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ABSTRACT 

Building quantitative models of biological systems is a challenging task as these 

models can consist of a very large number of components with complex interactions 

between them and the experimental data available for model validation is often sparse 

and noisy. The focus in this work is on modeling and parameter estimation of biological 

systems that are monitored using fluorescent reporter systems.  

Fluorescent reporter systems are widely used for various applications such as 

monitoring gene expression, protein localization and protein-protein interactions. This 

dissertation presents various techniques to facilitate modeling of biological systems 

containing fluorescent reporters with special attention given to challenges arising due to 

limited experimental data, simultaneous monitoring of multiple events and variability in 

the observed response due to phenotypic differences.  

First, an inverse problem is formulated to estimate the dynamics of transcription 

factors, a crucial molecule that initiates the transcription process, using data of 

fluorescence intensity profiles obtained from a fluorescent reporter system. The resulting 

inverse problem is ill-conditioned and it is solved with the aid of regularization 

techniques. The main contribution is that, with the presented technique, any complex 

dynamics of transcription factors can be estimated using limited data of fluorescence 

measurements. The technique has been evaluated using simulated data as well as 

experimental data of a GFP reporter system of STAT3.  

Second, an experimental design formulation is developed to facilitate the use of 

multiple fluorescent reporters, with overlapping emission spectra, in the same 
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experiment. This work develops a criterion to select the fluorescent proteins for 

simultaneous use such that the accuracy in the estimated contributions of individual 

proteins to the overall observed intensity is maximized. This technique has been 

validated using mixtures of different E. coli strains which express different fluorescent 

proteins.   

Finally, a population balance model of a cell population containing a fluorescence 

reporter system is developed to describe the variability in the observed fluorescence in 

cells. Factors such as rate of fluorescent protein formation as well as partitioning of the 

fluorescent protein on cell division have been taken into account to describe the 

dynamics of fluorescence intensity distributions in the cell populations. The model has 

been used to obtain preliminary hypotheses to explain the difference in response of HeLa 

cells containing the Tet-on expression system on stimulation by different levels 

doxycycline.  

Thus, this work describes techniques for building robust predictive models of 

biological systems such as regularization for solving ill-posed estimation problems, 

experimental design techniques as well as using population balance modeling to model 

complex multi-scale dynamics. Moreover, while the examples discussed here are 

motivated for fluorescent reporter systems, the developed techniques can be used for 

different kinds of linear or non-linear dynamic biological systems.     
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NOMENCLATURE 

Dox  Doxycycline  

EE  Elementary Effects 

FI  Fluorescence Intensity   

FIM  Fischer Information Matrix 

FP  Fluorescent Protein  

GFP  Green Fluorescent Protein 

GLS  Generalized Least Squares 

IBVP  Intital Boundary Value Problem  

IL-6   Interleukin-6 

IPDE  Integro Partial Differential Equation 

LHS  Latin Hypercube Sampling  

MSE   Mean Squared Error 

nM   Nano Molar 

O.D.   Optical Density  

ODE   Ordinary Differential Equation 

PBE   Population Balance Equation 

PBM  Population Balance Model 

RE   Relative Error 

S.D.   Standard Deviation  

STAT3  Signal transducer and activator of transcription 3 

SVD   Singular Value Decomposition 
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TF   Transcription Factor 

TSVD   Truncated Singular Value Decomposition 
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1. INTRODUCTION 

Systems Biology aims at building  quantitative models of biological processes to 

obtain a systems level understanding of their dynamics and the interactions between the 

various components that leads to the observed response (Kitano, 2002). This enables 

computationally simulating the changes in a biological system when it is perturbed and 

also testing the modifications to obtain the desired outcome. Modeling in the field of 

Systems Biology has ranged across various applications such as using Boolean networks 

and Bayesian networks to study gene regulatory systems (De Jong, 2002), ordinary 

differential equations to model signaling pathways (Heath and Kavraki, 2009) and 

stoichiometric flux analysis to understand metabolic networks (Wiechert, 2001) etc. 

Systems Biology further entails an integrated computational and experimental approach 

wherein starting from an approximate mathematical model, an iterative methodology is 

adopted such that the model is updated every time new experimental data is obtained 

(Finkelstein et al., 2004). Furthermore, hypotheses generated using the mathematical 

model is validated by further experimentation.  

1.1 Motivation 

There are numerous challenges in building reliable models of biological systems. 

Biological systems, such as signal transduction or metabolic pathways, are not only 

characterized by very large number of components but complex interactions exist 

between these components. These interactions can appear in the form of positive and 

negative feedback loops, multi-protein complexes or transcriptional controls that 
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regulate gene expression (Aderem, 2005). Furthermore, the experimental data needed for 

model building or validation is often limited by sparse sampling points and mostly there 

are only a small number of components that can be easily measured. This situation is 

further complicated by a large number of unknown parameters in the models, such as 

rate constants in signaling pathways, which causes the parameter estimation problems in 

Systems Biology to be typically “underdetermined” or ill-posed.  

The focus of this work is on modeling and parameter estimation of biological 

systems that are monitored using fluorescent reporter systems. A fluorescent reporter 

system involves expressing a fluorescent protein, for instance the green fluorescent 

protein (GFP) (Chalfie et al., 1994) , under the control of a minimal promoter such that 

fluorescence is observed only when the gene expression is induced by the transcriptional 

activator. This is done by adding the plasmid of the fluorescent reporter gene 

downstream of the minimal promoter so that it is also transcribed when the promoter is 

active.  

A number of researchers in the last two decades have used fluorescence-based 

reporter systems for continuous and non-invasive monitoring of gene expression, protein 

localization and protein-protein interactions (Chalfie et al., 1994; Lippincott-Schwartz 

and Patterson, 2003; Roessel and Brand, 2002). The main advantage that the use of 

fluorescent proteins has over other approaches is that the fluorescence can be monitored 

in real-time, it can be easily detected using commonly-used measurement techniques, 

such as fluorescence microscopy, and the fluorescence can be measured without 

destroying the sample which allows continuous monitoring of the same sample over a 
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period of time. This dissertation describes techniques to aid in the process of 

mathematical modeling and validation using fluorescent reporter systems. Special 

attention is given to challenges arising due to limited experimental data, large number of 

unknown parameters, simultaneous monitoring of multiple events, complex system 

dynamics and variability in the observed response due to phenotypic differences. A brief 

overview of the main applications described in this dissertation is given below. 

1.2 Overview  

Fluorescent reporter systems are widely used as indicators of transcriptional activity in 

cells. The first portion of the research presented in this dissertation, aims to estimate the 

dynamics of transcription factors (TF), i.e. the molecules that initiate the transcription 

process, using fluorescence intensity profiles obtained from GFP reporter systems. 

Determining the dynamics of transcription factor from the observed fluorescence is not 

straightforward as after transcription of the GFP mRNA, various other steps take place, 

such as its translation to form the GFP protein and fluorophore formation of GFP so that 

it becomes fluorescent (Roessel and Brand, 2002). Furthermore, fluorescence intensity 

measurements are sampled at only a few time points and are affected by a lot of 

variability and measurement noise. Thus, in this dissertation a regularized inverse 

problem has been formulated to estimate the transcription factor dynamics using limited 

measurements of the output fluorescence intensity.  

It is also of considerable interest to monitor multiple transcription events at the same 

time to simultaneously investigate the behavior of several different transcription factors. 
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This is also crucial if interactions between different signaling pathways are to be 

investigated. Thus, by using two or more fluorescent protein markers with different 

spectral properties, multiple transcription events can be monitored at the same time. 

However, the emissions spectra of the different fluorescent proteins overlap and any 

measurement involves contributions from all the fluorescent proteins used (Dickinson et 

al., 2001; Lansford et al., 2001). Thus, the second part discussed in this dissertation 

involves investigating techniques for efficient use of multiple fluorescent markers in the 

same experiment.  

Furthermore, there are phenotypic variations in cell populations which cause the 

fluorescence observed in fluorescent reporter systems to vary from cell to cell. This can 

be caused due to noise in gene expression, variability in signal transduction pathways 

(Raser and O'Shea, 2005) or physiological factors like unequal partitioning of the 

fluorescent protein during cell division (Hjortsø, 2006). Since most of the data from 

fluorescent reporter systems is obtained from cell populations, using single cell models 

to estimate cell physiological parameters or transcriptional dynamics with average 

fluorescence intensities of the sample may lead to erroneous conclusions (Hasenauer et 

al., 2011a). Thus, it is important to understand and separate the effect of the various 

factors that cause the variation in the fluorescence intensities and have an impact on the 

resulting fluorescence intensity distributions. In this regard, we have developed a 

mathematical model that describes the dynamics of the distributions of fluorescence 

intensity in cells containing a fluorescent reporter system.  
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This dissertation is organized as follows. Section 2 consists of background 

information and review of the techniques relevant to this work. Next, section 3 presents 

the formulation and solution of an inverse problem for estimating transcription factor 

dynamics using fluorescence profiles. Section 4 presents a novel experimental design 

criterion to facilitate the use of multiple fluorescent reporters in experiments. Then, 

Section 5 describes the technique for modeling cell populations containing a fluorescent 

reporter system. Finally, chapter 6 concludes with a summary of the main contributions 

of this work and discussion for future work. It should be pointed out that it is one of the 

contributions of this dissertation that real experimental data are used, wherever possible, 

for validating the developed techniques. 
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2. BACKGROUND INFORMATION 

This section contains the background information and a  review of the previously 

developed techniques used in the presented work. 

2.1 Model Describing GFP Transcription and Translation 

An ODE model describing transcription, translation and activation of GFP (Subramanian 

and Srienc, 1996) is presented below. This model consists of three ODEs which result 

from the component balances of the amounts of m-RNA, the non-fluorescent form of 

GFP, and the fluorescent form of GFP. The model had been modified (Huang et al., 

2008) to take into account the constant reporter DNA levels due to stable integration of 

the reporter plasmid into the genomic DNA and the effect of transcription factor 

concentrations on the transcription rate. The resulting model is given by 

   

  
      

   

     
     

  

  
                 

  

  
            

(2.1)  

where     is the concentration of the transcription factor in the nucleus,   is the mRNA 

concentration,   is the concentration of non-fluorescent GFP and   is the concentration 

of fluorescent GFP. The parameters and their constant values are:     is the transcription 

rate which is constant for a transcription factor and has a value of 373 h-1 for NF-kB 

(Huang et al., 2008) and has been re-estimated for STAT3 and C/EBP-β to be 548 h-1 
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and 329.35 h-1, respectively (Moya et al., 2009);   is the amount of DNA with a value of 

5 nM;   has a value of 108 nM;    is the constant mRNA degradation rate that equals 

0.45 h-1;    is the translation rate and is equal to 780 h-1;    is the protein degradation 

rate which equals 0.5 h-1;    is the fluorophore formation rate which depends on the GFP 

variant used and it has a value of 0.347 h-1 for the GFP variant used in this work.  

The output of the system is the mean fluorescent intensity   of a GFP reporter 

system and it is directly proportional to the concentration of activated fluorescent GFP in 

the cells 

         (2.2)  

where   has a value of 2.5562 ×     nM. The initial conditions for this system are  (0) 

= 0 nM,  (0) = 0 nM, and  (0) = 0 nM. Though, the mRNA levels of the fluorescence 

proteins may be non-zero initially but the concentrations are very low (Wang et al., 

2008) and thus they can safely be assumed to be zero.  

2.2 Regularization Methods for Solving Linear Inverse Problems  

A main challenge in solving discrete inverse problems is that the problem can be ill-

conditioned such that small perturbations in the measurements can produce large 

variations in the solution (Hansen, 2010; Tarantola, 2005). Regularization procedures 

need to be included in regression formulations to ensure stable parameter estimates are 

obtained. In this regard, two commonly used regularization methods, i.e., truncated 
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singular value decomposition and Tikhonov regularization, are reviewed in this 

subsection.  

Assuming that a linear regression model is given by 

           (2.3)  

 where       is the measurement vector,      is the input vector,         is the 

transfer matrix, and      is the measurement noise. The measurement noise is 

assumed to be Gaussian with zero mean and                   . 

The solution for the unknown   in equation (2.3) can be computed by 

         (2.4)  

 where    is the pseudo inverse of  . It can be evaluated as 

         
  

                    

          
  

     
(2.5)  

where     indicates an over-determined system of linear algebraic equations and the 

solution is obtained by using ordinary least squares. For    , the system is under-

determined and the minimum-norm solution for   has to be calculated. 

2.2.1 Truncated Singular Value Decomposition (TSVD) 

The solution shown in equation (2.4) and (2.5) can be represented in an alternate form by 

calculating the singular value decomposition (SVD) of the transfer matrix,        

where       ,         and       . These matrices satisfy 
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(2.6)  

The diagonal entries of   are called the singular values of the   matrix and are ordered 

as             . Then the pseudo inverse of   can be calculated as 

          (2.7)  

where    is the pseudo inverse of  , which can be evaluated by doing the reciprocal of 

all non-zero diagonal elements and transposing the matrix. Substituting equation 1(2.7) 

into equation (2.4), the solution can be written in the following decomposed spectral 

form 

 
     

  
    

  
  

 

   

 (2.8)  

where       and       are columns of   and   , respectively. The components 

corresponding to small singular values in equation (2.8) are responsible for large errors 

in the solution of discrete linear inverse problems (Hansen, 2010). Using TSVD 

regularization, the solution is obtained by considering only the first   components of the 

singular value decomposition corresponding to large singular values 

 
     

  
   

  
  

 

   

 (2.9)  
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The choice of the regularization parameter   can be made on the basis of the 

discrete Picard condition (Hansen, 1990). According to this condition, the numerator 

  
    should decay faster than the singular values    such that the overall norm of the 

SVD components    
        is small. For practical applications,    

     and the singular 

values are plotted for all the SVD components of the sum given in equation (2.8) and 

truncation parameter is chosen until the Picard condition is satisfied. Also, to obtain non-

negative solutions for quantities that cannot be negative, additional non-negativity 

constraints need to be applied in the regularization formulation. There are few examples 

in literature where Truncated SVD has been implemented with non-negative constraints. 

These formulations range from simply setting the negative values in the estimated 

solutions to zero (Verkruysse et al., 2005) to mathematically more rigorous formulations 

involving quadratic programming problem with bounds (Villiers et al., 1999; Zhu et al., 

2010).       

2.2.2 Tikhonov Regularization 

A least squares formulation seeks to minimize the norm of the residual between the 

estimated and the measured values given by         
 . Tikhonov regularization, also 

known as Ridge regression in statistics (Hastie et al., 2009), adds a regularization term to  

this residual, which results in the following formulation, 

    
 

         
          

  (2.10)  

Here,   is a regularization parameter which denotes the weight of the regularization term 

and    is a finite difference approximation that is proportional to the first derivative of u 
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(Aster et al., 2005). The term      
   tries to minimize the effect of noise components by 

minimizing the norm of the solution. This term also aids in the solution of under-

determined system of algebraic equations by decreasing the degrees of freedom. The 

explicit solution for this minimization problem is given by 

                         (2.11)  

The regularization parameter can be chosen with the help of the L-Curve (Hansen, 

1992) which is a plot of the norm of the residual versus the regularization term for 

various values of the parameter. The two norms vary monotonically with the 

regularization parameter with opposite trends and result in an L-shaped curve. The 

parameter is chosen around the corner of this L-curve to maintain a balance between the 

residual and the norm of the solution. This rule of thumb results from the fact that little 

is gained in terms of minimizing the norm of the solution by increasing the parameter   

from the one at the corner value, or with respect to minimizing the residual by 

decreasing   significantly below the corner value due to the characteristic L – shape of 

the curve. 

2.3 Optimal Experimental Design 

Optimal designs are a type of experimental designs such that they allow for extraction of 

maximum amount of information or precision of the parameter estimates from an 

optimal number of experimental runs. The aim of experimental design is to reduce the 

variability in the parameter estimates and thus optimality of designs is evaluated based 
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on the Fischer Information Matrix (FIM) which is proportional to the inverse of the 

covariance matrix of the estimates (Melas, 2005; Walter and Pronzato, 1990).  Some of 

the statistical criterions used to evaluate the optimality of designs are the A-optimality, 

the D-optimality and the E-optimality criterions, 

                      

                    

                   

(2.12)  

which seek to optimize the trace of the inverse of the FIM, the determinant of the inverse 

of the FIM and the minimum eigenvalue of the FIM respectively.  

2.4 Cell Population Modeling  

There are two general approaches that are widely used for modeling cell populations (see 

(Henson, 2003) for detailed review) - cell population balance equation (PBE) models, 

which are based on rigorous dynamic balances on the number of cells in a population 

and cell ensemble models in which a large number of individual cells are simultaneously 

simulated with some external interaction parameters. Each of these modeling techniques 

is discussed below.    

2.4.1 Cell Population Balance Equation Modeling  

The cell population balance equation (PBE) models are obtained by doing a dynamic 

balance on the number of cells using variables that characterize the intracellular state of 

the cells (Henson, 2003). They aim at describing the function representing the 
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‘distribution of cell states’. Let such a function describing the normalized distribution of 

states be ( )f  and ( )W  be the cell number concentration distribution of states. Then if the 

state of a cell is given by z , then ( , )f z t dz represents the fraction of cells with state 

[ ]z z dz  at time t  and ( , )W z t dz represents the number concentration of cells with 

state [ ]z z dz  . Also, these two distributions are scaled such that 

 ( , ) 1

( , ) ( )
z

z

f z t dz

W z t dz N t








 (2.13)  

where ( )N t is the total cell number concentration of cells in the population at any time t . 

Then, the various factors that may affect these distributions are written in terms of 

dynamic balances to calculate the rate of change of these distributions w.r.t. the 

independent variables to form the population balance model (Hjortsø, 2006).  

The cell PBE models can be characterized as structured or unstructured. 

Unstructured PBE models are based on just one intracellular state z , whereas structured 

PB models have more than one intracellular state as the independent variable. However, 

at most, 2 or 3 states are used for formulation because PBEs involving a large number of 

states with multi-dimensional distribution functions become computationally intractable. 

The cell PBE models have been most commonly structured according to cell mass, cell 

age or protein or DNA content (Hjortsø, 2006; Nikos V, 2006) .  

An example of the cell PBE model which is structured according to a state 

parameter z , which is conserved during cell division like cell mass or protein content, is 

given below. 
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1 1 1 10

( , ) ( ( ) ( , )) ( ( ) ( )) ( , ) 2 ( ) ( , ) ( , )W z t r z W z t
z z W z t z W z t p z z dz

t z

 
      

    (2.14)  

here      is the growth rate of the cell state  , ( ) and ( )t t   are the death rate and 

division rate of cells respectively and 1( , )p z z  is the partitioning parameter such that 

1( , )p z z dz is the fraction of newborn cells formed with cell state between   and z dz

when a cell with intensity 1z undergoes cell division. Thus, a partial integro-differential 

PBE model is obtained for a conserved cell state.  

2.4.2 Cell Ensemble Modeling 

The cell population balance models do not incorporate the knowledge about intracellular 

signaling pathways in the model and the number of dependent variables that can be 

modeled is limited to one or two. Cell ensemble modeling, on the other hand, uses single 

cell models which can contain a large number of variables describing the cell state (i.e. 

pathway components) and the model parameters are varied to represent variability 

among different cells. Thus, each cell is represented by an ODE with slightly different 

initial conditions or reaction parameters. For instance, in one application, (Henson et al., 

2002), a single cell model for yeast glycolytic oscillations was used to model an 

ensemble of 1000 cells which were simulated by randomizing the initial conditions of 

each cell in the ensemble using a Gaussian distribution. 
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2.5 Sensitivity Analysis  

Sensitivity analysis is a powerful technique to analyze the variation in the output of a 

mathematical model due to the variation in the inputs or the uncertain parameters. A 

variety of approaches for sensitivity analysis have been developed which includes both 

local as well as global techniques (Butcher et al., 2004; Marino et al., 2008; Patterson et 

al., 2001). These techniques have widely been applied to biological systems (Marino et 

al., 2008; Moya et al., 2009; Saltelli et al., 2008) for analyzing the effect of the input 

factors such as the kinetic parameters, initial concentrations of proteins and regulatory 

cytokines on the responses of interest such as the activation rate of transcription factors, 

transcription profile of proteins or other molecules.  

One of the widely used sensitivity analysis technique – Morris Method (Morris, 

1991) is briefly reviewed here. It is a global sensitivity analysis technique which is 

convenient for identifying the important factors in a model when the number of factors is 

large and/or computational cost of model simulation is excessive (Patterson et al., 2001).  

2.5.1 Morris Method: A Global Sensitivity Analysis Technique 

The Morris method is based on calculating the elementary effects (Patterson et al., 2001) 

due to an input ,  {1,2,..., }iX i k  on the response of the model, say  . These elementary 

effects are given by, 

 1 2 1 2[ ( , ,  ... , ,  ... , ) ( , ,..., )]i k k
i

Y X X X X Y X X X
EE

 



 (2.15)  
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where iEE is the elementary effect due to the     factor and Δ is step change in the value 

of the factor. Thus, an elementary effect describes the change in the value of output due 

to a change in the value of an input parameter while all other parameters are kept 

constant. The distribution of the elementary effects for each factor, i iEE F , is 

calculated by sampling the factor values from their uncertainty range and varying only 

one factor at a time for calculating the difference in the numerator of equation (2.15). 

The sensitivity measures used are the mean and standard deviation of the elementary 

effects distribution for each factor. The mean of this distribution for the     factor, 

calculated using any   elementary effects, i.e. 

 
   

 

 
    

 

 

   

 (2.16)  

gives the overall influence of the factor on the output. On the other hand, the standard 

deviation calculated as, 

 
    

 

   
     

 
    

 
 

   

 (2.17)  

gives a measure of the interaction of this factor with other input factors. An efficient 

sampling strategy for calculating   elementary effects for each input factor has also been 

devised previously (Morris, 1991). Briefly, the sample space of each of the factors 

,  {1,2,..., }iX i k  is divided into an equal number of values or levels. Then,   

trajectories of sample points are obtained by randomly increasing or decreasing one of 

the factors at a time from a base vector. In each trajectory, every factor is changed only 
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once to obtain     sample points such that a total of        points are obtained from 

this sampling scheme.  
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3. REGULARIZATION OF INVERSE PROBLEMS TO DETERMINE 

TRANSCRIPTION FACTOR PROFILES USING FLUORESCENT REPORTERS* 

3.1 Introduction 

Transcription factors (TF) are key elements of signal transduction pathways as they are 

involved in initiation of the transcription/translation process leading to the formation of 

new proteins in the cell. Thus, a quantitative description of transcription factor dynamics 

can aid in understanding the response of cells to external stimuli (Jothi et al., 2009; 

Luscombe et al., 2004). The activation of transcription factors has been conventionally 

monitored using protein binding methods like western blot analysis or chromatin 

immunoprecipitation. However, these techniques provide only qualitative or semi-

quantitative data and are destructive measurement techniques, i.e., the same sample 

cannot be monitored continuously over time.  

A number of researchers have been using fluorescence based reporter systems for 

continuous and non-invasive monitoring of gene expression and transcriptional activity 

(Chalfie et al., 1994; Roessel and Brand, 2002). Using these techniques, the underlying 

dynamics of transcription factors cannot be directly monitored but the fluorescence of 

proteins, such as the green fluorescent protein (GFP), observed from fluorescence 

microscopy or a fluorescent plate reader, can be used as an indicator of the activation of 

transcription factors. However, the relationship between the concentration of the 

transcription factors and the observed fluorescence is not straightforward as it involves 
                                                 
*Reprinted with permission from Regularization of inverse problems to determine transcription factor 
profiles from fluorescent reporter systems by Loveleena Bansal, Yunfei Chu, Carl Laird, Juergen Hahn, 
2012. AIChE Journal 58, 3751-3762, Copyright 2012 by John Wiley and Sons.  
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dynamic processes dealing with transcription, translation, and post-translational 

modification of GFP (Roessel and Brand, 2002). A number of mathematical models 

describing these processes have been developed (De Jong et al., 2010; Finkenstädt et al., 

2008; Leveau and Lindow, 2001; Subramanian and Srienc, 1996; Wang et al., 2008) and 

these models have been used for estimating the mRNA or transcription dynamics from 

gene expression data. For instance, in one of the studies (Ronen et al., 2002) the 

concentrations of the SOS transcriptional repressor for the SOS DNA repair system in E. 

coli were estimated but the post-translation modifications of GFP were not explicitly 

taken into account in  the dynamic model. Other works assumed a certain nature of the 

dynamic profile of a compound and then estimated the parameters to characterize the 

profile (Finkenstädt et al., 2008; Huang et al., 2008; Wang et al., 2008). One drawback 

of this approach is that it restricts the functional form of the estimated profiles. This type 

of approach was later extended to several different functional forms (Huang et al., 

2010a), however a general approach for computing the transcription dynamics has not 

been presented so far. Thus, in this section an inverse problem formulation is developed 

using which the transcription factor profiles following any dynamics can be estimated 

from fluorescence intensity profiles obtained from fluorescent reporter systems.  

An ODE model (Huang et al., 2008) which describes transcription, translation and 

fluorophore formation of GFP has been used in this work (reviewed in section 2.1). The 

input to this ODE model is the time-dependent concentration of a transcription factor 

and the observed fluorescence is treated as the output. The resulting discretized inverse 

problem for calculating the transcription factor profiles using fluorescence intensity is 
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also ill-conditioned. Due to this, it is an important component of this work to investigate 

regularization schemes which can deal with this ill-conditioned inverse problem and also 

filter the effect of noisy measurements on the estimated input profile. Furthermore, 

challenges arise since experimental data might be missing or only available at large time 

intervals when compared with the transcription factor dynamics. Both of these issues are 

also addressed in this work.   

Regularization has been widely used for solving ill-conditioned inverse problems 

in a variety of areas including, but not limited to, electrocardiography (Dössel, 2000),  

geophysics (Zhdanov, 2002) and electrical impedance tomography (Borcea, 2002). A 

number of regularization methods for solving discrete linear inverse problems such as 

truncated singular value decomposition (TSVD) (Hansen, 1990), Tikhonov 

regularization (Aster et al., 2005; Hansen, 1992), total least squares (Fierro et al., 1997) 

and several iterative methods (Hansen, 2010; Vogel, 2002) exist. Among these 

techniques, there is no method that performs best for all types of inverse problems. Due 

to this, the two most commonly used methods - truncated singular value decomposition 

(TSVD) and Tikhonov regularization - have been used in this work for the solution of 

the presented inverse problem. These regularization techniques have also been 

implemented with non-negative constraints to obtain transcription factor concentrations 

which are biologically possible. This inverse problem has not been previously 

investigated in a discrete regularized form, thus it is not known that which regularization 

method is more suited for its solution. Thus, a comparison of the results obtained by the 

two methods is made. The reason for focusing on only these two regularization 
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techniques is that total least squares is intended for cases where the coefficient matrix 

contains large perturbations (Golub et al., 2000; Shou et al., 2008) while iterative 

methods cater to large scale problems (Vogel, 2002). However, these two situations do 

not arise for the considered inverse problem dealing with computation of the 

transcription factor profiles.         

In the next subsection, the ODE model is recast as a linear regression model and 

the theoretical formulation for applying regularization methods for the solution of the 

inverse problem is discussed. The presented technique is illustrated using two case 

studies in subsection 3.5. In the first case study, simulated data is used to compare the 

results obtained for the two regularization methods. Then the technique is applied to 

experimental data for estimating the profiles of the transcription factor STAT3. These 

experimental data are available in the form of fluorescence microscopy images obtained 

from the continuous stimulation of hepatocytes with 100 μg/ml  of IL-6. 

3.2 Procedure for Solving the Inverse Problem to Obtain Transcription Factor Profiles 

In this subsection, the continuous time ODE model describing transcription and 

translation described in section 2.1 is discretized and expressed as a linear regression 

model. Using this model, regularization methods are applied to estimate the transcription 

factor dynamics. The problem formulation also takes into account that experimental data 

can often only be available at a few time points and can have missing data values.  
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3.2.1 Inverse Problem Formulation  

The aim of this work is to compute the transcription factor profiles from fluorescence 

intensity measurements regardless of the specific nature of the profile. This inverse 

problem can be formulated as a data fitting optimization problem of the following form 

 
   
       

         
 

 

    

 

                       0 1 T {T ,T ,...,T }i m   

                     

(3.1)  

where         is the continuous transcription factor profile for           ,     is the 

discrete fluorescence intensity measurement at time   ,    is the estimated intensity at 

time    using          and the model describing the transcription/translation process. This 

dynamic model is denoted by              . The range of the time interval in which 

measurements are available is         and consists of     sampling points. The 

sampling step size for these measurements needs not be uniform in this formulation.  

The optimization problem (3.1) is non-trivial to solve as the equality constraint 

consists of 3 ordinary differential equations. This continuous formulation would result in 

an infinite dimensional inverse problem. To avoid this, if a functional form is assumed 

for the profile of        ,  it would restrict the shape of the estimated profiles. Thus, a 

different approach is used in this work. It is assumed that the profile for         is 

piecewise constant over the discretization interval and only changes between the 

discretization points. Furthermore, the ODE model representing the first constraint is 
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discretized resulting in algebraic equations describing the model. Thus, the transcription 

factor profile is discrete and its values are estimated at each discrete time point. It should 

be noted that the discretization of the transcription factor profile does not have to be the 

same as the time points at which measurements are available.  

Discretizing this particular model is aided by the fact that the model is a 

Hammerstein model which consists of a static input nonlinearity coupled with a linear 

dynamic system. Using the substitution 

 
     

      

        
 (3.2)  

eliminates the nonlinearity in the model given by equations (2.1) and (2.2) and results in 

a linear dynamic system. This system can be represented in the state-space form as 

                   

                

(3.3)  

where   is the output fluorescent intensity   and the measurement noise is denoted by 

ε(t). The state vector and system matrices are given by 

          (3.4)  

 
   

     
         

        

  

           

          

(3.5)  
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As the system given by equation (3.3) is a linear dynamic system, it has a closed-

form solution given by 

                           
 

 
  (3.6)  

The input      to the system has been discretized and is assumed to be constant between 

two consecutive time points where discretization was performed according to the scheme 

shown in Figure 1. If the input and the output are sampled at different times as shown in 

Figure 1, then the discrete output is 

                               
  
    

 
                    

  

  
   

                  
  
    

       
 
                    

  

  
            

                   

(3.7)  

This solution can be represented in the form of a linear regression model as described in 

equation (2.3), in which the transfer matrix  , the output vector  , the input vector  , 

and the noise vector    are given by 

 

     

 
 
 

 
                

  
    

                          

               
  

  
                     

                                                              

     (3.8)  

               

               

              

(3.9)  

This formulation does not require the measurements to be available in the same time 

interval as the input. However, if the measurements are available in the interval        , 
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the input can be calculated for the interval        , such that       . In this 

formulation, the discrete values of the output fluorescence intensity   are directly related 

to the input   which is a function of the transcription factor concentration (see equation 

(3.2)). The                matrix usually has more columns than rows, i.e.,     

 , because experimental data are available only at a few time points but the input profile 

needs to be estimated at several points in time. If any data values are missing, the 

corresponding row can be removed from the transfer matrix and the input vector remains 

unchanged. The method for evaluating the integrals shown in equation (3.8) is given in 

the Appendix A.  
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Figure 1  Discretization of the ODE model with zero-order hold for the input 
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The optimization problem from equation (3.1) can now be formulated as 

 
    

     
 
   

     
         

 

 

   

 

                 {0,1,..., }i m   

               
    

       

  {0,1,..., 1}j n    

(3.10)  

where          ,    and     
 are the constant values of the input and the transcription 

factor in the discrete interval            and         is a row of the transfer matrix 

evaluated in equation (3.8). This formulation includes algebraic equality constraints 

instead of the system of ODEs which had to be solved for the original formulation in 

equation (3.1). This inverse problem is found to be highly ill-conditioned. Due to this, 

there is a need to include a regularization procedure for the solution of this inverse 

problem. 

3.3 Application of Regularization Methods and Solution of the Inverse Problem   

Discretization of the ODE model results in an under-determined linear regression model. 

This under-determined system forms a part of the optimization problem described by 

equation (3.10). This optimization problem has been transformed to solve for the 

unknown input   instead of     such that the following formulation is obtained, 

     
 

        
       

                         

(3.11)  
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where                    ,                 and   is given in equation (3.9). 

Transcription factor profiles are then obtained from the estimated input using the 

equation: 

 
         

     

        
                    (3.12)  

Regularization has been used to decrease the effect of ill-conditioning due to 

discretization to obtain stable solutions for the input profiles. It also decreases the 

effective number of parameters to be estimated and thus aids in finding the solution for 

this under-determined system of equations. The first derivative of the input -    is 

regularized instead of the input   because it performs better for the presented inverse 

problem. Regularizing    places a constraint on large variations in the slope of the 

estimated input profiles.  

         (3.13)  

where   is a finite element approximation matrix of the first order derivative:  

 

  

 
 
 
 
 
  
   

 
  
  

   
  
  

 
  
    

 
 
 
 

   

 (3.14)  

The transfer matrix will also need to be modified accordingly: 

          (3.15)  

resulting in 
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(3.16)  

 The regularization methods are applied to the least squares formulation given in 

equation above. The transcription factor concentrations are calculated from    as 

described below. 

3.3.1 Truncated SVD 

The TSVD solution of the inverse problem for    is evaluated by truncating the singular 

value decomposition of    at the appropriate truncation parameter. The solution is given 

by 

 
     

   
   

   
   

 

   

 (3.17)  

where     and     are columns of    and    and     are the singular values of    from 

            

                    
(3.18)  

where            . The truncation parameter is chosen from plots of    
     and     vs  , 

as the maximum value of   until the Picard condition is satisfied. Then the input and the 

transcription factor concentrations are calculated as 

            

           
      

         
                    

(3.19)  
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3.3.2 Tikhonov Regularization 

The Tikhonov regularized solution for    is calculated by solving 

    
  

           
            

  (3.20)  

 which results in 

                 
  

        (3.21)  

 where         is an identity matrix. The regularization parameter   is determined 

from the L-curve plotted from the values of the residual           and the regularization 

term        at the solution for various values of  . The regularization parameter is then 

chosen close to the corner of this L-curve. The input and the transcription factor 

concentrations are calculated by 

            

           
      

         
                    

(3.22)  

3.3.3 Estimation Error 

Both the regularization methods, discussed in the previous sections, have been used for 

solving the presented inverse problem and a comparison of the results is done. The 

comparison is performed based upon the Relative error (RE) 

 RE :  
                    

         
 X 100   (3.23)  
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where   is the quantity to be estimated. In order to ensure a meaningful comparison, the 

optimal values of the regularization parameters have to be determined from the Picard 

plot or L-curve for each case. 

3.4 Regularization with Non-Negativity Constraints 

In this section, the solution of the inverse problem is evaluated by imposing additional 

constraints in the optimization formulation. For the estimated transcription factor 

profiles to be physically feasible, the concentrations at each time instant should be non-

negative. 

                              (3.24)  

Since           
      

       
                and      the above constraint translates 

to 

                            

                           

(3.25)  

In formulation (3.16),     has been estimated. Given that              the above 

constraints can be written as 

     
 
        {0,1,..., 1}j n     

     
 
       

(3.26)  

 

 {0,1,..., 1}j n  
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These constraints have been included when solving the inverse problem using Truncated 

SVD and Tikhonov Regularization techniques. The resulting formulations are discussed 

below.  

3.4.1 Truncated SVD with Additional Constraints 

The resulting formulation for TSVD with non negativity constraints is given below.  

                
      

                     

                     

                     

(3.27)  

where   is a lower triangular matrix such that the inequality constraint incorporates the 

constraints in equation (3.26), 

 
    

   
   
   

 

   

 (3.28)  

   is the pseudo-inverse of the    matrix which has been truncated at the appropriate 

truncation parameter. It is given by 

 
     

      
 

   

 

   

 (3.29)  

The truncation parameter   is chosen from the Picard condition as described 

before. The formulation given in (3.27) is a quadratic programming problem. It has been 

solved by using the solver ‘quadprog’ in MATLAB. 
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3.4.2 Tikhonov Regularization with Additional Constraints 

    
  

        
           

  

               

                 

                      

(3.30)  

This above formulation for Tikhonov Regularization was also solved by using the solver 

‘quadprog’ in MATLAB. The regularization parameter   is chosen by examination of 

the L-curve plotted by using the solution of the above formulation. 

3.5 Case Studies and Results 

3.5.1 Case Study 1: Simulated Data Containing Gaussian Noise  

The data used in this subsection were created by simulations, thus the real transcription 

factor profiles are known for this case. The next subsection describes application of the 

procedures to experimental data for which the transcription factor profiles are not 

known.  

The simulated data were created by assuming a certain profile for the 

transcription factor concentration and then computing the fluorescence intensity profile 

resulting from this transcription factor profile by solving the ODE model. Gaussian noise 

was added to the fluorescent intensity profile to create a more realistic data set. These 

data are used to solve the inverse problem using both regularization methods. The 

estimated profiles are compared with the original assumed profiles of transcription 

factors to validate the accuracy of results using the relative error. As it is not possible to 
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make comparisons for every potential input profile, the simulated data were computed 

for a transcription factor profile of the following form:   

                           (3.31)  

where   and    are parameters and         . This profile represents decaying 

oscillations which is one of the common dynamics exhibited by transcription factors. 

The value of   and   were assumed to be 40 and 0.3, respectively. Using this form of 

the transcription factor dynamics, the ODE model was simulated from    = 0 to    = 21 

hours. The sampling time for the inputs was chosen to be    = 0.25 hours but the 

fluorescence intensities data were sampled hourly. This results in a transfer matrix    

         .  

 or illustration purposes  the measurements were initially simulated by adding 

only a small amount of random  a ussian noise   N(0,0.2). When no regularization has 

been applied for the solution of this inverse problem, the curve shown in Figure 2(a) is 

obtained. This solution was obtained by finding the pseudo-inverse of    by using ‘pinv’ 

in MATLAB. The estimated transcription factor profile is highly erroneous with a RE of 

71.5% and the estimated intensity profile, shown in Figure 2(b), completely fits the 

noisy data. Thus, to prevent this over-fitting and filter off the noisy components in the 

estimated input profile, there is a need for regularizing the solution of this inverse 

problem.   
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a.  b.  

Figure 2 Solution of inverse problem using ‘pinv’ in MATLAB for measurements containing 

Gaussian noise N(0,0.2) a) Estimated TF profile b) Estimated intensity profile  

In order to address over fitting, truncated singular value decomposition was 

applied to solve the inverse problem. The truncation parameter was found using the 

Picard condition by plotting the singular values,     
    and     

         in a semi-log plot 

as shown in Figure 3(a). The truncation parameter was chosen to be 9 from the Picard 

plot as the value of the numerator was found to decay at a rate higher than the singular 

values until approximately the parameter 9 after which it seems to level off. The 

estimated profile for the optimal parameter on the basis of the Picard condition is shown 

in Figure 3(b) and it results in a RE of 3.68%. For comparison purposes, the estimated 

profiles using truncation parameters of 11 and 7, instead of the optimal 9, are shown in 

Figure 3(c) and Figure 3(d) respectively. It can be clearly seen that the optimal 

truncation parameter chosen using the Picard condition results in an estimated profile 

which is a better representation of the actual profile than if other values of the truncation 

parameter are used. If the truncation parameter is chosen larger than the optimal value, 
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then the computed response is more oscillatory than the real response with a RE of 

6.20%. Similarly, if the truncation parameter is chosen to be smaller than desired, then 

some of the dynamics of the input cannot be correctly reconstructed resulting in a RE of 

6.87%. Also, the non-negativity constraints are redundant for this transcription factor 

profile as the estimated concentrations are safely above zero. So, the problem 

formulations without the non-negativity constraints were implemented for estimating the 

transcription factor profiles for the simulated data.    

Tikhonov regularization is applied to the same problem for comparison purposes. 

The regularization parameter, i.e., the value at the corner of the L-curve was found to be 

approximately 150 (Figure 4a). Using this regularization parameter, the estimated profile 

(Figure 4b) gives a low RE of 4.22%. Thus, the results are comparable to what was 

found using TSVD for regularization for the case where only a small amount of noise 

was present in the data. 
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a)    b)

c)     d)  

Figure 3 Solution of inverse problem by TSVD for measurements containing Gaussian noise 

N(0,0.2) a) Picard plot with the optimal truncation parameter of 9 b) Estimated transcription 

factor profile for k=9 c) Estimated profile with a truncation parameter k=11 d) Estimated profile 

with a truncation parameter k=7 
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  a)      b)                                                            

Figure 4 Solution of inverse problem by Tikhonov regularization for measurements containing 

Gaussian noise N(0,0.2) a) L-Curve  b) Estimated TF profile using regularization parameter of 

150 

Solution of this inverse problem with a larger noise level has also been 

performed. One such simulated measurement data set containing random Gaussian noise 

  N(0,1) is shown in Figure 5. This noise level is more realistic for biological 

measurements. 

When applying truncated SVD to this data set, the optimal truncation parameter 

was observed to be 6 from the Picard plot (plot not shown). The estimated profile shown 

in Figure 6(a) has a relative error of 11.1%. In the estimated profile, the first peak of the 

profile is underestimated and the positions of the subsequent peaks are misplaced. Thus, 

truncated SVD does not perform as well for this example where a larger amount of noise 

is present in the measurements. Similar observations have been made for even larger 

noise levels, even though, these results are not shown here. 
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Figure 5 Simulated data containing random Gaussian noise N(0,1) 

a)     b)  

Figure 6 Estimated transcription factor profiles for simulated data containing Gaussian noise 

N(0,1) a) Using TSVD b) Using Tikhonov regularization 

When Tikhonov regularization was used, the results are also not as good as for 

the low noise level case, however, the results are better than what was achieved by 

TSVD for this case. Using a regularization parameter of approximately 1500, obtained 
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from the L-curve (plot not shown), the computed transcription factor profile resulted in 

the curve shown in Figure 6(b) which has a relative error of 8.33%.  

3.5.2 Comparison between Truncated SVD and Tikhonov Regularization Using Monte 

Carlo Simulations 

While the above shown comparisons include a significant amount of detail to explain the 

methods, they do not allow to draw broad conclusions as only a few specific cases were 

investigated. This section presents Monte Carlo simulations to provide a detailed 

comparison between truncated SVD and Tikhonov regularization for this inverse 

problem. 10,000 data sets were simulated for noise levels of N(0,0.2) and N(0,1) by the 

procedure described in section 3.5.1 and the inverse problem was solved for each case. 

The transcription factor profile was assumed to have second order dynamics. The 

estimated profiles do not violate the non-negativity constraints and thus these constraints 

were not used for solving the inverse problem for Monte Carlo simulations. The mean 

squared error, fitting error, squared bias and variance have been calculated from the 

estimated input profiles according to the following equations: 

 
                                   

                                                   
 
     

                                     
 
  

                                           
 
   

(3.32)  
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 where     is the actual transcription factor concentration, {}tr   is the trace operator and 

     is the expectation. Each data set was used to solve the inverse problem over a range 

of regularization parameters for each regularization method to obtain the optimal value 

of the parameter, i.e. the parameter that gave the lowest mean squared error. The results 

are shown in Table 1 for low amount of noise corresponding to N(0,0.2) and in Table 2 

for higher amount of noise as represented by N(0,1). The optimal choices of 

regularization parameters are highlighted in bold for each regularization method. The 

regularization parameter for Tikhonov regularization were increased in steps of 2.5 and 

rounded off to the nearest integer. The inverse problem has also been solved by 

determining the pseudo-inverse of the transfer matrix using ‘pinv’ in MATLAB, i.e., 

without using the regularization techniques. 

It can be seen from these results that Tikhonov regularization results in an 

approximately 26% smaller MSE than truncated SVD for data containing N(0,0.2) 

Gaussian noise and 10% smaller MSE for the N(0,1) noise data. Moreover, both of these 

methods result in significantly larger MSE when the simulated data contained a large 

amount of noise, as shown in Table 2. The MSE for the solution by ‘pinv’ is very high in 

both the cases and the fitting error is almost zero. 
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Table 1 Results from Monte Carlo simulations of 10,000 simulated data sets containing noise 

N(0,0.2) 

 

Parameter  

Used MSE  

Fitting 

Error  Bias
2
  Variance 

TSVD 6 699.96 1.05 639.61 61.41 

 

7 663.58 0.85 549.03 114.73 

 

8 475.84 0.60 246.09 229.10 

 

9 543.88 0.50 137.99 407.23 

 

10 846.59 0.45 119.24 727.58 

      

Tikhonov  25 922.05 0.35 77.97 844.61 

 63 499.50 0.43 87.77 411.85 

 156 350.66 0.54 147.77 202.48 

 391 388.49 0.74 286.64 101.53 

 977 570.18 1.23 518.11 52.20 

 2441 933.32 2.81 905.99 27.44 

 ‘pinv’ 

solution  2.80E+05 2.26E-26 6370.488 2.74E+05 

There are also some general observations that can be made about the 

regularization methods. For instance, the bias decreases but the variance increases when 

the truncation parameter is increased in truncated SVD. The reason for this is that the 

effective number of parameters increase and, therefore, more parameters are estimated. 

The same effect is caused by decreasing the regularization parameter in Tikhonov 

regularization. Also, the fitting errors for both the regularization methods increase with 
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the amount of regularization as regularization tries to decrease the fit of the estimated 

profiles to the noisy measurements.   

Table 2 Results from Monte Carlo simulations of 10,000 simulated data sets containing noise 

N(0,1) 

 

Parameter 

Used MSE  

Fitting 

Error  Bias
2
  Variance 

TSVD 3 8028.72 63.79 7845.07 190.78 

 

4 3313.80 24.60 2980.80 336.96 

 

5 1754.91 16.73 965.97 787.18 

 

6 2155.98 15.39 643.19 1515.10 

 

7 3431.29 14.23 524.23 2928.95 

      Tikhonov 375 2919.28 12.78 283.89 2641.68 

 

938 1839.01 14.32 504.73 1332.10 

 

2344 1578.65 16.81 879.46 697.19 

 

5859 1954.84 22.63 1576.03 374.96 

 14648 3004.21 37.75 2793.19 211.24 

      

 ‘pinv’ 

solution   2.81E+13 2.40E-26 4.01E+11 2.77E+13 

Furthermore, the error bounds of the estimated transcription factor concentrations 

have been calculated to illustrate the variability in the estimated profiles. The following 

equation is used for calculating the standard deviation (SD) of the transcription factor 

concentrations at each time point, 



 

43 

 

                                           
 
  

 
 

 

 
                (3.33)  

where       efers to the standard deviation for the transcription factor concentration 

estimated at time    and          refers to the     element of the diagonal of the matrix. 

The estimated profiles for the noise level – N(0,0.2) and the error bars are shown in 

Figure 7. The length of the error bars is 2      and the expected profile and the error bars 

are corresponding to the regularization parameter that resulted in the lowest MSE for 

each regularization method. For the noise level – N(0,0.2), the standard deviations were 

within 4.5% and 3.7% of the expected value of the transcription factor profiles 

calculated using TSVD and Tikhonov regularization, respectively. This calculation 

excludes the errors obtained for the last few hours of the data which are significantly 

larger than for the rest of the profile. The reason for this there is a delay in observance of 

fluorescence after transcription, translation, and post-translational modification have 

taken place and thus the transcription factor concentrations that are computed towards 

the end of an experiment would largely be affected by fluorescence intensities which are 

occurring after an experiment has concluded. Therefore, the TF concentrations for the 

last few hours cannot be accurately estimated from the intensity data available for the 

same time range.  
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a)   b)  

Figure 7 Expected value of TF profile for Gaussian noise level of N(0,0.2) with error bars 

representing ± SD using a) Truncated SVD b) Tikhonov regularization 

3.5.3 Case Study 2: Application to Experimental Data Using Non-Negativity 
 
Constraints 

The previous case study illustrated the effects that different choices of regularization 

parameters have on the solution of the inverse problem using simulated data. However, 

the most important test is to apply the procedure to experimental data to determine if the 

procedure will return satisfactory results. The experimental data are available in the form 

of a series of fluorescent images of a GFP reporter system (Figure 8(a)) taken during the 

course of the experiment. The images have been analyzed to remove noisy pixels and 

obtain a time-dependent mean fluorescence intensity profile (Huang et al., 2008). These 

data are used to estimate the dynamic profiles of transcription factor by solving the 

inverse problem. 
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a)             b)   

Figure 8 a) Sample image obtained from fluorescence microscopy of a GFP reporter system b) 

Fluorescence intensity profile obtained for IL-6-STAT3 system 

For this case study, experimental data were obtained for the transcription factor 

STAT3 by continuously stimulating liver cells with 100ng/ml of IL-6 using a previously 

developed procedure (Moya et al., 2009). The fluorescent microscopy images were taken 

every 45min for a period of 22 hours at multiple positions in the well. The mean 

fluorescence intensity of the images at each time instant were calculated (Huang et al., 

2008) and are shown in Figure 8(b). The shown profile was used to solve the inverse 

problem to obtain profiles for STAT3. It can be seen from these data that the 

experimental measurements contain a significant amount of noise and regularization 

should be applied to prevent over-fitting.     

It is known that the initial dynamics of the transcription factor STAT3 shows a 

rapid increase followed by a steep decrease. The reason for this is that cytoplasmic 

STAT3 is activated and translocates to the nucleus after few minutes of stimulation with 

IL-6 (Kretzschmar et al., 2004; Singh et al., 2006; Watanabe et al., 2004). Thus, the 
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input was discretized for a sampling time of 15 min to be able to infer the initial 

dynamics, but the sampling time was also not chosen to be too small to ensure that the 

inverse problem does not grow very large in size as output data were available for a time 

period of 22 hrs. Also, since the STAT3 concentrations cannot be negative, the two 

regularization techniques were applied along with non-negativity constraints and the 

solution was obtained by the procedure described in section 3.3. If non-negativity 

constraints are not used, the estimated STAT3 profiles using both TSVD and Tikhonov 

regularization attain negative values at a number of time points (plots not shown). 

The optimal truncation parameters for this data were found to be 9 for TSVD and 

350 for Tikhonov regularization from the Picard plot and L-curve, respectively. It can be 

seen from the estimated results shown in Figure 9 that the STAT3 profile is oscillatory in 

nature with a large initial peak followed by a smaller peak at around 5-6 hours and 

potentially another peak at around 10-11 hours. These results are consistent with 

Western blot data as well as simulation results of the IL-6 signal transduction pathway 

given in the literature (Fischer et al., 2004; Singh et al., 2006). While the solution of the 

transcription factor profile involving TSVD suggests similar locations of the peaks as the 

solution involving Tikhonov regularization, the TSVD solution seems to be more 

oscillatory.  



 

47 

 

 

Figure 9 Estimated STAT3 profiles from Tikhonov regularization and truncated SVD 

Simulation studies of the JAK-STAT pathway (Yamada et al., 2003) suggest that 

the ratio of the first and the second peak is approximately 5 which is more consistent 

with results returned by Tikhonov regularization. Moreover, the concentration profiles of 

the TF estimated using TSVD are almost zero at a certain time points which goes against 

what one would expect for this system. 

3.6 Summary  

This chapter presented a general method for extracting transcription factor profiles from 

fluorescence intensity profiles. This technique involves formulating and solving an 

inverse problem which directly relates the output of a GFP reporter system, i.e., the 

fluorescent intensity, to the input which is a function of the transcription factor 

concentration. The procedure used in this work places no restrictions on the shape of the 
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input, unlike previous studies, where the transcription rates or transcription factor 

profiles had to be of a certain nature (Finkenstädt et al., 2008; Huang et al., 2008). This 

was achieved by discretizing an ODE model describing transcription, translation and 

fluorophore formation of GFP and then solving an inverse problem which computes the 

transcription factor concentration at discrete time points. 

Since this inverse problem can be ill-conditioned, regularization procedures play a 

key role to ensure that the results are stable in the presence of measurement noise and 

model uncertainty. Two regularization methods, truncated SVD and Tikhonov 

regularization, were applied for this purpose. These regularization techniques have also 

been implemented along with non-negativity constraints to obtain transcription factor 

profiles which are physically possible. The techniques have been illustrated in two case 

studies where the transcription factor profiles have been computed from fluorescence 

intensity data using regularization. The first one considered simulated data with known 

inputs while the second study involved experimental data. Both methods performed 

satisfactorily in these case studies; however, there is an indication that Tikhonov 

regularization outperformed TSVD for the presented inverse problem. 
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4. EXPERIMENTAL DESIGN OF SYSTEMS INVOLVING MULTIPLE 

FLUORESCENT PROTEIN REPORTERS  

4.1 Introduction 

Fluorescent proteins are now regularly used to monitor a variety of aspects of biological 

systems. There are also a number of fluorescent proteins that are commercially available 

(Nowotschin et al., 2009; Shaner et al., 2005) which can be simultaneously used for  

profiling of biological systems. The main advantage of concurrently using multiple 

fluorescent reporters, with different emissions spectra, is that it is possible to 

simultaneously monitor different components of a system or their interactions. For 

instance, a number of researchers have used multiple fluorescent reporters and 

multispectral imaging techniques to monitor complex protein-protein interactions (Hu 

and Kerppola, 2003; Waadt et al., 2008), protein and cellular movements (Hiraoka et al., 

2002; Hoffman, 2005), transcriptional regulation due to multiple promoters (Cox et al., 

2010) and for understanding morphological developments in in-vitro or in in-vivo 

imaging (Chen et al., 2012; Hoffman, 2005; Nowotschin et al., 2009). In addition, 

labeling with multiple fluorescent markers has also been used for determining the 

compositions of different bacterial species in biofilms (Cowan et al., 2000; Ma and 

Bryers, 2010). However, the combined use of multiple fluorescent proteins is 

challenging due to the fact that the emission spectra of different proteins overlap and any 

measurement involves contributions from all the fluorescent proteins. Thus, extracting 
                                                 
 Reprinted with permission from Experimental design of systems involving multiple fluorescent protein 

reporters by Loveleena Bansal, Randall Nelson, Eric Yang, Arul Jayaraman, Juergen Hahn, 2013. 
Chemical Engineering Science 101, 191-198, Copyright 2013 by Elsevier. 

*

*
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the contribution of individual types of fluorescent proteins from measurements becomes 

very difficult.  

A number of “unmixing” algorithms have been discussed in the literature to 

resolve the overlapping emission spectra of fluorescent reporters in measurements from 

samples containing two or more reporters at the same time. If only two reporters are 

present in a sample, one can choose the reporters with minimum overlap in their 

emission or excitation spectra and use appropriate filter sets to separately measure the 

intensity of the reporters (Cowan et al., 2000; Shaner et al., 2005). In a large number of 

applications involving three or more fluorescent protein reporters, the spectral 

contributions of the individual reporters are distinguished using imaging spectroscopy 

aided with a mathematical linear unmixing formulation in which the fluorescence 

intensity of each pixel in an image is assumed to be a linear combination of the 

intensities due to individual reporters (Dickinson et al., 2001; Lansford et al., 2001; 

Zimmermann et al., 2003). This technique has been implemented to distinguish the 

spectra of up to even seven different fluorescent dyes (Tsurui, 2000). Additionally, flow 

cytometry has widely been used for high-throughput analysis at the single cell level to 

measure a very large number of fluorescence signals by using up to 30-40 optical filters 

for excitation blocking, spectral separation and transmission of narrow bands (Grégori et 

al., 2012; Perfetto et al., 2004). The overlapping excitation and emission spectra of 

fluorescent reporters has entailed the use of intricate and expensive experimental setups 

for their spectral resolution and remains a major challenge in multicolor applications.    
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In this chapter, a mathematical approach is discussed for selecting the fluorescent 

proteins to use together for multiple labeling applications in order to reconstruct the 

contribution of individual proteins to the overall measurements. Two main tasks for 

selection of the fluorescent reporters have been addressed: (1) solution of an unmixing 

problem to determine the contribution of individual proteins to the overall intensity of a 

sample containing two or more proteins, and (2) making use of this formulation to 

perform model based experimental design such that the accuracy in the estimates of the 

contribution of individual proteins to the overall observed fluorescence is maximized. 

For the former task, the overall fluorescence intensity of a sample is measured using a 

plate reader and it is assumed to be a linear superposition of the intensities of the 

individual proteins present in it. The goal in the latter is to make the decision of which 

different fluorescent proteins should be used in an experiment amongst the available 

proteins based on the D-optimality design criterion (Hinkelmann, 2012; Melas, 2005). 

The developed techniques have been validated using experimental data from mixtures of 

different E. coli strains where each type of E. coli expressed a different fluorescent 

protein. 

4.2 Methods   

For the purpose of this study, E. coli strains, suspended in a clear media and expressing 

different fluorescent proteins, were mixed together to create mixtures containing up to 

three different fluorescent proteins, similar to what is commonly done in the field of 

biofilm analysis (Ma and Bryers, 2010).    
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4.2.1 Bacterial Strains, Plasmids and Cell Culture 

The E. coli strains, the fluorescent protein plasmids used and their sources are listed in 

Table 3. For cell culture, the E. coli strains containing the corresponding plasmid were 

taken from glycerol stocks and streaked on LB agar plates supplemented with an 

appropriate antibiotic to maintain the plasmid (150 µg/mL erythromycin for the GFP-

expressing strain and 100 μg/mL ampicillin for RFP, CFP, and YFP-expressing strains). 

The plates were incubated overnight at 37°C. E. coli from the fresh LB agar plates were 

cultured overnight for 14 hours in 25 ml of tryptone broth media (TB; 10 g tryptone/L 

H2O and 8 g NaCl/L H2O) with the appropriate antibiotic at 37°C with shaking. Then, a 

part of the cell culture (15 mL) was centrifuged at 3000 RPM for 7 minutes. After 

visually confirming the presence of a cell pellet, the supernatant media was removed and 

the bacteria were resuspended in 10 mL of clear chemotaxis buffer (CB; 1× phosphate-

buffered saline, 0.1 mM EDTA (pH- 8.0), 0.01 mM L-methionine, and 10 mM DL-

lactate) and diluted to different concentrations based on OD600 measurements.  

4.2.2 Mixtures of Different E. coli Strains 

The E. coli strains expressing different fluorescent proteins were mixed in different 

ratios in a 96-well plate. Several mixtures were made containing up to 3 different 

fluorescent protein-expressing E. coli strains. The final volume of the mixture used in 

each well was 150 μl. Thus  as an example  for making a 1:1:1 mixture (by volume) of 

E. coli RP437(pCM18), E. coli TG1(pAmCyan) and E. coli TG1(pZsYellow) from their 

individual cultures, 50 μl of each of these strain cultures were mixed together.  The well 

plate was mixed mechanically to ensure proper mixing of the strains and their emission 
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spectra were measured. The emission spectra of individual fluorescent proteins were also 

recorded for 150 μl of its culture at different concentrations (or optical densities) which 

were used for creating the mixtures. 

Table 3 E. coli strains and fluorescent protein plasmids 

E. coli Strain Plasmid Plasmid Description 

E. coli RP437  

(Mao et al., 2003) 

pCM18  

(Hansen et al., 2001) 

Green Fluorescent Protein 

(GFP)-expression plasmid 

E. coli TG1  

(Stratagene,  

La Jolla, CA) 

pDsRed-Express  

(Clontech, CA) 

Red Fluorescent Protein 

(RFP)-expression plasmid 

pAmCyan  

(Clontech, CA) 

Cyan Fluorescent Protein 

(CFP)-expression plasmid 

pZsYellow  

(Clontech, CA) 

Yellow Fluorescent Protein 

(YFP)-expression plasmid 

4.2.3 Fluorescence Intensity Measurements Using a Plate Reader 

The fluorescence intensity measurements of individual E. coli strains and their mixtures 

were taken using a plate reader. The reason for using a plate reader is that it allows the 

measurement of emission intensity at various wavelengths which is not easily possible 

using fluorescence microscopy. 

 

 



 

54 

 

Table 4 Maximum excitation and emission wavelengths of the four fluorescent proteins 

Plasmid Excitation maximum (nm)  Emission maximum (nm)  

pAmCyan (CFP)  458 489 

pCM18  (GFP) 490 520 

pZsYellow (YFP)  529 539 

pDsRed-express (RFP) 554 586 

The maximum excitation and maximum emission wavelengths for each 

fluorescent protein used are given in Table 4. The excitation wavelengths for the 

mixtures of fluorescent proteins were chosen such that all the fluorescent proteins in the 

mixture are excited at the same time. It was also taken into account that the excitation 

intensity should not overlap with the emission spectra of the proteins. For example, for a 

mixture containing E. coli RP437(pCM18) and E. coli TG1(pAmCyan), the excitation 

wavelength of 430 nm was used at which both GFP and CFP are excited (Figure 10a) 

and the intensity of the excitation beam at 430 nm minimally overlaps with the emission 

spectra of these proteins (Figure 10b). The emission spectrums of the individual GFP 

and CFP cultures, for this case, were also recorded at 430 nm. The GeminiTM EM 

Fluorescence Microplate Reader by Molecular Devices was used for taking all the 

measurements. The measurements were taken using the ‘bottom read’ option in the plate 

reader and the emission intensities of the mixtures were measured at multiple emission 

wavelengths. The emission intensities of CB media were also recorded to use as control 

and subtracted from intensity measurements of fluorescent proteins and their mixtures. 
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All the measurements were obtained as triplicates and averaged to reduce the 

measurement noise.  

a)  

b)   

Figure 10 Illustration for choosing the excitation wavelength for a mixture containing CFP and 

GFP (data obtained from an online database (Biosciences, 2000) for CFP and GFP variants that 

have maximum emission and excitation wavelengths reasonably close to pAmCyan and pCM18 

protein plasmids, respectively) 
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4.2.4 Linear Unmixing of Fluorescent Strains  

As described in the previous section, the emission spectra of mixtures as well as of 

individual strains expressing a single fluorescent protein have been measured. These 

measurements were used to extract the intensity contribution of individual fluorescent 

proteins from the overall intensity measurement. The procedure for this step is described 

below.  

Let the emissions spectra of individual proteins be described by a function ( )jg x , 

where x  is the emission wavelength, ( )jg x  is the fluorescence of the j-th protein 

emitted at this wavelength, and 1,...,j k  is the index referring to different fluorescent 

proteins. Then, for different emission wavelengths: 

 
1( ) ( )  ,  0j j i i ig x g x for x x x i n      (4.1)  

where n  is the number of discrete wavelengths at which the emission intensity is 

measured. For mixtures containing multiple fluorescent proteins, the emission intensity 

can be represented as a linear superposition of the intensities of individual proteins, such 

that  

 
1 1 2 2( ) ( ) ( ) ( ) ( )k ky x g x g x g x e x        (4.2)  

where ( )y x is the emission intensity of the mixture and ( )e x is the measurement noise 

and, without loss of generality, it is assumed that the noise is Gaussian distributed as 

2( ) (0, )e x N  . The parameters  for 1,...,j j k   represent the contribution of the 

emission intensity of the j -th fluorescent protein to the mixture intensity.   

For different emission wavelengths, equation (4.2) can be expanded as,   
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 (4.3)  

which can be rewritten as 

 Y( ) G( )Θ E( )x x x   (4.4)  

using vector and matrix notations. Since the set of fluorescent proteins that are used in 

an experiment are always known, the quantity G( )x , i.e. the emission spectra of the 

individual proteins, is also known. Similarly, the set of wavelengths ,  1...ix i n , at 

which the fluorescence intensity is measured can be chosen prior to an experiment. The 

problem of computing the contribution of the different fluorescent proteins to the overall 

intensity is given by computing Θ  from equation (4.4) from the set of mixture intensity 

measurements. The resulting optimization problem is,  

 
 

2

1

1 1 1 1 2 2 1 1

2 1 1 2 2 2 2 2

1 1 2 2

ˆmin ( ) ( )

ˆ( ) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

n

i i

i

k k

k k

n n n k k n

y x y x

subject to

y x g x g x g x

y x g x g x g x

y x g x g x g x

  

  

  






   

   

   



 (4.5)  

where ˆ( ) for 0iy x i n   are the measured emission intensities for a mixture of 

fluorescent proteins. The least squares solution for the optimization problem in equation 

(4.5) can be written as,  
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1
G ( )G( ) G ( )Y( )T Tx x x x



   (4.6)  

If the noise term is Gaussian distributed as  then   will follow the 

distribution  

 2 1(0, (G G) )TN    (4.7)  

where σ
2 is the variance of the measurement noise and G is the emission spectrum 

matrix G( )x . In this formulation, it is assumed that the error in the emission spectrum 

matrix is negligible. However, since the emission spectra of individual fluorescent 

proteins are also measured using the plate reader, there is some uncertainty in these 

measured values due to inevitable factors such as photon shot noise, detector noise 

(Brukilacchio, 2003; Neher and Neher, 2004) or background noise (Zimmermann et al., 

2003) etc. However, analysis of the effects of these noise factors on the unmixing 

formulation is beyond the scope of this work. Furthermore, the solution of this 

optimization problem forms the basis for the experiment design procedure that is 

discussed in the next subsection. 

4.2.5 Experimental Design Criterion to Select the Set of Fluorescent Proteins 

The aim of the presented experimental design formulation is to determine a set of 

fluorescent proteins to use such that the contributions of the different types of proteins 

can be estimated as accurately as possible. In this work, the optimal design is obtained 

by minimizing the D-optimal design criterion which is based on the determinant of the 

Fischer information matrix (Melas, 2005; Walter and Pronzato, 1990):  

 1[det(G G)]T 
 (4.8)  

2( ) (0, )e x N 

G
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where det( ) denotes the matrix determinant operator. A larger value of det(G G)T  

results in smaller volume of the confidence region for the estimated value of   thereby 

resulting in more accurate estimates (Walter and Pronzato, 1990). Based upon this, the 

following optimization problem is formulated, 

  

 

     

1

1 2

T

, ,

T

1 2

max det G G

G

1,2,..., , 1, 2,..,

k

k

j j

j j j

l

j j j j n

subject to

j m for l k

g x g x g x

   

 

   

g g g

g

 (4.9)  

where the matrix G is affected by the fluorescent proteins chosen for an experiment, 

particularly their emission spectra 
jg as well as the wavelengths at which measurements 

are taken, i.e. ix . Since the wavelengths at which the emission spectra are measured are 

generally pre-determined, the number of rows of G as well as all ,   = 1, 2,...,  ix i n are 

fixed. Also, the number of fluorescent proteins that need to be used is known as one 

generally knows beforehand the number of different events that need to be monitored. 

This results in a value of k  that is fixed. What remains is to choose k  proteins

,  1, 2, ..., lj l k  from a set of m  possible proteins that are available. This results in a 

mixed-integer programming (MIP) problem.  

The number of available proteins ( ) and the events that need to be monitored 

(k) are not large for most applications, e.g., determining the three best proteins to use out 

of 8-10 different proteins that are available in a lab. In that case, it is possible to solve 

m
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the MIP by exhaustive search and testing all possible combinations. This involves 

computing the value of Tdet(G G)  for all possible combinations of k fluorescent proteins 

out of the available m  proteins, where the number of such combinations is given by the 

binomial coefficient m

kC , and choosing the combination with the largest value of 

Tdet(G G) . However, for problems involving larger number of fluorescent proteins, e.g., 

choosing the best combination of six proteins out of 30 commercially available ones, 

such a brute force approach may not be practical. Instead a simple procedure based upon 

forward selection can be used to find an approximate solution of this MIP (Chu and 

Hahn, 2012). Such a forward selection procedure has the following form,    

 Step 0 (Initiation). Set the number of proteins selected to one, i.e., 1l  (4.10)  

  Step 1 (Selection). Select the protein indexed by lj  which is determined by 

jj
j

lj gg
T  maxarg  

(4.11)  

 
Step 2 (Projection).  Let  

l

ll

l

j

jj

jj

jj g
gg

gg
gg T

T

  

(4.12)  

  Step 3 (Stopping test). If kl  , return to Step 1 with 1 ll  (4.13)  

In the first step, the algorithm selects the fluorescent protein for which the square of the 

2-norm of its emission spectrum, i.e., 2
2|| ||jg  is maximized. In step 2, the vectors of the 

unselected proteins are projected on to the space orthogonal to that spanned by the 

vector of the previously selected protein in order to remove the protein’s effect on the 

output covered by the already selected proteins. This procedure is repeated until k  
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proteins have been selected. This procedure will result in the selection of fluorescent 

proteins which have minimum overlap in their emission spectra. 

4.3 Results  

The results for extracting the contribution of individual proteins to overall mixture 

intensities are presented here for mixtures containing two or three different fluorescent 

protein-expressing bacterial strains.  

4.3.1 Extracting the Contribution of Individual Proteins from Mixture Intensities 

Bacterial strains expressing different fluorescent proteins were mixed in a 96-well plate 

as described in section 4.2.2. The emission spectra of the mixtures and the individual 

proteins were then measured using a fluorescent plate reader. Several such mixtures 

were investigated which contained different number and types of fluorescent proteins. 

Furthermore, a number of data sets of mixtures of the same proteins were obtained by 

using proteins at different concentrations (as measured using OD600 values). 

The emission spectra obtained for some of the mixtures containing two 

fluorescent proteins are illustrated in Figure 11. In each of the sub-plots, the emission 

intensity of the individual proteins (at the corresponding optical densities) and of the 

mixture obtained by mixing those proteins in the specified ratio is plotted. The emission 

intensity of CB media measured at the same excitation and emission wavelengths has 

been subtracted from all these spectra. For these measurements, the excitation 

wavelength was chosen such that all the fluorescent proteins in the mixture are excited at 

the same time. This led to the emission intensity of red and yellow fluorescent proteins 
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(FPs) to be lower compared to the intensity of green or cyan FPs (Figure 11b and Figure 

11d), however this difference did not cause observable inaccuracies in the results. The 

emission spectra of the individual proteins to be used in the G matrix were also obtained 

at the corresponding excitation wavelength for solving the unmixing problem.   

As the ratios in which the different fluorescent protein-expressing bacterial 

strains are mixed are known, the contributions of individual proteins to the overall 

mixture spectra, i.e. the theoretical values of 
j ’s, are known. Thus, as an example, for a 

1:2 mixture (by volume) of red and yellow fluorescent protein cultures (Figure 11a), the 

theoretical values of 
j  are 0.33 and 0.67 for RFP and YFP, respectively. The linear 

unmixing formulation discussed in section 4.2.4 is then used to estimate the values of 
j  

to validate the assumption of linear superposition of the spectra of individual proteins. 

The relative error between the theoretical and the estimated 
j  values is used to evaluate 

the accuracy of the presented formulation:  

 
Relative Error 100Actual Estimated

Actual

 



 
  
 

 (4.14)  

A summary of the overall relative errors for estimating the 
j ’s for different 2-

protein mixtures is given in Table 5. In these results, the largest mean relative error was 

approximately 14% and most of these errors are below 10%.  
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a)    b)  

c)  d)   

Figure 11 Emission spectra of individual proteins and their mixtures a) 1:2 mixture of red and 

yellow FP, excitation wavelength – 450 nm b) 3:1 mixture of red and green FP, excitation 

wavelength – 450 nm c) 1:2 mixture of cyan and green FP, excitation wavelength – 430 nm d) 

3:1 mixture of yellow and cyan FP; excitation wavelength - 450 nm; the emission wavelengths 

were increased in steps of 10 nm. 

Similarly, for mixtures containing three fluorescent proteins, the emission spectra 

of two such mixtures and the individual proteins are plotted in Figure 12. Also, a 

summary of the relative error in the calculated 
j  values, for all the investigated 3-

protein mixtures, is given in Table 6. Again, most of the relative errors in the estimated 
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j  values are below 10%. However, the estimated 
j values were observed to have large 

errors at very high O.D.s (>2.0) of the green and cyan fluorescent proteins (data not 

presented). This is likely caused by inaccuracies in the measurements taken by the 

fluorescent plate reader which were higher than the recommended intensity values. 

Table 5 Mean and standard deviation (S.D.) of relative error for computing 
j for mixtures of 

two proteins 

Mixture   Mean (%)  S.D. 

Cyan-Green 
C 7.23 8.91 

G 8.69 4.91 

Cyan-Yellow 
C 3.43 2.07 

Y 11.55 10.64 

Cyan-Red 
C 14.73 5.97 

R 5.50 2.42 

Green-Yellow 
G 6.65 1.91 

Y 4.00 1.41 

Green-Red 
G 4.45 2.85 

R 7.80 6.68 

Yellow-Red 
Y 1.81 1.03 

R 2.00 0.85 

There can also be various sources of nonlinearity in the system; for instance the 

overall intensity might not be a linear superposition of the intensities of individual 
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proteins if the emission intensity of a fluorescent reporter is absorbed by another. These 

effects can be escalated at higher concentrations/O.D.s of the reporters in the mixtures. 

However, for appropriate operating conditions, the presented results validate that the 

overall intensity of a mixture containing multiple fluorescent proteins can be 

approximated as a linear superposition of the mixtures of individual proteins in the 

mixture.  

a)    b)  

Figure 12 Emission spectra of individual proteins and their mixtures a) 1:1:3 mixture of CFP, 

GFP and RFP b) 1:2:2 mixture of CFP, YFP and RFP; excitation wavelength – 450 nm for both 

cases; the emission wavelength measurements were increased in steps of 10 nm. 

4.3.2 Application of the Experimental Design Criterion  

Computing the contribution of individual fluorescent proteins to the overall fluorescence 

intensity, as illustrated in the previous subsection, is only the first step required for 

model based experimental design. The second step is to determine a set of proteins to be 

used together such that the accuracy of estimated contributions is maximized. This 
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subsection presents results from applying the experimental design formulation (section 

4.2.5) to select the set of proteins that should be used together in an experiment.  

Table 6 Mean and standard deviation (S.D.) of relative error for computing 
j for different 

mixtures of three proteins 

Mixture   

Mean 

(%) S.D. 

Cyan-Green-Red 

C 11.31 5.35 

G 9.96 5.15 

R 6.94 5.08 

Cyan-Red-Yellow 

C 9.67 4.36 

R 7.32 4.79 

Y 9.09 8.18 

Green-Red-Yellow 

G 5.66 4.59 

R 14.30 11.31 

Y 7.42 6.28 

Cyan-Green-Yellow 

C 9.73 3.46 

G 8.75 6.53 

Y 18.15 6.07 

The formulation is first applied to the emission spectra of the four fluorescent 

proteins shown in Table 4. For this purpose, the emission spectra of these proteins, 

obtained at the excitation wavelength of 450nm, were normalized using their respective 

maximum intensities. The reason for using the normalized emission spectra for 
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experimental design is so that the formulation is not biased against proteins with lower 

emission intensities caused by the choice of an excitation wavelength at which they have 

lower excitations. Thus, the subset of reporters is chosen solely on the basis of minimal 

spectral overlap and not the excitation wavelength used. These normalized spectra for 

CFP, GFP, YFP and RFP are shown in Figure 13.   

 

Figure 13 Normalized spectra of fluorescent proteins 

On using exhaustive search, the algorithm selects the following proteins –CFP, 

YFP and RFP, for the selection of 3 proteins from the 4 available proteins. On close 

observation, it is evident from Figure 13 that the emission spectra of the chosen proteins 

have only minimal overlap. Furthermore, the relative errors obtained for this particular 

3-protein mixture. i.e., the one containing cyan, yellow and red fluorescent protein 
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expressing E. coli strains, are the lowest among the combinations that were investigated 

in this study (Table 6).    

To further investigate the utility of the experimental design criterion for selection 

of fluorescent proteins from a larger set, emission spectra of 7 different fluorescent 

proteins were obtained from an online database (Evrogen, 2002). The details of the 

emissions characteristic of these proteins are summarized in Figure 14. It is evident that 

there is significant overlap in the emission spectra of these fluorescent proteins (Figure 

14b) and it is non-trivial to choose a subset of these proteins for an experiment. For the 

purpose of applying the developed experimental design criterion, the emission intensities 

of these proteins were sampled at wavelengths ranging from 410 – 800 nm in increments 

of 5nm. If 4 fluorescent proteins are chosen among the available 7 proteins using the D-

optimal design criterion, the result obtained from exhaustive enumeration (by evaluating 

7
4C = 35 protein combinations) and also from the forward selection procedure (in order of 

selection) is – mKate2, tagBFP, tagRFP and tagYFP. This matches with the 

recommendations given in (Shaner et al., 2005), based on the available filter sets, to use 

cyan, yellow, orange and far-red fluorescent proteins together for multiple labeling 

applications.  
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a)            b)  

Figure 14 a) Maximum emission and excitation wavelengths of the fluorescent proteins b) 

Normalized emission spectra of the fluorescent proteins  

To further validate that the fluorescent protein set chosen by the D-optimal 

design criterion results in maximum accuracy for the estimated contributions of the 

individual proteins to the overall intensities, a Monte Carlo simulation study was 

performed to evaluate the performance of all possible protein combinations. A large 

number of data sets (N=500) were simulated for the measured overall fluorescence 

intensity for all 35 protein combinations. It was assumed that the actual 

[0.25 0.25 0.25 0.25]  and random Gaussian noise (0,5)N  is present in all the 

measurements. The overall error in the estimated  values for the thi fluorescent protein 

combination was then evaluated as, 
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where ˆ i

j are the estimated values from the thj simulated data set for the thi protein 

combination. The expectation E[ ]  is evaluated over all the simulated data sets

[1,..., ]j N . The results obtained are plotted in Figure 15.   

In the figure (Figure 15), the lowest overall error is obtained for the 18th subset 

which contains mKate2, tagBFP, tagRFP and tagYFP reporters which is also the same 

combination selected by using the D-optimal design criterion. 

 

Figure 15 Overall error with ± standard deviation in estimated   values for all the protein 

combinations by choosing 4 out of 7 commercially available fluorescent proteins. 

4.4 Discussion and Summary 

An experimental design criterion for selection of fluorescent proteins that can be 

simultaneously used in an experiment has been developed. It is the goal of this 
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experimental design to maximize the accuracy at which the contribution of individual 

proteins can be extracted from the overall intensity of the sample. For this purpose the 

overall fluorescence intensity of the mixture measured using a plate reader is represented 

by a linear superposition of the intensities of the individual proteins. Using this 

formulation, the average of the relative errors for computing the contributions of 

individual proteins in mixtures containing 2 and 3 fluorescent proteins were obtained to 

be 6.41± 3.96 % and 9.86± 3.45%, respectively (from data in Table 5 and Table 6). 

These errors are within the acceptable limits for biological data and hence verify that the 

linear unmixing formulation (Dickinson et al., 2001) which has previously only been 

applied to pixels in images from fluorescence microscopy can also be applied to 

emission spectra of mixtures measured using a plate reader. While there are a few cases 

in which the relative error obtained is larger than the aforementioned values, the results 

are still within acceptable limits. These larger errors can be due to factors such as 

insufficient emission intensity of red and yellow fluorescent proteins at the chosen 

excitation wavelength, inaccurate readings by the plate reader at very high emission 

intensities of proteins such as GFP and CFP and absorbance of emission intensity of one 

reporter by the other. 

In a second step, the D-optimal design criterion is used for model-based design for 

optimal selection of fluorescent proteins for simultaneous use. The resulting mixed 

integer programming problem is solved using exhaustive search and, as a sub-optimal, 

but computationally inexpensive alternative, a forward selection algorithm. It has been 

successfully applied to the emission spectra of four fluorescent proteins used in this 
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work and another set of seven fluorescent proteins for which the emission spectra are 

obtained from an online database (Evrogen, 2002). Thus, the developed design criterion 

can be used for screening of proteins for applications where multiple events need to be 

monitored and it can be used in addition to other considerations which are currently 

used, such as stability, toxicity, and maturation time of fluorescent proteins. 
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5. MODELING OF CELL POPULATIONS LABELED WITH A 

 FLUORESCENT REPORTER SYSTEM 

5.1 Introduction 

Fluorescent proteins have been widely used as markers of gene expression and 

transcriptional regulation due to several reasons (Chalfie et al., 1994), such as their 

plasmid can be easily integrated into the DNA of the cells, they do not have a toxic 

effect on cell growth and they can also be conveniently detected by illuminating the 

sample with suitable light. Thus, as discussed in Section 3, the fluorescence obtained in 

fluorescent protein based reporter systems can be used as an indicator of transcription 

and translation. Furthermore, in section 3, an inverse problem has been formulated and 

solved to estimate the overall dynamics of transcription factors using the average 

dynamic fluorescence intensity data from a GFP reporter system. However, there are 

phenotypic variations in cell populations due to which each cell exhibits different 

fluorescence intensities. The fluorescence observed in reporter systems can be affected 

by noise in gene expression (Swain et al., 2002) as well as physiological factors such as 

unequal partitioning of cellular material resulting from cell division (Hjortsø, 2006). 

Since most of the experimental data of fluorescence is obtained from techniques such as 

flow cytometry or fluorescence microscopy that utilize cell populations, using single cell 

models to estimate cell physiological parameters or transcriptional dynamics may lead to 

erroneous conclusions (Hasenauer et al., 2011a). Furthermore, it is non-trivial to track 

individual cells in a population during the course of an experiment to analyze how 
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fluorescence in a single cell evolves over time (Huang et al., 2012). Thus, in this section, 

a dynamic model for a cell population that is labeled with a fluorescent protein reporter 

system has been developed to describe the dynamics of the fluorescence intensity 

distribution of the cells.   

Several examples exist in literature where population balance equation (PBE) 

modeling (reviewed in section 2.4.1) has been used for describing the dynamics of cells 

populations by using structuring variables such as cell mass (Mantzaris et al., 1999; 

Mhaskar et al., 2002; Zhu et al., 2000), intensity of fluorescent dyes (Banks et al., 2010; 

Luzyanina et al., 2007), number of plasmids (Ganusov et al., 2000) or cell age (Gabriel 

et al., 2012). In this work, the PBE modeling technique has been adopted for modeling 

fluorescent protein-labeled cell populations by using the fluorescence intensity of the 

reporter protein as the structuring or independent variable. The main reason for using 

PBE modeling technique is that it provides a better framework for estimating the 

unknown transcriptional or physiological parameters for cell populations (Abu-Absi et 

al., 2003; Friedrich, 1999; Hjortsø, 2006) as compared to the cell ensemble modeling 

technique (section 2.4.2). Furthermore, there are few examples in literature (Banks et al., 

2011a; Banks et al., 2011b; Luzyanina et al., 2007) where the developed population 

balance model (PBM) has been validated using experimental data and the unknown 

parameters describing the single cell physiological functions have been estimated. In this 

work, we have attempted to validate the developed PBE model for a GFP reporter cell 

line of HeLa cells, containing the Tet-on expression system, which has previously been 

developed by our collaborators (Huang et al., 2010b). Thus, a comprehensive study is 
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done involving cell population balance model development, its solution as well as model 

validation using experimental data for a cell population containing fluorescent protein 

based reporter system.  

The following subsections describe the details of the model development scheme 

for fluorescent cell populations (section 5.2), the solution of the dynamic model using a 

finite difference method (section 5.3), and model validation using flow cytometry data of 

HeLa cells containing the Tet-on expression system (section 5.4). Then, the limitations 

of the developed approach are discussed followed by a brief summary.  

5.2 Model Development  

As mentioned in section 2.4.1, cell population balance modeling requires a dynamic 

balance over the various factors that affect the independent variable of interest, which in 

our case is the fluorescence intensity of cells. There are a few examples in literature, for 

instance (Luzyanina et al., 2007), where the PBMs have been developed based on 

fluorescence intensity. However, these models are based on cell populations which are 

labeled with fluorescent dyes and the dye is not continuously produced inside the cell. 

For cell populations in which a fluorescent protein is produced as a result of gene 

expression, the factors affecting the resulting fluorescent intensity distribution can be 

summarized as, 

1) There is an increase in fluorescence intensity in single cells due to the production 

of the fluorescent protein due to gene expression. 

2) There is a decrease in fluorescence intensity due to cell death.  
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3) When cells divide, the fluorescent protein, which is present in the cytoplasm of 

the cells, is divided between the two daughter cells. In this work, this division is 

assumed to be conservative i.e. the entire fluorescent protein from the mother cell 

is divided among daughter cells. 

4) Furthermore, when the cell divides the distribution of the fluorescent protein,  

which is present in the cytoplasm, is assumed to be unequal between the two 

daughter cells. The distribution is described by a partition function.   

Taking into account these factors, the PBM is written as,  

        

   
 

             

  
 

                                              
 

 

 

(5.1)  

This is a first order integro-partial differential equation with fluorescence intensity   and 

time   as independent variables and the number distribution of cells -        as the 

dependent variable. In the above equation,       is the net growth rate of fluorescence 

intensity,      and      are the division and death rate respectively and         

represents the partition function. The integral term                          

 
 gives 

the rate at which the new cells are formed with fluorescent intensity   and it is obtained 

by integrating over the entire range of the fluorescence intensities of the dividing cells.  

The physiological functions i.e.     ,     ,      and         are unknown for any cell 

population. These functions describe the behavior of single cells and are crucial part of 

forming a PBM. Mostly, there is little information available about these functions, 
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however, they can be chosen by making reasonable assumptions or prior knowledge 

about the system of interest. The choices for these functions for the fluorescence 

intensity structured PBM developed in this work are given below. 

1) The net growth rate of fluorescence intensity (FI) is assumed to be linear w.r.t.   

such that  

           (5.2)  

It takes into account the factors contributing to FI growth as well as its decrease 

due to degradation of fluorescent proteins. 

2) The division rate is assumed to be a Gaussian function of FI as the division rate 

has been observed to be bell shaped w.r.t. intensity in some studies (Luzyanina 

et al., 2007).  

 
             

      
 

   
 

  (5.3)  

3) The death rate can be assumed to be a constant, 

 
        (5.4)  

4) A very commonly used form for the partition function,         is a symmetric 

beta distribution function (Mantzaris et al., 1999; Nikos V, 2006) such that, 

 
        

 

      
 
 

  
 
   

   
 

  
 
    

  
 (5.5)  
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where   is a parameter of the distribution and        is the beta function. 

        gives the fraction of the newborn cells formed with fluorescence 

intensity   and      when a cell with intensity    divides.  

Thus, the cells are not assumed to be dividing equally and a distribution of the 

partition of the fluorescent protein or its intensity is obtained when cells divide and it is 

described by the partition function presented above.  

5.3 Model Simulation Using a Finite Difference Scheme 

This subsection discusses the implementation of the finite difference scheme for the 

population balance model developed in the previous section. This is followed by an 

illustration of the results obtained from simulating the model for nominal values of the 

parameters in the PBM.  

5.3.1 Finite Difference Scheme   

The developed model (equation (5.1)-(5.5)) is an integro-partial differential equation 

(IPDE) and its initial boundary value problem (IBVP) is numerically solved using an 

implicit finite difference scheme. Particularly, the Crank Nicolson scheme (Smith, 1985) 

is used as it resulted in stable solutions for the presented partial differential equation. 

The scheme is second order accurate in both the independent variables i.e. time as well 

as fluorescence intensity. The steps for implementation of the Crank Nicolson scheme 

are discussed next.  

The boundary conditions represent that there are no cells beyond the two 

extremes of the distribution and they are given by the following equations. 
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(5.6)  

where    is chosen few units larger than the maximum fluorescence intensity observed 

in the system and   = 0 such that the above boundary condition is satisfied. Furthermore, 

the initial distribution of FI in the cell population is assumed to be known, thus the initial 

condition is, 

               (5.7)  

where    is the initial time point.  

Let the time steps and the grid size for FI be denoted by    and    respectively, 

such that, 

             {0,1, ,M}i   

            {0,1, , N}j   

(5.8)  

In Crank Nicolson scheme, the partial time derivatives are approximated using a forward 

finite difference, 

   1,  
 Δ

j

i

j

i
W z t W W

t t

 



 

(5.9)  

where 0 0( , )j

iW W z i z t j t     . The partial   space derivatives are approximated as an 

average of the centered space difference at current ( thj ) and the next ( 1thj  ) time step 

i.e.   
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 (5.10)  

The integral term in equation (5.1) is approximated using the trapezoidal rule for 

numerical integration. For the purpose of numerical integration, the integral term 

                         

 
 can be written as                           

 
. This is 

because to evaluate the rate at which cells with fluorescence intensity   are being 

produced, the diving cells are likely to have intensities           where       

     is the upper limit for the fluorescence intensity observed in the system. Thus the 

finite difference equation for the presented IPDE can be formulated as, 
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 (5.11)  

For a complete derivation of the approximation of the integral term using the trapezoidal 

rule, please refer to Appendix B. Equation (5.11) can be reformulated as  
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 (5.12)  

Δwhere  and 
4 Δ

i
i i i

r t
t

z
     . This is a finite difference equation in which the values 

of the dependent variable at 1thj   time point is calculated using the values at thj time 

point such that at every time step          ,  {1,2, , N}j   a linear system of 
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equations is solved to obtain the values of 1   {1,2, ,M 1}i

j iW     . The system of 

equations is given by 

 1
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where 
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 (5.14)  

All the simulations in the presented work are done using MATLAB.   

5.3.2 Results for Model Simulation  

This section briefly describes the results from simulating the developed cell population 

balance model using the finite difference scheme discussed in the previous section. Also, 

the effect of the various parameters, used in the physiological functions, on the resulting 

cell number distributions is also presented. For illustration purposes, in this section the 

model is simulated using the nominal values of the parameters which are chosen either 

based on values used in literature or on the author’s experience of working with cell 

populations containing fluorescent reporter systems.  

The initial distribution for simulating the model is assumed to be Gaussian, i.e. 
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   (5.15)  

where the values for 0 and 0  are the mean and the standard deviation of the 

distribution. The values used for all the parameters are given in Table 7.  

Table 7 Nominal values of the parameters used for simulating the model 

Parameter Value  Parameter Value 

  0.01  [hr-1]     850 

  0.08  [hr-1]     50  

   1100  [RFU]     0  [RFU] 

   250  [RFU]     0  [hr] 

  40      10  [RFU] 

   0.01  [hr-1]     0.01  [hr]   

RFU = Relative Fluorescence Units  

The model is simulated for   = 48 hours for    [0,1500] and a 3D plot of the 

resulting dynamic cell number distribution w.r.t. fluorescence intensity and time is 

shown in Figure 16. It can be observed from this plot that different generations of cells 

are obtained as they undergo cell division with subsequent generations having lower 

fluorescence intensities.  
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Figure 16 A 3D plot of cell number distributions w.r.t. fluorescence intensity and time, simulated 

using nominal values of the parameters 

A 2D plot of the distributions obtained after 24 and 48 hours is also plotted along 

with the initial distribution in Figure 17 to have a closer comparison. While, each 

subsequent generation of cells have smaller fluorescence intensities, it can also be 

observed that each peak is also shifted towards higher fluorescence intensities as there is 

a net growth of fluorescence intensity in cells. Furthermore, it is non-trivial to 

empirically develop a model describing the dynamics of multimodal distributions like 

the one shown in Figure 16 and Figure 17 and requires first principle modeling to 

explain the complex dynamics.  

 



 

84 

 

 

Figure 17 Cell number distributions obtained by simulating the PBM using nominal values of the 

parameters 

Next, to analyze the affect of different parameters in the physiological functions 

on the resulting cell number distributions, some of the parameters are varied one by one 

and the resulting distributions are compared with the distribution shown in Figure 17 

obtained using the nominal values in Table 7.  

When the value of the net growth rate of fluorescence intensity i.e.   is doubled 

(Figure 18(a)), the resulting peaks are shifted towards higher fluorescence intensities. 

Since the division rate is also a function of the fluorescence intensity  , this causes more 

cells to divide earlier and the resulting cell number distribution at 24 hours is widely 

different from its counterpart in Figure 17 which is based on nominal values. Next, the 

mean of the division rate function i.e.    is shifted to higher fluorescence intensity of 

1600 RFU as compared to 1100 RFU (Figure 18(b)). Thus, most of the cells will not 
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divide until the FI growth causes their intensity to reach values around 1600 RFU and 

this causes a delay in formation of the next generation of cells. The total number of cells 

are also lesser in this case (Figure 19). 

 a) b)     

c) d)      

Figure 18 Simulation of the PBM using nominal values of the parameters and changing any one 

parameter at a time a) The parameter   is changed to 0.02 hr-1 b)    = 1600 RFU c)   = 10 d)    

= 0.04 hr-1 
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Figure 19 Comparison of the total number of cells in the system when the value of the parameter 

   is changed from 1100 RFU to 1600 RFU 

Figure 18(c) shows the cell number distributions when the value of the parameter 

of the partition function i.e.   is decreased from its nominal value. A smaller value of   

results in formation of new cells over a wide of range of fluorescence intensities (FI) as 

compared to when cells divide with almost equal division of FI among the daughter 

cells. Thus, it is now difficult to differentiate between the cell generations or the 

different peaks in the distribution. The last subfigure (Figure 18(d)) illustrates that at a 

higher cell death rate, the cell number distribution has lower values because of a 

decrease in the number of viable cells. Also, the decrease is observed over the entire 

range of FI since the death rate is a constant and independent of the FI.  

In the next subsection, the unknown parameters of the developed cell population 

balance model are estimated using experimental data for a fluorescent reporter system of 

HeLa cells.  
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5.4 Validation of the Developed Model Using Flow Cytometry Data 

This section discusses the procedure for estimation of the unknown parameters in the 

cell population balance model. The first subsection describes how the experimental data 

was obtained by our collaborators. Then, before fitting the data to the PBM, a global 

sensitivity analysis is being carried out on the PBM to identify the parameters that can be 

easily estimated using the experimental data. Then, the ‘identifiable’ parameters are 

estimated using experimental data.  

5.4.1 Obtaining Experimental Data  

The experimental data was obtained for a previously developed cell line of HeLa cells 

containing the Tet-on expression system (Huang et al., 2010b). This system consists of 

an artificial inducible transcription factor tTA which is activated by addition of 

doxycycline (Dox). The plasmid for GFP is cloned on the response plasmid downstream 

of the response element. Then, the GFP expression is initiated by tTA-Dox complex 

when it translocates to the nucleus and binds to the RE. The reason for using the “HeLa 

Tet-on” system in this study is that firstly  the   P expression is easily inducible by 

addition of Dox and there is no complex signal transduction dynamics involved. And 

secondly, because HeLa cells have a moderately faster growth rate as compared to other 

mammalian cell lines. Then, the fluorescence intensity distributions of the cells were 

obtained using flow cytometry. A brief overview of the experimental procedure 

performed by Ms. Shreya Maiti in Dr. Arul Jayaraman’s laboratory (Chemical 

Engineering, Texas A&M University) is described below.  
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HeLa cells containing the Tet-on expression system along with the GFP reporter 

plasmid were seeded on a 96 well plate and incubated at 37ºC for 4 hours to let them 

attach to the surface. They were then stimulated with two different concentrations of 

Dox (1 μg/ml and 10 μg/ml). The cells were monitored for a total of 4 days i.e. 96 hours 

with 1/3 of the medium (with corresponding volumes of Dox) replenished in the wells 

every 24 hours. This is done so that the cells are not deprived of the nutrients essential 

for cell growth and division. The cells were harvested 2, 12, 24, 36, 48, 60, 72, 84 and 

96 hours after stimulation and fixed with 4% paraformaldehyde to prevent the 

degradation of GFP present in the cells. The fixed cells were analyzed using flow 

cytometry in which 10,000 cells were sampled from every well and their fluorescence 

intensities were measured to obtain the fluorescence intensity distributions. The flow 

cytometer BD FACSAria II was used for this purpose.  

The software FlowJo, commonly used for analyzing flow cytometry data, was 

used for performing gating on the samples to separate the cell debris from the 

measurements of live cells in the data set. This was done by excluding the measurements 

corresponding to particles which have a small value of forward scattered (FSC) as well 

as side scattered light (SSC) (Biosciences, 2000). FSC is a measure of cell volume and 

SSC is related to the inner complexity and integrity of the cells. Thus, particles with 

smaller values of FSC as well as SSC are probably dead cells or other debris and should 

be excluded from the data set (Shapiro, 2005). The resulting FI distributions for HeLa 

cells stimulated with 1 μg/ml  and 10 μg/ml  of Dox are plotted in Figure 20. 
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a)  b)  

Figure 20 Fluorescence intensity (FI) distributions obtained for HeLa cells using flow cytometry 

when they are stimulated with a) 1 μg/ml of Dox 2) 10 μg/ml of Dox 

These distributions were smoothed using the moving average filter and the 

resulting distribution for the data set stimulated with 1 μg/ml of Dox is shown in Figure 

21. The smoothed distributions were used for model validation.  

 

Figure 21 Smoothed fluorescence intensity distributions obtained using the moving average filter 

for cells stimulated with 1μg/ml of Dox 
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5.4.2 Global Sensitivity Analysis of the PBM 

There are 6 unknown parameters in the formulated PBM given by the net growth rate of 

fluorescence intensity  , the parameters describing the division rate i.e.  ,    and   , the 

partition function parameter   and the death rate   . However, it may not be possible to 

estimate all the parameters using the measurements of fluorescence intensity cell number 

distributions. This is because some of these parameters might not have significant effect 

on the FI distributions. Also, the parameters can even have correlated effects on the 

output such that the change in one value of the parameter can be compensated by a 

change in the value of another parameter. This can cause the optimization algorithms to 

struggle in obtaining an optimum value for all the parameters. Thus, a global sensitivity 

analysis for the developed population balance model with respect to the unknown 

parameters is performed. This is done to identify the parameters that can be easily 

estimated using data for FI distributions and also to see if any of the parameters have 

correlated effects on the output modeled distributions.  

Morris method (reviewed in section 2.5) was used for calculating the sensitivities 

of the output distributions w.r.t. all the parameters. Furthermore, the sensitivities are 

calculated for the normalized distributions from the cell population balance model 

instead of the cell number distributions. This is because only a fixed number of cells are 

sampled from each well in flow cytometry for measurement of fluorescence intensities 

and thus the total number of cells are not known at each time instant. The uncertainty 

range of the parameters is chosen to be ± 100% around the nominal values used for 
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model simulation in section 5.3.2 and the initial distribution is also assumed to be 

Gaussian.  

The results for the mean and standard deviation of the elementary effects for all 

the parameters obtained using Morris method are shown in Figure 22. The statistics for 

the elementary effect of death rate is not shown in this figure because both the mean and 

standard deviation is of the order of 1e-10 for death rate. This implies that the death rate 

has negligible effect on the resulting normalized FI distributions. It can also be observed 

from the model simulations given in Figure 18 in the previous section where a variation 

in the death rate only changes the intensity of the resulting distribution but the shape of 

the distribution remains the same.      

a)      b)  

Figure 22 Statistics of the elementary effects (EE) obtained using Morris method where   

denotes the number of EEs sampled a) mean of the EE b) standard deviation (S.D.) of the EE  

It can be observed that the parameter   does not have a significant effect on the 

output and  ,    and    seem to be most important input parameters. However, a larger 
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value of the standard deviation of the elementary effect of    also implies that it is 

involved in correlated effects with other parameters. Thus, only   and    were 

considered for parameter estimation.  

5.4.3 Estimation of Unknown Parameters: Preliminary Results and Discussion  

After performing the sensitivity analysis w.r.t. to the unknown parameters in the cell 

PBM,   and    were recognized to be the identifiable parameters while the other 

parameters i.e.  ,   ,   and    were kept constant. Furthermore, the death rate    is 

assumed to be negligible since the cells are replenished with 1/3rd of the fresh medium 

every 24 hours to reduce cell death.  

The function ‘fmincon’ in MATLAB was used for parameter estimation by 

minimizing the least squares fitting error between the normalized FI distributions 

obtained from flow cytometry and from the simulation of the PBM using the finite 

difference scheme. The FI distribution measured at 2 hours after stimulation with Dox 

for HeLa cells was used as an initial distribution for simulating the model to allow time 

for induction of GFP. The values of time step and grid size used are     0.01 hours and 

   = 10 RFU. The model is simulated for     96 hours and for FI   [0, ~3.2e+3 RFU]. 

With these specifications, each simulation of the model took approximately 5-6 seconds 

for execution on an Intel Core i5 CPU (2.53 GHz). To decrease the computation time 

during parameter estimation, where several objective function evaluations are typically 

required for calculation of the gradients in optimization algorithms, the parallel 

computation capabilities of MATLAB (Sharma and Martin, 2009) were utilized such 
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that the function evaluations can be executed simultaneously on multiple cores of the 

processor. 

Since the values of the unknown parameters i.e.  ,    and   cannot be efficiently 

estimated using optimization algorithms, their reasonable values were chosen using the 

following study. A large number of values of these 3 parameters were sampled using 

latin hypercube sampling (LHS) and the optimization problem for estimation of   and  

   using the experimental data was solved for each of these samples. The value of the 

parameter set which resulted in lowest least squares fitting error between the simulated 

and experimental data for HeLa cells, was chosen as the fixed values for the parameters 

to be kept constant. The normalized values of the least squares fitting error for 

experimental data of HeLa cells stimulated with 1 μg/ml of doxycycline is plotted 

against the sampled values of   and    in Figure 23. It can be observed that multiple 

minima’s are obtained in the fitting error for various values of the parameter   while all 

other parameters are varied. This implies that the parameter   is not useful in describing 

any significant trends in this data and it may be obsolete for this particular data set. 

Similar plots and observations were obtained for the parameter   as well for both the 

data sets in which HeLa cells were stimulated with 1 μg/ml and 10 μg/ml of 

doxycycline. However, the parameter    seems to be significant in describing the 

variation in the data and there is a particular value of    for which the minima is 

obtained. 
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Figure 23 Plots of normalized fitting error vs two parameters   [hr-1] and     [RFU] from the 

solution of the parameter estimation problem for different parameter sets sampled using LHS 

After selecting the values of  ,    and  , the net growth rate of FI i.e.   and the 

mean of the division rate physiological function    were estimated using experimental 

data by using several initial values for optimization. The initial values were again 

sampled using latin hypercube sampling and the parameter values that resulted in lowest 

fitting error were selected as the estimated values. Furthermore, the optimization 

problem was solved for different subsets of the available data by leaving the data for one 

time point at a time. The mean and standard deviation of the two estimated parameters 

calculated by solving the optimization problem from different subsets of data along with 

the parameters that were kept constant are given in Table 8.  
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Table 8 Parameters estimated using experimental data for HeLa cells stimulated with 1 μg/ml 

and 10 μg/ml of Dox 

 Parameter [units] 1 μg/ml  Dox stimulation  10 μg/ml  Dox stimulation  

Net growth rate of FI 

(  [hr-1]) 
0.0063 ± 0.00031 0.0041 ± 0.00026 

Division Rate function 

Mean (   [RFU]) 
2179.74 ± 24.88 2452.23 ± 22.07 

Division Rate Intensity 

  ([hr-1]) 
0.3523 0.3969 

Division Rate function 

S.D.  (   [RFU]) 
391.7 437.25 

Partition Function 

parameter ( ) 

55.4 36.4 

RFU = Relative Fluorescence Units  

 

The Tet-on expression system is expected to produce increased expression of the 

reporter protein on increasing the concentrations of Dox. However, from the estimated 

values of the parameters (Table 8), it can be observed that the net growth rate of 

fluorescence intensity is observed to be lesser for HeLa cells stimulated with 10 μg/ml of 

Dox than for cells stimulated with 1 μg/ml of Dox. This is probably because when cells 

are being monitored for extended periods of time, like in this presented study, higher 

concentrations of Dox can have a detrimental effect on cancer cell lines (Fife and Sledge 

Jr, 1998; Mouratidis et al., 2007; Onoda et al., 2006). This can affect the transcription 

rate of the Tet-on expression system and may even cause cell death. Thus, the net growth 
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rate of intensity for the Tet-on expression system in cancer cell lines, averaged over a 

period of 3-4 days, is likely be lesser for higher stimulating concentrations of Dox. 

Furthermore, it can also be observed from the estimated values of    that the 

division rate Gaussian function is shifted towards higher fluorescence intensities on 

increasing the concentrations of doxycycline. From the FI intensity distributions (Figure 

20) it can be seen that a large portion of the cells have fluorescence intensities less than 

1e+3 RFU. This implies that the division rate of cells may have decreased with an 

increase in doxycycline concentration. This can also be attributed to the negative effect 

of Dox on cell proliferation and growth in cancer lines (Fife and Sledge Jr, 1998; Onoda 

et al., 2006).  

The plots of the fits between the normalized distributions of FI from 

experimental data and model simulations are given in Figure 24 for HeLa cells 

stimulated with 1 μg/ml doxycycline. The model simulation is carried out using the 

parameter values given in Table 8. It can be seen that the plots observed are satisfactory, 

however there is considerable scope for improvement in the theoretical population 

balance model as well as in using more reliable ways of carrying out the experiments 

and obtaining experimental data.  
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Figure 24 Plots of normalized FI distributions from experimental data and simulation of the 

PBM using the estimated parameters for HeLa cells stimulated with 1 μg/ml Dox. 

5.4.4 Limitations in the Developed Approach 

There are certain limitations in the presented approach for modeling cell populations 

labeled with a fluorescent reporter system. For instance, the total number of cells for 

each sample is not counted using flow cytometry. Thus it is challenging to estimate some 

of the parameters in the developed population balance model, for instance the death rate 

of the cells. If the total number of cells is known at each time instant where the 

measurement is sampled, cell number distributions instead of the normalized 

distributions can be used for estimating the unknown parameters. This may lead to 
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separation of the effects of the different parameters which were previously correlated 

w.r.t. the normalized FI distributions, and more parameters can be estimated using 

experimental data. 

Furthermore, for the experimental data from the HeLa Tet-on system, the 

parameters describing the partition function (   and the intensity of the division rate 

function (   did not have any observable effects on the resulting fluorescence intensity 

distributions and they may even be obsolete for the available data set (section 5.4.3). 

Unlike model simulations done using the nominal value of the parameters, shown in 

section 5.3.2, where multimodal distributions are obtained, the data obtained for the 

HeLa tet-on system exhibit unimodal distributions. Thus, it is possible that there is not 

enough “resolution” in the experimental data of this system to estimate the effects of 

some of the factors like the division rate of cells or the partition function parameter. 

Thus, because of the particular dynamics of this system, the effects of the various terms 

considered in the PBM (equation (5.1)) may be confounded in the resulting distributions 

and hard to estimate from the available experimental data.    

Lastly, in previous studies (Banks et al., 2010; Luzyanina et al., 2007) involving 

modeling of fluorescence labeled cell populations, a fluorescent dye was used for 

labeling the cells which was not continuously produced inside the cells. In this work, the 

cell populations are labeled with a fluorescent protein which is produced inside the cells 

via the internal mechanisms involving gene expression and translation. These processes 

are inherently affected by a lot of variability (Kærn et al., 2005; Paulsson, 2005; Swain 

et al., 2002) and it can be challenging to incorporate the knowledge about the noise in 
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gene expression and variability in production of fluorescent proteins in the population 

balance modeling framework.  

5.5 Summary  

In this section, a dynamic model of a cell population labeled with a fluorescent reporter 

system has been developed using cell population balance equation modeling technique. 

This model takes into account the various factors that can affect the distribution of the 

amount of fluorescent protein or fluorescence intensity in cells, such as the growth rate 

of fluorescence intensity, the division rate of cells and their partitioning behavior. This 

resulted in an IPDE with time and fluorescence intensity as the independent variables to 

model the cell number distributions. The model is simulated using an implicit finite 

difference scheme and the unknown parameters describing the single cell physiological 

parameters are estimated using experimental data. 

To identify the significant parameters in the cell population balance model, a 

global sensitivity analysis technique called Morris method has been used. Then, the 

unknown parameters in the model are estimated using experimental data obtained for 

HeLa cells containing the Tet-on expression system using the flow cytometry technique. 

Two different sets of data were obtained in which the “HeLa Tet-on” cell line was 

stimulated with 1 μg/ml and 10 μg/ml doxycycline (Dox; the inducer for the Tet-on 

expression system) and the cells were monitored for a total of 4 days. 

From the estimated parameters, there is an indication that higher concentrations 

of doxycycline cause detrimental effects on HeLa cells leading to a net lower growth 
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rate of fluorescence intensity i.e. the rate of gene expression and a lower division rate of 

cells in samples stimulated with 10 μg/ml of Dox as compared to samples stimulated 

with 1 μg/ml of Dox.  

These preliminary results demonstrate how the population balance modeling 

technique can be used for estimation of important physiological parameters for cell 

populations labeled with fluorescence reporter systems. However, there are certain 

limitations in the developed approach due to correlations between the effects of the 

unknown parameters on the normalized output fluorescence intensity distributions which 

makes it challenging to accurately estimate their values. Furthermore, more efficient 

experimental techniques as well as different reporter systems need to be investigated for 

complete validation of the proposed model.  
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6. CONCLUSIONS AND FUTURE WORK 

Fluorescent reporter systems are widely used by researchers for multiple 

applications such as monitoring gene expression, protein-protein interactions or 

dynamics of signaling pathways. However, there are certain challenges that pose 

limitations for modeling the response obtained from these reporter systems. Some of 

these challenges are, for instance, these systems can consist of very large number of 

components with complex interactions, there can also be limited availability of 

experimental data both in terms of sampling points and the number of components that 

can be measured and the presence of large amounts of noise and variability in the 

response further complicates the situation. This dissertation presented several new 

techniques to address these challenges and illustrated them by applying them to a 

number of biological systems to aid in the process of mathematical modeling and 

estimation for systems containing fluorescent reporter systems. A brief overview of the 

developed techniques and the main contributions of this work are summarized below. 

This is followed by a discussion for future work.  

6.1 Contributions 

In section 3 of this dissertation, an inverse problem has been formulated to estimate the 

dynamics of transcription factors, which is a crucial molecule that initiates the 

transcription process, using experimental data of fluorescence obtained in fluorescent 

reporter systems. The main contributions in this study are that, unlike previous works, 

any complex dynamics of the transcription factor profiles can be estimated using the 
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presented technique without any restrictions on the shapes of the estimated profiles. 

Furthermore, this formulation also takes into account that the experimental data could be 

limited and may have missing data points. Thus, regularization techniques have been 

incorporated in the estimation formulation to solve the underdetermined and ill-

conditioned inverse problem. This formulation can be used for estimation of the 

dynamics of any transcription factor if the corresponding data for a fluorescent reporter 

is available and thus the developed procedure is not application specific. Also, this 

technique can generally be applied as a guideline for estimation of concentrations of 

unknown molecules or proteins in biological systems when it is difficult to measure 

them directly, however, when the measurements of a certain output is available which is 

directly or indirectly affected by the molecule of interest. (Bansal et al., 2012) 

Section 4 presented a new experimental design criterion to facilitate the use of 

multiple fluorescent reporters in experiments. The major challenge in using multiple 

reporters together is that their emission spectra can overlap to a large extent making it 

difficult to separate the effect of individual reporter proteins. Thus, this procedure 

developed guidelines to select the fluorescent proteins to use together in an experiment 

such that the estimation of the contributions of the individual proteins to overall 

emission intensity can be determined as accurately as possible. The developed design 

criterion can be used for screening of proteins for applications where multiple events 

need to be monitored and it can be used in addition to other considerations which are 

currently used, such as stability, toxicity, and maturation time of fluorescent proteins. 

(Bansal et al., 2013) 
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Finally, in section 5, a population balance model has been developed to describe the 

dynamics of the fluorescence intensity distributions observed in fluorescent reporter 

systems. This model is useful in describing the various factors affecting the FI 

distributions such as the net growth rate of fluorescence intensity, the partitioning of the 

fluorescent protein on cell division and the knowledge about whether this partition is 

equal or unequal has also been integrated into the model. Preliminary validation results 

for this model are obtained by using the experimental data for HeLa cells containing the 

Tet-on expression system. The model has been used to compare and obtain preliminary 

hypothesis about the difference in the response of the HeLa Tet-on system when it is 

stimulated with two different concentrations of doxycycline.  

6.2 Future Work 

Some of the suggestions for future work and extensions of the work in this dissertation 

are discussed in this subsection.  

The inverse problem formulation developed in Section 3 of this dissertation is 

evaluated by assuming that there is random Gaussian noise in the fluorescence intensity 

profiles. However, the noise in biological systems can be more closely characterized by 

simulating the ODE model describing the transcription and translation process using a 

stochastic simulation algorithm, for instance  the  ill espie’s algorithm (Gillespie, 1977). 

Thus, the presented inverse problem formulation should also be evaluated by using the 

fluorescence intensity profiles simulated using a stochastic simulation algorithm.  
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Secondly, in Section 4, the fluorescence intensity of a mixture of fluorescent 

proteins is assumed to be a linear superposition of the intensities of the reporters present 

in the mixture. It was also observed that the overall error in the estimated contributions 

of the individual reporters increased as the total number of reporters in a mixture were 

increased. One possible explanation of these errors is that there could be interactions 

effects between the intensities of different fluorescent reporters in the mixture. This can 

be addressed by updating the linear formulation of equation (4.2) with 2nd order 

interaction terms such that the overall fluorescent intensity can be represented as  

1 1 2 2

1 1 2 2 2 3 ( 1)/2 1

( ) ( ) ( ) ( )
       ( ) ( ) ( ) ( ) ... ( ) ( ) ( )

k k

k k k k k k

y x g x g x g x

g x g x g x g x g x g x e x

  

     

   

    
 (6.1)  

Furthermore, in a generalized representation of equation (4.8), the D-optimality criterion 

is applied to the fisher information matrix (FIM) calculated using the sensitivity matrix 

(S) of the output of the model w.r.t. to the unknown parameters such that the formulation 

can be written as,  

 max  det
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and the sensitivity matrix S is calculated as  
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Thus, for the case where the overall fluorescence intensity is modeled as given in 

equation (6.1), the sensitivity matrix (S) as well as the FIM will be a function of the 

parameters 1 1 ( 1)/2[ ,..., , ,..., ]k k k k    
which are not known apriori. Thus, an iterative 

model-based optimal design methodology (Franceschini and Macchietto, 2008) needs to 

be adopted for selecting the fluorescent proteins to use together. In this technique, the 

experimental design is first carried out using approximate or nominal values of the 

unknown parameters followed by conducting the experiments with that design. Then, 

using the data from those designed experiments the unknown parameter values are re-

estimated. This process is repeated until the estimated parameters are obtained within the 

desired accuracy.  

The next suggestion for future work involves updating the approach for validating 

the PBM described in section 5. The developed PBM could not be completely validated 

due to correlated effects of the parameters on the normalized fluorescence intensity 

distributions and the parameters like death rate having no effect on the normalized 

distributions at all. There also seems to be not enough “resolution” in the data for the 

HeLa Tet-on system to separate the effects of various factors affecting the FI 

distributions. Thus, firstly there is a need to obtain experimental data for different 

reporter systems and cell lines for complete validation of the proposed model. Also, 

obtaining additional experimental data for the total number of cells at each time instant 

can aid in independently estimating some of the unknown parameters in the PBM and 

thus reducing the limitations in model validation due to redundant effects of the 

parameters on normalized fluorescent intensity distributions. In addition, different 
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functional forms for the physiological functions such as the rate of increase of 

fluorescence intensity, death rate or division rate should be considered such that they are 

relevant for the reporter system or cell line under consideration. Some of the recent 

works (Banks et al., 2011b; Luzyanina et al., 2007; Mantzaris, 2006) have addressed this 

issue in a comprehensive manner and provide cues for selection of appropriate 

functional forms for the cell physiological functions.  

Finally, the confounding of the “multimodal features” in the fluorescence intensity 

distributions can be attributed to the noise in fluorescence protein production in cells due 

to stochastic nature of gene expression. This variability has not been considered in the 

population balance model developed in this work. The future work can involve 

combining the population balance modeling technique with stochastic descriptions of 

intracellular gene regulatory processes (Hasenauer et al., 2011b; Shu et al., 2012). 
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APPENDIX A 

The integrals in equation (3.8) are evaluated using eigenvalue decomposition of    

         

          

where 

    

   

 
   

  ;   ’s are the eigenvalues of the   matrix 

and the columns of the   matrix are the eigenvectors.  

The integrals can be evaluated as   
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APPENDIX B 

The trapezoidal rule for approximation of finite integrals is written as  

          
         

 
     

 

 
  

The integral under consideration is                        
  

 
 and in the presented 

finite difference scheme the interval        is further divided into various sub-intervals 

with the fixed grid spacing of   . Thus, its numerical approximation using trapezoidal 

rule can be written as,  

                       
  

 

  
  

 
      

 
     

 
          

 

 
     

 
    

 
        

 
     

 
          

 

 
       

    
 

          
 

   
 
      

 

 
     

Since, for the beta distribution function       , the above equation can be reformulated 

as, 

        
 
        

 
 

  
 
      

 

 
 

   

      

 




