficients denote the relative importance of each term in describing an item. It is easy

to see that the tensor representation of an item/user profile can be arbitrarily large. The

final stage involves the computation of a semantic similarity score. This proceeds first

with the identification of common terms in the user and item tensors followed by the

multiplication of their corresponding coefficients and summation of these interim

 7

products. The top-K items with the highest similarity to a user’s profile are returned as

recommendations to a user.

2.1.2 Collaborative Information Filtering

A collaborative information filtering system takes an alternate approach. It makes

no assumptions about the availability of additional information/meta-data describing the

item or a user. Instead a large number of ratings are available as input, which could have

been collected via explicit or implicit means. The key hypothesis is – “similar users tend

to like similar items”. A similarity score is computed by mining existing user-item

relationships. For example, two items are considered similar if a large number of users

who have liked one item have also expressly liked (have given higher ratings) for

another.

Figure 3. A Neighborhood-based Collaborative Information Filtering System

Capture
user data

Calculate
All-Pairs
Similarity

Calculate
Predictions
for a user

Identify
Top-k

predictions

1
2

i

j

n

1 2 u mv

Rated Non-Rated

Ite
m

s (
i)

Users (u)

Common Users
rated items i & j

sji

sji

1
2

i

j

n

Ite
m

s (
i)

1 2 nj
Items (i)

iR S

Similarity MatrixItem-User Matrix

u

Rated

Non-Rated

sji

sji

1
2

i

j

n

Ite
m

s (
i)

1 2 nj
Items (i)

iS

PredictedX

1
2

i

j

n

Ite
m

s (
i)

=

u
1
2

i

j

n

Ite
m

s (
i)

Similarity Matrix User Vector Prediction Vector

 8

Figure 3 shows the flow of a CF recommendation system. It consists of four key

stages – (1) capture user data, (2) calculation of all-pairs similarity, (3) calculation of

prediction and (4) identification of Top-K predictions. This thesis focuses on stages (2)-

(4) which we discuss with the aid of a mathematical model.

Suppose there exist a set of m distinct users; U = {u1,u2, …, um} who have rated

one or more of n distinct items; I= {i1,i2, …, in}. Each user u provides a rating rui for a

subset of items in I (Iu), shown as grayed boxes in Figure 3. These ratings can be

represented as an item-user matrix R of size nxm. Not all elements in this matrix will be

filled in because most users will not have rated all items. Computation of sij proceeds by

first identifying the set of users who have rated both i & j and then calculating a

similarity metric (such as Pearson’s correlation coefficient). Once similarity for all i,j is

available, the prediction for a user u for all unrated items can be obtained through a

similarity matrix – user rating vector product (Figure 3). Once a prediction vector for a

user is obtained the top-K highest items are returned as recommendations. This

computation is effective only for large datasets and is both data and compute intensive.

2.2 Many-core Platforms Overview

 Increasing power consumption and complexity in design and verification has

driven the microprocessor industry to integrate multiple cores on a single die. Dual, quad

and oct-core processors are now common in the market now, available technology

permits integrating 1000’s of cores on a single die/platform – a many core future.

Consequently, several prototype architectures have been designed in industry and

academia. They can be broadly classified into the following design styles [13]: (1) a

 9

symmetric many-core processor that replicates a state-of the art superscalar processor on

a die, (2) a symmetric many-core processor that replicates a smaller, more power-

efficient core on a die and (3) an asymmetric many-core processor with numerous

efficient cores and one superscalar processor as the host processor. High-end multicore

processor vendors such as Intel & AMD have chosen the first model in building early

prototypes whereas conventional graphics processing units have been adapted to operate

using the second approach. In this thesis, we first attempt to extract maximum available

parallelism from existing/prototype many-core processors for data intensive applications

and then use our findings to propose a new many core architecture that can provide

higher performance than those proposed so far. We will now discuss a brief overview of

the architecture and programming model of two representative many-core processors

evaluated in this thesis.

2.2.1 Graphical Processing Units (GPUs)

GPU’s have continued to evolve for general-purpose usage as application-

coprocessors and are now widely used in high performance computing due to

exceptional floating-point performance, memory bandwidth and power efficiency. GPU

manufacturers have released API’s and programming models for application

development and analysis – Nvidia’s implementation is Compute Unified Device

Architecture (CUDA) [14] , AMD’s implementation is marketed under the name AMD

Firestream [15]. One of the goals of this dissertation is to design an efficient

computational technique to exploit available fine-grained parallelism on different GPU

architectures, analyse their parallel performance for information filtering applications

 10

discussed above. In this dissertation, we run our algorithms on three families of on

Nvidia GPU’s – Tesla [14], Fermi [16] & Kepler [17]. They key architectural differences

between the three families relevant to this dissertation are summarized in Table 1:

Table 1. Key Architectural Features of Nvidia's Tesla, Fermi & Kepler GPUs

Characteristics C870
(Tesla)

Quadro 2000M
(Fermi)

GTX 680
(Kepler)

of Cores 240 512 1536
Base Clock (MHz) 648 772 1006
Memory clock (MHz) 2484 4008 6008
Memory B/W (Gbps) 76.8 192.4 192.26
TDP (W) 170.0 244 195
of Transistors (Bi) 3.0 3.2 3.54
Rated GFlops 1063 1581 3090
of Texture Units 80 64 128

Figure 4. GPU Architecture for General-purpose Computing (GPGPU)

Figure 4 shows the generic architecture of a GPU (subtle differences between

families not shown). The functional units are shown in light green (called streaming

processors) and consist of several ALU’s an instruction dispatch and data collector unit.

CONTROL
ALU ALU

ALU ALU

CACHE

DRAM

DRAM

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

(a)

(c) (d)

ALU ALU

ALU ALU

D
is
pa
tc
he
r

C
ol
le
ct
or

(b)

 11

A horizontal block with several streaming processors (shown with dotted lines) is a

streaming multiprocessor and additionally contains a control unit (blue) and cache

(orange). There is a common shared off-chip DRAM (yellow & orange hatches), which

is termed global memory. The key operating principle of GPU’s is to run numerous

simple threads concurrently, not use cache at cores and use massive thread-level

parallelism to mask memory latency. Massive TLP enables a GPU control until to run

other threads when some are stalled waiting for memory.

2.2.2 Single Chip Cloud Computer (SCC)

Figure 5. Cluster-on-chip Architecture (Intel SCC, Xeon Phi)

Intel’s Single Chip Cloud computer is an experimental research/concept chip

made available to select Universities under the Many-Core Applications Research

program. It has recently been commercialized as the Intel Xeon Phi. It consists of 48

Intel Architecture (IA) P54C cores on a single die connected by an on-chip mesh for

CONTROL
ALU ALU

ALU ALU

CACHE

DRAM

DRAM

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

(a)

(c) (d)

ALU ALU

ALU ALU

D
is
pa
tc
he
r

C
ol
le
ct
or

(b)

 12

inter-core communication. It can address up to 64 GB RAM and shares traits of both

message passing and shared memory architectures. Data I/O is achieved via an off-chip

FPGA that delivers packets from Ethernet/PCIe bus directly onto the on-chip network.

Unlike a GPU, an SCC need not be run as a co-processor. Each of the cores can run a

Linux operating system image and run application programs (written in C/C++). More

information on Intel SCC architecture is available at [18]. Figure 5 shows the

architecture of the Intel SCC. Each block marked in dotted lines represents a P54C core

consisting of instruction dispatch/control unit, ALU and cache. A group of cores share a

common memory controller for DRAM access. Unlike a GPU, the SCC architecture uses

caches to mask memory access latency at individual cores. Since, memory coherency is

difficult to achieve in hardware/software between 100’s of cores, this has not been

implemented on the SCC necessitating the design of application software using a

distributed memory-programming model.

2.3 Research Overview

The research leading to this dissertation is presented in the following manner:

1. To design suitable data structures and computational algorithm for content-based

semantic information filtering (CB)

a. Validate algorithm’s energy efficiency on GPU & SCC, perform detailed

architectural profiling to determine performance bottlenecks

b. Use those insights to redefine computational algorithm or propose change

in many-core architecture.

 13

2. To design suitable data structures and computational algorithm for

neighborhood-based collaborative information filtering (CF)

a. Validate algorithm’s energy efficiency on GPU & SCC, perform

architectural profiling to determine performance bottlenecks.

b. use insights obtained to redefine computational algorithm or propose

changes in many-core architecture.

3. To design an appropriate distributed memory run-time to run on a many-core

chip. Map the CF computational model to this run-time.

a. Determine whether the distributed memory-computing model on the SCC

is more energy efficient than Objective 2, perform stage-wise profiling to

determine bottlenecks, determine the trade-off between computation &

communication time for the application.

b. If computation is determined to be a bottleneck, design lightweight IP

cores, which could efficiently perform the same operation than a Pentium

P54C core (on the SCC).

4. To design an energy-efficient parallel reconfigurable SoC architecture to run CB

and CF algorithms

a. This SoC should leverage the best features from existing many-core

architectures and propose hardware designs to alleviate identified

bottlenecks.

 14

b. Design a Network-on-chip based interconnects for low latency, high

bandwidth data I/O between memory & processing elements and between

several processing elements.

c. Design lightweight application-specific functional units that consume

least die area and dissipate least power. The lightweight cores should be

reconfigurable and at the least offer specific programmability.

 15

3. SEMANTIC INFORMATION FILTERING ON MIC*

3.1 Shared Memory Approach

In this dissertation, we describe the design of a novel BF based computational

kernel to compute semantic similarity on Nvidia’s Tesla GPU & Intel’s SCC [19]. This

involved the creation of new data structures, validation of proposed algorithm when

using a common shared memory between participating cores.

3.1.1 Motivation

Figure 6 shows a high-level overview of the semantic comparison methodology.

Two example statements/descriptors need to be compared. This involves (1) conversion

from textual representation into a concept tree, (2) conversion of concept tree into a

tensor form and (3) representation of the tensor in a tabular form (semantic descriptor).

The section marked in blue involves the comparison of two semantic descriptors and will

be the focus of this chapter of this dissertation.

We assume that two tensors (sizes n1, n2) are provided as input. The similarity

metric used is cosine similarity; which will lie in [0, k] provided the coefficients are

normalized within their respective tensors.

* Parts of this section have been reprinted with permission from A. Tripathy, S. Mohan
and R. Mahapatra, "Optimizing a Semantic Comparator using CUDA- enabled Graphics
Hardware", in 5th IEEE International Conference on Semantic Computing (ICSC)
September 18-22, 2011, Palo Alto, CA, USA. © IEEE 2011

 16

Figure 6. Semantic Comparison Methodology

We note that for a given a tensor pair; identification of common terms,

multiplication of their coefficients, and summation of interim terms are independent

atomic operations and will benefit from parallelism. Conventional sequential processors

(including SMP systems) cannot provide the necessary parallelism available in this

computation. In the following section, we discuss how a GPU based semantic

comparator is designed to lower query latencies to acceptable, interactive levels.

Hardware Comparator

A cat sat in the green hat

{cat} {sat} {green, hat}}

{green, hat}cat

hat green

sat

Semantic
Comparison

Data Structure

Vector ID1 Coeff1
Vector ID2 Coeff2
Vector IDn1 Coeffn1

Vector ID Coefficients

A green hat was put on the cat

{{green, hat} {put} {cat}}

{green, hat}

hat green

catput

Semantic
Comparison

Data Structure

Vector ID1 Coeff1
Vector ID2 Coeff2
Vector IDn1 Coeffn1

Vector ID Coefficients

Semantic Similarity Value

(i) Text to Concept Tree

(ii) Concept Tree to Tensor

(iii) Tensor to Semantic
Descriptors

(iv) Semantic Descriptor to
Comparison Data Structure

(v) Semantic Comparison

H
ar
dw
ar
e

bsasbas baab ++▷ ◁
→ → →→ → →

csascas caac ++▷ ◁
→ → →→ → →

 17

3.1.2 Bloom Filters for Set Intersection

 A Bloom filter [20] is a probabilistic, space efficient data structure that enables a

compact representation of a set and computation of intersection between two sets. It is

described in the form of an n-bit long bit vector. Elements of one set are inserted into an

empty Bloom filter (all index positions “0”) using k independent hash functions. The

hash functions generate k distinct index values for an item which are turned “1”. The

resulting bit-vector after inserting m elements of a set is a compact representation of the

set. Elements of a second set can now be tested against this Bloom filter using an

analogous method. If all index positions due to a tested element are “1”, it is considered

to be positive result.

Figure 7. Bloom Filter (BF) Insertion

Figure 7 describes a situation where m items: item1, item2, .. itemm from Set A are

inserted into the Bloom filter. A bank of k hash functions operates on a string

representation of an item to produce k distinct index values; each of which are turned “1”

 18

in the Bloom filter. For example, item3, turns the BF[4]=BF[5]=BF[27]=BF[n-2] = 1. It

is important to note that this insertion operation can be performed in parallel (one per

processing element or thread) provided the Bloom filter is located in shared memory.

Figure 8. Bloom Filter (BF) Lookup

Figure 8 describes an analogous situation where elements of the second set (Set

B) are tested with the Bloom filter created earlier. For simplicity of explanation, we have

shown that two elements (item2 & item3) are actually common between Sets A&B. When

item2 is passed through the hash functions, they generate the exact same index positions

as before. All of them are guaranteed to have been turned on earlier

(BF[1]=BF[2]=BF[6]=BF[n-1]=“1”). If all the index positions for an element of the test

set (Set B) return a true from the BF, we claim that this element is present in A∩B.

Testing whether an arbitrary element of the test set is present can result in false

positives (return true, when the element is not present). It is guaranteed to never return a

 19

false negative (return false, when an element is actually present). The probability of false

positives (pfalse+ve) is given by:

𝑝!"#$%!!" = (1− 1−
1
𝑛

!!

)! ≈ (1− 𝑒
!!"
!)!

The probability of false +ve can be minimized by choosing appropriate values of size of

BF (n), number of hash functions used (k), given that the number of distinct elements

likely to be inserted in either set is m. Also, for a given dimensions of n & m, an

optimum value of k can be determined (differentiating w.r.t. k) as:

𝑘!"#$%&% ≈ 0.7×
𝑛
𝑚

Figure 9. Probability of False Positives in a Bloom Filter

Figure 9 shows the variation of pfalse+ve with varying n and m for koptimum. This

shows that pfalse+ve can be made arbitrarily low for a given number of elements to be

inserted (m) by choosing a large size for the BF bit vector (n). For all our experiments in

 20

this thesis, we choose the target pfalse+ve to be 0.001 and calculate n=f(m) as per the

equation shown earlier.

3.1.3 Phases of Semantic Comparison Kernel

 The semantic comparison kernel (SCK) Algorithm is implemented in four

phases. In Phase 1, the coefficient tables are copied to CUDA Global Memory. In Phase

2, document tensor is encoded into the Bloom Filter using hashing. In Phase 3, the query

tensor is tested with this Bloom filter to determine common terms. In Phase 4, the scalar

coefficients corresponding to the filtered tensor are extracted, multiplied and summed to

generate a similarity value.

3.1.3.1 Phase A – Memory Copy to GPU

Figure 10. Coalesced Copy from CPU to GPU Global Memory

 In the first phase of the computation, Tensor Table-1 & 2 are copied to CUDA

Global Memory. The data structure is internally flattened to ensure coalesced memory

accesses. The flattening of the data structure is performed basically as a serialization of

the data structure. By ensuring that the data can be read into the CUDA processor in a

continuous stream, we accelerate the copy. This process is shown in Figure 10. The

 21

transformation into a coalesced memory layout ensures maximum usage of available of

PCIe bandwidth for the GPU architectures we experiment with

3.1.3.2 Phase B – Encode Tensor 1 in Bloom Filter

Figure 11. Encoding Tensor1 in Bloom Filter

 In this phase, we encode the contents of Tensor1 into the Bloom Filter. This is

performed using a number of concurrent kernels (=n1) that run on the CUDA streaming

cores. In each kernel, a given T1_Basis_Vectori is encoded into the Bloom Filter using

two hash functions. As shown in Figure 11, we make n1 concurrent kernel calls

(independent threads) so that each row of Table-1 is served by at least one CUDA

thread. The CUDA occupancy calculator provided by NVIDIA as part of its CUDA

toolkit allowed us to calculate the appropriate device parameters to ensure that each

multiprocessor has a sufficient number of free registers (prevents blocking). The Bloom

 22

filter bit vector is initially created in CUDA Global memory. For use in the subsequent

stage, we transfer it to the GPU’s texture cache.

 The k index positions for every tensor basis vector string (T1_Basis_Vectori) is

used to organize Tensor1 into a parallel hash table in global memory (Cuckoo

hashing[21]). This mechanism will be used to be able to lookup the corresponding

coefficient of T1_Basis_Vectori in the subsequent stages if it is determined to be a

matching term. This mechanism is used instead of sorting Tensor1 and accessing it via

binary search. This is because binary search of a sorted tensor of size n1 will be expected

to have log2(n1) probes in the worst case whereas lookup from a hash table can be made

have O(1) number of probes. In addition the process of creating Bloom filter

representations for every basis vector term already produces hash positions.

Figure 12. Initial Insertion of Tensor Terms into Hash Table

 Figure 12 shows the mechanism for inserting three elements the hash table.

Elements marked A,B,C have the potential positions marked in gray (indicated by k

index values). In this case, we store the (T1_Basis_Vectori,Coeffi) in consecutive

memory locations.

 23

Figure 13. Recursive Eviction Mechanism in Cuckoo Hashing

 Figure 13 shows the mechanism for conflict resolution in Cuckoo hashing. For

instance let’s assume that elements A,B,C,D are already inserted. A new element E is to

be inserted and its first hash index h1(E) indicates a position which is already occupied

(shown as A in this example). Our algorithm which is based on [22] follows a greedy

approach immediately evicting A and placing it in a reinsertion queue. The same thread

performs the reinsertion by looking into the next available position for item A, Since

h2(A) was used, the next position indicated by h3(A) will be chosen next. In the example

in Figure 13, the subsequent position was also occupied, but A is inserted in this

position, thereby evicting B. Again B is placed in the reinsertion queue until a free

location is provided. In case the kth position of an item is reached, the algorithm would

round-robin back to position 1. This procedure ensures that every item inserted in the

hash table can be located with a fixed number of probes keeping the number of memory

access per retrieval low. The creation of the hash table is an efficient operation because

separate threads can insert keys at the same time. Finally, we are taking reusing the hash

functions used to probabilistically determine bloom filter indices to determine positions.

The only cost associated with this approach is the additional space required to create the

 24

table. We also experimentally determined that a memory allocation of 1.25xSize of

Tensor1 was sufficient to store the tensors and that any item can be found after at most k

probes leading to dramatic improvements in Phase D to be described subsequently.

3.1.3.3 Phase C – Encode and Test Tensor 2 with Bloom Filter

Figure 14. Testing Tensor2 with Bloom Filter

 Figure 14 shows the process of testing Tensor 2 with the Bloom filter placed in

CUDA global memory in Phase B. This stage is similar to Phase B with two differences:

• Instead of setting a bit position in the Bloom Filter to 1, it tests for the presence

(or absence) of the T2_Basis_Vectori that the kernel is operating on.

• If all the bits indicated by the BF Index for a given T2_Basis_Vectori are “1” in

the Bloom Filter, then the corresponding index i is stored in shared memory to be

used in the next phase of computation.

 25

We launch at least n2 concurrent kernels during this phase. Every kernel instance

performs three steps (a) encodes a row of Table2, (b) tests with the previously encoded

BF (Phase B) and (c) stores the index values of “matches found” in shared memory.

3.1.3.4 Phase D – Compute Intermediate Sum and Perform Parallel Reduction

Figure 15. Computation of Intermediate Sum & Parallel Reduction

In this phase (Figure 15), we need to lookup and multiply the corresponding

coefficients of the filtered elements (indexes of which were obtained in Phase C) from

Table-1 and Table2. Phases A-C have enabled the “filtering” (identification) of the

common basis vectors in nearly O(1) time. This stage begins by fetching the index of

matching T2_Basis_Vectori and using it to fetch its coefficient from Tensor Table 2 i.e.

2Coeffi (located at an offset of 64 bits, single memory lookup operation). We now know

that its corresponding coefficient is likely (possibility of a false +ve still exists) present

in Tensor Table1. This can be obtained using a linear lookup from the original Tensor1

 26

or from its DHT representation as described in the previous section. Fetching from the

DHT representation of Tensor 1 can also be accomplished with a limited number of

probes and is expected to be more efficient as described earlier.

 Once the corresponding coefficients have been identified (Coeff1, Coeff2), we

generate an interim product (Step-4). The final step in this stage involves the summation

of the interim products from each stage. This is done using the parallel reduction

primitive discussed in [23].

3.1.4 Experimental Setup

 The goal of the experiment is to experiment performance, energy efficiency of

the proposed algorithm with a synthetic dataset on different contemporary GPU

architectures as compared to the best known CPU algorithm and architecture. The

baseline CPU used had an Intel Core i7-3770K processor. Three kinds of GPUs were

used to test the performance for semantic search - Tesla C870, Fermi Quadro 2000M,

Kepler GTX 680. The semantic comparator on GPU was implemented in C++ using

CUDA 5 for device programming. Each basis vector term of the tensor is represented by

a unique 64-bit word. Each phase discussed above is implemented as a separate kernel

and executed sequentially. The Bloom filter is represented by a byte array whose size

depends on the tensor size. We experienced that bloom size should be at least one byte

per term i.e. a tensor of size 10K resulting in a 10Kb bloom filter. The number of hash

functions used is k=7.

 27

Figure 16. Equipment Setup for Power Profiling

The power monitoring was done using Watts’ Up Pro power analyzer from

Electronic Educational devices. This measures overall system power consumption. This

device is connected in line with the power supply to the host computer as shown in

Figure 16. Table 2 reports system base power (no GPU installed) and with the GPU in

cold shutdown and idle. We recognized that once the GPU (Tesla C870) is initiated once

but not used subsequently, it reverts into a idle power state which is higher than in cold

shutdown.

Table 2. System Baseline Power Measurements
System Base Power 115W

System Idle Power (GPU cold shutdown) 150W

System Idle Power (GPU Awake, Idle) 186W

GPU Idle Power 36W

Algorithm 1 lists the pseudo code for the semantic comparator used for our

baseline measurements on the CPU: function computeTensorProduct(). The constituent

Wall
Socket

Profiling
Computer

Device Under Test: WorkStation
with GPU Coprocessor

USB

Synchronized over Ethernet
for accurate timing

Power
Analyzer

 28

basis vectors from tensor Table1 are inserted as pairs into a Red-Black tree data structure

(rbtree, line 2) leading to the creation of a self-balancing binary search tree in O(log n1)

time. Next, the constituent basis vectors of tensor Table2 are tested with this BST (line

5). If this test is successful, then Table2_BasisVector[j] is a common basis vector (Line

6). Now their corresponding coefficients are pair-wise multiplied and summed (Line 7).

The overall complexity for the latter search operation is O(n2 log n1). The balanced

binary tree forms the basis for the C++ STL Map container and is expected to be the

most efficient implementation for SMP systems.

Algorithm 1: Semantic Comparator on Conventional Symmetric Multiprocessors
inputs: Tensor Table1, Tensor Table2
output: Semantic (dot) product
function computeTensorProduct()
 1: for i  0, (n1-1) do
 2: rbtree.insert(<Table1_BasisVector[i], Table1_Coeff[i]>)
 3: end for
 4: for j  0, (n2-1) do
 5: rbtree_ptr  rbtree.find(Table2_BasisVector[j])
 6: if rbtree_ptr != NULL then
 7: dot  dot + (Table2_Coeff[j] x rbtree_ptr.value)
 8: end if
 9: end for
 10: return dot
end function

3.1.4 Results and Discussion

 In this section, we discuss the execution time and energy consumption obtained

due to the proposed algorithms running on three Nvidia GPU families over the state of

the art serial implementation. We also profile the semantic kernels to examine which

 29

stage remains a bottleneck and examine how our proposed algorithms can help alleviate

it.

Figure 17. Speedup of Semantic Kernel (Linear Lookup)

 Figure 17 shows the variation of speedup with varying tensor size and number of

threads in use on an Nvidia GTX680. When we reach the maximum number of

threads/block (=384) available on the Tesla GPU, we see a speedup of up to ~25x.

Figure 18. Speedup of Semantic Kernel (Cuckoo Hashing)

0

5

10

15

20

25

10
24

0

20
48

0

40
96

0

81
92

0

10
24

00

15
00

00

S
pe

ed
up

Tensor Size (n1=n2=N)

num threads/block=8

num threads/block=64

num threads/block = 128

num threads/block=256

num threads/block=384

0

50

100

150

200

250

300

350

10
00

50
00

10
00

0

50
00

0

10
00

00

15
00

00

S
pe

ed
up

Tensor Size (n1=n2 = N)

Tesla&(C870)&

Fermi&(Q2000M)&

Kepler>X&680)&

 30

Figure 18 in contrast shows the speedup possible with varying tensor size for the

maximum number of threads in use for Tesla, Fermi and Kepler GPUs with the same

baseline. In this case, we can observe a speedup of up to ~50x for the Tesla GPU as

compared to ~25x in Figure 17. This shows that our choice of Cuckoo hashing is

appropriate for the lookup of the matching coefficients in Phase D of the proposed

algorithm.

Figure 19. Power Consumption with Proposed Algorithm

Figure 19 shows the bulk power consumption for the Tesla, Fermi and Kepler

GPUs when running the proposed algorithms. No significant difference was observed

between the linear and cuckoo hashing based lookup variations in Phase D. This is

because GPU power consumption is directly proportional to the number of cores in use.

It is also well known that GPUs are energy efficient but not necessarily power efficient –

0

50

100

150

200

250

300

10
00

50
00

10
00

0

50
00

0

10
00

00

15
00

00

D
yn

am
ic

 P
ow

er
 (W

)

Tensor Size (n1=n2 = N)

Tesla&(C870)&Power&
Fermi&(Q2000M)&Power&
Kepler&(GTX&680)&Power&
CPU&Dynamic&Power&

 31

GPU power approaches that of the CPU for larger data sizes. In addition, we also

observe that GPU dynamic power for the Fermi family (released 2011) > Tesla (released

2010) > Kepler (release 2013) for the same algorithm and data sizes.

Figure 20. Profiling Semantic Kernels with Linear Lookup

Figure 20 shows a phase-wise profiling of the execution time for the proposed

algorithm with linear lookups in Phase D. This was done to understand which phase

consumes the highest fraction of total execution time. It conveys the following

information: (1) Filtering of the common basis vector terms (Phases 2, 3) take up an

almost negligible fraction of the time, (2) IO (Phase 1) to and from the GPU is a

bottleneck, (3) coefficient lookup (Phase 4) occupies the largest fraction of the total

execution time (almost 80%). We alleviate this problem using the Cuckoo Hashing

algorithm to reorganize Tensor1 in a DHT as described earlier in this section.

Phase	
 A(%)

Phase	
 B	
 (%)
Phase	
 C	
 (%)
Phase	
 D	
 (%)0

20

40

60

80

100

100 500 1000 5000 10000 50000 100000 150000

Ex
ec

ut
io

n
Ti

m
e

(%
)

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

Phase A(%)

Phase B (%)

Phase C (%)

Phase D (%)

 32

Figure 21. Profiling Semantic Kernels with Hash Lookup

 Figure 21 shows a similar phase-wise profile generated for the Cuckoo hashing

variation of the proposed algorithm. It shows that Phase D consumes a maximum of 40%

of the execution time for the largest tensor size (=150k) which is significantly lower than

the nearly ~90% observed with the linear lookup. This has enabled the realization of

almost 50x speedup as opposed to 25x for the Tesla GPUs. Memory copy from the CPU

to GPU remains a bottleneck with almost 50% of the execution time. Phases B & C

which involve computation of the hash functions and reorganization of Tensor1 in a

DHT continues to occupy minimal fraction of the execution time. The profile is similar

for the three GPU families – Tesla, Fermi & Kepler.

3.1.5 Related Work

 To the best of our knowledge, this is the first work of its kind to enable semantic

comparison on Nvidia’s Tesla, Kepler and Fermi architectures. Our prior work [9] was

only able to demonstrate a limited 4x speedup on the Tesla architectures for tensors of

up to 150k entries. There have been several other attempts to accelerate traditional

0

20

40

60

80

100

1000 5000
10000

50000
100000

150000

E
xe

cu
tio

n
Ti

m
e

(%
)

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

A"Memcpy)CPU)to)GPU)

B"Compute)Hash)&)Insert)into)BF)

C"Compute)Hash)and)Test)BF)

D"Extract)coefficients,)mulDply)and)sum)

0

20

40

60

80

100

1000 5000
10000

50000
100000

150000

E
xe

cu
tio

n
Ti

m
e

(%
)

Number of Entries (Terms) in Table 1 & 2 (n1=n2=N)

A"Memcpy)CPU)to)GPU)

B"Compute)Hash)&)Insert)into)BF)

C"Compute)Hash)and)Test)BF)

D"Extract)coefficients,)mulDply)and)sum)

 33

keyword based search mechanisms on GPU’s. GPUminer [24] describes the

implementation of k-means clustering and frequent pattern mining. Likewise [25]

describes the process of adapting a document similarity classifier on two massively

multi-core platforms: Tilera 64-core SoC and the Xilinx Virtex 5-LX FPGA. This work

has been done in the context of web-security and demonstrates that an incoming data

stream can be filtered using a TF-IDF based dictionary of known attack patterns. This

work is interesting because it uses large array of Bloom filters, with each element

representing a data-value in the dictionary. They have been able to demonstrate

scalability of up 30x on the Tilera 64-core SoC and up to 166x using an FPGA. In

sacrificing the accuracy of the similarity computation, they have been able to

demonstrate up to 80x speedup over a serial software approach. This paper substantiates

our claim of Bloom filters being an appropriate mechanism to quickly identify common

terms. We differ from this work in that our Bloom filters are created dynamically for

every pair of comparisons. Likewise, our previous work, [26] discusses the design of a

fine-grained parallel ASIC for semantic comparison. While this custom ASIC design has

demonstrated hypothetical similarity of up to 105 using a Bloom filter based algorithm,

I/O issues have not been taken into consideration. Further the scalability has been

demonstrated only with tensors of sizes <10240 elements. A recent work on FPGAs

[27] uses a Bloom filtering approach for accelerating traditional bag-of-words search and

has been able to demonstrate a comparable 20-40x speedup over the best known serial

implementation on multi-core CPUs. Our proposed approach with Cuckoo hashing has

 34

superior speedup performance on a GPU and can be expected to improve the

performance on an FPGA as well.

3.1.6 Section Summary

We have designed a novel multi-stage Bloom-filter based computational kernel

to compute item-user semantic profile similarity on GPUs [9, 28]. We use Bloom filters

[20] to quickly determine the common terms in two tensors. Once the matching terms

have been identified, it is necessary to lookup their corresponding coefficients from

memory. In case of Fermi and Tesla architectures, we radix sort Tensor1 whereas in case

of Kepler architecture, we use Cuckoo hashing. This demonstrates superiority of shared-

memory approach for CB when run on many-core processors. The baseline CPU used

for comparison of results was the Intel Core i7-3770K processor. Three kinds of GPUs

were used to test the performance for semantic search - Tesla C870, Fermi Quadro

2000M, Kepler GTX 680.

 35

4. COLLABORATIVE INFORMATION FILTERING ON MIC *

4.1 Shared Memory Approach

In this dissertation, we describe the design of a novel counting based

computational kernel to compute all-pairs similarity on Nvidia’s Tesla GPU & Intel’s

SCC [19]. This involved the creation of new data structures to index the data,

formulation of the all-pairs computation problem as a counting task amenable to

efficient parallelization. We describe the motivation, proposed algorithm and the results

in the following subsections.

4.1.1 Motivation

 The workflow for item-item CF can be described mathematically as follows.

Suppose there exist a set of m distinct users; U = {u1,u2, …, um} who have rated one or

more of n distinct items; I= {i1,i2, …, in}. Each user u ∈ U provides a rating rui for a

subset of items in I (Iu ⊆ I). These ratings can be represented as an item-user matrix R of

size nxm. Not all elements in this matrix will be filled in because most users will not

have rated all items. Let the total number of ratings provided as input i.e. triples of type

(itemID, userID, rating) be T (<< nxm). A row vector from R (Ri) is sufficient to

describe an item i’s interaction history (i.e. all user ratings made for it) whereas a

* Parts of this section have been reprinted with permission from A. Tripathy, S. Mohan
and R. Mahapatra, "Optimizing a Collaborative Filtering Recommender for Many-Core
Processors", in 6th IEEE International Conference on Semantic Computing (ICSC)
September 19-21, 2012, Palermo, Italy. © IEEE 2012 &
A. Tripathy, A. Patra, S. Mohan and R. Mahapatra, “Distributed Collaborative Filtering
on a Single Chip Cloud Computer”, in Proc. IEEE Intl. Conf. on Cloud Engineering
(IC2E ’13), Mar. 25, 2013, San Francisco, CA, USA. © IEEE 2013.

 36

column vector (Ru) describes a user u’s interaction history (i.e. all item ratings made by

him).

4.1.1.1 Calculation of Item-Item All Pairs Similarity (sij)

Figure 22. Calculation of Item-Item All Pairs Similarity

Figure 22 shows a sparse item-user matrix Rnxm where a total of T ratings have

valid entries (shown as grayed cells). Given two arbitrary items i,j ∈ I, their similarity

metric is denoted as sij. Computation of sij proceeds by first identifying the set of users

who have rated both i & j denoted as Uij ⊆ U. 𝑟! and 𝑟! denote the average rating of

items I and j respectively. A similarity metric such as Pearson’s correlation coefficient

can be defined to compute sij as follows:

𝑠!" =
(𝑟!! − 𝑟!)(𝑟!" − 𝑟!!"" !∈!!")

(𝑟!" − 𝑟!)!"" !∈!!" × (𝑟!" − 𝑟!)!"" !∈!!"

1
2

i

j

n

1 2 u mv

Rated Non-Rated

Ite
m

s (
i)

Users (u)

Common Users
rated items i & j

sji

sji

1
2

i

j

n

Ite
m

s (
i)

1 2 nj
Items (i)

iR S

Similarity MatrixItem-User Matrix

 37

Pearson coefficient sij ∈ [-1,1]. In Figure 22, users denoted as u,v are common between

items i and j and form Uij. Therefore the ratings in the cells denoted by (i,u) and (j,u)

will form rui whereas (i,v) and (j,v) will form ruj. The denominator terms of sij denote the

standard deviations of rui and ruj respectively whereas the numerators represent their

covariance.

4.1.1.2 Estimation of Prediction

Figure 23. Estimation of Prediction for User(u)

Once the similarity for all i,j ∈ IxI is available, the prediction for an arbitrary

user u ∈ U for an unrated item i ∈ I can be calculated (Figure 23). This uses the

similarity matrix and his prior rating vector in the following formulation:

𝑝!" = 𝑟! +
(𝑟!" − 𝑟!)×𝑠!"!∈!!

𝑠!"!∈!!

 This operation is equivalent to a matrix-vector product of the previously

computed similarity matrix and a users rating vector. The resultant vector of size nx1

u

Rated

Non-Rated

sji

sji

1
2

i

j

n

Ite
m

s (
i)

1 2 nj
Items (i)

iS

PredictedX

1
2

i

j

n

Ite
m

s (
i)

=

u
1
2

i

j

n
Ite

m
s (

i)
Similarity Matrix User Vector Prediction Vector

 38

will have pui. This is shown in Figure 23 as the prediction vector with vertically hatched

lines.

4.1.1.3 Presentation of Recommendation

 Once a prediction vector for user u has been computed (output of Figure 23) i.e.

Pu (prediction vector for user u), we select the top-K from among them as his

recommendations. The number of possible predictions for user u will be |I| - |Iu| = p. This

is accomplished using a priority queue of size k. This operation can be completed in O(p

log k) time since we have to rebuild a priority queue p times (each rebuild of the heap is

an O(log k) operation.

4.1.1.4 Key Challenge in All Pairs Similarity Computation

 When |I|=n, the number of sij pairs is of O(n2). For a given (i,j) pair, the average

number of ratings to be compared is equal to the average number of ratings per item =

T/n. Therefore the overall complexity for the computation of all-pairs similarity is

O(nxnxT/n) = O(nT). In case all pairs similarity between all user-pairs (suv) is to be

computed, the overall complexity will be O(mT). We will consider user-user similarity

to further analyze this problem and propose the intuition for our algorithm. The analysis

will be analogous for item-item similarity; user-user variation is described in this thesis

for ease of explanation.

Let us hypothetically assume that distributing the computation of all-pairs item-

item similarity into p tasks is possible where p~n. The hypothetical complexity of this

task would become O(nT/p)~O(T). The situation would appear as in the following

simplified diagram (Figure 24):

 39

Figure 24. Brute Force User-User Similarity

Figure 24 shows users u1,u2,u3,..ul who have rated m,n,o,p items each. The pairs

(u1,u2), (u1,u3), (u1,ul) are parallelized simultaneously (shown with dotted lines). For

every such pair of items, say (u1,u2) the common items need to be identified. This is

O(mxn) or in general O(T) in general. Many-core systems such as GPU’s provide a

natural choice to achieve the first level of parallelization described above. However,

these architectures do not provide a second level of parallelization. Techniques using

Bloom Filters [9] which were used to find the common items between two sets

{A1,A2,..Am}and {B1,B2,…Bn}do not apply anymore since there is no second-level of

parallelism.

Contemporary works in this domain such as [29] take this approach and propose

further improvements in parallelizing effectively in an architecture-aware manner:

reducing memory bank conflicts in GPU’s, using multi-dimensional grids but ultimately

resort to a brute force method of identifying common items in the Item set. Under these

circumstances no performance better than O(nT/p) is possible.

Item
 A

1

Item
 A

2

Item
 A

m

Item
 B

1

Item
 B

2

Item
 B

n

Item
 C

1

Item
 C

2

Item
 C

o

Item
 D

1

Item
 D

2

Item
 D

p

u1 u2 u3 ul

1 2 2 3
3

 40

4.1.1.4 Motivation for Proposed Algorithm

The key contribution in this chapter is to recognize that it is indeed not necessary

to compare the sets in a brute force manner. This only increases the number of redundant

computations being performed in each parallel task/core. Our objective as per Equation

(2) is to determine all items i ∈ Iuv. Therefore, for a given (u,v) pair, and the items rated

by u and v; if we indexed all other users who have seen those Iu and Iv, we have solved

our problem.

Figure 25. Converting User-User Similarity into a Counting Problem

This situation is demonstrated graphically through Figure 25. Consider a pair say

(u1, u2) again. u1 proceeds through all items (A1,A2,…,Am) and seeks out all other users

who have rated A1, A2, …, Am – for instance u10, u14. An intermediate data structure for

(u1,u10) and (u1,u14) is updated with ru1,am, ru10,am & ru1,a1,ru14,a1. These are the only two

pairs relevant rating relevant to similarity computation for u1. In effect, this has reduced

the problem of brute-force search into one of counting. The additional cost will be that

of creating a suitable data structure, which can carry the necessary additional indices.

Item
 A

1

Item
 A

2

Item
 A

m

Item
 B

1

Item
 B

2

Item
 B

n

Item
 C

1

Item
 C

2

Item
 C

o

Item
 D

1

Item
 D

2

Item
 D

p

u1 u2 u3 ul

1 2 2 3
3

u10 u14 u97 u65 u32 u9 u19 u87

 41

We have reduced our time requirement at the cost of increased space needed to store

these index values.

The complexity of this approach is now 𝑂(𝑛× !
!
× !
!
) Since 𝑛 ≪ !

!
, it reduces to

𝑂(𝑛× !
!
). If this were to be parallelized in p parallel paths where n~p, the resulting

complexity of the algorithm shall be only O(!
!
). Therefore this approach can expect to

have an order of magnitude speedup.

We next describe the implementation issues for this algorithm including, creation

of the required data-structures, description of the algorithm and its mapping into two

representative parallel architectures (Nvidia’s GPU’s and Intel’s SCC).

4.1.2 Proposed Data Structures and Algorithms

 This section outlines the algorithm and the necessary data-structures to realize

the algorithmic framework described earlier. For a given user u, a list of items he/she has

rated is stored in an array itemByUser, the ratings given is stored in a second array

ratingByUser both indexed by the value in userIndexu and userIndexu+1. Likewise for an

arbitrary item i, a list of users who have rated it is stored in a separate array userByItem,

the corresponding ratings are stored in a second array ratingByItem both indexed by the

values in itemIndexi and itemIndexi+1. This data structure is common for both item-item

and user-user collaborative filtering. The data structures userIndex and itemIndex are

maintained with the help of two HashTables. This situation is shown in Figure 26.

 42

Figure 26. Designing the Required Data Structures

 A single processing element (streaming multiprocessor on the GPU) or a

processing core (on the SCC) operates on the ith item or uth user. Algorithm 2 shows the

pseudo code for calculating user-user correlation.

 Line 13 of Algorithm 2, indicates the initialization (to zero) of a three

dimensional matrix (inter) with the dimensions Num_Users x Rating_Max x

Rating_Max. Rating_Max indicates the highest range in the Rating dataset. In the

datasets used in this paper, we have used Rating_Max = 5 (a range of 1-5). For instance,

if user ui detects neighbors’ u10, u23 and the ratings that they share with ui are (5,1) and

(2,3) respectively the following elements of (inter) will be incremented: [10][5][1] and

[23][2][3]. The loop between lines 10-15 parses through all possible items rated by user

ui. For each such item say i1, the inner loop 11-15 finds all possible users in the rating set

that have rated it (through userByItem). For every such pair of users, an intermediate 3-

D matrix is updated.

User
u

Item i1

Item im

userIndexj

userIndexj+1

ite
m

B
yU

se
r

itemIndexk

itemIndexk+1

us
er

B
yI

te
m

ra
tin

gB
yU

se
r

ra
tin

gB
yI

te
m

 43

Algorithm 2: Algorithm for User-User all pairs correlation
1: load ratingByUser of size NUM_RECORDS
2. load itemByUser of size NUM_RECORDS
3. load ratingByItem of size NUM_RECORDS
4. load userByItem of size NUM_RECORDS
5. load userIndex of size NUM_USERS
6. load itemIndex of size NUM_ITEMS
9. copy all data structures from host to device memory
10. for i=0 to i<NUM_USERS do
11. define inter[NUM_USERS][R_MAX][R_MAX]
10. for j = userIndex[i] to j< userIndex[i+1] do
11. for k = itemIndex[itemID] to k<itemIndex[itemID+1]
12. if (userByItem[k] >=i) then
13.
 inter[userByItem][ratingByItem[k]][ratingByUser[j]]++
 end if
14. k++
15. end for
16. j++;
17. end for
18. for j=i; j < NUM_USERS do
19. for k=1 to k<=R_MAX do
20. for l=1 to l<R_MAX do
21. val = inter[j][k-1][l-1]
22. sum1 += l*val
23. sum2 += k*val
24. sumsq1 +=l*l*val
25. sumsq2 +=k*k*val
26. sumpr += k*l*val
27. num += val
28. l++
29. end for
30. k++
31. end for
32. top = (sumpr – (sum1*sum2/num))
33.

bottom = sqrt((sumsq1-sum1^2/num)* (sumsq1-sum1^2/num)
34. pearson = top/bottom
35. j++
36. end for
37. i++
38. end for
endprocedure

 44

/* In case of the SCC */
Follow Line 10 by : if (i%NUM_CORES==CURR_CORE) then
Until Line 36: end if

/*In case of the GPU */
Replace Line 10: Launch kernel_parallel_i_i_corr(..) with all loaded data structures
procedure kernel_parallel_i_i_corr(..)
1: tid = (blockIDx.x*blocDim.x)+threadID.x
2. Replace lines 11-34
end procedure

Once this parsing is complete, a second loop begins for the user ui (lines: 18-36).

This loop walks through the intermediate matrix to generate the correlation coefficient.

In this pseudo code, we have used a more computationally efficient to calculate suv as

shown below. In this case, n is the number of common users identified.

𝑠!" =
𝑟!"×𝑟!"!"" !∈!!" /𝑛 − 𝑟! − 𝑟!

𝑟!"! − ((𝑟!)
!)/𝑛!"" !∈!"# × 𝑟!"! − ((𝑟!)

!)/𝑛!"" !∈!"#

4.1.3 Results and Discussion

 The goal of this section is to investigate the efficiency, execution time

performance and power consumption of user-user and item-item collaborative filtering

recommender when run on a GPU and SCC. The variables we can experiment with are:

(1) Number of Items (or Number of Users), (2) Number of Users/Item (or Number of

Items/User), (3) Number of Threads/Block (or Number of Cores used). The objective of

our paper is not to measure the quality of recommendations; metrics such as accuracy,

 45

quality, diversity etc. will not be used. The GPUs used in our experiments were NVIDA

Tesla C870, Quadro 200M and Kepler GTX680.

 The power monitoring on the GPU’s was done using Watts’ Up Pro power

analyzer from Electronic Educational devices [30]. This measures bulk system power

consumption (Host CPU+GPU). Measurement of Power consumed by the SCC cores is

achieved via a Board Management Controller (BMC) that monitors the voltage and

current drawn from the power rails feeding the SCC cores. These values are available

through a series of system calls from the MCPC. We synchronize these calls with the

execution of our algorithm, average the results. Execution Time on the GPU is measured

using standard CUDA timers whereas wall clock is used on the CPU and SCC to

measure the execution time of algorithms.

 In the following section, we report & analyze overall execution time, power,

energy, speedup for the recommender core on: (1) Intel’s experimental single chip cloud

computer (SCC), (2) NVIDIA’s CUDA-enabled GPGPU acting as a co-processor and

(3) traditional server class x86 (Xeon) processor. To be able to better control the

behavior of our algorithm, we decided to implement a synthetic dataset where the first

two parameters can be tuned. However, to verify whether our system would operate on

real-world datasets, we used Flixster [31]. The Flixster dataset consists of 147,612 users

who have rated a total of 48,794 unique movies (items) at least once. The total number

of ratings available in the dataset is 8,196,077. Other datasets which have been used for

functional correctness are: Bookcrossing [32] & Movielens [33].

 46

Figure 27. Execution Time for Item-Item Correlation (Tesla C870)

Figure 27 shows the overall execution time for a synthetic dataset by varying

#items (n) while keeping #(users/item) constant at 10. Sequential execution performed

by the CPU causes an exponential increase in the execution time as the number of items

increases whereas the same operation on the GPU is faster ~30x on average.

Figure 28. Speedup for Item-Item Correlation for Tesla, Kepler & Fermi GPUs

0

10000

20000

30000

40000

50000

60000

70000

9 17

31

55

99

17
7

31
5

56
1

99
9

17
77

31
61

56
22

99
99

17
78

2

E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of Items in synthetic dataset
(#Users/Item=10, Threads/Block=Max(#Items/2,512)

GPU_Exec_Time(ms)/

CPU_Exec_Time(ms)/

0

10

20

30

40

50

60

70

1M
i

2M
i

4M
i

6M
i

8M
i

S
pe

ed
up

Number of Records (R)

Tesla&(C870)&
Fermi&(Q2000M)&
Kepler>X&680)&

 47

Figure 28 shows the experimentally determined speedup for item-item

correlation as compared to the base-line i7 CPU core for the Tesla, Fermi & Kepler

GPUs. In this case a synthetic dataset was used with varying number of items while

keeping the #(users/item) constant at 10. Sequential execution by the CPU causes an

exponential increase in the execution time whereas the Tesla, Fermi & Kepler perform

~30x, ~47x and ~63x better.

 Figure 29 shows variation in execution time for a synthetic dataset due to

increase in #Threads/Block from 2 to 512 with fixed #items = 10k & #Users/Item =

1778. This corresponds to |R|=T=485k unique records. It demonstrates that the reduction

in execution time for the algorithm is insignificant beyond #Threads/Block=32.

Figure 29. Variation of Execution Time with varying Threads/block

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

2" 4" 8" 16" 32" 64" 128" 256" 512"

A
lg

or
ith

m
 E

xe
cu

tio
n

Ti
m

e
(m

s)

Number'of'Threads/Block'
(#Items'in'synthe;c'dataset=10000,'#Users/Item=1778,'

#Records=485539,'#Users=278038)'

 48

Figure 30. Dynamic Power Consumption using Tesla GPU & Intel Xeon GPU

Figure 30 shows the variation of power consumed by the CPU and GPU

respectively with varying #items keeping all other parameters constant. This experiment

was conducted with #users/item = 10. The dynamic power for the GPU is lower than that

consumed by the CPU but approaches that of the CPU for large datasets. It is known that

GPUs are energy efficient but not necessarily power-efficient.

Table 3. Energy Savings with Proposed Algorithm on a GPU

Number
of Items

(n)

CPU
Exec.
Time

tCPU (s)

CPU
Avg.

Power
(W)

GPU
Exec.
Time

tGPU(s)

GPU
Avg.

Power
(W)

Speedup
𝒕𝑪𝑷𝑼
𝒕𝑮𝑷𝑼

Energy
Saved
(%)

1000 0.248 246 0.0078 204 31.79 97.39
1778 0.730 247 0.022 219 33.16 97.32
3162 1.174 250 0.0669 229 26.50 96.54
5623 6.484 251 0.1995 235 32.50 97.11
10000 20.22 253 0.6154 240 32.86 97.11
17783 58.57 258 2.3279 241 25.15 96.28

0

50

100

150

200

250

300

9 17

31

55

99

17
7

31
5

56
1

99
9

17
77

31
61

56
22

99
99

17
78

2
D

yn
am

ic
 P

ow
er

 (W
)

Number of Items in synthetic dataset
(#Users/Item=10, Threads/Block=Max(#Items/2,512)

GPU$Dynamic$Power$

CPU$Dynamic$Power$

 49

Table 3 shows the execution time, average power consumption CPU and GPU

respectively when using the Flixster dataset and constant #Threads/Block = 512. The

average energy savings is ~97% which is mostly due to the massive ~30x speedup in

execution time (especially since the power levels of the GPU approach that of the CPU)

Figure 31. Execution Time for Proposed Algorithm on Intel SCC

Figure 31 shows execution time for the Flixster dataset by varying #items (n)

while keeping #(users/item) constant at 10 on the SCC. Since the SCC cores are the

much older 1st generation Pentium’s, it is not fair to compare them with the state-of-the-

art Xeon processors. We believe that the lower speedup (compared to ~30x on the GPU

is due to the much lower available parallelism on the SCC).

0

200

400

600

800

1000

1200

1400

1600

1800

1000 1778 3162 5623 10000

E
xe

cu
tio

n
Ti

m
e

(s
)

Number'of'Users'in'Flixster'dataset'
(Variable'#Items/User)'

All 48 SCC Cores

Single SCC Core

 50

Figure 32. Dynamic Power Consumption for Proposed Algorithm on Intel SCC

Figure 32 shows the variation of power delivered by the SCC supply rails with

increasing participation of cores in the computation. This power was measured via on-

board ADCs on the Board Management Controller. In this case, #Cores used = 1 to 48

with fixed #users = 10k. The dynamic power consumed by the SCC is ~3-6x lower than

that consumed by the GPU.

 Table 4 shows the execution time, average power consumption of the SCC:

single core (tSIN) and all 48 cores (t48) respectively when using the Flixster dataset and

1K<#Users<10K. The average energy savings is ~82.62% which is primarily due to the

~10.56x speedup in execution.

0

10

20

30

40

50

60

70

80

1 2 4 6 8 10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

D
yn

am
ic

 P
ow

er
 (W

)

Number of Cores
(#Users in Flixster dataset = 10000, Variable #Items/User

#Records=517561, #Items=15112)

 51

Table 4. Energy Savings with Proposed Algorithm on Intel SCC

Number of
Users
(u)

Single Core
Exec. Time
tSIN (s)

Single Core
Avg. Power
(W)

All
Cores
Exec.
Time
t48(s)

All
Cores
Avg.
Power
(W)

Speed
up
𝒕𝑺𝑰𝑵
𝒕𝟒𝟖

Energy
Saved
(%)

1000 26.238 40.04 3.470 76.176 7.561 74.83
1778 74.789 41.24 8.893 78.454 8.409 77.37
3162 334.23 43.87 22.669 74.548 14.743 88.47
5623 1390.2 48.28 113.17 79.431 12.284 86.60
10000 2874.7 52.35 291.965 73.157 9.846 85.80

4.1.3 Related Work

 The closest work to this paper is the CADAL Top-N recommender [34] which

has been accelerated on a GPU. They perform user-user collaborative filtering and also

use the Pearson correlation coefficient. They use a more recent Tesla C2050 GPU

(however, maximum number of threads/block = 1024). We compare our results with that

of the CADAL Top-N recommender in Table 5.

Table 5. Comparison with Related Work

Number of
Users
(u)

Exec. Time
tCADAL (s)

Exec.
Time
tGPU (s)

Speedup
𝒕𝑪𝑨𝑫𝑨𝑳
𝒕𝑮𝑷𝑼

Exec.
Time tSCC
(s)

Spee
dup
𝒕𝑪𝑨𝑫𝑨𝑳
𝒕𝑺𝑪𝑪

1000 2.1 0.0005 4384 3.47 0.61
2000 8.8 0.0007 12662 10.22 0.86
4000 35.5 0.0012 29194 33.84 1.05
8000 142.1 0.0021 67187 198.09 0.72

Speedup for our GPU algorithm greatly exceeds that reported by CADAL. This

demonstrates the superiority of our counting based method that greatly reduces

redundant computations of the same items for a given user pair. This is because CADAL

 52

performs the naïve user-user similarity matching as described earlier in this section. Our

counting based method requires marginally more memory (additional index pointers

need to be transferred to the GPU) but provides an order of magnitude larger speedup.

Speedup for our counting method on the SCC is almost equal to that reported by the

authors of CADAL. This is despite the much fewer number of cores in use (the degree of

parallelization (p) is =48 compared to =1024 in case of the GPU). As discussed earlier in

this chapter, this difference is because: the order of computation in our algorithm is

𝑂(!
!
× !
!
) compared to 𝑂(!

!
×𝑇) for the CADAL system.

4.2 Distributed Memory Approach

 Sec. 4.1 described the design of the CF algorithm using a shared-memory model.

This necessitated the loading of the entire dataset (including our custom indexes) into the

main memory of each core, although each participating core was designed to operate

only on a subset of the dataset. Although this enabled significant speedup, it requires the

sharing of common index values in shared memory. This is not scalable for larger

datasets due to the limited amount of shared memory available and the overhead in

accessing them for a cluster-on-chip architecture like the Intel SCC.

Figure 33. Conventional SCC Programming Model

Physical Hardware

RCCE
Libraries

Apps

SCC Linux

Physical Hardware

RCCE
Libraries

MapReduce

SCC Linux

CF MapReduce Application

(a) Standard SCC Programming Model (b) Proposed SCC Programming Model

 53

Figure 33 shows the programming model that was used for Sec. 4.1. The

application/algorithm was developed with the help of Intel provided software toolkit [18]

operating on the physical hardware. The application was designed & and run with OS

support (SCC Linux) using one-sided core-core communication library (RCCE) and

other architecture specific libraries to achieve core-core synchronization.

 The existing SCC programming model requires that an application developer

significantly modify an existing parallel application or rebuild it from scratch using

standard parallel programming constructs (like MPI, OpenMP etc.) with knowledge of

the SCC architectural details. This will entail significant redevelopment costs for

different applications. The development of a common base framework such as

Mapreduce that abstracts away communication & synchronization primitives required

for applications will allow for faster application development. Most significantly, this is

likely to allow for cores to execute parts of the application independent of each other

from their own allocated regions of DRAM/HDD.

Figure 34. Proposed SCC Programming Model

Physical Hardware

RCCE
Libraries

Apps

SCC Linux

Physical Hardware

RCCE
Libraries

MapReduce

SCC Linux

CF MapReduce Application

(a) Standard SCC Programming Model (b) Proposed SCC Programming Model

 54

4.2.1 Motivation for Proposed Approach

We reused the commonly used MapReduce programming model (on distributed

clusters) within the SCC chip itself and run our application on top of it (in a distributed

manner). In the cloud computing community, a large number of applications (in various

domains) already have been expressed using the MapReduce [3, 35] programming

model. The addition of the MapReduce run-time and application layer (CF Mapreduce

Application) on top of the standard SCC programming model is shown in Figure 34.

Figure 35. Mapreduce Programming Model on Many-core Processors

MapReduce [3] is a high-level parallel programming model which has become

popular for data intensive computing on shared-nothing clusters. It requires a designer to

specify two task primitives map and reduce which run on participating compute nodes.

 55

Communication task primitives - partition, sort and group (the three together called

shuffle) exchange and aggregate the intermediate output from map into reduce. Input

data to be processed is split and stored block-wise across the machines participating in

the cluster, often with replication for fault tolerance using a distributed file system

(DFS). Mathematically the task primitives can be expressed as:

Map: (𝑘!, 𝑣!) → list(𝑘!, 𝑣!)

Reduce: (𝑘!, 𝑙𝑖𝑠𝑡(𝑣!)) → 𝐿𝑖𝑠𝑡(𝑣!)

The execution of a typical MapReduce program can be expressed in four phases

(Figure 35). In the beginning, the map function runs on parallel workers (all participating

machines in the cluster; called mappers) to produce a set of intermediate (key,value)

pairs: list(k2,v2). Next, a partition function exchanges intermediate data between the

workers; a sort function sorts them at each worker node; a group function pools together

all values for a key to produce (k2,list(v2)). Here, the shuffle stages (partition, sort,

group) potentially require all-all communication and transform list(k2,v2) to (k2,list(v2)).

Finally, the reduce function operates on this list(v2)’s for k2 at each parallel worker (now

called reducers) to produce the final (key,value) output: (k3,v3). This final output from

reduce is stored back into the DFS (i.e. the HDD at each compute node). This model has

become popular because it abstracts details of parallelization, fault tolerance, locality

optimization and load balancing away from an application developer. An application

developer only has to define the content of the map (M), reduce (R), partition (P), sort

(S) and group (G) functions and leave the rest of the process to the framework.

 56

Figure 36. FPGA Interface to Intel SCC

A key requirement for deploying the MapReduce model is the availability of a

distributed file system, which can store the intermediate results from each stage.

Unfortunately, there is no direct HDD interface to the cores of an SCC. Although the

System FPGA (on the SCC motherboard, shown in Figure 36) has the capability to

directly interface SATA hard disks, this capability has not been made available (as of

writing of this thesis) and when made available would still constitute a bottleneck.

Therefore, the only way a HDD can be used is via a NFS mounted share on the MCPC.

This System FPGA (shown in Fig. 5) acts as a software-controlled port/router into the

SCC’s on-die mesh routing programs & data as desired. It provides stand-alone Ethernet

ports (called eMAC) and a PCIe interface to the MCPC. At this point, data I/O can be

done either through the PCIe interface (called Ethernet over PCIe) or through Ethernet

ports (called Ethernet over MAC) but not both simultaneously. Ethernet over PCIe

R
R

R R...
RR ...

R RR ...

R
...

R
...

...

R RR ...

SCC Chip

PCIe
Interface

eMAC
Interface

4-port router

Mesh
IU

SATA
Interface

System FPGA

Ethernet frames

Switch

PCIe frames

HDD for local
storage

 57

suffers from a known high-IO load bug; therefore we use Ethernet over eMAC in this

paper (1Gbps).

A second problem is that currently MapReduce run-times such as Apache

Hadoop would use TCP/IP communication primitives. This will be inherently inefficient

because packets will need to travel off-chip to the FPGA for routing and not take

advantage of the on-die routing capabilities (though the message passing buffer and on-

chip routers available through the Intel provided RCCE library [18]. Thirdly JVM

support for the first generation Pentium is deprecated, a plug-n-play of an open-source

framework like Hadoop is out of the question and expected to be inefficient. It was

hypothesized that a MapReduce model built from the ground up using architecture

specific communication primitives may provide better performance.

 The specific tasks that were performed are:

1. Design a MapReduce runtime to operate on a many-core processor using first-

principles as described in [3] using the standard software environment provided

by Intel (sccKit v1.4.1.3), a modern linux kernel (2.6.38.3) and RCCE, the Intel

one-sided communication library.

2. Build an algorithmic framework (define stages) to perform scalable

neighborhood-based CF top operate on the above run-time.

4.2.2 Design of Mapreduce-on-chip Framework

 We implemented MapReduce-on-chip using first-principles using the standard

software environment provided by Intel (sccKit v1.4.1.3), a modern linux kernel

(2.6.38.3) and RCCE, the Intel one-sided communication library. The lack of a DFS

 58

does not impede progress; all intermediate data for a MapReduce stage is stored in main

memory.

 We next describe a four-stage Map-Reduce pipeline specific to the Intel SCC

architecture. It consists of the stages: map, shuffle (partition, sort, group), reduce and

merge. For simplicity of the design, we make all participating cores in the SCC (#cores)

execute all stages. Barriers are placed in between stages to ensure that execution

proceeds from one stage to another only if all cores have completed the execution of a

stage. Since each core will operate on a different subset of the input data, it is likely to

complete execution of a stage slightly sooner than a sister core. A typical MapReduce

cluster would consist of heterogeneous nodes and use one of the participating nodes as a

scheduler. Since, we are operating on a homogenous system, task allocation is un-

necessary and would actually be an overhead.

4.2.2.1 Map Stage

In this stage, we use a splitter function that splits the input data into as many

parts as the number of participating cores (operating as mappers in this stage). Each core

now executes the user-defined map function over its subset (chunk) of the input data

(k1,v1) and produces (emits) a new key-value pair List(k2,v2) which is stored in a

contiguous buffer per core; stored in off-chip DRAM – the fastest available memory.

4.2.2.2 Partition Stage

The intermediate (k2,v2) pairs from map need not all be processed by the same

core in the reduce stage. An all-to-all exchange of the intermediate data is necessary to

place them in their right cores. This is done using a user-defined partitioning function –

 59

for ex. hash(key)mod(#cores). The resulting value determines the destination core for a

(k2,v2) pair. Transmission is accomplished through pair-wise exchanges between cores

through Intel’s RCCE [18] get-put communication library (which employs the MPB).

4.2.2.3 Sort Stage

Following transmission, the resulting intermediate buffer at each core may have

the same key’s at different positions (corresponding to the other cores where they were

received from). A Quick Sort is performed on this intermediate buffer in O(nlogn) time

where n is the number of keys. We use the standard glibc provided quicksort and a user

provided comparator function to perform this sorting. Although quick-sort operates in-

place, we take additional care to swap only pointers to the (k2,v2) pair making the cost of

swap independent of the size of data.

4.2.2.4 Group Stage

This stage operates on the sorted list of (k2,v2) pairs to produce a list of values for

one key i.e. (k2,list(v2)) Since the list of (key,value) pairs has been sorted, this stage is

accomplished by iterating through the sort buffer and storing values sequentially until a

new key is encountered.

4.2.2.5 Reduce Stage

The preceding three shuffle phases have enabled the creation of (k2,list(v2)) pairs.

Every such pair is now passed through a user-defined reduce (aggregation) function

which produces a List(v3) as the final output.

 60

4.2.2.6 Merge Stage

Since it is often necessary to write the resulting output to disk, we first need to

bring them together from all participating cores into one. This can be accomplished by

an all-to-one communication of (key,value) pairs to one pre-defined core. A more

efficient version of the same is possible by merging them binomially (intermediate cores

acting as temporary aggregators) as discussed in [36].

4.2.3 Modeling the Item-Item CF Computation through Mapreduce Jobs –Approach A

 We express the item-item collaborative filtering problem (initially described in

Sec. 2.1.2 of this dissertation) in 4 stages (6 mapreduce jobs). A similar design for user-

user CF can be accomplished by replacing users by items in the following formulation:

• (Stage 1) – Compute the average rating by all users for each item (i.e. calculate

𝑟!)

• (Stage 2) - Compute all item-pairs similarity (or correlation, producing sij)

• (Stage 3) – Compute predictions for all items given a subset of users (i.e. ∀ u ∈

U produce pui)

• (Stage 4) – Select the Top-k predictions for a user and present them as a

recommendation

 61

Figure 37. Computational Flow for Item-Item CF on Intel SCC – Approach A

Figure 37 shows the computational flowchart for Item-Item CF using

MapReduce model suitable for the SCC (the four stages are shown with dashed blocks).

Each stage may consist of more than one Map-Reduce job. The input and output of each

stage consists of (key,value) pairs described using the notation <key;value>. When either

the key or value in a pair consists of several distinct terms, commas separate it.

ItemAvg (Map-A & Reduce-A) calculates average rating for all items.

CommonUsers (Map-B & Reduce-B) identifies all pairs of items that have been rated by

a common user and emits the deviation of their ratings from the average. SimPairs

(Map-C & Reduce-C) operates on this to compute the similarity between all pairs of

items.

Map - A

Reduce - A

<i,u,Ri,u>

<i;u,Ri,u>

<i;u,Ri,u,Ri> <i;Ri>

Map - B

Reduce - B

<u;i,Ri,u,Ri>

<i,j;Ri,u-Ri,Rj,u-Rj>
Map - C

Reduce - C

<i,j;si,j>

Map - D

Reduce - D
<i;u,Ri,u,Ri>

<i;u,Ri,u,Ri,Si>

Map - E

Reduce - E
<u;i,Ri,u,Ri,Si>

<u;i,Pu,i>

<i,j;Ri,u-Ri,Rj,u-Rj>

2.
 C

al
cu

la
tio

n
of

 S
im

ila
rit

y

3.
 C

al
cu

la
tio

n
of

P

re
di

ct
io

n

1.
 C

al
cu

la
tio

n
of

Ite

m
 A

ve
ra

ge

Map - F

Reduce - F

<u;Top-k i>

<u;i,Pu,i>

4.
 C

om
pu

ta
tio

n
of

R

ec
om

m
en

da
tio

n

1
- I

te
m

A
vg

2a
 -

C
om

m
on

U
se

rs
2b

 -
S

im
P

ai
rs

3a
 –

 C
om

m
on

U
se

rs
S

im
P

ai
rs

3b
 –

 P
re

di
ct

io
n

4
- R

ec
om

m
en

da
tio

n

 62

Once an all-pairs correlation has been computed, it is possible to compute a

prediction for a user u for an item i that he/she has not already rated. This requires

finding all items already seen by a user u and the similarity vector for each of those

items. CommonUsersSimPairs captures the similarity vector for each item (i) and emits

the user who has already seen it (u), his rating (Ri,u), the average rating of the item (𝑅!)

and its similarity vector (Si). This is fed as input to Prediction. Prediction (Map-E &

Reduce-E) groups this data by user and makes a prediction for all users as per Eq. (3). A

list of userID’s (u) and predictions for each unrated item (i.e. (i,Pui)) is fed into

Recommendation where top-K highest predicted items for a given user are identified

using a priority queue and presented as recommendations. We will now explain each

MapReduce stage in detail in the following sections with specific reference to our target

platform.

4.2.3.1 Calculation of Item Averages

The input to the systems are tuples of type (i, u, Ri,u) which represent only the

non-null ratings corresponding to user u for item i. Map-A emits <i;u,Riu>. This ensures

that (userID, rating) tuples for the same itemID are shuffled to the same core. In

database parlance, this corresponds to “group-by itemID” operation except that it is

performed in a distributed manner. Once all tuples of the type (userID, rating) for a

given itemID (say equal to numValues) are aggregated at a core, the Reduce function

(Reduce-A) performs the averaging operation:

𝑅! =
𝑅!,!!"#$%&"'(

!!!

𝑛𝑢𝑚𝑉𝑎𝑙𝑢𝑒𝑠

 63

This stage emits two tuples; one consisting of the <itemID;ItemAverageRating>

and the other <itemID;userID,rating, ItemAverageRating>. The latter is to be used

immediately while the former is to be used during calculation of predictions. The output

at each core is merged before it is written to disk.

4.2.3.2 Calculation of All Pairs Similarity

Computation of similarity between items i & j requires the identification of the

set of users who have rated both items denoted as Uij ⊆ U. To do so, we“group by

userID”. This will provide us all the items seen by a user. Taking all possible

permutations of such items will give us all (i,j) pairs which have been seen by a user.

Note that the same (i,j) pair may occur due to multiple users; in fact that is what we need

to capture. This is an indirect and elegant way to form all-possible pairs that have been

rated by a common user. This is accomplished through two MapReduce jobs as

discussed below.

4.2.3.2.1 CommonUsers Job

Map-B operates on <itemID;userID,rating, ItemAverageRating> and emits

<userID;itemID,rating, ItemAverageRating>. This ensures that the (itemID,

rating,ItemAvgRating) triple for every userID is shuffled to the same core for the

Reduce-stage. For every pair of itemID’s say (i,j) thereby available, we can compute sij.

Given the limited memory capabilities of the SCC cores and that we do not know how

many such pairs will be produced (this is data driven), it is better to save the required

intermediate result for every such itemID pair into disk i.e. Reduce B stores the first two

bracketed terms in the numerator and denominator in the equation for sij.

 64

4.2.3.2.2 SimPairs Job

Map-C acts as a pass through only aggregating all possible itemID pairs to the

same core for the subsequent reduce stage. Since the key consists of multiple terms, we

use a custom comparator for the partition, sort and group functions. Reduce-C operates

on all similar (i,j) pairs and performs the summation in the numerator of the equation

describing sij.

4.2.3.3 Calculation of Prediction

The calculation of prediction for a given user (say u) for an unknown item (say i)

is performed in this stage. However, before this done, we need to associate the similarity

of this unknown item (i) with all other unrated items i.e. the similarity vector Si. This

matching up of item’s with their similarity vectors is done in CommonUserSimPairs job.

The subsequent calculation of predictions is actually done in the Prediction job. It is

important to note that in this stage we are not only calculating the prediction of a user for

his non-rated items but rather the prediction for all users for all their non-rated items.

This is expected to be the most computationally expensive operation, and is normally

performed in a batch-wise manner i.e. calculate all predictions for non-rated items for a

subset of users at a time.

4.2.3.3.1 CommonUserSimPairs Job

 Map-D operates on the output of Reduce-A and acts as a pass-through for the

data. It only ensures that all (userID,rating, ItemAverageRating) triples for a given

itemID are shuffled to the same core. Reduce-D actually picks up the similarity vector

 65

for that itemID and aggregates them to the (userID,rating,ItemAverageRating) triple; the

resultant quadruple is saved to disk following a merge.

4.2.3.3.2 Prediction Job

Map-E ensures that the quadruple of

(itemID,rating,ItemAverageRating,ItemSimilarityVector) for every userID is shuffled to

the same core. This is the minimum essential data to make a prediction for a user for an

unknown item. Reduce-E calculates the intermediate values & performs the summation

in the equation to compute pui. The result of this stage is a key value pair of the type <u;

i,Pu,i>. This is stored back into disk following a merge. Although it is theoretically

possible, to make the recommendation computation in Reduce-E itself, we prefer to do it

in an independent MapReduce job given the limited memory constraints of the SCC.

4.2.3.4 Calculation of Recommendation

In this stage, Map-F shuffles (itemID,Prediction) tuples for every userID to the

same core. In Reduce-F, the tuples are inserted into a priority queue implemented

through a min-heap of size k. Since a total of O(i) insertions are possible and rebuilding

the heap takes O(log K) time, the total complexity of identifying the items with highest

predictions is O(ilog k). The output of Reduce-F is a list of k itemID’s with the highest

predictions for a given user. Each core produces such a result for every call to Reduce-F.

The list of predicted itemID’s for a user from every core are merged to a single core and

then saved to disk.

 66

4.2.3.5 Experimental Setup and Observations

 In this section, we discuss the experiments conducted to determine the validity of

our approach. The goal of this section has been (1) to demonstrate that collaborative

filtering can be performed with scalability on a many-core processor using the

MapReduce paradigm, (2) speedup, (3) energy saving with respect to the state-of-the-art.

The goal of this dissertation is not to build a better recommendation system, therefore

quality metrics such as precision & recall are not considered. We can experiment with:

(1) size of the dataset (#records), (2) number of parallel computational elements.

 Our experiments were performed on an Intel provided SCC and software

environment: SCCKit 1.4.1.3, icc (version 8.1), tiles at 533 MHz, mesh interconnect at

800 MHz, DRAM at 800 MHz. Our SCC had 32GB RAM for all 48 cores i.e. 640 MB

per core. Execution time was measured using system calls and power was measured via

an independent Board Management Controller (BMC) on the SCC motherboard. To

compare this system, with a contemporary cluster, we used a 4-node cluster consisting of

dual-core AMD Athlon-64 2GHz processors with 2GB DDR2 RAM. This cluster system

ran Apache Hadoop 1.0.1.

 To verify that our approach works on real-world datasets, we used a benchmark

dataset from the GroupLens research project called Movielens [33] consisting of 100k &

1 Mi ratings. This dataset is typically used in evaluating CF-based recommender

systems.

 67

4.2.3.6 Execution Time and Energy Analysis

 We measure the execution time of each MapReduce stage separately. Since the

partition and merge sub-stages involve inter-core communication, we report them

together as communication time. Likewise, the map, reduce and sort sub-stages in each

MapReduce job are the only ones which involve computation and are reported together.

Figure 38. Execution Time for Calculation of All-pairs Similarity

Figure 38 shows the split up of communication and computation times for the

first three stages of the MapReduce chain on the SCC with a synthetic dataset with

increasing number of items. Here #users/item = 10, 20% of possible pairs have 10%

common users.

1770 3150 5610 9990 17770
0

2

4

6

8

10

12

14

16

18

Number of Records

Tim
e (

ms
)

ItemAvg Communication Time (ms)
ItemAvg Computation Time (ms)

1770 3150 5610 9990 17770
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Records

Ti
m

e (
m

s)

CommonUsers Communication Time (ms)
CommonUsers Computation Time (ms)

1770 3150 5610 9990 17770
0

1

2

3

4

5

6

7

8

Number of Records

Ti
m

e (
m

s)

SimPairs Communication Time (ms)
SimPairs Computation Time (ms)

 68

Figure 39. Execution Time for Calculation of Prediction & Recommendation

Figure 39 shows the split up of communication and execution time for the last 2

stages of the MapReduce pipeline on the SCC with a synthetic dataset with increasing

number of items. Here, #users/item = 10, 20% of possible pairs have 10% common

users.

We observe that the CommonUsers & Prediction stages are computation

dominated whereas ItemAvg, SimPairs, & Recommendation have an even split. It is

possible for us to make this estimation because for this experiment we have used a

synthetic dataset whose characteristics have been kept constant with increasing number

of records. The communication v/s computation split in percent for the stages (a-e) are

(30%-70%), (10%-90%), (30%-70%), (1%-99%) & (40%-60%) respectively on average.

We have not been able to run larger datasets due to limited availability of memory at the

SCC cores. This is because of the ~640MB per core, nearly ~320 MB is occupied by the

OS layer. We believe that to alleviate this by: (1) running the MapReduce model on the

SCC in a bare-metal mode[18] i.e. without OS support, (2) chaining the reduce output of

one stage directly to the map input of the next without File IO.

1770 3150 5610 9990 17770
0

1

2

3

4

5

6

7

8

9

10 x 104

Number of Records

Tim
e (

ms
)

Prediction Communication Time (ms)
Prediction Computation Time (ms)

1770 3150 5610 9990 17770
0

5

10

15

20

25

30

35

40

Number of Records

Tim
e (

ms
)

Recommendation Communication Time (ms)
Recommendation Computation Time (ms)

 69

Figure 40. Stage-wise Execution time for Proposed Algorithm

Figure 40 shows the stage-wise timing (map, partition, sort, group & reduce) for

ItemAvg, CommonUsers & SimPairs resp. using the Movielens-100k dataset (#distinct

users=1000, #distinct items=1700, #userID’s/item~60). These stages are sufficient to

compute all-pairs similarity (item-item) for the Movielens dataset. Timing data is

captured per core (of the 48 cores used) and the average value reported. We observed

that the timing for the all cores was similar. These results do not include data IO & setup

time. These results show that more cores are not necessarily better. For instance,

ItemAvg, CommonUsers & SimPairs do not show appreciable speedup beyond 20, 24

and 16 cores respectively. This is expected and will be a characteristic of the dataset (i.e.

sparsity (x,y) where x% of possible item pairs have y% of the users in common).

Further, Figure 40 also provides additional insight into the behavior of the CF

algorithm on the SCC using Mapreduce and confirms our hypothesis regarding the

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Cores

ItemAvg Merge

ItemAvg Reduce

ItemAvg Sort

ItemAvg Partition

ItemAvg Map

0

50

100

150

200

250

300

350

2 4 6 8 10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Cores

CommonUsers Merge

CommonUsers Reduce

CommonUsers Sort

CommonUsers Partition

CommonUsers Map

0

10

20

30

40

50

60

70

4 6 8 10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

E
xe

cu
tio

n
Ti

m
ie

 (s
)

Number of Cores

SimPairs Merge

SimPairs Reduce

SimPairs Sort

SimPairs Partition

SimPairs Map

 70

sparsity of datasets (real and synthetic). For instance, in ItemAvg, the partition stage

involving all-all communication between participating cores continues to remain a

bottleneck when all 48 cores are used and the same is reflected in Figure 39 on the

synthetic dataset with increasing records. On the other hand in SimPairs, the merge stage

continues to dominate which contributes to the ~30% contribution of communication

time for the synthetic dataset. Also, CommonUsers is almost entirely dominated by the

map & reduce stages (Figure 40) which reflects in the ~90% execution time consumed

for this stage (Figure 39) for the synthetic dataset.

Figure 41. Energy Consumed by Proposed Algorithm on Intel SCC

We have observed in the previous results that the power drawn by the SCC is

directly proportional to the number of cores in use. However execution time improves at

the same time. We experiment the first three stages (A-C) using the Movielens dataset

consisting of 100k and 1 Million records (also recording the overhead of job setup, IO).

It is interesting to see the impact of data IO on the overall execution time. For instance,

in Figure 40, ItemAvg when operating with 4-cores requires ~0.3s for intra-core

0

5

10

15

20

4 6 8 10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

E
ne

rg
y

(k
W

s)

Number of Cores

ItemAvg Energy Consumed (kWs)

CommonUsers - Energy Consumed (kWs)

SimPairs - Energy Consumed (Ws)

 71

communication and computation. However, when including IO to HDD, this takes up to

2.4s (~87.5% due to IO alone).

We also analyze the overall energy profile for the All-Pairs similarity

computation (stages a-c) with varying number of cores (using Movielens-100k) to

understand the power-performance tradeoffs (Figure 41). While overall power drawn

increases from ~40W to ~60W in all cases, the consequent reduction in execution time

(~1.2x, ~16x & ~6x) supersedes its effect providing an overall energy reduction.

We record the execution time and average power drawn in Table 6 & Table 7

respectively for the Movielens-100k and Movielens-1M datasets. The average energy

consumed is calculated in Table 8 (in units of Ws). The energy saved in using an SCC as

the compute node when executing the first 3 stages of CF on the SCC v/s conventional

multiprocessor systems running MapReduce is ~94.3%. Since we include the data

transfer times to disk after merging, the average speedup at the same time is a modest

~2x over a conventional cluster.

Table 6. Overall Execution Time for Proposed Approach on Intel SCC
Dataseta

ItemAvg CommonUsers SimPairs
SCC Hadoop SCC Hadoop SCC Hadoop

Movielens
-100k 2.4s 36s 137.8s 302s 210s 462s

Movielens
-1M 12s 42s 394.4s 591s 487s 789s

Table 7. Averaged Power Consumption for Proposed Approach on Intel SCC
Dataseta

ItemAvg CommonUsers SimPairs
SCC Hadoop SCC Hadoop SCC Hadoop

Movielens
-100k 46W 250W 46W 251W 46W 287W

Movielens
-1M 47W 252W 48W 249W 48W 285W

 72

Table 8. Averaged Energy Consumption (in J) for Proposed Approach on SCC
Dataseta

ItemAvg CommonUsers SimPairs
SCC Hadoop SCC Hadoop SCC Hadoop

Movielens
-100k 110 9k 6.3k 75.8k 9.6k 132.5k

Movielens
-1M 578 10k 18.9k 147k 23k 224k

4.2.4 Modeling the Item-Item CF Computation through Mapreduce Jobs – Approach B

 The observations of the previous section indicated only a modest speedup of ~2x.

This section outlines an alternate formulation of the Item-Item CF problem through

Mapreduce jobs. The key idea for this approach is that it is not necessary to compute a

similarity matrix as per the equation above. A recommendation can be obtained through

the use of a co-occurrence matrix. Further the number of Mapreduce jobs and their

computational complexity can be potentially reduced.

 Therefore, we can restate the 5 stages for the item-item collaborative filtering

problem can be restated as: (1) calculating an item vector (group-by itemID) (2)

calculating a user vector (group by userID) (3) calculate an item-item co-occurrence

vector producing countij
 (where i,j are item pairs which have at least one user in

common), (4) computing predictions for all items for a user (i.e. ∀ u ∈ U produce pui)

and finally (5) calculating predictions and selecting the top-k predictions for a user as

recommendations.

 73

Figure 42. Computational Flow for Item-Item CF on Intel SCC – Approach B

Figure 42 shows the computational flowchart for Item-Item CF for these 5 stages.

The input and output of each stage consists of <key;value> pairs. ItemVector is

computed in a distributed manner on the SCC cores by Map-A and Reduce-A.

UserVector consists of Map-B and Reduce-B and creates a vector of users and ratings

(u,riu) seen by a item I. Map-C and Reduce-C creates an item co-occurrence vector for

every pair of items (say i & j) that have been rated by a common user u. Map-D and

Reduce-D associates the co-occurrence vector of an item with its user vector. Map-E and

Reduce-E makes the predictions and recommendations for a user u for an item I. In

Map - A

Reduce - A

<i,u,Ri,u>

<u;i,Ri,u>

<u;vec(i,Ri,u)>

Map - C

Reduce - C

<i;j,1>

<i;vec(j,count)>

Map - D

Reduce - D

<i;vec(j,count) vec(u,Ri,u)>3.
 C

re
at

e
C

o-
oc

cu
rr

en
ce

 V
ec

to
r

1.
 C

om
pu

te
 It

em

V
ec

to
r

Map - E

Reduce - E

<u;Top-k i>

<u;ΣRi,u x vec(j,count)>
5.

 C
om

pu
ta

tio
n

of

R
ec

om
m

en
da

tio
n

Map - B

Reduce - B

<i;u,Ri,u>

<i;vec(u,Ri,u)>2.
 C

om
pu

te
 U

se
r

V
ec

to
r

4.
 C

al
cu

la
tio

n
of

P

re
di

ct
io

n

 74

Reduce-E, the top-K highest predicted items for a given user are identified using a

priority queue and presented as recommendations. Although, this explanation has been

made specific to Item-Item CF, an analogous design can be made using similar

MapReduce constructs for User-User CF.

4.2.4.1 Calculation of Item Vector (group by userID)

Since the input data is typically sparse, we provide as an input tuples of type (i, u,

Ri,u) which represent only the non-null ratings corresponding to user u for item i. Map-A

emits <u;i,Riu>. This ensures that (itemID, rating) tuples for the same itemID are

shuffled to the same core.

4.2.4.2 Calculation of User Vector (group by itemID)

Map-B emits <i;u,Riu>. This ensures that (userID, rating) tuples for the same

userID are shuffled to the same core. While the earlier stage corresponded to a “group-

by userID”, this stage is equivalent to a “group-by itemID” operation.

4.2.4.3 Creation of Co-occurrence Vector

Computation of all-pairs similarity requires us to first identify the set of users

who have rated both items i & j denoted as Uij ⊆ U (item-item co-occurrence vector).

Map-C emits all possible permutations of all item pairs (i,j) which have been seen by a

user. Reduce-C aggregates these pairs and produces a co-occurrence vector for every

item.

4.2.4.4 Calculation of Predictions

The calculation of prediction is to be done for a given user (say u) for an

unknown item (say i). For this to be done, we need to first associate every item with two

 75

vectors: (1) the similarity (or co-occurrence) vector of this unknown item with all other

items & (2) the user vector for an item. This data aggregation is done through Map-D

and Reduce-D.

4.2.4.5 Calculating Recommendations

In this stage, Map-E shuffles (itemID,Prediction) tuples for every userID to the

same core. In Reduce-E, the tuples are inserted into a priority queue implemented as a

min-heap of size k. Since a total of O(p) insertions are possible and rebuilding the heap

takes O(log K) time, the total complexity of identifying the items with highest

predictions is O(p log k). The output of Reduce-E is a list of k itemID’s with the highest

predictions for a given user.

4.2.4.6 Execution Time and Energy Analysis

Figure 43. Analyzing Computation, Communication & IO time (Approach B)

Figure 43 shows the split up of communication, computation and IO times for

each stage of the MapReduce chain on the SCC for the Movielens-100k dataset. Since

partition and merge sub-stages involve inter-core communication, they are reported

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(%
)

ItemVector

UserVector

Co−OccurenceVector

Prediction

Recommendation

Computation Time (%)
Communication Time (%)
IO Time (ms)

 76

together as communication time. IO time includes the time required for load of data from

the external HDD to DRAM, latency in access from DRAM to the cores, and setup time.

Computation time includes only those operations where data is handled by the cores. We

observe that ItemVector and UserVector stages have similar characteristics (they

perform analogous operations). In contrast, Co-OccurenceVector is communication

dominated and Prediction/Recommendation is computation dominated. This is in tune

with the expected behavior since the first two stages perform simple comparisons for the

group-by operations, whereas the Prediction/Recommendation perform computation

intensive operations on a large segment of data. The only stage where communication

dominates computation is the Co-OccurenceVector stage. This is also expected since a

large number of (i,j) tuples are exchanged between cores in the shuffle following the map

operation. All stages are IO dominated (>50%). This demonstrates for further speedup

using this computational model on the SCC, IO must be minimized significantly.

4.2.5 Comparison with Related Work

Prior work to this paper can be broadly split in two areas: one involving

development of the MapReduce programming model on multi-core and many-core

systems [37] and the second involving formulation of the CF problem in MapReduce on

traditional clusters [38, 39]. To the best of our knowledge, this is the first work of its

kind involving Collaborative Filtering on Many-Core systems using the MapReduce

paradigm. In [37], a single-stage MapReduce implementation on the SCC was shown.

Although this has been a key stepping stone for our research, its key differences with

this paper are: (1) Applications limited to a few map-, partition- and sort- dominated

 77

benchmarks, (2) no support for stage chaining. Also, we examine the design of a multi-

stage CF algorithm on top of this model. We differ from [38] in the following ways: (1)

we use two MapReduce stages in calculation of similarity whereas they can achieve

scalability with one. (2) we use two MapReduce stages in calculating prediction whereas

they use one and (3) we model the final Recommendation calculation as a MapReduce

step. A single stage calculation of similarity & prediction as envisaged in [38, 39] works

well when using conventional compute nodes, which do not have limited main memory

and have local storage (hard-disk). Since, we use main memory to store and operate

upon intermediate data, we have had to redesign the computation in multiple phases to

limit its requirement.

 78

5. RECONFIGURABLE SOC FOR DATA INTENSIVE COMPUTING*

5.1 Motivation

 The results from the previous section have shown that GPUs outperform the Intel

SCC for both semantic information filtering (CB) and collaborative information filtering

(CF) algorithms despite their power inefficiency. The research question that remains to

be addressed in this dissertation is whether we can achieve GPU-type performance with

an SCC-like power budget for such data-intensive information filtering applications.

Figure 44. Many-core Architectures for Data-intensive Computing

* Parts of this section have been reprinted with permission from A. Tripathy, K.C. Ieong,
A. Patra, R. Mahapatra, "A Reconfigurable Computing Architecture for Semantic
Information Filtering", in Proc. IEEE Intl. Conf. on Big Data (BigData 2013), Oct. 6-9,
2013, Santa Clara, CA, USA. © IEEE 2013

CONTROL
ALU ALU

ALU ALU

CACHE

DRAM

DRAM

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

(f)

(c) (d)

ALU ALU

ALU ALU

D
is
pa
tc
he
r

C
ol
le
ct
or

(a)

(e)DRAM HDD

BUS

(b)

Conventional Distrib. System

Conventional SMP Processor

Distributed-Memory MIC - SCC

Cores in a Distributed-
Memory MIC

Shared-Memory MIC - GPU

Cores in a Shared-Memory
MIC

 79

 Figure 44 shows the evolution of many-core architectures. On the one hand, a

large number of legacy uniprocessors (Figure 44(e) such as x86) have been put together

on the same die to form a cluster-on-chip (Figure 44(c)) such as the Intel’s Single Chip

Cloud Computer [18] (SCC, commercialized as Intel Xeon Phi). These machines share

off-chip memory access between a subset of cores and expect applications to

synchronize via message passing (distributed memory MIC). On the other hand,

Graphics Processing Units (GPU’s) have evolved for general-purpose usage as

application-coprocessors (GP-GPU’s). GPU’s (Figure 44(d)) consist of large number of

lightweight streaming processors and employ massive thread-level parallelism (TLP) to

mask memory latency (shared-memory MIC). Cores in a GPU are actually scaled-up

versions of what CPU manufacturers would have called an ALU (Figure 44(f)). This

allows GPU’s to integrate a much larger number of cores on die compared to that of an

SCC (1536 in Kepler [17] v/s 48 on the SCC) leading to a performance difference.

 Semantic information filtering (SIF) as a big-data application has been explored

on a GPU and SCC in this dissertation in Sec. 3. Despite providing substantial speedups

on both, they still remain memory-bound. Poor spatial and temporal locality of memory

accesses leads to suboptimal performance levels (execution time dominated by memory

latency) on cache-based (such as SCC) and GPU multiprocessors alike. Can this be

improved? Second, is it possible to extract higher performance from each compute core

by custom-designing its functionality in an application-aware manner. Third, is it then

possible to build a reconfigurable many-core computing machine that is a hybrid both

shared & distributed memory MIC’s? A provision for reconfigurability/programmability

 80

will ensure wider applicability to similar problems. Will such an architecture be scalable,

provide high-throughput and enable higher performance gains at a low energy budget for

big-data applications?

5.2 Contributions

 In this section, we present a novel reconfigurable hardware methodology which

addresses some of these challenges while considering semantic information filtering

(SIF) as a case study. Our prototype System on Chip (SoC) reconfigurable processor

core for SIF was designed from the ground up, evaluated on an industry-standard virtual

prototyping platform for performance. We make four key contributions:

1. A reconfigurable hardware architecture which decouples computation and

communication thereby issuing multiple outstanding memory requests.

2. A Bloom Filter based randomized algorithm for

3. An in-depth performance evaluation with different sizes and characteristics of

benchmark datasets, number of reconfigurable processing units, memory banks

etc.

4. A performance comparison of the proposed reconfigurable architecture to prior

work in semantic information filtering using state-of-the-art CPU’s, GPU’s and

SCC showing that our reconfigurable architecture outperforms HPC multi-core

systems but also achive better performance scaling with respect to data size.

5.3 Proposed Algorithm

 As discussed in Sec. 2 and Sec. 3, semantic information filtering (SIF) proceeds

with the accurate computation of similarity between every pair of user-item profiles

 81

(represented in their tensor forms as T1 and T2). Computation of semantic similarity is

done as a cosine product (s12). It is done with (1) identification of the common terms

(say k) in the two tensors of size p,q respectively, (2) multiplication of the corresponding

coefficients of the respective common terms to yield k interim products and (3)

summation of these interim products to yield s12. The similarity metric will lie in the

range [0,k] provided the coefficients are already normalized in the source tensors T1 and

T2. In a real-world recommender system, computation of similarity between item-user

profiles is done autonomously and continuously as batch jobs. Given the temporal nature

of the underlying source – high performance and energy efficiency in computation of

semantic similarity can result in large economic benefit and better user experience.

If a sequential processor is used to compute semantic similarity on two tensors of

size p,q respectively the identification of common terms has a time complexity of O(p

logq) or O(pq) depending on whether or not a binary or linear search tree is used

(Algorithm 3). Such a balanced BS tree is implemented in C++ STL’s highly optimized

map container which implements Red-Black tree. However, for ease of massive

parallelization on MICs and the potential of achieving a time complexity theoretically of

O(1) with massive parallelization, we use a randomized algorithm using Bloom Filters

(Algorithm 4).

 82

Algorithm 3: Efficient Red-Black Tree Computation of SIF on SMP

 Inputs: Tensor1(t1i,c1i), Tensor2(t2i,c2i)
 Output: Semantic (dot) product s12
1 foreach (t1i,c1i) ∈ Tensor1 do
2 rbtree.insert(t1i,c1i)
3 end for
4 foreach (t2j,c2j) ∈ Tensor2 do
5 rbtree_ptr  rbtree.find(t2j)
6 if rbtree_ptr != NULL then
7 s12 += (c2jx rbtree_ptr.value)
8 end if
9 end for
10 return s12

With the above analysis in mind, we can repurpose Algorithm 1 for efficient

operation on massively parallel processors illustrated as Algorithm 2. This approach uses

a common shared BF bit vector of size m to store a space efficient signature of the

contents of Tensor1 (lines 1-3, BF set operation on Tensor1’s terms t1i). Since these are

independent operations and can cause no race condition (BF is never set to 0), this can

be delegated to every participating thread or core. Setting the BF would require fast hash

functions to compute BF indices. An analogous test operation can then be performed on

Tensor2’s terms t2j using the same hash bank (lines 6-7). This demonstrates our

requirement for reconfigurability of the cores because the same IP block (BF Index

generation) can be reused in both set and test phases. If all the k BF indices (BFIk) return

true, t2j is a candidate match (there is a small probability of false positive defined

earlier). Now we locate the corresponding coefficient of t2j in Tensor1 i.e c1m, if it exists

(lines 8-11); multiply and sum this intermediate result.

 83

Algorithm 4: Massively Parallel BF based SIF

 Inputs: Tensor1(t1i,c1i), Tensor2(t2i,c2i)
 Output: Semantic (dot) product s12
1 parallel foreach t1i ∈ Tensor1 do
2 compute ∀k, BFIk =hashk(t1i)
3 ∀k BF[BFIk] = 1
4 end for
5 parallel foreach t2j ∈ Tensor2 do
6 compute ∀k, BFIk =hashk(t2j)
7 if ∀k BF[BFIk] = 1 then
8 parallel foreach t1m ∈ Tensor1 do
9 if t1m == t2j then
10 s12 += (c2jxc1m)
11 end if
12 end for
13 end if
14 end for
15 return 𝑠!"

Locating this corresponding coefficient can be carried out using an off-chip

content addressable memory [40] (CAM) lookup mechanism with t2j as the key; a single

cycle operation. This eliminates the need for the loop between lines 8-12. However since

the CAM lookup operation is going to be sporadic and involve significantly longer

latencies, this stage has been pipelined. Further, lines 1 and 5 can be allocated to

independent functional units (coarse-grained parallelism), and lines (2,3) and (6,7) can

be internally parallelized (fine-grained parallelism). Each of these functional units would

then retain only a partial sum. This sum can be obtained using parallel reduction or

centrally on a host processor/controller. For simplicity of design, we chose to implement

the parallel sum using the latter choice in this paper. With these design principles in

 84

mind, we will now describe the reconfigurable computing template that we use to realise

this computational flow.

5.4 Template for Reconfigurable Computing

 The computational and memory access requirements for large-scale data

intensive problems are significantly different from mainstream parallel applications,

requiring new architectural solutions for efficient parallel processing. Such data-

intensive problems are generally characterized by short parallel paths/threads with a

small memory footprint, irregular, unpredictable and large memory access requirements.

The need for a reconfigurable processor occurs because the same processing

units can be reused to execute a different phase of the computation, while sharing the

same interconnect network and conserving die area.

5.4.1 Reconfigurable Processing Elements (RPE)

 Designing application-specific reconfigurable processing elements (RPE’s) will

result in efficient utilization of hardware resources in contrasts to a more general-

purpose processing element (as in a GPU or SCC). We can use high-level

syndissertation tools to generate efficient implemntation of an individual RPE and

provide spatial parallelism by replication.

5.4.2 Combining Coarse and Fine-grained Parallelism

 Instantiating a large number of RPE’s in hardware operating in a massively

multi-threaded fashion will provide high coarse-grained parallelism. Additional

parallelism required by an application can be provided by specialized functional units

(SFU’s) in a fine-grained manner.

 85

5.4.3 Multiple Concurrent Memory Requests

 Data-intensive applications in general and SIF in particular does not reuse the

same data – cache memories to hide memory latency are useless in this regard. It is

advantageous to have a system with single memory hierarchy and make the RPE capable

of issuing multiple outstanding memory requests to off-chip memory. Given a large

number of parallel RPEs proposed, parallel memory banks will lead to superior memory

access performance. Having said that, this paper currently uses state-of-the-art AMBA

compliant crossbar interconnect (such as NIC-301), we recognize that an AMBA

compliant packet-based interconnect will provide additional scalability and improve

performance of the memory subsystem.

5.4.4 Trading Clock Speed for Area

 We recognize that the execution times for data-intensive applications and SIF in

particular will be dominated mostly by memory latency; the RPE’s will be designed to

stall when it waits for requests to return from main memory. Having a RPE operate at 30

MHz or 300 MHz will make limited difference because we expect the RPE’s to stall for

a majority of the time. Overall application speedup will be obtained mostly from higher

parallelism (i.e. large number of RPE’s) than clock speeds. Therefore, in constraining

clock speeds, we can enable the synthesis tool to optimize for area, leading to higher

parallelism.

 86

5.4.5 Decoupling Computation and Communication

 We can create separate IP blocks for the RPE’s core functional units

(application-dependent logic) and the application independent AMBA 4 Advanced

eXtensible Interface (AXI) v2.0 master and slave interfaces. This facilitates reusability

of the architectural template for different applications. This also enables the use of any

AMBA compliant interconnect network (packet based or crossbar based from the ARM

IP library).

Figure 45. Reconfigurable Architecture Template for Data-intensive Applications

The overall architecture of the reconfigurable computing solution is illustrated at

a high level in Figure 45. It comprises of an execution controller (EC), multiple

reconfigurable processing elements (RPEs), two distinct interconnection networks: core-

DRAM Bank1

Core-Core Interconnect Network

M
em

or
y-

C
or

e
In

te
rc

on
ne

ct

N
et

w
or

k

E
xe

cu
tio

n
C

on
tro

lle
r

DRAM Bank2

DRAM Bank3

DRAM Bank4

DRAM Bank5

DRAM Bank r

Configuration
Registers

Specialized
Functional
Unit (SFU)

Execution
Controller

Reconfigurable
Processing
Element (RPE)

RISC Processor HDD Controller DMA Controller

System BUS

 87

core and memory-core. The RPE’s (shown with dotted lines) contain application-specific

logic (which can be internally fine-grained), are replicated and can independently

execute application logic.

The RPE’s are to be configured based on context word(s) delivered to it (shown

in blue as configuration registers) in a similar manner to coarse-grained reconfigurable

arrays (CGRAs) [41]. However, there are two significant differences in the design of the

proposed RPEs from a conventional CGRA: (1) the base processing elements (PE’s) in a

CGRA contain ALU, multipliers, shift logic and registers whereas the RPE’s in the

proposed architecture will contain application specific logic (described subsequently in

this Section); (2) the interconnection structure of a PE array in a CGRA is pre-defined

and fixed for ease of modeling generic applications whereas the proposed RPE’s can use

common cross-bar or packet-based (NoC) interconnects and will be memory-mapped.

Two distinct interconnection networks are specified because the memory-core

load and core-core load are heavily application dependent – separate choices may be

made for them based on throughput/latency constraints (crossbar or packet-based). The

memory-core interconnect network links the RPE’s to off-chip memory banks. These

memory banks may be filled in using the DMA controller independent of processor

interaction. The RISC processor and DMA controller are bus masters whereas the

reconfigurable co-processor array (RCA) may be considered as a slave device

(Execution Controller). The EC manages the operations of the RPE’s, including

orchestrating initialization, task assignment, synchronization; it also provides an

interface to the host CPU processor.

 88

Each RPE is also provided with a limited number of registers to act as private

local memory. A group of RPE’s may also have shared memory accessible to more than

one RPE. Each RPE is capable of independently reading and writing from/to its memory

bank based on the configuration data sent to it.

 The following section describes how we parallelized the SIF algorithm using the

above reconfigurable architecture template with specific attention to the design of the

RPE’s themselves, the bus interfaces, the interconnect and the co-design of the

hardware-software interface to run the application at the processor end. ARM processor

architecture and the AMBA bus protocol only as a case-study because of it is an open

standard, and ease of integration with other AMBA-compatible IP blocks in our

validation tool chain.

5.5 Detailed Architectural Description

 Figure 46 shows a high-level overview of the proposed SoC architecture that will

be described in detail in this section. In particular, we have used ARM Cortex A9 as the

low-power RISC processor. When designed with TSMC’s 65nm generic process, it can

be clocked at 1 GHz and consume <250mW. The rest of the figure describes the RPE

matrix (RPE0-RPE128). Each RPE is provided configuration instructions via an

execution controller. The RPE’s have been designed to use the AMBA APB [42] bus to

receive this configuration information (limited I/O required, few signals necessary). The

execution controller has an AMBA AXI master interface which are translated into the

APB domain using an AXI to APB bridge [43]. Each RPE consists of two AXI Master

ports, which are connected via two independent interconnects (Memory-Core & CAM-

 89

Core) to the off-chip DRAM and CAM banks respectively. A separate 154-bit bus from

each RPE feeds into a separate RPE-Sync block on the SoC. Each of the components

and rationale for designing them is explained in the subsections below.

Figure 46. Proposed Reconfigurable SoC for SIF

5.5.1 Role of Host Processor (ARM Cortex A9)

The host processor orchestrates the entire operation of the SoC, partitions and

loads data into the memory units, delegates and responds to interrupts from the

Execution Controller (EC) and performs the final sum operation. It is to be used as a

stand-alone unit and generate configuration instructions for the RPE’s (delivered via the

execution controller). Depending on user’s requirements and system constraints, it will

partition the input tensor data (Tensor1 and Tensor2) into the RAM units via the DMA

DRAM Bank1

RPE-Sync

M
em

or
y-

C
or

e
In

te
rc

on
ne

ct

N
et

w
or

k

E
xe

cu
tio

n
C

on
tro

lle
r

DRAM Bank2

DRAM Bank3

DRAM Bank4

DRAM Bank5

DRAM Bank r

ARM-CortexTMA9 HDD Controller DMA Controller

System BUS

CAM Bank1

C
A

M
-C

or
e

In
te

rc
on

ne
ct

 N
et

w
or

k

CAM Bank2

CAM Bank3

CAM Bank4

CAM Bank5

CAM Bank s

AXI Master0 AXI to APB
Bridge

AXI to APB
BridgeAXI Master1

AXI Masterαβ

AXI Masterαβ-1

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE0

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE8

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE7
RPE0
RPE1

RPEαβ

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE112

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE120

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE15

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE119

APB Slave AXI Master 1

AXI Master 2

BF Addr1

RPE127
AXI to APB

Bridge

AXI to APB
Bridge

RPE0
RPE1

RPEαβ

On-Chip Off-Chip

BF_Addr0 BF_Addr63

BF_Addr64 BF_Addr128

 90

Controller at different addresses (64-bit addressing is used in the system). Tensor1’s

terms and coefficients (t1i,c1i) are loaded into the CAM unit whereas terms alone (t1i) are

loaded into the RAM units at their respective start addresses. Tensor2’s terms and

coefficients (t2j,c2j) are both loaded at consecutive addresses into the RAM units

immediately following Tensor1. At the conclusion of the operation of each participating

RPE, the execution controller generates an interrupt; triggering the core to issue a single

AXI BURST_READ transaction to fetch the partial sums from the RPE’s and

accumulates s12 (line 15 of Algorithm-4).

5.5.2 Design of Execution Controller

The execution controller is designed as an independent unit to: initialize the

RPEs, deliver configuration information, monitor their progress and generate an

interrupt to the host processor when the delegated task is complete. Its 3 key operations

are summarized below:

5.5.2.1 Configuration & Monitoring of BF Set Phase

The EC sends the following configuration registers to the RPE :

(read_start_address1, num_data1, operation_id) – the address for where to read t1i’s

from, how many entries to read and operation_id=32’h00000001. This is performed as a

BURST3_WRITE transaction from AXI_Master ports on the EC  NIC-301  AXI to

APB Bridge  RPE’s APB slave port. AMBA Advanced Peripheral (APB) bus is used

because we need to send configuration data one-time, and it has a much reduced (5)

signals – low complexity. The execution controller also receives a completion signal (32

 91

bit, equal to operation_id) from the RPE’s once the BF set phase is complete. On

receiving this signal, the EC proceeds to stage 2.

5.5.2.2 Configuration & Monitoring of BF Test Phase

 The EC delivers the following config. Registers to the RPE:

(read_start_address2, num_data2, CAM_address, core_id, operation_id). These are

similar in function to the above except that read_start_address and num_data now

represent from where the RPE would read (t2j,c2j) and how many it would read. The

operation_id=32’h00000002. Since several replicated CAM units are provided to reduce

latency of the lookup operation (lines 8-11 of Algorithm 4), the EC would allocate a

specific CAM unit to a core. Further, a core_id is also provided to the RPE’s by each EC

as an identity notifier. The RPE would in turn transmit this core_id to the corresponding

CAM unit to enable the CAM in turn to distinguish between several incoming lookup

requests from several RPE’s. As earlier, the EC waits for the completion signal line from

the core to learn that the BF test phase is complete and proceed to stage 3.

5.5.2.3 Retrieving Intermediate Sum & Generating Interrupts

The BF set phase will execute concurrently on all RPE’s unless there is a

memory bottleneck. However, the BF test phase on the RPE’s will run asynchronously

because it is data-dependent. If a particular RPE has a large number of potential matches

(test_success=1), it will wait on the CAM units longer to return the corresponding

coefficient(s) of the candidate matching tensor term(s) (c1m’s in line 10 of Algorithm 4).

Thus different RPE’s will terminate at different times and will in that order inform the

 92

EC. The EC will generate an interrupt to the host processor, which in turn will fetch the

partial sums (AXI BURST1_READ) from the terminated RPEs.

5.5.3 Design of the RPE

Figure 47. Reconfigurable Processing element (RPE) Design for SIF

Figure 47 presents a schematic overview of the RPE design for the SIF kernel

(Algorithm 4). The RPE consists of 5 distinct stages that are executed as part of two

phases – set and test. During the set phase, stages 1,2 & 3 are executed serially whereas

during the test phase stages 1,2,4 and 5 are executed serially. Configuration instructions

dispatched from the EC are stored in 32-bit configuration registers (functionality

discussed in earlier section). An APB slave subcomponent was implemented to obey the

protocol standards. These configuration registers drive the RPE state machine (described

2. Calculate BFIk

5. Calculate local SUM s12

RPE State Registers
AXI Master

subcomponent
(Port 1)

To Interconnect 1

AXI Master
subcomponent

(Port 2)

DRAM Memory
Bank

CAM Bank

APB Slave
subcomponent

Execution
Controller

1.Issue Multiple non-blocking
memory load requests

3.Set Bloom Filter

Config Registers

Operation done

154 To RPE-Sync moduleBF_Address

Test_success
Test_valid

From RPE-Sync module

32

4.Test Bloom Filter

To Interconnect 2

Set/Test

 93

through Figure 48. Memory read requests to the memory banks are issued via the read

channel of the AXI master component (also implemented ab-initio to obey protocol

standards). We use the AXI_BURST_READ16 in the increment mode for highest

throughput. Once a basis_vector term is received on the RDDATA lines, it is passed into

an IP block to generate the required k Bloom Filter indices (BFI). Each BFIk is 22 bits

long (corresponding to the bit-address of a m=222=4Mi wide BF bit-vector). We use k=7

indices per basis_vector term, which corresponds to a BF_Address bus 154-bits wide. A

BF_Address line for every core is routed externally to a BF-Sync module (described

subsequently) for setting or testing a Bloom filter. Once a sufficient number of data

(typically involving multiple AXI_BURST_READ16 transactions) the set phase is

complete.

The test phase proceeds in an analogous manner. In this phase however, each

core is expected to read both the (basis_vector,coefficient c2j) corresponding to a subset

of Tensor2 allocated to it by the EC (in turn the ARM Cortex A9 processor). The key

difference being that once the BFIk bits for the test basis_vector are generated, they are

now tested for prescence in the BF. In case, the Test_success is a true (shown as an input

from the RPE_Sync module), it automatically triggers a lookup for the corresponding

coefficient of Tensor1 (lines 8-11 of Algorithm 4). This lookup operation is issued by the

RPE from its second AXI Master port as an AXI_BURST_READ1 on a 128-bit address.

The lower 10-bits of the 128-bit address are used to identify the cores identity (coreID).

The next 64-bits carry the basis_vector of the candidate match. The remaining 54 bits

are sufficient to define the routing table for the interconnect. In case a CAM request is

 94

issued, the core does not stall; it proceeds forward in testing the next basis_vector in

queue (pipelined). When the CAM request is returned with the corresponding coefficient

of the candidate basis_vector i.e. c1m, it is then multiplied with c2j yielding the partial

sum (line 10 of Algorithm 4).

Figure 48. State Diagram for an RPE executing SIF Kernel

5.5.3.1 Computation of Bloom Filter Indices

 A Bloom Filter requires the use of k independent hash functions to generate k

index values. The first convenient method of implementing this is to deploy k separate

hash functions such as RSHash, JSHash, PJWHash, ELKHash, BKDRHash, SDBMHash,

Wait for
Instruction

Issue
BURST16_READ on

AXI Master port1

Op 1?

Wait for data on read
channel of AXI Master

port 1

Set BF

Receive t1i

Received
num_data ?

No?

Yes?

Issue
BURST16_READ on

AXI Master port1

Op 2?

Wait for data on read
channel of AXI Master

port 1

Received
num_data ?

Test BF

Receive t2j

test_success
=FALSE

Issue
BURST1_READ on
AXI Master port2

test_success
=TRUE

Wait for data on read
channel of AXI Master

port 2

Calculate local
s12

Receive c1m

Receive c2j

Yes?

No?

BF Set Operation (lines 1-3 of Algorithm 2) BF Test Operation (lines 5-7 of Algorithm 2)

CAM Lookup Oper. (lines 8-11 of Algorithm 2)

 95

DJBHash, DEKHash etc. An alternate method to obtain k independent hash values is to

combine the output of only two hash functions h1(x) and h2(x) with the formulation

BFIk=h1(ti) + ih2(ti) where i ∈ 𝕀 without any degradation in false+ve probability [44]. In

Table 9, we show different alternative mathematical operations that could be used to

combine two initial hash functions and generate BFIk. ⨁, ×, + rot(A,j) represent the

bitwise XOR operation, multiplication, addition and rotation of A by j bits. Each method

was verified in a statistical simulator to experimentally measure its pfalse+ve.

It was observed that multiplication (effectively a bit-shift to the left) introduces

zeroes into vacated bit positions reducing the entropy. A subsequent XOR operation with

these 0’s would retain the previous value, several bit-positions would become

deterministic; thereby reducing the effectiveness of the bloom filter indices. In contrast

a circular rotation operation preserves the entropy in the original data. Further, bit-wise

XOR has a significantly lower power draw than an adder; hence method 5 was chosen as

the preferred method to generate BFIk.

Table 9. Alternative Methods to generate Bloom Filter Indices (BFI)
Method Operation Power Randomness

1 h1(ti) + rot(h2(ti), i) 557 𝜇W Fair
2 h1(ti) + i × h2(ti) 88 𝜇W Poor
3 h1(ti) + 2i × h2(ti) 637 𝜇W Poor
4 h1(ti) ⨁ i × h2(ti) 58 𝜇W Poor
5 h1(ti) ⨁ rot(h2(ti), i) 61 𝝁W Excellent
6 h1(ti) ⨁ 2i × h2(ti) 92 𝜇W Poor

 96

 A further simplification can be done to efficiently generate the two primary hash

functions h1(ti) and h2(ti). h1(ti) was generated as the Fowler/Noll/Vo (FNV) hash [45] of

ti as opposed to the more popular MD5 or SHA2 because of its ease of implementation.

The values of offset_basis and FNV_prime are defined in [45]. The second value h2(ti) is

generated from the first value by XORing every octet of the first hash function (lines 9-

11). The initial value for h2(ti) in turn is obtained by XORing the offset_basis with the

original string. Both the parallel foreach blocks operate on an octet of t1i (or t2i) and

predefined constants; therefore they can be reliably realized as a single-cycle operation.

The overall algorithm for the generation of the two hash functions h1(x) and h2(x) is

shown as Algorithm 5.

Algorithm 5: Generation of h1(ti) & h2(ti) for BFIk

 Inputs: t1i (or t2i)
 Output: h1(t1i) and h2(t1i)
1 //Generate FNV_1A hash of t1i [45]
2 h1(t1i) = offset_basis
3 parallel foreach octet of t1i do
4 h1(t1i) = h1(t1i) ⨁ octet(t1i)
5 h1(t1i) = h1(t1i) × FNVprime
6 end for
7 h2(t1i) = offset_basis ⨁ t1i
8 parallel foreach octet of h1(t1i) do
9 h2(t1i) = h2(t1i) ⨁ octet(h1(t1i))
10 end for

 97

5.5.4 Design of the RPE-Sync Module

Figure 49. Construction of the RPE-Sync Core

 Figure 49 shows the internal construction of the RPE-Sync core. This core

enables the creation of a synchronous shared on-chip Bloom Filter for the RPE’s. In this

dissertation, the size of the bit-vector is assumed to be m=4Mi. RPE-Sync receives a

set/test signal (active high) signal and a 154-bit wide BF_Addr from each RPE. The

BF_Addr bus consists of k=7, 22-bit address bits for setting/testing the BF. In case the

set-signal is asserted, this 22-bit address is used to set the corresponding bit-vector

position high else is used to test whether the corresponding position is high. Memory is

addressed in 1-byte chunks, therefore a simple address translation logic is necessary.

Since there is no possibility of race conditions (BF bits are never set to 0) and that the

7×128 = 896, 22-bit address lines are guarenteed to be distinct (with pfalse+ve

probability), we can safely perform the setting/testing of all valid BF_Addr lines in a

BF_Addr0

BF_Addr64

BF_Addr63

BF_Addr128

RPE-Sync
Address Translation LogicTest_valid0

Test_Success0

1 1 0 1 1 1

1 1

01

10

BF

RPE0

Test_valid128
Test_Success128

RPE128

RPE0Set/Test0

RPE128Set/Test128

0 0 0 0

1 0 1 0 0 0 0 0

0
0

0
0

 98

single cycle. It should also be noted that whereas the address bus routing is for all cores,

it is not necessary that all cores will be active at the same time (discussed subsequently).

5.6 Analysis of Alternate Compute Models for Organization of RPEs

 In this section we analyze three alternate compute models for the design of the

RPE’s for SIF. This is intended to provide justification for our chosen compute flow for

this application. Let’s assume that we have to process two tensors of sizes p=q=N

(equality assumed for simplicity). This data is organized in r memory banks. Let’s also

assume that the RPE’s can be logically organized in 𝛽 groups of 𝛼 RPE’s each.

Figure 50. Alternative Computational Models for RPE organization

G2

G4G3

G1

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

P11 P12

P13 P14

P15 P16

(a)	
 Hom-­‐Async

BFc

BF

BF

BF

BF BF

BF BF BF

BF BF

BF

BF BF

BF BF

G1

P1 P2

P3 P4
G2

P5 P6

P7 P8

G3

P9 P10

P11 P12
G4

P13 P14

P15 P16

(b)	
 Het-­‐Sync

BFc BFc

BFc BFc

G1
P1 P2

P3 P4
G2

P5 P6

P8

G4
P13 P14

P15 P16
G3

P9 P10

P11 P12
(c)	
 Hom-­‐Sync

BF

P7

 99

 A group of RPE’s could then be designated to be either homogenous and

asynchronous (Hom-Async) or heterogenous and synchronous (Het-Sync) or

homogenous and synchronous (Hom-Sync) with reference to the location of the Bloom

Filter bit-vector. Figure 50 shows a representative example of the possible choices with

𝛼=𝛽=4; i.e. total number of RPE’s (𝛼𝛽)=16.

Table 10. Time Complexity of Set and Test Operations with SIF Compute Models

Model Complexity
(Set Operation)

Complexity
(Test Operation)

Hom-Async 𝑂(
𝑁
𝛼𝛽)

𝑂(𝑁)

Het-Sync 𝑂(
𝑁
𝛼)

𝑂(
𝑁
𝛼𝛽)

Hom-Sync 𝑂(
𝑁
𝛼𝛽)

𝑂(
𝑁
𝛼𝛽)

 Table 10 shows the estimated time complexity for the set & test operations for

alternate SIF compute models. This is explained in this section. In the homogenous

asynchronous model (Hom-Async), each RPE is provided with its own independent BF.

Each RPE can fetch data from its allocated memory banks and fill in its private BF

during the set operation in 𝑂(!
!"
). However, during the test operation, each test tensor

entry (out of N possible) will need to be tested at each of the 𝛼𝛽 RPE’s in O(N) time

(inefficient). In contrast, for a heterogeneous synchronous model (Het-Sync), every

group of 𝛼 RPE’s share a private BF. Each of the 𝛽 groups in Het-Sync will therefore

create distinct fragments of the overall BF during the set phase. Since each of the 𝛼

 100

RPE’s in a group will operate on different data, N entries can be processed by 𝛽 groups

in 𝑂(!
!
) time. Since the BF’s becomes the same, all processing units in a group can now

test N entries of the tensor in 𝑂 !
!"

 time. The least complexity (but densest

interconnects) can be achieved with the homogenous synchronous model (Hom-Sync)

where a single BF is shared by all participating RPE’s. This is the computational model

followed in the previous section. Because of homogeneity of the cores, no distinction

into groups is also necessary. Each of the 𝛼𝛽 cores can process independent row entries

of the tensor during the set and test phases respectively. Although this dramatically

reduces the complexity of the set and test operations to 𝑂 !
!"

, synthesis of the RPE-

Sync module will involve a large number of interconnects from the cores. We would

also like to note that the Hom-Async and Het-Sync models will involve multiple copies

of the BF bit vector – on-chip registers are expensive real-estate on-chip (inefficient).

5.7 Validation Methodology

 This section provides details of the virtual prototyping tool chain and

experiments. Initial functional verification of the design was performed using ModelSim

from Mentor Graphics after being implemented in RTL (Verilog). The core components

of the design were then synthesized using Synopsys Design Compiler at a clock speed of

3 GHz using the 90nm technology library from TSMC. Given the complexity of the

reconfigurable IP and the need to examine its behavior in the context of a data-intensive

application, a full SoC virtual prototype was created using Carbon Model Studio &

Carbon SoC Designer from Carbon Design Systems [46].

 101

Figure 51. SoC Validation Tool-chain

Carbon Model Studio and Carbon Compiler enables the creation of a high-

performance linkable software object that contains a cycle and register accurate model of

the hardware design directly from the RTL design files. An object library file, header

and database with information on all signals, top-level I/O’s together are described as a

Carbon Model. Such carbonized models were created for the RPE’s, RPE-G, BF-Sync

and CAM modules (Figure 51), linked with gcc and then run on Carbon SoC Designer

(essentially an Instruction Set Simulator). Carbon Models for additional components in

the SoC such as the ARM Cortex-A9 processor, AXIv2 compliant memory units,

memory controller and the AMBA compliant network infrastructure (NIC-301) was

obtained with permission from ARM, configured adequately using AMBADesigner Lite

 102

(to generate XML configuration files) and then custom built on Carbon’s online IP

Exchange. These interconnects are pre-qualified and regression tested by ARM. This

entire package of components were assembled and analyzed for system behavior.

SoCDesigner provided us detailed visibility and step-by-step execution control of the

design. It was particularly helpful to be able to model and examine the behavior of a

complex bus architecture such as AMBA AXI, measure interconnect performance and

drive real application traffic through the prototype SoC. Suitable design changes were

actually made (such as pipelining the CAM lookup operation, separate interconnect and

ports for data load and lookup operations) after exploring the design space alternatives

and preliminary system integration results. Figure 51 also shows that the ARM processor

model (μP model) is driven by source code/kernel firmware written in C/C++ compiled

using ARM Design Studio tool chain.

5.8 Results and Discussion

 The experiments to validate the hypothesis of the previous section focus on

parallelizing a single semantic comparison and were conducted considering the worst

case p=q=N in mind. In a real-world search engine or recommender system either p or q

is expected to be significantly smaller than the other. We experiment for (1) N varying

from 100 to 160,000 rows and (2) similarity c varying between 10% to 100% (complete

match), (3) the number of RPE’s αβ=n varying from 32 to 128. Initial functional

validation & correctness was verified by comparing s12 computed using a functional

simulator (written in C++) executing Algorithm 2 and the results from Carbon’s SoC

Designer.

 103

 Table 11 shows the constant latencies of some basic operations involving the

AMBA AXI & APB protocols in the proposed architecture, latencies for the

fundamental operations such as generation of Bloom Filter Index, set and test operation.

This table is valid when the RPE has control on the corresponding bus.

Table 11. Latencies of Basic Operations in Proposed Architecture
 Basic Operations Latency
1 RPE read from memory

(AXI BURST_READx) 5

2 RPE read from memory
(AXI BURST_READ16 including 16 cycles for

16 entries)
16+5 = 21

2 RPE read from CAM
(AXI BURST_READ1, includes single-cycle

CAM lookup)
9

3 RPE set configuration
(AXI BURST_READ4) 10

4 Processing delay at RPE
(Multiplication, partial sum) ~1 cycle

5 RPE calculate BFI 1
6 CAM lookup 1

5.8.1 Execution Time

We measure the end-to-end execution time under varying conditions: (1) varying sizes

of synthetic dataset, (2) change in characteristics of the dataset, (3) number of execution

units (RPEs) αβ.

 104

5.8.1.1 Execution Time with Varying Size of Dataset

 Figure 52 shows the averaged overall and phase-wise execution time for Tensor

sizes p=q=N=25k to 160k when using 32 RPE’s. This represents the worst case of the

comparisons that RPE’s can be expected to perform since in real-life scenarios the two

tensors will be expected to be p<<q. In this case, the number of RPEs used 𝛼𝛽=32 i.e.

each RPE has access to an independent memory bank (r=32), an independent CAM bank

(s=32) – an ideal case for the architecture.

Figure 52. Execution Time with Varying Tensor Size (#Cores=32)

This graph indicates that the set phase occupies less than 5000 cycles for the

largest tensor size under experimentation. As described earlier, there is a latency of only

one cycle between data received and BFI generated. In our RPE, these operations are

pipelined. Therefore, the set phase should execute for exactly 160000/32 = 5000 cycles,

0
5000

10000
15000
20000
25000
30000
35000
40000

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

25600 50000 74000 96000 130000 160000

E
xe

cu
tio

n
Ti

m
e(

cy
cl

es
)

Size of Data - N (with αβ=32, %sim=10%, r=32, s=32)

Overall Execution Time
Core Active(Test)
Core Active(Set)
Core Stall(CAM read)
Core Stall(Mem read)

 105

which is indeed the case. Likewise during the test phase, each core will receive

(basis_vector,coefficient) data (for Tensor 2) from its dedicated memory bank for

(5000*2)=10000 64-bit entries. This will take !""""
!"

= 625 BURST_READ16

transactions in 10000+625*5=13125 cycles. Each core will then issue separate CAM

lookup requests depending on the number of Test_success it receives (generation of

Test_success happens in 1 cycle). In this case, a total of 16000 entries (10%) in Tensor2

are expected to return it (distributed across the 32 cores). On an average, we determined

that each core generates 858 Test_success. This yields an additional 858*9=7772 cycles.

An additional latency of ~1 cycle (Processing delay at RPE) occurs for each of the

10,000 elements. This value is quoted as ~1 cycle because of deep pipelining between

the stages. Therefore the total cycles taken is 13125+7772+10000 = 30897 (agrees with

the results above).

Figure 53. Execution Time with Varying Tensor Size (#Cores=128)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

se
t

te
st

to

ta
l

25600 50000 74000 96000 130000 160000

E
xe

cu
tio

n
Ti

m
e

(C
yc

le
s)

Size of Data - N (with αβ =128, %sim=10%, r=32,s=32)!!

Overall Execution Time
Core Active(Test)
Core Active(Set)
Core Stall(CAM read)
Core Stall(Mem read)

 106

 Figure 53 shows the overall and phase-wise execution time for Tensor sizes

p=q=N=25k to 160k when using #cores = 128. We observe that the total execution time

is lower by ~2x as compared to #cores=32. This is lower than the expected ~4x because

of cores stalls. Since #Memory banks (r) and #CAM banks = 32 has been kept fixed,

several cores are starved for data. The core stall is worse for the test-phase because it is

reading a larger amount of data from memory (both basis_vector & coefficient for

Tensor2). CAM lookup stalls also manifest for larger data sizes because of a higher

probability of Test-success.

5.8.1.2 Execution Time with Varying Percentage Similarity between Tensors

Figure 54. Execution Time with Varying %Similarity

 Figure 54 shows the sensitivity of the proposed architecture to variation in

similarity (number of common basis vector terms) between two tensors of size

0

25000

50000

75000

100000

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

10% 25% 50% 75% 100%

E
xe

cu
tio

n
Ti

m
e(

cy
cl

es
)

Percent Similarity Between Tensor 1 & 2 - sim (with N=160k,
αβ=32, r=32, s=32)

Overall Execution Time
Core Active(Test)
Core Active(Set)
Core Stall(CAM read)
Core Stall(Mem read)

 107

p=q=N=50k. The execution time in the worst case (100% similarity) is ~60000 cycles

decreasing to ~35000 cycles for 10% similarity. These experiments were performed with

#cores= 𝛼𝛽=32. No core stalls are expected since each core has independent access to its

own memory & CAM bank.

5.8.1.3 Execution Time with Varying Number of Execution Units

Figure 55. Variation of Execution Time with Varying Number of Cores

 Figure 55 shows the execution time for SIF between two tensors of size 160k

with #cores in use varying between 32-128. The number of memory banks and CAM

blocks is kept constant at 32. Core stall behavior is observed when #cores=64 and

becomes progressively worse with #cores=128. Therefore, although the overall

execution time does decrease by ~2x on increasing #cores from 32 to 64, this effect is

much less pronounced in the jump from 64 to 128. This bottleneck can be resolved in

0

5000

10000

15000

20000

25000

30000

35000

40000

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

se
t

te
st

to
ta

l

32 64 128

E
ce

cu
tio

n
Ti

m
e

(c
yc

le
s)

Number of Cores - αβ(with N=160k,sim=10%,r=32,s=32)

Overall Execution Time
Core Active(Test)
Core Active(Set)
Core Stall(CAM read)
Core Stall(Mem read)

 108

datacenter environments by increasing the number of off-chip memory banks or CAM

units in use.

5.8.2 Comparison with Contemporary Many-core Processors

 In Table 12, we present a comparison of SIF on three contemporary many-core

processors for p=q=N=160k, sim=10% and number of cores=32. We can see from the

previous sections that the proposed architecture has been simulated to require ~10k

cycles. The same algorithm when run on an Intel SCC, Nvidia Tesla C870 and Nvidia

Kepler GTX680 require ~3.944 Gi, ~2.784 Gi and ~633 Mi cycles respectively. This

provides us a speedup of ~98K, ~68K and ~15K respectively for the proposed many-

core SoC architecture over the Intel SCC, Nvidia Tesla C870 and Nvidia Kepler

GTX680 respectively. This is despite the fact that Kepler GPUs have a significantly

higher number of cores in use (512 v/s 128). The 48-core SCC performs worst because it

requires a round-robin baton-passing algorithm to synchronize the BF across cores.

Whereas the Nvidia Tesla & Kepler are by design shared-memory many-core

processors, they lack a mechanism to perform the CAM lookup (lines 8-11 of Algorithm

2) and the ability to compute Bloom filter indices in a single cycle (due to specialized

functional units SFUs). Therefore, we can expect to have a significant performance

improvement with the proposed SoC over contemporary many-core architectures.

 109

Table 12. Comparison of Proposed Architecture with Intel SCC and Nvidia GPUs
 Intel SCC [47] Nvidia

Tesla [9]
Nvidia Kepler

[28]
Core Architecture X86 Pentium - I C870 GTX680

Technology 45 nm 90 nm 28 nm
Number of Cores 48 128 512

Main Memory 32 GB 4GB 6 GB
Memory Bandwidth 800 Mbps 76.8 Gbps 192.4 Gbps

Clock Speed 533 MHz 772MHz 1006 MHz
Execution Time

(Cycles) 3.944 Gi 2.784 Gi 633 Mi

Speedup 98605 68700 15825

5.9 Related Work

Tensor analysis and large scale semantic information filtering has received

considerable interest in literature. [25] describes the parallel implementation of a

document similarity classifier using Bloom Filters on two contemporary many-core

platforms: Tilera’s 64-core SoC and Xilinx Virtex 5-LX FPGA. This work has been

done in the context of web-security and demonstrates that an incoming data stream can

be filtered using a TF-IDF based dictionary of known attack patterns. Although this

work does not use tensors (reverts to the conventional vector-based models to represent

information), they use a large array of Bloom filters at each processing element. We also

differ from this work because our Bloom filters are dynamically created on-chip based

on input data whereas those in the paper are assumed to be statically generated, offline.

Thirdly, we generate a semantic similarity value as an output, which can be used to

recommend new items whereas the prior work generates only the filtered data stream.

Kang et al [48] describe a MapReduce model to accelerating tensor analysis by 100x. As

discussed earlier in this dissertation, a traditional cluster deployment may provide

 110

scalability & performance improvement but at significant infrastructure cost. Our

approach instead focuses on improving efficiency at the compute node-level when they

are many-core processors. Our previous work [9, 28] describe a method to use a BF-

based algorithm on a GPU, which unfortunately is (1) limited by memory throughput,

(2) uses general purpose cores to port the BF algorithm discussed above, (3) have no

capability to implement custom logic on the cores or interface off-chip CAM to provide

fast lookups. Consequently GPU deployments will suffer from an inability to parallelize

lines 8-11 of Algorithm 2. Our previous work in [26] presents a fine-grained parallel

ASIC to realize Algorithm-2. This does not demonstrate scalability beyond

p=q=N=1024 and does not consider the impact of memory latency in presenting results.

Secondly, the arbiters designed between the stages are not scalable for big-data

workloads. Further, for big-data applications a reconfigurable computing template is

favorable than a fixed-function ASIC.

5.10 Section Summary

Workload specific server configurations for Big-Data applications are already a

reality [49-51]. With increasing sensitivity in industry and government about energy-

efficiency in big-data infrastructures, workload specific accelerators are expected soon.

Workload specific accelerators for Big-Data will need to be reconfigurable to be

applicable to a wide array of similar applications, provide extra-ordinary energy savings

and high-performance to be a compelling alternative. In this paper, we described a novel

reconfigurable computing architecture template and an application-specific architecture

for efficient and scalable semantic information filtering. We have shown through

 111

experiments that our approach is able to outperform the state-of-the-art SIF

implementations on many-core processors such as a GPU and Intel’s SCC by more than

~98K times for tensor sizes of 160000. To the best of our knowledge, we are the first in

academia to investigate the design, undertake the hardware-software codesign effort to

realize a many-core reconfigurable SoC for data intensive applications using industry

standard tools. While the initial results are indeed promising, additional scalability

benefits can be obtained by using AMBA compliant packet-based interconnects (NoC)

for additional scalability and improved throughput, dynamic scheduling to improve

workload balance. Other big-data applications in the information-filtering template such

as collaborative filtering can also be designed.

 112

6. CONCLUSIONS AND FUTURE WORK

6.1 Future Work

This dissertation explored the design and interplay between a few of layers of the

application stack at a many-core compute node for high performance information

filtering applications. This dissertation explored the data structure and algorithms

required, programming models that could be used, run-time systems that should be

deployed, memory and IO pipelines that were necessary to achieve high performance.

However, there are still several areas of research, which have not been explored. Some

of the potential areas of future work are listed below.

1. Hybrid Information Filtering – While this dissertation explored

algorithms & architectures to accelerate content and collaborative

information filtering separately, the same will need to be done for them

together. New seminal works such as [52] have shown that further

improvement in accuracy of recommendation algorithms is possible only

due to their combination. In addition, this dissertation has explored the

neighborhood based collaborative filtering methods; techniques to

accelerate latent factor methods remain to be explored.

2. Expansion of Information Filtering benchmarks – A few automated

techniques to generate tensor representations from arbitrary sentences

were demonstrated. Further improvements such as including discourse

analysis can be added to further improve its effectiveness and scope.

Human trials could be conducted to conclusively demonstrate the

 113

superiority of the tensor method for semantic information filtering as

compared to the traditional vector based methods.

6.2 Conclusion

 This research proposes techniques for mapping data-intensive computational

kernels for semantic and collaborative information filtering on many-core architectures.

Two representative many-core architectures - GPUs and Intel’s SCC have been

examined, efficient data structures & algorithms have been designed, shared and

distributed programming models/run-times designed, architectural features have been

explored to exploit concurrency within the machine boundary efficiently. A computing

run-time for distributed memory many-core processor (such as the Intel SCC) has been

designed and information filtering applications modeled on this run time. Finally, a

reconfigurable SoC template for data intensive applications has been proposed. This has

been tested with semantic information filtering as the application context to obtain

significant speedups. Therefore, we can claim that in applications where compute

requirements are short; a scheme combining both fine-grained and coarse-grained

parallelism can provide highest performance.

 114

REFERENCES

[1] Gantz, J., and Reinsel, D., "Extracting Value from Chaos",

http://www.emc.com/digital_universe, 2011, Accessed: 06-01-2013.

[2] Adomavicius, G., and Tuzhilin, A., "Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-art and Possible

Extensions", IEEE Transactions on Knowledge and Data Engineering, 2005, 17,

(6), pp. 734-749.

[3] Dean, J., and Ghemawat, S., "MapReduce: Simplified Data Processing on Large

Clusters", Communications of the ACM, 2008, 51, (1), pp. 107-113.

[4] Bennett, J., "The Cinematch system: Operation, Scale Coverage, Accuracy

Impact", http://borrelli.org/assets/pdfs/netflix/bennett.pdf, 2006, Accessed: 09-

12-2009.

[5] Mitchell, J., and Lapata, M., "Vector-based Models of Semantic Composition".

Proc. ACL-08: HLT, 2008 pp. 236-244.

[6] Barroso, L.A., Dean, J., et al., "Web Search for a Planet: The Google Cluster

Architecture", IEEE Micro, 2003, 23, (2), pp. 22-28.

[7] Biswas, A., Mohan, S., et al., "Semantic Key for Meaning Based Searching".

Proc. 2009 IEEE International Conference on Semantic Computing, Washington,

DC, USA, 2009 pp. 209-214.

 115

[8] Biswas, A., Mohan, S., et al., "Representation of Complex Concepts for

Semantic Routed Network". Proc. 10th International Conference on Distributed

Computing and Networking (ICDCN), Hyderabad, India, 2009 pp. 127-138.

[9] Tripathy, A., Mohan, S., et al., "Optimizing a Semantic Comparator Using

CUDA-enabled Graphics Hardware". Proc. 5th IEEE International Conference

on Semantic Computing (ICSC2011), Palo Alto, CA, 2011 pp. 125-132.

[10] Perez, J.C., "Google joins crowd, adds semantic search capabilities",

http://www.computerworld.com/s/article/9130318/Google_joins_crowd_adds_se

mantic_search_capabilities, 2009, Accessed: 03-04-2010.

[11] Bird, S., Klein, E., et al., "Natural Language Processing with Python" (O'Reilly

Media, Inc., 2009).

[12] Panigrahy, J., "Generating Tensor Representation from Concept Tree in Meaning

Based Search". Master's Thesis, Texas A&M University, 2010.

[13] Woo, D.H., and Lee, H.-H., "Extending Amdahl's Law for Energy-efficient

Computing in the Many-core Era", Computer, 2008, 41, (12), pp. 24-31.

[14] Lindholm, E., Nickolls, J., et al., "NVIDIA Tesla: A Unified Graphics and

Computing Architecture", Micro, IEEE, 2008, 28, (2), pp. 39-55.

[15] Miller, F.P., Vandome, A.F., et al., "AMD Firestream: ATI Technologies, Stream

Processing, Nvidia Tesla, Advanced Micro Devices, Gpgpu, High-Performance

Computing, Torrenza, Radeon R520, Shader" (Alpha Press, 2009).

[16] Wittenbrink, C.M., Kilgariff, E., et al., "Fermi GF100 GPU Architecture", Micro,

IEEE, 2011, 31, (2), pp. 50-59.

 116

[17] Nvidia, "Nvidia's Next Generation CUDA compute architecture - Kepler

GK110", http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf, 2013, Accessed: 04-09-2013.

[18] Mattson, T.G., Van der Wijngaart, R.F., et al., "The 48-core SCC Processor: the

Programmer's View". Proc. Intl. Conference for High Performance Computing,

Networking, Storage and Analysis (SC2010), , 2010 pp. 1-11.

[19] Tripathy, A., Mohan, S., et al., "Optimizing a Collaborative Filtering

Recommender for Many-Core Processors". Proc. 6th IEEE International

Conference on Semantic Computing (ICSC), Palermo, Italy, 2012 pp. 261-268.

[20] Broder, A., and Mitzenmacher, M., "Network Applications of Bloom Filters: A

Survey", Internet Mathematics, 2004, 1, (4), pp. 485-509.

[21] Hwu, W., "GPU Computing Gems Jade Edition. Applications of GPU

Computing Series" (Morgan Kaufmann, 2011).

[22] Alcantara, D.A., Sharf, A., et al., "Real-time Parallel Hashing on the GPU". Proc.

ACM Transactions on Graphics (TOG), 2009 pp. 154.

[23] Harris, M., "Optimizing Parallel Reduction in CUDA",

http://developer.download.nvidia.com/compute/cuda/1.1-

Beta/x86_website/projects/reduction/doc/reduction.pdf, 2007, Accessed: 07-06-

2010.

[24] Fang, W., Lau, K.K., et al., "Parallel Data Mining on Graphics Processors ",

Technical Report HKUST-CS08-07, 2008.

 117

[25] Ulmer, C., Gokhale, M., et al., "Massively Parallel Acceleration of a Document-

Similarity Classifier to Detect Web Attacks", J. Parallel Distrib. Comput., 2011,

71, (2), pp. 225-235.

[26] Mohan, S., Tripathy, A., et al., "Parallel Processor Core for Semantic Search

Engines". Proc. Workshop on Large-Scale Parallel Processing (LSPP) co-located

with IEEE Int. Parallel and Distributed Processing Symposium (IPDPS'11),

Anchorage, Alaska, USA, 2011.

[27] Chalamalasetti, S., Margala, M., et al., "Evaluating FPGA-Acceleration for Real-

time Unstructured Search". Proc. Performance Analysis of Systems and Software

(ISPASS), 2012 IEEE International Symposium on, 2012 pp. 200-209.

[28] Gonen, O., Mahapatra, S., et al., "Exploring GPU Architectures to Accelerate

Semantic Comparison for Intention-based Search". Proc. 6th Workshop on

General Purpose Processor Using Graphics Processing Units, Houston, Texas,

2013 pp. 137-145.

[29] Li, R., Zhang, Y., et al., "A social network-aware top-N recommender system

using GPU". Proc. 11th annual international ACM/IEEE joint conference on

Digital libraries (JCDL '11), Ontario, Ottawa, Canada, 2011 pp. 287-296.

[30] Watt's-up, "Electronic Educational Devices, Watts-up Pro",

http://www.wattsupmeters.com/, 2009, Accessed: 10-11-2011.

[31] Jamali, M., and Ester, M., "Modeling and Comparing the Influence of Neighbors

on the Behavior of Users in Social and Similarity Networks". Proc. 2010 IEEE

 118

International Conference on Data Mining Workshops (ICDMW), Sydney,

Australia, 2010 pp. 336-343.

[32] Ziegler, C.-N., McNee, S.M., et al., "Improving recommendation lists through

topic diversification". Proc. 14th international conference on World Wide Web,

Chiba, Japan, 2005 pp. 22-32.

[33] Herlocker, J., Konstan, J., et al., "An Algorithmic Framework for Performing

Collaborative Filtering". Proc. 22nd Int'l ACM SIGIR Conf. on Research and

Development in Information Retrieval (SIGIR'99), Berkeley, CA, 1999 pp. 230-

237.

[34] Dar-Jen, C., Desoky, A.H., et al., "Compute Pairwise Manhattan Distance and

Pearson Correlation Coefficient of Data Points with GPU". Proc. Software

Engineering, Artificial Intelligences, Networking and Parallel/Distributed

Computing, 2009. SNPD '09. 10th ACIS International Conference on, 2009 pp.

501-506.

[35] Dean, J., "Designs, lessons and advice from building large distributed systems".

Proc. 3rd ACM SIGOPS International Workshop on Large Scale Distributed

Systems and Middleware, Big Sky, MT, 2009.

[36] Thakur, R., and Rabenseifner, R., "Optimization of Collective Communication

Operations in MPICH", International Journal of High Performance Computing

Applications, 2005, 19, pp. 49-66.

[37] Anastasios Papagiannis, and Nikolopoulos, D.S., "Scalable Runtime Support for

Data Intensive Applications on the Single Chip Cloud Computer". Proc. 3rd

 119

Many-core Applications Research Community (MARC) Symposium, Ettlingen,

Germany, 2011.

[38] Jing, J., Jie, L., et al., "Scaling-Up Item-Based Collaborative Filtering

Recommendation Algorithm Based on Hadoop". Proc. Services (SERVICES),

2011 IEEE World Congress on, 2011 pp. 490-497.

[39] Schelter, S., Boden, C., et al., "Scalable Similarity-based Neighborhood Methods

with MapReduce". Proc. 6th ACM conference on Recommender systems,

Dublin, Ireland, 2012 pp. 163-170.

[40] Pagiamtzis, K., and Sheikholeslami, A., "Content-addressable Memory (CAM)

Circuits and Architectures: A Tutorial and Survey", IEEE Journal of Solid-State

Circuits, 2006, 41, (3), pp. 712-727.

[41] Kim, Y., and Mahapatra, R.N., "Design of Low-Power Coarse-Grained

Reconfigurable Architectures" (CRC Press, 2010, 1st edn).

[42] ARM Inc., "AMBA APB Protocol Specification v2.0",

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0270b/BABEID

CD.html, 2013, Accessed: 02-18-2013.

[43] ARM Inc., "PrimeCell Infrastructure AMBA AXI to APB Bridge (BP 135)",

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dto0014a/BEIJGA

AH.html, 2011, Accessed: 12-25-2012.

[44] Kirsch, A., and Mitzenmacher, M., "Less Hashing, Same Performance: Building

a Better Bloom Filter", Random Structures & Algorithms, 2008, 33, (2), pp. 187-

218.

 120

[45] Fowler, G., Noll, L.C., et al., "Fowler / Noll / Vo (FNV) Hash",

http://isthe.com/chongo/tech/comp/fnv/, 2001, Accessed: 06-12-2009.

[46] Carbon-Design-Systems, "Carbon Design Systems Inc. ",

http://www.carbondesignsystems.com/, 2011, Accessed: 10-12-2012.

[47] Held, J., "Introducing the Single-chip Cloud Computer - Exploring the Future of

Many-core Processors", Intel Labs Whitepaper, 2011.

[48] Kang, U., Papalexakis, E., et al., "GigaTensor: Scaling Tensor Analysis up by

100 Times - Algorithms and Discoveries". Proc. 18th ACM SIGKDD Intl. Conf.

on Knowledge Discovery and Data Mining, Beijing, China, 2012 pp. 316-324.

[49] HP, "HP Project Moonshot", http://www.hp.com/go/moonshot, 2013, Accessed:

03-11-2013.

[50] Dell, "Dell Copper", http://www.dell.com/learn//campaigns/project-copper, 2013,

Accessed: 03-05-2013.

[51] AMD, "AMD SeaMicro", http://www.seamicro.com/, 2013, Accessed: 03-05-

2013.

[52] Koren, Y., Bell, R., et al., "Matrix Factorization Techniques for Recommender

Systems", Computer, 2009, 42, (8), pp. 30-37.

