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ABSTRACT

In this dissertation, we present novel approaches for integrating non-volatile memory

devices into storage hierarchy of a computer system. There are several types of non-

volatile memory devices, such as flash memory, Phase Change Memory (PCM), Spin-

transfer torque memory (STT-RAM). These devices have many appealing features for

applications, however, they also offer several challenges. This dissertation is focused

on how to efficiently integrate these non-volatile memories into existing memory and

disk storage systems. This work is composed of two major parts.

The first part investigates a main-memory system employing Phase Change Mem-

ory instead of traditional DRAM. Compared to DRAM, PCM has higher density and

no static power consumption, which are very important factors for building large

capacity memory systems. However, PCM has higher write latency and power con-

sumption compared to read operations. Moreover, PCM has limited write endurance.

To efficiently integrate PCM into a memory system, we have to solve the challenges

brought by its expensive write operations. We propose new replacement policies

and cache organizations for the last-level CPU cache, which can effectively reduce

the write traffic to the PCM main memory. We evaluated our design with multi-

ple workloads and configurations. The results show that the proposed approaches

improve the lifetime and energy consumption of PCM significantly.

The second part of the dissertation considers the design of a data/disk storage

using non-volatile memories, e.g. flash memory, PCM and nonvolatile DIMMs. We

consider multiple design options for utilizing the nonvolatile memories in the stor-

age hierarchy. First, we consider a system that employs nonvolatile memories such

as PCM or nonvolatile DIMMs on memory bus along with flash-based SSDs. We
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propose a hybrid file system, NVMFS, that manages both these devices. NVMFS

exploits the nonvolatile memory to improve the characteristics of the write workload

at the SSD. We satisfy most small random write requests on the fast nonvolatile

DIMM and only do large and optimized writes on SSD. We also group data of similar

update patterns together before writing to flash-SSD, as a result, we can effectively

reduce the garbage collection overhead. We implemented a prototype of NVMFS in

Linux and evaluated its performance through multiple benchmarks.

Secondly, we consider the problem of using flash memory as a cache for a disk

drive based storage system. Since SSDs are expensive, a few SSDs are designed to

serve as a cache for a large number of disk drives. SSD cache space can be used

for both read and write requests. In our design, we managed multiple flash-SSD

devices directly at the cache layer without the help of RAID software. To ensure

data reliability and cache space efficiency, we only duplicated dirty data on flash-

SSDs. We also balanced the write endurance of different flash-SSDs. As a result, no

single SSD will fail much earlier than the others.

Thirdly, when using PCM-like devices only as data storage, it’s possible to ex-

ploit memory management hardware resources to improve file system performance.

However, in this case, PCM may share critical system resources such as the TLB,

page table with DRAM which can potentially impact PCM’s performance. To solve

this problem, we proposed to employ superpages to reduce the pressure on memory

management resources. As a result, the file system performance is further improved.
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1. INTRODUCTION

Within existing storage hierarchy of a computer system, main memory and disk

storage are two important components as shown in figure 1.1. The main memory is

normally composed of Dynamic Random Access Memory (DRAM) which is volatile

and supports fast random read and write accesses. For personal desktop or laptop,

it’s sufficient to have several GBs’ memory, while large computing servers usually

require much larger capacity memory systems. However, DRAM technology is now

hitting hard power and capacity constraints that will limit its future process technol-

ogy scaling [30]. The technology scaling constraints for DRAM memory recently led

to the emergence of Phase Change Memory as an alternative form of main memory

in future processor designs [67]. We will introduce this in section 1.1.

P1 P2 … … Pn

DRAM

HDD

Main Memory

Disk Storage

Figure 1.1: Main memory and disk storage of a computer system.
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Another important component is the data/disk storage. When data are not

in memory, we need to first fetch them from disk storage. Moreover, to ensure

data endurance, existing memory systems need to write data updates to the disk

storage within a short time since DRAM is volatile and cannot sustain power failure.

Therefore, the read and write speed of the disk storage can directly affect the overall

performance of the whole system. Traditional hard disk has low performance for

random operations, which led to the emergence of solid state disk (SSD) and other

emerging nonvolatile memories as an alternative or a complementary building block

for storage. We will describe it in section 1.2.

1.1 Main memory technology

Dynamic random access memory (DRAM) is the predominant technology for

main memory in current processor systems. DRAM technology, however, is now

hitting hard power and capacity constraints that will limit its future process tech-

nology scaling [30]. Phase-Change Memory (PCM) has been proposed as an alternate

technology for processor memory systems [45, 63, 88, 61, 65].

PCM technology utilizes a class of materials known as chalcogenides. An alloy

of Germanium, Antimony and Tellurium (Ge2Sb2Te5) is one such alloy used by

some manufacturers [57, 3]. These materials can exist in two different states, either

crystalline or amorphous. By heating the chalcogenides, the phase (or the state)

can be changed or reversed between amorphous and crystalline states. The material

exhibits high resistivity in amorphous state and low resistivity in crystalline state

allowing binary states of 0/1 to be represented. While DRAM, is volatile and must

be refreshed, leading to a constant power consumption even when idle, PCM is

nonvolatile and retains the state even when the power is off.

Figure 1.2 [18] shows a diagram of a single PCM device cell and the circuit used

2



Figure 1.2: PCM device and circuit. [18]

to construct a memory cell from a PCM device. A PCM cell consists of two elec-

trodes with a layer of chalcogenide in between. As shown in Figure 1.2, a resistive

heating element extends from the bottom electrode to the layer of chalcogenide.

Current injected through the heating element changes the state of the chalcogenide

through local heating. The density of PCM arrays is expected to scale with process

technology better than the capacitance used in a DRAM cell as the semiconduc-

tor technology progresses for two reasons: 1) As the access transistor in capacitive

DRAM cells shrink, their sub-threshold leakage increases, eventually making further

shrinks impractical. Resistive PCM cells do not rely upon capacitive charge to de-

termine state [45]. 2) Future PCM cells promise the capacity of storing more than

one bit per cell further increasing their density versus DRAM cells [3].

Since writing a PCM cell involves thermal energy, writes take higher energy. Ta-

ble 1.1 details the read and write power for PCM versus DRAM in 78nm technology.

A write to PCM typically requires more power compared to an equivalent write to

DRAM. On the other hand, reads to PCM are less expensive in power consumption

than a DRAM. As this data shows, while PCM is 2.5x more efficient than DRAM

for reads, writes are 4x more expensive for PCM. The table also shows, while DRAM

row read latency can be about 15ns, the read latency of PCM can range from 15-

28ns. Similarly a DRAM row write latency can be about 20ns, the write latency in
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PCM is about 150ns [18].

As Table 1.1 shows, both the power consumption and latency characteristics of

read/write operations, PCM exhibits asymmetric performance characteristics, with

reads being much more efficient than writes. These characteristics require atten-

tion when designing a memory system using PCM. The asymmetry of read/write

characteristics require that read/write accesses be differently optimized.

Table 1.1: PCM vs DRAM characteristics [18]
PCM DRAM

Row read power 78mW 210mW
Row write power 773mW 200mW

Initial row read latency 28ns 15ns
Row write latency 150ns 20ns

Same row read/write latency 15ns 15ns

As introduced above, PCM has different characteristics than DRAM. PCM is

expected to be available in higher densities than DRAM in the future; PCM mem-

ory is also non-volatile. These characteristics of PCM have spurred novel memory

hierarchy designs. Relative to DRAM, PCM memory, however, introduces some new

design constraints. PCM memory’s read and write access characteristics are asym-

metric. Reads are more efficient in access time and power consumption than writes.

PCM memory cells also have a limited number of write cycles before they wearout.

Hence, a memory system employing PCM needs to address this asymmetry in its

design.

In Chapter 2, we present our design for employing PCM in memory system consid-

ering the impact of this asymmetry. We propose low-complexity techniques, utilizing

existing cache memory systems, to substantially improve the lifetime durability and

4



energy consumption of PCM main memory.

1.2 Disk storage technology

Traditional data/disk storage is built using hard disks. Hard disk stores data on

rapidly rotating disks (platters) coated with magnetic material. Hard disks, shown

in Figure 1.3a, can retain data even when powered off. The sequential read and write

operations are much faster than the random ones due to the so called seek latency.

The factors that limit the time to access the data on an HDD (Hard Disk Drive)

are mostly related to the mechanical nature of the rotating disks and moving heads.

Seek time is a measure of how long it takes the head assembly to travel to the track

of the disk that contains data. For random read or write requests, we might need to

frequently change the head assembly to different disk tracks which results in much

worse performance than sequential accesses.

(a)Hard Disk Drive of Laptop (b)Solid State Drive

Figure 1.3: Hard disk drive VS. solid state drive

New disk devices based on NAND-flash memory are becoming available with

different performance characteristics from traditional magnetic hard disks. Figure
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1.3b shows a NAND-flash based Solid State Drive (SSD). SSDs have no moving

mechanical components, therefore there is no seek latency. They have good random

performance, especially for read operations. However, NAND-flash cannot support

in-place updates and has limited write endurance. When we update existing data,

SSDs will write them to new places and mark the original data as invalid. To recycle

the invalid pages, we need to erase a whole SSD block which normally contains 64-

128 pages. The erase operation is very expensive which limits the write performance

of SSDs. There are different types of SSDs, namely SLC, MLC and TLC according

to the number of bits can be programmed per single cell. For SLC SSD, each cell

can only represent one bit ’0’ or ’1’, while the cell of MLC and TLC SSD can

represent more than one bit. Therefore, the capacity of SLC SSD is smaller than

the corresponding MLC and TLC devices, however, the performance of SLC SSD

is better than the MLC and TLC devices. The SSDs reuse the standard hard disk

interfaces. To achieve out-of-place updates, there is a layer called Flash Translation

Layer (FTL) inside SSD that manages the address mapping. It maps a logical block

address (LBA) seen by the operating system to the actual physical block address

(PBA) of a flash page. Moreover, to facilitate the space allocation and balance

the flash cell’s wear-out, FTL also controls the wear leveling and garbage collection.

When the available empty blocks of the SSD are not sufficient, the garbage collection

process will recycle those used blocks. To recycle a used block, the garbage collection

process has to first migrate all the valid pages to a new block, then erase the old

block.

Moreover, emerging nonvolatile memory technologies (sometimes referred as Stor-

age Class Memory (SCM)), are poised to close the enormous performance gap be-

tween persistent storage and main memory. They can provide better performance

than flash-based SSDs. The SCM devices can be attached directly to memory bus
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and accessed like normal DRAM. It becomes then possible to exploit memory man-

agement hardware resources to improve file system performance. However, in this

case, SCM may share critical system resources such as the TLB, page table with

DRAM which can potentially impact SCM’s performance.

Our research work in this part focuses on building efficient and high performance

data storage utilizing flash-based SSDs and the emerging nonvolatile memories.

In chapter 3, we integrate nonvolatile DIMMs and flash SSD as a hybrid storage,

instead of building disk storage on SSD directly. The nonvolatile DIMMs combine

traditional DRAM, Flash, an intelligent system controller, and an ultracapacitor

power source to provide a highly reliable memory subsystem that runs with the

latency and endurance of the fastest DRAM, while also having the persistence of

Flash (data on DRAM will be automatically backed up to flash memory on power

failure). We utilize nonvolatile DIMMs to further improve SSD’s performance. We

know that SSD has good random read performance, however, small random writes

bring down its performance and lifetime. We design a hybrid storage system managed

by our proposed file system, NVMFS, which utilizes nonvolatile DIMMs to absorb

the small random write requests. When the space of nonvolatile DIMMs is not

sufficient, we begin to flush data to SSD in large and optimized write units. As a

result, our design effectively improves the performance of SSD while improving the

garbage collection overhead.

In chapter 4, we design a secondary disk cache utilizing multiple SSDs, which can

be shared by a number of hard disk drives. Instead of managing the SSD devices as

a traditional RAID volume, we manage them directly at the cache layer. To improve

the cache space utilization, we only duplicate dirty data that are cached in SSDs.

This ensures that we won’t lose any data for single SSD failure at the cache layer.

As a result, our design significantly improved the hit ratio of the SSD caches and the

7



throughput of the storage system.

In chapter 5, we analyze the problem of increased TLB misses while employing the

emerging nonvolatile memories as data storage. We propose to solve this problem by

employing superpages to reduce the pressure on memory management resources such

as the TLB. As a result, the file system performance is further improved. We also

analyze the space utilization efficiency of superpages. We improve space efficiency

of the file system by allocating normal pages (4KB) for small files while allocating

super pages (2MB on x86) for large files. We show that it is possible to achieve better

performance without loss of space utilization efficiency of nonvolatile memory.
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2. PROCESSOR CACHE DESIGN TO IMPROVE LIFETIME AND ENERGY

IN PCM-BASED MAIN MEMORY

While process technology scaling continues providing ever greater numbers of

transistors, current and future process technologies constrain the transistor perfor-

mance and power gains that traditionally accompanied process scaling [30]. Recently

this trend led to the emergence of chip-multiprocessor (CMP) designs as a means to

leverage increasing transistor counts to achieve greater application performance more

with more power efficiency than traditional monolithic processors. Similar technol-

ogy scaling constraints for DRAM memory recently led to the emergence of Phase

Change Memory (PCM) as an alternative form of main memory in future processor

designs [67]. While PCM memory provides better power and density scaling in fu-

ture process technologies, it introduces new design challenges with respect to lifetime

durability and wear-out. In this chapter, we propose low-complexity techniques, uti-

lizing existing cache memory systems, to substantially improve the lifetime durability

and energy consumption of PCM main memory.

2.1 Background

2.1.1 Processor cache hierarchies

Current applications are placing greater pressure on their memory systems to

maintain data and instruction stream needs. To this end, current chips employ

memory system hierarchies with three levels of cache prior to main memory [51].

Multi-level cache hierarchies provide an approximation of a unified, fast, large mem-

ory space, through the low latency access times of small, private, first-level caches

and the large capacities of shared, last-level caches. As the design of the last-level

cache is optimized towards capacity rather than speed, these caches are often highly

9



associative.

In all associative caches, when a cache miss occurs a decision must be made

regarding which block will be evicted and replaced. Current caches typically employ

Least Recently Used (LRU) or approximations of LRU policies in deciding on which

victim block to evict from cache in order to make room for a missing block. If the

victim block is clean, it is simply discarded, however, if the current victim block

is dirty, it must be written to memory before the new block may be written to

cache. While many variations of LRU and other policies such as Least Frequently

Used (LFU) [47] have been studied, much of the focus of this research has been on

minimizing overall miss ratio at the caches.
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Figure 2.1: Number of total evictions per unique dirty line from a typical, 16-way,
2MB, last-level cache (LLC) for SPEC CPU2006 benchmarks.

As a result of this miss ratio focus, LRU and it’s variants often lead to frequent

re-writebacks of dirty cache lines to main memory, as illustrated in Figure 2.1. The
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figure shows the total number of dirty evictions from a processor’s LLC divided by the

total number unique dirty lines, giving the average number of times each dirty line is

re-written to the main memory for applications in the SPEC CPU2006 benchmark

suite. As the figure shows, more than half the benchmarks re-evict the same dirty

lines more than 10 times on average, two benchmarks re-evict cache lines hundreds

of times on average. Given the PCM cell’s high write cost in terms of energy, latency

and wearout, re-writing the same cache lines repeatedly is highly undesirable. We

propose to shift the focus of LLC design to account for the costs of writes to PCM

based main memory, while maintaining low miss rates.

2.1.2 Last-level cache based writeback reduction

In this Chapter, we introduce new cache replacement policies and cache orga-

nizations that reduce the writeback data volume while minimizing the impact of

cache miss rates. Figure 2.1 shows that many dirty cache lines written back to main

memory will later be modified again, effectively ping-ponging from memory to cache

and back many times during the course of the application. This Chapter examines

techniques to favor retention of frequently re-written dirty lines, over lines which are

clean. We observe that modern LLCs are both large relative to application footprints

and highly associative, yielding an opportunity to reduce writebacks while minimally

increasing misses to the LLC. Furthermore, as the techniques developed only imply

changes to the LLC, the effect on the total memory system access latency is very

small. The primary contributions of our design are as follows:

• We proposes a set of new cache replacement policies which favor eviction of

clean data over dirty data. These policies are simple to implement and imply

very low hardware overhead.

• We proposes a new cache organization which partitions sets to further favor
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the retention of frequently re-written dirty lines. This cache organization is a

natural fit for the banking typically found in LLCs, implying very little extra

hardware overhead.

• We show these replacement policies and the new cache organization improve

PCM lifetime by 49%-66% over a memory system employing randomized wear-

leveling techniques [63].

• We also show our design reduce PCM energy consumption by 21%-31% on

average over traditional LLC cache design.

2.2 Design and implementation

Based upon the observation that dirty blocks are often re-written to main-memory

many times during a program’s execution, we propose low-complexity, low-overhead

techniques to modify the LLC with the goal of retaining dirty blocks which will

be re-written frequently while maintaining low miss-rates. Our techniques address

two aspects of cache design: cache replacement policies and cache organization.

The proposed cache replacement policies favor replacement of clean blocks, keeping

dirty blocks in the LLC longer, effectively reducing redundant writebacks. Moreover,

we propose a new cache organization—the partitioned-cache, which aims to further

bias replacement to favor those particular dirty blocks in a set which are re-written

most frequently. The partitioned-cache accomplishes this by sub-dividing cache sets

into partitions and adaptively determining which partition to select blocks to evict

from depending on the relative writeback performance of those partitions. These

techniques not only prolong the lifetime of PCM-based main memory, but also save

the power and energy since PCM device has much higher power consumption and

latency for write relative to read. This section discusses cache replacement policy

based writeback reduction as well as cache organization based writeback reduction.
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2.2.1 Cache replacement policy

PCM-based main memory has limited write endurance and different read and

write cost in terms of time and energy. As a result, the cache replacement algorithm

of the LLC used with PCM-based main memory should consider not only the miss-

rate but also the cost, in terms of energy and lifetime, for replacing dirty blocks.

Therefore, we propose two cache replacement policies for the last-level of cache which

extend conventional LRU by integrating write costs to PCM main memory with cache

locality. Our policies reduce the write traffic of last-level cache to PCM main memory,

while maintaining a low miss rate. The first policy, Protect-0 maximally reduces the

writeback of last-level cache. The other policy, Protect-N, seeks to balance write

traffic reduction and the last-level cache’s misses.

2.2.1.1 Protect-0

There are two costs for cache replacement on the last-level cache. One is the read

cost of fetching a requested cache block from main memory. The read cost may be

minimized through cache locality, and is the focus of the LRU replacement algorithm.

PCM-based main memory introduces a second, write cost, when evicting a dirty

cache block from the last-level cache. PCM-based main memory has higher write

access latency relative to read, and limited write endurance; we therefore propose

the Protect-0 cache replacement algorithm to maximally reduce the writeback cost.

DC D

Evicted Clean Block
LRU 
List

D D CC DDD D DC DCC

Figure 2.2: MRU-LRU list for one set in a cache using the Protect-0 replacement
algorithm.
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Protect-0, shown in Figure 2.2, is a modified form of the LRU algorithm. When

a replacement is required in the last-level cache, Protect-0 searches the LRU list to

find an LRU clean block to replace. In the figure, the LRU clean block is the block

next to the LRU block, so it is chosen for the next eviction by Protect-0. If there’s

no clean block in the LRU chain, Protect-0 replaces the dirty LRU block.

Protect-0 attempts to maximally reduce write traffic to PCM main memory. As

long as there are clean blocks in LRU chain, Protect-0 will always select a clean

block for replacement and no additional writes to PCM main memory are generated.

Protect-0 fosters the retention of dirty cache blocks in the cache longer than clean

blocks. The longer dirty blocks remain in the cache, the more likely they are to

receive subsequent writes, reducing the total number of write-backs over the course

of the program by reducing the frequency with which dirty blocks ping-pong between

the main memory and the cache. The disadvantage of Protect-0 is it violates the

principle of temporal locality for clean blocks and therefore, may increase misses in

the LLC in the event that the replaced clean block is referenced again in the near

future and the preserved dirty block is not.

2.2.1.2 Protect-N

To minimize the increased misses caused by Protect-0, we propose another policy

called Protect-N. Protect-N balances dirty replacements against increased misses.

Previous studies have shown, in highly associative caches when sets are sorted in

most recently used (MRU) to LRU order, the vast majority of hits typically occur in

the first few MRU ways of the cache and the remaining ways provide only marginal

decreases in miss rate. Protect-N leverages this observation by dividing the LRU list

into two parts: the protected region and the non-protected region. The protected

region contains the N MRU blocks for which temporal locality is preserved regardless
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of clean/dirty status. The non-protected region includes the rest of the cache blocks

(W-N for W-way cache) in the LRU list. Protect-N only applies clean-first policy

to the non-protected cache blocks of the LRU chain. By protecting the N MRU

blocks, it is expected that locality will be preserved while reducing the writebacks

by evicting clean blocks from the remaining (LRU) blocks.

Determining the window size of N is very important to minimize misses while

preserving dirty data. A large protected window size will reduce the possibility of

finding a clean block for replacement, leading to more dirty replacements in PCM-

based main memory. A small protected window size increases the chances of replacing

a clean block that is likely to be referenced soon, leading to an increased miss rate of

last-level cache. Considering both two kinds of replacement cost of last-level cache,

we experimentally determined the best value of N to be 4 for 16-way, 2 for 8-way

and 1 for 4-way caches.

文本文本
文本

Protected region    Non-Protected region

文本 DC D

Evicted Dirty Block

LRU 
List

D D DD DDD D DD DDC

Figure 2.3: MRU-LRU list for one set in a cache using the Protect-N replacement
algorithm (N=4).

The Protect-N algorithm always protects the first N MRU blocks regardless of

their clean/dirty status and only applies the clean-first policy to the non-protected

blocks. As shown in Figure 2.3, if Protect-N fails to find a clean block from the

non-protected region of LRU list, it will simply replace the LRU block. In the figure,
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there are no clean blocks in the non-protected region, therefore Protect-N (N=4 in

this case) will choose the LRU block for replacement. Since the LRU block is dirty,

a writeback request must be generated to the lower-level PCM-based main memory.

Protect-N may not perform as well as Protect-0 at reducing write traffic, however

attempts to balance the miss rate of last-level cache against writebacks to the main

memory.

2.2.2 Cache organization

We observe that dirty cache blocks which are evicted and re-fetched repeatedly

over the course of a program’s execution often will have significant intervening refer-

ences between consecutive writes. This is often the case in applications which stream

clean data through the cache. It also can occur in applications which frequently al-

locate and free temporary data space on the heap and stack. In these instances

Protect-N is unable to retain critical dirty blocks in the cache until their subsequent

reuse.

Set 0

Set 1

Set 3

normal 
cache

Set 15

Set 13

Partition 0 Partition 1 Partition 2 Partition 3

Set 8

Set 9

hash1 

Set 1 Set 5

Set 4Partition 
cache

Set 2 Set 6

Set 7Set 3

Set 0

hash2 hash3 hash4

16-way per set in 
normal cache

Set 10

Set 11

Set 14

Set 12

Set 2

4-way per set in 
partitioned-cache

Cache capacity=64 cache lines

Figure 2.4: The organization of partitioned-cache.
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To address the applications where Protect-N is insufficient to reduce re-writes of

dirty data, we propose a new adaptive form of cache organization—partitioned-cache,

which aims to preserve dirty cache blocks longer than Protect-N while introduc-

ing fewer misses than Protect-0. Figure 2.4 shows the difference between a normal

cache and the partitioned-cache. As the figure shows, the partitioned-cache divides

a Protect-N W-way cache into M partitions, each maintaining a smaller (N/M) pro-

tected region. In the figure, the partitioned-cache separates the original 16-way set

into four 4-way sets, and applies Protect-1 within each of them.

As in a typical cache, the referenced block address in the partitioned-cache is

divided into three components: the tag, the set index, and the offset, however in the

partitioned-cache the least significant bits of the tag are used as a partition index.

Upon receiving a reference, the set index determines which set and the tag is used to

match the block within the set. All partitions of the set are searched in parallel. If

the reference is a hit, the LRU list of the corresponding set of partition is updated.

In the event of a miss, the partition index indicates a preferred partition within the

set, to search for a clean block for eviction. In operation this is similar to Protect-N

operating only within the preferred partition within the set. In the event that no

unprotected clean block is found in the preferred partition of the set, the partition

within the cache which has the most clean blocks is adaptively chosen to receive the

miss. If no partitions have unprotected clean blocks then the preferred partition’s

LRU dirty block is evicted.

For the address shown in Figure 2.4, set 2 of Partition 1 will be considered first.

If Protect-1 fails to find a proper clean block in set 2 of Partition 1, it will further

search other partitions. Finally, if we cannot replace a proper clean block among all

the partitions, the LRU block of mapped set within the preferred partition, set 2 of

Partition 1, is evicted.
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The benefit of the partitioned-cache lies in its longer term preservation of dirty

blocks in the set partitions which contain the most dirty blocks. The partition cache

steers replacement traffic away from those partitions which receive the most dirty

blocks, allowing them to stay in the cache longer than the partitions which contain

some clean blocks. As a result, the cache access traffic is shifted to the partition

that has a lower writeback rate (writebacks per cache access), further reducing the

writeback traffic to PCM-based main memory.

We note that, in comparison with the Protect-N cache, the partitioned-cache has

little additional design complexity and latency overhead. Initial tag matching is done

in parallel among a set’s partitions as in a traditional cache of the same associativity,

and hence incurs no extra latency on hits. The logic overhead of adaptive partition

selection upon a miss may be placed in the cache’s pipeline after the missing block’s

fetch from main memory has been initiated and prior to it’s return, hence off the

critical path. We also note that our policies are only imposed on the LLC and not

the rest of the cache hierarchy and the resultant LLC does not retain the inclusion

property.

2.3 Evaluation

The primary goal of this work is to improve PCM main memory lifetime, and

energy through a reduction in the number of writebacks to main memory from the

LLC while maintaining a low impact on system performance. To this end, in this sec-

tion we evaluate our modified cache replacement algorithm and cache organization in

their direct impact on PCM lifetime and energy consumption. We then examine the

cache performance in terms of writebacks and misses, which cause the corresponding

changes on PCM memory lifetime and energy. We note that the techniques which

require substantial changes to the main memory system and do not focus on the

18



Table 2.1: Baseline cache configurations

System One core Eight cores
L1 cache (Private) 64KB, 2-way, LRU,

64Bytes block
64KB L1, 2-way, LRU,
64Bytes block

L2 cache (Shared) 2MB, 16-way, LRU,
64Bytes block

8MB, 16-way, LRU,
64Bytes block

LLC [61, 65, 63], are orthogonal and complimentary to our techniques. As such they

are not evaluated in this work for the sake of brevity.

2.3.1 Methodology

The proposed cache replacement policy and cache organization were evaluated

with both single- and multi-core configurations. Our baseline processor configura-

tions for an 8-core CMP and a single core system are shown in Table 2.1. In both

models, each core has its own private L1 caches, each 64KB. In the CMP model,

a shared 8MB, 16-way L2 cache forms the last-level cache (LLC), upon which our

modified cache replacement policies and cache organization are used. The L1 and

L2 caches in both models have the same block size of 64Bytes.

For single core simulation, we use 18 applications from SPEC CPU2006 bench-

mark suite [74] and collected the memory system reference traces as the input of our

simulator. The memory system traces were run through an in-house cache simulator

to simplify and speed LLC cache organization development and evaluation.

For multi-core simulation, we use the M5 architecture simulator [5] to generate the

simulation results and evaluate our modified cache replacement policies and cache

organization. We chose PARSEC 2.1 benchmark suite [21, 4] as workloads which

contains a suite of multi-threaded, CMP oriented applications, thus is suitable for
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the evaluation of a CMP machine.

For the partitioned-cache, we always ensure the way-complexity is equal with nor-

mal cache organization (i.e. partitioned-cache with 4-way, 4-part is compared with

16-way normal cache). Except where otherwise noted, in the following experiments

we vary both the L2 cache’s replacement policy (Protect-0, Protect-N) and cache

organization (traditional cache, partitioned-cache). For simplicity, in all figures, P-

0, P-4, P-1-4part represent our designs of Protect-0, Protect-4, Protect-1-4partition

respectively. Our design only impacts the L2 cache, the LLC of the system, the L1

still uses the traditional LRU replacement algorithm and normal cache organization.

Dirty cache blocks at the end of simulation are included in all the writeback counts.

2.3.2 Single-threaded simulation

In this section we present the results from a single-core, single-threaded evaluation

of our proposed cache replacement policies and cache organization.

2.3.2.1 Lifetime

The effective lifetime of PCM is ultimately limited by the maximum number of

writes to a given cell. In this section we evaluate the improvement in lifetime by

examining the relative reduction in re-writes to the cell which has the maximum

number of writes for each of our techniques versus LRU. We show the impact of our

design on a memory system that employs randomized wear-leveling similar to that

proposed in [71, 63, 52].

As we see in figure 2.5, our design provides a 49% gain (on average) over LRU

when both applying on a randomized wear-leveling PCM system. This is because

wear-leveling techniques can only distribute the writes to PCM more evenly, while

the number of total writebacks can’t be reduced at all. As our design effectively

reduces writesbacks from LLC to PCM main memory, it’s natural to achieve better
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Figure 2.5: Lifetime improvement of SPEC2006 benchmarks on randomized wear-
leveling PCM system

performance when combined with other wear-leveling techniques. Importantly, our

design accomplishes the writeback reduction without the additional complexity of a

DRAM cache in front of PCM.

2.3.2.2 Energy consumption

Unlike previously proposed randomized wear-leveling techniques, our designs also

reduce the energy consumption relative to conventional LRU cache. From Table 1.1,

we see write-power is approximately 10x read-power and the write-latency is approxi-

mately 6x read-latency for PCM devices. We calculate the energy consumption using

the formula: Energy = Misses*R power*R latency + Writebacks*W power*W latency.

As our design can effectively reduce write traffic to PCM, we expect them to reduce

energy consumption as well. Figure 2.6 shows the normalized energy consumption

of our designs against LRU baseline cache. On average, our Protect-0, Protect-4
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and Protect-1-4partition reduce the energy consumption by 19.2%, 16.3% and 21%

respectively.
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Figure 2.6: Normalized energy consumption for SPEC2006 benchmarks.

2.3.2.3 Write traffic

In this section, we explore how our design achieves improvement on lifetime and

energy of PCM memory system. Figure 2.7 shows the impact on writebacks of the

LLC cache when applying Protect-0, Protect-4 and Protect-1-4part versus traditional

LRU cache for all the benchmarks. In Figure 2.7, we see all designs significantly

reduce the write traffic to PCM-based main memory. Our design greatly reduces the

total number of writes performed on the PCM device, so that its lifetime is improved

effectively.

Generally, Protect-1-4partition performs better than Protect-4 and slightly worse
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than Protect-0. It is, however, interesting to note that in several instances, for

example h264ref, Protect-1-4partition actually outperforms Protect-0. In these cases

Protect-1-4partition is adaptively retaining critical dirty blocks longer than even

Protect-0 would allow.
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Figure 2.7: Normalized last-level cache writebacks for SPEC2006 benchmarks.

2.3.2.4 Misses

Figure 2.8 shows the corresponding miss impact of our design against traditional

LRU baseline. As expected, Protect-0 has the worst effect on misses. Generally,

Protect-4 and Protect-1-4partition have a lower impact on misses than Protect-0,

and the overall increase is quite small compared with conventional LRU. Therefore,

Protect-4 and Protect-1-4partition effectively reduce the additional cost of increasing

LLC’s misses and achieve a good trade-off between reducing write traffic and preserv-

ing locality. Moreover, Protect-1-4partition generates the fewest misses, approaching

23



LRU. Generally, the partitioned-cache scheme outperforms the corresponding normal

cache organization in terms of both writebacks and misses, which demonstrates the

benefit of partitioned-cache organization.
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Figure 2.8: Normalized last-level cache misses for SPEC2006 benchmarks.

2.3.3 Multi-threaded simulation

In this section we examine the impact of our proposed cache replacement policies

and cache organization on multi-threaded applications on multi-core processors.

Figure 2.9 and 2.10 show the lifetime and energy improvement for our proposed

design relative to the baseline randomized wear-leveling system. We see our design

also has impressive improvement on lifetime and energy for multi-threaded appli-

cations. These improvement come from efficient writeback reduction while at the

same time keeping misses comparable to the tradition LRU. Figure 2.11 and 2.12
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show the corresponding writeback and misses performance under our design relative

to LRU for PARSEC benchmarks. We can see that our design reduces the write-

back by 40% while only increases misses by less than 1%. Energy consumption is

also reduced greatly because of much less expensive-write performed. Generally,

our cache replacement policies and cache organization have similar performance on

multi-threaded applications as that of single-threaded ones, both improve lifetime

and energy of PCM effectively.
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Figure 2.9: Lifetime improvement of PARSEC benchmarks on randomized wear-
leveling PCM system

2.4 Analysis

In this section, we analyze the performance of the proposed cache design with

respect to wear leveling. We also provide some intuition behind what makes the
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Figure 2.10: Normalized energy consumption for PARSEC benchmarks.
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Figure 2.11: Normalized last-level cache writebacks for PARSEC benchmarks.
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Figure 2.12: Normalized last-level cache misses for PARSEC benchmarks.

partitioned-cache work.

2.4.1 Wear leveling

Wear-leveling is very important for PCM-based main memory, if writes occur

more frequently on certain PCM cells the write endurance of those cells is soon hit,

potentially leading to the breakdown of the device as a whole. Therefore, a uniform

write distribution can effectively prolong the overall life time of a PCM device. To

further explore our design’s effect on wear-leveling, we apply our design and LRU

on a baseline PCM system (without wear-leveling). Figure 2.13 shows a sorted

cumulative distribution graph of main memory write addresses versus write counts

for systems in which the LLC cache uses the LRU baseline, Protect-4, Protect-1-

4partition on the soplex benchmark (other benchmarks have similar pattern). The

two linear traces representing an ideal uniform write distribution for lru baseline and
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our technique respectively. In the figure the x-axis represents the written address

tags, sorted according to the number of writes per tag, and the y-axis represents

the number of total writes for each tag. As the figure shows, our designs produce a

much lower and flatter distribution than the 16-way baseline LRU cache. Moreover,

the uniform lines show that our design will perform much better than LRU baseline

when combined with wear-leveling algorithms [71, 63, 52]. These results indicate not

only do our designs produce fewer writes than baseline LRU cache on this workload,

they also produce a much more uniform wear than LRU for its number of writes.
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Figure 2.13: Write distribution of soplex

2.4.2 Behavior of the partitioned-cache

To further analyze the behavior of the partitioned-cache, we examine the rela-

tionship between writeback rate and access traffic. For the sake of comparison with

the partitioned-cache organization, we apply Protect-0 and Protect-1 both on a tra-
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ditional 4-way cache, which is manually divided into four partitions according to the

most two significant bits of the set index. As shown in Figure 2.14, the accesses are

normalized to traditional LRU baseline, and the wbrate is the writeback rate. We

observe that Protect-0-4way and Protect-1-4way have comparable accesses among

all partitions, while Protect-1-4partition preserves a much higher access rate to the

partition with lower writeback rate. Generally, the partitioned-cache holds on to

the lines that have higher writeback rate by reducing the number of times they are

replaced.
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Figure 2.14: Accesses, writeback rate of each partition under hmmer application.

2.5 Related work

This section describes related work in PCM based memory systems, cache re-

placement policies and cache organization.
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2.5.1 Phase change memory based memory systems

Recently a handful of works have explored the design space of alternative main

memory technologies. Li et al. and Dhiman et al. have investigated hybrid DRAM

and PCM memory architectures [86, 18], while Sun et al. explored hybrid PCM

and Solid State Disk (SSD) storage architectures [77]. In both cases, the authors

sought to use one technology to provide buffers for frequently written data, offsetting

some of the penalties of the other technology. These works are largely orthogonal

and possibly complementary to the work presented here, as we focus upon reducing

writebacks from the lower levels in the memory system.

Qureshi et al. propose two techniques called write cancellation and write pausing

for improving the read performance of PCM memories [61]. These techniques give

preference to reads at PCM and help mitigate the long write times in order to improve

read performance. Separately, Qureshi et al. propose sub-block cache writebacks to

reduce the writeback volume to PCM [65]. This work has a similar motivation as our

work here, but proposes a different solution. While their work incorporates sub-block

level dirty bits and only writes dirty words to PCM instead of full cache blocks, our

work modifies the cache replacement policy to reduce the number of writebacks.

Lee et al. propose three techniques to improve PCM lifetime [45, 46]. These

include elimination of redundant bit writes, row shifting, and segment swapping, all

of which are aimed at either reducing the number of writes or leveling wear across

the arrays. These techniques should be complimentary with the work presented here,

although the benefit of combining them will not be strictly additive as our technique

also will level wear somewhat across the arrays.
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2.5.2 Cache replacement policies

Cache replacement policies have been studied extensively since caches came into

wide use in the early 1980’s [28, 27, 35, 2, 47]. These works focused primarily upon

achieving the fewest misses, as cache miss rate has the most direct effect on processor

performance. These works largely disregard the effect of writebacks on the DRAM

because, from the processor’s point of view, writebacks occur in the background and

do not directly affect miss latency. Furthermore, in DRAM technology, writes are

not much more expensive than reads so there was less need to favor them.

In a seminal paper introducing the “Snoopy” cache coherence protocol, Goodman

discussed the impact of writebacks on memory system bandwidth [23]. This work

focused on shared memory induced writebacks and write-through caches. Mattson’s

stack algorithm is a useful tool to study associativity and replacement algorithms

in caches [22]. Several recent works use Mattson’s stack algorithm to improve cache

utilization [9], sharing between processors [64, 37], or to improve DRAM utiliza-

tion [75].

Clean First LRU (CFLRU) policy was proposed for page cache management in

solid-state disks (SSDs) for similar reasons of reducing expensive writes to SSDs [58].

While the page replacement policies they propose have some similarities with our

Protect-N policy, our focus here is on appropriate last-level, on-die cache, block

replacement policies for PCM main memory. As such our proposed policies must be

hardware implementable with low latency overheads and limited logical complexity.

2.5.3 Cache organization

Cache organization has also been extensively studied. Seznec proposed skew

associative caches employing different hash functions enabling different sets to map to

different parts (or partitions) of the cache [72, 6]. Powell et al. examined techniques
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to adaptively change the associativity and parallel search requirements of highly

associative caches to reduce power and energy in the cache [60]. The set balancing

cache allowed the associativity of a set in the cache to double based on observed miss

behavior of that set [68]. A miss saturation counter is used to guide the expansion of a

set into another location in the cache and these locations are serially searched to find

a data item. The V-way cache employed a larger number of tag entries (compared

to data entries) to allow variable associativity per set [62]. These alternative cache

organizations were motivated by an aim of maintaining uniform accesses across the

different sets or ways of the cache to approximate higher associativity and fewer

misses. We propose an organization of the cache that intentionally skews the traffic

(makes it less uniformly spread across the sets) to reduce the writebacks from the

last level cache.
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3. NVMFS: A HYBRID FILE SYSTEM FOR IMPROVING RANDOM WRITE

IN NAND-FLASH SSD∗

In this chapter, we propose a hybrid storage system employing non-volatile DIMMs

and solid state disks. The hybrid storage system is managed by our file system,

NVMFS, which leverages both devices’ advantages and compensates their disadvan-

tages. Our design utilizes non-volatile DIMMs to absorb small random write requests

and optimizes the write operations on flash SSD. We show that such a hybrid storage

system can improve write throughput and garbage collection efficiency of SSD.

3.1 Background

For many years, the performance of persistent storage (such as hard disk drives)

has remained far behind that of microprocessors. Although the disk density has

improved from GBs to TBs, data access latency has increased by only 9X [17, 16].

Compared with HDDs, SSDs have several benefits. An SSD is a purely electronic

device with no mechanical parts, and thus can provide lower access latencies, lower

power consumption, lack of noise and shock resistance. However, SSDs also have two

serious problems: limited lifetime and relatively poor random write performance. In

SSDs, the smallest write unit is one page (such as 4KB) and can only be performed

out-of-place, since data blocks have to be erased before new data can be written.

Random writes can cause internal fragmentation of SSDs and thus lead to higher

frequency of expensive erase operations [11, 7]. Besides performance degradation,

the lifetime of SSDs can also be dramatically reduced by random writes.

Flash memory is now being used in other contexts, for example in designing

∗Reprinted with permission from “NVMFS: A hybrid file system for improving random write
in NAND-flash SSD” by Sheng Qiu and A.L.Narasimha Reddy, 2013. IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), Copyright 2013 by IEEE
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Figure 3.1: Non-volatile DIMMs.

nonvolatile DIMMs [1, 79] as shown in Figure 3.1. These designs combine traditional

DRAM, Flash, an intelligent system controller, and an ultracapacitor power source to

provide a highly reliable memory subsystem that runs with the latency and endurance

of the fastest DRAM, while also having the persistence of Flash (data on DRAM

will be automatically backed up to flash memory on power failure). The availability

of these nonvolatile DIMMs can simplify and enhance file system design, a topic we

explore in this chapter.

In this chapter, we consider a storage system consisting of Nonvolatile DIMMs

(as NVRAM) and SSDs. We expect a combination of NVRAM and SSD will provide

the higher performance of NVRAM while providing the higher capacity of SSD in

one system. We propose a file system NVMFS for such a system that employs both

NVRAM and SSD. Our file system exploits the unique characteristics of these devices

to simplify and speed up file system operations.

Traditionally, when devices of different performance are used together in a system,

two techniques are employed for managing space across the devices. When caching is

employed, the higher performance device improves performance transparently to the

layers above, with data movement across the devices taken care of at lower layers.

When migration is alternately employed, the space of both slower and faster devices

becomes visible to the higher layers. Both have their advantages and disadvantages.
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In our file system proposed here, we employ both caching and migration at the

same time to improve file system operations. When data is migrated, the address

of the data is typically updated to reflect the new location whereas in caching, the

permanent location of the data remains the same, while the data resides in higher

performance memory. For example, in current file systems, when data is brought

into the page cache, the permanent location of the file data remains on the disk even

though access and updates may be satisfied in the page cache. Data eventually has

to be moved to its permanent location, in caching systems. In systems that employ

migration, data location is typically updated as data moves from one location to

another location to reflect its current location. When clean data needs to be moved

to slower devices, data cannot be simply discarded as in caching systems (since data

always resides in the slower devices in caching systems), but has to be copied to the

slower devices and the metadata has to be updated to reflect the new location of the

data. Otherwise, capacity of the devices together cannot be reported to the higher

layers as the capacity of the system.

In our system, we employ both these techniques simultaneously, exploiting the

nonvolatile nature of the NVRAM to effectively reduce many operations that would

be otherwise necessary. We use the higher performance NVRAM as both a cache and

permanent space for data. Hot data and metadata can permanently reside in the

NVRAM while not-so-hot, but recently accessed data can be cached in the NVRAM

at the same time. This flexibility allows us to eliminate many data operations that

would be needed in systems that employ either technique alone.

When data is accessed from SSD, initially that data is cached in the NVRAM, and

the file system retains pointers to both locations. If this data becomes a candidate for

eviction from NVRAM and it hasn’t been updated since it is brought into NVRAM,

we discard the data from NVRAM and update the metadata to reflect the fact that
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data resides now only on the SSD. If the data gets updated after it is brought into

NVRAM, we update the metadata to reflect that the data location is the NVRAM

and the data on the SSD is no longer valid. Since NVRAM is nonvolatile, we can

retain the data in NVRAM much longer and get forced to flush or write this data

back to SSD to protect against failures. This allows us to group the dirty data

together and write the dirty data together to SSD at a convenient time. Second, this

allows us to group data with similar hot-cold behavior into one block while moving

it to SSD. We expect this will improve the garbage collection process at SSD in the

longer term.

In order to allow this flexibility that we described above, where data can be

cached or permanently stored on the NVRAM, we employ two potential addresses

for a data block in our file system. The details of this will be described later in

section 3.2.

The primary contributions of our design are as following:

• We proposes a new file system – NVMFS, which integrates Nonvolatile DIMMs

(as NVRAM) and a commercial SSD as the storage infrastructure.

• NVMFS exploits the strengths of NVRAM and SSD to improve file system per-

formance. In our design, we utilize SSD’s larger capacity to hold the majority of

file data while absorbing random writes on NVRAM. We explore different write

policies on NVRAM and SSD: in-place updates on NVRAM and non-overwrite

on SSD. As a result, random writes at file system level are transformed to

sequential ones at device level when completed on SSD.

• NVMFS distributes metadata and relatively hot file data on NVRAM while

storing other file data on SSD. Unlike normal caching or migration scheme,

our design can permanently store hot data on NVRAM while also temporar-
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ily caching the recently accessed data. To track the hotness of file data, we

implement two LRU lists for dirty and clean file data respectively. Our file

system will dynamically adapt the number of pages distributed between dirty

and clean LRU lists. When the dirty file data are not hot enough we will col-

lectively flush them (grouped into SSD blocks) to SSD and put them to the

end of clean LRU list which may be quickly replaced whenever the space of

NVRAM is not enough (we always replace LRU clean pages).

• We show that NVMFS improves IO throughput by an average of 98.9% when

segment cleaning is not active, while improving IO throughput by an average

of 19.6% when segment cleaning is activated, compared to several existing file

systems.

• We also show that the erase operations and erase overhead at SSD are both

effectively reduced.

3.2 Design and implementation

NVMFS improves SSD’s random write performance by absorbing small random

IOs on NVRAM and only performing large sequential writes on SSD. To reduce

the overhead of SSD’s erase operations, NVMFS groups data with similar update

likelihood into the same SSD blocks. The benefits of our design resides on three

aspects: (1)reduce write traffic to SSD; (2)transform random writes at file system

level to sequential ones at SSD level; (3)group data with similar update likelihood

into the same SSD blocks.

3.2.1 Hybrid storage architecture

In NVMFS, the memory system is composed of two parts, one is the traditional

DRAM, the other is the Nonvolatile DIMMs. Figure 3.2 shows the hardware archi-
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Figure 3.2: Hybrid storage architecture

tecture of our system. We utilize Nonvolatile DIMMs attached to the memory bus,

and accessed through virtual addresses as NVRAM. The actual physical addresses

to access NVRAM are available through the page mapping table, leveraging the op-

erating system infrastructure. All the page mapping information of NVRAM will

be stored on a fixed part of NVRAM. We will detail this later in section 3.2.2. If

the requested file data is on NVRAM, we can directly access it through load/store

instructions. While if the requested file data is on SSD, we need to first fetch it to

NVRAM. It’s noted that we bypass page cache in our file system, since CPU can

directly access NVRAM which can provide the same performance as DRAM based

page cache. To access the file data on SSD, we use logical block addresses (LBAs),

which will be translated to the physical block addresses (PBAs) through FTL com-

ponent of SSD. Therefore, NVMFS has two types of data addresses at file system

level – virtual addresses for NVRAM and logical block addresses for SSD. In our

design, we can store two valid versions for hot data on NVRAM and SSD respec-
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tively. Whenever the data become dirty, we keep the recent data on NVRAM and

invalidate the corresponding version on SSD. We will introduce how we manage the

data addresses of our file system in section 3.2.2.

The benefit of building such a hybrid storage is that we can exploit each device’s

advantages while offsetting their disadvantages. Since SSD has poor random write

performance and limited write cycles, we absorb random writes on NVRAM and

only perform large sequential writes on SSD. For metadata and frequently accessed

file data, we permanently store them on NVRAM, while distributing other relatively

cold, clean data on SSD. We will detail how NVMFS distributes the file data between

NVRAM and SSD in section 3.2.3.

3.2.2 File system layout

The space layout of NVMFS is shown in figure 3.3. The metadata and memory

mapping table are stored on NVRAM. The metadata contains the information such

as size of NVRAM and SSD, size of page mapping table, etc. The memory mapping

table is used to build some in-memory data structures when mounting our file system

and is maintained by memory management module during runtime. All the updates

to the memory mapping table will be flushed immediately to NVRAM.

In the file system address space, the layout of NVMFS is very simple. The file

system metadata which includes super block, inode table and block bitmap are stored

on NVRAM while the file data are stored either on NVRAM or SSD based on their

usage pattern. The block bitmap indicates whether the corresponding NVRAM or

SSD block is free or used. In NVMFS, we always put hot file data on NVRAM

and cold file data on SSD. We use LRU list to classify hot and cold data which

will be discussed in section 3.2.3. In our current implementation, the total size of

virtual memory space for NVRAM addresses is 247 bytes (range: ffff000000000000
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Figure 3.3: Storage space layout

- ffff7fffffffffff), which is unused in original Linux kernel. The space can be larger

if we re-organize 64-bit virtual address space. We modified the Linux kernel to let

the operating system be aware of the existence of two types of memory devices –

DRAM and NVRAM, attached to the memory bus. We also added a set of functions

for allocating/deallocating the memory space of NVRAM. This implementation is

leveraged from previous work in [85].

In NVMFS, the directory files are stored as ordinary files, while their contents

are lists of inode numbers. To address the inode table, we store the pointer to the

starting address of the inode table in the super block. Within the inode table, we

use a fixed size entry of 128 bytes for each inode, and it is simple to get a file’s

metadata through its inode number and the start address of the inode table. The

inode will store several pieces of information including checksum, owner uid, group

id, file mode, blocks count of NVRAM, blocks count of SSD, size of data in bytes,

access time, block pointer array and so on. The block pointer array is similar as the

direct/indirect block pointers used in EXT2. The difference is that we always allocate

indirect blocks on NVRAM so that it is fast to index the requested file data even
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when the file is large which requires retrieving indirect blocks. The block address is

64 bits and the NVRAM addresses are distinct from the SSD block addresses. To

build our file system, we can use the command like “mount -t NVMFS -o init=4G

/dev/sdb1 /mnt/NVMFS”. In the example, we attached 4GB Nonvolatile DIMMs

as the NVRAM, and inform NVMFS the path of the SSD device, finally mount it to

the specified mount point.

3.2.3 Data distribution and write reorganization

The key design of NVMFS relies on two aspects: (a)how to distribute file system

data between the two types of devices – NVRAM and SSD; (b)how to group and

reorganize data before writing to SSD so that we can always perform large sequential

writes on SSD.

File system metadata are small and will be updated frequently, thus it’s natural to

store them on NVRAM. To efficiently distribute file data, we track the hotness of both

clean and dirty file data. We implemented two LRU (Least Recently Used) lists —

dirty and clean LRU lists, which are stored as metadata on NVRAM. Considering the

expensive write operations of SSD, we prefer to store more dirty data on NVRAM,

expecting them to absorb more update/write operations. Whenever the space of

NVRAM is not sufficient, we replace file data from clean LRU list. However, we

also do not want to hurt the locality of clean data. We balance this by dynamically

adjusting the length of dirty and clean LRU lists. For example, if the hit ratio of

clean data is 2X more than that of dirty data, we increase the NVRAM pages that

are allocated for clean data. In other words, we increase the length of clean LRU

list. To achieve this, we maintain two performance counters which keep track of the

hits on clean and dirty data (on NVRAM) respectively. We periodically measure

and reset the counters. The total number of pages within clean and dirty LRU lists
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is fixed, equalling to the number of NVRAM pages.
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Figure 3.4: Dirty and clean LRU lists

Figure 3.4 shows the clean and dirty LRU lists as well as the related operations.

When writing new file data, we allocate space on NVRAM and mark them as dirty,

then insert to the MRU (Most Recently Used) position of dirty LRU list. Read/write

operations on dirty data will update their position to MRU within dirty LRU list.

For clean data, read operations update their position to MRU of clean LRU list, while

write operations are a little different since the related data become dirty afterward.

As shown in figure 3.4, writes on clean data will migrate the corresponding NVRAM

pages from clean LRU list to the MRU of dirty LRU list.

Unlike existing page cache structure which flushes dirty data to the backed sec-

ondary storage (such as SSDs) within short period, our file system can store dirty

data permanently on NVRAM. NVMFS always keeps the pointer to the most recent

data version. We can choose when and which data to flush to SSD dynamically

according to the workloads. We begin to flush dirty data to SSD whenever the

NVRAM pages within dirty LRU list reaches a high bound (i.e. 80% of dirty LRU

list is full). Then we pick dirty data from the end of dirty LRU list and group them

into SSD blocks. We allocate the corresponding space on SSD with sequential LBAs
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and write these data sequentially to SSD. This process continues until the NVRAM

pages within dirty LRU list reaches a low bound (i.e. 50% of dirty LRU list is full).

The flushing job is executed by a background kernel thread.
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Figure 3.5: Migrate dirty NVRAM pages to SSD

Figure 3.5 shows how our file system migrates dirty data from NVRAM to SSD.

The dirty NVRAM pages will become clean after migrating to SSD and will be

inserted to the LRU position of clean LRU list. As a result, we have two valid clean

data versions on NVRAM and SSD respectively. We can facilitate the subsequent

read/write requests since we still have valid data versions on NVRAM. Moreover,

we can easily replace those data on NVRAM by only reflecting their positions on

SSD. In our file system, the file inode always points to the appropriate data version.

For example, if file data have two valid versions on NVRAM and SSD respectively,

the inode will point to the data on NVRAM. We have another data structure called

“page info” which records the position of another valid data version on SSD. It is

noted that we won’t lose file system consistency even if we lose this “page info”
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structure, since file inodes consistently keep the locations of appropriate valid data

version. We will discuss file system consistency in section 3.2.5

3.2.4 Non-overwrite on solid state drive

We employ different write policies on NVRAM and SSD. We do in-place update on

NVRAM and non-overwrite on SSD, which exploits the devices’ characteristics. The

space of SSD is managed as extents of 512KB, which is also the minimum flushing

unit for migrating data from NVRAM to SSD. Each extent on SSD contains 128

normal 4KB blocks, which is also the block size of our file system. When dirty data

are flushed to SSD, we organize them into large blocks (i.e. 512KB) and allocate

corresponding number of extents on SSD. As a result, random writes of small IO

requests are transformed to large write requests (i.e. 512KB).

To facilitate allocation of extents on SSD, we need to periodically clean up internal

fragmentation within the SSD. For example, when clean data are fetched from SSD

to NVRAM because of write accesses, the corresponding data on SSD will become

invalid, since the updated data now reside on NVRAM. The fetched data can be

smaller than one SSD extent or across several SSD extents, as a result, there will

be invalid portions within SSD extents. During recycling, we can integrate several

partial valid SSD extents into one valid SSD extent and free up the remaining space.

This ensures that we can always have free extents available on SSD for allocation,

which is similar to the segment cleaning process of log-structured file systems. It’s

noted that the FTL component of SSD still manages the internal garbage collection

of SSD. We will show how NVMFS impacts it in section 3.3.3.

Figure 3.6 shows the space organization of SSD. As we see, each extent is 512KB

which contains 128 normal 4KB blocks. Given the logical block number, it’s easy to

get its extent’s index and offset within that extent. To facilitate extent recycling,
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Figure 3.6: Space management on SSD

we need to keep some information for each block within a candidate extent, for

example, the inode and file offset each valid block belongs to. We also keep a flag

which indicates whether this extent is fragmented (contains invalid blocks). This

information is kept as metadata in a fixed space on NVRAM. The space overhead is

small, 64 bits (32 bits inode number, 32 bits file offset) for each 4KB block. Whenever

extent recycling is invoked, we choose LRU (Least Recently Used) fragmented extents

and move the valid data blocks into NVRAM, update their inodes, finally release

the extents’ space. It’s noted that we only free the recycled extent whenever the

associated inodes are all updated. In our current design, two conditions have to be

satisfied in order to invoke the recycling: (a)the fragmentation ratio of SSD is over

a configurable threshold (ideal extent usage/actual extent usage); (b)the number of

free SSD extents is fewer than a configurable threshold. The first condition ensures

that we do get some free space after recycling whenever the free extents are not

sufficient.
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3.2.5 File system consistency

File system consistency is always an important issue in file system design. As

a hybrid file system, NVMFS stores metadata and hot file data on NVRAM and

distributes other relatively cold data on SSD. When the space of NVRAM is not

sufficient, LRU dirty data will be migrated from NVRAM to SSD. When the seg-

ment cleaning process is activated on SSD, valid data will be migrated from SSD to

NVRAM. If system crash happens during the middle of these operations, what is the

state of our file system? How do we ensure file system consistency? We will discuss

this in detail within this section.

As described in section 3.2.3, NVMFS invokes flushing process whenever the dirty

LRU list reaches a high bound (i.e. 80% of dirty LRU list is full). The flushing process

chooses 512KB data each round from the end of dirty LRU list and prepares a new

SSD extent (512KB), then composes the data as one write request to SSD, finally

updates the corresponding metadata. The metadata updating involves inserting the

flushed NVRAM pages into clean LRU list and recording the new data positions

(on SSD) within “page info” structure that mentioned in the previous section. It’s

noted that the inodes (unchanged) still point to valid data on NVRAM until they

are replaced from clean LRU list. If system crashes while flushing data to SSD,

there is no problem, because inodes still point to valid data versions on NVRAM.

We simply drop previous operations and restart migration. If system crashes after

data flushing but before we update the metadata, NVMFS is still consistent since

inodes point to valid data version on NVRAM. The already flushed data on SSD will

be recycled during segment cleaning. If system crashes in the middle of metadata

update, the LRU list and “page info” structure may become inconsistent, NVMFS

will reset them. Since the inodes still point to the valid data version on NVRAM,
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our file system is consistent. To reconstruct the LRU list, NVRAM scans the inode

table, if the inode points to a NVRAM page, we insert it to dirty LRU list while

keeping clean LRU list empty. It’s noted that if file data have two valid data versions

on both NVRAM and SSD, the data version on SSD will be lost since the “page info”

structure are reset now. The corresponding space will be recycled during segment

cleaning since no inodes point to those blocks (invalid blocks within extent).

Segment cleaning is another point prone to inconsistency. The cleaning process

chooses one candidate extent (512KB) per round and migrates the valid blocks (4KB)

to NVRAM, then updates the inodes to point to the new data positions, finally frees

the space on SSD. If system crashes during data migration, NVMFS inodes still

point to the valid data on SSD. If system crashes during the inodes update, NVMFS

maintains consistency by adopting transaction mechanism (inodes update and space

freeing on SSD are one transaction) similar to other log-structured file systems.

Another issue is that NVMFS stores metadata and hot data permanently on

NVRAM which creates a new challenge: unsure write ordering. The write ordering

problem is caused by CPU caches that stand between CPUs and memories [15]. To

make the access latency as close to that of the cache, the cache policy tries to keep

the most recently accessed data in the cache. The data in the cache is flushed back

into the memory according to the designed data replacement algorithm. Therefore

the order in which data is flushed back to the memory is not necessarily the same

as the order data was written into cache. Another reason that causes unsure write

ordering is out-of-order execution of the instructions in the modern processors. To

address the problem of unsure write ordering, we use a combination of the instruc-

tions MFENCE and CLFLUSH to ensure modification of the critical information,

including “metadata”, “superblock”, “inode table”, “bitmap” and “directory files”,

are in consistent ordering. This implementation leverages previous work in [85].
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3.3 Evaluation

To evaluate our design, we have implemented a prototype of NVMFS in Linux.

In this section, we present the performance of our file system in three aspects: (1)re-

duced write traffic to SSD; (2)reduced SSD erase operations and erase overhead;

(3)improved throughput on file read and write operations.

3.3.1 Methodology

We use several benchmarks including IOZONE [82], Postmark [38], FIO [32] and

Filebench [19] to evaluate the performance of our file system. The workloads we

choose all have different characteristics. IOZONE creates a single large file and

performs random writes on it. For Postmark, the write operations are in terms

of appending instead of overwriting. FIO performs random updates on randomly

opened files chosen from thousands of files. Filebench does mixed read and write on

thousands of files which simulate a file server.

In the experimental environment, the test machine is a commodity PC system

equipped with a 2.8GHz Intel Core i5 CPU, 8GB of main memory. We also attached

4GB Nonvolatile DIMMs [1, 79] as the NVRAM. The NAND flash SSD we used is

Intel’s X25-E 64GB SSD. The operating system used is Ubuntu 10.04 with a 2.6.33

kernel.

In all benchmarks, we compare the performance of NVMFS to that of other

existing file systems, including EXT3, Btrfs, Nilfs2 and Conquest (also a hybrid

file system) [80]. The first three file systems are not designed for hybrid storage

architecture. Therefore we configure 4GB DRAM-based page cache for them. While

for Conquest file system, we implemented it according to the description in [80].

In [80], it is said that a larger threshold for small files will keep more files on NV-

memory and achieve better performance. In our implementation of Conquest, we
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define small file as one with file size less than 128KB. The reason we made this

decision is that we found that with a threshold larger than 128KB, we will not be

able to allocate all the small files on NVRAM under our workload. The reason we

choose these file systems is as following. EXT3 is a popular file system used in Linux

operating system. Btrfs [8] implements some optimizations for SSDs (we mount btrfs

with “nodatacow” option to get the best available performance). Nilfs2 [56] is a log

structure file system which is designed for NAND flash. Finally, Conquest is also a

hybrid file system which utilizes both NVRAM and HDD/SSD as the storage.

3.3.2 Reduced i/o traffic to solid state drive

In this section, we calculated how much IO data are written to SSD while running

different workloads for our NVMFS and other file systems. As explained in section

2.2, our NVMFS persistently keeps metadata and hot file data on NVRAM without

writing to SSD. However, other file systems have to periodically flush dirty data from

page cache to SSD in order to keep consistency. Therefore, NVMFS is expected to

reduce write traffic to SSD.

Figure 3.7 shows the write traffic to SSD (number of sectors) across different

workloads. For all the workloads, the IO request size is 4KB. We can see our file

system has less write traffic to SSD across all the workloads. For Filebench workload,

the reduction is about 50% compared to other file systems. To further explore this,

we calculated how many IO requests are satisfied by memory (NVRAM or Page

Cache) under different file systems. Figure 3.8 shows the hit ratio across different

workloads, which is the number of IO requests satisfied by memory divided by the

total number of IO requests. We can see our file system has higher hit ratio across

all the workloads except Postmark. As a result, other file systems have to evict more

data from page cache to SSD due to cache replacements. For Postmark workload,
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Figure 3.7: Write traffic to SSD under different workloads and file systems

although our hit ratio is slightly lower than ext3 and btrfs, we still write less data

to SSD. This is because we permanently store metadata on NVRAM, which saves

many writes to SSD.

Conquest only stores small files on NVRAM while keeping large files on disk.

Therefore, for Conquest, IO requests to large files still go through page cache and

need to be synchronized with SSD. However, our file system can store the frequently

accessed portion of large files on NVRAM permanently. Figure 3.9 shows the write

traffic to SSD while running the original and our modified IOZONE workloads. Both

the workloads create a large file, then perform random writes on it. The difference

is that the modified IOZONE writes randomly only to the first 3GB of the large

file. We can see our file system further reduced write traffic by keeping parts of that

large file on NVRAM. Because our file system will permanently store the frequently

accessed portion of the large file on NVRAM, while Conquest and other file systems

need to periodically flush dirty data from page cache to SSD for consistency, NVMFS
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Figure 3.8: Hit ratio on memory

achieves better performance.

3.3.3 Reduced erase operations and overhead on solid state drive

The erase operations on SSD are quite expensive which greatly impact both

lifetime and performance. The overhead of erase operations are usually determined

by the number of valid pages that are copied during the GC (Garbage Collection).

To evaluate the impact on SSD’s erase operations, we collected I/O traces issued

by the file systems using blktrace [31] while running our workloads described in

section 3.3.1, and the traces were run on an FTL simulator, which we implemented,

with two FTL schemes -(a)FAST [48] as a representative hybrid FTL scheme and

(b)page-level FTL [39]. In both schemes, we configure a large block 24GB NAND

flash memory with 4KB page, 256 KB block, and 10% over-provisioned capacity.

Figure 3.11 and 3.12 show the total number of erases and corresponding erase cost

for the workload processed by each file system.
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Figure 3.10: Average I/O request size issued to SSD under different workloads and
file systems

52



N
u

m
b

e
r 

o
f 

E
ra

s
e

s

0

50000

100000

150000

200000

250000

300000

350000

iozone fio postmark filebench

NVMFS ext3 btrfs nilfs2 conquest

N
u

m
b

e
r 

o
f 

E
ra

s
e

s

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

iozone fio postmark filebench

NVMFS ext3 btrfs nilfs2 conquest

(a)erase count for page-level FTL (b)erase count for FAST FTL

Figure 3.11: Erase count for page-level and FAST FTL
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We can see that NVMFS has fewer number of erases under all situations. Our

benefits come from two aspects. For Filebench workload, we saved 50% write traffic

to SSD as described in section 3.3.2, thus, we see much fewer erases on SSD. For

IOZONE and FIO workloads, we transformed random writes to sequential ones at

SSD level, which is similar to log structured file system (such as nilfs2). This design

also helps reduce erase overhead. As shown in figure 3.10, for IOZONE and FIO

workloads, our file system and nilfs2 transform random writes to sequential ones at

SSD level, thus we observed larger IO request size compared to other file systems.

Postmark and Filebench workloads have some locality in accesses. As a result, OS

scheduler can merge adjacent IO requests into large ones before issuing to SSD, thus,

we see relatively large IO request size across all the tested file systems.

To explore the erase cost, we calculated the average number of pages (valid pages)

copied during GC. Figure 3.12 shows the erase cost which is the average number of

pages migrated during GC. For page-level FTL, both NVMFS and nilfs2 have very

few valid pages within the erase blocks for most cases. For hybrid FTL scheme,

NVMFS also performs better than other file systems.

3.3.4 Improved i/o throughput

In this section, we evaluate the performance of our file system in terms of IO

throughput. We use the workloads described in section 3.3.1. For our file system

and nilfs2, we measure the performance under both high (over 85%) and medium disk

utilizations (50%-70%) to evaluate the impact of segment cleaning overhead. The

segment cleaning is activated only under high disk utilization. For other file systems

that do in-place update on SSD, there is little difference for varied disk utilizations.

Figure 3.13 shows the IO throughput while the segment cleaning is not activated

with our file system and nilfs2. We can see our file system performs much better
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Figure 3.13: I/O throughput under different workloads for 50% - 70% disk utilization
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Figure 3.14: I/O throughput under different workloads for over 85% disk utilization
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than all the other file systems across all the workloads. Compared with in-place up-

date file systems, NVMFS transforms small random writes to large sequential writes

on SSD, therefore improves the write bandwidth significantly. Compared with log-

structured file system such as nilfs2, NVMFS stores hot data on NVRAM and better

groups dirty data before flushing to SSD, as a result, the erase overhead of SSD is

reduced. We also noticed that Conquest, another hybrid file system, did not per-

form well under IOZONE and FIO workloads. For IOZONE benchmark, Conquest

permanently stored the single large file on SSD and used page cache to temporarily

buffer the write accesses, similar to EXT3. Compared with our file system and nilfs2,

Conquest still performed random writes on SSD. For FIO benchmark, Conquest put

small files (smaller than 128KB) on NVRAM, however, for large files, random writes

were still performed on SSD.

To evaluate the impact of segment cleaning on our file system and nilfs2, we also

measured the performance under high disk utilization (over 85%). Figure 3.14 shows

the throughput when disk utilization is over 85% for all the tested file systems and

workloads. We can see obvious performance reduction for both NVMFS and nilfs2,

while other file systems have little change compared with that under 50%-70% disk

utilization. Compared with nilfs2, our file system performs much better across all the

workloads, especially under FIO workload. To further explore this, we calculated the

number of blocks (4KB) recycled and the cleaning efficiency while running different

workloads under NVMFS and nilfs2. For cleaning efficiency, we measure it using the

formula “1 - (moved valid blocks / total recycled blocks)”.

Figure 3.15 and 3.16 show the total number of recycled blocks and the cleaning

efficiency respectively while running different workloads under NVMFS and nilfs2.

We can see for all the workloads NVMFS recycled much fewer blocks compared

with nilfs2, which means we generate much fewer background IOs. This is because
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NVMFS absorbs many small IOs on NVRAM and avoids many writes to SSD which

relieves the pressure of segment cleaning on SSD. As a result, forefront IO workloads

are less impacted by NVMFS compared to nilfs2. Another benefit of NVMFS is that

when we move valid blocks from SSD to NVRAM due to recycling, we can free the

corresponding space on SSD once the data reside on NVRAM. However, nilfs2 has to

wait until the valid blocks are written back to new segments on SSD, otherwise they

may lose consistency for power failure. As shown in figure 3.16, we also see NVMFS

has higher cleaning efficiency relative to nilfs2. This is benefit from our grouping

policy on dirty data before flushing to SSD.

3.4 Related work

A number of projects have previously built hybrid storage systems based on non-

volatile memory devices [44, 36, 59, 80]. [44] and [59] proposed using a NVRAM

as storage for file system metadata while storing file data on flash devices. FRASH

[36] harbors the in-memory data and the on-disk structures of the file system on a

number of byte-addressable NVRAMs. Compared with these works, our file system

explores different write policies on NVRAM and SSD. We do in-place updates on

NVRAM and non-overwrite updates on SSD.

Rio [14] and Conquest [80] use a battery-backed RAM in the storage system

to improve the performance or provide protections. Rio uses the battery-backed

RAM to avoid flushing dirty data to disk. Conquest uses the nonvolatile memory to

store the file system metadata and small files. WSP [54] proposes to use flush-on-

fail technique, which leverages the residual energy of the system, to flush registers

and caches to NVRAM in the presence of a power failure. Our work here explores

nonvolatile DIMMs to provide a highly reliable NVRAM that runs with the latency

and endurance of the fastest DRAM, while also having the persistence of Flash. In
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the eNVy storage system [84], the flash memory with a battery-backed RAM buffer

is attached to the memory bus to implement a non-volatile memory device. Our

work assumes that nonvolatile memory is large enough for both data and metadata

and uses dynamic metrics to determine what data is retained in NVRAM. Moreover,

our file system transforms random writes to sequential ones at SSD level which can

effectively reduce SSD’s erase overhead and improve SSD’s lifetime.

The current SSDs implement log-structured like file systems [69] on SSDs to

accommodate the erase, write operations of the SSDs. Garbage collection and the

write amplification resulting from these operations are of significant interest as the

lifetime of SSDs is determined by the number of program/erase cycles [29]. Several

techniques have been recently proposed to improve the lifetime of the SSDs, for

example [13, 26]. The recent work SFS [10] proposed to collect data hotness statistics

at file block level and group data accordingly. However, they were restricted to

exploit this information within a relatively short time slice, since all the dirty data

within page cache have to be flushed to persistent storage in a short time. Our work

here exploits the NVRAM to first reduce the writes going to the SSD and second

in grouping similar pages into one block write to SSD to improve garbage collection

efficiency.

Several recent studies have looked at issues in managing space across different

devices in storage systems [12, 24]. These studies have considered matching workload

patterns to device characteristics and studied the impact of storage system organi-

zations in hybrid systems employing SSDs and magnetic disks. Our hybrid storage

system here employs NVRAM and SSD. Another set of research work proposed dif-

ferent algorithms for managing the buffer or cache for SSD [83, 42, 33, 73]. They all

intended to temporally buffer the writes on the cache and reduce the writes to SSD.

Our work differs from them since our file system can permanently store the data on
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NVRAM, thus further reducing writes to SSD.

Much research has been focused on FTL design to improve performance and to

extend lifetime of SSDs [43, 25, 49, 48]. Three types of FTL schemes are proposed

including block-level mapping, page-level mapping and hybrid mapping that trades-

off the first two. The block-level FTL maps a logical block number to a physical

block number and the logical page offset within that block is fixed. This scheme

can store the entire mapping table in memory since it is small. However, such

coarse-grained mapping results in a higher garbage collection overhead. In contrast,

a page-level FTL manages a fine-grained page-level mapping table, thus has lower

garbage collection overhead. While page-level FTL requires a large mapping table on

RAM which cost more on hardware. To overcome such technical challenges, hybrid

FTL schemes [43, 49] extend the block-level FTL. These schemes logically partition

flash blocks into data blocks and log blocks. The majority of data blocks are using

block-level mapping while the log blocks are using page-level mapping. Our work

can reduce the erase overhead during GC (Garbage Collection) which benefits various

FTL schemes.
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4. SPACE MANAGEMENT OF SSD BASED SECONDARY DISK CACHES

NAND-flash based solid state disks provide us better performance than tradi-

tional hard disks, however, their prices are also higher than hard disks. Moreover,

compared with hard disks, SSDs have smaller capacity and limited lifetime, which

slow down their deployment as the persistent storage in enterprise storage systems.

To explore SSD devices’ performance benefit, we can add a new tier into the storage

hierarchy - secondary disk cache, which cache data in front of high-capacity hard

disks. For large storage servers, we might employ multiple SSDs at the cache layer.

How to manage the space of the secondary disk caches is an issue we need to solve.

A straightforward way is to build a RAID volume composed of all the SSDs that

are used as disk caches. In this chapter, we extend an existing secondary disk cache

design to port to the multi-device case and manage the cache space efficiently to

improve performance. Compared with RAID based cache management, our scheme

maintains the data reliability as well as improving the cache performance.

4.1 Background

High performance storage systems are currently in high demand for data-intensive

computing. The speed of reading and writing data to the storage system might

directly affect the execution time of the applications and the performance of the

whole system. However, most storage systems, are still using traditional hard disk

drives (HDDs). Although solid state disk (SSD) has become a mature technology

which demonstrates better performance than hard disk, it’s still not cost-effective to

replace all the hard disks, especially for systems that require large amount of storage

space. For example, San Diego Supercomputer Center (SDCS) has built a large flash-

based cluster, called Gordon, which adopts 256TB of flash memory as its storage [12].
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However, this design is backed by a $20 million funding from the National Science

Foundation (NSF) and may not be a cost-effective solution for employing SSDs.

Moreover, data accesses normally exhibit locality within the storage systems which

gives us opportunity to cache frequent used data on high-performance storage devices

and build a cost-effective, hierarchical, tiered storage system.

Storage Server 

ssd ssd ssd

ssd disk cache

Read/Write

HDD HDD HDD

hdd storage pool

locally attached locally attached SAN attached

Cache miss

Cache bypass

Figure 4.1: SSD cache based disk storage system.

Considering SSDs’ performance and cost are in between of DRAM memory and

HDDs, a straightforward way to employ SSDs is to add a new tier into the storage

hierarchy — secondary disk cache. Figure 4.1 shows the storage hierarchy of a server
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which integrates secondary disk caches built by multiple SSDs. As shown in figure

4.1, normally the read and write requests are first forwarded to the SSD-cache layer,

if they hit in the cache, we directly return the data or write the updates to the SSD

caches. Otherwise we redirect the desired requests to the target HDDs. Under some

conditions, we might want to bypass the SSD-cache layer. For example, when there

are too much dirty data at the cache layer, it’s better to write the updates directly

to the HDDs so that we can reduce the data synchronization pressure at the cache

layer.

There are several secondary disk cache designs proposed previously [41, 87, 70].

In this chapter, we focus on a newly released cache design — Bcache [40], which is

specially designed for flash based SSDs.

Bcache partitions the storage on the SSD device into buckets. All buckets on the

SSD device have the same size (128KB - 4MB), which is expected to be the native

erase block size of the SSD (or multiple times of the erase block size). Within a

bucket, bcache writes data sequentially following a log-style and only once. Once

the bucket is fully written, it’s sealed and won’t allow further overwrites. When

bcache needs to reclaim space on SSD, it reclaims a bucket and sends the device a

discard command covering the entire bucket before it writes any incoming data into

this bucket. This allows bcache to cooperate with SSD’s internal garbage collection

mechanism to better utilize SSD’s space. Bcache implements a very fast index. On

every IO request to the cache layer, bcache can quickly determine whether it’s a

hit or not and where the requested date is located if it’s a hit. The data structure

used to implement the index is a B+ tree with each node storing more than one

key set. Keys are ordered within key sets but all key sets must be scanned from

the newest set towards the oldest when searching for a key. Keys are never removed

from a node until such a node is either split or reclaimed by the garbage collection
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mechanism. Only leaf nodes point to data while all internal nodes point to other

B+ tree nodes, which is the same as a traditional B+ tree. There are two main

types of write policies supported by bcache: write-back and write-through. In write-

back mode, the dirty flag on the key is set to indicate that the data is not available

(updated) on the HDDs. All read accesses to that data have to be satisfied by SSD

caches. Any new writes to that data replace the previous version by inserting a new

data version on SSD caches. At some point, the dirty data must be written to the

storage device. Normally this is done by a background write-back process. Bcache

has several tunable parameters that control write-back. In write-through mode, a

write is not considered completed until it reaches the target HDDs. Therefore, all

the data are clean in bcache if it is configured as write-through mode.

Bcache

ssd ssd ssd

ssd disk cache

Software RAID Manager

RAID volume

Figure 4.2: Bcache based on RAID in a multi-device environment.
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The design of bcache has incorporated several optimizations considering flash-

SSD’s special characteristics, for example, the bucket-level space reclaiming, log-style

data filling within the bucket. However, bcache’s current implementation cannot be

directly ported to a multi-device environment. In order to achieve this, we have to

build the multiple SSD devices as a RAID volume and export it to the bcache as

a single logical device. As shown in figure 4.2, a software RAID manager is sitting

below the bcache layer and responsible for managing the cache space of the multiple

SSD devices. The RAID volume exported to bcache is viewed and handled as a

single device. The benefit of this approach is that it is simple to deploy since it

does not require any adaptation at the bcache layer. However, the RAID system is

initially designed for persistent storage and is not necessarily optimized for a cache

environment. Normally we have no choice on selecting what kind of data should be

protected, for example, either protect none (i.e. RAID0) or protect all (i.e. RAID1).

Most storage systems apply full protection to the data stored at the HDDs to avoid

any data loss during failures. For a disk cache, this might not be necessary since any

data that are marked as clean should have their identical copies stored at the HDDs.

Based on this observation, we claim it’s better to remove the cache-unaware RAID

layer and manage the multiple SSD devices directly inside the bcache. In our design,

we extend existing bcache module to be multi-device aware and selectively protect

the stored data at the disk cache layer. We assume that the SSD caches are used

in write-back mode which provides us greater potential for improving performance.

We might have both clean and dirty data on the SSD caches. For the clean data, we

keep only one copy since there are identical data versions on the HDDs. During a

SSD cache failure, we can still obtain the clean data from HDDs. However, for the

dirty data, we employ full-redundancy and keep additional data copies on different

SSD devices. When an SSD fails we can still obtain the dirty data from other SSDs
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which store the duplicated copies. It is noted that we cannot recover the dirty data

from the HDDs since they are out of date.

The primary contributions of our design are as following:

• We extend the existing bcache module to be multi-device aware and selectively

protect the data stored at the cache layer.

• We balance the write traffic to each SSD device which prevents any SSD from

wearing-out much earlier than others.

• We show that our design improves the space utilization efficiency of the SSDs,

as a result, both hit ratio and system throughput are increased.

4.2 Design and implementation

In this section, we describe the extensions we have added to the existing bcache

module to better manage the cache space in a multi device environment. We allocate

the incoming data across the SSD devices in a round robin fashion. This approach

helps us balance the overall writes to each SSD, so that the SSD devices wear out

at a uniform rate. As a result, no single SSD will wear out much earlier than the

others.

4.2.1 Multi-device aware caching

In order to make the bcache module aware of the multiple SSD devices of the

disk cache space, we extend the existing data structure of the so called “cache set”.

For current implementation of bcache, the “cache set” only consists of one cache

device. In our extension, we define a cache set to be a collection of one or more

cache devices. Within the “cache set” data structure, we have a cache array which

stores the pointers to each individual cache device descriptor. Each cache device has

a data structure called “cache” to maintain all the information related with this SSD.
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As shown in figure 4.3, our extensions enable the bcache to manage the multiple SSD

devices directly without importing the RAID software.

Cache set 

Cache 1 Cache 2 Cache N 

ssd ssd ssd

Struct cache_set
{

………
struct cache *array[]
………

}

Figure 4.3: Extensions made to the cache set structure of bcache.

When we build the bcache caching layer, we need to format each individual SSD

device according to the desired pattern. This is done by writing a super-block to the

specific SSD device. The super-block will be read later while registering the caching

devices to the operating system. To explicitly manage multiple SSD devices, we also

changed the super-block’s information and defined a device id for each registered

SSD. The device id is increased sequentially whenever there are new SSD devices

added to the cache layer and reported to the bcache module. Through the device id,

we can manage and differentiate all the registered SSD devices. To refer to a specific

SSD device, we can simply obtain its device description by indexing into the device

pointer array (in “cache set” data structure) using the device id. When we want to

detach the bcache cache devices, we need to unregister the “cache set” as well as

each individual SSD device.
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4.2.2 Flexible data redundancy

When we build a RAID volume to manage the multiple devices, we have no

flexibility on choosing what kind of data will be protected. Normally there is only

one option — either none of the stored data are protected or all of the stored data are

protected. For cache storage, clean data already have their identical copies stored on

HDDs, it’s unnecessary to keep another copy at the cache layer which will potentially

waste the cache space. However, for dirty data, it’s desired to store additional copies

at the cache layer among different SSDs. We cannot recover the dirty data from the

HDDs since the data versions on HDDs are out of date.

We changed the existing data insertion logic of bcache module and considered

additional situations for choosing what kind of data to duplicate. Currently we only

consider a simple case, which chooses to duplicate dirty incoming data and write

them to different SSD devices. So that even if one SSD device fails, we can still

recover all the dirty data on that SSD from the other SSD devices. When the dirty

data are written back to the HDDs, the original data and the duplicated copies will

become both clean. We mark one of them as invalid to recycle the used space. For

clean data, they can be obtained from the HDDs whenever they are requested in

future. The benefit of doing this is that we can improve the cache space utilization

while ensuring the data reliability.

4.2.3 Balance the writes among solid state drives

When there are multiple SSD devices within the cache layer, we need to consider

the aging problem of each individual SSD. SSD has limited write endurance and

will lose data afterward. Normally we can have two device replacement modes:

(a)incrementally replace the device that is near the failure point; (b)replace all the

devices at once if any device is nearly worn out. The former one assumes that each
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device has different wear-out speed and might invoke frequent replacement activity

from time to time. The latter one assumes each device is following a similar wear-out

pattern and each replacement event will involve all the storage devices.

Allocation Policy

ssd 1 ssd 2 ssd N

Prev_alloc_ssd Curr_alloc_ssd

Inserted Data 

Figure 4.4: Insert data to SSDs based on round-robin style.

In our design, we assume using the second device replacement mode at the SSD

cache layer. To ensure each SSD device gets aged at similar speed, we need to

balance the write traffic among all the SSDs. We achieve this by explicitly inserting

the incoming data to SSDs in a round-robin style. As shown in figure 4.4, we have

two pointers to track the previous and current devices where data are allocated,

which will be updated accordingly. This approach ensures that the write traffic is

distributed more or less uniformly among all the SSD devices.

4.3 Evaluation

To evaluate our design, we have added our extensions to the current implemen-

tation of bcache module in Linux. In this section, we present the performance of
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our design by comparing with the original bcache module which is built on a RAID1

volume.

4.3.1 Methodology

We use two workloads to evaluate our design. The first workload is write intensive

with read/write ratio equal to 1:1. The second workload is read intensive with

read/write ratio equal to 9:1. Both workloads employ 4 concurrent threads, which

issue 4KB IO requests to one large file. The file is initially stored on the HDD.

Moreover, both workloads follow a Zipfian distribution [81] with theta equal to 0.5.

The reasons we choose these two workloads are that (a)the Zipfian distribution can

demonstrate sufficient data locality for evaluating the cache system; (b)the different

configurations of read/write ratios can let us know the performance of our design

under different IO request patterns. It is noted that we wait enough time to warm

up the SSD caches before starting our performance measurements.

In the experimental environment, the test machine is a storage server equipped

with two Intel MLC 240GB SSDs and one WD 2TB HDD. The operating system used

is Fedora 16 with a 3.10 Linux kernel. In all workloads, we compare the performance

of our design with the original bcache module that is built on top of a RAID1 volume

(two SSDs). For our design, we manage the two SSDs directly at the cache layer

without the additional RAID1 layer.

4.3.2 Results

We measure the performance using two metrics: the overall throughput of the

storage system and the cache hit ratio of SSDs. Figure 4.5 and figure 4.6 show the

two metrics for our design and the bcache-RAID1.

We can see that our design improved the throughput by 20% to 30% compared

to the original bcache module that is built on RAID1. It’s noted that the improve-
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Figure 4.5: The throughput of the storage system while running different workloads.
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Figure 4.6: The hit ratio of SSD caches while running different workloads.
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Figure 4.7: The hit ratio of SSD caches after reducing the cache size.

ment is greater under the read-intensive workload. This is because for read-intensive

workload, lots of the data on SSD caches are marked as clean which won’t be dupli-

cated. Therefore we can avoid more duplicate copies which allows us to cache more

data on SSDs. As a result, we also achieved better hit ratio than the unchanged

bcache-RAID1 configuration which is shown in figure 4.6.

To further investigate the impact of SSD cache size on hit ratio, we reduced the

total cache size by 30% for both our design and the bcache-RAID1 configuration (we

run this setup on a different machine). We run the same workloads as before. Figure

4.7 shows the cache hit ratio after reducing the cache size. We cam see that the hit

ratio is lower than the result shown in figure 4.6 since the cache size is reduced for

both our design and bcache-RAID1. However, our design still improved the cache

hit ratio compared to the bcache-RAID1 scheme.

Our design extended the existing bcache module to the multi-device case. Com-

pared with bcache-RAID1 configuration, we can achieve better performance. More-
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over, we still ensure the data reliability of the whole storage system by duplicating

the dirty data on SSD caches.
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5. EXPLOITING SUPERPAGES IN A NONVOLATILE MEMORY FILE

SYSTEM∗

Emerging nonvolatile memory technologies (sometimes referred as Storage Class

Memory (SCM)), are poised to close the enormous performance gap between per-

sistent storage and main memory. The SCM devices can be attached directly to

memory bus and accessed like normal DRAM. It becomes then possible to exploit

memory management hardware resources to improve file system performance. How-

ever, in this case, SCM may share critical system resources such as the TLB, page

table with DRAM which can potentially impact SCM’s performance.

In this chapter, we propose to solve this problem by employing superpages to

reduce the pressure on memory management resources such as the TLB. As a result,

the file system performance is further improved. We also analyze the space utilization

efficiency of superpages. We improve space efficiency of the file system by allocating

normal pages (4KB) for small files while allocating super pages (2MB on x86) for

large files. We show that it is possible to achieve better performance without loss of

space utilization efficiency of nonvolatile memory.

5.1 Background

For decades, modern file systems are designed on the assumption that the un-

derlying storage devices are block-based, such as disk or flash-based SSD. The re-

cent development of nonvolatile memory technologies such as phase change memory

(PCM) are poised to revolutionize storage in computer systems. These technologies

collectively are termed Storage Class Memory (SCM). The SCM devices are attached

∗Reprinted with permission from “Exploiting superpages in a nonvolatile memory file system”
by Sheng Qiu and A.L.Narasimha Reddy, 2012. IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), Copyright 2012 by IEEE
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directly to memory bus and are byte-addressable. SCM can offer comparable access

latency to DRAM and are orders of magnitude faster than traditional disks. Proces-

sor can access persistent data through memory load/store instructions. Figure 5.1

shows the potential system hierarchy while building SCM as the persistent storage.

As shown in Figure 5.1, the DRAM and SCM can sit in parallel and be accessed

through memory bus. It becomes possible to leverage the memory management

module to simplify and accelerate file system operations such as space management

and file block addressing. Previous work – SCMFS [85] has exploited memory man-

agement hardware to improve file system performance. However, this approach also

added more work for memory hardware resources such as TLB and MMU which

caused increased data TLB misses. In this chapter, we show that it is possible to

obtain better file system performance by reducing pressures on such resources.

CPU RAM

Storage Class Memory

Disk/SSD

Memory Storage

Figure 5.1: Storage class memory

In this chapter, we propose to solve the problem of increased TLB misses by

employing superpages. As a result, the performance of our file system is further

improved. Compared with normal pages (usually 4K), the super pages (2MB on
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x86) are able to enlarge the coverage of TLB because a TLB entry for super pages

covers more memory than normal 4KB pages. As a result, we can effectively reduce

the TLB misses when the size of TLB is limited and fixed.

We also analyze the space utilization efficiency of superpages. We improve space

efficiency of the file system by allocating normal pages for small files and metadata

while allocating super pages for large files. We show that it is possible to achieve

better performance without loss of space utilization efficiency of nonvolatile memory.

The primary contributions of our design are as following: (a) we analyze the

impact of TLB misses while designing a nonvolatile memory file system, (b) we

propose to solve this problem by employing superpages for large files while utilizing

normal pages for small files and metadata, and (c) we show that it is possible to

achieve better performance without loss of space utilization efficiency of nonvolatile

memory.

5.2 Design and implementation

To accelerate the memory access speed, modern processors cache the virtual to

physical address mappings from the page tables in TLB. Expensive performance

penalties are incurred whenever we get TLB misses. To enlarge the coverage of the

TLB, most hardware and operating systems support superpages. In this section, we

describe how to efficiently employ superpages within our file system.

5.2.1 Preservation for superpage

A superpage is a memory page of larger size than an ordinary page. To allocate

a superpage, we are required to have a contiguous memory space which is usually

multiple sizes of a normal page. Therefore it is not guaranteed to be able to obtain

a superpage successfully even though there is still sufficient physical memory. In our

implementation, we solve this problem by preserving a contiguous, configurable size
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of SCM for allocating superpages. We divide the physical space of SCM into two

regions, one for normal page allocation and the other for superpages. The boundary

between normal and super page region is configurable during file system mounting.

Figure 5.2 shows the layout of the physical space of SCM.

…. ….

Normal Page region

Physical Address Space of SCM

….  …. LP2

Superpage region

LP1SP2SP1

Configurable Boundary

Small files and metadata
Large files

Figure 5.2: Physical space of SCM

5.2.2 Space utilization

In a file system, we may have a number of small and large files as well as metadata

that need to be stored. The space utilization efficiency is very important especially

for SCM devices considering their expensive cost. We want to utilize superpages

for storing data which may potentially reduce the pressure on TLB and improve file

system performance. However, allocating the whole file system data with superpages

will generate lots of internal fragmentation, especially for small files and metadata.

In such a case, we may have a low space utilization efficiency on the SCM device.

To achieve better performance without loss of space utilization efficiency, we

propose using both normal and super pages within our file system. As shown in

Figure 5.2, small files and metadata are mapped to normal pages while large files are

stored within super pages. As a result, we solve the internal fragmentation issue for
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small size data while TLB misses are reduced effectively whenever accessing large

files on super pages.

One potential problem is that it is not easy to decide how the file size will grow

during creation. Therefore, initially, we always allocate normal pages for file data.

Whenever the file size become larger than a configurable threshold, we begin to

migrate this file to super pages. After migration, the original file data (on normal

pages) will be freed and the corresponding inode metadata will be updated. To

minimize the impact on SCMFS’s performance, we use a background kernel thread

to handle the migration. This kernel thread will pick up those files that are not being

written currently to do migration. It is noted that read request can still be handled by

the original file (on normal pages) during migration, while write request has to wait

until the migration process finishes. Since most large files in real system are multi-

media or read-heavily files, which usually keep a relatively stable size once written.

Therefore the migration between normal and super pages will not be frequent.

5.2.3 Modifications to kernel

To support superpages within our file system, we made several modifications to

the original Linux kernel 2.6.33. We first add a memory zone “ZONE STORAGE”

into the kernel. We put all the address range of DRAM space which we used to

emulate SCM into the new zone “ZONE STORAGE”. Then we add a set of mem-

ory allocation/deallocation functions for super pages. Generally, there are four main

functions used by our file system. The function nvmalloc superpage() allocates des-

ignated number of super pages from “ZONE STORAGE” while nvfree superpage()

is the corresponding function for deallocation. Another two functions are nvmal-

loc expand superpage() and nvmalloc shrink superpage(). The former one is used

when the file size increases and the mapped super pages are not enough, while the
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latter one is used to recycle the allocated but unused super pages.

5.3 Evaluation

In this section, we evaluate the performance of enhanced SCMFS with superpage

support. We implemented superpages within SCMFS on a linux kernel of version

2.6.33.

5.3.1 Methodology

To evaluate superpage performance of SCMFS, we use multiple benchmarks.

The first benchmark, IOZONE [82] creates a large file and issues different kinds

of read/write requests on this file. Since the file is only opened once in each test, we

use IOZONE to evaluate the performance of accessing file data. The second bench-

mark we use is postmark [38], which creates a lot of files and performs read/write

operations on them. The file size can be configured within one specific range. We

use this benchmark to evaluate superpage’s impact when accessing both small and

large files in SCMFS. In all experiments, we track the number of allocated super-

pages and the actual file data size. We see that our approach keeps the internal

fragmentation within 1% on average. In the experimental environment, the test

machine is a commodity PC system equipped with a 2.33GHz Intel Core2 Quad

Processor Q8200, 8GB of main memory. We configured 4GB of the memory as the

type “ZONE STORAGE”, and used it as Storage Class Memory.

In all the benchmarks, we compare the performance of SCMFS with/without

superpage supported to that of other existing file systems, including ramfs, tmpfs

and ext2. Since ext2 is designed for a traditional storage device, we run it on ramdisk

which emulates a disk drive by using normal RAM in main memory. It is noted that

tmpfs, ramfs and ramdisk are not designed for persistent memory, and none of them

can be directly used on storage class memory.
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Figure 5.3: TLB misses – iozone sequential write workload

M
is

se
s

Data TLB misses (Random Write Workload)

Record length (bytes)

0

5000

10000

15000

20000

25000

30000

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m

tmpfs ramfs ext2_ramdisk scmfs scmfs-lp

Figure 5.4: TLB misses – iozone random write workload
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5.3.2 Iozone results

We run IOZONE with sequential and random workloads for both read and write.

To obtain the performance of TLB, we used the performance counters in the modern

processors through the PAPI library [53]. Figure 5.3 and 5.4 show the data TLB

misses of all file systems while running IOZONE’s sequential and random write work-

loads. We can see SCMFS with superpage support (bar scmfs-lp) effectively reduced

the data TLB misses compared with original SCMFS. When the request size become

larger (more than 2MB), the variance of data TLB misses tends to be smaller among

all file systems. This is because the number of TLB entries for superpages is limited

which may not cache all the superpages when request sizes is larger.

Figure 5.5 and 5.6 show the corresponding throughput for IOZONE’s sequential

and random write workloads. We can see that employing superpages within SCMFS

improves throughput performance significantly. It is noted that in Figure 5.5, ext2

on ramdisk performs much better than other file systems when request size is within

128kb–512kb. This is because within that range, ext2 has much lower L2 data cache

misses compared to other file systems.
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5.3.3 Postmark results

In this section, we evaluate the impact of superpages by running postmark bench-

mark. We use postmark to generate both read intensive and write intensive work-

loads. In our experiment, postmark created a number of small and large files and

performed read, append and delete transactions. We again used the PAPI library to

investigate the detailed performance of TLB.

Figure 5.7 and 5.8 show the data TLB misses of postmark for all file systems.

We can see that utilizing superpages effectively reduces data TLB misses of SCMFS

which is consistent with IOZONE results. The throughput performance is shown

in Figure 5.9 and 5.10. We again achieved better performance while employing

superpages within SCMFS.

5.4 Related work

A number of recent works proposed hybrid file systems via byte-addressable

NVRAM and HDDs [50, 80]. In [50], Miller et al. proposed using a byte-addressable

NVRAM file system which used NVRAM as storage for file system metadata, a

write buffer, and storage for the front parts of files. In the Conquest file system

[80], the byte-addressable NVRAM layer holds metadata, small files and executable

files while the large files reside on HDDs. Hybrid file systems for byte-addressable

NVRAM and NAND Flash are proposed to address NAND-Flash file system specific

issues using byte-addressable NVRAM [44, 36, 59]. They include mount latency,

recovery overhead against unexpected system failure, and the overhead in accessing

page metadata for a NAND Flash device. All of these previous works assume the

NVRAM is small and stores only metadata and/or small files, while our file system

is designed for purely nonvolatile memory based persistent storage which expects the

NVRAM to be large enough to hold the whole file system data.
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BPFS [15] file system designed for non-volatile byte-addressable memory, uses

shadow paging techniques to provide fast and consistent updates. It also requires

architectural enhancements to provide new interfaces for enforcing a flexible level

of write ordering. DFS[34] is another file system designed for flash storage. DFS

incorporates the functionality of block management in the device driver and firmware

to simplify the file system, and also keeps the files contiguous in a huge address space.

It is designed for a PCIe based SSD device by FusionIo, and relies on specific features

in the hardware.

Solutions have been proposed to speed up memory access operations, to reduce

writes, and for wear-leveling on PCM devices. Some of these solutions improve the

lifetime or the performance of PCM devices at the hardware level [45, 46]. Some

of them use a DRAM device as a cache of PCM in the hierarchy. Page placement

policies are proposed in [66] for a memory controller within a PCM-DRAM hybrid

memory system. Several wear-leveling schemes to protect PCM devices from normal

applications and even malicious attacks have been proposed [63, 52, 71, 88]. Since our

work focuses on the file system layer, all the hardware techniques can be integrated

with our file system to provide better performance or stronger protection.

The importance of TLB performance and support for superpages has been de-

scribed in [55, 78, 20, 76]. Impact of TLB misses on application performance

prompted proposals for effective superpage management [55]. The architectural and

operating system support required to exploit medium-sized superpages (e.g., 64KB)

is presented in [78]. Our approach focuses on employing superpages within a non-

volatile memory file system. We propose to utilize both normal pages and super

pages to achieve better performance of file system without loss of space utilization

efficiency of the SCM device.
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6. CONCLUSION

In this dissertation, we explored several new nonvolatile memory technologies,

such as flash-SSD, PCM. We have presented novel approaches for integrating these

devices into existing storage hierarchy of a computer system.

In chapter 2, we analyzed the characteristics of PCM and proposed a PCM-based

main memory, which can provide us higher density and lower power consumption

compared to traditional DRAM-based main memory. To realize these benefits, we

have to first solve the expensive write problem of PCM in terms of both performance

and lifetime. We proposed a new CPU cache design for the last-level cache, which

can potentially reduce the write traffic to the PCM main memory. The results

showed that, our design effectively improved the lifetime of PCM as well as the

energy efficiency. Moreover, the overhead of our design is negligible and we do not

incur additional misses at the last-level CPU cache for most of the workloads and

configurations.

In chapter 3, we considered the poor performance of random writes on flash SSDs.

We proposed to build a hybrid storage system which includes a small nonvolatile

memory and a SSD. We designed a new file system, NVMFS, to manage the hybrid

storage space. Our design satisfied most of the random write requests on the fast

nonvolatile memory and only performed large, optimized writes on flash SSD. As

a result, we reduced the number of small random I/Os to SSD significantly which

improved the write bandwidth/throughput of SSD. The experimental results show

that we also reduced the garbage collection overhead and the write amplification

inside SSDs.

In chapter 4, we considered the problem of managing space on SSDs when they
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are employed as caches in front of hard disks. The existing Bcache implementation

relies on RAID software to manage the multiple devices if we employ more than one

SSD at the cache layer. We proposed a new way to manage the SSDs directly at the

cache layer and applied different protection policies for the cached clean and dirty

data. The experimental results show that our approach improved the hit ratio of

SSD caches as well as the throughput of the storage system.

In chapter 5, we considered the problem of managing space in a storage class

memory. The SCM devices can be attached directly to memory bus and accessed like

normal DRAM, which provides us the opportunity of exploiting memory management

hardware resources to improve file system performance. However, in this case, SCM

may share critical system resources such as the TLB, page table with DRAM which

can potentially impact SCM’s performance. We proposed to employ superpages

to reduce the pressure on memory management resources. The experimental results

show that our design significantly reduced the data TLB misses and further improved

the performance of file system.
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