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ABSTRACT

Second-order discretizations for radiation-hydrodynamics is currently an area of

great interest. Second-order methods used to solve the respective single-physics

problems often differ fundamentally, making it difficult to combine them in a second-

order manner. Here, we present a method for solving the equations of radiation

hydrodynamics that is second-order accurate in space and time. We achieve this

accuracy by combining modern methods used in standard single-physics calculations.

This method is defined for a 1-D model of compressible fluid dynamics coupled

with grey radiation diffusion and combines the MUSCL-Hancock method for solving

the Euler equations with the TR/BDF2 scheme in time and a linear-discontinuous

finite-element method in space for solving the equations of radiative transfer. Though

uncommon for radiation diffusion calculations, the linear-discontinuous method is a

standard for radiation transport applications. We address the challenges inherent

to using different spatial discretizations for the hydrodynamics and radiation com-

ponents and demonstrate how these may be overcome. Using the method of manu-

factured solutions, we show that the method is second-order accurate in space and

time for both the equilibrium diffusion and streaming limit, and we show that the

method is capable of computing radiative shock solutions accurately by comparing

our results with semi-analytic solutions.
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NOMENCLATURE

RH Radiation-Hydrodynamics

LDFEM Linearly Discontinuous Finite Element Method

MHM MUSCL Hancock Method

IMEX Implicit/Explicit

ISP Isothermal Sonic Point

CN Crank-Nicholson
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1. INTRODUCTION

Radiation hydrodynamics (RH) describes thermal radiation propagating through

a fluid and the effects of the radiation on the properties of that fluid. Second-

order time integration in problems involving radiation hydrodynamics is currently

an area of great interest. Though detailed work has been done for time integration

of radiation diffusion and transport [21, 16, 11, 25, 1, 30, 4], and likewise for fluid

dynamics [31], research in second-order methods that couple the two has only recently

been approached [19, 3, 5]. Because of the dramatically different time scales of

radiation diffusion/transport and fluid advection, RH calculations are usually treated

using an implicit/explicit (IMEX) scheme [19, 3, 5]. In such algorithms, the fluid

advection component, which changes at a much slower rate, is treated explicitly;

whereas, the radiation diffusion and energy exchange terms are treated implicitly.

Sekora and Stone developed a scheme for RH that uses second-order Godunov

methods to achieve second-order accuracy in space and time. This scheme is entirely

explicit so that the time step is limited by the more rapidly varying radiation time

scale [28]. Sekora’s method is intended for the relativistic regime characterized as

c/a∞ < 10. In this case, the material and radiation time-scales aren’t dramatically

different, and therefore, the Courant limit time-step constraint isn’t overly restrictive.

However, for the non-relativistic regime, i.e. c/a∞ >> 1, bounding the time-step ac-

cording to the radiation time-scale will force the time steps to be orders of magnitude

smaller than the material time-scale. Kadioglu has also developed a second-order ac-

curate scheme for both low and high energy density RH problems [10, 9]. Accuracy

is achieved by incorporating the explicit algorithm into the implicit iterations. While

this provides a tight coupling between the explicit and implicit terms, it is compu-
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tationally more expensive than standard IMEX schemes, since the explicit block is

solved in each nonlinear iteration [10].

In this work, we derive, implement, and test a new IMEX scheme for solving

the equations of radiation hydrodynamics that is second-order accurate in space and

time. We consider a RH system that combines a 1-D slab model of compressible fluid

dynamics with a grey radiation diffusion model. Specifically, we use the MUSCL-

Hancock Method (MHM) to solve the fluid advection component explicitly in space

and time and the TR/BDF2 scheme to solve the radiation diffusion component and

energy exchange terms implicitly in time. We discretize our diffusion scheme in space

using a linearly-discontinuous finite element method (LDFEM). We discretize the

diffusion scheme in such a way that, if we were to extend our method to P1, it would

be equivalent to an S2 LDFEM spatial discretization for radiation transport. This is

not a common scheme for discretizing the diffusion equation, but as explained later, it

enables us to address a critical issue associated with radiation transport even though

we use a diffusion approximation. We base our radiation-hydrodynamics method

upon existing hydrodynamics and radiation diffusion algorithms, and it reduces to

those respective algorithms when the effects of the coupled physics are negligible.

The class of MUSCL schemes is an example of second-order methods for solving

fluid advection problems. One such widely used scheme is the MHM. [31] This

is a four step process, each of which is explicit, that is second-order accurate in

both space and time. The first step involves reconstructing an independent linear

representation within each spatial cell from the initial cell-centered data. The cell

averages are evolved by a half-step in time while keeping the slopes fixed. The

resulting linearized data is then used with a Riemann solver to compute second-

order accurate flux values on the cell edges at the half-time step. Finally, using these

flux values, the cell-centered data is evolved over a full time step.
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One of the most common methods for solving the radiation diffusion equation

in time is the Crank-Nicholson method, also known as the Trapezoid Rule. This is

a well-known, implicit method that is second-order accurate; however, its principal

drawback is that it can become highly oscillatory for stiff systems. An alternative to

this is a linearly discontinuous Galerkin method in time. Despite the fact that this

scheme is more accurate than the Crank-Nicholson method and damps oscillations

quickly, it is much more costly computationally being roughly equivalent to solving

two Crank-Nicholson systems simultaneously over each time step. [32] In this work,

we use the TR/BDF2 scheme for discretizing the radiation diffusion and energy

exchange terms in time. The TR/BDF2 scheme is a one-step, two-stage implicit

method that was first derived in [2]. 1 There is actually a family of such schemes, but

one member of the family can be shown to be optimal in a certain sense. In Section

3, we compare in detail a simple, near-optimal version of the TR/BDF2 method with

the Crank-Nicholson method applied to the radiative transfer equations. This near-

optimal TR/BDF2 scheme consists of a Crank-Nicholson step over half the time step

and, using that solution, a BDF2 solve over the remainder the time step. We also

compare various treatments of the non-linearities in the radiative transfer equations

using this near-optimal TR/BDF2 scheme. The results of this study were published

in [7].

A critical issue for radiation transport spatial discretizations is the preservation of

the diffusion limit. Due to limitations on computational resources, it is often neces-

sary for regions of a given mesh to be optically thick, i.e. for a given cell to encompass

many mean-free-paths. In many cases, these cells are dominated by non-terminal col-

lision processes like scattering or, in the case of radiative transfer, absorption and

1Here we use the term “stage” to refer to an implicit equation that must be solved within each
time step in a discretization scheme, but as explained in Section 2.3.4, the same term can have a
slightly different meaning when referring to Runge-Kutta methods.
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re-emission. In these cases, diffusion theory represents a good approximation to the

transport process. However, not all transport spatial discretizations are guaranteed

to reproduce the correct diffusion solution in a diffusive region without requiring a

spatial resolution that is exceedingly costly. [14] Likewise, even though we use a radi-

ation diffusion model for our radiation-hydrodynamics system, because we discretize

our diffusion equation in first-order form, it is possible that the discrete equations

will fail to have the diffusion limit in highly diffusive problems. So, for this work, we

use an LDFEM discretization, common in radiation transport calculations, for the

diffusion equation because it enables us to investigate the diffusion limit for transport

discretizations without the complications of a full transport treatment.

The MHM includes spatial differencing for the advection equations and incorpo-

rates a linear interpolation from cell-averaged values to compute the slopes. How-

ever, Lowrie and Morel show in [18] that interpolation schemes which only depend

on the mesh geometry and do not incorporate additional physical data, e.g. cross-

section values, fail to have the diffusion limit. Furthermore, the differences in spatial

discretization between the advection and diffusion equations present considerable

complications due to the fact that, in the MHM, the slopes are determined from

interpolations of the cell-centered unknowns; whereas, in the LDFEM, the slopes

are computed as part of the solution to the discretized spatial moment equations.

To add to these complications, the internal energy of the material represents an un-

known in both the material advection and radiation diffusion equations. The easy

solution to this problem is to recompute the internal energy and radiation slopes at

the beginning of each time step using the MHM limiter. Doing this, we were able

to show that our method maintained the diffusion limit in 1D and reproduced shock

solutions accurately. However, standard 2D and 3D hydrodynamics limiters use a

spatial representation that will not maintain the diffusion limit. Thus, to overcome

4



this limitation, the method we present here preserves the slopes computed by the

LDFEM from one time step to the next. We use reconstructed slopes as determined

in the MUSCL-Hancock method only to compute the advection fluxes, and we use

the preserved LDFEM slopes to initialize the implicit calculations for the radiation

energy density and flux and for the material temperature update. This allows our

method to reduce to its standard constituent methods when the contributions from

coupled physics are negligible, and we believe it will also allow us to preserve the

diffusion limit in the future extension of our method to 2D and 3D.

The scheme consists of two main cycles. In the first cycle, we use the MHM

to compute the fluid advection explicitly over half the time step, and we use the

Crank-Nicholson scheme to update the terms affected by the radiation implicitly. In

the second cycle, we use the MHM, again, to compute the fluid advection component

over the remainder of the time step and the BDF2 scheme to compute the implicit

radiation component. One advantage to applying the full MHM over each half time

step is that, if the time step size is being determined by the Courant limit, we can

take twice the usual time step. In this case, the cost of two diffusion solves per

time step is mitigated. Furthermore, the scheme is designed in such a way that, if

the radiation contributions to the hydrodynamics are negligible, the standard MHM

solution is obtained over each half time step, and if the hydrodynamics contributions

to the radiation diffusion are negligible, the standard TR/BDF2 solution for radiative

transfer is over the full time step.

The remainder of this thesis is structured as follows. We begin in Section 2

by describing the algorithms and properties of MUSCL-Hancock, TR/BDF2, and

LDFEMs in greater detail. Then, in Section 3, we investigate the performance of the

TR/BDF2 scheme applied to the equations of radiative transfer using a variety of

treatments for the non-linearities and compare the results with Crank-Nicholson. In

5



Section 4, we describe our second-order accurate radiation-hydrodynamics method

in detail, and in Sections 5 and 6, we demonstrate the performance of this method.

In Section 5, we use the method of manufactured solutions to show that our method

is second-order accurate in both space and time for the equilibrium diffusion limit

as well as the streaming limit. Then, in Section 6, we demonstrate the capability of

our method to accurately compute radiation-hydrodynamic shocks by reproducing

semi-analytic shock solutions. Finally, in Section 7, we summarize our results, and

in Section8, we present our conclusions and recommendations for future work.
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2. CONSTITUENT METHODS

In this section, we discuss the consituent methods of our rad-hydro scheme.

Specifically, we describe, in detail, the MUSCL-Hancock Method, the TR/BDF2

scheme, and the LDFEM spatial discretization of our radiation equations. Each

of these methods represents an integral component to our overall IMEX rad-hydro

scheme.

The physical system we model couples the 1-D equations of compressible fluid

dynamics with a grey radiation diffusion model. This rad-hydro system may be

written as:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (2.1a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2
)

+
∂

∂x
(p) =

σt
c
Fr,0 , (2.1b)

∂E

∂t
+

∂

∂x
[(E + p)u] = −σac

(
aT 4 − Er

)
− σtu

c
Fr,0 , (2.1c)

∂Er
∂t

+
∂Fr
∂x

= σac
(
aT 4 − Er

)
+
σtu

c
Fr,0 , (2.1d)

c

3

∂Er
∂x

= −σt
c
Fr,0 , (2.1e)

where ρ is the density, u is the velocity, E is the total material energy, Er is the

radiation energy density, Fr is the radiation flux, and Fr,0 is given by:

Fr,0 = Fr −
4

3

u

c
Er . (2.2)

Note that, while we write the radiation equations in P1 form, there is no time

derivative in Eq. (2.1e); so, Eqs. (2.1d) and (2.1e) fundamentally represent a diffusion

7



equation. By writing the radiation diffusion equation in this manner, the treatment

of the momentum deposition and radiation advection terms is more straight-forward,

as is the extension of the method to radiation transport.

Furthermore, we use a simplified model for material motion treatment developed

by Morel which analytically preserves the equilibrium diffusion limit through first-

order v/c [24]. This approximation also yields correct equilbrium values for energy-

integrated quantities and is conservative in momentum and energy; though, our

scheme will not conserve momentum, since we don’t have a radiation momentum

conservation statement.

Mathematically, Eq. (2.1) typically does not have a unique weak solution in and

of itself. In order to establish uniqueness, we identify the following condition for the

desired physical solution in the presence of a discontinuity:

a∗L > S > a∗R , (2.3)

where a∗L and a∗R are the radiation-modified speeds of sound of the material just to the

left and right, respectively, of a given solution discontinuity, which is moving at speed

S. As explained in [15], this condition implies that the solution propagating along

characteristic lines in the x/t plane intersect the discontinuity as t increases, and

conversely, that no characteristic traced in the direction of decreasing t will intersect

a line of discontinuity. Thus, every solution point in the x/t plane can be connected

via characteristic lines to a point in the initial condition. Because the intersection

of characteristics at a discontinuity results in an increase in entropy for compressible

fluid flow, Eq. (2.3) is referred to as the entropy condition, or Lax inequality.

Separating the more slowly-varying fluid advection terms from the radiation dif-

fusion and exchange terms, and ignoring radiation momentum deposition terms for

8



the time being, the pure hydrodynamic component is given by:

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (2.4a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2
)

+
∂p

∂x
= 0 , (2.4b)

∂E

∂t
+

∂

∂x
[(E + p)u] = 0 . (2.4c)

The more rapidly-varying equations involving radiation diffusion and material

energy exchange, then, are given by:

∂E

∂t
= −σac

(
aT 4 − Er

)
− σt

u

c

(
4

3
Eru− Fr

)
, (2.5a)

∂Er
∂t

+
∂Fr
∂x

= σac
(
aT 4 − Er

)
+ σt

u

c

(
4

3
Eru− Fr

)
, (2.5b)

1

3

∂Er
∂x

+
σt
c
Fr = σt

4

3
Er
u

c
. (2.5c)

Additionally, throughout this thesis, we use the cm-jerk-shake unit system in

which 1 jerk = 109 Joules and 1 shake = 10−8 seconds. Furthermore, the spatial

domain is a 1-D mesh where cell “i” is defined as x =
{
x : x ∈

(
xi−1/2, xi+1/2

)}
, and

∆xi = xi+1/2 − xi−1/2 . (2.6)

2.1 MUSCL-Hancock Method

The MUSCL-Hancock method is a widely used scheme for solving the hydrody-

namic conservation equations, given by Eqs. (2.4). Writing Eqs. (2.4) in operator

form, we have:

∂U

∂t
+
∂F (U)

∂x
= 0 , (2.7)
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where

F =


ρu

ρu2 + p

(E + p)u

 . (2.8)

The first step in the MUSCL-Hancock Method is to perform a reconstruction

step, linearizing the cell-averaged data, Un
i :

Un
L,i = Un

i −
∆n
i

2
; Un

R,i = Un
i +

∆n
i

2
, (2.9)

where

Ui =


ρi

(ρu)i

Ei

 , (2.10)

and ∆n
i is the slope in cell i determined from the cell-centered data. The simplest

form of ∆i is:

∆n
i =

1− ω
2

(
Un
i − Un

i−1

)
+

1 + ω

2

(
Un
i+1 − Un

i

)
, (2.11)

where ω is chosen based on how much relative weight the user wants to give to the

left or right differences. To solve the problems in this thesis, we use ω = 0. The

slope obtained in Eq. (2.11) may also be modified using some type of slope or flux

limiter to reduce spurious oscillations, which may be produced near strong gradients.

Some examples of these limiters include minmod, superbee, and vanLeer, which are

described in [31]. We note that no proof exists that these limiters converge to the

entropy solution, i.e. the desired physical solution, for Eqs. (2.4). In fact, for a

generalized minmod limiter, given by:
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∆n
i = minmod

(
θ
Un
i − Un

i−1

∆x
,
Un
i+1 − Un

i−1

2∆x
, θ
Un
i+1 − Un

i

∆x

)
, (2.12)

with θ > 1, Kurganov et al show that, for a 1D scalar conservation law, in some cases

the limited solution does not converge to the entropy solution [12]. However, for the

dissipative limit, i.e. the “standard” minmod limiter where θ = 1, their results show

that it does converge to the entropy solution for all tested cases. For our radiative

shock tests in Section 6, we use the standard minmod limiter, and we see that our

results do converge to the correct semi-analytic solutions.

After the data is reconstructed, the hydrodynamic cell-averages are evolved over

a half time step:

U
n+1/2
i = Un

i +
∆tn

2∆xi

(
F n
L,i − F n

R,i

)
. (2.13)

where

F n
L,i = F

(
Un
L,i

)
, F n

R,i = F
(
Un
R,i

)
. (2.14)

The half-step values are then used in conjunction with a Riemann solver to com-

pute the cell-edge fluxes at tn+1/2, F
n+1/2
i+1/2 . The Riemann problem and various Rie-

mann solvers are described in detail in [31]. One such Riemann solver is the HLL

Riemann solver, which assumes that the exact solution space consists of three regions

separated by the two fastest signal velocities, i.e. a two-wave model. In this research,

we use the HLLC approximate Riemann solver to compute the intercell fluxes. The

HLLC Riemann solver modifies the HLL solver by incorporating a third wave, which

accurately restores the contact wave from the Euler equations. Once we’ve computed

the fluxes, we use them to determine the final MUSCL-Hancock solution, Un+1
i :
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Un+1
i = Un

i +
∆t

∆x

(
F
n+1/2
i−1/2 − F

n+1/2
i+1/2

)
. (2.15)

2.2 Linearly Discontinuous Finite Element Method in Space

In discretizing the radiative transfer equations in space, we want to preserve

second-order accuracy for the radiation energy density, radiation energy flux, and

material temperature. To do this, we apply a linear-discontinuous Galerkin approxi-

mation to Eq. (2.5). In this section, we neglect material motion terms for simplicity,

and we rewrite Eq. (2.5a) in terms of material temperature to make treating the

non-linearities in the Planck source term more straightforward. We also neglect in-

cluding the kinetic energy terms, since they can be treated as an external source in

the implicit calculation. Thus, the remaining material temperature equation is given

by:

Cv
∂T

∂t
= σac

(
E − aT 4

)
+Q . (2.16)

We approximate the solution in each cell using a linear representation. To ac-

complish this, we define a set of tent functions as our basis, each of which has a value

of 1 at a given vertex and 0 at all the other vertices. So, for a given cell, the two

non-zero basis functions in that cell may be defined as:

bL (x) =
xi+1/2 − x

xi+1/2 − xi−1/2

, (2.17a)

bR (x) =
x− xi−1/2

xi+1/2 − xi−1/2

. (2.17b)

Using these basis functions, we define the radiation energy density, radiation energy
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flux, and material temperature inside a given cell i as:

Er (x) = Er,LbL + Er,RbR , (2.18a)

Fr (x) = Fr,LbL + Fr,RbR , (2.18b)

T (x) = TLbL + TRbR . (2.18c)

Furthermore, we allow the solution to be discontinuous at cell interfaces so that,

for example, Er,R,i−1 may not necessarily be equal to Er,L,i. This overall approach is

called a linearly discontinuous Galerkin method and is very similar to the method de-

scribed by Reed and Hill to discretize the steady-state S2 neutron transport equation

[26].

We obtain the weak form of the solution to the balance equation by multiplying

(2.5b) by a generic test function and integrating over the width of the cell, yielding:

∫ xi+1/2

xi−1/2

bk
∂Er
∂t

dx+

∫ xi+1/2

xi−1/2

bk
∂Fr
∂x

dx =

∫ xi+1/2

xi−1/2

bkσac
(
aT 4 − Er

)
dx . (2.19)

Then, using integration by parts, we have:

∫ xi+1/2

xi−1/2

bk
∂Er
∂t

dx+

[
(bkFr) |x=xi+1/2

− (bkFr) |x=xi−1/2
−
∫ xi+1/2

xi−1/2

Fr
∂bk
∂x

dx

]

=

∫ xi+1/2

xi−1/2

bkσac
(
aT 4 − Er

)
dx . (2.20)

Using a similar process with (2.5c), we derive the weak form of the solution for

the radiation energy flux:
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c

3

[
(bkEr) |x=xi+1/2

− (bkEr) |x=xi−1/2
−
∫ xi+1/2

xi−1/2

Er
∂bk
∂x

dx

]

+

∫ xi+1/2

xi−1/2

bkσtFr dx = 0 . (2.21)

At this point we need expressions relating Er,i−1/2 and Fr,i−1/2, the edge values of

Er and Fr, respectively, to interior values. These relationships are obtained via the

characteristic variables:

ε+ =
c

2
Er +

√
3

2
Fr , (2.22a)

and

ε− =
c

2
Er −

√
3

2
Fr . (2.22b)

The first characteristic variable, ε+ represents an angular radiation intensity that

propagates from left to right, while the second characteristic variable, ε− represents

an angular radiation intensity that propagates from right to left. These characteristic

variables are defined at the cell edges via upwinding:

ε+i−1/2 =
c

2
Er,R,i−1 +

√
3

2
Fr,R,i−1 , (2.23a)

ε−i−1/2 =
c

2
Er,L,i −

√
3

2
Fr,L,i . (2.23b)

Using the above definitions, we can determine the edge values Er,i−1/2 and Fr,i−1/2
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as follows:

Er,i−1/2 =
1

c

(
ε+i−1/2 + ε−i−1/2

)
,

=
Er,L,i + Er,R,i−1

2
+

√
3

2c
(Fr,R,i−1 − Fr,L,i) , (2.24)

Fr,i−1/2 =
1√
3
ε+i−1/2 +

−1√
3
ε−i−1/2 ,

=
cEr,R,i−1 − cEr,L,i

2
√

3
+

1

2
(Fr,R,i−1 + Fr,L,i) . (2.25)

Because we have 2 equations and 4 unknowns describing the radiation, we can fully

determine the system by using both bL and bR as test functions in (2.20) and (2.21).

We will also use a process called “mass matrix lumping” to improve robustness. To

explain this, consider the integral of the time derivative term using both the left and

right basis functions. Writing this in matrix form, we have:


∫ xi+1/2

xi−1/2

bLbL dx

∫ xi+1/2

xi−1/2

bLbR dx∫ xi+1/2

xi−1/2

bRbL dx

∫ xi+1/2

xi−1/2

bRbR dx



∂Er,L
∂t

∂Er,R
∂t

 = ∆xi


1

3

1

6
1

6

1

3



∂Er,L
∂t

∂Er,R
∂t

 . (2.26)

The matrix on the right-hand side of (2.26) is called a “mass matrix” because

it does not involve integrals over the spatial derivatives. In mass matrix lumping,

the diagonal of each row is set equal to the sum of the elements of the row, and the

off-diagonals are set to zero. For (2.26), this becomes:

∆xi


1

3

1

6
1

6

1

3



∂Er,L
∂t

∂Er,R
∂t

 =⇒ ∆xi


1

2
0

0
1

2



∂Er,L
∂t

∂Er,R
∂t

 . (2.27)

15



Integrating (2.20) and (2.21) using bk = bL and incorporating mass matrix lump-

ing, we have:

∆xi
2

∂Er,L,i
∂t

+
c

2
√

3
(Er,L,i − Er,R,i−1) +

Fr,R,i − Fr,R,i−1

2
=

∆xi
2
σa,L,ic

(
aT 4

L,i − Er,L,i
)
, (2.28)

cEr,R,i − cEr,R,i−1

6
− Fr,R,i−1

2
√

3
+

(
σt,L,i∆xi

2
+

1

2
√

3

)
Fr,L,i = 0 . (2.29)

Likewise, integrating (2.20) and (2.21) using bk = bR, we have:

∆xi
2

∂Er,R,i
∂t

+
c

2
√

3
(Er,R,i − Er,L,i+1) +

Fr,L,i+1 − Fr,L,i
2

=

∆xi
2
σa,R,ic

(
aT 4

R,i − Er,R,i
)
, (2.30)

cEr,L,i+1 − cEr,L,i
6

− Fr,L,i+1

2
√

3
+

(
σt,L,i∆xi

2
+

1

2
√

3

)
Fr,L,i = 0 . (2.31)

We obtain equations for the temperature unknowns in a similar manner, by mul-

tiplying (2.16) by a basis function and integrating over the cell width as:

∫ xi+1/2

xi−1/2

Cvbk
∂T

∂t
dx =

∫ xi+1/2

xi−1/2

bk
{
σac
(
E − aT 4

)
+Q

}
dx . (2.32)

where k = L,R. Carrying out this integration and using mass matrix lumping, we

get:

Cv
∂Tk,i
∂t

= σa,k,ic
(
Er,k,i − aT 4

k,i

)
+Qi . (2.33)
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Here, we have a point-wise expression for the temperature unknowns. This pre-

serves the spatial independence of (2.16). Next, we consider the solution at the left

and right boundaries.

In our problems, we use source and periodic boundary conditions. Boundary

conditions are met by appropriately defining the incident characteristic variables at

the boundries:

ε+1/2 =
c

2
Einc
r,L +

√
3

2
F inc
r,L , (2.34)

ε−N+1/2 =
c

2
Einc
r,R −

√
3

2
F inc
r,R , (2.35)

where Einc
r,L , Einc

r,R, F inc
r,L , and F inc

r,R represent the incident values for the left and right

values of the radiation energy density and radiation energy flux. For a black-body

source condition the incident characteristic variables are set to the correct incident

intensity, acT 4
inc/2, where Tinc is the black-body boundary temperature. For example,

consider a left boundary black-body source. The characteristic variable is set as

follows:

ε+1/2 =
c

2
Einc
r,L +

√
3

2
F inc
r,L =

1

2
acT 4

inc . (2.36)

Thus, we have two parameters available, Einc
r,L and F inc

r,L , to determine one value

of the incident characteristic variable. For simplicity, we simply choose to set F inc
r,L

to zero and set Einc
r,L = aT 4

inc.

Periodic boundary conditions are defined such that the radiation energy flux

entering the left boundary is equivalent to the energy flux exiting the right boundary

and vice versa. This may be written as:
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f+
1/2 = f+

N+1/2 , (2.37a)

f−N+1/2 = f−1/2 . (2.37b)

Periodic boundary conditions present a challenge to solving our linear system

in that the diffusion matrix is no longer banded; thus, solving the system directly

would take substantially more computational resources. We can mitigate this by

computing the correct periodic boundary conditions in 2x2 system and using those

boundary conditions with the standard banded solver to compute the full solution.

To compute the periodic boundary conditions, we need to perform three separate

diffusion calculations. In the first diffusion solve, we set the incident currents to zero

and the distributed source to its actual value and compute the exiting currents, f−L,1

and f+
R,1. Then, in the second and third diffusion solves, we set the distributed source

to zero, one of the boundaries to an incident current of 1, and the other boundary

to 0. We compute the exiting currents for each of these calculations: f−L,2 and f+
R,2

when the left boundary is set to 1 and f−L,3 and f+
R,3 when the right boundary is set

to 1. Then, we set up our 2x2 system as:

f−L
f+
R

 =

f−L,2 f−L,3

f+
R,2 f+

R,3


f+

L

f−R

+

f−L,1
f+
R,1

 . (2.38)

Because we’re computing periodic boundary conditions, we can relate the inflow

currents to the outflow currents as follows:

f−L
f+
R

 =

0 1

1 0


f+

L

f−R

 . (2.39)

Solving this, we have the correct inflow currents to produce the diffusion solution
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with periodic boundaries. Thus, we only need to perform one more diffusion calcula-

tion with f+
L and f−R to obtain the final solution with periodic boundary conditions

for a given iteration.

Substituting (2.34) into (2.24) and (2.25), we obtain equations for the radiation

energy density and energy flux at the left boundary:

∆xi
2

∂Er,L, 1

∂t
+

c

2
√

3
Er,L,1 +

Fr,R,1
2

=

∆xi
2
σa,L,1c

(
aT 4

L,1 − Er,L,1
)

+
cEinc

r,L

2
√

3
+
F inc
r,L

2
, (2.40)

cEr,R,1
6

+

(
σt,L,1∆xi

2
+

1

2
√

3

)
Fr,L,1 =

cEinc
r,L

6
+
F inc
r,L

2
√

3
. (2.41)

Similarly, substituting (2.35) into (2.24) and (2.25), we obtain equations for the

solution at the right boundary:

∆xi
2

∂Er,R,N
∂t

+
c

2
√

3
Er,R,N −

Fr,L,N
2

=

∆xi
2
σa,R,Nc

(
aT 4

R,N − Er,R,N
)

+
cEinc

r,R

2
√

3
−
F inc
r,R

2
, (2.42)

−cEL,N
6

+

(
σt,R,N∆xi

2
+

1

2
√

3

)
Fr,R,N = −

cEinc
r,R

6
+
F inc
r,L

2
√

3
. (2.43)

Here, we note that (2.33) does not require boundary conditions.

2.3 TR/BDF2 Scheme

The Crank-Nicholson (CN) [8] scheme has been traditionally used in the com-

putational community as a second-order accurate time discretization for radiation

transport and diffusion calculations. However, this scheme can yield highly oscil-
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latory solutions for stiff systems. The second-order backward difference formula

(BDF2) [8] is a one-stage scheme that requires solution values from two previous

time steps rather than one (a two-step scheme). It is highly damped and compati-

ble with existing transport acceleration techniques. However, the BDF2 scheme has

unusual conservation properties that we consider undesirable. An ideal second-order

scheme would possess the following properties:

• one stage,

• one step,

• strong damping of oscillations,

• compatibility with existing transport acceleration techniques,

• standard conservation properties.

We are unaware of any scheme that has all of these properties, but the TR/BDF2

scheme, developed by Bank et. al [2], has all but one. It is a one-step, two-stage

algorithm. The solution is computed over a portion of the time step, γ∆t, using the

Trapezoid Rule (Crank-Nicholson method); then, the solution over the remainder of

the time step, (1 − γ)∆t, is computed using the BDF2 method. To illustrate this,

consider the following nonlinear equation:

∂f

∂t
= Af , (2.44)

where f is the solution and A is a nonlinear operator dependent on f . The general

TR/BDF2 scheme may be written as:

fn+γ − fn

γ∆t
=

1

2

(
An+γfn+γ + Anfn

)
, (2.45a)
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(2− γ)fn+1 − γ−1fn+γ + γ−1(1− γ)2fn

∆t
= (1− γ)An+1fn+1 . (2.45b)

Bank demonstrated that the optimum value of γ is
√

2− 2; however, so that the

hydro portions of our rad-hydro scheme will be computed over equal time steps, we

use use γ = 1/2. Thus, Eq. (2.45a) and Eq. (2.45b) become:

2(fn+1/2 − fn)

∆t
=

1

2

(
An+1/2fn+1/2 + Anfn

)
, (2.46a)

3fn+1 − 4fn+1/2 + fn

∆t
= An+1fn+1 . (2.46b)

We later demonstrate that any advantages in accuracy and stability of the optimal

scheme relative to our simplified scheme are negligible.

2.3.1 Conservation

The analytic average value of Af over a time step is only a function of Af values

evaluated within that step. To demonstrate that a conservation statement may be

made for the TR/BDF2 scheme over a single time step, we multiply Eq. (2.46a) by

2, add it to Eq. (2.46b) and divide the sum by 3 to get the following:

fn+1 − fn

∆t
=

1

3

(
An+1fn+1 + An+1/2fn+1/2 + Anfn

)
. (2.47)

From Eq. (2.47), we see that the average time derivative of the solution over one

time step is equal to a uniform three-point average of Af over the same time step.

Let us now compare this with the standard BDF2 scheme. We demonstrate that

the BDF2 scheme fails to preserve this analytic property due to the fact that it is a

multistep scheme. One step schemes, like the TR/BDF2 method, have no knowledge

of solution values that lie outside of any given time step; thus, additional values

cannot appear in the conservation expression. For this demonstration, we use a fixed
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time step for simplicity, but the principles we demonstrate apply with arbitrary time

steps. Because the BDF2 scheme is a two-step method, we must use a one-step

scheme to determine the first time step. Here, we use the Crank-Nicholson scheme.

Thus, the solution over the first step is computed using:

f (1) − f (0)

∆t
=

1

2

(
A(1)f (1) + A(0)f (0)

)
. (2.48)

Then, using the standard BDF2 scheme, the solution can be computed at each

subsequent time:

3

2

fn+1 − fn

∆t
− 1

2

fn − fn−1

∆t
= An+1fn+1 . (2.49)

The partial time derivative of f averaged over [tn, tn+1] can be expressed for the

BDF2 scheme as follows:

fn+1 − fn

∆t
=

1

3

fn − fn−1

∆t
+

2

3
An+1fn+1 . (2.50)

Using Eq. (2.50) and Eq. (2.48), we find that the conservation expression for the

second time step may be written as:

f (2) − f (1)

∆t
=

4

6
A(2)f (2) +

1

6
A(1)f (1) +

1

6
A(0)f (0) . (2.51)

Note from the above equation that A(0)f (0) plays a role in the conservation expression

over the time step from t(1) to t(2). Using Eq. (2.50) and Eq. (2.51), we obtain the

conservation expression for the third step:

f (3) − f (2)

∆t
=

12

18
A(3)f (3) +

4

18
A(2)f (2) +

1

18
A(1)f (1) +

1

18
A(0)f (0) . (2.52)
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It is not difficult to see from these examples that continued application of Eq. (2.50)

yields a conservation statement at each time step that depends upon values of Af

evaluated at each and every previous time. Thus while a conservation expression for

each time step can be made with the BDF2 scheme, the resulting expression has an

undesirable dependence upon all previously computed values of Af . Nevertheless, if

one wishes to compute a conservation statement for the BDF2 scheme for each time

step, it can be done fairly efficiently. For instance, if one is only interested in the

average value of Af over the time step, Eq. (2.50) can be directly used. However, it

is often of interest to decompose the average of Af into a sum of component source

rates and sink rates. Examples of such components for radiation diffusion include

the radiation energy absorption, emission, inflow, and outflow rates. Eq. (2.50)

cannot be directly used to compute such components because one does not know

how to decompose the terms on the right side of that equation that are functions of

f rather than Af . This problem can be circumvented by recognizing that Eq. (2.50)

is a recursion formula that relates successive averages of Af . In particular, we can

re-express Eq. (2.50) as follows:

〈Af〉n+ 1
2 =

1

3
〈Af〉n−

1
2 +

2

3
An+1fn+1 , (2.53)

where 〈Af〉n+ 1
2 denotes the average value of Af from tn to tn+1. One can directly

compute the components of Āf for the first time step (which must be performed with

a one-step scheme), and then use Eq. (2.53) to compute the components for each

successive BDF2 step. While Eq. (2.53) only applies with uniform time steps, one

can easily compute an analog for arbitrary time steps. The general BDF2 equation
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for computing fn+1 given fn and fn−1 is

(
2tn+1 − tn − tn−1

tn+1 − tn−1

)(
fn+1 − fn

tn+1 − tn

)
−

(
tn+1 − tn

tn+1 − tn−1

)(
fn − fn−1

tn − tn−1

)
= An+1fn+1 . (2.54)

2.3.2 Accuracy

Next, to demonstrate accuracy and stability, consider the following linear ODE:

∂f

∂t
+ kf = 0 , f(0) = 1, k > 0 . (2.55)

Applying Eqs. (2.46a) and ((2.46b)) to the ODE in Eq. (2.55), we get the following

solution for fn+1:

fn+1 =
12− 5z

12 + 7z + z2
fn . (2.56)

where z = k∆t. By performing a Taylor series expansion on Eq. (2.56) and comparing

that with a Taylor series expansion of the exact solution, f(t) = exp(−z), we see

that the expression in Eq. (2.56) is locally third-order accurate:

fn+1 = e−z − 1

24
(z3) . (2.57)

Thus, the method is globally second-order accurate. The leading-order coefficient for

the optimal TR/BDF2 method is −
(

1√
3
− 2

3

)
≈ −0.0404 which is negligibly smaller

in magnitude than − 1
24
≈ −0.0417. Thus the difference in truncation error between

the two methods is negligible.
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2.3.3 Stability

As shown in Fig. 2.1, by plotting the amplification factor that relates fn to fn+1

in Eq. (2.56), we can observe the stability of the method as a function of z. We can

see that the function has a maximum value of 1, a minimum value of -0.212, and

approaches zero as z approaches infinity; thus, the TR/BDF2 method is L-stable.

Furthermore, though the method can oscillate, oscillatory modes will be damped by

about 80 percent at each time step. This is much better behavior than the Crank-

Nicholson scheme, which is not L-stable and has a minimum value of -1 so that

oscillatory modes may not be damped at all. The optimal TR/BDF2 method has

a minimum amplification factor of -.207, which is negligibly better than that of the

simplified TR/BDF2 value.

2.3.4 Connection to Runge-Kutta Methods

The general TR/BDF2 scheme can be categorized as an implicit Runge-Kutta

method. For instance, an s-stage Runge-Kutta method for solving the nonlinear

equation

∂f

∂t
= G(t, f) , (2.58)

can be expressed in terms of the s×s matrix B, and the s-vectors c and d as follows:

Fi = fn + ∆t
s∑
j=1

bi,j G (tn + cj∆t, Fj) , i = 1, . . . , s. (2.59)

fn+1 = fn + ∆t
s∑
i=1

diG (tn + ci∆t, Fi) . (2.60)
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Figure 2.1: Stability curve for the TR/BDF2 scheme.

This information can be conveniently expressed using a Butcher tableau:

c B

dT
(2.61)

The tableau for the general TR/BDF2 scheme (which requires considerable algebraic
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manipulation of Eqs. ((2.45a)) and ((2.45b)) to obtain) is

0 0 0 0

γ γ/2 γ/2 0

1 1/[2(2-γ)] 1/[2(2-γ)] (1-γ)/(2 - γ)

1/[2(2-γ)] 1/[2(2-γ)] (1-γ)/(2 - γ)

(2.62)

Note from the tableau that this scheme has three stages. However, because F1, is

equal to fn one need not solve an equation to obtain it. Schemes with this property

are referred to as FSAL (First-Same as Last). In Section 1 we noted that the two

equations that must be solved each time step in the general TR/BDF2 method can

be solved sequentially rather than simultaneously. This property is expressed in

the tableau by the lower-triangular structure of B. Schemes with this property are

referred to as Diagonally-Implicit-Runge-Kutta schemes.

In the following section, we will consider several variations on the TR/BDF2

scheme for solving non-linear systems. We will test both fully converged and single-

iteration Newton and Picard schemes applied to our radiative diffusion system and

compare the results for both accuracy and efficiency.
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3. VARIATIONS ON THE TR/BDF2 SCHEME*

In this section, we apply several variations of the TR/BDF2 method to the

1D, grey equations of nonlinear radiative heat diffusion and compare their perfor-

mance with the more widely-used Crank-Nicholson scheme. This radiative heat diffu-

sion system is equivalent to the implicit component of our radiation-hydrodynamics

model, given by Eq. (2.5), in a static medium. Because these equations are nonlinear,

we examine various treatments for the nonlinear terms. Traditionally, the Newton

method is used to solve these equations. However, because photon cross-section data

is generally tabular, the contributions to the Jacobian matrix from the cross-sections

are usually neglected, resulting in a kind of hybrid Newton-Picard method. We ex-

amine the cost of the Newton-Picard method in terms of both accuracy and efficiency

relative to the pure Newton method. We also compare the efficiency obtained by con-

verging the nonlinear terms with that obtained by fixing the number of iterations.

The study presented here, which was previously published in [7], is somewhat similar

to that of Lowrie [19] except that he considered variations of the Crank-Nicholson

scheme rather than the TR/BDF2 scheme. The results of this analysis, in turn,

inform our decision on how to implement the TR/BDF2 method into our overall

radiation-hydrodynamics algorithm.

In the remainder of this section, we develop our variants on the TR/BDF2 scheme

which we later apply to the radiative heat diffusion equations. We describe the two

problems we use to test our methods - a smooth, sinusoidal problem and a Marshak

wave, and show the results for each before presenting our conclusions.

*Reprinted from the Journal of Computational Physics, 230, J.D. Edwards, J.E. Morel, and
D.A. Knoll, “Nonlinear Variants of the TR/BDF2 Method for Thermal Radiative Diffusion”, 1198-
1214, Copyright 2011, with permission from Elsevier.
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3.1 Radiative Heat Diffusion Equations

The radiative heat diffusion equations describe how heat is exchanged via photon

emission and absorption in a static medium with the assumption that the angular

distribution of the radiation is linear. We further assume a 1-D, grey model for

radiation energy density. The equations describing this system are:

∂Er
∂t

+
∂Fr
∂x

= σac
(
aT 4 − Er

)
, (3.1a)

1

3

∂Er
∂x

+
σt
c
Fr = 0 , (3.1b)

Cv
∂T

∂t
= σac

(
Er − aT 4

)
. (3.1c)

The dependent variables in these equations, Er and T , represent radiation energy

density and material temperature, respectively. The absorption and total cross sec-

tions, σa and σt, both strongly depend on temperature, but because the heat capacity,

Cv, only weakly depends on T , we treat it as constant. Lastly, a and c represent the

Boltzmann constant and the speed of light. In space, these equations are discretized

using an LDG scheme, which is second-order accurate.[33, 34] These equations are

solved by first linearizing Eqs. (3.1a) and ((3.1c)) using one of two methods described

in a later section. Then, the linearized version of Eq. (3.1c) is used to eliminate the

implicit temperature terms from Eq. (3.1a) resulting in a diffusion equation implic-

itly dependent only on Er. Due to the relatively few number of unknowns used in

our problems, this equation is solved directly using Gauss elimination. Finally, using

Er and Eq. (3.1c), the temperature is computed locally.
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3.2 Variations on the TR/BDF2 Method

Here, we describe our variations on the TR/BDF2 scheme. They differ according

to our treatment of the cross sections and whether the solution is converged or the

number of iterations fixed.

To ensure stability, the Planck function is always treated via the Newton method.

We treat the cross-sections using two types of iteration schemes. The first is the

Newton method, which requires temperature derivatives of the cross-sections and

converges quadratically once the iterate is sufficiently close to the solution.[29] The

second iteration scheme is Picard’s method (also known as fixed-point iteration)

which does not require temperature derivatives of the cross sections but converges

linearly once the iterate is sufficiently close to the solution.[29] For simplicity, we

define our methods in terms of Eq. (2.44). When it is necessary, the operator A is

expressed as a product of two matrices, B and C, where the former represents those

components of A containing cross sections and the latter represents those containing

the Planck function. Our system cannot actually be expressed in this form, but we

assume that it can be so expressed as a simple device for making the treatment of

the cross sections and the Planck function apparent without consideration of the full

equations. The operators in our descriptions carry iteration information in addition

to time indexing. Quantities evaluated at the previous iterate carry a superscript

“*”. For instance, f ∗ denotes the previous iterate for f . The primary unknown in

each equation takes the form of δf , the additive change in the iterate for f . For

instance, the new iterate of f is given by δf + f ∗.

3.2.1 Converged Newton Method

The first variation is to apply the Newton method to both the cross sections and

the Planck function.
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2 (δf + f ∗ − fn)

∆t
=

1

2

(
A∗ (δf + f ∗) +

∂A

∂f

∗
f ∗δf + Anfn

)
. (3.2a)

Note that f ∗ denotes the previous iteration value for fn+ 1
2 in the above equation. The

initial value for f ∗ is fn. The iteration process is converged for the above equation

before proceeding to the next equation.

3 (δf + f ∗)− 4fn+ 1
2 + fn

∆t
= A∗ (δf + f ∗) +

∂A

∂f

∗
f ∗δf . (3.2b)

Note that f ∗ denotes the previous iteration value for fn+1 in the above equation.

The initial value for f ∗ is fn+ 1
2 .

3.2.2 One-Iteration Newton Method

Another option is to stop iterating after a single iteration of the converged Newton

method:

2δf

∆t
=

1

2

(
An (δf + fn) +

∂A

∂f

n

fnδf + Anfn
)
. (3.3a)

3
(
δf + fn+ 1

2

)
− 4fn+ 1

2 + fn

∆t
=

An+1/2
(
δf + fn+ 1

2

)
+
∂An+ 1

2

∂f
fn+ 1

2 δf . (3.3b)

3.2.3 Converged Hybrid Method

The next variation is to treat the cross sections using Picard’s method. This is

similar to the Newton method, except that the contribution from the derivatives of
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the cross sections to the Jacobian are neglected:

2 (δf + f ∗ − fn)

∆t
=

1

2

[
B∗
(
C∗ (δf + f ∗) +

∂C

∂f

∗
f ∗δf

)
+ BnCnfn

]
. (3.4a)

Note that f ∗ denotes the previous iteration value for fn+ 1
2 in the above equation.

The initial value for f ∗ is fn. The iteration process is converged for the above

equation before proceeding to the next.

3 (δf + f ∗)− 4fn+ 1
2 + fn

∆t
= B∗

(
C∗ (δf + f ∗) +

∂C

∂f

∗
f ∗δf

)
. (3.4b)

Note that f ∗ denotes the previous iteration value for fn+1 in the above equation.

The initial value for f ∗ is fn+ 1
2 .

It should be noted that the Newton method and the hybrid method converge to

the same solution, but the hybrid method will generally be expected to require more

iterations to converge.

3.2.4 Two-Iteration Hybrid Method

The last variant is a two-iteration hybrid method. Because Picard’s method is

used to treat the cross sections, the additional iteration is necessary to achieve second

order-accuracy.

2 (δf)

∆t
=

1

2

[
Bn

(
Cn (δf + fn) +

∂C

∂f

n

fnδf

)
+ BnCnfn

]
. (3.5a)

f ∗ = δf + fn . (3.5b)
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2 (δf + f ∗ − fn)

∆t
=

1

2

[
B∗
(
C∗ (δf + f ∗) +

∂C

∂f

∗
f ∗δf

)
+ BnCnfn

]
. (3.5c)

fn+ 1
2 = δf + f ∗ . (3.5d)

3
(
δf + fn+ 1

2

)
− 4fn+ 1

2 + fn

∆t
=

Bn+ 1
2

(
Cn+ 1

2

(
δf + fn+ 1

2

)
+
∂C

∂f

n+ 1
2

fn+ 1
2 δf

)
. (3.5e)

f ∗ = δf + fn+ 1
2 . (3.5f)

3 (δf + f ∗)− 4fn+ 1
2 + fn

∆t
=

B∗
(
C∗ (δf + f ∗) +

∂C

∂f

∗
f ∗δf

)
. (3.5g)

fn+1 = δf + f ∗ . (3.5h)

3.3 Computational Results

In this section we present our computational results. Two problems are considered

and both accuracy and efficiency are measured.

3.3.1 Infinite Medium Sine Wave Problem

The first of our test problems is an infinite medium sine wave. Because the

solution is infinitely differentiable in space and time, this problem is designed to

show asymptotic behavior quickly. The initial radiation energy density is defined as:

Er(x) = 0.05 +
1− 0.05

2

[
1 + sin

{
π

2

2x− 0.05

0.05

}]
, (3.6)
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which varies monotonically from 0.05 to 1.0 jerks/cm3. We apply reflective boundary

conditions so that our problem represents a continous sine wave in an infinite medium.

The temperature is set to be in thermal equilibrium with the material, i.e. Er =

aT 4. As the sine wave evolves toward the final time of 0.02 shakes, it will relax

monotonically, approaching a constant solution as t → ∞. The cross sections have

the following temperature dependence:

σa(T ) =
σo
T 3

, (3.7)

where σo is a constant equal to 0.3, and σt(T ) = σa(T ). The spatial domain is a

0.05 cm thick slab discretized into 50 spatial cells, and the heat capacity, Cv , is

0.3 jerks/(cm3 keV). We use fixed time steps and converge the solution to a relative

tolerance of 10-8, where the tolerance, ε, is given by:

ε = max
i

2|φk+1
i − φki |

φk+1
i + φki

(3.8)

and φki represents one of the cell-averaged conserved variables in cell i at iteration k.

3.3.1.1 Accuracy

To compare our TR/BDF2 schemes, we run this problem varying the number of

time steps from 1K to 64K. We compute the error for each method by comparing

it with a numerical “exact” solution at the final time of the calculation. This is

generated using the converged Newton TR/BDF2 scheme with 1024K time steps,

which is 16 times more refined than the smallest tested time step. The error is

computed as:

eφ,∆t =
‖φ∆t − φexact‖2

‖φexact‖2

, (3.9)
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where φ is either Er or T . For comparison, in addition to the TR/BDF2 based

schemes described in Section 3.2, we include results generated using the Crank

Nicholson scheme. For these two additional methods, we use the converged Newton

approach to treat the nonlinearities. Figs. 3.1 and 3.2 show the error as a function of

the number of time steps for the radiation energy density and material temperature,

respectively.
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Figure 3.1: Error in radiation energy density versus number of time steps for the
infinite medium sine wave.

From these pictures, we can see that the converged TR/BDF2 schemes are the

most accurate. Furthermore, as the time step becomes small, the one-iteration New-
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Figure 3.2: Error in temperature versus number of time steps for the infinite medium
sine wave.

ton method has the same error as the fully converged methods. So, for the infinite

medium sine wave problem, as we increase the number of time steps past 4000, one

Newton iteration is sufficient to reduce the error associated with convergence below

the error of the TR/BDF2 method itself. We can also see that these three TR/BDF2

methods are roughly twice as accurate as the Crank Nicholson method and six times

as accurate as the two-iteration hybrid scheme.

To determine order-accuracy, we perform linear-regression analysis on the error

data. Table 3.1 shows the results of this analysis for each method using the portion

of the data showing asymptotic behavior.
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Table 3.1: Computed orders of accuracy for the infinite medium sine wave.

Method Radiation Energy Density Temperature

Crank-Nicholson 2.05 2.06
Converged Newton TR/BDF2 1.97 2.00
One-Iteration Newton TR/BDF2 2.00 2.02
Converged Hybrid TR/BDF2 1.97 2.00
Two-Iteration Hybrid TR/BDF2 1.91 1.89

3.3.1.2 Efficiency

Accuracy is not the only characteristic of interest; we also want to determine the

efficiency of each method. We define efficiency as follows:

εφ,∆t =
1

eφ,∆tW∆t

, (3.10)

where W∆t is the total number of iterations for the entire calculation, each roughly

equivalent to one iteration of Crank-Nicholson. Thus, the efficiency is a measure of

the error reduction per unit work, and the optimal method has the highest efficiency.

Figs. 3.3 and 3.4 show the efficiencies of the radiation energy density and temperature

for the infinite medium sine wave, respectively.

In each of these figures, we can see that the one-iteration Newton scheme is twice

as efficient as the converged schemes. Moreover, it is roughly an order of magnitude

more efficient than the two-iteration hybrid scheme.

3.3.2 Marshak Wave

The next test is a Marshak wave, which is designed to compare the methods using

a more realistic problem. Here, we use a constant initial temperature of .001 keV

throughout the interior of the problem with a 1 keV source at the left boundary. The

right boundary is a vacuum, and again, the radiation energy density and material
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Figure 3.3: Efficiency of the methods for radiation energy density versus number of
time steps for the infinite medium sine wave.

temperature are in thermal equilibrium. tfin is 0.1 shake, and σo = 300. Fig. 3.5

shows the radiation and material temperatures at the final time, where the radiation

temperature is defined as:

TR = 4
√
E/a . (3.11)

3.3.2.1 Time Step Control

For this problem, we use a variable time step control scheme based on a user-

specified “target temperature change”, ∆Ttarg. For a given time step, the maximum
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Figure 3.4: Efficiency of the methods for temperature versus number of time steps
for the infinite medium sine wave.

relative change is computed using:

∆T = 2 max
i

|T n+1
i − T ni |
T n+1
i + T ni

. (3.12)

This result is compared with the target temperature change to determine the

next time step:

∆tn+1/2 = min

(
∆Ttarg

∆T
∆tn−1/2, t− tfin

)
. (3.13)

The second term forces the final time step to end the calculation at tfin. Also, in

order to ensure that the temperature doesn’t vary too much, ∆T is also compared

with a maximum allowed temperature change, ∆Tmax. If ∆T > ∆Tmax, then the
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Figure 3.5: Final solution of Marshak wave problem.

time step ∆tn+1/2 is reduced by a factor of 1/3, and the calculation is repeated from

tn. In our calculations, we set ∆Tmax = 1.2∆Ttarg.

3.3.2.2 Accuracy

We run this problem varying the target temperature change from 1% to 20%

and converging the solution to a relative tolerance of 10-4. The exact solution is

computed using one million fixed time steps, i.e. ∆texact = 10−7 shakes, which is

the minimum time step allowed in our calculations. The exact solution uses roughly

30 times more time steps than the 1% target calculation. Figs. 3.6 and 3.7 show

the error in radiation energy density and temperature, respectively, for the Marshak

wave.
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Figure 3.6: Error in radiation energy density versus number of time steps for the
Marshak wave.

Again, we see that the converged TR/BDF2 schemes are the most accurate by

about a factor of 2. Furthermore, because the one-iteration scheme is never quite as

accurate as the converged schemes, we see some benefit to converging the nonlinear

terms in this problem. Though this problem is rapidly varying at the wavefront, we

still see asymptotic behavior in the error allowing us to compute the order-accuracy

of each method, shown in Table 3.2.

3.3.2.3 Efficiency

As with the infinite medium sine problem, we also compare the efficiencies of each

method for the Marshak wave. Figs. 3.8 and 3.9 show these efficiencies for radiation

energy and material temperature.
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Figure 3.7: Error in temperature versus number of time steps for the Marshak wave.

From these figures we can see that the one-iteration Newton method is, again,

twice as efficient as any other scheme. In this case, however, the two-iteration hybrid

method is also more efficient than the converged schemes. This is a result of the

extra effort required to converge the nonlinear terms when the solution is rapidly

varying.

3.3.3 The Maximum Principle

There is one advantage to fully converging the nonlinearities that we have not

discussed because it did not arise in our test problems. This relates to the preserva-

tion of the thermodynamic maximum principle. This principle is quite simple and

can be characterized as follows. Given a closed thermodynamic system with an ini-
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Table 3.2: Computed orders of accuracy for the Marshak wave.

Method Radiation Energy Density Temperature

Crank-Nicholson 1.93 1.91
Converged Newton TR/BDF2 1.92 1.90
One-Iteration Newton TR/BDF2 1.98 1.97
Converged Hybrid TR/BDF2 1.92 1.90
Two-Iteration Hybrid TR/BDF2 1.92 1.93
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Figure 3.8: Efficiency of the methods for radiation energy density versus number of
time steps for the Marshak wave.

tial temperature distribution and no inhomogeneous or external energy sources, the

temperature must evolve such that the temperature at any point never exceeds the

maximum initial temperature in the system. It has been observed that this prin-
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Figure 3.9: Efficiency of the methods for temperature versus number of times teps
for the Marshak wave.

ciple can be violated with sufficiently large time steps if the nonlinearities are not

converged [11]. To our knowledge, this effect has not been theoretically analyzed

except in case of the implicit Monte Carlo method where the nonlinearities are never

converged [13]. For example, in the Marshak wave problem, neither the radiation

temperature nor the material temperature should exceed the boundary radiation

temperature of 1 keV . We performed the Marshak problem with a fixed time step of

2× 10−4 sh using both the one-iteration Newton method and the converged Newton

method. The material temperature solutions after two time steps are compared for

these two methods in Fig. 3.10. The one-iteration Newton solution clearly violates

the maximum principle, but the converged Newton solution does not. This effect
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does not appear when our time step control algorithm is used, presumably because

the time steps are sufficiently small to avoid it. Nonetheless this is an effect that

should generally be kept in mind when choosing a time-integration scheme.
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Figure 3.10: Material temperature solutions after two time steps for the Marshak
wave problem with fixed time steps of 2× 10−4 sh.

3.4 Conclusions

The TR/BDF2 method meets the qualifications that we outlined, and thus ap-

pears to be a valuable alternative for solving the nonlinear radiative heat diffusion

equations. In each of the test problems, we find that the converged TR/BDF2

schemes are consistently the most accurate, and the one-iteration Newton TR/BDF2
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scheme is always the most efficient. This result is in basic agreement with [19], which

also shows the one-iteration Newton variant to be the most efficient treatment of the

nonlinear terms. We can see that the cost of neglecting the temperature derivatives

of the cross sections can reduce efficiency by at least one half and as much as an

order of magnitude. For the smooth test problem, the converged hybrid method

is not only more accurate but is also more efficient than its fixed iteration alterna-

tive. However, for the Marshak wave problem, the two-iteration hybrid scheme has

superior efficiency to both the converged Newton and hybrid schemes.

Given these results, we choose the converged hybrid method for our radiation-

hydrodynamics algorithm. This method will give us the highest level of accuracy

while still being easily applicable to both continuous and tabular cross-section data.

Furthermore, as previously noted, converging the nonlinearities is required to pre-

serve the maximum principle independently of the time step size.
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4. OUR SECOND-ORDER ACCURATE RADIATION-HYDRODYNAMICS

METHOD

Our radiation-hydrodynamics scheme consists of two cycles, each of which in-

cludes a full MHM step to compute the material advection components, an explicit

update for radiation momentum deposition to the fluid, and an implicit solve to

compute the radiation diffusion and material energy exchange. In the first cycle, the

radiation solve is computed using the Crank-Nicholson scheme, and in the second

cycle, the radiation solve is computed using the BDF2 scheme. An outline of our

two-cycle system is given as follows:

Cycle 1

1. Reconstruct hydro unknowns at tn from cell averages.

2. Evolve fluid by 1/4 ∆t.

3. Update 1/4 step momentum using explicit radiation quantities at tn.

4. Iterate until 1/4 step values are converged.

(a) Crank-Nicholson calculation to compute E
n+1/4
r and F

n+1/4
r .

(b) Crank-Nicholson calculation to update En+1/4 to include effects of radia-

tion/material energy exchange.

5. Reconstruct hydro unknowns at tn + 1/4 from cell averages.

6. Compute advection fluxes at tn + 1/4 using a Riemann solver and tn+1/4 hydro

unknowns.
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7. Advect density, momentum, and material energy from tn by 1/2 ∆t using

tn + 1/4 fluxes.

8. Update 1/2 step momentum using explicit radiation quantities at tn+1/4.

9. Restore LD slopes to internal energy.

10. Iterate until 1/2 step values are converged.

(a) Crank-Nicholson calculation to compute E
n+1/2
r and F

n+1/2
r

(b) Crank-Nicholson calculation to update En+1/2 to include effects of radia-

tion momentum deposition and energy exchange.

Cycle 2

1. Reconstruct hydro unknowns at tn + 1/2 from cell averages.

2. Evolve fluid by 1/4 ∆t.

3. Update 3/4 step momentum using explicit radiation quantities at tn+1/2.

4. Iterate until 3/4 step values are converged.

(a) Crank-Nicholson calculation to compute E
n+3/4
r and F

n+3/4
r .

(b) Crank-Nicholson calculation to update En+3/4 to include effects of radia-

tion kinetic energy deposition and radiation energy exchange.

5. Reconstruct hydro unknowns at tn + 3/4 from cell averages.

6. Compute advection fluxes at tn + 3/4 using a Riemann solver and tn+3/4 hydro

unknowns.

7. Advect density, momentum, and material energy from tn+1/2 by 1/2 ∆t using

tn + 3/4 fluxes.
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8. Compute full step momentum using explicit radiation quantities at tn+1/2 and

fluid fluxes at tn+1/4 and tn+3/4.

9. Restore LD slopes to internal energy.

10. Iterate until full step values are converged.

(a) BDF2 calculation to compute En+1
r and F n+1

r

(b) BDF2 calculation to update En+1 to include effects of radiation momen-

tum deposition and energy exchange.

4.1 Cycle 1

In this section, we define the first cycle of our hybrid MUSCL-Hancock TR/BDF2

scheme in further detail. We begin our IMEX scheme by linearly reconstructing the

hydro unknowns, Un
i :

Un
L,i = Un

i −
∆n
i

2
; Un

R,i = Un
i +

∆n
i

2
, (4.1)

where

Ui =


ρi

(ρu)i

Ei

 , (4.2)

and ∆i is some slope constructed from the cell-centered data. Next, we evolve the

hydro unknowns over a quarter time-step:

U∗i = Un
i +

∆t

4∆x

(
F n
L,i − F n

R,i

)
, (4.3)

where FL/R,i is the hydro flux computed as F (UL/R,i). Note that ρ
n+1/4
i = ρ∗i . We
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continue by updating the fluid momentum in the predictor with the cell-averaged,

explicit radiation momentum deposition:

4ρ
n+1/4
i

(
u
n+1/4
i − u∗i

)
∆t

=
1

2

σnt,L,i
c

(
F n
r,L,i −

4

3
En
r,L,iu

n
L,i

)
+

1

2

σnt,R,i
c

(
F n
r,R,i −

4

3
En
r,R,iu

n
R,i

)
. (4.4)

Then, we perform our nonlinear iterations for the predictor, in which we implicitly

solve for the radiation energy density and current and update the material energy

using the Crank-Nicholson method:

4
(
E
n+1/4,k+1
r − En

r

)
∆t

=− 1

2

(
∂F n+1/4,k+1

∂x
+
∂F n

∂x

)
+
σ
n+1/4,k
a c

2

(
a(T n+1/4,k+1)4 − En+1/4,k+1

r

)
+
σna c

2

(
a(T n)4 − En

r

)
+ σnt

un

c

(
4

3
En
r u

n − F n
r

)
, (4.5a)

1

3

∂E
n+1/4,k+1
r

∂x
+

1

3

∂En
r

∂x
+
σ
n+1/4,k
t

c
F n+1/4,k+1 +

σnt
c
F n =

σ
n+1/4,k
t

4

3
En+1/4,k+1u

n

c
+ σnt

4

3
Enu

n

c
, (4.5b)

4
(
En+1/4,k+1 − E∗

)
∆t

=− σ
n+1/4,k
a c

2

(
a(T n+1/4,k+1)4 − En+1/4,k+1

r

)
− σna c

2

(
a(T n)4 − En

r

)
− σnt

un

c

(
4

3
En
r u

n − F n
r

)
. (4.5c)

In order to solve these equations, we linearize the Planck function in Eq. (4.5a)
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and Eq. (4.5c) and substitute the resulting expression for T n+1/4,k+1 from Eq. (4.5c)

into Eq. (4.5a). When E
n+1/4
r and F

n+1/4
r are computed, we update the material

energy in the predictor implicitly with corrections for radiation momentum deposition

and energy exchange. This process is repeated until E
n+1/4
M,i and E

n+1/4
r,M,i are converged.

To begin the corrector, we reconstruct the hydro variables, again, following the

implicit update and use these, in conjunction with a Riemann solver, to compute the

quarter-step cell-edge fluxes for the hydro variables, F
n+1/4
i+1/2 . These fluxes allow us to

compute a second-order approximation of the advection component of the rad-hydro

system at tn+1/2 using a Godunov update:

U∗∗i = Un
M,i +

∆t

2∆x

(
F
n+1/4
i−1/2 − F

n+1/4
i+1/2

)
. (4.6)

Once this is computed, we update the fluid momentum in the corrector explicitly

using the cell-averaged radiation momentum deposition at tn+1/4.

2ρ
n+1/2
i

(
u
n+1/2
i − u∗i

)
∆t

=
1

2

σ
n+1/4
t,L,i

c

(
F
n+1/4
r,L,i −

4

3
E
n+1/4
r,L,i u

n+1/4
L,i

)
+

1

2

σ
n+1/4
t,R,i

c

(
F
n+1/4
r,R,i −

4

3
E
n+1/4
r,R,i u

n+1/4
R,i

)
. (4.7)

Then, we solve the radiative transfer equations for the corrector step, computing

the radiation energy density and radiation current and updating the material energy

using the Crank-Nicholson method:
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2
(
E
n+1/2,k+1
r − En

r

)
∆t

=− 1

2

(
∂F n+1/2,k+1

∂x
+
∂F n

∂x

)
+
σna c

2

(
a(T n)4 − En

r

)
+
σ
n+1/2,k
a c

2

(
a(T n+1/2,k+1)4 − En+1/2,k+1

r

)
+ σ

n+1/4
t

un+1/4

c

(
4

3
En+1/4
r un+1/4 − F n+1/4

r

)
, (4.8a)

1

3

∂E
n+1/2,k+1
r

∂x
+

1

3

∂En
r

∂x
+
σ
n+1/2,k
t

c
F n+1/2,k+1 +

σnt
c
F n =

σ
n+1/2,k
t

4

3
En+1/2,k+1u

n+1/4

c
+ σnt

4

3
Enu

n

c
, (4.8b)

2
(
En+1/2,k+1 − E∗∗

)
∆t

=− σ
n+1/2,k
a c

2

(
a(T n+1/2,k+1)4 − En+1/2,k+1

r

)
− σna c

2

(
a(T n)4 − En

r

)
− σn+1/4

t

un+1/4

c

(
4

3
En+1/4
r un+1/4 − F n+1/4

r

)
. (4.8c)

Once E
n+1/2
M,i and E

n+1/2
r,M,i are converged, Cycle 1 is complete.

4.2 Cycle 2

In this section, we detail the second cycle of our radiation-hydrodynamics scheme.

This cycle is very similar to the first cycle with the exception that we use a BDF2

step to solve for the radiation energy density and to update the material energy in

the corrector. Like the first cycle, we begin by linearly reconstructing the hydro

unknowns, U
n+1/2
i :

U
n+1/2
L,i = U

n+1/2
i − ∆

n+1/2
i

2
; U

n+1/2
R,i = U

n+1/2
i +

∆
n+1/2
i

2
. (4.9)
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Next, we evolve the hydro unknowns over another quarter time-step:

U∗M,i = U
n+1/2
M,i +

∆t

4∆x

(
F
n+1/2
L,i − F n+1/2

R,i

)
. (4.10)

Again, note that ρ
n+3/4
i = ρ∗i . We update the fluid momentum in the predictor

of the second cycle:

4ρ
n+3/4
i

(
u
n+3/4
i − u∗i

)
∆t

=
1

2

σ
n+1/2
t,L,i

c

(
F
n+1/2
r,L,i −

4

3
E
n+1/2
r,L,i u

n+1/2
L,i

)
+

1

2

σ
n+1/2
t,R,i

c

(
F
n+1/2
r,R,i −

4

3
E
n+1/2
r,R,i u

n+1/2
R,i

)
. (4.11)

Then, we enter our nonlinear iterations for the second-cycle predictor. As in the

first-cycle predictor, in this loop we implicitly solve for the radiation energy density

and current and update the material energy using the Crank-Nicholson method:

4
(
E
n+3/4,k+1
r − En

r

)
∆t

=− 1

2

(
∂F n+3/4,k+1

∂x
+
∂F n

∂x

)
+
σ
n+3/4,k
a c

2

(
a(T n+3/4,k+1)4 − En+3/4,k+1

r

)
+
σ
n+1/2
a c

2

(
a(T n+1/2)4 − En+1/2

r

)
+ σ

n+1/2
t

un+1/2

c

(
4

3
En+1/2
r un+1/2 − F n+1/2

r

)
, (4.12a)
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1

3

∂E
n+3/4,k+1
r

∂x
+

1

3

∂E
n+1/2
r

∂x
+
σ
n+3/4,k
t

c
F n+3/4,k+1 +

σ
n+1/2
t

c
F n+1/2 =

σ
n+3/4,k
t

4

3
En+3/4,k+1u

n+1/2

c
+ σ

n+1/2
t

4

3
En+1/2u

n+1/2

c
,

(4.12b)

4
(
En+3/4,k+1 − E∗

)
∆t

=− σ
n+3/4,k
a c

2

(
a(T n+3/4,k+1)4 − En+3/4,k+1

r

)
− σ

n+1/2
a c

2

(
a(T n+1/2)4 − En+1/2

r

)
− σn+1/2

t

un+1/2

c

(
4

3
En+1/2
r un+1/2 − F n+1/2

r

)
. (4.13)

Then, Eq. (4.12) and Eq. (4.13) are repeated until E
n+3/4
M,i and E

n+3/4
r,M,i are con-

verged. To begin the cycle 2 corrector, we reconstruct the hydro variables, again,

following the implicit update and use these, in conjunction with a Riemann solver,

to compute the three quarter-step cell-edge fluxes for the hydro variables, F
n+3/4
i+1/2 .

Using these fluxes, we compute the advection component of the rad-hydro system at

tn+1 using a Godunov update:

U∗∗i = U
n+1/2
M,i +

∆t

2∆x

(
F
n+3/4
i−1/2 − F

n+3/4
i+1/2

)
. (4.14)

Computing this, we update the fluid momentum in the corrector explicitly using

radiation values at tn+3/4.

ρn+1
i

(
un+1
i − u∗∗i

)
∆t

=
σ
n+1/2
t,i

c

(
F
n+1/2
r,i − 4

3
E
n+1/2
r,i u

n+1/2
i

)
. (4.15)

Finally, we enter the nonlinear iterations for the corrector step of Cycle 2. Here,
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we implicitly solving for the radiation energy density and current using the BDF2

method:

(
En+1,k+1
r − En

r

)
∆t

=− 1

3

(
∂F n+1,k+1

∂x
+
∂F n+1/2

∂x
+
∂F n

∂x

)
+
σn+1,k
a c

3

(
a(T n+1,k+1)4 − En+1,k+1

r

)
+
σ
n+1/2
a c

3

(
a(T n+1/2)4 − En+1/2

r

)
+
σna c

3

(
a(T n)4 − En

r

)
+ σ

n+1/2
t

un+1/2

c

(
4

3
En+1/2
r un+1/2 − F n+1/2

r

)
, (4.16a)

1

3

∂En+1,k+1
r

∂x
+

1

3

∂E
n+1/2
r

∂x
+

1

3

∂En
r

∂x
+
σn+1,k
t

c
F n+1,k+1 +

σ
n+1/2
t

c
F n+1/2 +

σnt
c
F n =

σn+1,k
t

4

3
En+1,k+1u

n+1/2

c
+ σ

n+1/2
t

4

3
En+1/2u

n+1/2

c
+ σnt

4

3
Enu

n+1/2

c
,

(4.16b)

Using these values, we compute the full-step material energy. Because this is a

full-step calculation, instead of updating the values computed in Eq. (4.14), we treat

the hydrodynamic fluxes, F n+1/4 and F n+3/4, from the first and second cycles as

sources for the BDF2 equation.

(
En+1,k+1 − En

)
∆t

=− σn+1,k
a c

3

(
a(T n+1,k+1)4 − En+1,k+1

r

)
− σ

n+1/2
a c

3

(
a(T n+1/2)4 − En+1/2

r

)
− σna c

3

(
a(T n)4 − En

r

)
− σn+1/2

t

un+1/2

c

(
4

3
En+1/2
r un+1/2 − F n+1/2

r

)
− 1

2

(
∂F n+1/4

∂x
+
∂F n+3/4

∂x

)
. (4.17)
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We iterate Eq. (4.16) and Eq. (4.17) until En+1
M,i and En+1

r,M,i are converged, and

the solution over the full time step is complete.
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5. MANUFACTURED SOLUTIONS

Order-accuracy is a concept in numerical methods that describes the rate at which

the computed solution from a method converges to the exact solution of the model

equations as the mesh spacing decreases. To understand this, we must first define

the truncation error of a method. Truncation error arises when one uses a finite

process to approximate the solution to an infinite, or continuous, system. In this

case, because our method uses finite difference and finite element approximations to

estimate the solution to our continuously varying radiation hydrodynamics model,

we will have truncation error due to discretization error.

The term “truncation error” stems from the fact that, if we were to expand the

solution to the continuous system using an infinite series, the expansion from a finite

approximation to that continuous system would be exact to a certain number of terms

in that series. Thus, the finite solution is exact to a truncated number of terms in the

series expansion, and the terms in which they differ represent the truncation error

in the approximation. If one represents the continuous and finite solutions using a

Taylor series, each term in that series is associated with the mesh spacing raised to

a power, e.g. ∆xp. If the finite solution expansion is accurate through the ∆xp−1

term, the method is said to be p-th order accurate, since the leading term in the

truncation error as ∆x approaches 0 will be the ∆xp term.

To determine order-accuracy, we need a way to compute the truncation error

of our method. This can be challenging, as it requires a problem set to which

the exact solution may be obtained or very closely estimated. One approach is to

prescribe geometric, boundary, and initial conditions in such a way that an analytical

solution to the system may be found directly. However, due to the complexity of
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our radiation hydrodynamics model, solutions that can be obtained in this manner

would likely be too simple, without sufficient variation in space and time, to be

useful in demonstrating order-accuracy. Instead, we use the Method of Manufactured

Solutions (MMS). With MMS, we assume a functional form of the exact solution

and use that to derive a set of forcing functions that can be used to reproduce those

solutions with our numerical method. This allows us to prescribe an exact solution

with sufficient variation in space and time to fully test the coupling between the

radiation and hydrodynamics while ensuring that the solution space is continuous.

For these tests, we use the manufactured solutions developed by McClarren and

Lowrie in [22] as a foundation. These solutions are composed of a combination

of trigonometric functions with periodic boundary conditions. Our manufactured

sources are a modification of those in [22], which uses a P1 radiation model. Our

modifications primarily include eliminating the time derivative of Fr for the diffusion

approximation and the use of the simplified material motion model developed by

Morel described in Section 2. As in [22], we consider both an equilibrium diffusion

limit and a streaming limit solution.

To this point, we have considered the dimensionalized form of our rad-hydro

system. However, to derive the sources for the manufactured solutions, we consider a

non-dimensionalized form of this system, as presented in [22]. To non-dimensionalize

our system, we first define a set of characteristic dimensional parameters:
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L̂ (reference length)

ρ̂0 (reference material mass density)

T̂0 (reference material temperature)

â0 (reference material sound speed)

ĉ (speed of light)

α̂r (radiation constant)

Then, we define a set of non-dimensional quantities in terms of their dimensional

counterparts and the characteristic dimensional parameters:

x = x̂

L̂
(spatial coordinate)

t = t̂â0
L̂

(time coordinate)

ρ = ρ̂
ρ̂0

(material density)

v = v̂
â0

(material velocity)

e = ê

â20
(internal specific energy)

p = p̂

ρ̂
ˆ̂
a20

(material pressure)

T = T̂

T̂0
(material temperature)

Θ = Θ̂

T̂0
(radiation temperature)

σa = σ̂aL̂ĉ
â0

(absorption cross-section)

σt = σ̂tL̂ĉ
â0

(total cross-section)

Substituting these into (2.1) and adding general source terms, we obtain a non-

dimensionalized form of our RH system:

∂ρ

∂t
+

∂

∂x
(ρu) = Qρ , (5.1a)

59



∂ (ρu)

∂t
+

∂

∂x

(
ρu2 + p

)
= −PSF +Qv , (5.1b)

∂E

∂t
+

∂

∂x
[(E + p)u] = −PCSE +QE , (5.1c)

∂Er
∂t

+
∂CFr
∂x

= SE +QEr , (5.1d)

C
3

∂Er
∂x

= CSF , (5.1e)

Here, we have defined a set of non-dimensionalized parameters C and P, where

P =
αrT

4
0

ρ0a2
0

,C =
c

a0

. (5.2)

Thus, C is the ratio of the speed of light to the characteristic speed of sound of

the material, and P is proportional to the ratio of the characteristic radiant energy

of the material to the characteristic kinetic energy of the material. Note, also, that

(5.1e) doesn’t include a source term. This is due to the fact that the variation of

the radiative flux is defined explicitly by the other unknowns. In addition to our

non-dimensionalized parameters, we define the following:

SE = Cσa
(
T 4 − Er

)
+ σtvFr,0 , (5.3a)

SF = −σtFr,0 , (5.3b)

Fr,0 = Fr −
4

3

v

C
Er . (5.3c)

5.1 Diffusion Solution

We begin by examining the manufactured solution for a diffusive regime. This

represents a problem in which absorption and re-emission of radiation dominates

streaming, and the radiation energy is in local equilibrium with the material tem-
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perature. Numerically, this represents a case in which the opacity is large, and the

radiation mean-free path is not resolved by the cell spacing. Characterizing this so-

lution using asymptotic analysis, the leading order solution for the radiation energy

density [19] is given by:

Er = T 4 . (5.4a)

We set the non-dimensionalized, functional form of the exact hydrodynamics

solution to be:

ρ = sin (x− t) + 2 , (5.5a)

v = cos (x− t) + 2 , (5.5b)

p = α (cos (x− t) + 2) . (5.5c)

Using the equation of state, the exact material temperature is:

T =
αγ (cos (x− t) + 2)

sin (x− t) + 2
, (5.6)

Now, substituting (5.6) into (5.4) and (5.1e), we have the functional form of the

radiation energy density and flux:

Er =
α4γ4 (cos (x− t) + 2)4

(sin (x− t) + 2)4 , (5.7a)

Fr =
4α4γ4 (cos (x− t) + 2)5

3C (2− sint− x)4 − 4α4γ4 (cos (x− t) + 2)3 sint− x
3σ (2− sin (t− x))4

− 4α4γ4cos (x− t) (cos (x− t) + 2)4

3σ (2− sin (t− x))5 . (5.7b)
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The material unknowns given by (5.5) and (5.6) are shown in Figure 5.1, and the

radiation energy density is shown in Figures 5.2. Substituting (5.5), (5.6), and (5.7)

into (5.1), we solve for the forcing functions necessary to reproduce those solutions.

These functions are as follows:

Qρ = 2 sin(t− x) + cos(t− x) + cos(2(t− x)) , (5.8a)

Qv =
4α4γ4PP(cos(t− x) + 2)3(−2 sin(t− x) + 2 cos(t− x) + 1)

3(sin(t− x)− 2)5

+ α sin(t− x) + (sin(t− x)− 2) sin(t− x) + cos(t− x)(cos(t− x) + 2)2

− cos(t− x)(cos(t− x) + 2)− 2(sin(t− x)− 2) sin(t− x)(cos(t− x) + 2) ,

(5.8b)

QE =− 4α4γ4PP(cos(t− x) + 2)4(−2 sin(t− x) + 2 cos(t− x) + 1)

3(sin(t− x)− 2)5

− 1

2
cos(t− x)(cos(t− x) + 2)

(
− 2α

(γ − 1)(sin(t− x)− 2)
+ cos(t− x) + 2

)
+

1

2
sin(t− x)(cos(t− x) + 2)

(
2α

+ (2− sin(t− x))

(
− 2α

(γ − 1)(sin(t− x)− 2)
+ cos(t− x) + 2

))

+
1

8(γ − 1)
(cos(t− x) + 2)

(
8 (sin(t− x)((α + 4)γ + 2(γ − 1) cos(t− x)− 4)

+2(γ − 1) cos(2(t− x))) + 17(γ − 1) cos(t− x) + 3(γ − 1) cos(3(t− x))
)

+ (2− sin(t− x))

(
α sin(t− x)

(γ − 1)(sin(t− x)− 2)

+
α cos(t− x)(cos(t− x) + 2)

(γ − 1)(sin(t− x)− 2)2
− sin(t− x)(cos(t− x) + 2)

)
, (5.8c)
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QER =
1

12σ(sin(t− x)− 2)6

(
α4γ4(cos(t− x) + 2)2(−8(23C + 235σ) cos(t− x)

− 16(C + 17σ) cos(2(t− x)) + 328C sin(t− x) + 256C sin(2(t− x))

+ 8C sin(3(t− x))− 8C cos(3(t− x))− 320C− 1452σ + 1678σ sin(t− x)

+ 1088σ sin(2(t− x)) + 237σ sin(3(t− x)) + 12σ sin(4(t− x))

− σ sin(5(t− x)) + 120σ cos(3(t− x)) + 28σ cos(4(t− x)))
)
. (5.8d)

Figure 5.1: Exact solution for the hydrodynamic unknowns, ρ, u, and p, for the
equilibrium diffusion limit at t = 0.

Analytically, using (5.8) as a source for (5.1) yields the exact solution given by

(5.5), (5.6), and (5.7). Thus, we can use these functions as a framework for testing
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Figure 5.2: Exact solution for the radiation energy density, Er, for the equilibrium
diffusion limit at t = 0.

the accuracy of our RH algorithm in both time and space. However, because our

method is defined using the dimensionalized RH system, we must re-dimensionalize

(5.8) to use these sources. We do this as follows:

Q̂ρ =
ρ̂0â0

L̂
Qρ , (5.9a)

Q̂u =
ρ̂0â0

2

L̂
Qu , (5.9b)

Q̂E =
ρ̂0â0

3

L̂
QE , (5.9c)

Q̂Er =
αrT̂0

4
â0

L̂
QEr . (5.9d)
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This manufactured solution affords us the opportunity to test the behavior of our

method in the equilibrium diffusion limit. To test this limit, we examine the error

of the solution as the mesh is refined while preserving the optical thickness, τ , of

each cell. The error of a method that preserves the equilibrium diffusion limit will

decrease as the mesh is refined for a fixed τ and CFL condition; however, a method

that does not have this limit will only converge to the correct solution if τ decreases

with the mesh spacing. In order to test the thick diffusion limit, it is necessary to set

τ >> 1. For our test problems, we set τ = 100π, α = 0.5, γ = 5/3, and P = 0.001.

To keep τ constant as we vary the mesh spacing, we define a parameter ε and vary

∆x, C, and σ with ε as follows:

∆x =
π

10
ε , (5.10a)

C = σ =
1000

ε
. (5.10b)

Thus, as ε approaches zero, ∆x also approaches zero, C and σ become very large,

and τ remains constant. The time step is bound by the Courant limit:

CFL =
C∆t

∆x
. (5.11)

By fixing CFL, Eq. (5.10) requires that ∆t decreases according to ε2. To meet

the CFL condition, CFL = 0.3, we use fixed timesteps and set ∆t as:

∆t =
tfin
2000

ε2 . (5.12)

Substituting these values into (5.2) and using the relation T0 = α2
0, we obtain the

characteristic variables, ρ0, α0, and T0. The slab thickness is 2π cm, and the final

time, tfin, is 0.105 shakes.
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We compute the spatially-distributed error in the computational solution by sub-

tracting the solution computed at the final time from the exact solution at that time.

Then, we take the L2 norm of the spatially distributed error to get a measure of the

total error of the final solution. Figures 5.3, 5.4, and 5.5 show the errors in the

material velocity, material temperature, and radiation energy density, respectively,

between the computed and exact solution for the equilibrium diffusion limit as the

spatial and temporal mesh is refined. In each of these figures, we see that, as the

mesh is refined, the error varies with second-order accuracy.

Figure 5.3: Error in the material velocity between the computed and exact solution
for the diffusive limit manufactured solution.
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Figure 5.4: Error in the material temperature between the computed and exact
solution for the diffusive limit manufactured solution.
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Figure 5.5: Error in the radiation energy density between the computed and exact
solution for the diffusive limit manufactured solution.
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5.2 Streaming Limit

Next, we consider the manufactured solution for the streaming limit. In this limit,

radiation streaming dominates a relatively small radiation absorption/re-emission

term. Here, we keep the re-emission term small by making the opacity relatively small

so that the radiation is nearly transparent to the material. Therefore, in contrast

to the equilibrium diffusion limit which represents very tight coupling between the

radiation and hydrodynamic components, this limit represents very weak coupling

between the two. Also, because the radiation streams much faster than the material,

this results in a solution in which the unknowns evolve at significantly different time

scales. The functional form of the exact streaming solution is given by:

ρ = sin (x− t) + 2 , (5.13a)

v =
1

sin (x− t) + 2
, (5.13b)

p = α (cos (x− t) + 2) , (5.13c)

Er = α (sin (x− Ct) + 2) . (5.13d)

Here, was can see that the wave speed of the radiation energy density is faster

than that of the hydrodynamic unknowns by a factor of C. The exact solution for

the streaming solution hydrodynamic unknowns are shown in Figure 5.6, and the

radiation energy density is shown in Figure 5.7.

This solution is also defined to mimic an isothermal flow regime, in which the

radiation varies rapidly enough that changes in the material temperature are sup-

pressed. In this case, the exact solution for the material temperature is a constant

given by:
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T = αγ . (5.14)

Figure 5.6: Exact solution for the hydrodynamic unknowns, ρ, u, and p, for the
streaming limit at t = 0.

Again, we derive the forcing functions corresponding to these solutions by sub-

stituting (5.13) and (5.14) into (5.1). The resulting functions are as follows:

Qρ = − cos(t− x) , (5.15a)
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Figure 5.7: Exact solution for the radiation energy density, Er, for the streaming
limit at t = 0.

Qv =
1

3
αP cos(Ct− x) + cos(t− x)

(
α− 1

(sin(t− x)− 2)2

)
, (5.15b)

QE =
1

3
αP
(

3Cσ
(
α3γ4 + sin(Ct− x)− 2

)
+

cos(Ct− x)

sin(t− x)− 2

)
+

1

4(γ − 1)(sin(t− x)− 2)3
(cos(t− x)((−51α + 2γ − 2) sin(t− x)

+α(sin(3(t− x)) + 44)− 12α cos(2(t− x)))) , (5.15c)
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QER =
1

3
α

(
−3α3γ4Cσ + 6Cσ − 3Cσ sin(Ct− x)− C sin(Ct− x)

σ

+

(
−3C− 5

sin(t− x)− 2

)
cos(Ct− x) +

4 cos(t− x)(sin(Ct− x)− 2)

(sin(t− x)− 2)2

)
.

(5.15d)

For this test, we set α = 0.5, γ = 5/3, C = 10, and σ = 1. The slab thickness

is 2π cm, and the final time is 0.011 shakes. As with the equilibrium diffusion limit

test, we approximate the exact solution given by (5.13) and (5.14) computationally

by using (5.15) as sources for our method, redimensionalizing these sources using

(5.9). We compute the L2 norm of the spatially-distributed error as outlined for

the equilibrium diffusion limit test for various mesh refinements, in which ∆x/∆t is

kept constant. Figures 5.8, 5.9, and 5.10 compare the error in the material velocity,

material temperature, and radiation energy density, respectively, with reference lines

to first and second-order accuracy. Again, for this test, we see that, as the mesh is

refined, the method shows second-order accuracy.

72



Figure 5.8: Error in the material velocity between the computed and exact solution
for the streaming limit manufactured solution.
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Figure 5.9: Error in the material temperature between the computed and exact
solution for the streaming limit manufactured solution.
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Figure 5.10: Error in the radiation energy density between the computed and exact
solution for the streaming limit manufactured solution.
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6. RADIATIVE SHOCKS

6.1 Structure of Radiative Shocks

A shock wave is a disturbance propagating through a medium and characterized

by rapid or, in some cases, nearly discontinuous changes in the properties of that

medium. Hydrodynamic shocks often correspond to a very sharp decrease in fluid

velocity and a corresponding increase in density, pressure, and temperature due to

compression across the shock front. Neglecting viscosity in a pure hydrodynamic

regime, all variables are discontinuous at the shock front. A radiative shock is a shock

wave moving through a fluid with sufficient speed or internal energy that the radiation

energy and/or pressure plays a significant role in the dynamics. Even neglecting

viscosity, the radiation intensity is never discontinuous in a radiative shock, and

the hydrodynamic variables may or may not be discontinuous. Radiative shocks

occur, for example, in astrophysical systems such as shocks within stars or shocks

formed when active galactic nuclei capture stars. They have also been generated in

laboratory experiments in which Be is shocked via laser irradiation through xenon

gas [27].

The widely used books by Zel’dovich and Raizer [35] and Mihalas and Mihalas

[23] provide the classic descriptions of radiative shocks. The structure of optically

thick radiative shocks, which we consider here, has been described in more detail

by Drake in [6] and by Lowrie and Edwards in [17]. These are shocks in which the

medium appears infinite to photons entering or leaving the shock. Thus, in a 1-D

infinite medium slab geometry, radiative shocks are always optically thick so long as

the opacity is never zero.

There are three key regions of radiative shocks - a precursor region, a hydrody-
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namic shock, and a relaxation region. As demonstrated in [17], not every radiative

shock will exhibit each of these features. Instead, the character of a given shock de-

pends upon several dimensionless parameters: the shock Mach number, the ratio of

the radiant energy to the kinetic energy of the material P, the radiative diffusivity κ,

which is defined later, and the non-dimensional absorption cross-section σa. Fig. 6.1

illustrates the important features of a radiative shock, which we describe here in

further detail.

Figure 6.1: Illustration of the important features in the material and radiation tem-
perature profiles for an example radiative shock.
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Similar to standard hydrodynamic shocks, far upstream of radiative shocks, there

is a steady flow of incoming fluid with a corresponding steady net radiation energy

flux. As the material moves downstream, the first feature of the radiative shock

it encounters is the precursor region. This region is created by the relatively high

radiation energy flux moving upstream from the compressed, heated material in the

hydrodynamic shock. Drake further differentiates this region into a “transmissive”

precursor and a “diffusive” precursor. In this description, the transmissive precursor

is distinguished by an exponential rise in temperature as a result of heating from the

decaying radiation energy field. Nearer to the hydrodynamic shock as the radiation

flux intensifies, the shape of the diffusive precursor becomes similar to that of a Mar-

shak wave, discussed in [23], in which material is heated from a constant-temperature

radiation source at the boundary.

After the precursor region, the fluid encounters the embedded hydrodynamic

shock. Here, the fluid undergoes the same compressive effects as in a standard

hydrodynamic shock with the exception that the initial jump conditions correspond

to the precursor values rather than the far-upstream values. Because this jump occurs

on the scale of a few ion-ion mean-free-paths, which is very much smaller than typical

mesh spacing for problems of interest, it is entirely reasonable to treat this shock

as a discontinuity [6]. For a steady shock, identifying the precursor state with the

subscript “p” and the shocked state with the subscript “s”, the discontinuity may be

computed using the Rankine-Hugoniot relationship, which establishes the continuity

of the hydrodynamic flux across the shock [17]:

(ρv)p = (ρv)s , (6.1a)

(
ρv2 + p

)
p

=
(
ρv2 + p

)
s
, (6.1b)
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[(ρE + p) v]p = [(ρE + p) v]s . (6.1c)

Following the hydrodynamic shock, the fluid enters the relaxation (or cooling)

region. In shocks with an isothermal sonic point (ISP), the post-shock temperature

may significantly exceed the far-downstream fluid temperature. This phenomenon,

called a Zel’dovich spike, is caused by the compression from the hydrodynamic shock

combined with radiative effects which can serve to increase those compressive effects.

The Zel’dovich spike is described in greater detail in [35, 17]. The effect of this

dramatic increase in temperature is to drive the fluid far out of equilibrium with the

radiation. As the material cools, the relaxation region extends downstream from the

hydrodynamic shock until the radiation and material temperatures have equilibrated

and the fluid is, again, steady.

As described in [6], the distinct features of radiative shocks stem from large

differences in important spatial scales. The radiation emission and absorption occurs

over the largest spatial scale, which gives rise to the precursor region upstream of the

hydrodynamic shock and the cooling down region downstream of the hydrodynamic

shock. The hydrodynamic shock, itself, occurs on the viscous scale, which is the

smallest spatial scale of interest. Lowrie and Edwards quantify the range of shocks

over which hydrodynamic shocks and isothermal sonic points may be present [17].

They, also, show that, in the case of no hydrodynamic shock, the solution will be

continuous in all variables, and that, when an isothermal sonic point is present, the

maximum temperature of the shock will exceed the far-downstream temperature.

6.2 Simulation of Radiative Shocks

Reproducing radiative shocks accurately, particularly in the optically thick regime,

represents a challenging problem in the simulation of radiation hydrodynamics. How-

ever, because many problems of interest include radiative shocks, it is imperative that
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a numerical scheme be able to meet these challenges well. In the remainder of this

section, we demonstrate the capability of our rad-hydro algorithm to compute ac-

curate radiative shock solutions by reproducing the semi-analytic shocks detailed in

[17]. First, we describe our procedure to generate the shocks and, then, compare our

computational results with the semi-analytic solutions.

We begin by computing the far-downstream fluid state associated with a pre-

scribed set of far-upstream conditions. As we previously mentioned, these far-

upstream conditions, and subsequently, the radiative shock itself, are specified by

the shock Mach number M , the parameters P and σa, and the radiative diffusivity

κ, which is given by:

κ =
ĉ

3σ̂tâ0L̂
. (6.2)

The equations that describe the overall jump from the upstream to the down-

stream states are a modified version of the Rankine-Hugoniot conditions derived by

equating the flux terms from the fluid conservation equations in the rad-hydro model.

These modified Rakine-Hugoniot conditions are given-by:

(ρv)0 = (ρv)1 , (6.3a)

(
ρv2 + p∗

)
0

=
(
ρv2 + p∗

)
1
, (6.3b)

[(ρE∗ + p∗) v]0 = [(ρE∗ + p∗) v]1 , (6.3c)

where

p∗ = p+
1

3
PT 4 , (6.4a)
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e∗ = e+
1

ρ
PT 4 , (6.4b)

E∗ = e∗ +
1

2
v2 . (6.4c)

In [20], Lowrie and Rauenzahn show that these equations may be manipulated

algebraically to solve for ρ1:

ρ1(T1) =
f1(T1) +

√
f 2

1 (T1) + f2(T1)

6(γ − 1)T1

, (6.5)

where

f1(T1) = 3(γ + 1)(T1 − 1)− Pγ(γ − 1)(7 + T 4
1 ) , (6.6a)

f2(T1) = 12(γ − 1)2T1

[
3 + γP

(
1 + 7T 4

1

)]
. (6.6b)

Furthermore, eliminating v1 from the mass equation, substituting the result into

the momentum equation, and rearranging terms, we have an equation for T1:

3ρ1(ρ1T1 − 1) + γPρ1

(
T 4

1 − 1
)

= 3γ(ρ1 − 1)M2
0 . (6.7)

Substituting Eq. (6.5) into Eq. (6.7), this results in a ninth-order polynomial,

which may be solved numerically for T1. We initialize this solution procedure using

an estimate for T1 based on P. For “small” values of P, we initialize using:

T est1 =
(1− γ + 2γM2) (2 + (γ − 1)M2)

2

(γ + 1)2M2
. (6.8)

For “large” values of P, we estimate T1 as:

T est1 =
4

√√√√8
(

M2

(4/9)P − 1
)

7
. (6.9)
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In solving for T1, we note that the numerical solver does not always converge

to the same final value for T1 for both initial estimates. However, for the shocks

considered here, in the case when the initial estimates lead to differing values of T1,

the final solution for one estimate is always non-physical, e.g. an absorption cross-

section larger than the total cross-section. So, in these cases, it is obvious which

converged T1 value is correct.

Because our radiation-hydrodynamics method is developed in dimensional form,

we must also define the characteristic values ρ̂0 and T̂0. The remaining dimensional-

ized values are computed from the non-dimensional parameters as follows:

ρ̂1 = ρ1
ˆrho0 , (6.10a)

T̂1 = T1T̂0 , (6.10b)

â0 =

√
α̂rT̂0

4

ρ̂0P
, (6.10c)

v̂0 = Mâ0 , (6.10d)

v̂1 = v1â0 , (6.10e)

Cv =
â0

2

T̂0γ (γ − 1)
, (6.10f)

σ̂t =
c

3κâ0

, (6.10g)

σ̂a = σa
â0

c
. (6.10h)

We initialize each radiative shock calculation by setting the left half of the spa-

tial domain equal to the far-upstream condition and the right half equal to the

downstream condition. At the boundary, we compute the fluxes using our stan-

dard Riemann solver, setting the hydrodynamic unknowns in a ghost cell just to the
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other side of the boundary equal to the far-stream conditions. This adds stability

to the evolution of the shock by reinforcing the steady-state solution while allow-

ing transitional waves to exit the domain. Fig. 6.2 illustrates this concept for the

right boundary. Here, we set the left unknown in an exterior ghost cell equal to the

far-downstream conditions, Udownstream, and compute the boundary advection flux,

FN+1/2, using our Riemann solver.

Figure 6.2: Illustration of the advection boundary conditions for the radiative shock
calculations.

Because sharp slopes in LDFEMs can cause negativities in edge values, we mon-

itor for negativities in the material temperature. If a negative temperature is de-

tected, we set all the slopes in that cell to zero so that the edge values are equal to

the cell-averages. This preserves energy conservation while eliminating non-physical

temperatures at cell-edges.

To compute the time steps during the calculation, we use a similar adaptive time

step control scheme to the one described in section 3.3.2.1 based on a user-specified

“target temperature change”, ∆Ttarg. Again, for a given time step, the maximum
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relative change is computed using:

∆T = 2 max
i

|T n+1
i − T ni |
T n+1
i + T ni

. (6.11)

However, because we use an IMEX scheme to solve our rad-hydro system, we

must also limit the time step according to the Courant limit associated with the

hydrodynamic advection terms. We compute this limit by determining the maximum

signal velocity associated with the system and define the maximum hydrodynamic

time step to be:

∆tH = CFL∆xSmax , (6.12)

where Smax is the maximum signal velocity, and CFL is the user-defined Courant

condition number such that 0 ≤ C ≤ 1. We use the following estimate for Smax

outlined in [31]:

Smax = max
i∈[1,N ]

{|ui − ai|, |ui + ai|} , (6.13)

where N is the number of cells, ui is the velocity in cell i, and ai is the speed of

sound in cell i. We then compute the time step as follows:

∆tn+1 = min

(
∆Ttarg

∆T
∆tn, ξ∆tn,∆tH , t− tfin

)
. (6.14)

The second term ensures that the time step doesn’t grow too rapidly by imposing

a maximum allowed time step change, ξ, and the fourth term forces the final time

step to end the calculation at tfin. In order to ensure that the temperature doesn’t

vary too much, ∆T is also compared with a maximum allowed temperature change,

∆Tmax. If ∆T > ∆Tmax, then the time step ∆tn+1/2 is reduced by a factor of 1/3,

84



and the calculation is repeated from tn. In our calculations, we set CFL = 0.3,

∆Ttarg = 1.01, ∆Tmax = 1.012, and ξ = 1.5.

6.3 Radiative Shock Solutions

We test our algorithm over a range of the radiative shocks presented in [17].

These shocks incorporate a variety of the features described in Section 6.1. For each

of these shocks, we set P = 1e− 4, γ = 5/3, κ = 1, and σa = 1e6, and the material

properties are given in Table 6.1.

First, we compute the Mach 1.2 shock, which has a hydrodynamic shock but no

ISP. Table 6.2 shows the initial conditions; the final time of the calculation is 0.5

shakes. Figs. 6.3 and 6.4 compare our results with the semi-analytic solutions for

the density and fluid and radiation temperatures, respectively, and again, we see

good agreement between the two. In this solution, we see a discontinuity in both the

density and material temperature due to the hydrodynamic shock, and the maximum

temperature is bounded by the far-downstream temperature, since there is no ISP

to drive it further.

Table 6.1: Material properties for radiative shock calculations.

σ̂a 3.9071164263502112e+002
σ̂t 8.5314410158161809e+002

Ĉv 1.2348000000000001e-001
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Table 6.2: Mach 1.2 initial conditions.

Pre-shock Post-shock
ρ̂ 1.0000000000000000e+00 1.2973213452231311e+000
û 1.4055888445772469e-001 1.0834546504247138e-001

T̂ 1.0000000000000001e-001 1.1947515210501813e-001
ρ̂û 1.4055888445772469e-001 1.4055888445772469e-001

Ê 2.2226400000000000e-002 2.6753570531538713e-002

Êr 1.3720000000000002e-006 2.7955320762182542e-006

4/3Êû 2.5712905263466435e-007 4.0384429711868299e-007

Figure 6.3: Mach 1.2 radiative shock density.
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Figure 6.4: Mach 1.2 radiative shock material and radiation temperatures.

The most structurally complex shock that we compute is the Mach 2 shock,

which has both a hydrodynamic shock and an ISP. The initial conditions are given

by Table 6.3, and the final time of the calculation is 1 shake. Figs. 6.5 and 6.6 show

our results compared with the semi-analytic solutions. In each of these figures, we

can see the effects of the hydrodynamic shock, causing a discontinuity in both the

material density and temperature. We can also see the Zel’dovich spike, caused by the

ISP embedded within the hydrodynamic shock, driving up the material temperature

at the shock front. This spike leads to the relaxation region downstream as the

material temperature and radiation temperature equilibrate. Fig. 6.7 shows the
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Table 6.3: Mach 2 initial conditions.

Pre-shock Post-shock
ρ̂ 1.0000000000000000e+00 2.2860748989303659e+000
û 2.3426480742954117e-001 1.0247468599526272e-001

T̂ 1.0000000000000001e-001 2.0775699953301918e-001
ρ̂û 2.3426480742954117e-001 2.3426480742954117e-001

Ê 3.9788000000000004e-002 7.0649692950433357e-002

Êr 1.3720000000000002e-006 2.5560936967521927e-005

4/3Êû 4.2854842105777400e-007 3.4924653193220162e-006

Zel’dovich spike and relaxation region in more detail. Here, we can see that our

results still show very good agreement with the semi-analytic solution.
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Figure 6.5: Mach 2 radiative shock density.
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Figure 6.6: Mach 2 radiative shock material and radiation temperatures.
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Figure 6.7: Zel’dovich spike and relaxation region of Mach 2 shock.
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Finally, we reproduce the Mach 50 radiative shock solution. This shock has no

hydrodynamic discontinuity or ISP; however, it is the most computationally inten-

sive to compute. This is due to the fact that the large discontinuity in the initial

conditions causes sharp slopes leading to negativities in the edge values of the mate-

rial temperature in the beginning steps of the calculation. Furthermore, large, rapid

temperature variations force time-step restarts described in Section 6.2, and high

fluid wave speeds restrict the time step size throughout the calculation. The initial

conditions for this shock are provided in Table 6.4, and the final time of the calcu-

lation is 1.5 shakes. The results of this calculation are compared with semi-analytic

solutions in Figs. 6.8 and 6.9. Note that the structure of the precursor for the Mach

50 shock differs from that of the Mach 1.2 and Mach 2 shocks in that the diffusive

precursor is much more dominant in the Mach 50 shock; whereas, the others have

a much larger transmissive precursor. As with the other shocks, we continue to see

good overall agreement between our results and the semi-analytic solutions.

Table 6.4: Mach 50 initial conditions.

Pre-shock Post-shock
ρ̂ 1.0000000000000000e+00 6.5189217901173153e+000
û 5.8566201857385289e+000 8.9840319830453630e-001

T̂ 1.0000000000000001e-001 8.5515528368625038e+000
ρ̂û 5.8566201857385289e+000 5.8566201857385289e+000

Ê 1.7162348000000001e+001 9.5144308747326214e+000

Êr 1.3720000000000002e-006 7.3372623010289956e+001

4/3Êû 1.0713710526444349e-005 8.7890932240583339e+001
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Figure 6.8: Mach 50 radiative shock density.
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Figure 6.9: Mach 50 radiative shock material and radiation temperatures.
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6.4 Comparison of Our Second-Order Method with a First-Order Scheme

To demonstrate the effectiveness of our second-order method in solving radiative

shock problems, we use the Mach 50 radiative shock solution and compare results

from our method with those from a first-order scheme; though, we note that both

methods will be first-order for problems with a discontinuity. This scheme consists

of a full MUSCL-Hancock step to compute the fluid advection component, followed

by an explicit update to the momentum to account for radiation momentum depo-

sition, and a Crank-Nicholson radiative transfer calculation over the full time-step

to compute the radiation quantities and to update the internal energy. Thus, our

first-order method is actually a first-order coupling of some of the second-order com-

ponents used in our full second-order scheme. We begin the first-order method with

the standard MHM data reconstruction and evolution steps:

Un
L,i = Un

i −
∆n
i

2
; Un

R,i = Un
i +

∆n
i

2
, (6.15)

U
n+1/2
i = Un

i +
∆t

2∆x

(
F n
L,i − F n

R,i

)
. (6.16)

Next, as with our second-order calculation, we reconstruct the half-step unknowns

and use the Riemann solver to compute the cell edge fluxes F
n+1/2
i+1/2 . Then, we com-

plete the MHM advection step with a Godunov calculation:

U∗i = Un
i +

∆t

∆x

(
F
n+1/2
i−1/2 − F

n+1/2
i+1/2

)
. (6.17)

Once this is computed, we update the fluid momentum explicitly using the cell-

averaged radiation momentum deposition:
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3
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1

2
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(
F n
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4

3
En
r,R,iu

n
R,i

)
. (6.18)

Then, we solve the radiative transfer equations using the Crank-Nicholson method

to compute the radiation energy density and radiation current and to update the

material energy:

(
En+1,k+1
r − En

r

)
∆t

=− 1

2

(
∂F n+1,k+1

∂x
+
∂F n

∂x

)
+
σna c

2

(
a(T n)4 − En

r

)
+
σn+1,k
a c

2

(
a(T n+1,k+1)4 − En+1,k+1

r

)
+ σnt

un

c

(
4

3
En
r u

n − F n
r

)
, (6.19a)
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, (6.19b)

(
En+1,k+1 − E∗

)
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=− σn+1,k
a c

2

(
a(T n+1,k+1)4 − En+1,k+1

r

)
− σna c

2

(
a(T n)4 − En

r

)
− σnt
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c

(
4

3
En
r u

n − F n
r

)
. (6.19c)

In order to compare these methods to a solution that varies in both space and

time, we uniformly increase the velocity of the semi-analytic Mach 50 shock solution
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Table 6.5: Comparison of the computational work required to compute the solution
of the Mach 50 shock for the first and second-order methods.

Number of Avg. Non-linear Total Advection Total Diffusion
Time Steps Iters. per Step Solves Solves

First-Order 382 27.78 382 9085
Second-Order 158 19.07 316 3013

by some speed, Sshock. Due to the Galilean invariance of the shock solution, the shock

profile remains unchanged; however, now, it propagates through the fluid at Sshock,

making the solution time-dependent. For this test, we initialize our calculations

with the original, semi-analytic shock profile and compute the solution for a shock

moving at Sshock = 1 cm/shake for 0.04 shakes using 40 cells. As with our other shock

calculations, we use adaptive time step controls setting CFL = 0.3, ∆Ttarg = 1.01,

∆Tmax = 1.012, and ξ = 1.5.

Figs. 6.10, 6.11, and 6.12 show the comparison of the first and second-order

methods to the semi-analytic solution for the density, material temperature, and

radiation temperature, respectively, and Table 6.5 shows the work required to obtain

these results. From these results, we see that, for this problem, our second-order

scheme is consistently more accurate than the first-order scheme and requires 20%

fewer advection solves and 1/3 as many diffusion solves to compute the solution using

the same time step control criteria.
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Figure 6.10: Comparison of first- and second-order method results for the density of
the Mach 50 radiative shock problem.
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Figure 6.11: Comparison of first- and second-order method results for the material
temperature of the Mach 50 radiative shock problem.
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Figure 6.12: Comparison of first- and second-order method results for the radiation
temperature of the Mach 50 radiative shock problem.
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7. SUMMARY

Our scheme combines the MUSCL-Hancock Method for solving 1-D fluid ad-

vection problems with a grey radiation diffusion model discretized using a linearly-

discontinuous finite element method in space and the TR/BDF2 scheme in time.

MUSCL-Hancock is a second-order, explicit method widely used to solve fluid advec-

tion problems. The LDFEM is a popular spatial discretization for radiation trans-

port, since it is second-order accurate, preserves the diffusion limit, and permits

discontinuities at cell-edges. While this scheme is not frequently used for radiation

diffusion, we choose it in anticipation of the extension of our scheme to a radiation

transport model and to show how the challenges of blending these spatial discretiza-

tions may be overcome. The radiation-hydrodynamics scheme, itself, consists of two

predictor-corrector cycles. Each cycle includes the full MUSCL-Hancock method to

compute the fluid advection over half of the time step. The first cycle uses Crank-

Nicholson, i.e. the trapezoid rule, to compute the radiation diffusion and energy

exchange over the first half time step, and the second cycle uses this result with

the BDF2 scheme to compute the solution over the remainder of the step, yielding

the full TR/BDF2 solution. For problems in which the time step is determined by

the time scale of the fluid, this design amortizes the cost of the non-linear, implicit

radiation solves over effectively two hydrodynamic time steps.

While the TR/BDF2 scheme is not well-known in the radiation transport com-

munity, we show in Section 3 how it may be applied to the equations of radia-

tive transfer. Using the TR/BDF2 method, we, also, test a variety of approaches

for treating the non-linear terms in the radiative transfer equations stemming from

the blackbody emission source and the temperature dependent cross-sections. We
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compare fully-converged and fixed-iteration versions of Newton and hybrid Newton-

Picard methods for both accuracy and efficiency. Here, we find that the converged

schemes are consistently the most accurate; whereas, the single-iteration Newton

method is the most efficient for our test problems. We, also, find that, in some

cases, the converged hybrid scheme is actually more efficient than the fixed-iteration

version. Given these results, we use the converged hybrid Newton-Picard scheme for

our radiation-hydrodynamics algorithm, due to its high level of accuracy, its easy

application to both continuous and tabular cross-section data, and its adherence to

the maximum principle. Furthermore, as shown in Section 2, the TR/BDF2 scheme

damps oscillations much more effectively than Crank-Nicholson.

We demonstrate how the discrepancies in slope definitions between the radia-

tion and hydrodynamics schemes may be overcome to preserve both second-order

accuracy and the diffusion limit. While possibly not immediately apparent, this is

an important property. As discussed in Section 1, verifying that a radiation trans-

port spatial discretization has the diffusion limit is crucial for ensuring the accu-

racy of solutions in which computational limits require a spatial cell to encompass

many mean-free paths. This is often the case for radiation transport calculations

in highly-scattering media or in radiative transfer calculations in which absorption

and re-emission dominate the transport process, e.g. the radiative shocks discussed

in Section 6. By preserving the LD slopes between implicit solves, the extension of

our method to a similarly discretized radiation transport model is straightforward.

We believe this approach also preserves the diffusion limit in such a way that the

radiation solution will preserve the diffusion limit in 2D and 3D despite the use of

hydrodynamic limiters for the fluid unknowns that otherwise would not.

Using the Method of Manufactured Solutions, we demonstrate in Section 5 that

our algorithm is second-order accurate in the equilibrium diffusion limit and the
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streaming limit. To accomplish this, we derive forcing functions that, when used

as source terms in our radiation-hydrodynamics system, yield a prescribed set of

exact solutions. We compare these exact solutions with our computational results to

observe the behavior of the true model error. In both the streaming and equilibrium

diffusion limits, our method consistently shows second-order accuracy in space and

time for both the radiation and hydrodynamic unknowns.

In order for a radiation-hydrodynamics algorithm to be useful in practical appli-

cations, it is necessary for the algorithm to be able to accurately compute radiative

shocks. In Section 6, we test our method using a set of representative shock prob-

lems and compare our results with semi-analytic solutions. The Mach 1.2 and Mach

2 radiative shock problems represent structurally complex shocks, having a hydro-

dynamic shock, which produces a discontinuity in the hydrodynamic unknowns, and

in the case of the Mach 2 shock, an ISP, which produces a Zel’dovich spike. Our

method reproduces these shocks very well, even in the region of the Zel’dovich spike.

The Mach 50 radiative shock problem represents a very computationally challenging

shock. While the final shock solution, itself, is continuous, the large initial discon-

tinuity leads to very sharp slopes in the first few time steps potentially leading to

negativities in the temperature, and the rapid variation of the solution forces many

time step readjustments. In our results, again, we see that our method reproduces

this shock well.
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8. CONCLUSIONS AND FUTURE WORK

We develop a new IMEX method for solving the 1-D equations of radiation-

hydrodynamics that is second-order accurate in space and time. In addition to ac-

curacy, we meet the goals outlined in Section 1: it reliably converges non-linearities,

rapidly damps oscillations, incorporates modern algorithms used by the hydrody-

namics and radiation transport communities, appears to have straightforward ex-

tensibility to a full radiation transport model, preserves the diffusion limit in 1D

in such a way that it is expected to preserve this limit in 2D and 3D, accurately

computes radiative shocks, and reduces to fundamental algorithms when the effects

of coupled physics are negligible. Thus, it represents a very useful alternative to

existing methods.

In future work, we recommend extending our radiation solver to incorporate a

radiation transport model. The structure of our radiation-hydrodynamics algorithm

should make this extension straightforward. Since our algorithm only requires the

angle-integrated radiation energy density and radiation current, the radiation solver

may, in some sense, be treated as a black box module to compute these quantities.

Of course, the angular intensities will need to be preserved across time steps. The

only significant change required for this extension would be to make the momentum

updates implicit to conserve momentum as well as energy.
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