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ABSTRACT

This work examines composite failure at multiple scales. The first scale that

is examined is the fiber-matrix scale, where fibers and matrix are discretely mod-

eled. A model is developed at this scale which includes randomness in the fiber

positions. This randomness is found to significantly influence the stress field and re-

sulting failure that occurs under thermomechanical loads as compared to fiber-matrix

microstructures with regular arrays of fibers. The fiber-matrix model is utilized to

characterize variability and temperature dependence of the composite strength aris-

ing from microstructural randomness and the presence of thermally induced stresses.

The second scale that is examined is that of a textile unit cell. Failure initiation

behavior is examined for a variety of thermomechanical loadings at this scale, and it

is found that failure tends to initiate in a limited number of ways for a wide variety of

loadings. A new progressive failure model is then examined for the textile unit cell.

This model utilizes cohesive interface elements in the tows, neat matrix pockets, and

tow and matrix interfaces to account for crack opening in the textile, as well as a

continuum damage model to account for diffuse damage in the tows. Variability and

temperature dependence of the transverse tow strength is introduced by specifying

varying cohesive strengths in the intra-tow cohesive zones using aWeibull distribution

characterized using the random fiber-matrix model. Progressive failure analyses are

then performed for the textile unit cell under a variety of thermomechanical loads,

and the resulting behaviors are compared to identify characteristic modes of damage

development and their effect on the textile response.
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A continuum damage model for the textile material, which can be applied to

engineering structures, is developed based on the characteristic damage modes ob-

served in the textile unit cell analyses. This model tracks the evolution of each

characteristic mode of damage based on the structural-scale stress and predicts the

degradation in the textile response as a result of this damage. The ability of this

model to predict the textile’s response under various damage-inducing loads is then

compared to the response obtained from textile unit cell progressive failure analysis,

and both models are found to be in good agreement for most loadings.
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CHAPTER I

INTRODUCTION

Although carbon-fiber composite materials have existed for roughly half of a

century, the prediction of failure in composite structures continues to be a chal-

lenging problem when compared to the prediction of failure in structures using more

traditional materials. This reality was recently manifest by the difficulty that Boeing

encountered in passing the static structural safety test for the 787, the first full-scale

airliner with composite wings and fuselage. In the first full-scale structural test of the

airframe, the aircraft experienced a delamination in the wing box just after reaching

limit load, and long before reaching the required ultimate load [1]. This failure was

in stark contrast to the test of the 777, an aluminum aircraft whose structure failed

at 154% of limit load (just 4% above the required ultimate load) in its first full-scale

structural test [2].

That the 777 was able to pass the structural test by such a small margin (in-

dicating that the structure was optimally sized to have the required strength) is a

testament to Boeing’s thorough understanding of the failure of aluminum structures.

The difficulty in accurately predicting failure in composite structures of the 787 lies

in the variety of failure mechanisms that exist at multiple scales throughout the

structure. These failure modes can result in non-critical degradation of the struc-

ture, such as matrix cracking in off-axis plies and textile tows, or can represent more

critical events like large-scale delamination, fiber breaking, and kink-band formation.

Additionally, the failure modes can interact with one another, such as delamination

1



onset in adjacent plies due to interaction of matrix cracks. The criticality of a given

failure mode is typically dependent on the overall structural configuration. For in-

stance, it is possible for some laminate specimens to completely fail without any fiber

breakage through the development of a network of delaminations and matrix cracks

that cross the entire specimen. Failure prediction is additionally complicated by the

presence of potentially large thermally-induced stresses that exist in the composite

due to a mismatch in the thermal expansion coefficients of the constituents.

The current work addresses the problem of predicting damage development and

failure in plain-weave textile composite structures undergoing in-plane loading. This

is to be accomplished at the scale of engineering structures by characterizing failure

behavior at smaller scales. The three scales of interest are illustrated in Fig. I.1.

The ultimate goal of this work is to develop an understanding of damage de-

velopment in textile composites that facilitates the creation of a continuum damage

mechanics model that can be employed at the structural scale, shown in Fig. I.1c.

This is the scale that is of greatest utility to engineering design, since analyses at

this scale will determine whether an engineering structure is able to effectively (i.e.

with an acceptable level of deformation) sustain its limiting load case within the

required factor of safety. Elevated stress levels in the textile composite will lead to

the development of small cracks, or damage, which will affect the overall response

of the textile. This damage will increase in severity as stresses continue to increase,

until finally a critical type of failure occurs, such as fiber failure or the collapse of the

composite under shear loading. The objective of the continuum damage mechanics

model is to predict how the damage state in the textile evolves as the stresses act-
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(a) Fiber-matrix scale (b) Textile unit-cell scale

(c) Structural scale

Figure I.1: Composite scales examined in current study.
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ing on the textile are increased up until the point that critical failure occurs, and

to predict how this damage state modifies the response of the textile. Preferably,

this is accomplished by adequately characterizing the behavior of the textile under

various stresses a priori, rather than utilizing a plethora of detailed analyses which

run concurrently to the structural analysis and track the local evolution of damage

at different locations in the structure.

Determining the damage state of the textile for a given load, as well as the effect

of the damage on the textile’s overall response, requires analysis to be performed at

the textile scale, shown in Fig. I.1b. At this scale, tows, or bundles of fibers, are

modeled discretely as transversely isotropic continua. The current work accounts for

various types of damage which can occur, including matrix cracking (or splitting) of

the tows, crack growth through the pockets of neat matrix, failure of the interfaces

between adjacent tows and between the tows and the matrix pocket, and shear

failure of the tows. Cohesive zones are used to model the opening of cracks, while

a continuum damage model is used to account for diffuse microdamage in the tows.

Due to the transversely isotropic nature of the tow’s thermal expansion coefficients

along with the different tow orientations in the textile, temperature changes result in

development of stresses in the tows and matrix pocket. These stresses interact with

stresses from mechanical loadings to influence damage development in the textile.

Damage growth is studied for a variety of different thermomechanical loading cases

using periodic unit cell analysis. Based on this study, characteristic damage states

are identified and related to the overall response of the textile. This information

forms the basis of the structural-scale continuum damage mechanics model for the
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textile.

The prediction of failure in the textile’s tows is facilitated through analyses

conducted at the composite’s fiber-matrix scale, shown in Fig. I.1a. At this scale,

fibers are accounted for discretely. A periodic, random model of the fiber-matrix

microstructure is utilized to accurately capture the effect of interactions between

closely-spaced fibers. The analysis at this scale is focused on characterizing the

statistical distribution of the tow strength under transverse normal and longitudinal

shear loading (the strength will exhibit variability due to the intrinsic randomness of

the fiber-matrix microstructure) and determining how the strength distribution varies

with temperature. Temperature dependence exists due to thermally induced stresses

in the fiber-matrix microstructure that develop because of the thermal coefficient

mismatch between fibers and matrix. Just as in the textile unit cell, these stresses

interact with the stresses from mechanical loading, changing the applied mechanical

load at which failure occurs. One major difficulty which must also be addressed at the

fiber-matrix scale is the determination of some of the material properties. Due to the

small fiber diameter (roughly 5 µm, or less than 1
10

the diameter of a typical human

hair), the direct measurement of transverse fiber properties presents considerable

difficulty. Additionally, it is possible that the polymer matrix in the composite may

interact with the fibers in a manner which causes it to exhibit a different strength

properties than it would as a neat specimen. This different strength is referred to as

the “in situ strength”. Due to the difficulty of measuring these properties directly,

they will be predicted through the solution of inverse problems using the random

fiber-matrix model and known stiffness and strength properties for unidirectional
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tape laminates.

Once the distribution of the transverse strength of the textile is characterized for

a given temperature, it will be used to seed values for the transverse tow strength in

the textile-scale model. This allows for both variability and temperature dependence

of the transverse tow strength to be incorporated into the textile scale analysis which

is used to develop the structural scale failure model.

This work is divided into four chapters. The first chapter contains a survey

of much of the literature that exists regarding failure prediction in composite ma-

terials, with an emphasis on configurations that bear resemblance to those being

examined here. The second chapter provides a description of various theories that

are utilized in the current work. This includes finite element analysis, the formu-

lation of interfacial elements to account for crack opening, and the cohesive zone

model which governs the opening behavior of those elements. The third chapter

details the analysis conducted at the fiber-matrix scale, including the development

of the random periodic fiber-matrix microstructure, the determination of material

properties through inverse analysis, an investigation into the effect that the assumed

microstructure has on the interaction between thermally and mechanically induced

stresses, the development of a progressive failure model, an examination of the sensi-

tivity of strength statistics to different sizes of representative volume element (RVE),

and finally the characterization of the strength distribution for the fiber-matrix at

different temperatures. The final chapter details the various analyses that were per-

formed at the textile scale. This chapter examines the development of the textile

unit cell model, an investigation that was performed into failure initiation in the
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textile, and the results of progressive failure analysis of the textile under a variety

of loadings. Finally, a structural scale continuum damage mechanics model for the

textile composite, which is based on the behavior determined using the textile scale

model, is developed. Predictions of the textile’s response for various loadings using

this model are then compared to predictions made directly using the textile scale

model to verify the structural scale model’s fitness.
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CHAPTER II

SURVEY OF LITERATURE

The body of research into the failure behavior of composite materials is exten-

sive. This chapter attempts to categorize this research. The first category that will

be reviewed covers general approaches for modeling different types of damage. These

will be examined more from the standpoint of general approaches which can be ap-

plied to a variety of materials, including composites. Next, research into the failure

of unidirectional composite material will be examined. This includes consideration

at both the fiber-matrix scale and at larger scales that consider the behavior of a

single lamina. This sort of investigation is useful for predicting failure of a tow in a

textile, or an individual ply in a tape laminate. The next category is the failure of

multi-layer tape laminates. The final category is the failure of textile composites.

II.A. Approaches for Modeling Failure

A number of different approaches have been put forward to account for the

presence of damage in a variety of materials, including composites. This section

provides a brief survey of some of these approaches.

II.A.1. Continuum Damage Mechanics

One of the simpler approaches for modeling the presence of damage is contin-

uum damage mechanics (CDM). This approach was first put forward by Kachanov

to account for the generation of voids and microcracks in the creep of metals [3].
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In Kachanov’s approach, the development of damage was accounted for by modify-

ing the properties of the material using a damage scalar. Murakami and Ohno [4]

extended this work to account for damage using a tensor representation. Talreja

developed a tensor-based continuum damage mechanics model for application to

composite materials. [5, 6].

This approach to accounting for failure is most appropriate in situations where

damage consists of a large number of small, diffuse cracks relative to the length scale

that is being considered in the analysis. This would be the case, for instance, when

accounting for the development of matrix cracking in an analysis of a laminated

structure. However, if one examines a smaller scale, such as the scale where each

individual lamina of the laminate is discretely modeled, it may not be appropriate

to apply CDM to account for matrix cracking since matrix cracks are of the same

length-scale as the elements in the analysis. In such cases, it may be more appropriate

to account for cracks in a more explicit, discrete manner.

II.A.2. Virtual Crack Closure Technique

The virtual crack closure technique (VCCT) is a method for performing fracture

mechanics in a finite element framework. Originally presented by Rybicki and Kan-

ninen [7], the method allows the calculation of the stress intensity factor at the crack

tip by determining the work required to close the crack along one element length.

Through Irwin’s contention, it is assumed that this energy is the same as the energy

that was consumed in the process of extending the crack this same length. This

energy measurement can be accomplished in a finite element analysis framework by
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examination of the crack opening displacements immediately behind the crack tip

and the nodal forces immediately in front of the crack tip. In this manner, one is able

to determine if the energy available to drive crack growth has exceeded the critical

strain energy release rate of the crack. This approach does have several limitations,

however. First, it is dependent upon the presence of an initial crack, meaning it

cannot predict crack nucleation. Additionally, the crack front must correspond to

element boundaries in the finite element mesh. Furthermore, modeling progressive

crack opening requires the addition of new nodes to the finite element mesh as the

crack opens. Despite these limitations and difficulties, VCCT has become a popular

method for predicting the growth of fracture in finite element analyses (for example,

see [8–12]).

II.A.3. Cohesive Zone Model

Cohesive zone models have become a widely-used tool for modeling the growth

of fracture. The concept of the cohesive zone was first put forward by Dugdale [13],

Barenblatt [14], and Hillerborg [15]. The idea behind the cohesive zone is based on

the premise that in reality, the tractions at the tip of a crack cannot in actuality go

to infinity as predicted in linear elastic fracture mechanics, but rather are bounded

to not exceed the yield stress of the material undergoing fracture. This leads to

the development of a region in front of the crack tip where partial separation of

the material takes place. This region is the so-called “cohesive zone”. A variety

of numerical implementations of cohesive zone models have been put forward by

several researchers, including Needleman [16], Jin et al. [17], Park et al. [18], Roy
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and Dodds [19], and Turon et al. [20] to name a few.

There are several commonalities between these various models. The first is

the definition of a traction-separation relationship, which relates the traction across

the cohesive surface to the displacement jump across the cohesive surface. This

relationship typically has a very high initial stiffness to resist opening of the cohesive

element. In addition, there is a maximum traction which can be transmitted across

the surface. Finally, the area under the traction-separation curve corresponds to

the energy release rate for fracture growth in the material A variety of forms for

this relationship exist, including bilinear, trilinear, polynomial, and potential-based

functions. A state variable is typically used to track the evolution of damage and

ensure irreversibility of crack opening, and unloading typically follows a linear path

back to the origin of the traction-separation plot. There is wide variability in the

way that these various models handle mixed-mode opening, both in determining

what the critical traction under mixed-mode opening should be and in determining

the mixed-mode strain energy release rate.

Typically, cohesive zone models are used to govern the opening behavior of

interfacial elements which must be inserted into the finite element model a priori

along likely fracture paths. As opposed to the virtual crack closure technique, how-

ever, these interfacial elements provide an increased degree of flexibility in how crack

fronts are able to evolve. It is also possible, though the use of enrichment methods

such as extended finite elements, to arbitrarily insert cohesive zones into continuum

elements.

11



II.A.4. Extended Finite Elements and Partition of Unity

Fairly recently, approaches have been developed for introducing jump discon-

tinuities into finite elements using the partition of unity method put forward by

Babuska and Melenk [21]. The application of this approach to modeling fracture was

presented by Belytschko and Black [22] as the Extended Finite Element Method, typ-

ically referred to as X-FEM. By adding a heaviside function to the displacement field

in the element, tracking the location of the crack plane using a level set method, and

adding additional degrees of freedom to the element to interpolate the crack open-

ing, a crack can be inserted through a finite element mesh without the need for

remeshing. This approach can also be used to account for weak discontinuities (e.g.

material interfaces) that are not conformally meshed, as demonstrated by Belytschko

et al. [23]. The difficulties associated with the extended finite element method in-

clude modifying the integration of an enriched element (typically, each segment of

an element containing a crack or weak discontinuity must be integrated separately),

the dynamic addition of enriched degrees of freedom to the finite element model as

cracks extend into previously unfractured elements, and the description of the frac-

ture surface in the element. X-FEM also presents some limitations. One of these

is a general inability to have multiple cracks or crack branching within an element,

primarily due to the additional complexity that this would introduce to performing

integration and accounting for crack topology.
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II.B. Fiber-Matrix Behavior

Much of the early failure prediction methods developed for composites centered

around the problem of determining when an individual lamina in a composite would

undergo failure. In general, one may divide these approaches into those that are

based on the state in the homogenized lamina, and those that are based on the

micromechanics of the fibers and matrix.

II.B.1. Lamina-based Failure Models

Numerous approaches of varying complexity have been developed to address the

problem of lamina failure prediction. A large number of these were examined in the

World-Wide Failure Exercise (WWFE) [24]. The current discussion categorizes these

into those which do not account for different modes of failure, and those that do.

II.B.1.a. Polynomial-Fit Failure Criteria

Due to the transverse isotropy (or in more general cases, orthotropy) of compos-

ite lamina, failure criteria used for isotropic materials, such as von Mises’ criterion or

Christensen’s criterion [25](which is used in the current study to predict matrix fail-

ure) are not appropriate for predicting failure of a composite lamina or tow. Hill [26]

developed a yield theory for orthotropic metals (which can come about due to pro-

cesses such as rolling and drawing) which was adapted by Tsai into the Tsai-Hill

criterion [27] and also by Hoffman [28] for application to composite lamina. These

criteria are based on strengths of a unidirectional lamina under a various loads.

The application of Hill’s criterion to composites is a phenomenological convenience
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based on the fact that composites are orthotropic; there is no fundamentally physical

basis for applying a yield criterion to predict the often brittle failure of composite

materials.

Tsai and Wu subsequently developed the Tsai-Wu tensor polynomial failure

criterion [29]. This criterion assumes that the failure surface of the composite can

be fit by a second-order polynomial of the form of equation 2.1.

Fασα + Fαβσασβ = 1 (2.1)

This form for the failure surface allows for first order stress interactions that cannot

be accounted for using the Tsai-Hill and Hoffman criteria. The transverse isotropy

characterizing composites means that only 7 of the 27 values Fα and Fαβ (which is

symmetric) are independent. These values can mostly be determined from uniaxial

and shear tests on a unidirectional composite lamina. However, the value F12 relates

to biaxial strength and is particularly difficult to determine experimentally. As a

result, a number of means have been developed for approximating it [30–33]. Liu

and Tsai [34] along with Kuraishi [35] utilized an adaptation of the Tsai-Wu criterion

coupled with a material degradation law for the WWFE.

II.B.1.b. Mode-Based Failure Criteria

Different types of loads can lead to very different modes of failure in composites.

For instance, axial tensile loading in the fiber direction will typically lead to fiber

failure, while axial compressive loads will lead to the development of kink bands.

Transverse tensile loads lead to brittle matrix fracture, and longitudinal shear loading

leads to matrix plasticity. All of these failure behaviors are significantly different from
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one another. As a result, a number of researchers have developed failure criteria that

move away from fitting the failure envelope to a single polynomial function and use

different criteria to predict different modes of failure. This general approach to failure

prediction has been well regarded in several reviews of failure behavior [36,37].

While difficult to attribute to a single researcher, the maximum stress criterion

is essentially this type of failure criterion, since different modes of failure correspond

strongly with different components of the fiber-aligned stress tensor. Zinoviev et

al. [38, 39] utilized an adaptation of the max stress criterion to predict ply failure

for the WWFE. Another related criterion which in a sense is mode-based is the max

strain criterion. Bogetti et al. [40,41] utilized this type of failure criterion to predict

ply-failure in their submission to the WWFE.

Hashin’s criterion [42], a notable absence from the WWFE, is a piecewise cri-

terion formulated in terms of stress invariants that uses different criteria for various

possible failure modes - tensile or compressive failure of the fibers or matrix. Fiber

direction failure modes in Hashin’s failure theory typically assume the same form

as the max-stress criterion, but shear interaction can be included. Matrix failure

prediction is loosely based on Mohr-Coulomb fracture theory [43], although Hashin

avoids the difficulty of identifying the critical fracture plane by using a quadratic

approximation.

Christensen [44] put forward a somewhat simpler failure criterion that reduces

to two polynomial functions - one for fiber-dominated failure and another for matrix-

dominated failure. Like Hashin’s criterion, Christensen’s criterion is formed in terms

of invariant stresses. The coupling that Christensen includes in predicting failure
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differs somewhat from Hashin’s criterion, largely in that it includes interaction of

hydrostatic stress in the prediction of fiber-dominated failure.

Puck and Schurmann [45,46] proposed a criterion for the WWFE. Like Hashin’s

criterion, Puck’s criterion predicts fiber failure from the axial stress in the compos-

ite. Transverse failure prediction is accomplished using the Mohr-Coulomb criterion.

For a laminate experiencing a state of plane stress, the critical fracture plane from

the Mohr-Coulomb criterion can be directly calculated. However, when considering

a fully three dimensional state of stress in the composite (as would exist in a tex-

tile tow), determining failure using Mohr-Coulomb’s criterion requires a search to

determine the critical fracture plane before determining if the traction across that

plane is sufficient to cause failure (it is not possible to analytically determine this

plane). Furthermore, Puck’s criterion involves the use of a variety of traction interac-

tion parameters representing material properties that can be difficult to characterize

through experiment [47]. Cuntze and Freund [48, 49] submitted a criterion for the

WWFE that was similar in many respects to that of Puck and Schurmann. The pri-

mary difference between these methods was the way that properties were degraded

after transverse failure was predicted in a ply and the fact that Cuntze’s method

includes some interaction between failure modes which are excluded by Puck.

More recently, Dávila et al. [50] proposed the LaRC03 failure criterion. This six-

part criterion shares many aspects of the previously mentioned criteria. Prediction of

matrix failure under transverse loading is accomplished in a manner similar to that

of Puck, but with the use of fewer parameters regarding the interaction of different

components of traction acting on potential fracture surfaces (values which can be
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difficult to determine experimentally). This failure criterion has been utilized in

several recent studies into laminate behavior, for instance, in a collection of work

from the Air Force Research Laboratory and associated organizations [51–53].

II.B.2. Micromechanics Based Lamina Modeling

Another approach to modeling the behavior of composite lamina and tows is to

utilize a micromechanics model. Such models found early utility in the prediction

of transverse composite properties, or in the determination of constituent properties

(such as transverse fiber moduli) based on bulk lamina properties. With the devel-

opment of an appropriate micromechanics model, it is possible from the microscale

stresses to predict when a given constituent in the composite will experience failure

under larger-scale loading.

With regards to the effective response of composites based on micromechanics,

Hashin et al. [54] presented an analytical model capable of predicting bounds for

the effective properties of a composite microstructure. Sun and Vaidya [55] utilized

regular square and hexagonal fiber-matrix unit cells and finite element analysis to

predict the effective linear response of composites.

Asp et al. [56] investigated the failure of polymer-matrix composites under trans-

verse load using finite element analysis of a hexagonal fiber-matrix unit cell model.

It was found that under transverse tension, strong hydrostatic tensile stresses devel-

oped in the regions between fibers. Because the stresses are strongly hydrostatic, the

polymer has a fairly linear response, and a dilitational strain energy criterion was

used to predict the onset of failure based on previous investigations they made into
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polymer failure under triaxial stress states [57].

Mayes and Hansen presented an approach called multicontinuum Theory for fail-

ure prediction [58], which originally formed the basis of the analysis package called

Firehole Composites�. This approach uses a micromechanics model to determine

how the volume averaged stress in a given constituent of the composite varies with

the larger-scale stress in addition to determining the overall contribution of each con-

stituent to the overall stiffness of the composite. Failure of the constituents are then

predicted based on their volume average stresses using an invariant-based failure cri-

terion. The change in the composite’s overall damaged response is approximated by

eliminating the failed constituent’s stiffness contribution to the composite. This ap-

proach has several apparent shortcomings. The first is basing constituent failure on

the volume averaged stress in a constituent. In reality, failure is an extrema-driven

occurrence. There will be large spatial variation of stresses in the constituents of a

composite. Therefore, using the volume averaged stress as the basis for predicting

constituent failure leads to a purely empirical failure model. Another issue is that

the approach to degradation does not account for the nature of the load path in

a composite. For instance, while the both the fibers and matrix contribute to the

transverse stiffness of a composite lamina, transverse failures generally do not in-

volve the fibers (instead occurring in the matrix and on the fiber-matrix interface).

However, these failures result in a severing of the transverse loading path, resulting

in a complete loss of transverse stiffness, not just the stiffness associated with the

matrix as predicted using multicontinuum theory.

Ha et al. [59] improve upon the multicontinuum approach by accounting for local
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variation of stress in the fiber-matrix. They utilize a hexagonal fiber-matrix unit cell

model and calculate the stress intensity factors for a given lamina stress at critical

locations in the matrix and fiber. Matrix failure at the micro-scale is accounted for

using a criterion put forward by Raghava [60] for polymers. The effective response

of the lamina is degraded using an isotropic damage parameter. These responses are

utilized in a larger-scale analysis of a tape lamina under a general thermomechanical

load.

Stamblewski et al. [61] utilized a hexagonal fiber-matrix unit cell model to pre-

dict failure initiation for a variety of applied loadings. Determination of failure

initiation for a large number of multiaxial loadings was facilitated using superpo-

sition of the stress fields associated with a single large-scale loading component.

These failure-initiation stresses were used to fit parameters for the Tsai-Wu tensor

polynomial criterion.

II.B.2.a. Random Microstructures

Brennan and Walrath [62] provide a good overview of various approaches that

have been utilized to generate random fiber-matrix microstructures, as well as an

examination of statistical measures of the fiber-matrix geometry. Wilding and Full-

wood [63] additionally have performed work in the field of examining clustering met-

rics for random fiber-matrix geometries. Bhattacharyya and Lagoudas [64] examined

the effect of clustering on effective composite moduli, which were determined using

analytical micromechanics approaches. They found that longitudinal shear modulus

and the plain strain bulk modulus were sensitive to clustering of fibers.

19



Adams and Tsai [65] were among the first researchers to examine the issue of

randomness in the fiber-matrix microstructure. They developed random microstruc-

tures from square and hexagonal grids by randomizing which grid locations contained

fibers. They used this model to predict lamina properties and found that a hexag-

onal grid with randomly positioned fibers provided a more accurate prediction of

elastic properties than either a regular hexagonal or square array. Aghdam and

Dezhesetan [66] recently undertook a similar study.

Teng [67] utilized microstructure a with a regular grid of fibers, but randomly

specified some fibers to be partially debonded from the matrix to determine the effect

of fiber debonding. Monte-Carlo simulations using finite element analysis were then

performed to obtain effective transverse properties for the composite under tension

and compression.

Ghosh et al. [68] utilized Voronoi finite elements to examine the effect of vari-

ous parameters which can be used to quantify a microstructure, such as local area

fraction and nearest neighbor distance, to determine how these parameters effected

the predicted response. The Voronoi tessellation provides a convenient approach to

discretizing random microstructures.

Bulsara et al. [69] examined the issue of determining an appropriate RVE size

for the prediction of failure initiation in a ceramic matrix composite microstructure

with randomness, with particular interest regarding the issue of thermal loading.

Recently, there have been a few investigations into the progressive failure of com-

posite materials that utilized random models of the fiber and matrix. Mollenhauer

et al. [70] developed a random fiber-matrix RVE model with a variety of approaches
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such as element degradation, cohesive zone modeling, and mesh-independent cracks

to account for the development of failure in the matrix and failure of the fiber/matrix

interface. This model was utilized to predict the Mode I critical strain energy release

rate for crack growth associated with transverse failure of the composite.

Totry et al. [71] performed progressive failure analysis at the fiber-matrix scale

using a random fiber-matrix model generated using an adaptation of work by Segu-

rado and LLorca [72], which itself is an adaptation of work into random dispersions

by Rintoul and Torquato [73]. Damage and nonlinearity in the model is accounted

for using cohesive zone elements on the fiber/matrix interface and a Mohr-Coulomb

governed plasticity model in the matrix. Gonzalez and LLorca [74] used a similar

approach to model failure of a composite under transverse compression, making note

of the development of plasticity bands running at an angle of about 50-56◦ to the

normal plane of the applied load. One serious shortcoming of both [71] and [74] is

that the carbon fibers are modeled as isotropic, when in reality, carbon fibers have

much higher moduli in the longitudinal direction than the transverse directions.

O’Dwyer et al. [75] recently improved upon this shortcoming by using transversely

isotropic fiber properties. They performed a similar analysis using a periodic ran-

dom RVE generated using the approach in [76]. Matrix failure was modeled using a

Mohr-Coulomb based plasticity model, and failure of the fiber-matrix interface was

governed using cohesive zones. This work explored the effect that various cohesive

parameters had on the overall response of the composite for several different loadings.

Garnich et al. [77] utilized a random fiber matrix microstructure to investigate

the fatigue behavior of composite materials. Their microstructure was generated
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using an algorithm developed by Anderson [78]. One of the interesting features of

this algorithm is that while it generates periodic unit cells of randomly arranged

fibers, the mesh boundaries are defined using a Voronoi tessellation, which ensures

that fibers never cross the unit cell boundary.

One problem which is of particular interest in the current work, due to the

application of composite materials to structural systems operating at elevated tem-

perature, is the effect that temperature change has on the strength of composite

materials. While the current work will focus on the effect of thermally-induced

stresses due to thermal expansion coefficient mismatch, the thermal dependence of

the matrix properties can also be a factor. There have been a number of papers

on both of these aspects of temperature change, and interestingly, many of them

come to different conclusions, especially with regards to whether the stresses that

result from cooling the composite after cure tend to strengthen or weaken it under

transverse loading.

Asp et al. [56] included an investigation of the effect of thermally induced stresses

in their studies on failure initiation in various arrayed composite microstructures.

They determined that for low volume fractions, thermal cooling led to stresses which

reduced transverse strength, while at high volume fractions, the opposite was true -

strength tended to increase due to the thermally induced stresses.

Fiedler et al. [79] investigated the effect of thermally induced stresses from cool-

ing on transverse strength at various volume fractions by examining interfacial trac-

tions. They found that higher volume fractions tended to reduce the transverse

strength of composites while thermally-induced stresses tended to have the opposite
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effect (strengthening). Hobbiebrunken et al. (including Fiedler) [80] showed that

stresses from cooling tended to increase the applied stress at which failure occurred

(i.e. had a strengthening effect). However, in a later investigation, Fielder et al. [81]

concluded that thermally induced stresses tended to reduce the composite’s trans-

verse strength while the temperature dependence of the matrix property tended to

increase it to a greater degree (resulting in a net increase in transverse strength as

the composite is cooled from cure).

Maligno et al. [82] examined the effect of thermally induced stresses on failure

initiation in a hexagonal unit cell for a glass-fiber epoxy composite, and concluded

that under transverse loads, residual thermal stresses from cooling are generally

beneficial to the transverse strength of the composite.

Leong and Sankar [83] used a superposition approach to calculate the failure

initiation envelope for a hexagonal fiber-matrix unit cell under a variety of loadings,

including thermal loading. Failure initiation was determined using a maximum stress

criterion within each of the constituents. Although they did not draw a particular

conclusion regarding the influence of temperature change on transverse strength, they

did determine that temperature decrease does change the overall failure envelope for

a tow or lamina.

Hojo et al. [84] examined the effect of fiber spacing by using a finite element

model developed using digital image correlation of actual composite cross-sections.

They examined the interactions between thermally-induced stresses from cooling

after cure and stresses resulting from transverse normal loads. Their focus was

on the normal components of the interfacial tractions between fibers and matrix.
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They found that cooling resulted in compressive radial tractions which became quite

large in magnitude when fibers were in very close proximity. These compressive

normal tractions counter-acted the tensile tractions which arose due to transverse

normal loading, thereby delaying the onset of interfacial failure. They also examined

hexagonal fiber arrays and found that these arrays were not able to predict the degree

to which this interaction occurred in fiber-matrix microstructures with random fiber

positions. Based on this finding, they concluded that thermally induced stresses from

cooling after cure tend to strengthen composites under transverse shear load.

Vaughan and McCarthy [85] performed a progressive failure analyses on periodic

random fiber-matrix arrays and also found that thermally induced stresses from

cooling after cure tended to increase the transverse strength of composites. Yang et

al. [86] performed progressive failure investigations on random microstructures with

varying amounts of fiber spacing and came to a different conclusion - that cooling

from thermally induced stresses tends to weaken the composite when experiencing

transverse loading.

II.C. Laminate Behavior

There are a very wide variety of failure modeling approaches that have been put

forward in the field of modeling failure in textile composites, and since the primary

focus of the proposed research is textiles, only a brief summary of prior work will be

provided.

The so called shear-lag approach is one of the early models, put forward by

Aveston et al. [87, 88], that can be applied to modeling the progressive failure tape
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laminates. This theory is based on the principle that when a laminate layer fails,

the load it carried is redistributed via shear tractions to adjacent layers. Another

approach put forward by Hashin [89,90] is based on an analytical stress analysis that

accounts for multiple cracking in the central plies (Hashin’s original work only applies

to [0◦/90◦]S cross-ply tape laminates). Talreja [5, 6] put forward the “continuum

damage mechanics” approach, in which damage is treated as an internal state that

modifies the stiffness of the damaged ply (and consequently, the laminate). This

approach is founded on the work of Kachanov [3] that used a state variable to track

the evolution of diffuse defects in metals undergoing creep.

More recent developments have made significant progress in modeling the devel-

opment and effect of damage in various tape laminate configurations. The previously-

mentioned WWFE was primarily performed for the purpose of identifying effective

approaches for modeling failure in various tape laminate configurations under a va-

riety of loadings (prediction of failure initiation is only one part of such an effort).

As a result, each of the models put forward have some associated degradation algo-

rithm that is applied to a ply when failure occurs. Many of these models follow an

approach similar to that of Puck [46], which in the presence stresses that exceed the

criteria for a non-critical failure (i.e. matrix cracking) reduces the effective stiffness of

damaged material such that the resulting stress state meets but does not exceed the

failure initiation criteria. The multi-continuum approach presented by Mayes and

Hansen [58] predicts the response of a damaged material by adjusting the overall

constitutive response of the composite in response to the loss of a failed constituents

stiffness contribution. However, such an approach does not account for the fact that
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the failure of a single constituent could affect the loading path in such a way that

the unfailed constituent in the composite no longer carries any load.

Ladéveze and Libaneau [91] have put forward a model for tracking the evolution

of damage and the resulting response of a single ply in a laminate. This model is

based on damage parameters which are related to the development of diffuse damage

in a ply (resulting from the development of a very large number of very small cracks

and voids evenly spaced throughout the laminate, typically arising due to local shear

stresses) and larger-scale matrix microcracking within the ply along with resulting

small-scale inter-ply delaminations at the ends of the matrix microcracks. This

approach is based on the finding that there is little coupling between these two

modes of damage, and that these modes of damage show little dependence on the ply

thickness and adjacent ply orientations. This so-called Ladéveze model has recently

been well regarded [92–97].

“Damage” in composites refers to the development of cracks. All the models

discussed thus far keep track of damage in terms of parameters that can be related

to crack density or some other feature that exists globally throughout a single ply,

but individual cracks are not accounted for. Discretely accounting for individual

cracks in composites is fairly difficult to do in practice due to the fact that a large

number of cracks typically develop (among other factors), and it is typically not

necessary because the cracks have a distributed effect when observed from larger

scales. However, approaches have recently been put forward for discretely modeling

fracture within the framework of finite element analysis. The cohesive zone model

offers a convenient framework for modeling the initiation and growth of fracture. It
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also lends itself nicely to finite element formulations. If the crack path is known

a priori, then zero-thickness interfacial decohesion elements can be inserted into

the model that open up according to some traction-separation law. This approach

works very well for modeling delamination, since the material interface between plies

typically corresponds to a mesh interface in meso-scale finite element models.

In the case of multiple matrix cracking within a ply, it is not generally feasible

to create a model that has a mesh that will allow for crack propagation along the

fiber direction of any ply using interfacial decohesion elements because the crack

must exist on an element boundary. However, this approach may be tractable for

simple configurations with a limited number of ply orientations where crack paths

can be accurately predicted a priori. This approach was reviewed by Wisnom [98]

and has been performed by Wisnom et al. [99], Hallett and Wisnom [100], and Jiang

et al. [101] for notched laminates, Jalavand et al. [102] for cross-ply laminates, and de

Moura and Gonalves [103] for composite specimens undergoing impact. However, for

configurations where crack paths cannot be accurately anticipated, the introduction

of cracks using interfacial elements requires a tedious remeshing process which will

likely become intractable for layups containing may plies of differing orientations and

a large number of cracks. However, recent developments in finite element analysis

have provided a means of accounting for discontinuities in the displacement fields of

elements through the addition of enrichment degrees of freedom, thus avoiding the

remeshing problem altogether. This approach, commonly referred to as the extended

finite element method or X-FEM, was developed by Möes et al. [104].

While the application of interface elements for modeling delamination and/or
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matrix cracking has been done in a number of studies [58-61], [63-66], using X-FEM to

model cracking in the fiber-matrix plies of a tape laminate has been implemented in a

limited number of applications. One recent application by Mollenhauer et al. [51,52]

uses a cohesive zone model based on work by Turon et al. [20]. Decohesion elements

were used on the ply interfaces to model delamination, and a slightly modified X-

FEM approach utilizing continuous enrichment functions (which simplify the process

of integrating shape functions over an enriched element), developed by Iarve [105],

was used to introduce cracks into the fiber-matrix plies. This approach was found

to provide very good agreement with the pattern of damage that was found to de-

velop in experimental specimens for several different configurations. Van der Meer

and Sluys [94] have also put forward similar work in which both matrix cracks and

delaminations are modeled discretely. Matrix cracking within a ply is accounted

for using the so-called phantom node method [106] that is largely analogous to the

extended finite element method.

While the work of Böhm et al. [97, 107] is applied to textile composites, it is

fundamentally based on damage mechanics of individual orthotropic layers which

correspond to one layer of textile material, making it more analogous to failure

modeling of tape laminates than meso-scale modeling of textiles. The model is rooted

in the Failure Mode Concept of Cuntze [108] which identifies failure conditions related

to stress invariants. Each textile layer is considered to undergo elastic deformation

up to a given loading at which point diffuse and/or discrete (when considered at the

scale of an entire layer) damage begins to occur, resulting in a nonlinear response

of the layer up until the textile layer undergoes complete failure. The stress-driven
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evolution of diffuse damage is determined using an evolution law that gradually

increases the internal damage variables as loading increases. The model requires the

determination of a large number of parameters through experiment. Furthermore,

its reliance on the Failure Mode Concept of Cuntze [108] introduces an assumption

that the failure modes in a textile layer are related to the invariants put forward

by Cuntze for an orthotropic layer. The accuracy of such an assumption can be

examined through characterization of the failure behavior of a textile layer at the

meso scale as is being proposed in the current work.

II.D. Textile Behavior

II.D.1. Geometry

Simply predicting or determining the arrangement and shape of tows in tex-

tiles is a complex problem, and generating a mesh of the meso-scale architecture

once its geometry has been determined can present additional difficulty. Analyses

of these complex geometries are typically performed at the unit-cell level and ex-

ploit periodicity, meaning that any representation of the geometry disregards small

perturbations in tow path and shape that will in reality exist from one unit cell to

another. Several approaches have been developed to address the problem of unit cell

geometry generation.

In works by Whitcomb et al. [109–112], a sinusoidal form of the tow cross-section

and path is assumed that eliminates matrix pockets between tows and provides a

geometry which is relatively simple to mesh. This configuration also possesses a

large number of symmetries and equivalent coordinate systems which allow for the
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reduction of the analysis domain through the use of a clever set of periodic boundary

conditions and multi-point constraints [113]. Disadvantages of this approach are that

it is limited to 2D textile configurations (“2D textile” in the sense that there are not

multiple layers of tows that are interwoven - 3D finite element analysis is used to

analyze these architectures), it is not based on any physical principle beyond the fact

that interwoven tows are expected to be in direct contact, and it does not capture

the variations in cross-section that exist along the tow path in actual textiles.

Another approach for generating textile architectures is TexGen, originally de-

veloped by Sherburn [114]. This tool is under active development at the University

of Nottingham and allows for textile geometries to be defined with varying (but not

completely general) tow cross sections and tow paths that are defined using splines.

It also can enforce periodicity in the tows paths and is able to create models of 3D

textile architectures. It contains meshing functionality and provides the user with a

convenient graphical interface. It has several major detractors, however, including

a lack of functionality for handling tow interpenetration for all but the most simple

textile configurations as well as a lack of physically based modeling of tow paths. As

a result of these factors, tows that should be in direct contact with one another often

will have unrealistic matrix pockets located between their surfaces.

Another tool for developing textile geometries is WiseTex, used by Lomov et

al. to perform a wide variety of textile analyses [92, 115–118]. WiseTex performs

analyses on the textile architecture that seek to minimize strain energy of the textile

under the presence of manufacturing loads, and therefore it is more physically based

than the previously discussed approaches. It also possesses greater functionality

30



for handling interpenetrating tows in the form of iterative finite element analyses

that insert spring-like elements between adjacent tows. However, the possible tow

cross-sections are still limited to variations of a few fundamental shapes (they are

not completely general), and like TexGen, WiseTex also leaves pockets of neat resin

between tows which should be in direct contact.

Seemingly the most general and possibly best approach for predicting the meso-

scale textile architecture is the so-called Digital Fiber approach developed by Wang

et al. [119–121]. This approach has developed to its current state in which a tow

is modeled as a bundle of about 20 or more chains of rod elements (i.e. “Digital

Fibers”). Tension is applied to each tow, and a contact analysis is performed. The

tows paths and cross-section shapes are then determined from the rod positions, and

the geometry is meshed. This approach is applicable to a wide variety of textile

architectures and is extremely general.

II.D.2. Damage

Modeling the progressive growth of damage in a textile presents significant chal-

lenges beyond those encountered for tape laminates. These challenges are primarily

due to the variations in stress that exist within individual tows. In tape laminates,

it can be assumed that before the onset of damage, the state of stress in a single

ply away from the free edge is constant or varies in a predictable fashion (linear

variation of in-plane stress under bending, parabolic distribution of transverse shear

stress, etc.). This is not the case for tows in a textile. Therefore, the typical approach

for modeling damage in textiles involve greater consideration of the local stress fields
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in tows, since the stress level in a tow may exceed the allowable stress in only a small

region.

One of the first examples of modeling failure using 3D finite element analysis

for textiles was performed by Blackketter et al. [122]. Their approach, which was

applied to failure analysis of a plain weave textile, involved degradation of material

properties at quadrature points where the stress exceeded the failure criterion for

the material. For the neat matrix pockets, a maximum principle stress criterion

was used, and material stiffness and shear modulus were reduced to 1% and 20%,

respectively, of their original values. For the homogenized fiber-matrix, the maximum

stress criterion was utilized which had the added benefit of giving an indication of

what kind of failure occurs. When failure in the fiber matrix was detected, the

orthotropic material properties were degraded in a manner depending upon what

kind of failure was detected to occur. A plasticity model was used to predict the

constitutive behavior of the composite up to failure. It was found that the overall

non-linearity in the textile behavior was primarily due to damage and not plasticity.

Furthermore, it was observed that ultimate strength was somewhat over-predicted

as compared to experiments in addition to over-predicting the effective stiffness loss

in the textile due to the onset of matrix cracking in the transverse tows.

Whitcomb and Srirengan [123] performed a failure analysis on a plain weave

textile and examined the effect of mesh refinement, degradation scheme, waviness

ratio, and integration order on the predicted failure behavior. It was found that the

failure behavior was sensitive to all of these parameters, although it appeared that as

mesh refinement increased, a converged solution was approached. Choi and Tamma
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[124] presented a failure analysis of plain weave textiles that shared a great number

of similarities to the work presented by Blackketter et al. [122]. They attempted to

improve upon the predictions in [122] by considering post-failure anisotropy of the

matrix depending on the failure stress as well as modification of the Poissons ratio

of failed material. This work improved upon the ultimate failure stress predictions

of Blackketter.

Guagliano and Riva [125] utilized the approach of Blackketter to examine plain

weave textiles with various inter-ply stacking patterns. It was found that experiments

for textiles with 8 stacked layers tended to match closely with predictions for infinite

stacking, either in-phase or symmetric. It was found that if in-phase stacking is

assumed, the predicted failure behavior shows significant sensitivity to the number

of textile layers when a low number of layers is modeled.

Tang and Whitcomb [110] utilized a failure prediction approach similar to that

of Blackketter, but with degradation values based upon investigations of Srirengan

and Whitcomb [126] for textiles containing matrix cracks. Additionally, a modifi-

cation to the degradation algorithm was examined that accounted for the fact that

under normal compressive stresses, cracks will close and thus the failed material will

retain stiffness to resist normal compressive deformation (although the shear com-

pliance will remain degraded as the crack surfaces can slide relative to one another).

They also examined the change in predicted behavior observed when accounting for

geometric nonlinearity. Their investigation was performed for a variety of textile

architectures (plain weaves, twills, and satins). It was found that the various ar-

chitectures exhibited significantly different behaviors even though all had the same
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fiber volume fraction. However, marked similarities in failure behavior were noted in

the locally similar regions of different architectures, such as the undulated region of

a satin and a plain weave. This result suggests the existence of characteristic failure

behaviors. It was also noted that higher waviness ratio textiles showed greater sen-

sitivity to the selected degradation model, while low waviness ratio textiles showed

very little sensitivity. Accounting for geometric nonlinearity was observed to have

an effect on the predicted failure behavior of the composite although it had little

impact on the material response before damage onset.

Zako et al. [127] modeled failure in plain weave composites using Hoffman’s crite-

rion [28] to predict failure initiation and an anisotropic degradation scheme based on

Murakami’s damage tensor [128] to model the degrading effect of the damage. Upon

detection of failure, certain entries in the damage tensor were completely degraded

based on what mode of failure occurs. There was no evolution from undamaged to

damaged material properties. This approach was found to provide fairly accurate

predictions when compared to experiment, both in terms of the failure modes that

were observed to occur and the effective stress-strain behavior. Lomov et. al. [116]

performed an analysis on a triaxial braided composite utilizing the same method

of failure prediction and degradation as Zako [127]. This work was conducted in

conjunction with a very thorough set of experimental tests [129] which found that

failure developed in several distinct stages. It was noted that although the initiation

of failure was accurately predicted, progressive failure prediction was problematic.

The primary problem noted was that matrix cracking in tows oriented 45◦ relative

to the applied load was predicted to grow across the tow, whereas in reality failure
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propagated in matrix cracks running along the tow direction (along the fibers). This

issue was addressed more thoroughly by Gorbatikh et al. [130] and was found to be

due to a fundamental shortcoming associated with modeling fracture through the

reduction of elastic properties over a finite volume. This work found that for the

case of shear load applied to a degraded region, the critical stress location on the

boundary of the degraded region does not correspond to the tips of the crack that

the degraded region is attempting to account for, leading to an unrealistic prediction

for damage zone growth.

Ivanov et al. [92] have since performed failure analyses on triaxial braided tex-

tiles, but instead of utilizing the failure modeling approach of [127], failure prediction

was performed using Puck’s criterion [45]. Degradation is applied globally to straight

sections of the tows (as opposed to individual finite elements) according to the degra-

dation scheme put forward by Ládeveze [91]. This is done based on the belief that

these straight tow regions behave in a manner similar to plies in tape laminates that

are undergoing multiple cracking. This approach was found to provide good agree-

ment with the experimentally observed progressive failure behavior and avoids the

fundamental issues that were noted in [130].

Based on the issues that were raised by Lomov [116] and Gorbatikh [130], it

seems likely that the optimal approach to modeling progressive failure in textiles

at the meso-scale would be something similar to the discrete damage modeling ap-

proach used by Mollenhauer et al. [51] for laminates. However, a broad search of the

literature did not reveal any study in which such an analysis was applied to textile

mesoscale models, likely due to the high level of difficulty associated with implement-
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ing discrete damage modeling in a 3D finite element environment in addition to the

complexities associated with modeling textile meso-scale architectures.

One of the shortcomings of the previously mentioned analyses is that they de-

scribe either a single or a limited number of load cases. While such analyses are

useful for gaining understanding about the failure behavior of the textile, they are

not sufficient for fully characterizing the failure behavior of the textile for an arbi-

trary load case. Accomplishing such a characterization (which is the ultimate goal

of the proposed research) requires examining the failure behavior for a wide variety

of loading cases. Karkkainen and Sankar [131] presented work along this line. Their

analyses were based on various combinations of in-plane loading and bending of a

plain weave textile composite. They examined failure initiation in the textile (no

progressive failure analysis was performed). They utilized the previously described

“Direct Micromechanics Method (DMM)” to develop failure initiation envelopes for

textiles undergoing various combination of in-plane and bending loads. They then

compared these envelopes to envelopes that would be predicted using other functional

forms of failure criteria, such as max stress and Tsai-Wu [29], and found that the

failure envelope based on DMM analysis detected features that could not be captured

using these other theories. Subsequent work by Karkkainen et al. [132, 133] devel-

oped a quadratic failure criteria that can be applied to multilayer textile composites

under an arbitrary load state based on findings using DMM.

The work by Sankar et al. [61, 131–133] is similar in many respects to the pre-

liminary work into determining textile failure initiation behaviors that is reported in

later sections, but there are several major differences. The biggest difference is that
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the work of Sankar et al. makes no attempt to identify common modes of failure

initiation. The only data provided regarding failure for a particular proportional

loading is the magnitude of load at which failure occurs in the model. The idea of

failure modes is central to the preliminary and proposed research, and as will be

reported, complicated features on the failure initiation envelope of a textile appear

to be strongly related to the different modes of failure that occur under different load

conditions.

The use of tools like cohesive zones to progressively account for discrete crack

opening in textile composites is a fairly new field. Hsu and Cheng [134] recently

presented an analysis which used cohesive elements to account for interfacial failure

between tows and the tows and neat matrix pocket. However, their model did not

include any method for accounting for failures within the tows.

II.D.3. Other Aspects of Textiles

There are a variety of additional aspects of textile composites which may in-

fluence failure behavior. One is the presence of free surfaces. Owens et al. [112]

performed work examining the stress distribution in textiles with both free surfaces

and free edges and found that the stress distribution in surface mats often differ con-

siderably from the stresses in interior mats. Ivanov et al. [117] put forward boundary

conditions which can be used to account for the finite thickness of a textile in a unit

cell analysis. The effects of free surfaces are incongruous with traditional unit cell

analysis which assumes infinite periodicity of the unit cell. Therefore, to fully predict

the failure behavior of an actual textile of finite thickness, some consideration should
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be made of the effect of the free surface.

In addition to free surface effects, a textile will typically exhibit what is called

nesting, a phenomenon in which one mat tends to sit in the matrix pockets of an

adjacent mat. Thus, the mats will not be perfectly aligned as is assumed in a

typical periodic unit cell analysis. The effect of this phenomena was examined by

Ivanov et al. [118]. It was found that two limiting cases exist. In the first case,

each mat is arranged symmetrically to the adjacent mats. In the second, each mat

is perfectly in phase through the entire thickness of the textile laminate. Ivanov’s

work suggests that the in-phase mat configuration undergoes earlier initial failure

but delays the onset of critical fiber-failure as compared to the configuration with

symmetrical adjacent mats.
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CHAPTER III

OVERVIEW OF THEORY

This chapter provides a number of details regarding several of the computational

tools used to perform the investigations contained in this work.

III.A. 3D Finite Element Formulation

The analyses performed in this work make use of a three-dimensional finite el-

ement formulation. This section describes such a formulation. The finite element

method consists of the discretization of the physical problem domain into a mesh.

Various constitutive properties are then assigned to sub domains within the mesh,

generally corresponding to various materials. These constitutive properties are uti-

lized to determine element stiffnesses which are determined from the governing equa-

tions of equilibrium. Boundary conditions defining either force or displacement are

defined for all surfaces of the mesh. The definition of sufficient boundary conditions

leads to the formation of a system of linear equations whose solution is the set of

nodal displacements and forces resulting in static equilibrium for the entire prob-

lem domain. These displacements can be spatially differentiated to obtain strains

through kinematic relationships, which can then be converted into stresses using con-

stitutive relationships. The mathematical details of the finite element method are

described in the following subsections.
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III.A.1. Kinematic Relationships

The constitutive relationship between strain and stress in a body depends first

on how strain is defined for the body. Assume a body is initially in some reference

configuration. Two reference frames exist for describing the configuration of the

body. The first, the Lagrangian frame, defines the configuration of the body using

reference, or material coordinates Xi(t), which are defined at some reference time

and track the body as it deforms. The second, Eulerian reference frame, defines the

configuration of a deformed body by the spatial coordinates xi(t) which remain fixed

in space as the body deforms. The Eulerian description of the body’s configuration

can be expressed in terms of the Lagrangian reference frame by a mapping function

χ(Xi, t) such that xi = χ(Xi, t). The deformation gradient is then defined as

Fij =
∂xi
∂Xj

=
∂χ(Xi, t)

∂Xj

(3.1)

Also define the displacement of some point on the body as

ui = xi −Xi (3.2)

Next, define Bij and Cij the left and right stretch tensors, respectively.

Bij = FikFjk

Cij = FkiFkj

(3.3)

From these stretch tensors, one can derive two strains. First, the Green - St. Venant

Strain is defined as

Eij =
1

2
(Cij − δij)

=
1

2
(FkiFkj − δij)

=
1

2

(
∂uj
∂Xi

+
∂ui
∂Xj

+
∂uk
∂Xi

∂uk
∂Xj

) (3.4)
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where δij is the Kronecker delta. Second, the Almansi-Hamel Strain is defined as

eij =
1

2

(
δij −B−1

ij

)
=

1

2

(
δij − (FikFjk)

−1)
=

(
∂uj
∂xi

+
∂ui
∂xj

− ∂uk
∂xi

∂uk
∂xj

) (3.5)

Now, the linearizing assumption will be inserted into the derivation. It will be

assumed for all deformations, that the deformation gradient is small. That is∣∣∣∣ ∂ui∂Xi

∣∣∣∣ = O(δ) δ ≪ 1 (3.6)

It follows that

∂ui
∂Xi

=
∂ui
∂xi

+O(δ2) (3.7)

Appealing to the assertions in Eq. (3.6) and Eq. (3.7) in the context of the strains

of Eq. (3.4) and Eq. (3.5) yields

Eij = εij +O(δ2)

eij = εij +O(δ2)

(3.8)

where εij is the linearized strain tensor, defined as

εij =
1

2

(
∂uj
∂Xi

+
∂ui
∂Xj

)
≈ 1

2

(
∂uj
∂xi

+
∂ui
∂xj

) (3.9)

It can be seen that the strain tensor will always be symmetric, as the addition of a

matrix with its transpose always results in a symmetric matrix. Also, it can be seen

that the linearized strain is very nearly equal when taken in either a Eulerian or La-

grangian reference frame. From this point forward in the derivations, the Lagrangian

frame will be used, and all spatial coordinates will be given in the form xi.
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III.A.2. Constitutive Relationships

With the linearized strain now defined, it is possible to clearly state the consti-

tutive relationship between stress and strain. The most general relationship between

the stress and strain tensors is given by

σij = Cijklεkl (3.10)

where Cijkl is a fourth-order tensor, often referred to as the stiffness tensor, con-

taining 81 constants. It is convenient to represent this fourth order tensor as a

two-dimensional matrix by expressing the stress and strain tensors as vectors with 6

components by exploiting their symmetry. Like the strain tensor, the stress tensor

for a static body is symmetric. The symmetry of the stress tensor is required to

maintain equilibrium for angular momentum for all points in the body. Exploit-

ing these symmetries implies that Cijkl = Cjikl = Cijlk and reduces the number of

constants relating stress and strain from 81 to 36 as can be seen in the following

relationship.

σ11

σ22

σ33

σ23

σ31

σ12


=



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212





ε11

ε22

ε33

2ε23

2ε31

2ε12


(3.11)
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Table III.1: Orthogonal reflection transformation matrices

Reflection

Plane

Transformation

Tensor

23 Q =
(

−1 0 0
0 1 0
0 0 1

)
31 Q =

(
1 0 0
0 −1 0
0 0 1

)
12 Q =

(
1 0 0
0 1 0
0 0 −1

)

The overall symmetry of the stiffness tensor is established by relating stress and

strain using the strain energy density functional U . This relationship is given as

σij =
∂U

∂εij
= Cijklεkl =⇒ ∂2U

∂εij∂εkl
= Cijkl (3.12)

which implies that Cijkl = Cklij due to the fact that the order of differentiation

will not change its result. This reduces the total number of independent constants

relating stress and strain to 21.

The number of terms in C can be further reduced by appealing to material

symmetries. For the analyses in this work, it will be assumed that materials possess

at least orthotropic symmetry. That is, all materials possess, at a minimum, three

orthogonal planes of symmetry about which a reflection can take place with no change

in the response of the material. It is assumed that the material will be defined such

that these planes of symmetry are aligned with the coordinate axes. The orthogonal

transformation matrices associated with these reflections are given in table III.1. The
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stiffness matrix resulting from such a reflection is given as

C ′
ijkl = QipQjqQkrQlsCpqrs (3.13)

Provided that Qij represents a reflection about a plane of material symmetry, it can

be stated that

Cijkl = C ′
ijkl (3.14)

Applying Eq. (3.13) and Eq. (3.14) to Eq. (3.11), it is found that a number of terms

must equal zero to satisfy the material symmetry. The resulting stiffness tensor for

orthotropic materials contains 9 independent constants as follows.

C =



C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C3131 0

0 0 0 0 0 C1212


(3.15)

Material properties are given in terms of engineering constants. These constants are

most conveniently expressed in the compliance tensor S, which is the inverse of the

stiffness tensor. The compliance tensor for orthotropic materials relates strain to
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stress in the following manner.

ε11

ε22

ε33

2ε23

2ε31

2ε12


=



1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν21
E2

1
E2

−ν23
E2

0 0 0

−ν31
E3

−ν32
E3

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12





σ11

σ22

σ33

σ23

σ31

σ12


ν23
E2

= ν32
E3

ν31
E3

= ν13
E1

ν12
E1

= ν21
E2

(3.16)

III.A.3. Governing Equations of Elasticity and the Weak Form

The primary equation governing the loading of bodies is that of equilibrium. For

static bodies, the equilibrium equation takes the following form:

∂σij
∂xj

+ ρbi = 0 (3.17)

where ρ is density and bi is the specific body force. Eq. (3.17) is then multiplied

by test functions (often referred to as virtual displacements) δui and integrated over

the problem domain Ω. The resulting “weak form” of the equation of equilibrium is∫
Ω

δui

(
∂σij
∂xj

+ ρbi

)
dΩ =

∫
Ω

(
δui

∂σij
∂xj

+ δuiρbi

)
dΩ = 0 (3.18)

The first term of Eq. (3.18) can be expanded through integration by parts.∫
Ω

(
δui

∂σij
∂xj

)
dΩ =

∫
Ω

∂ (δuiσij)

∂xj
dΩ−

∫
Ω

(
∂δui
∂xj

σij

)
dΩ (3.19)

Applying the result of Eq. (3.19) into Eq. (3.18) yields the following expression for

the weak form. ∫
Ω

∂ (δuiσij)

∂xj
dΩ +

∫
Ω

(
ρbiδui −

∂δui
∂xj

σij

)
dΩ = 0 (3.20)
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Applying Gauss’s divergence theorem to the first term in Eq. (3.20) yields∫
Γ

(δuiσijnj) dΓ +

∫
Ω

(
ρbiδui −

∂δui
∂xj

σij

)
dΩ = 0 (3.21)

Γ is the surface of the domain Ω, and ni is the normal vector at a point on Γ. Now,

Cauchy’s stress formula, which relates stress σji to the traction Ti on a surface with

normal nj, will be incorporated.

Ti = σjinj = σijnj (3.22)

Incorporating Eq. (3.22) into Eq. (3.21) yields∫
Γ

(δuiTi) dΓ +

∫
Ω

(
ρbiδui −

∂δui
∂xj

σij

)
dΩ = 0 (3.23)

Additionally, The symmetry of the Cauchy stress tensor and Eq. (3.9) allow the

following equivalence to be established

∂δui
∂xj

σij = δϵijσij (3.24)

Applying the relationship established in Eq. (3.24) to the last term in the volume

integral of Eq. (3.23) yields the following∫
Γ

(δuiTi) dΓ +

∫
Ω

(ρbiδui − δεijσij) dΩ = 0 (3.25)

Now Galerkin approximations will be used to represent the trial function δui.

The approximation is based upon the principle that a function can be represented as

an infinite sum of smooth basis functions ψ(A). In the finite element analysis, there

will be as many basis functions as there are nodes in the element. This results in the

trial function taking the following form.

δui =
n∑

A=1

δu
(A)
i ψ(A) (3.26)
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such that A denotes the Ath node in the element and n is the total number of nodes

in the element. All components of all nodal displacements u
(A)
i for an element will

be expressed as qAi
for convenience (in essence, a vector of all degrees of freedom

for the element), where the capital subscript A denotes the node and the lowercase

subscript i denotes the direction. The subscript “Ai” is treated as a single subscript

for summation purpose, which permutes through i, and then A, as follows.

qAi
=

(
u
(A=1)
i=1 , u

(A=1)
i=2 , u

(A=1)
i=3 , u

(A=2)
i=1 , u

(A=2)
i=2 , u

(A=2)
i=3 , · · · , u(A=n)i=1 , u

(A=n)
i=2 , u

(A=n)
i=3

)
(3.27)

Virtual displacement and strain can now be expressed in the following manner.

δui =
∂ui
∂qAj

δqAj
(3.28)

δεij =
∂εij
∂qAk

δqAk
(3.29)

Substitution of Eq. (3.28) and Eq. (3.29) into Eq. (3.25) and summing over the

nodes of an element yields

δqAk

(∫
Γ

(
∂ui
∂qAk

Ti

)
dΓ +

∫
Ω

(
ρbi

∂ui
∂qAk

)
dΩ−

∫
Ω

(
∂εij
∂qAk

σij

)
dΩ

)
= 0 (3.30)

Since this relationship must hold for any arbitrary non-zero value of the test function

δqAk
, it is necessary that for all values of Ak∫

Γ

(
∂ui
∂qAk

Ti

)
dΓ +

∫
Ω

(
ρbi

∂ui
∂qAk

)
dΩ−

∫
Ω

(
∂εij
∂qAk

σij

)
dΩ = 0 (3.31)

For convenience, Voigt notation will be used from this point forward to represent the
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strain and stress tensors as follows

εα =



ε11

ε22

ε33

γ23 = 2 ε23

γ31 = 2 ε31

γ12 = 2 ε12


, σα =



σ11

σ22

σ33

σ23

σ31

σ12


(3.32)

Greek subscripts will be utilized as the indices in matrices and vectors expressed using

Voigt notation. This notation simplifies the formation of the strain-displacement

matrix, BαAi
, which is defined through the kinematic relationship defining strain in

Eq. (3.9) in conjunction with the Galerkin approximation for displacement of Eq.

(3.26).

BαAi
=

∂εα
∂qAi

=



∂ψ(1)

∂x1
0 0

0 ∂ψ(1)

∂x2
0

0 0 ∂ψ(1)

∂x3

0 ∂ψ(1)

∂x2

∂ψ(1)

∂x3

∂ψ(1)

∂x1
0 ∂ψ(1)

∂x3

∂ψ(1)

∂x1

∂ψ(1)

∂x2
0

· · ·

∂ψ(n)

∂x1
0 0

0 ∂ψ(n)

∂x2
0

0 0 ∂ψ(n)

∂x3

0 ∂ψ(n)

∂x2

∂ψ(n)

∂x3

∂ψ(n)

∂x1
0 ∂ψ(n)

∂x3

∂ψ(n)

∂x1

∂ψ(n)

∂x2
0


(3.33)

The strain displacement matrix is used to calculate strains based on the element

displacement vector by

εα = BαAi
qAi

(3.34)

This results in the final term of Eq. (3.31) taking the form∫
Ω

(BαAi
σα) dΩ (3.35)

48



Furthermore, through the constitutive relationship of Eq. (3.10) the stress tensor

can be represented in the following manner

σα = Cαβεβ = CαβBβAi
qAi

(3.36)

Incorporating Eq. (3.36) into Eq. (3.35) leads to the formation of the familiar

element stiffness matrix in the following manner∫
Ωe

(BαAi
σα) dΩe =

∫
Ωe

(
BαAi

CβαBβBj
qBj

)
dΩe

=

∫
Ωe

(
BαAi

CβαBβBj

)
dΩe qBj

=KAiBj
qBj

(3.37)

or, in matrix form (with boldface representing a matrix or vector),∫
Ωe

(
BTσ

)
dΩe =

∫
Ωe

(
BTCBq

)
dΩe =

∫
Ωe

(
BTCB

)
dΩe q = Kq (3.38)

The subscript e signifies that the integral is taken over the domain of a single el-

ement. The partial derivative of the displacement field with respect to the nodal

displacements which appears in the remaining terms of Eq. (3.31) can be expressed

using a method similar to Eq. (3.33).

∂uk
∂qAi

=


ψ(1) 0 0

0 ψ(1) 0

0 0 ψ(1)

· · ·

ψ(A) 0 0

0 ψ(A) 0

0 0 ψ(A)

· · ·

ψ(n) 0 0

0 ψ(n) 0

0 0 ψ(n)

 (3.39)
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This leads to the creation of the element force vector as follows

fAi
=

∫
Γe

(
Tk
∂uk
∂qAi

)
dΓe +

∫
Ωe

(
ρbk

∂uk
∂qAi

)
dΩe

=



∫
Γe

(
T1ψ

(1)
)
dΓe +

∫
Ωe

(
ρb1ψ

(1)
)
dΩe∫

Γe

(
T2ψ

(1)
)
dΓe +

∫
Ωe

(
ρb2ψ

(1)
)
dΩe∫

Γe

(
T3ψ

(1)
)
dΓe +

∫
Ωe

(
ρb3ψ

(1)
)
dΩe

...∫
Γe

(
T1ψ

(A)
)
dΓe +

∫
Ωe

(
ρb1ψ

(A)
)
dΩe∫

Γe

(
T2ψ

(A)
)
dΓe +

∫
Ωe

(
ρb2ψ

(A)
)
dΩe∫

Γe

(
T3ψ

(A)
)
dΓe +

∫
Ωe

(
ρb3ψ

(A)
)
dΩe

...∫
Γe

(
T1ψ

(n)
)
dΓe +

∫
Ωe

(
ρb1ψ

(n)
)
dΩe∫

Γe

(
T2ψ

(n)
)
dΓe +

∫
Ωe

(
ρb2ψ

(n)
)
dΩe∫

Γe

(
T3ψ

(n)
)
dΓe +

∫
Ωe

(
ρb3ψ

(n)
)
dΩe



(3.40)

Eq. (3.37) and Eq. (3.40) allow the weak formulation of Eq. (3.31) to be expressed

for an element in the familiar form of a linear system of equations

Kq = f (3.41)

III.A.4. Element Formulations

III.A.4.a. Basis Functions

Recall from Eq. (3.26) that the displacement throughout an element is deter-

mined by summing the products of the nodal displacements and their corresponding

basis functions. The formation of basis functions for an element is critical to its

computation. Generally, a basis function for a node is formed such that it possesses
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a value of unity at that node and a value of zero at all other nodes. For these ele-

ments, the basis functions will be in the form of polynomials. This will allow their

integration using quadrature rules described in later subsections.

Although elements can assume non-regular shapes in the problem domain de-

scribed in the global coordinates (x1, x2, x3), the shape function formulations will be

calculated in the master element coordinate system defined by (ξ1, ξ2, ξ3), in which

the element assumes a structured shape and extends across a pre-determined domain

(e.g., from -1 to 1 in all coordinate directions for a hexahedron). The various analyses

in this work utilize 20 node hexahedral, 15 node wedge, 8 node qudrilateral, and 6

node triangular element formulations. The topologies of these elements are shown in

Fig. III.1. These elements are referred to as serendipity elements because they are

quadratic elements in which all the nodes exist on edges (as opposed to the Lagrange

family of elements which possess internal and mid-face nodes). Being quadratic, the

basis functions are 2nd order polynomials of the spatial coordinates. The approach

for developing the basis functions for the 20 node element are now described. For

the first node, which possesses coordinates (−1,−1,−1), it is desired to construct a

basis function with a value of unity at node 1 and a value of zero at all other nodes.

Therefore, the basis function for node 1 should vanish on the planes defined by the

following functions.

ξ1 − 1 = 0 (nodes 13, 14, 15, 16, 17, 18, 19, and 20 )

ξ2 − 1 = 0 (nodes 3, 4, 5, 10, 11, 15, 16, and 17)

ξ3 − 1 = 0 (nodes 5, 6, 7, 11, 12, 17, 18, and 19)

ξ1 + ξ2 + ξ3 + 2 = 0 (nodes 2, 8, and 9)

(3.42)

51



ξ
1

ξ
3

ξ
2

3

7

13

1

8

2

9

15

19

10

12

14

20

4

56

11

17

16

18

(a) Hexahedron

ξ
1

ξ
3

ξ
2

3

5

10

1

6

2

7

12

14

13

4

8

9

11

15

(b) Wedge

ξ
2

ξ
1

3

5

1

7

2

4

6

8

(c) Quadrilateral

ξ
1

ξ
2

3

5

1

4
6

2

(d) Triangle

Figure III.1: Various element topologies.
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This yields a function of the following form

ψ(1) (ξ1, ξ2, ξ3) = C (ξ1 − 1) (ξ2 − 1) (ξ3 − 1) (ξ1 + ξ2 + ξ3 + 2) (3.43)

It is desired that ψ(1) have a value of unity at node 1, resulting in

ψ(1) (ξ1, ξ2, ξ3) =
1

8
(ξ1 − 1) (ξ2 − 1) (ξ3 − 1) (ξ1 + ξ2 + ξ3 + 2) (3.44)

This convention can be followed for the remainder of the nodes, yielding the following

set of basis functions for the master hexahedral quadratic serendipity element.

ψ(1) = 1
8
(ξ1 − 1) (ξ2 − 1) (ξ3 − 1) (ξ1 + ξ2 + ξ3 + 2)

ψ(2) = −1
4
(ξ1 − 1)

(
ξ22 − 1

)
(ξ3 − 1)

ψ(3) = 1
8
(ξ1 − 1) (ξ2 + 1) (ξ3 − 1) (−ξ1 + ξ2 − ξ3 − 2)

ψ(4) = 1
4
(ξ1 − 1) (ξ2 + 1)

(
ξ23 − 1

)
ψ(5) = 1

8
(ξ1 − 1) (ξ2 + 1) (ξ3 + 1) (ξ1 − ξ2 − ξ3 + 2)

ψ(6) = 1
4
(ξ1 − 1)

(
ξ22 − 1

)
(ξ3 + 1)

ψ(7) = 1
8
(ξ1 − 1) (ξ2 − 1) (ξ3 + 1) (−ξ1 − ξ2 + ξ3 − 2)

ψ(8) = −1
4
(ξ1 − 1) (ξ2 − 1)

(
ξ23 − 1

)
ψ(9) = −1

4

(
ξ21 − 1

)
(ξ2 − 1) (ξ3 − 1)

ψ(10) = 1
4

(
ξ21 − 1

)
(ξ2 + 1) (ξ3 − 1)

ψ(11) = −1
4

(
ξ21 − 1

)
(ξ2 + 1) (ξ3 + 1)

ψ(12) = 1
4

(
ξ21 − 1

)
(ξ2 − 1) (ξ3 + 1)

ψ(13) = 1
8
(ξ1 + 1) (ξ2 − 1) (ξ3 − 1) (ξ1 − ξ2 − ξ3 − 2)

ψ(14) = 1
4
(ξ1 + 1)

(
ξ22 − 1

)
(ξ3 − 1)

ψ(15) = 1
8
(ξ1 + 1) (ξ2 + 1) (ξ3 − 1) (−ξ1 − ξ2 + ξ3 + 2)

ψ(16) = −1
4
(ξ1 + 1) (ξ2 + 1)

(
ξ23 − 1

)
ψ(17) = 1

8
(ξ1 + 1) (ξ2 + 1) (ξ3 + 1) (ξ1 + ξ2 + ξ3 − 2)

ψ(18) = −1
4
(ξ1 + 1)

(
ξ22 − 1

)
(ξ3 + 1)

ψ(19) = 1
8
(ξ1 + 1) (ξ2 − 1) (ξ3 + 1) (−ξ1 + ξ2 − ξ3 + 2)

ψ(20) = 1
4
(ξ1 + 1) (ξ2 − 1)

(
ξ23 − 1

)

(3.45)
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The basis functions for the serendipity wedge element are given by

ψ(1) = −1
2
(ξ3 − 1) (ξ1 + ξ2 − 1) (2 ξ1 + 2 ξ2 + ξ3)

ψ(2) = 2 ξ1 (ξ3 − 1) (ξ1 + ξ2 − 1)

ψ(3) = −1
2
ξ1 (ξ3 − 1) (2 ξ1 − ξ3 − 2)

ψ(4) = −2 ξ1 ξ2 (ξ3 − 1)

ψ(5) = −1
2
ξ2 (ξ3 − 1) (2 ξ2 − ξ3 − 2)

ψ(6) = 2 ξ2 (ξ3 − 1) (ξ1 + ξ2 − 1)

ψ(7) = (ξ3 − 1) (ξ3 + 1) (ξ1 + ξ2 − 1)

ψ(8) = −ξ1 (ξ3 − 1) (ξ3 + 1)

ψ(9) = −ξ2 (ξ3 − 1) (ξ3 + 1)

ψ(10) = 1
2
(ξ3 + 1) (ξ1 + ξ2 − 1) (2 ξ1 + 2 ξ2 − ξ3)

ψ(11) = −2 ξ1 (ξ3 + 1) (ξ1 + ξ2 − 1)

ψ(12) = 1
2
ξ1 (ξ3 + 1) (2ξ1 + ξ3 − 2)

ψ(13) = 2 ξ1 ξ2 (ξ3 + 1)

ψ(14) = 1
2
ξ2 (ξ3 + 1) (2 ξ2 + ξ3 − 2)

ψ(15) = −2 ξ2 (ξ3 + 1) (ξ1 + ξ2 − 1)

(3.46)

III.A.4.b. Spatial Mapping

The integrations of Eq. (3.37) are performed using Gaussian Quadrature. To

simplify the procedure by which the quadrature will be applied, it will be applied

over the master element’s domain, rather than the domain of the element in actual

physical space. This master domain is mapped to an element’s physical domain by

the following formula

xi (ξj) =
n∑

A=1

x
(A)
i ψ(A) (ξj) (3.47)

x
(A)
i represents the physical coordinate of the Ath node of the element, and xi (ξj) is

the coordinate in physical space that maps to the master coordinate ξj. Note that
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this formulation is isoparametric, that is to say the spatial approximation over the

element matches the approximation of the displacement over the element.

Because of this coordinate transformation, it will be necessary to obtain the

jacobian matrix J for the coordinate transformation between the physical coordinate

system xi and the master coordinate system ξi. The jacobian is defined by the

equation

J =
∂xi
∂ξj

(3.48)

The derivatives which form the Jacobian can be calculated using the basis functions

and nodal coordinates from Eq. 3.47 through

∂xi
∂ξj

=
n∑

A=1

x
(A)
i

∂ψ(A)

∂ξj
(3.49)

The transformation of a differential volume dV in the physical element domain Ωe

to the master element domain Ω̂e is accomplished through the use of the Jacobian’s

determinant as follows

dV = dx1dx2dx3 = |J | dξ1dξ2dξ3 (3.50)

It can be noted from Eq. (3.33) and Eq. (3.37) that the calculation of the element

stiffness matrix requires evaluating the partial derivatives of the basis functions with

respect to the physical coordinate system over the volume of the element. This

presents a difficulty due to the fact that the basis functions are defined in terms of

the element’s master coordinate system. Through the chain rule, the derivatives of

the basis functions in the physical coordinates system can be expressed in terms of

the derivatives in the master coordinate system.

∂ψ(A)

∂xi
=
∂ξj
∂xi

∂ψ(A)

∂ξj
(3.51)
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Unfortunately, it is not generally possible to develop a closed form expression for

∂ξj
∂xi

, the partial derivatives of the master coordinates with respect to the physical

coordinates. However, this relationship can be obtained by inverting the jacobian

matrix to obtain J−1.

∂ξj
∂xi

=

(
∂xi
∂ξj

)−1

(3.52)

Note that for the inversion of the Jacobian to be possible, its determinant must not

be zero at any point in the element.

III.A.4.c. Numerical Integration

With a method for obtaining the derivatives of the basis functions with respect to

physical coordinates, it is now possible to perform the stiffness matrix integration of

Eq. (3.37) over the master domain using Gaussian Quadrature. Gaussian quadrature

is based on the principle that the following relationship is exact for polynomials f (η)

of degree 2n − 1 or less, provided an appropriate selection of points ηi and weights

wi. ∫ 1

−1

f (η) dx ≈
n∑
i=1

wif (ηi) (3.53)

The selection of points ηi and weights wi is conducted using Legendre polynomials

Pn (η). These polynomials are given by the following equation

Pn (η) =
1

2nn!

dn

dηn
((
η2 − 1

)n)
(3.54)

To start, Pn (η) is normalized to give Pn (1) = 1. Point ηi is the ith root of Pn (η).

The weight is given by the following relation.

wi =
2

(1− η2i ) (P
′
n (ηi))

2 (3.55)
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Table III.2: Points ηi and weights wi for various orders of Gaussian quadrature

n ηi wi

1 0 2

2 ±
√

1/3 1

3
0 8

9

±
√

3/5 5
9

4
±
√(

3− 2
√

6/5
)
/7 18+

√
30

36

±
√(

3 + 2
√
6/5
)
/7 18−

√
30

36

Table III.2 gives the points and weights for a number for different quadrature schemes.

Integration over three dimensions is simply the result of multiple one dimensional

integrations, where the points are simply tensor-products of the one dimensional

formulation. The integral of Eq. (3.37) is transformed to the master domain for

evaluation, resulting in

K =

∫
Ωe

(
BTCB

)
dV

=

∫
Ω̂e

(
BTCB

)
dV

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
BTCB

)
|J | dξ1 dξ2 dξ3

(3.56)

where Ω̂e is the master domain of the element and |J | is the determinant of the

Jacobian matrix. One final step remains to permit the integration of the element

stiffness matrix. The strain-displacement matrix B of Eq. (3.33) contains the spatial
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derivative of the basis functions ψ(A) with respect to the physical coordinates, but

the basis functions are defined in terms of the master coordinates. Therefore, the

elements of B must undergo the following transformation outlined in Eq. (3.51),

that is

∂ψ(A)

∂xi
= J−1

ij

∂ψ(A)

∂ξj
(3.57)

where ξi is the master coordinate system.

Finally , the element force vector is calculated by transforming the integration

of Eq. (3.40) to the master domain as follows

fAi
=

∫
Γe

(
Tk
∂uk
∂qAi

)
dΓe +

∫
Ωe

(
ρbk

∂uk
∂qAi

)
dΩe

=

∫
Γ̂e

(
Tk
∂uk
∂qAi

)
|J |dΓ̂e +

∫
Ω̂e

(
ρbk

∂uk
∂qAi

)
|J |dΩ̂e

(3.58)

The element stiffness matrices and force vectors for all elements of the model are

then combined through the process of assembly into a global system which is solved

for nodal displacements using any number of schemes for solving symmetric-positive-

definite linear systems.

III.A.5. Post-processing

Once nodal displacements are determined, the displacement at any location in

an element can be calculated from the nodal displacements for that element via the

Galerkin approximation by

ui =
n∑

A=1

u
(A)
i ψ(A) (3.59)

These displacements can now be used to calculate strain by the relationship specified

in Eq. (3.34). It ends up that the error reaches a minimum at the points used for

Gaussian quadrature, so strain is calculated at these locations. Once strain has
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been calculated at a point, the stress at that point can be determined using the

constitutive relationship of Eq. (3.10). These quadrature point stresses are used to

examine failure criteria at the quadrature points. For plotting field data which is

calculated at quadrature points, the field values are extrapolated to the nodes of the

element. Then, nodal averages are taken between adjacent elements with the same

material. Discontinuities are generally permitted across material interfaces, meaning

that nodes on interfaces generally possess one value of the field variable for each

material type with a boundary at that node. These nodal averaged field values are

then used to generate a contour plot visualizing the field.

III.B. 3D Interfacial Element Formulation

The following sections describe the formulation of the interfacial element. The

formulation is split into three parts. The first outlines the procedure for determining

the orientation of the interface. The second describes the development of the element

stiffness matrix. The third describes the procedure for performing integration over

the element’s domain.

III.B.1. Determination of Interfacial Orientation

An interfacial element is an element with zero thickness initially that interpolates

a jump in the solution field. In the current studies, this is the displacement field.

Since this field has direction, it will be necessary to distinguish between the normal

and tangential components of the displacement jump across the interface. This

requires the determination of unit vectors which are normal and tangential to the
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interface, illustrated in Fig. III.2. This determination is complicated by the lower

dimensionality of the interfacial element (2D) as compared to the solution space

of the finite element problem (3D) in the sense that the local element directions

expressed in the global coordinates cannot be simply found by inverting the jacobian

matrix for the element. Instead, the following procedure is used.

Figure III.2: Interfacial element.

The two local element coordinate directions, expressed in the three global co-

ordinate directions, can be expressed in the manner of Eq. 3.60, where xi are the

global coordinates and ξ and η are the the local element coordinates.

vξi =
∂xi
∂ξ

vηi =
∂xi
∂η

(3.60)

The derivatives of the global coordinates with respect to the local element coordinates

at a point on the element can be determined from the interpolation functions using
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Eq. 3.61, where ψ(A) is the shape function for node A andXAi
is the global coordinate

of node A (summation over A is implied).

∂xi
∂ξ

≈ XAi

∂ψ(A)

∂ξ
(3.61)

While vξi and v
η
i are not generally orthogonal to one another, they will not be parallel

unless the element is ill-shaped. They both possess the quality of being tangential

to the interface. Therefore, the local unit normal vector to the interface is obtained

from the cross-product of these tangential vectors as given in Eq. 3.62.

v̂n =
vξ × vη

∥vξ × vη∥
(3.62)

Unit vectors which are mutually orthogonal and tangential to the interface are deter-

mined from the local ξ direction and a vector which is orthogonal to both the local

ξ direction and v̂n as shown in Eqs. 3.63 and 3.64.

v̂t1 =
vξ

∥vξ∥
(3.63)

v̂t2 = v̂n × v̂t1 (3.64)

The three unit vectors v̂n, v̂t1 , and v̂t2 form the direction cosine matrix given in

Eq. 3.65. This direction cosine matrix will transform the displacement jump vector

(as well as tractions) expressed in the global coordinate system so that they are

expressed in an interface-aligned frame, with the first component being normal to

the interface and the second and third components being tangential.

Qij =


v̂n1 v̂n2 v̂n3

v̂t11 v̂t12 v̂t13

v̂t21 v̂t22 v̂t23

 (3.65)
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III.B.2. Calculation of the Element Stiffness Matrix

The calculation of the element stiffness matrix for interfacial elements is anal-

ogous in many ways to the process of defining the stiffness matrix for a fully 3D

element. First, a “B” matrix is developed which transforms nodal displacements into

values at points in the element that are compatible with the constitutive law. For

interfacial elements, this is a traction-separation relationship, and so nodal displace-

ments must be transformed into opening displacements resolved into the interfacial

coordinate system. the “B” matrix for an interfacial element is therefore defined

according to Eq. 3.66.

B̄iAj
= Qijψ̄A (3.66)

The value ψ̄A is a shape function defined especially for interfacial elements depending

on what face of the element the node is on (see Fig. III.2) according to Eq. 3.67.

ψ̄A =

 ψA A ∈ Γ+
d

−ψA A ∈ Γ−
d

(3.67)

The element stiffness matrix is subsequently defined in terms of the interfacial stiff-

ness as in Eq. 3.68, where Dmn relates the interfacial opening displacement to the

traction.

KAiBj
=

∫
Γd

B̄mAi
DmnB̄nBj

dA (3.68)

III.B.3. Numerical Integration

The integration for the stiffness matrix is one dimension less than the domain

of the finite element model. This means that the traditional approach for numerical

integration of using the determinant of the jacobian to perform the integration in
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the element domain is not applicable to cohesive elements. Instead, the following

approach is used. A differential area on an element in the model space is obtained

by taking the cross-product of two differential vectors aligned with the element co-

ordinates given in Eq. 3.69.

dA =
∥∥dS1 × dS2

∥∥ (3.69)

The variables dS1 and dS2 are aligned with the element’s ξ and η coordinates, re-

spectively, and are both expressed in the global coordinate system. In a similar

fashion to equation 3.60, these can be expressed in terms of partial derivatives of the

global coordinates with respect to the local coordinates. Thus, equation 3.69 can

be expressed as Eq. 3.70, using the permutation tensor ϵijk to represent the cross

product.

dA =

∥∥∥∥ϵijk ∂xi∂ξ
dξ
∂xj
∂η

dη

∥∥∥∥ (3.70)

Expanding Eq. 3.70 yields the following differential area to be substituted in for the

differential area in the integral of Eq. 3.68.

dA =



√√√√√√√√√√√√√

(
∂x2
∂ξ

∂x3
∂η

− ∂x3
∂ξ

∂x2
∂η

)2

+(
∂x3
∂ξ

∂x1
∂η

− ∂x1
∂ξ

∂x3
∂η

)2

+(
∂x1
∂ξ

∂x2
∂η

− ∂x2
∂ξ

∂x1
∂η

)2


dξ dη (3.71)

The partial derivatives in Eq. 3.71 can be evaluated using the element shape functions

and nodal coordinates with Eq. 3.61. The integration of Eq. 3.68 can then be simply

performed in the local element coordinates using an appropriate quadrature scheme.

In the current work, the interfacial elements are integrated using a Newton-Cotes

quadrature rule based on the recommendation of Turon et al. [135].
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III.C. Cohesive Zone Formulation

The following sections describe the cohesive zone formulation used to govern

opening of interfacial elements, as well as investigations that were made into the

behavior of the cohesive zone model.

III.C.1. Adaptation of Turon’s Cohesive Zone Model

The current work utilizes an adaptation of the cohesive zone formulation of

Turon et al. [20]. Turon’s formulation is for mixed-mode opening in three dimensions.

It makes no distinction between modes II and III, and is based on a bilinear traction-

separation law. Irreversibility is ensured through the use of a damage scalar d that

increases monotonically from zero to one. This constitutive law relates the traction

across the interface, τ , to the displacement jump across the interface ∆. For a given

value of the damage scalar, the traction and displacement jump are related by Eq.

3.72. 
τn

τt1

τt2


= (1− d)K


∆n

∆t1

∆t2


− dK


M (−∆n)

0

0


(3.72)

When no damage exists, the penalty stiffness K defines the traction-separation re-

lationship. This parameter needs to be set high enough that no discernible opening

occurs before the interface starts to degrade. In cases where the normal opening

is negative (representing crack closure) crack closure is resisted through the use of

the MacAulay operator M (•) which returns zero if an input value is negative. This
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operator is defined in Eq. 3.73.

M (x) =
1

2
(x+ |x|) (3.73)

The evolution of the damage parameter is related to the maximum effective opening

that the cohesive element has experienced. The effective opening λ is defined in Eq.

3.74

λ =

√
(M (∆n))

2 + (∆s)
2 (3.74)

∆s is the magnitude of the opening that is tangential to the interface, defined in Eq.

3.75.

∆s =

√
(∆t1)

2 + (∆t2)
2 (3.75)

For opening displacements that are between the opening at which damage initiates

(∆0), and the opening at which the interface has completely failed (∆f ), the damage

parameter is determined from the the monotonically increasing Eq. 3.76.

d (λ) =
∆f (λ−∆0)

λ (∆f −∆0)
(3.76)

The damage parameter must be always increasing, so if Eq. 3.76 yields a value that is

less than the current value of d at a given point of the cohesive surface (which could

occur due to crack closure or a change in mode mix), then the larger value of d is

used to calculate the traction. For effective openings less than the minimum opening

for damage (λ < ∆0), the damage parameter is zero (unless the damage parameter

previously had a value greater than zero). For effective openings in excess of the

final effective opening (λ > ∆f ), the damage parameter is 1.0 (i.e. the interface is

completely failed). The resulting traction-separation relationship assumes a bi-linear

form shown in Fig. III.3.
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Figure III.3: Traction separation curve.

All that remains of the formulation is the determination of ∆0 and ∆f . These

values depend on the material properties and the current mode ratio β for the opening

displacement. The mode ratio is defined by Eq. 3.77.

β =
∆s

∆s +M (∆n)
(3.77)

The critical strain energy release rate under mixed-mode loading according to Turon

is given by Eq. 3.78

Gc = GIc + (GIIc −GIc)

(
Gs

GT

)η
(3.78)

GIc and GIIc are the critical strain energy release rates under pure mode I and mode

II opening, respectively. η is a material parameter that is used to fit data from

mixed-mode fracture testing. GT is the total strain energy release rate, and Gs is

the strain energy release rate associated with only mode II and mode III opening, as
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shown in Eq. 3.79

GT = GI +Gs

= GI +GII +GIII

(3.79)

It will be convenient to define the ratio between the shear strain energy release rate

and the total strain energy release rate as B, defined in Eq. 3.80.

B =
Gs

GT

(3.80)

For a given mode mix, the area under the force-displacement curve is equal to the

critical strain energy release rate for that mode mix, as given by Eq. 3.81

Gc =
1

2
K∆0∆f (3.81)

Combining Eqs. 3.81 and 3.78 gives an expression for the final crack opening ∆f for

a given mode mix, given in Eq. 3.82.

∆f =
∆0
n∆

f
n +

(
∆0
s∆

f
s −∆0

n∆
f
n

)
Bη

∆0
(3.82)

∆0
n and ∆f

n are the initial and final crack openings associated with pure mode I

loading, and ∆0
s and ∆f

s are for pure mode II or III loading. The final opening

displacements can be found using Eq. 3.83. The initial opening displacements are

determined from K and the critical traction using based on the traction-separation

curve (Fig. III.3).

∆f
n =

2GIc

K∆0
n

∆f
s =

2GIIc

K∆0
s

(3.83)

For a given mixed-mode ratio β, the normal and shear energy release rates are given
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by the Eq. 3.84.

GI =
1

2
K
(
∆0
n (β)∆

f
n (β)−∆n∆

f
n (β)

)
Gs =

1

2
K
(
∆0
s (β)∆

f
s (β)−∆s∆

f
s (β)

) (3.84)

∆0
n (β) and ∆0

s (β) are the normal and shear displacement jumps, respectively, cor-

responding to decohesion onset for the given mixed-mode ratio β. Similarly, ∆f
n (β)

and ∆f
s (β) correspond to displacement jumps at complete decohesion. From Eq.

3.77, the relations of Eq. 3.85.

∆s = ∆n
β

1− β

∆0
s (β) = ∆0

n (β)
β

1− β

∆f
s (β) = ∆f

n (β)
β

1− β

(3.85)

Combining Eqs. 3.79, 3.84, and 3.85 permits the ratio of strain energy release B to

be expressed in terms of β as given in Eq. 3.86.

B =
Gs

GT

=
β2

1 + 2β2 − 2β
(3.86)

Next, the critical effective traction τ 0 (and consequently, the critical effective crack

opening ∆0) for a given mode mix must be determined. The critical effective traction

is determined using the quadratic criterion of Eq. 3.87

(
τ 0
)2

= (τn)
2 + (τt1)

2 + (τt2)
2

=
(
τ 0n
)2

+
((
τ 0s
)2 − (τ 0n)2)Bη

(3.87)

τ 0n and τ 0s are the critical tractions under pure mode I or mode II/III opening, re-

spectively. The critical effective crack opening is therefore given by Eq. 3.88.

∆0 =
√

(∆0
n)

2 +
(
(∆0

s)
2 − (∆0

n)
2)Bη (3.88)
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The critical opening displacement under single-mode loading is given by Eq. 3.89.

∆0
n =

τ 0n
K

∆0
s =

τ 0s
K

(3.89)

III.C.1.a. Cohesive Stiffness

For the purpose of determining the formation of the tangent modulus, indicial

notation will be used. The 1 component will correspond to the direction normal to

the fracture plane, and 2 and 3 will correspond to the tangential directions. The

secant equation for calculating traction can be expressed as in Eq. 3.90.

τi = Dij∆j (3.90)

The secant modulus Dij is defined in Eq. 3.91.

Dij = δijK

[
1− d

(
1 + δ1j

⟨−∆j⟩
∆j

)]
(3.91)

Differentiation of Eq. 3.90 with respect to the opening displacement yields the tan-

gent stiffness relationship given in Eq. 3.92. This is useful when calculating the

incremental displacement for Newton-Raphson iterations.

τ̇i = Dtan
ij ∆̇j

Dtan
ij =



{
Dij −K

(
1 + δ1j

⟨−∆j⟩
∆j

)(
1 + δi1

⟨−∆i⟩
∆i

)
∆f∆0

∆f −∆0

1

λ3
∆i∆j

}
,

r < λ < ∆f

Dij, r > λ or ∆f < λ

(3.92)

r is the effective opening displacement that when exceeded will result in additional

damage according to Eq. 3.76.
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III.C.2. Study of Cohesive Zone Behavior

The behavior of the cohesive zones were examined in several different contexts.

The observed behaviors, and the adjustments that were made to the cohesive zone

formulation due to the observed behaviors, are detailed in the following sections.

III.C.2.a. Double-Cantilevered Beam

The cohesive zone behavior was validated through the use of a model of a double

cantilevered beam undergoing mode I opening, shown in Fig. III.4. The model was

implemented in a Newton-Raphson type nonlinear finite element analysis. The model

was found to exhibit good convergence behavior provided that the active cohesive

process zone (i.e. the part of the cohesive zone in front of the crack tip which is

undergoing partial opening) was adequately refined, meaning that the active zone

was resolved by at least two elements. In Fig. III.4, the refinement is considerably

greater than this. In cases where the mesh refinement was reduced, it was possible to

obtain good convergence behavior by reducing the maximum traction for the cohesive

zone as recommended by Turon et al. [135]. This resulted in an increase in the size

of the active cohesive zone, resulting in its being adequately resolved by meshes with

lower refinements.

While this approach works well for problems involving crack propagation, it in-

troduces problems for the prediction of crack nucleation. Reducing the maximum

traction reduces the stress at at which cracks will be predicted to nucleate. Since

crack nucleation in composites exhibits a high sensitivity to stress, this approach

will not be appropriate for predicting the initiation of failure in composites. There-
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fore, a modification was made to the overall analysis executive. Instead of utilizing

Newton-Raphson along with the tangent modulus to predict the increment in the

solution, an alternative progressive failure approach was taken. The solution for the

current loading and damage state was obtained using a full linear solve. The tractions

in the cohesive elements were checked to determine if they exceeded the traction-

separation curve shown in Fig. III.3. If the curve was exceeded, then the cohesive

damage parameter at that location was increased. This “solve-check tractions-apply

degradation” process was repeated iteratively for a given loading until no new degra-

dation occurred, at which point the solution was considered to have converged for

that loading.

One difficulty associated with this approach is that the degradation at a given

location tends to approach its final value asymptotically. Therefore, determining

the final degradation state in the model for a given loading requires a very large

number of iterations. This difficulty is addressed by limiting the total number of

possible values for the damage parameter to 500. Because the damage parameter’s

relationship to the effective opening is nonlinear (Eq. 3.76), the these 500 values are

associated with 500 effective opening displacements equally spaced between ∆0 and

∆f (rather than 500 values of d equally spaced between 0 and 1).

The force-displacement behavior associated with crack opening for several differ-

ent refinements (given as number of elements along the length x number of elements

though half of the thickness) for both the Newton-Raphson approach and the al-

ternative progressive failure approach are shown in Fig. III.5. In addition to this

comparison between the force-displacement behavior, the strain energy release rates
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Figure III.4: Double cantilevered beam modeled using cohesive elements, with detail

of cohesive process zone under opening.
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Figure III.5: Comparison of force-displacement for various refinements of double-

cantilevered beam.

for crack growth in both models are in good agreement with the critical strain energy

release rate input to the model as a parameter of the cohesive zones. One concern

associated with specifying a finite number of values for the damage parameter is that

this may reduce the strain energy associated with crack opening (since a cohesive

element will not exactly follow the softening path given in Fig. III.3). However, this

investigation into the behavior indicated that 500 different values are sufficient to

prevent a reduction in the strain energy released under cohesive opening. Further

study indicated that decreasing the number of possible values for the damage param-

eter (to 100 or less) did result in a reduction of the energy released by crack opening

(as well as a modification in the force-displacement behavior).
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III.C.2.b. Progressive Damage of a [0/90]s Tape Laminate

The next configuration which was examined was a [0◦/90◦]s laminate under uni-

axial loading along the 0◦ direction. The expected behavior for this configuration is

the occurrence of brittle matrix cracking in the 90◦ ply, with an increasing number

of cracks as the load progressively increases. New crack development should favor

regions that are far away from existing cracks, since the development of ply cracks

will unload the ply in the regions immediately adjacent to the crack. This configu-

ration is modeled by placing cohesive zone elements on the interface between plies

to permit delamination and within the 90◦ ply to permit ply cracking. Cohesive

elements were inserted between every other column of continuum elements in the

ply. Each “column” of cohesive elements was assigned a maximum strength value

from a Weibull distribution to promote localization of failure. This analysis utilized

the progressive-failure type of model described previously.

The first configuration that was examined utilized cohesive parameters that had

been determined from a double-cantilevered beam test of the composite which are

given in [20]. The resulting response for crack opening is shown in Fig. III.6. As

shown, this configuration resulted in partial opening of many of the cohesive zones

in the 90◦ ply. The expected localization of failure was not obtained. The reason

for this is that as the cohesive zones opened, the traction across them decreased

more quickly than the maximum traction that they were able to support. As the

cohesive zones open, they unload the surrounding material, reducing the stresses

and tractions acting across the zones. However, cohesive opening also results in a

reduction of the maximum traction that the cohesive zone can support, which is
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Figure III.6: Crack opening in cross-ply laminate with GIc from DCB data.

apparent in the traction-opening relationship shown in Fig. III.3. Since the traction

across the zones decreases faster than the traction that they are able to support,

they reach an equilibrium state at partial opening.

This gradual opening was not deemed to be particularly realistic. It has been

widely observed (and will be further shown in later sections about the micromechan-

ical failure behavior of composites) that matrix cracking in composites tends to be

brittle in nature, which is quite different than the ductile opening shown in Fig. III.6.

As discussed, this ductile behavior is the result of the value of the softening slope

in the traction-separation relationship for the cohesive zone in the context of the

current model configuration. This slope is primarily determined by two parameters -

the maximum traction (which determines the height of the triangle for the traction-

separation relation) and the critical strain energy release rate for the cohesive zone

(which determines the area beneath the triangle). The maximum traction is not a

good candidate for modification, since crack opening in the 90◦ ply is going to be

largely driven by the stress in the ply. This leaves reduction of the critical strain

energy release rate as the most appropriate way to increase the rate at which the

cohesive zone’s strength decreases as it opens. The value of GIc which was applied to
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the composite was obtained from a double-cantilevered beam test in which the crack

grew along the fiber direction. Investigations into crack growth, for instance, those

by Czabaj and Ratcliffe [136], have shown that for cracks running along the fiber

direction, delamination and intra-ply cracking have similar critical fracture energies.

However, in the current configuration, although the crack crack plane has a similar

orientation in relation to the fiber direction (running along the fiber direction), the

crack is growing in a direction perpendicular to the fibers. Therefore, it is entirely

possible that the energy associated with crack opening will be completely different

for this case than for the double cantilevered beam case. As a result of this, the

value of GIc was reduced by an order of magnitude, and the analysis was re-run.

The resulting behavior as loading increases is shown in Fig. III.7

As shown in the figure, matrix cracks in the 90◦ ply showed a strong tendency

to localize and open completely. This resulted in a complete unloading of the sur-

rounding material in the 90◦ ply. As loading increased, additional cracks developed

in regions far away from existing cracks, leading to a progressive increase in crack

density. This behavior is in very good agreement with observed behavior for cross-

ply laminates. For this reason, in cases where cohesive zones are used to account

for the opening of matrix cracks in tows of textiles, values of GIc will be employed

which result in brittle behavior.

One concern associated with the use of a much lower value of GIc than GIIc

is that for the given values of η used in Eq. 3.78, the power law that defines the

mixed-mode critical strain energy release rate, the mode I component of the critical

strain energy release rate under mixed-mode loading can exceed GIc. As a result,
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Figure III.7: Crack opening in cross-ply laminate with reduced GIc.
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a different mixed mode critical strain energy criterion will be assumed for cohesive

zone models where GIIc is much larger than GIc. This criterion is given in Eq. 3.93.

GI

GIc

+
Gs

GIIc

= 1 (3.93)

This results in several changes to the cohesive zone formulation. From Eq. 3.80, the

Gc for a given ratio can be defined by Eq. 3.94.

Gc =
GIc

1 +B
(
GIc

GIIc
− 1
) (3.94)

This causes Eq. 3.82 to be modified to Eq. 3.95.

∆f =
∆0
n∆

f
n

∆0
(
1 +B

(
∆0

n∆
f
n

∆0
s∆

f
s
− 1
)) (3.95)

Eq. 3.87 then becomes Eq. 3.96.

(
τ 0
)2

=
(τ 0n)

2

1 +B
(

(τ0n)
2

(τ0s )
2 − 1

) (3.96)

Additionally, Eq. 3.88 becomes Eq. 3.97.

∆0 =

√√√√ (∆0
n)

2

1 +B
(

(∆0
n)

2

(∆0
s)

2 − 1
) (3.97)

These modification ensure that under no circumstance does the mode I component of

the critical strain energy release rate under mixed-mode opening exceed the critical

strain energy release rate under pure mode I loading.
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CHAPTER IV

FIBER-MATRIX MICROSCALE MODEL

Developing composite models at the scale of discrete fibers and matrix allows a

variety of investigations to be performed. One of the simplest is the determination of

effective properties of the homogenized fibers and matrix (i.e. lamina or tow proper-

ties). Related to this is the determination of fiber properties that cannot be directly

measured. Graphite fibers are generally thought to be transversely isotropic, but

their small transverse dimension means that the accurate measurement of any elas-

tic modulus other than the longitudinal Young’s modulus Ef
1 is extremely difficult.

A micromechanics model allows these moduli to be estimated from unidirectional

lamina properties through the use of inverse methods.

Once the elastic properties for the constituents are determined, the microme-

chanics model can be utilized to model a variety of behaviors at the fiber-matrix

level. One of these is the determination of thermally-induced stresses which result

from cooling after cure. These stresses can interact with the stresses that result

from mechanical loading to alter the apparent strength of composite tows or lamina.

This effect can be modeled by incorporating the thermally-induced stresses into a

progressive failure analysis of the fiber-matrix.

One important feature of the fiber-matrix scale is the random positioning of

fibers in the plane transverse to the fiber direction. This randomness leads to a

large number of fibers that are in very close proximity to one another. Strong stress

concentrations can arise in the matrix regions between these adjacent fibers, both

79



under thermal and mechanical load. Since failure is an extreme-driven process, these

stress concentrations can potentially have a major impact on the larger-scale failure

behavior of a lamina or tow.

The following sections describe the development of a random fiber-matrix model,

its application to the determination of fiber properties, and various aspects of its use

in predicting the failure behavior of unidirectional composite material under thermal

loading combined with longitudinal shear and normal transverse mechanical loads.

IV.A. Random Model Generation

An algorithm was developed to generate microstructures which possess the fol-

lowing salient characteristics:

� Randomly positioned fibers

� Fibers in very close proximity (touching)

� Periodic microstructure

Several different approaches to generating random fiber matrices have been used

previously. One of these approaches used in a number of studies into composite

microstructures [137–140] begins by randomly selecting a location in the RVE and

placing a fiber with its center at that location. Then, another location is selected at

random for the next fiber from the remaining region of the RVE that will not cause

spatial interference with the first fiber. Another random location is then selected for

the next fiber from the region that will not interfere with either previously placed

fiber. The process is repeated until the desired volume fraction is obtained. One
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major issue with this approach is that it results in RVEs that have an unrealistic

amount of spacing between adjacent fibers. An additional problem that can be

encountered is that of “jamming,” discussed at length by Widom [141] for spheres in

three dimensions. Essentially, this approach is unable to reach high volume fractions

due to the fact that although there will be a large volume of empty space in the

RVE, the fiber spacing will be such that there are no regions available which are able

to accommodate an additional fiber.

As a result of these shortcomings, several other approaches have been developed

for generating random fiber RVEs. One of these, referred to as the “random inclusion

displacement” approach by Brennan and Walrath [62], is attributable to Metropolis

et al. [142] and is used in a number of different studies on composite microstructures

[77, 143–145]. In this approach, fibers are initially placed in a structured grid, such

as a hexagonal array. They are then subjected to small random perturbations in

their locations such that they do not overlap adjacent fibers. Because this approach

can start with hexagonal packing, it is capable of reaching the theoretical maximum

volume fraction associated with close-packing of circles (90.7%).

In reality, arrangement of the fibers is the result of manufacturing processes

which apply loads to the uncured lamina or textile. This suggests that a contact

analysis approach, such as the one utilized by Mollenhauer et al. [70], is perhaps the

most appropriate means for developing a realistic fiber-matrix microstructure. This

approach yields a microstructure with adjacent fibers that are essentially in direct

contact with one another and can result in reasonably high volume fractions without

relying on an assumption of a particular initial configuration as in the aforementioned
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“random inclusion method”.

While the approach utilized in the current study, given in Fig. IV.1, is not

a classical contact analysis per se, it includes a pseudo-relaxation iterative step to

resolve interference between overlapping fibers that closely mimics the relaxation

procedure that would be used in a contact analysis. One very important detail to

note in the provided algorithm is in the steps when overlapping fibers are moved

away from one another. Each fiber is moved by one-half the total overlap distance

plus 1/1000th the average fiber diameter. This small additional distance is required

for the algorithm to converge. A smaller (non-zero) distance could be chosen with

the consequence of increasing the number of iterations required for the algorithm to

converge to a geometry with no overlap.

An additional feature of the fiber-matrix microstructural RVE used in the cur-

rent work is that it is periodic. When a fiber is cut by the boundary, it continues

on the opposite boundary of the RVE. This allows periodic unit cell analyses to be

utilized. This eliminates difficulties associated with the application of uniform trac-

tion or displacement boundary conditions for finite RVEs, which lead to inaccuracies

in the solution near the boundary. Periodic boundary conditions have been used in

several previous studies into random fiber-matrix microstructures [71,77,143,146].

The geometry definition process is implemented efficiently in a Python module

that utilizes a k-d tree implementation [147] from the SciPy package to quickly

perform neighbor searches, allowing the algorithm to scale up to tens or hundreds

of thousands of fibers (Fig. IV.2) on a single workstation (although meshing and

solving a mechanics analysis for such a large geometry is currently intractable). The
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Figure IV.1: RVE generation process.
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module makes use of a fiber class that contains information about the fiber location

and neighbor fibers, as well as methods to move fibers and determine if one fiber

overlaps another. So-called “phantom fibers” are used to account for the periodic

positioning of fibers to maintain periodicity of the geometry. The module can be

found in its entirety in Appendix A.

Meshing is accomplished using a custom meshing utility written in C++. This

tool defines boundary node locations on the fibers and RVE boundaries and utilizes

Johnathan Shewchuk’s Delaunay meshing library “Triangle” [148] to generate a mesh

of 6-node quadratic triangles. Triangle does not generate elements with curved sides,

so after the mesh is generated, a post-processing step is performed to position all

fiber-matrix interface nodes on the actual geometry of the interface. Although the

mesh generator is capable of generating touching fibers (i.e. fibers that share a node),

all RVEs in this work leave an extremely thin strip of matrix between adjacent fibers,

shown in the detail of Fig. IV.3. This allows for damage paths to develop between

fibers in the failure analyses which are described in subsequent sections.

The resulting geometry is modeled in a two-dimensional domain by assuming

that the displacement field is quasi3D. This assumption, described by Pipes and

Pagano [149], is that the displacement field has the form of Eq. 4.1.

u1 = ε11x1 + U (x2, x3)

u2 = V (x2, x3)

u3 = W (x2, x3)

(4.1)

This assumption is completely valid for the fiber-matrix configuration. Therefore, the

reduction in dimensionality greatly reduces the complexity of the numerical problem
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Figure IV.2: 10,000 fiber RVE, generated in 150 seconds.
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Figure IV.3: Example mesh with detail of inter-fiber region.

without introducing any additional error to the analysis.

IV.B. Constituent Property Determination

The use of a micromechanics model to analyze composites depends upon knowl-

edge of the properties of each constituent. Determining these properties for carbon

fibers presents a number of challenges. It is possible to directly measure a fiber’s

longitudinal modulus Ef
1 , but measuring the other engineering properties presents

difficulty due to the fact that typical carbon fibers have diameters on the order of

5-10µm. Therefore, it is not generally tractable to directly measure the other trans-

versely isotropic engineering properties Gf
12, G

f
23, E

f
2 , and ν

f
12.

Since these properties cannot be measured, but the transversely isotropic prop-
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erties of a unidirectional lamina can (although GL
23/ν

L
23 still presents some difficulty),

it is possible to inversely estimate fiber properties using an appropriate micromechan-

ics model. In a review of the literature, it was interesting to note that even recent

investigations into composite behavior using random microstructural models largely

used fiber properties which had been determined using micromechanics models that

did not include randomness. While these studies investigated the effect of random-

ness on the effective properties of the lamina (either elastic, thermomechanical, or

strength), they did not re-examine the problem of fiber property determination us-

ing a random microstructure. Therefore, the current random microstructural model

was utilized to perform an investigation into fiber property determination. The ini-

tial results of this investigation are reported in a proceedings paper by Ballard et

al. [150].

This section outlines the approach used to predict the properties of IM7 fibers,

as well as the results of the fiber property investigation. The material system inves-

tigated in this work consists of IM7 fibers and 8552 epoxy matrix. The properties of

unidirectional IM7/8552 composite and neat 8552 matrix used to inversely determine

the fiber properties are from Huang et al. [151]. They are given in table IV.1. Su-

perscripts on material properties in this section represent the constituent that they

characterize. Fiber properties are denoted by f , matrix by m, and unidirectional

lamina properties by L. Based on the axial stiffness for IM7 fibers provided by the

manufacturer [152] as 276 GPa, the Vf of the lamina (which is not provided in [151])

was estimated to be 59.1%. This was determined using rule of mixtures, which is

widely regarded to be a very accurate approach for predicting axial properties of
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Table IV.1: Unidirectional IM7/8552 lamina and neat 8552 properties from litera-

ture.

Property Value
EL

1 165 GPa
EL

2 11.38 GPa
GL

12 5.120 GPa
νL12 0.30
νL23 0.487
Em 4.67 GPa
νm 0.35

unidirectional lamina.

As previously mentioned, the procedure for determining the fiber properties

involves the solution of an inverse problem. This is because the fiber properties, which

are unknown, are inputs to the micromechanics model, and the lamina properties,

which are known, are the outputs. For finite element based micromechanics models,

it is not possible to invert this input-output relationship. The problem is solved

by iteratively identifying fiber properties which cause the model to yield lamina

properties that match the expected values. Both the lamina and fiber are assumed

to be transversely isotropic, meaning that each have five independent engineering

constants. For convenience, these are expressed as vectors given in Eq. 4.2.

ΓL =
[
EL

1 , E
L
2 , G

L
12, G

L
23, ν

L
12

]
Γf =

[
Ef

1 , E
f
2 , G

f
12, G

f
23, ν

f
12

] (4.2)

The micromechanics model serves as a function which operates in the manner given

in Eq. 4.3.

ΓL = f
(
Γf
)

(4.3)
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In the case an analytical model such as Mori-Tanaka, this function assumes an an-

alytical form, and in that case may be invertible as was done by Rupnowski et

al. [153–155]. For a hexagonal unit cell, this function represents the effective, or

volume-averaged response of a single finite element model. For the random RVE,

this function represents the mean effective response of 50 different realizations of

the random microstructure. Each realization in this study contains 100 fibers. It

was found that RVEs with 100 fibers are more than large enough to ensure that the

RVE size doesn’t influence the mean effective response of the realizations. Further

increases of the RVE size do have the effect of decreasing the variance in the distri-

bution of effective responses for a collection of realizations, but since this study is

only concerned with the mean effective elastic response, 50 realizations of 100-fiber

RVEs were found to be more than adequate.

The overall objective is to find a collection of fiber properties such that the

residual of the lamina properties, given in Eq. 4.4, goes to zero within a given

tolerance. This allows the problem of fiber property determination to be cast as a

root-finding problem in 5 dimensions.

ψi = ΓLi − Γ̄Li
∼= 0 (4.4)

The overbar signifies the lamina properties from experiments. Due to the large

differences in the magnitudes of the various moduli, calculations are performed on a

residual vector normalized by the initial fiber guess as shown in Eq. 4.5.

ψ̂i =
ψi

Γf
0

i

=
ΓLi − Γ̄Li

Γf
0

i

(no summation on i) (4.5)
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Similarly, the fiber properties are normalized by the initial fiber guess as in Eq. 4.6.

Γ̂fi =
Γfi

Γf
0

i

(no summation on i) (4.6)

The Newton-Raphson method is used to find the value of the fiber properties that

result in the correct lamina properties. To avoid numerical problems, the Jacobian

matrix, given in Eq. 4.7 is formed using changes in the normalized fiber and lamina

properties.

Jij =
∂ψ̂i

∂Γ̂fj

∼=
∆ψ̂i

∆Γ̂fj
(4.7)

The initial guess for the fiber properties is obtained from the literature for similar

material systems. It is only necessary that each engineering constant in the guess

have a realistic order of magnitude for the purpose of normalization, but more ac-

curate guesses can reduce the number of iterations required for convergence. For

each Newton-Raphson iteration, a new guess for the fiber properties is obtained by

calculating the correction given in Eq. 4.8.

∆Γ̂fi = −

(
∂ψ̂i

∂Γ̂fj

)−1

ψ̂j (4.8)

Iteration on the fiber properties continues until the L2 norm of the normalized resid-

ual decreases to a value of 10−6 or less, at which point the fiber properties have been

determined.

The calculation of the gradient matrix is computationally expensive, requiring

lamina properties to be determined for six different sets of fiber properties. One set

corresponds to the current guess of the fiber properties, while the other five sets of

properties perturb one of the fiber properties by 1% to obtain gradients. Due to

this high cost, the gradient matrix is only recalculated after an iteration results in
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Table IV.2: Transversely isotropic properties for IM7 fibers determined from mi-

cromechanics.

Property Random RVE Pagano et al.

Ef
1 276 GPa 276 GPa

Ef
2 22.4 GPa 27.6 GPa

Gf
12 12.0 GPa 138 GPa

Gf
23 7.53 GPa 7.67 GPa

νf12 0.274 0.3

less than a 50% decrease in the normalized residual. Additionally, it was found that

some iterations would result in unrealistic guesses for the fiber properties. When

this occurred, the problematic property was truncated to a realistic value (positive

values for moduli and values between 0.01 and 1.0 for Poisson ratios).

Following this procedure, fiber properties were determined from the lamina and

matrix properties given in table IV.1. The determined properties are given in table

IV.2 along with values reported by Pagano et al. [156] using a micromechanics ap-

proach outlined by Pagano and Tandon [157] to back out the fiber properties for a

IM7/5250-4 composite system.

One immediately noted difference between the two sets of properties is the very

large (1 order of magnitude) difference between the longitudinal shear moduli Gf
12.

It is believed that this is due to the low stiffness of 5250-4 matrix (Em = 3.45 GPa,

νm =0.35) used in [156] along with the fact that the micromechanics model described

in [157] does not account for the high degree of interaction that will occur between

fibers that have randomness in their transverse locations. In fact, many other mi-

cromechanics models such as Mori-Tanaka will fail to yield a fiber longitudinal shear
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modulus for the material system examined in [156] due to the fact that when in-

teractions between fibers are not adequately accounted for, even rigid fibers do not

have sufficient stiffness to yield an appropriate effective shear modulus. This study is

therefore an excellent example of the importance of having a realistic microstructural

model when determining fiber properties based on lamina properties.

IV.C. Elastic Behavior and Investigation of Stresses

This section describes findings that were made regarding the microstructural

stress field in the composite due to thermomechanical loading, with an emphasis on

the effects of the random microstructure and how the microstructural stresses arising

due to various combinations of mechanical and thermal loads may influence failure

of the composite.

IV.C.1. Failure Criterion for Neat Matrix

Failure in the matrix of the microstructure is predicted to occur according to

Christensen’s criterion for isotropic materials [25]. This multi-part criterion is given

in Eqs. 4.9 and 4.10.

σkk

(
1

T
− 1

C

)
+
σ2
VM

CT
= 1 (4.9)

σI = T if T ≤ C

2
(4.10)

T and C are the tensile and compressive strengths of the material under uniaxial

loading, respectively. σkk is the trace of the stress tensor, σVM is the scalar Von

Mises stress, and σI is the largest tensile principle stress. The second part of the

criterion, given by Eq. 4.10, is only applicable when the included relationship between
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T and C is satisfied. Christensen bills this criterion as being applicable to a variety

of isotropic materials which undergo both ductile and brittle failure. Raghava et

al. [60] put forward a criterion equivalent to Eq. 4.9 for predicting yield of polymers,

which was used by Ha et al. [59] to predict the failure of hexagonal fiber-matrix unit

cells. For the compressive and tensile matrix strengths utilized in the current study,

the inequality of 4.10 is not satisfied, leading to a failure criterion which is equivalent

to that Raghava et al.

In addition to predicting when brittle or ductile failure begins, Christensen’s

criterion also provides a means to ascertain whether a stress which causes failure will

result in brittle or ductile behavior. When Eq. 4.10 predicts that failure occurs, the

failure will be brittle. The criterion of Eq. 4.9, however, predicts both brittle and

ductile failure. The nature of the failure can be ascertained from the magnitude of

the hydrostatic stress according to Eq. 4.11.

σkk
3

< T − C

3
Ductile

σkk
3

> T − C

3
Brittle

(4.11)

Christensen notes that the ductile/brittle delineation of Eq. 4.11 should not be

thought of as a hard boundary - the transition from ductile to brittle failure will

tend to be more gradual for states of stress which are close to the boundary defined

by the inequality.

For the investigations of this section, matrix strength values of T = 128 MPa and

C = 204 MPa will be utilized. These values were found to be the matrix strengths

that yielded the appropriate overall lamina strength. The process of determining

these values is described in much greater detail in section IV.F.
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The following subsections describe the stresses that arise in the composite mi-

crostructure under various loadings. Particular attention will be paid to phenomena

that depend upon a random microstructure with fibers that are in close proximity.

Except where specifically noted, the investigations are performed on a single 100-

fiber realization of the random periodic unit cell with Vf =55.6%. The goal of these

investigations is to develop a qualitative understanding of how the microstructure

and close proximity of fibers can effect the development of failure in the composite

under thermomechanical loads.

IV.C.2. Micromechanical Stresses Under Thermal Loading

Polymer matrix carbon fiber composite fabrication typically includes a cure

process that occurs at high temperature. This process facilitates cross-linking and

solidification of the polymer matrix once it has infused the carbon fibers. Once cure is

completed, the composite is allowed to cool. Because the solidification of the polymer

occurs at an elevated temperature, the cooling process results in the development

of thermal strains in the fibers and matrix. The thermal expansion coefficients of

fibers and matrix differ considerably, which leads to the development of stresses. The

transversely isotropic thermal expansion coefficients for IM7 fibers were investigated

experimentally by Kulkarni and Ochoa [158] and are used in the current analyses.

The thermal expansion coefficient of the 8552 matrix is a manufacturer value given

in [159]. These values are listed in table IV.3.

The after-cure temperature drop of -160 ◦C used by Hallett et al. [11] for

IM7/8552 laminates is adopted in the current study. This temperature change was
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Table IV.3: Constituent thermal expansion coefficients.

Property Value

αf1 −4.0× 10−7 (◦C−1)

αf2 6.94× 10−6 (◦C−1)
αm 4.335× 10−5 (◦C−1)

applied uniformly across the RVE. The volume average strains of the RVE were left

unconstrained, but the RVE was constrained to deform in a periodic manner through

the use of multi-point constraints. This simulates the application of a temperature

change to an unconstrained specimen (the volume average stress is zero). The re-

sulting hydrostatic stress contours are shown in Fig. IV.4, and the Von Mises stress

contours in the matrix are shown in Fig. IV.5.

It is observed that the matrix region is predominantly under hydrostatic tension,

while the fibers are under hydrostatic compression. However, careful examination

of the matrix regions between adjacent fibers shows local zones of compressive hy-

drostatic stress. The hydrostatic stress goes compressive in these regions because of

compressive radial stresses around the fibers. Because the matrix is in effect “squeez-

ing” the fiber, the radial component of the matrix stress in the vicinity of the fiber

must be compressive, while the hoop and longitudinal components are tensile. When

two fibers come into close proximity, this radial compressive stress between them be-

comes much larger in magnitude than the other tensile stress components, leading to

a hydrostatic stress which is compressive in nature. The Von Mises stress in the ma-

trix goes to a maximum in the inter-fiber regions. Examining the failure criterion of

Eq. 4.9 shows that for the current values of T and C, compressive hydrostatic stresses
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have a deletory effect on Christensen’s failure index, increasing the Von Mises stress

required to cause failure. For the current model, the value of Christensen’s failure

criterion given by the left-hand side of Eq. 4.9 (referred to as the Christensen factor),

has lower values in the inter-fiber regions and higher values in matrix pockets which

are located in fiber clusters but away from the zones where fibers get extremely close

to one another, as seen in Fig. IV.6. One other important fact to note from Fig. IV.6

is that for this microstructure, Christensen’s criterion does not predict failure at any

location in the matrix for the thermally-induced stresses associated with cooling after

cure. This is only applicable to unconstrained composite materials. The deformation

of tows and plies in larger-scale laminated or textile structures are often constrained

by adjacent tows and plies with different orientations. These constraints result in

thermally induced stresses at the scale of textiles and laminates which are, in effect,

mechanically-induced stresses at the fiber-matrix scale (i.e. stresses with a non-zero

volume average) which act in addition to the thermally induced stresses arising from

the thermal expansion coefficient mismatch between the fibers and matrix.

Unlike the regions between fibers in very close proximity, the hydrostatic stress

does not go compressive in matrix regions between fibers that are separated by a

moderate distance. To examine the effect of fiber spacing, another RVE was gener-

ated, but additional space was artificially introduced between the fibers by initially

specifying a higher volume fraction and fiber diameter for the geometry generation

step of the RVE creation process, and then reducing the fiber diameters to recover

Vf =55.6% before performing the meshing step. The resulting mesh, along with the

hydrostatic stress contours, is shown in Fig. IV.7. Although the magnitude of the
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hydrostatic stress in the matrix is reduced in the interfiber regions, it is tensile ev-

erywhere for this RVE. This is because when fibers are not in close proximity to one

another, the tensile hoop and longitudinal stresses in the matrix will be larger than

the radial compressive stress component. The fibers in this microstructure are not

in close enough proximity to cause the radial compressive stress around the fibers to

grow large enough to make the overall hydrostatic stress compressive. This suggests

that if these regions end up being important to the development of failure, then

microstructures without proper interfiber spacing are unlikely to accurately capture

the effect that thermally-induced stresses have on the failure of the fiber matrix.

One other interesting characteristic of the stress-state which was noted was

that the longitudinal microstructural shear stresses σ12 and σ13 were identically zero

everywhere in the microstructure, indicating that the irregular spacing between fibers

does not lead to the development of this type of local stress under thermal loads.

IV.C.3. Micromechanical Stresses Under Transverse Normal Loading

Transverse normal loading is the first type of mechanical loading that is exam-

ined. Under this loading, the y-direction normal volume averaged stress component

is prescribed to be 50 MPa, with all other components set equal to zero. This load-

ing corresponds to normal x2 or x3 loading applied to a unidirectional composite

with fibers running in the x1 direction. 50 MPa is chosen due to the fact that it

is slightly below the transverse normal strength of a unidirectional lamina at room

temperature. The resulting hydrostatic stresses are given in Fig. IV.8.

It is immediately noted that the hydrostatic stress in the matrix experiences
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strong tensile concentrations in the regions immediately between fibers which are in

close proximity and predominantly aligned in the x2 direction. These concentrations

go to a maximum in the regions where fibers are closest to one another. It has been

suggested by Asp et al. [56] that these hydrostatic stresses play the predominant role

in the failure of composites under transverse normal loading. For the RVE with arti-

ficially spaced fibers, the hydrostatic stress distribution had the same characteristics,

but with lower stress concentrations.

The Von Mises stresses in the matrix, shown in Fig. IV.9, experience local

maximums in locations between fibers that are aligned with planes oriented ±45◦ to

the applied load direction (in this case, x2), as these are regions of high shear stress

in the model. The combination of the hydrostatic and Von Mises stresses yields

values for Christensen’s criterion which are contoured in Fig. IV.10. The locations

for the maximum values of Christensen’s failure criterion generally correlate better

with the locations of the maximum hydrostatic stresses than the Von Mises stresses,

indicating that the hydrostatic stress plays a greater role in the critical stress states

that exist at the microscale under normal transverse loads (a result which agrees

with that of Asp et al.).

IV.C.4. Micromechanical Stresses Under Longitudinal Shear

The second mechanical loading which is examined is longitudinal shear stress. A

volume-averaged shear stress of 40 MPa was applied in the 1-2 plane. This stress was

chosen due to the fact that although the ultimate strength of the composite under this

loading is around 90 MPa, nonlinear behavior begins at much lower shear stresses.
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Just as normal and thermal loadings yielded zero longitudinal shear (σ12, σ13) stress

components in the microstructure, longitudinal shear loading yields zero normal

(σ11, σ22, σ33) or transverse shear (σ23) stress components in the microstructure.

Therefore, the hydrostatic stress is identically zero everywhere. The Von Mises

stress contours are shown in Fig. IV.11. These stresses experience very strong

and highly localized concentrations (more so than microscale stresses under thermal

or transverse normal loading) in regions between adjacent fibers. This stress state

leads to ductile failure of the matrix according to Christensen’s criterion (Eq. 4.11).

These stress concentrations are more pronounced in fibers which are aligned in the x2

direction, and there is greater variation in the maximum stresses between fibers than

under normal or thermal loading. Also, it was noted that artificially introducing

space between the fibers resulted in a very large decrease in the maximum Von Mises

stress that existed in the matrix.

IV.C.5. Interaction of Thermally and Mechanically Induced Stresses

One of the major points of interest in the current study is how thermally in-

duced stresses in the microstructure interact with stresses from mechanical loading

to change the mechanical load at which failure occurs. An examination of stress

contours for various combinations of mechanical and thermal loads revealed that in

all cases, the most critical stress states occur in the regions between adjacent fibers.

To examine the interactions in this region in a more systematic manner, a two-fiber

RVE model, shown in Fig. IV.12 was developed in which the fiber spacing was var-

ied. The Christensen factor will be plotted along a line running between the two

106



3.03E+08

2.78E+08

2.53E+08

2.29E+08

2.04E+08

1.79E+08

1.54E+08

1.29E+08

1.05E+08

7.99E+07

5.51E+07

3.03E+07

5.53E+06

Figure IV.11: Von Mises stress in matrix for longitudinal shear load of 40 MPa

(contours are in Pa).

107



Plotting Path

Figure IV.12: Two fiber model.

fibers.

The Christensen factor between two fibers under a normal transverse load of

50 MPa is shown for two different fiber spacings and a variety of temperatures (rel-

ative to the stress-free cure temperature) in Fig. IV.13. It is immediately apparent

for close fiber spacing (Fig. IV.13a) that the temperature drop following cure has

the effect of reducing the severity of the stress in the region where the fibers come

closest together. This effect is due to the compressive hydrostatic stresses which

develop in the matrix between fibers under pure thermal loading. Under combined

loading, these compressive stresses offset the tensile hydrostatic stresses that arise

due to mechanical loading. This finding suggests thermally induced stresses from

cooling after cure are likely to increase the strength of the composite.

The inter-fiber Christensen factor was also examined for a two-fiber model with

more space between fibers, given in Fig. IV.13b. This configuration yields very

different behavior than was observed for fibers with very little spacing. When space

is introduced between fibers, temperature decrease results in a monotonic increase
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Figure IV.13: Christensen factor along line between fibers under nominal 50 MPa

transverse normal load ⟨σ22⟩ for two fiber spacings at various temperatures.

in the Christensen factor at every location between the fibers. This is likely to result

in a completely different relationship between thermal loads and the overall fiber-

matrix strength than what is predicted for microstructures in which fibers come very

close to one another.

The Christensen factors resulting from interaction between thermally induced

stresses and stresses from a longitudinal shear stress of ⟨σ12⟩ =40 MPa is shown in

Fig. IV.14. For both spacings, the maximum Christensen’s factor always occurs

at the location where the fibers are closest to one another. The maximum factor

is more severe when the fibers are closer to one another, indicating that nonlinear

behavior will occur in the matrix earlier for microstructures with less space between

fibers. The maximum value for the Christensen factor shows very little dependence

on temperature when the fibers are close to one another, suggesting that the overall
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Figure IV.14: Christensen factor along line between fibers under nominal 40 MPa

longitudinal shear load ⟨σ12⟩ for two fiber spacings at various temperatures.

fiber-matrix shear strength for this microstructure may not exhibit a strong depen-

dence on the temperature. The maximum Christensen factor for the model with

greater fiber spacing shows a much larger dependence on temperature, indicating

that microstructures with different inter-fiber spacing are likely to result in differ-

ent predictions when determining the dependence of the overall fiber-matrix shear

strength on temperature.

IV.D. Failure Model

This section describes the progressive failure model that is used to predict the

non-linear failure response of the fiber-matrix RVE. This model is centered around

prediction of failure in the matrix regions of the composite. The model assumes

perfect bonding between the fibers and matrix. The calculation of failure in the
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matrix and the subsequent application of material degradation to failed locations

is performed at the quadrature points of the matrix elements. The following sec-

tions describe the progressive failure executive, the two different damage laws that

are examined, and the approach for determining an apparent tow strength from an

ensemble of fiber-matrix realizations.

IV.D.1. Progressive Failure Executive

A flowchart of the general progressive failure executive is given in Fig. IV.15. An

analysis proceeds by incrementally increasing the load and then performing damage

iterations on that load. At the beginning of each damage iteration, the equilibrium

solution is obtained for the current damage state. For each quadrature point which

is subject to being damaged, the stress state is examined and the damage state at

that location is updated if new failure occurs. If the damage state increases at any

location in the model (such that the equilibrium solution would change), then a

new damage iteration begins. If no new damage is determined to occur, then the

damage state has converged. In that case, the load is increased and damage iterations

begin for the new load. This process is repeated until the maximum specified load

is reached or some other stopping criteria (e.g. a large drop in strain energy from

damage iterations) is met.

IV.D.2. Damage Laws

Two different damage laws were examined for the fiber-matrix model. A damage-

law defines how material properties are modified in the presence of a stress which

111



Load Factor LF=0

Calculate solution 

for current LF and 

failure state

Increased 

damage in any 

element?

Determine ΔLF

LF > 1.0 Done

True

False

False

True

Calculate strain and 

stress at quadpoint j 

of element i

Update failure state 

at quad point j 

(internal state 

variable)

Determine if updated 

failure state causes 

increased damage / 

degradation

LF = LF+ΔLF

Figure IV.15: Flowchart of damage executive.
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exceeds the failure criterion for the material. Both damage laws center around the

modification of a damage parameter d for the quad point. This parameter has an ini-

tial value of 0.0 and monotonically increases to 1.0 as a quadrature point experiences

failure. The stiffness of each quadrature point is scaled by the value (1.0− d).

IV.D.2.a. Stiffness Deletion

The first damage law examined is referred to as the stiffness deletion damage law.

In this damage law, whenever failure is predicted to occur according to Christensen’s

criterion (Eq. 4.9), the value of d is set to 1.0 − 10−6. This effectively reduces the

stiffness of the quadrature point by a factor of 106. The stiffness is not set to zero

in ordered to avoid numerical difficulties.

This damage law was found to result in brittle behavior of the composite under

both transverse tension (Fig. IV.16) and longitudinal shear (Fig. IV.17). While brit-

tle behavior is expected under transverse tensile loading, longitudinal shear loading

of unidirectional composites normally results in lots of nonlinearity in the effective

stress-strain response. Additionally, this damage law resulted in failure of the com-

posite at very low volume average longitudinal shear stresses for realistic values of

matrix strength. This suggests that under shear loading, the sudden local stiffness

loss that occurs in the regions of large Von Mises stress between fibers (see Fig. IV.11)

tends to cause unstable damage growth throughout the fiber-matrix. This unrealistic

behavior under shear loading casts doubt on the applicability of this damage law to

the current problem.
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Figure IV.16: Stress-strain behavior under transverse tension using stiffness deletion

damage law.
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Figure IV.17: Stress-strain behavior under longitudinal shear using stiffness deletion

damage law.
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IV.D.2.b. Brittle/Ductile

The second damage law is referred to as the brittle/ductile damage law. In this

damage law, the increase in d that occurs when failure is predicted by Eq. 4.9 depends

upon Christensen’s ductile/brittle criterion given in Eq. 4.11. When brittle failure is

predicted to occur, d is set to 1.0−10−6, just as in the stiffness deletion damage law.

However, when ductile failure is predicted, d is increased by a value of 10−3. This

has the effect of gradually reducing the stiffness of material that undergoes ductile

failure, which it is hoped will more accurately represent the gradual redistribution

of loads that occurs around regions that fail in a ductile manner. The disadvantage

of this second damage law is that it requires considerably more damage iterations to

reach a converged damage state due to the fact that the d only increases by a small

amount at each iteration. This results in longer run-times for progressive failure

models using this damage law. However, as seen in Figs. IV.18 and IV.19, while

this damage law results in brittle behavior under transverse tension, it predicts the

type of nonlinear behavior under longitudinal shear that is expected for a composite

material. It also leads to a more realistic maximum volume-averaged shear stress for

realistic values of matrix strength. This indicates that gradually degrading regions

that fail due to strongly deviatoric stresses under shear prevents the unstable damage

growth that was observed for the stiffness deletion damage law.

Further investigations indicated that ultimately, the nature of damage growth

in the fiber-matrix model depends primarily on the way that degradation is applied

rather than the applied loading. An additional brief study was performed in which

the stiffness of the matrix was decreased gradually for all matrix failures (brittle or
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Figure IV.18: Stress-strain behavior under transverse tension using brittle/ductile

damage law.
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Figure IV.19: Stress-strain behavior under longitudinal shear using brittle/ductile

damage law.
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ductile). This resulted in transverse normal loading leading to an overall ductile

response rather than a brittle one. In short, gradual degradation tends to result in

self-arresting failures that yield gradual nonlinear behavior, while complete deletion

of the stiffness of a failed element results in unstable growth of the damage and overall

brittle behavior. In essence, the “brittle/ductile” damage law correctly predicts

the nonlinear response of the composite for longitudinal shear loading because this

type of load leads to ductile failure locally and thus gradual degradation. Similarly,

transverse tension leads to local brittle failure, and thus complete deletion of the

local stiffness, leading to unstable damage growth and brittle behavior overall.

IV.D.3. Typical Progressive Failure Behaviors

The fiber-matrix model experiences distinctly different behaviors under trans-

verse normal loading and longitudinal shear loading when using the ductile-brittle

damage law. This section describes typical behaviors observed for the two different

loadings.

The failure evolution under transverse normal loading is shown in Fig. IV.20,

the initial failure that occurs in the fiber-matrix is ductile failure due to σ23 between

adjacent fibers which are positioned with centers on a line that makes a roughly 45◦

angle with the applied load. These ductile failures are self-arresting, tend to occur

over extremely small regions, and have a nearly imperceptible effect on the overall

stress-strain response of the fiber-matrix unit cell. As the load continues to increase,

a brittle failure occurs at a single location between two fibers which are in close

proximity and have centers that are aligned with the load direction. Typically, this
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brittle failure will proceed to grow in an unstable manner (even for displacement-

controlled loading) and propagate into a localized band of damage which completely

severs the load path through the unit cell. Therefore, the overall failure behavior

under transverse normal loading tends to be brittle and highly dependent on the

initial occurrence of brittle failure at a single location in the unit cell. Furthermore,

failure tends to evolve into a highly localized feature running through the unit cell,

indicating the development of a discrete crack through the composite.

The failure evolution under longitudinal shear loading, shown in Fig. IV.21, rep-

resents a significantly different behavior. At very low loadings, ductile failure begins

to occur in multiple locations between adjacent fibers whose centers are aligned with

the plane in which the shear load is applied. As the load is increased, the regions of

damaged matrix gradually increase in size, and the severity of the damage in each

region gradually increases. This process results in a gradual reduction of the over-

all stiffness of the fiber-matrix unit cell, leading to nonlinear stress-strain behavior

which is typically seen in longitudinal shear tests of unidirectional composites. As

the load is increased further, this diffuse damage continues to increase in magnitude

until it finally begins to coalesce into a larger-scale damage feature that crosses the

unit cell. The development of this feature, which indicates the formation of a dis-

crete crack, tends to correspond to the unit cell reaching its maximum effective shear

stress. Therefore, the overall failure behavior under longitudinal shear tends to be

ductile, with stiffness reduction starting at a fairly low load. The damage is initially

very diffuse throughout the unit cell, and finally starts to coalesce into a larger-scale

fracture as the effective stress reaches its maximum level.
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Figure IV.20: Damage scalar evolution under transverse tension.
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Figure IV.21: Damage scalar evolution under longitudinal shear.
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IV.D.4. Tow Strength Determination from Realization Ensemble

Due to the randomness that exists in the fiber-matrix microstructure, an ensem-

ble of fiber-matrix realizations are run for each configuration that is examined. In

most cases, this ensemble consists of a little over 200 different realizations. The pre-

viously described progressive failure executive is performed for each realization. For

each realization, the volume-averaged stresses and strains are tracked as the model

undergoes failure. These volume-averaged stresses and strains correspond to the

stress and strain that would be observed from a larger scale where fibers and matrix

are homogenized in a lamina or tow. Therefore, the maximum volume average stress

that is experienced by a realization can be thought of as the strength in some region

of a tow or lamina. By obtaining the strengths from a large number of realizations,

a distribution can be fit which characterizes the likelihood that a given location in a

tow or lamina will have a particular strength. For the current study, the a Weibull

distribution, which has a probability density function given by Eq. 4.12, is fit to the

realization strengths.

f (x) =


k

λ

(x
λ

)k−1

e−(x/λ)k if x ≥ 0

0 if x < 0

(4.12)

The Weibull distribution is fully characterized by the scale parameter k and the

strength parameter λ. This distribution was chosen due to the fact that it has a

lower bound at zero (i.e. it does not admit the possibility of there being a “negative”

strength) and because it is commonly used throughout mechanics to characterize

strength uncertainty.
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IV.E. RVE Size Effects

It was observed in previous sections that failure under transverse tension was

found to be quite sensitive to the occurrence of brittle failure at a single location in the

unit cell. This finding suggests that failure of a given fiber-matrix unit cell realization

will be particularly sensitive to the most critical feature in the microstructure. The

larger a given RVE is, the more likely it is to contain a more critical microstructural

feature. Additionally, the assumption of periodicity means that when damage occurs

at a given location of the unit cell, that same damage exists in every other unit cell.

It is important to ensure that the assumption of periodicity does not unduly influence

the manner in which damage grows, especially in its early stages. This will be the

case if the RVE is large enough so that a damage feature in one unit cell has a

negligible effect on the stress state around the same damage feature in an adjacent

unit cell.

These aspects of the RVE size were examined by running analyses for a variety

of RVE sizes, ranging from just a few fibers up to 400 fibers. Only the behavior

under transverse tension was examined, since this failure tends to be very sensitive

to the first occurrence of brittle failure at any location in the unit cell. The response

under longitudinal shear loading is not sensitive to the first failure, and is the result

of a large number of small damage features distributed throughout the RVE, which

should make this behavior fairly insensitive to RVE size. For each RVE size examined,

about 800 realizations were examined to fully characterize the predicted distribution

of strengths.

As shown in Fig. IV.22, it was found that as the RVE size was increased, the
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width of the strength distribution decreased. There was a fairly rapid drop in the

top-end of the distribution while the lower end of the distribution remained more

consistent. The mode of the distribution, (the most likely value of the strength, or

the value with the highest probability density) also decreased towards the minimum

value. This supports the idea that failure depends on a critical feature, and that it

is more likely that more severe features will exist in larger RVEs. The lower end of

the distribution is determined by the behavior associated with the most critical mi-

crostructure possible, and therefore this lower limit doesn’t experience large changes

as the RVE size is increased since some of the smaller RVE realizations will contain

severe microstructural features which result in lower strength values. However, larger

RVE sizes tend to have more critical features, meaning that the maximum strength

value larger RVEs yield is less than the maximum strength for smaller RVE sizes.

Beyond reinforcing the conclusion that the strength of a unit cell under trans-

verse tension is heavily dependent on the most critical feature that exists in the unit

cell, this study also provides some guidance when it comes to matching the strength

distribution to experimentally obtained data. The next section describes the pro-

cess of inversely determining the in-situ matrix strength that causes the fiber-matrix

model to predict the same strength that is obtained from testing of a unidirectional

composite specimen. This requires comparing a distribution of strengths from many

realizations of the microstructure to a single value from experiments. However, one

may consider a unidirectional composite specimen to be a very, very large RVE.

Therefore, based on the findings of this section, one can make the argument that

the strength obtained from a unidirectional composite can be related to the bottom
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Figure IV.22: Transverse normal strength dependence on RVE size

end of the strength distributions for smaller RVE sizes since the bottom end of the

distribution stays fairly consistent across different RVE sizes, and larger RVEs tend

to yield strengths which are closer to this minimum threshold for the strength.

In addition to examining the resulting strength distributions for different RVE

sizes, the applied stress associated with failure initiation and the subsequent ultimate

strength were examined for the realizations to determine if a correlation existed be-

tween the two values. No meaningful relationship was observed from this investiga-

tion. This result was somewhat expected since it was observed that failure initiation

tended to be related to limited ductile failure between fibers and ultimate failure

tended to be associated with the onset of brittle failure in the composite which grew

in an unstable manner.
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IV.F. Determination of In-Situ Matrix Strength

Once an adequate RVE size has been determined for progressive failure analysis

of the microstructure, the final step in developing a micromechanics model is the de-

termination of the appropriate matrix strength values. These values were determined

in an inverse fashion from experimentally determined lamina strengths due to the

fact that the behavior of the matrix within a composite may change when compared

to the behavior of neat matrix specimens. This is due in large part to the highly con-

strained nature of the stresses in the matrix due to the proximity of the much stiffer

fibers. Additionally, there is a possibility of chemical interaction between the fibers

and matrix which could alter the matrix properties. Therefore, the micromechanics

model will be utilized to determine what values of T and C in the matrix result in

lamina strengths that match experiments. Since the lamina strengths are obtained at

room temperature, a temperature change of ∆T = −160◦ is applied to the composite

to account for the presence of thermally induced stresses and strains from cooling

after cure. This temperature change was also utilized by Hallett et al. [11] to account

for the thermally induced stresses in IM7/8552 laminates. The process for inversely

determining the in-situ strength is outlined in Fig. IV.23. To start the process, the

lamina strength distributions under transverse tension and longitudinal shear are

determined for three different combinations of T and C in the matrix. These are ob-

tained using at least 200 realizations of RVEs containing 100 fibers. Based on these

predictions, the gradients of the 5th percentile of the lamina strength distributions

with respect to the in-situ matrix strengths T and C are estimated by assuming that

the resulting lamina strengths vary linearly with T and C. These gradients are used
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to predict the T and C values which will yield 5th percentile lamina strengths which

match the experimental lamina strengths under transverse tension and longitudinal

shear. The lamina strength distributions for the new guess of T and C are obtained,

and new gradients are calculated using the improved prediction along with the two

best previous predictions of T and C. This process is repeated iteratively until a

T and C value are identified which yield strength distributions with 5th percentile

values that match the experimental strengths within 1%.

The first attempt at determining in-situ matrix strength values was made using

the quadrature point deletion approach to material degradation. As described in

previous sections, in this approach, the stiffness contribution of a quadrature point

is completely deleted when the stress at that quadrature point reaches a level suffi-

cient to cause failure. As was previously described, while this approach yielded the

expected brittle behavior under transverse tension, it also yielded brittle behavior

under longitudinal shear. That behavior is not in agreement with general obser-

vations of composite material behavior. Also, it was noted that the shear stresses

in the fiber-matrix unit cell under longitudinal shear loading tended to give rise to

failure at very low loadings. Since the subsequent behavior was brittle, this initial

failure subsequently led to low strengths in the composite under shear loading. In

ordered to obtain a shear strength that matched the experimentally observed value

for a unidirectional laminate, it was necessary to delay the onset of shear failure by

increasing the compressive strength of the matrix to an unrealistically large value

(about 2.6 GPa) and increasing the tensile strength of the matrix to a fairly large

value of 239 MPa. These large values were completely driven by the shear response
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Figure IV.23: Approach for determining in-situ matrix strength
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of the composite; if only transverse normal loading was considered, there were more

realistic combinations of T and C which yielded the appropriate lamina strength

(although it is not possible to determine a unique combination of T and C using a

single lamina strength).

These results were not deemed to be satisfactory for simulation of failure in

the fiber-matrix. The particularly problematic aspect about them was the fact that

under shear, the onset of failure led to unstable growth of damage in a similar manner

to transverse tension. After some investigation, it appeared that this was likely due

to the fact that the stress state experienced by the matrix under shear would tend

to cause local ductile failure of the matrix rather than a brittle failure. As a result,

it was decided to utilize the ductile-brittle aspect of Christensen’s failure criterion

along with the previously described ductile/brittle damage law. In this way, the

more gradual redistribution of stresses that occurs under ductile failure and plastic

flow could be more closely approximated by gradually degrading material which is

experiencing stresses which cause ductile failure and yielding. While plasticity is not

directly modeled in the sense that there is no accounting for the existence or flow of

plastic strain, the local stress-strain response of the material as it undergoes failure

bears strong similarity to an elastic-plastic response so long as significant unloading

doesn’t occur (which was observed to be the case for these configurations).

When this modification was applied to the fiber-matrix analysis, the behavior

under shear loading completely changed. As described in previous sections, the

brittle/ductile damage law resulted in a brittle response under transverse tension

and a ductile response under longitudinal shear. Since the initiation of shear failure
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no longer resulted in unstable failure of the fiber-matrix unit cell, it was no longer

necessary to artificially increase the matrix strength to delay failure onset. The

appropriate lamina strengths were obtained using matrix strengths of much more

reasonable values - a tensile strength of 128 MPa and a compressive strength of 204

MPa. Although the objective of this investigation is not to match the neat matrix

strength values exactly, it is expected that the in-situ strength should be at least

somewhat similar. These values compare well to the manufacturer listed [160] room-

temperature tensile strength for 8552 epoxy of 121 MPa as well as the tensile and

compressive strengths of 95 MPa and 180 MPa for a somewhat similar Epon 862

neat resin determined in experiments by Littell et al. [161] (neat resin compressive

strengths for 8552 epoxy could not be located in the literature).

IV.G. Thermal Stress Effects

Once the in-situ matrix strengths were determined, it was possible to determine

the effect that thermally induced stresses have on the apparent strength of a tow or

lamina. To accomplish this, the fiber-matrix microstructural realizations were ana-

lyzed for a series of thermal loadings that represented various increases above room

temperature. Weibull distributions were fit to the strength distributions obtained at

each temperature for transverse tensile and longitudinal shear loading. These dis-

tributions, along with the 5th percentile strength from the distribution are listed in

table IV.4. The 5th percentile strengths for transverse tensile load are plotted in Fig.

IV.24. For the random microstructure, it was found that the overall tow strength

under transverse tension tended to decrease as the temperature was increased above
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Table IV.4: Weibull parameters for fiber-matrix strength at various temperatures.

K is the shape parameter and λ is the scale parameter.

Normal Shear
∆T K λ (MPa) 5th % (MPa) K λ (MPa) 5th % (MPa)
-160 23.96 68.38 60.40 134.73 92.52 90.50
-135 25.99 67.80 60.48 143.40 92.97 91.06
-110 24.24 66.41 58.76 102.38 93.24 90.58
-85 24.13 64.17 56.74 135.35 93.70 91.66
-60 22.45 61.17 53.59 111.09 94.01 91.53
-35 21.08 57.47 49.92 140.82 94.50 92.53
-10 17.24 53.61 45.12 141.10 94.82 92.84

room temperature, while the strength under longitudinal shear load was fairly in-

sensitive to temperature. This result is in good agreement with the conclusions

which were drawn from the linear analysis into the microstructural stresses under

thermomechanical loads.

As part of this investigation, a brief side-study was also conducted on a hexago-

nal unit cell. The unit cell orientation associated with the closest fiber spacing in the

load direction, which results in the highest stresses between fibers, was chosen. A

calibration of the in-situ strengths was performed for this configuration by maintain-

ing the T : C ratio determined from the random microstructure and identifying the

strengths that caused the hexagonal unit cell to result in a strength of 60 MPa under

transverse tension at room temperature. Once appropriate matrix strengths were

determined for the hexagonal unit cell, its overall strength under transverse normal

loading was determined for a variety of temperatures. The resulting strengths are

also provided in Fig. IV.24. This investigation demonstrates that the two different
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Figure IV.24: Variation of 5th % transverse normal tensile strength with ∆T from

cure.

microstructures predict significantly different thermal dependence for tow or lamina

strength. The hexagonal unit cell predicts an initial increase in the tow strength

as temperature is increased above room temperature, which is in agreement with

the predictions from the linear investigations for fibers which are not in very close

proximity.

The conclusion drawn from the random microstructure model that thermally in-

duced stress from temperature increases (relative to room temperature) decrease the

tow and lamina strength (or conversely, that thermally induced stresses from cooling

after the curing process tend to strengthen the composite) differs from the conclusions

stated in a number of previous works that examined the effect of thermally-induced

stresses on failure. The overall tendency of a composite’s transverse strength to
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decrease under increasing load has been generally observed, but often times, it has

been supposed that this decrease is purely the result of the thermal dependence of

the constituent properties (e.g. a decrease in the matrix strength with increasing

temperature), and that the thermally induced stresses tend to counter-act this effect

(for instance, this was the conclusion of Miyano et al. [162]). The majority of these

studies, however, did not account for the close proximity of the fibers. As shown by

the investigation into the hexagonal unit cell, microstructures with fibers that have

more spacing tend to predict a different thermal dependence than more realistic

random microstructures. While some recent work has demonstrated that thermally

induced stresses from cooling after cure can counter-act the effect of transverse ten-

sile loads in the context of fiber-matrix debonding (Hojo et al. [84]), to the author’s

knowledge this is the first work to demonstrate that the temperature drop after cure

increases the mechanical load required to cause matrix failure in the composite under

transverse tension.
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CHAPTER V

TEXTILE UNIT-CELL MODEL

In addition to the characterization of damage and failure carried out at the

microstructure, the behavior of the textile was investigated. The following sections

detail the development of the textile-scale model as well as investigations that were

carried out regarding failure initiation behavior and progressive failure behavior.

The final section describes the development of a continuum damage model for textile

materials that can be applied to structural level analyses.

V.A. Textile Unit-cell Model Development

V.A.1. Geometry

The textile unit cell analysis is performed on an idealized textile geometry shown

in Fig. V.1. This geometry has been utilized in a number of investigations into textile

composite behavior by Whitcomb et al. [10, 109–113, 123, 126, 163]. Ultimately, the

geometry of this textile is defined by the waviness ratio WR, defined in Eq. 5.1.

WR =
t

w
(5.1)

This fiber-matrix unit cell consists of tows which have a sinusoidal path as well

as sinusoidal cross-sections with boundaries which follow different phases of equations

of the form given in Eq. 5.2.

z = ± t

4
sin ((2π) (WR)x) (5.2)
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Figure V.1: Dimensions of textile unit cell

This results in a unit cell with no gap between the tows.

V.A.2. Insertion of Cohesive Zones

Due to the tendency of failure in the textile to localize into discrete cracks for a

variety of loadings, most damage in the textile is modeled discretely using interfacial

elements with opening governed by a cohesive zone formulation. Interfacial elements

are inserted along the tows to model matrix cracking within the tows, within the

neat matrix pockets to model fracture within the matrix, on the interfaces between

adjacent tows to model “delamination” between tows, and on the interface between

the tow and neat matrix pockets to model fracture growth along the tow surface.

The development of this model presented several difficulties. The first is the insertion

of cohesive elements into the model. This was accomplished by developing a meshing

utility that inserts cohesive elements between any two adjacent elements that are in

different element groups. Each tow was assigned two different alternating element
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Figure V.2: Element group definition in tows.

groups as shown in Fig. V.2. The matrix was then assigned four different element

groups in a checkerboard type of pattern, as shown in Fig. V.3. Once these element

group assignments were completed, cohesive interface elements were inserted between

the different groups as shown in Fig. V.4. In practice within the script used to

generate the meshes, as well as in the analyses themselves, an “element group” was

defined using a unique material identifier, with multiple material identifiers referring

to the same set of material properties.

The second significant challenge associated with developing models using cohe-

sive zones was the definition of periodic boundary conditions. In the FEA analysis

code, collections of nodes are defined for the prescription of boundary conditions by

defining the geometry of the node collection. For example, the collection of nodes

on the negative x face of the unit cell are defined using the coordinates A, B, and C

given in Fig. V.5, and the collection of nodes on the positive x face are defined using

coordinates A’, B’, and C’. The nodes in each collection are sorted according to their

location relative to the coordinates used to define the collection. This ensures that
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Figure V.3: Element group definition in matrix pockets.

(a) Continuum elements (b) X tow CZs (c) Y tow CZs

(d) Matrix pocket CZs (e) Inter-tow CZs (f) Inter-tow-matrix CZs

Figure V.4: Textile unit cell with cohesive zones (CZs).
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Figure V.5: Planes for x-direction periodic boundary conditions.

the appropriate nodes are constrained to one another using multi-point constraints.

The introduction of cohesive elements to the model presents a problem with this

approach. Because the interfacial elements have zero thickness, there are locations

on the unit cell boundary that contain multiple coincident nodes. This means that

appropriate pairing of nodes cannot be accomplished by sorting the nodes based

on their position relative to a set of coordinates, because the ordering of coincident

nodes will not be well defined using such an approach. This will almost assuredly

lead some pairs of nodes being constrained across interfaces when they should not

be. This problem was addressed by adding functionality to the FEA code to remove

nodes from a collection based on whether or not they are connected to a given element

group. This enabled the creation of multiple node collections for each of the unit-cell

surfaces where for each node collection, there are not any nodes that share the same

coordinate. Node ordering in these collections is well defined, and so multi-point
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constraints can be applied to these collections without fear of tying nodes across

cohesive interfaces.

One other challenge that was encountered was the presence of cohesive elements

running along the unit-cell boundary. This was addressed by shifting the unit-cell

boundaries by one element width in the x and y directions. This shift can be noted

in Fig. V.4 in that the unit cell boundary does not lie on the center of the tows, but

rather is offset one element away from the center. This shift foils the symmetry of

the unit cell which can allows analysis of a reduced domain (as in [113]), but such

reductions are not possible in cases where combined normal and shear loads are being

considered.

V.B. Failure Initiation Prediction

Before undertaking the task of identifying characteristic progressive failures in a

composite material, an investigation was made into failure initiation behavior. The

primary goal of this work was to determine if failure initiation in a composite could

be reduced down to a few characteristic behaviors, even for a broad variety of applied

loadings. This was accomplished by developing a tool which superposed linear stress

solutions and interrogated the stress field to determine where failure initiated in

the textile unit cell. This approach, as well as the findings obtained using it, are

described in the following sections.
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V.B.1. Theory for Predicting Failure Initiation Under Various Loadings

The following sections describe the approaches used to determine the stress state

in the textile for an arbitrary thermomechanical loading, determine where failure

initiates in the textile for a given loading, and group failure initiation behaviors for

a large number of loads into characteristic behaviors.

V.B.1.a. Stress Superposition Method

This study involves examining the stress field in a textile unit cell for thousands

of different stress states. Obtaining this many stress fields directly using finite ele-

ment analysis presents several challenges. The application of mixed normal and shear

loading precludes the use of reduced analysis domains described in [113] (the failure

initiation investigation does not include the use of interfacial elements and shifting

of the unit cell boundaries, and therefore, the geometric symmetries required for a

reduced-domain analysis are preserved in this investigation), and the finite element

analysis for a full textile unit cell would take on the order of a few minutes for each

load case examined. However, this investigation only focuses on failure initiation. By

assuming that the response of the textile is linear up to failure initiation, it becomes

possible to utilize superposition to expedite the process of obtaining a stress field for

a given multiaxial loading. This process is accomplished in the following manner.

Finite elements is utilized to obtain stress field for a single component of loading.

The loads that are considered in the current study include volume average stresses

⟨σij⟩ that correspond to the stress observed at larger scales as well as a uniform

temperature change ∆T . Finite element analysis is used to obtain the stress field
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for an individual loading component with unit magnitude. These stress fields are

denoted as σ
⟨σ̂kl⟩
ij (x, y, z) and σ∆T̂

ij (x, y, z), where the superscript indicates the unit

loading that was applied to obtain the stress field. Because the stress fields corre-

spond to the application of a unit load, the stress field for a particular multiaxial

thermomechanical loading can be obtained through superposition according to 5.3 in

a fraction of the time required for a full finite element analysis of the unit cell under

a the same thermomechanical load state.

σij = ∆Tσ∆T̂
ij +⟨σ11⟩σ⟨σ̂11⟩

ij +⟨σ22⟩σ⟨σ̂22⟩
ij +⟨σ33⟩σ⟨σ̂33⟩

ij +⟨σ23⟩σ⟨σ̂23⟩
ij +⟨σ13⟩σ⟨σ̂13⟩

ij +⟨σ12⟩σ⟨σ̂12⟩
ij

(5.3)

By examining the stress fields for a large number of different combinations of

thermomechanical loading components and predicting the failure initiation behavior

for each, characteristic behaviors can be identified. The approach to accomplishing

this is outlined in the following sections.

V.B.1.b. Determination of Failure Initiation Load

Determining where failure will initiate in the textile for a given applied loading

is in most cases more complicated than simply determining where a failure criterion

goes to a maximum value. This is because, for most criteria, failure does not occur

until the criterion reaches a critical value, which is coupled with the fact that most

failure criteria are nonlinear in terms of stress. Therefore, the problem that must

be solved is that of determining where in the textile the failure criterion will first

reach a critical value as the magnitude of a given proportional load applied to the

textile is increased. A further complication is that for thermomechanical loading, it

140



is likely that one will want to determine failure initiation under a given proportional

mechanical loading for a fixed thermal state.

The following approach is adopted to solve these challenges. First, the failure

criterion is expressed in the manner of Eq. 5.4.

f
(
σcritij , Fα

)
= 0 (5.4)

That is, the criterion f yields zero when a critical stress state σcritij is reached for some

set of material strength parameters Fα. Take for example the Tsai-Wu criterion,

given in Eq. 2.1. Expressing this equation in the form given by Eq. 5.4 yields Eq.

5.5.

Fασ
crit
α + Fαβσ

crit
α σcritβ − 1 = 0 (5.5)

Next, the critical stress is divided into a fixed component σfixedij and a component

that scales with the applied proportional loading σscalableij , given in Eq. 5.6.

σcritij = σfixedij + λcritσscalableij (5.6)

λcrit is the scaling factor that results in a critical stress. Determining the applied

loading that will cause failure at a given location then becomes a matter of solving

Eq. 5.4 for λcrit. In many cases, such as for the Tsai-Wu criterion and any other

criterion that is quadratic in terms of stress, this will require the solution of the

quadratic equation. Typically only the positive root from the equation is of interest,

since the negative root would indicate load reversal. For some other criteria, however,

such as those related to Mohr-Coulomb (i.e. Puck’s criterion) or principle stresses,

it is not tractable to analytically solve for λcrit. Such cases will generally depend on

numerical root-finding algorithms. For multi-part criteria, such as that put forward
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by Puck or Hashin, λcrit must be determined for each part of the criterion, and

the minimum value of λcrit for any part of the criterion determined. The part of

the criterion which yields the minimum value for λcrit indicates which aspect of the

criterion will be exceeded first (i.e. it indicates what mode of failure will occur). The

determination of failure initiation in the entire textile is accomplished by identifying

the minimum value of λcrit at any location in the textile. This global minimum value

represents the scaling that must be applied to the loading to cause failure initiation

in the textile, and the location of this global minimum value of λcrit is the location

of failure initiation.

V.B.1.c. Identification of Characteristic Failure Initiation Behaviors

Two aspects form the basis for reducing all of the failure initiation behaviors

predicted for a given set of loadings down to a collection of a few characteristic

behaviors. The first is failure location, and the second is the nature of the local

failure at that location. If multiple loads result in failure in the same location of the

textile, and the nature of the failure there is the same (e.g. transverse tensile failure

as predicted by Hashin’s criterion), then those loads are said to result in the same

characteristic failure initiation behavior.

Failure prediction in the textile was accomplished by using either the Tsai-Wu

tensor polynomial failure criterion or Hashin’s criterion to predict failure within the

tows, and Christensen’s criterion, described in section IV.C.1, to predict failure in

the pockets of neat matrix. Hashin’s criterion, described in detail in [42], is a multi-

part criterion which predicts one of four modes of failure - longitudinal tension and

142



compression, and transverse tension and compression. The implementation utilized

in the current work predicts longitudinal failure using max-stress criteria of the form

given in Eq. 5.7 (expressed in the form of 5.4).
σcrit11

STL
− 1 = 0 σcrit11 > 0

σcrit11

SCL
− 1 = 0 σcrit11 < 0

(5.7)

STL and SCL are the strengths of the composite under longitudinal tension and com-

pression, respectively. Transverse failure under tension or compression is predicted

using the quadratic criteria given in Eq. 5.8

1

(STT )
2

(
σcrit22 + σcrit33

)2
+

1

(STT )
2

((
σcrit23

)2
+ σcrit22 σ

crit
33

)
+

1

(SLT )
2

((
σcrit12

)2
+
(
σcrit13

)2)− 1 = 0

(
σcrit22 + σcrit33

)
> 0

1

SCT

[(
SCT
2STT

)2

− 1

] (
σcrit22 + σcrit33

)
+

1

4 (STT )
2

(
σcrit22 + σcrit33

)2
+

1

(STT )
2

((
σcrit23

)2
+ σcrit22 σ

crit
33

)
+

1

(SLT )
2

((
σcrit12

)2
+
(
σcrit13

)2)− 1 = 0

(
σcrit22 + σcrit33

)
< 0

(5.8)

STT and SCT are the transverse composite strengths under uniaxial transverse tension

and compression, respectively. STT and SLT are the composite shear strengths in

the plane perpendicular to the fibers and in a plane that is aligned with the fibers,

respectively. These criteria are used to predict the load-scaling to failure at a location
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as well as what mode of failure will occur at that location. When the Tsai-Wu

tensor polynomial criterion is utilized to predict failure, the local failure mode was

ascertained by identifying the stress component at the failure initiation location

which had the greatest value relative to its respective strength.

A broad array of multiaxial loadings were prescribed for the textile unit cell. For

each loading, the location of failure initiation and the mode of failure that occurs

at that location were determined and stored in a database along with the critical

loading value to cause that failure initiation. Once the failure initiation behaviors

for each load were determined, they were processed into “bins”. Each “bin” contains

failure initiation behaviors for different loadings which share similar location and

local failure mode. The following approach was used to process each load case’s

failure initiation behavior in to the bins:

1. Examine each “bin” of characteristic failure behaviors to see if the current

failure initiation behavior can be put into that bin, based on whether both of

the following criteria are true:

� The location of the current failure initiation is within a given proximity

of at least one failure initiation behavior in the bin

� The local mode of failure for this behavior is the same as the mode for

the initiation behaviors in the bin

2. If the current failure initiation behavior can be placed into multiple bins, then

all of the bins it can be placed into are combined and it is placed into the

combined bin
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3. If the current failure initiation behavior cannot be placed into any bin, then it

represents a new characteristic behavior and is placed into a new bin

Once the failure initiation behaviors for all loadings have processed in this manner,

the bins represent the total number of characteristic failure initiation behaviors that

can occur for the textile under the examined loadings.

V.B.2. Characteristic Failure Initiation Locations in Plain Weave Textile Compos-

ites

A study was undertaken into the failure initiation behaviors for several different

textile composite configurations for a broad variety of loadings. The results of this

study were presented in [164] and are summarized in the following subsections.

V.B.2.a. Configurations

This study investigates the response of textiles with waviness ratios of 1/3, 1/6,

and 1/9. The meshes for these investigations are shown in Fig. V.6. 1/16th of the

unit cell is analyzed by exploiting reflective and rotational symmetries as described

in [113]. The material properties utilized for this investigation are outlined in tables

V.1, V.2, and V.3. These values were taken from [151, 160, 165], and are different

properties than were used in other textile analyses due to the fact that work on the

micromechanics model had not been completed at the point that the investigation

into failure initiation in the textile was undertaken.

Load cases to be examined were defined by identifying a broad variety of ratios

of stress components in the following manner. Normal components of stress were per-
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Figure V.6: Textile 1/16th unit cell meshes for failure initiation analysis.

Table V.1: IM7/8552 moduli for failure initiation prediction.

Modulus Value

E11 165 GPa
E22, E33 11.83 GPa
ν12, ν13 0.30
ν23 0.487

G12, G13 5.12 GPa
G23 3.92 GPa

Table V.2: IM7/8552 strengths for failure initiation prediction.

Strength Value

ST11 2600 MPa
SC11 1500 MPa

ST22, S
T
33 60 MPa

SC22, S
C
33 290 MPa

S12, S13 90 MPa
S23 60 MPa
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Table V.3: Neat 8552 properties for failure initiation prediction.

Property Value

E 4.67 GPa
G 1.73 GPa
T 121 MPa
C 135 MPa

mitted to have values from the set
{
0, 1

3
, 2
3
, 1
}
(only tensile values were examined).

Shear components take any value from the set
{
0,±1

3
,±2

3
,±1

}
. All unique permu-

tations of stress ratios are taken from these sets, yielding 21,521 different load cases

to be examined. Failure initiation was determined for each of these load cases, and

the characteristic behaviors were identified using the approach described previously.

One issue that was noted for this lenticular tow cross section was that for some

load cases, there were strong, highly localized stress concentrations (Fig. V.7) that

occurred where all four tow edges come together at a single point (Fig. V.8), a

location that will be referred to as the “tow edge crossover”. This feature is purely a

result of the geometric idealization used to represent the textile, and will not exist in

real world textile composites. It was believed that these stress concentrations would

result in an artificially low prediction of the load magnitude that would cause failure

initiation, and possibly bias the predicted failure initiation locations. Therefore, a

strategy was developed to filter out the influence of these strong but spatially small

stress concentrations. Because the volume of material with elevated stress is small, it

was decided to exclude a small volume of the model around the idealized regions from

consideration when searching for the failure initiation site. Two other features of the
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Figure V.7: Local σ12 under global ⟨σyz⟩ loading, WR = 1
3
.

����

����

Figure V.8: Cutaway for 1/4 of unit cell showing tow edge crossover.
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assumed textile architecture were considered “idealized”. One was the minimum

and maximum z coordinates of the tows. At these locations, due to the assumed

in-phase periodic stacking of the textile, the tow of one mat touches the tow of the

adjacent mat at exactly one point. The other “idealized” feature is the tow edge. It

is assumed to be sharp, when in reality its “sharpness” is limited by the diameter of

the fibers, and more practically by the fact that the tow doesnt generally assume a

perfectly lenticular shape.

After trying several different dimensions, it was determined that excluding the

regions within 0.025w of the tow edge crossover (refer to Fig. V.1 for the textile di-

mensions) and minimum and maximum z coordinates of tows, and the region within

0.0125w of the sharp tow edge appropriately filtered out the effect of any suspect

stress concentration without overly biasing the failure initiation predictions. These

dimensions are adequate to omit the elevated stresses from very small but strong

stress concentrations such as that in Fig. V.7, but are not so large that they signif-

icantly effect the prediction of failure initiation in stress concentrations which exist

over larger dimensions that aren’t purely the result of geometric idealizations in the

textile.

V.B.2.b. Characteristic Locations

Failure initiation was determined for each load case using the Tsai-Wu criterion,

given in Eq. 2.1 for failure in the tows and Christensen’s criterion, given in Eqs.

4.9 for failure in the matrix. The mode of failure in the tow was determined by

identifying the local stress component in the tow at the location of failure initiation
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which had the largest value relative to the corresponding tow strength. No distinct

failure mode was determined for failure initiation in the neat matrix pocket. For

the application of the Tsai-Wu criterion, the biaxial strength term F12 was predicted

using the approach put forward by Tsai and Hahn [33], given in Eq. 5.9.

F12 = −1

2

√
F11F22 (5.9)

The failure initiation locations for lenticular tows are presented in Figs. V.9,

V.10, and V.11. For each waviness ratio, two figures are provided that show the

locations in the textile where failure initiation is predicted for the 21,521 sampled

load cases. Each dot in the plot represents a location where at least one load case

was predicted to result in failure initiation (multiple load cases could be associated

with a single location). It was observed that the locations tend to occur in clusters,

which are denoted with letters. There is also a rotational symmetry to these cluster

locations, so an overbar is utilized to denote clusters that exhibit this symmetry. For

each waviness ratio, two figures are presented. The first shows the failure initiation

locations when the entire model volume is considered, and the second shows the

predicted initiation locations when the previously described problematic regions of

the assumed textile geometry are removed from consideration. Tables V.4, V.5, and

V.6 are provided for each waviness ratio and show how many of the load cases resulted

in failure at a particular location. These tables also indicate which local stress

component caused the local failure (i.e. what the most critical stress component is

at the failure initiation location).

There are several trends that may be observed from the results for all waviness

ratios. The most apparent is that the 21,521 sampled load cases led to failure initia-
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tion in just a few different regions of the textile. This finding supports the idea that

there are a limited number of ways that failure will occur in textile composites even

for a wide variety of loading cases. It was also observed that the number of load cases

that resulted in failure initiation at the tow edge crossover decreased dramatically

when the small region around the node at location A at the tow edge crossover was

removed from consideration. This indicates that the stress concentration that exists

at location A (Fig. V.7) in some cases biased the failure location prediction. How-

ever, removing this region from consideration did not introduce a large number of

additional zones where failure initiation was predicted to occur, indicating that that

the clustering of failure initiation locations in the textile is not simply due to ideal-

izations in the textile geometry, but more generally due to the overall distribution

of stresses that exist in the textile.

One interesting result to note is that for the various waviness ratios, the relative

locations of the sites that favored failure initiation were approximately the same,

although there were a few sites that existed in the WR=1/6 and WR=1/9 which did

not exist in the WR=1/3 case, (for instance, the region labeled E). This supports the

idea that the locations which favor failure initiation in textiles exhibit low sensitivity

to variations in the textile geometry.

V.B.3. Failure Initiation Envelope Under In-Plane Loading

The tools developed for this investigation permit the numerical development

of a failure initiation envelope in stress space. This was undertaken for a textile

with WR = 1
6
containing the material system described in tables V.1, V.1, and V.3.
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Figure V.9: Failure initation locations in WR = 1
3
specimen.

B

B

C

C

D

x
y

z

A

F F

E E

H

(a) Entire Model

B

B

C

C

D

x
y

z

A

F F

E E

HG

GJ

J

(b) Excluding problem geometries

Figure V.10: Failure initation locations in WR = 1
6
specimen.
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Table V.4: Number of load cases resulting in failure at each cluster for WR = 1
3
due

to a particular local stress component (parentheses denote cases in which idealized

geometries are excluded).

Failure Mode
Location σ22 σ33 σ12 σ23 σ13 Matrix

A
6,851 5,894
(638) (1,865)

B
336 1,342 852 464 611

(1,533) (1,933) (2,913) (1,058) (124)

B
339 1,431 940 463 735

(1,598) (2,135) (3,213) (1,056) (115)

C
908 0

(1,498) (4)

C
907 0

(1,493) (4)

D
16
(34)

F
7

(11)

F
5
(7)

G
0 0 0

(17) (156) (312)

G
0 0 0

(16) (155) (302)
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Table V.5: Number of load cases resulting in failure at each cluster for WR = 1
6
due

to a particular local stress component (parentheses denote cases in which idealized

geometries are excluded).

Failure Mode
Location σ22 σ33 σ12 σ23 σ13 Matrix

A
8,922 8,407
(2,394) (4,869)

B
654 644 125 99 3

(2,497) (1,376) (557) (385) (5)

B
693 684 162 99 3

(2,607) (1,461) (634) (387) (10)

C
689

(2,362)

C
695

(2,268)

D
24
(42)

E
0 4 19

(12) (12) (95)

E
0 4 20

(12) (13) (96)

F
7

(16)

F
7

(14)

G
0 0 0
(1) (20) (1)

G
0 0 0
(1) (20) (1)

H
4

(10)

J
0 0 0 0
(1) (4) (4) (5)

J
0 0 0 0
(4) (4) (3) (5)
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Table V.6: Number of load cases resulting in failure at each cluster for WR = 1
9
due

to a particular local stress component (parentheses denote cases in which idealized

geometries are excluded).

Failure Mode
Location σ22 σ33 σ12 σ23 σ13 Matrix

A
10,393 8,034
(4,485) (3,891)

B
938 451 59 30 0

(3,544) (1,215) (301) (162) (2)

B
941 456 59 30 0

(3,625) (1,266) (310) (165) (6)

C
167 0 0

(1,445) (1) (2)

C
166 0

(1,537) (1)

D
26
(50)

E
5 0 0 36

(129) (18) (5) (222)

E
5 0 0 36

(135) (18) (13) (225)

F
7

(14)

F
7

(14)

G
0
(6)

G
0
(6)

H
4

(10)

155



B

B

C

C

D

x
y

z

A

F F

E E

H

(a) Entire Model

B

B

C

C

D

x
y

z

A

F F

E E

H
G

G

(b) Excluding problem geometries

Figure V.11: Failure initation locations in WR = 1
9
specimen.

For the development of the failure initiation surface, Hashin’s criterion (described in

section V.B.1.c) was used for the tows and Christensen’s criterion for the neat matrix

pockets. Since textile composites are typically subjected to in-plane loadings, and

because it is difficult to visualize failure envelopes in more than three dimensions, the

failure envelope for in-plane normal and shear loading was developed. The reduction

in parameter space allows the surface of the failure envelope to be sampled with

much higher resolution than was possible when examining all six components of

loading. Furthermore, for this study, both tensile and compressive normal loadings

were examined.

The load component ratios which were examined were defined in the following

manner, illustrated in Fig. V.12:

1. Determine the failure initiation load associated with each component (both

tension and compression)
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Figure V.12: Load case development for in-plane loading failure envelope.

2. Define a bounding box in stress-space from the failure initiation loads

3. Define a grid on each face of the bounding box such that each grid element has

an aspect ratio close to 1

4. Define the loading ratios to examine from the gridpoints on the box in stress

space.

Once the loading ratios were determined, the failure initiation location, local failure

mode, and globally applied loading at failure initiation was determined for each of

them. The failure initiation behaviors were organized into characteristic behaviors

using the same approach described in previous sections. A surface triangulation of

the failure stresses in stress space was then performed. The color of each triangular

facet was determined from the characteristic failure behavior of the loads representing

each vertex (each characteristic behavior was assigned a unique color). Triangular

facets which connected loading states with different characteristic behaviors were
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colored black. This process was repeated for several different temperatures to see

how the failure initiation envelope changed with different thermal stress states. These

envelopes are shown in Fig. V.13

Several interesting features can be noted from the series of failure envelopes. The

first is that for the most part, each characteristic failure behavior forms a contiguous

sub-region of the failure envelope. This somewhat expected result indicates that

away from “boundaries,” similar load states tend to result in similar characteristic

behaviors. Additionally, there are a limited number of different characteristic behav-

iors present on the envelopes, and these failure modes stay fairly consistent across

various temperatures. As expected, there is some variation in the failure initiation

envelope as the temperature is changed. For instance, as temperature is increased,

there is an initial increase in the load to failure initiation for stress states that consist

of in-plane tension and shear, while there is a decrease in the failure loads for stress

states which consist of biaxial in-plane compression. At ∆T = 25◦ C, there is the

introduction of new characteristic failure modes associated with biaxial tension. As

the temperature increases further, the same noted trends continue. However, the

initiation load for biaxial tension associated with the newly introduced failure modes

exhibit a different temperature dependence, decreasing as the temperature increases.

At ∆T = 50◦ C, new failure modes are noted for loads which are predominantly

shear with moderate biaxial tension. As the temperature continues to increase to

100◦ C, the envelope continues to change shape, and the arrangement of the failure

modes in the envelope continues to undergo moderate changes.
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(a) ∆T = 0◦ C

(b) ∆T = 25◦ C (c) ∆T = 50◦ C

(d) ∆T = 75◦ C (e) ∆T = 100◦ C

Figure V.13: Failure initiation envelopes for in-plane loading of WR = 1
6
at various

temperatures.
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V.B.4. Discussion of Failure Initiation Results

While a detailed study of each failure mode may be warranted for applications

in which failure initiation is a critical issue, such as in composite pressure vessels

(which may leak if small cracks open up in the composite), the particulars of failure

initiation are not a matter of great interest in the current study. The main research

question that the failure initiation investigation was intended to answer is “Does

failure initiation in composites occur in a limited number of characteristic ways for a

broad variety of thermal and mechanical loads?” This investigation strongly indicates

an affirmative answer to this question. While this finding cannot be directly applied

to progressive failure, it indicates that progressive failure may evolve in characteristic

ways for various thermomechanical loadings.

V.C. Progressive Failure of Textile

This section describes the progressive failure model for the textile unit cell and

the progressive failure behaviors that were observed for various thermomechanical

loads.

V.C.1. Elastic Tow Properties

The transversely isotropic tow properties for the progressive failure textile model

were obtained using the random fiber-matrix model assuming a fiber volume fraction

vf (within a tow) of 60%. These properties are given in table V.7.

160



Table V.7: Predicted IM7/8552 properties for vf = 60%, used in tows for progressive

failure of textile.

Modulus Value

E11 167 GPa
E22, E33 11.6 GPa
ν12, ν13 0.30
G12, G13 5.23 GPa
G23 3.87 GPa

V.C.2. Damage Models

Damage within the textile unit cell is accounted for in primarily one of two ways.

Larger-scale discrete failures, such as cracking in the neat matrix pockets and inter-

facial failure between adjacent tows and between tows and the neat matrix pocket,

are accounted for through the use of interfacial elements with opening governed by a

cohesive zone model. Failure of the tows is accounted for in different ways depending

on the nature of the failure. As was noted from the micromechanics model, under

transverse normal loading the fiber-matrix material undergoes brittle behavior with

damage localization into a single band representative of a crack. Therefore, cohesive

elements will be used to account for matrix cracking under transverse normal load.

The strength of these cohesive elements will be determined from a distribution of

strengths obtained using many realizations of the random fiber-matrix microstruc-

ture. Under shear load, however, the fiber matrix unit cell experienced the develop-

ment of a diffuse field of ductile matrix failure in the regions between fibers which

eventually began to coalesce into a single larger damage feature at the maximum

shear stress. These initial damage features under shear, like the fibers themselves,
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are small on the scale of the textile unit cell. Therefore, their homogenized effect

at the textile scale will be accounted for using continuum damage mechanics. The

stress-strain behavior for this continuum damage mechanics model will be defined in

such a manner that the tangential traction across cohesive elements in the tows will

eventually exceed the allowable values, leading to cohesive opening once the shear

stresses in the tows reach the maximum shear stress predicted from the fiber-matrix

analyses. This is used to account for the eventual coalescence of microstructural

damage features into matrix cracks in the tows. The details of these damage models

are described in the following subsections.

V.C.2.a. Continuum Damage Model for Shear Damage in the Tows

This section describes the continuum damage model that is applied to the tows

to account for diffuse shear damage. As was noted in previous sections regarding

progressive failure simulation of the fiber-matrix model, the progression of damage

development under longitudinal shear loading is as follows. Ductile failure initiates

in the matrix between fibers aligned with the loading direction at a low shear stress

level (relative to the maximum shear stress). As longitudinal shear loading is in-

creased, the composite material experiences a gradual increase of this distributed

damage around fibers. This leads to a gradual reduction in the effective stiffness of

the composite. Eventually, the effective stress in the composite reaches a plateau

as additional damage development begins to localize along a single band running

through the microstructure which is roughly perpendicular to the plane of the ap-

plied shear.
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Accounting for the distributed damage in the tows and the subsequent gradual

reduction in the material stiffness will be accomplished through the use of a contin-

uum damage mechanics model. The continuum damage mechanics approach is very

well suited for this type of failure; its original conception by Kachanov [3] is based on

the premise that a reduction in the materials modulus is caused by the formation of

a large number of very small defects in the material, which is the case for the initial

stage of damage development under longitudinal shear. In the current continuum

damage model, the degraded shear moduli Gdam
12 and Gdam

13 at a given location in the

tows are obtained from the original shear moduli using Eq. 5.10.

Gdam
12 = (1− d12)G12

Gdam
13 = (1− d13)G13

(5.10)

d12 and d13 are damage parameters which increase monotonically from zero to a

maximum value of one. Their evolution ensures that under monotonically increasing

load, the the stress-strain relationship for longitudinal shear in the tows follows the

path shown by the dashed line in Fig. V.14, which is based on the shear stress-strain

behavior observed from the fiber-matrix microscale analyses. Unloading follows a

linear path back to the origin. This stress-strain relationship is a piecewise function

with three segments. The first segment, which accounts for linear elastic deformation

is simply linear with no evolution of shear damage.

The intermediate stage, labeled the damaging stage, has a stress-strain relation-

ship following a cubic polynomial σ12 (γ12) given in Eq. 5.11 with coefficient values

that are defined based on the conditions of Eq. 5.12, which ensure value and slope
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Figure V.14: Shear response and damage evolution compared to micromechanics

results.
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continuity of the stress under increasing load.

σ12 (γ12) = Aγ312 +Bγ212 + Cγ12 +D (5.11)

σ12
(
γinit12

)
= G12γ

init
12

σ12 (γ
max
12 ) = Stow12

∂σ12
∂γ12

∣∣∣∣
γinit
12

= G12

∂σ12
∂γ12

∣∣∣∣
γmax
12

= Gloc
12

(5.12)

This stage captures the gradual loss of stiffness in the material as damage grows in

the tows, but before localization of failure starts to occur. A cubic polynomial was

chosen due to the relative ease of calculating the polynomial coefficients as compared

to other nonlinear functions that were considered.

The last stage is the localization stage, which begins once the maximum stress

observed from the micromechanics models has been reached. In this stage, the stress

in the tows continues to gradually increase with shear strain based on a linear tan-

gent modulus Gloc
12 that is some small proportion of the initial shear modulus. This

proportion is an input to the model. This continuing increase in the stress ensures

that as loading increases, the tangential tractions in adjacent cohesive elements will

increase to a level sufficient to cause cohesive opening. It was noted in the microme-

chanics model that once the maximum stress was reached, localization of the damage

began to occur. Continuum damage mechanics is not well suited for accounting for

this localization (see the investigation by Gorbatikh et al. [130] regarding problems

associated with the use of continuum damage to account for the presence of discrete

cracks under shear loading). Therefore, it is desirable that the cohesive zones begin
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Table V.8: Parameters for shear damage model in tows.

Property Value
G12 = G13 5.23 GPa
St12ow 90 MPa
σinit12 20 MPa
γmax12 0.037

Gloc
12 /G12 0.05

to open to account for this localization, since the localization of failure ultimately

represents the formation of a discrete crack running along a tow. The opening of

cohesive elements in and around the tows will prevent the shear stresses in the tow

from becoming unrealistically large. This damage model is applied to both longitu-

dinal shear moduli in the tows, although for in-plane loading, most damage occurs

for the 1-2 component. The parameters used to define the model used in the current

study are provided in table V.8.

V.C.2.b. Cohesive Opening Model for Tows

Discrete crack opening in the tows is accounted for through the use of interfacial

elements inserted along the tow length (Figs. V.4b and V.4c) with opening governed

by a cohesive zone formulation. Two distinct types of discrete crack opening were

noted for the tows based on the micromechanics analysis. The first, associated with

transverse tension, is brittle crack opening resulting from the onset and unstable

growth of brittle failure in the matrix. The second, associated with longitudinal

shear, is the gradual localization of ductile shear damage (which is initially diffusely
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distributed within the microstructure) into a band of failed material. The onset of

both of these behaviors occurs when the stress in the tow reaches some critical value.

As discussed in section III.C.2.b, obtaining brittle behavior in a cross-ply lami-

nate (resulting in transverse normal loading in the 90◦ ply) requires the specification

of a low mode I strain energy release rate to the cohesive zone model. The 90◦ ply

in the cross-ply laminate example is analogous in many ways to a tow running per-

pendicular to a uniaxial load applied to a plain weave composite. Like the cross-ply

laminate, it was noted that the brittle or ductile nature of crack opening was gov-

erned by the strain energy release rate used in the cohesive zone model. Therefore,

a very low strain energy release rate is used for the intra-tow cohesive zone model

under mode I opening to ensure brittle behavior under transverse tensile failure.

The critical strain energy release rate for mode II opening of the cohesive zone

(under longitudinal shear) is set to the same value as that obtained from Mode

II delamination testing of IM7/8552 laminates [20]. Delamination growth between

between two 0◦ plies bears a strong similarity to the the failure of a tow under

longitudinal shear in terms of the stresses at the crack tip/delamination front and

the direction of crack growth.

As discussed in section III.C, the large disparity between the critical strain en-

ergy release rates means that the power-law mixed-mode criterion for crack growth

used by Turon is not appropriate since no fitting parameter exponent η has been

experimentally determined for this configuration and because most values for η de-

termined for other configurations would permit the mode I component of strain

energy under mixed-mode opening to exceed GIc from pure mode I loading. There-
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fore, the critical strain energy release rate under mixed-mode loading will be defined

using the alternative form given in Eq. 3.93, and the formulation will be modified

from that of Turon according in the manner described in section III.C.2.b.

The final aspect of the cohesive zone to be defined is the maximum traction.

Typically, these values would be obtained from experiments on unidirectional lam-

inates under transverse normal and shear load. However, it can be expected that

within a tow, this cohesive strength will be subject to variability because of the ran-

domness which exists in the smaller-scale microstructure. Also, as was demonstrated

in the micromechanics analysis, this strength exhibits temperature dependence due

to the thermally-induced stresses which exist in the fiber-matrix microstructure, par-

ticularly for failure under transverse normal loading. The strength variability and

temperature dependence from the fiber-matrix scale analysis are incorporated into

the textile-scale analysis by specifying a different strength at each quadrature point

in the intra-tow cohesive elements at the textile scale. These strengths are specified

at the beginning of the progressive failure analysis and stay constant throughout the

analysis. Each strength value is obtained at random using a Weibull distribution that

is characterized by fitting the strengths from progressive failure analyses performed

on hundreds of fiber-matrix microstructural realizations at the same temperature as

the tow.

The cohesive zone properties that are applied to the intra-tow cohesive zones

are given in table V.9. The Weibull distribution parameters for the cohesive strength

under transverse tension and shear loading for various temperatures were reported

with the fiber-matrix analysis results in table IV.4. An investigation was performed
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Table V.9: Intra-tow cohesive zone properties

Property Value
K 1017 N/m
GIc 20.94 N/m
GIIc 1047 N/m

into the effect of using a variable strength value rather than a uniform strength value

in the textile by examining the evolution of tow cracking under uniaxial loading when

using a uniform strength (which represented the 5th percentile strength from the dis-

tribution) as well as four different seedings of the random strength. In all cases for

a given temperature, the different seedings of random strength values all provided

extremely similar predictions for the overall evolution of tow cracking, although the

particular locations of cohesive zone opening varied somewhat. When the temper-

ature of the composite was close to cure temperature (i.e. when thermally-induced

stresses were low) the random strength distribution and uniform strength models

predicted fairly similar behaviors in terms of the extent of tow cracking at a given

mechanical load. However, when the temperature was reduced to room temperature,

the cases which were seeded with random strength values from the Weibull distri-

bution predicted the onset of tow cracking at lower loads than the uniform strength

case.

V.C.2.c. Cohesive Opening Model for Interfaces and the Neat Matrix Pocket

Interfacial elements are also utilized to model failure of the interfaces between

the tows (Fig. V.4e) and between the tows and the neat matrix pocket (Fig. V.4f),
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Table V.10: Properties for inter-tow, inter-tow-matrix, and intra-matrix cohesive

zones.

GIc (N/m) GIIc (N/m) η τ 0n (MPa) τ 0t (MPa)

Inter-tow 200 1000 1.45 60 90
Inter-tow-matrix 200 1000 1.45 60 90
Intra-matrix 680 1000 1.45 120 180

as well as cracking within neat matrix pocket (Fig. V.4d). The opening of these

elements are governed by the cohesive zone law of Turon et al. [20] with the modifi-

cations given in section III.C.2.a. The values utilized for the cohesive zone models are

provided in table V.10. The inter-tow properties were selected based on mixed-mode

delamination testing of IM7/8552 material used by Hallett et al. [11]. It is thought

that the interface between tows will be reasonably similar to the interface between

two adjacent lamina. There was no experimental data available that seemed appro-

priate for modeling the interface between a tow and the neat matrix pocket, so for the

current set of analyses, this interface was modeled using the same properties as the

inter-tow interfaces. Tensile strength data as well as GIc are provided by the manu-

facturer for 8552 epoxy [160], but shear failure strength and GIIc are not. Values for

mode II were chosen to be higher than for mode I by a proportion which is similar

to other epoxy resin systems that have been experimentally characterized [166].

V.C.3. Failure Under In-Plane Loadings

The next three sections examine the behavior of the textile under various types

of in-plane loading. For each loading, the damage is presented in figures such as Fig.
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V.15. In these figures, cohesive elements with quadrature points that have undergone

partial degradation but not complete opening are shaded green. Cohesive elements

which contain quadrature points that have experienced complete opening are shaded

red. Cohesive elements that have not experienced any opening are left transparent.

Each of these analyses was stress controlled. Loading was increased until (1) the

model reached an instability under load-controlled loading (i.e. the effective stress in

the model reached its maximum) or (2) until the onset of fiber failure was predicted,

as this is considered a critical type of failure. Fiber failure onset is predicted to occur

when more than 0.5% of the tow volume in the textile exceeds 2.6 GPa, which is the

axial stress associated with fiber failure in a unidirectional IM7/8552 laminate. This

value is not considered to be temperature dependent, although in reality, cooling a

unidirectional lamina will tend to place the fibers into a mildly compressive state

(the IM7 fibers will want to increase slightly in length due to their slightly negative

longitudinal coefficient of thermal expansion, but the surrounding matrix will want

to contract), causing the overall tensile strength of the lamina to increase. Since

the current study is more focused on the behavior of the textile before fiber failure

occurs, accounting for this temperature dependence was not deemed to be highly

important.

V.C.3.a. Failure Under Uniaxial Load

The first loading case that was examined was x-direction uniaxial loading. The

predicted progressive failure behaviors for loading at room temperature (with ∆T =

−160◦C applied to account for the temperature differential from cure) and at near-
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cure temperature (∆T = −10◦C) are now described.

At room temperature, as uniaxial loading was applied to the textile, the first

type of damage which was predicted to occur was crack opening in the y-direction

tows. The damage in the y-direction tows is shown in Fig. V.15. These tows run

perpendicular to the applied load, and therefore they experienced large transverse

normal stress. The onset of opening began at an applied σxx of 90 MPa (Fig. V.15b).

The tow cracks started to completely open at about σxx = 100 MPa (Fig. V.16c).

As seen in Fig. V.15a, the fraction of the y-tow cohesive zones which experienced

complete opening continued to increase until all y-tow cohesive zones were opened

at an applied load of σxx = 400 MPa.

In addition to failure in the y-direction tows, the x-direction tows were also pre-

dicted to undergo cracking as shown in Fig. V.16. Although these tows are aligned

with the applied loading, they experience transverse tensile stress due to the thermal

load and Poisson contraction as mechanical loading is applied. Under pure ther-

mal loading, the tows have a tendency to contract more in the transverse direction

than in the axial direction. However, because the tows are interwoven and are much

stiffer in the axial direction, they are restricted from contracting transversely to the

extent they would if unconstrained. This places them under transverse tension. Ad-

ditionally, under uniaxial load, the transverse tows are restrained by the interwoven

transverse tows and are therefore unable to undergo the Poisson contraction they

would if unconstrained, leading to additional transverse tensile stress. As shown in

Fig. V.16c, this stress becomes sufficient to cause complete opening in limited regions

of the axial tows at an applied load of σxx = 391.5 MPa. When fiber failure begins
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Figure V.15: Damage growth in y-tows under uniaxial σxx, ∆T = −160◦C.
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Figure V.16: Damage growth in x-tows under uniaxial σxx, ∆T = −160◦C.

to initiate in the axial tows at an applied uniaxial stress of σxx = 625.5 MPa, a little

more than 35% of the cohesive zones in the axial tows have experienced complete

opening, as shown in Fig. V.16d.

As the tows undergo matrix cracking, the cohesive elements between the tows

(Fig. V.17) begin to undergo degradation. The degradation in these regions tends

to coincide with the edges of opened cracks in the tows as seen clearly in Fig. V.17b.

This is expected for the inter-tow interfaces, as this interface forms a barrier to

further extension of matrix cracks in the tows. As a result, these cracks will tend to
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(a) σxx = 94.5 MPa (b) σxx = 198 MPa

(c) σxx = 360 MPa (d) σxx = 625.5 MPa

Figure V.17: Inter-tow damage under uniaxial σxx, ∆T = −160◦C.

turn and run along interfaces between tows, as observed for 2x2 carbon-fiber twills by

Karahan [167]. Similar behavior has been widely observed in tape laminates, where

delaminations tend to initiate where matrix cracks interact with inter-ply interfaces.

The area of the interface that has experienced degradation increases with increasing

load. By the onset of fiber failure, some regions of the interface have experienced

complete opening in some of the regions where matrix cracks in the x and y direction

tows interact as shown in Fig. V.17d.

Crack opening also occurs in the neat matrix pocket (Fig. V.18) shortly after
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tow cracks start to open. As seen in Fig. V.18b, the cohesive zones which open

are predominantly adjacent to cracks running in the y-direction tows (Fig. V.15d).

This is because when a matrix crack running through a tow encounters the neat

matrix pocket, the matrix pocket does not pose a barrier to continued crack growth

(as opposed to a perpendicular tow). However, the strain energy required to open

cracks in the more ductile neat matrix pocket is considerably higher than that needed

to open cracks in the brittle fibers. Therefore, decohesion in the matrix region is not

as brittle as it is in the tows. This pattern of intra-tow matrix cracks extending

into the matrix pocket is in good agreement with the microscopic observations of

Karahan [167]. Once sufficient load has been applied to cause the onset of fiber

failure, complete crack opening has occurred in several regions of the neat matrix

pocket as seen in Fig. V.18d.

Failure of the interface between the tows and the neat matrix pocket (Fig. V.19)

begins to occur at higher load levels than for other cohesive interfaces. Degrada-

tion tends to occur in regions where partially opened cracks in the matrix pocket

encounter tows which run perpendicular to the crack direction (Figs. V.19b and

V.19c). This is expected to occur for a similar reason that cracking is expected to

occur between adjacent tows. When the crack running through the matrix pocket

encounters a perpendicular tow, it cannot grow into the tow, and therefore it is

likely to turn and follow the tow/matrix pocket interface. Once loading is increased

to a level sufficient to cause fiber failure, a large region of this interface has expe-

rienced partial degradation, and limited regions have experienced complete failure

(Fig. V.19d). These regions coincide with cracks that have completely opened in the
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(a) σxx = 99 MPa (b) σxx = 310.5 MPa

(c) σxx = 540 MPa (d) σxx = 625.5 MPa

Figure V.18: Matrix pocket damage under uniaxial σxx, ∆T = −160◦C (top half

only).
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(a) σxx = 270 MPa (b) σxx = 283.5 MPa

(c) σxx = 432 MPa (d) σxx = 625.5 MPa

Figure V.19: Inter-tow-matrix damage under uniaxial σxx, ∆T = −160◦C.

neat matrix pocket.

In addition to cohesive zone opening, the accumulation of shear damage was

tracked. Due to the low waviness ratio for the textile and the fact that the tows are

aligned orthogonally with the applied uniaxial loads, shear stresses remained low,

and only a very small amount of shear damage occurs.

As damage evolved in in the textile, the effective compliance of the textile was

also tracked. This was accomplished by performing six different “virtual” uniaxial

stress-strain tests on the unit cell at each load step. A unit-stress was applied for
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Figure V.20: In-plane property evolution under uniaxial σxx, ∆T = −160◦C.

each test, meaning that the resulting volume average strains made up the rows of

the effective compliance matrix for the textile. Effective orthotropic engineering

moduli were obtained from the compliance matrix. The evolution of the in-plane

moduli is given in Fig. V.20. An examination of these moduli reveals that there is

a drop of roughly 5% in Exx and nearly 20% in Gxy associated with the saturation

of cracking in the y-direction tows, although Eyy remains relatively unchanged (as

expected, since cracks running along the y direction do not sever the the load path

of y-direction normal loading). As the applied stress is further increased, there is a

gradual reduction in all three moduli as degradation increases in the matrix pocket

as well as on the interfaces. Crack opening in the x-direction tows slightly before the

critical failure leads to an additional drop in Gxy.
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Progressive failure under uniaxial loading was also examined near cure temper-

ature, with an applied temperature change of ∆T = −10◦C. At this temperature,

the thermally induced stresses in the textile (and within the tow microstructure) are

much lower than for the room temperature case. The overall behavior for this tem-

perature was similar to that at room temperature, so instead of providing a detailed

description of the damage evolution, only the differences noted for this temperature

will be highlighted. The initiation of critical fiber failure at this temperature was

predicted to occur at an applied stress of σxx = 688.5 MPa, a 10% increase relative

to the room-temperature case. Like the room-temperature model, y-tow cracking

was the predominant failure mechanism under this load, but complete crack opening

began at an applied load of about σxx = 220 MPa (as opposed to σxx = 100 MPa for

the room-temperature case). This was primarily due to the reduction in thermally-

induced transverse tension in the tows as the temperature increases towards cure.

While the reduction in thermally induced stresses in the tows at the textile scale

increases the loading required to cause failure, the strength of the tows themselves is

significantly lower at this temperature due to the effects of thermally-induced stresses

at the microstructure. At higher temperatures, more loading is required to fail the

weaker tows. This indicates that the thermally-induced stresses at the textile scale

play a larger role than the thermally induced stresses at the fiber-matrix level with

regards to the temperature sensitivity of damage development in the textile.

Cracking in the x-direction tow occurred at this temperature as well, although

the extent of cracking was much lower at fiber failure than it was for the room-

temperature case. A lesser extent of x tow cracking was expected, since thermally
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Figure V.21: Damage growth in y-tows under uniaxial σxx, ∆T = −10◦C.

induced stresses contribute significantly to this type of failure. Degradation of the

inter-tow interface and within the neat matrix pocket followed the same trend as

was seen at room temperature. These forms of damage occurred only after y-tow

cracking had initiated, meaning that they began to evolve at higher loadings than

were observed at room temperature. Interestingly, the failure of the tow-matrix

interface followed a somewhat different trend than was observed at room temper-

ature. For the near-cure loading, degradation of the tow-matrix interface tended

to coincide with locations where tow cracks met the matrix pocket (as seen in Fig.

V.22), rather than coinciding with locations where crack running through the matrix

pocket met perpendicular tows (Fig. V.19c). A definitive reason for this difference

was not clear from an investigation of the stresses in the textile unit cell, but these
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Figure V.22: Inter-tow-matrix damage under uniaxial σxx = 337.5 MPa, ∆T =

−10◦C.

investigations did suggest that temperature reduction leads to primarily compressive

tractions on this interface which will tend to prevent failure of the interface for the

room temperature case.

The evolution of the in-plane moduli for uniaxial loading near cure temperature,

shown in Fig. V.23, bore a strong resemblance to that seen at room temperature

(Fig. V.20) in terms of the stiffness degradation associated with different types of

damage. The overall level of property degradation was somewhat less than for the

room temperature case, particularly for G12, but this is to be expected due to the

fact that there was less damage in the near-cure model at fiber failure as compared

to the room-temperature model.
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Figure V.23: In-plane property evolution under uniaxial σxx, ∆T = −10◦C.

V.C.3.b. Failure Under Equal Biaxial Load

Progressive failure under in-plane equal biaxial tension shares many charac-

teristics with unidirectional loading. As shown in Fig. V.24, for textiles at room

temperature and near cure temperature, cracking was predicted to initiate in both

tows at nearly the same load. The onset of cracking occurred at a considerably lower

stress for the room temperature model (Fig. V.24a) than for the model near cure

temperature (Fig. V.24b). For both temperatures, cohesive element degradation

occurred on the inter-tow interface, in the neat matrix pocket, and on the inter-tow-

matrix interface immediately after crack opening began in the tows. The models

at both temperatures predicted the onset of fiber failure at nearly the same applied

loading: σxx = σyy = 733.5 MPa for room temperature and σxx = σyy = 742.5 MPa
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Figure V.24: Tow crack opening under biaxial tension σxx = σyy.

near cure temperature. Like uniaxial loading, biaxial loading resulted in essentially

no shear damage in the tows.

The evolution of in-plane properties, shown in Fig. V.25, provides further insight

into how different damage mechanisms affect the resulting stiffness of the textile

unit cell. Both Exx and Eyy experience a 5-6% drop when tow cracking occurs.

Furthermore, the total drop in Gxy is approximately 35%, which suggests that the

effect of tow cracking on the shear modulus is cumulative (that is, the reduction in

Gxy resulting from cracks in both tow directions is roughly twice the reduction for

tow cracking in just one direction).

V.C.3.c. Failure Under In-Plane Shear Load

Under in-plane shear loading, damage evolves in a characteristically different way

than under in-plane normal loading. While shear damage was not a major occurrence

under in-plane normal loading, it dominates the behavior under in-plane shear. Fig.
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Figure V.25: In-plane property evolution under biaxial tension σxx = σyy.

V.26 shows the evolution of shear damage and tow cracking. Fig. V.26a shows the

evolution of the volume average of d12 taken over the volume of the tows. For this

loading, the value of d13 in the tows remains negligible compared to d12. As shear

loading is initially applied, shear damage starts to develop at the tow edge crossover

(Fig. V.8), along the edges of the tow, and in regions in close proximity to the edges

of crossing tows. Continued loading leads to an increase in shear damage as well as

the onset of degradation in the intra-tow cohesive zones in regions of elevated shear

damage (and elevated shear stress). With further increases in loading, cohesive zone

degradation becomes more widespread, and complete decohesion occurs in a limited

number of locations. Additionally, at elevated loads, the shear damage in the tows

continues to increase, particular in regions where it was originally lower. In Fig.

V.26e, bands of tow material with lower shear damage are apparent where tow crack

opening and interfacial failure have shielded regions of the tow from elevated shear

185



stresses.

As was observed under normal in-plane loads, degradation of the cohesive zones

on the interfaces and in the neat matrix pocket started as a result of the development

of adjacent tow cracks. This degradation appeared to play less of a role in the overall

response of the unit cell under shear as compared to uniaxial and biaxial loadings.

A metric was developed which tracks the amount of strain energy that has been

dissipated in these cohesive zones normalized by the total amount of strain energy

that they would be dissipated by the complete failure of all of the cohesive elements.

At the maximum shear stress, this metric was 1/7th as large as it was at failure

under uniaxial normal load.

Final failure under shear loading came as the result of the onset of a softening

response which led to an instability under stress-controlled loading. The overall

stress-strain response of the textile is shown in Fig. V.27. It can be noted from the

overall response that the gradual development of shear failure in the tows leads to

a nonlinear shear response of the textile under shear loading. This is also seen in

the evolution of the effective in-plane moduli, shown in Fig. V.28. There is a large

decrease in the in-plane shear modulus associated with the development of shear

damage in the tows. There is a slight decrease in the normal moduli resulting from

partial crack opening in the tows as well as the opening of cohesive zones elsewhere

in the unit-cell.
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Figure V.26: Shear damage and tow cracking under in-plane σxy, ∆T = −160◦C.
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Figure V.27: Stress-strain response under σxy, ∆T = −160◦C.

0 2 0 4 0 6 0 8 0 1 0 0

σxy (MPa)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

E
E0

Ex

Ey

Gxy

Figure V.28: In-plane property evolution under under σxy, ∆T = −160◦C.
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V.C.4. Characteristic Progressive Failure Behaviors

Based on observations of the behaviors under a variety of loadings, several differ-

ent characteristic behaviors were noted in the evolution of damage and the resulting

material degradation. These behaviors are discussed in the following sections.

V.C.4.a. Tow Cracking

In-plane normal loading was always observed to cause the development of brit-

tle cracking in the tows running transverse to the applied load. This tow cracking

typically developed fairly rapidly within the tow at significantly lower loading than

that required to cause fiber failure in the axial tows. It was observed that multiaxial

normal loads tended to reduce the stress to cause this failure even further. Addition-

ally, thermally induced stresses from cure tend to cause a much earlier onset of tow

cracking under tensile loading. Tow cracking also occurred under shear loading after

the tows had experienced considerable shear degradation. Crack opening under shear

was much more gradual than under normal load, with lots of partial opening. There

was a characteristic reduction in the Young’s modulus for the direction perpendicular

to the cracked tow of about 5%. Also, cracking in one tow direction resulted in a

drop in the in-plane shear modulus Gxy of almost 20%, while cracking in both tows

caused a drop of approximately 35%. A convenient way of tracking the evolution of

this failure mode was to track the total area of opened (completely failed) cohesive

elements in a tow and normalize it by the total area of cohesive elements in a tow.
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V.C.4.b. Shear Damage

Under shear loading, the predominant mode of damage was the development of

distributed shear damage within the tows . Shear damage primarily consisted of d12;

d13 was not observed to have a major effect on the response of the textile. The onset

of d12 shear damage occurred at fairly low shear stresses relative to the maximum

shear stress that is reached. Worsening shear damage led to a steady reduction in Gxy

for the textile as loading was increased. A convenient way of tracking the evolution

of the shear damage parameter d12 in the tows was to take the volume average of the

damage parameter over the tow volumes. Examining a large number of multiaxial

loadings showed that this metric correlates very strongly with the applied shear stress

component, regardless of other stress components applied to the textile, as shown in

Fig. V.29.

V.C.4.c. Degradation in Interfacial and Matrix Cohesive Zones

The final characteristic type of failure that was observed to occur was the degra-

dation and occasional failure of cohesive zones in the neat matrix pocket and on the

interfaces between tows and between the tows and neat matrix pocket. This failure

was strongly linked to the development of tow cracks, and almost always developed

as an extension of those cracks into adjacent parts of the textile unit cell. This type

of failure can be characterized for the composite by taking the total amount of strain

energy that has been dissipated over all the cohesive elements in these regions of

the textile and normalizing that value by the total critical strain energy for those

cohesive elements (i.e., the total amount of energy that would be required to com-
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Figure V.29: Evolution of ⟨d12⟩ vs. σxy for various multiaxial loadings, ∆T =

−160◦C.
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pletely fail all of these cohesive zones from their virgin state). This type of failure

was observed to result in a gradual reduction in both in-plane Young’s moduli as

well as the in-plane shear modulus.

V.D. Towards a Reduced-Order Structural-Scale Continuum Damage

Model for Textile Composites

The characterization of failure behaviors at the textile scale permits the devel-

opment of a continuum damage mechanics model that can be applied to engineering

structures made from textile composites. Such a model is used to accomplish the

following:

� Determine the overall response of the textile for a given damage state.

� Predict the evolution of the damage state based on the load history.

� Predict the onset of critical failure in the textile.

The following sections describe the development of a continuum damage mechanics

model that can be used to accomplish these tasks, as well as a comparison of response

predictions made using the continuum damage mechanics model and directly using

textile unit-cell analysis.

V.D.1. Determination of Effective Textile Response from Characteristic Damage

Parameters

The first aspect of the model that is addressed is determining how the evolu-

tion of the damage state in the textile affects its overall response. At the structural
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scale, details of the textile architecture are not modeled, and therefore the evolu-

tion of damage in the textile cannot be directly modeled. Therefore, damage at the

structural scale is accounted for through the use of state variables which represent

characteristic damage behaviors that occur at smaller scales in the textile. As de-

scribed in section V.C.4 there are four primary modes of damage which were observed

to develop in textile composites for the range of loadings that were examined:

� Tow cracking in the x-tows

� Tow cracking in the y-tows

� Diffuse damage growth in the tows due to shear

� Cohesive zone opening on the interfaces and within the neat matrix pocket

Approaches were described for each of these modes to represent the overall evolution

of the mode in a textile unit cell using a single value. In the continuum damage

model applied at the structural scale, these four damage modes will be represented

using four different damage state variables, dx, dy, dI , and ds, which are to be tracked

locally in the structure. These damage state variables are described in table V.11.

It is important to clearly point out that each state variable corresponds directly to

a metric which can be measured using the damage state in a textile unit cell.

These damage state variables will be utilized to predict degradation of the effec-

tive in-plane moduli for the textile. The moduli are determined from the following

equations.

Ex =
(
1−

(
mEx
dx
dx +mEx

dy
dy +mEx

dI
dI +mEx

ds
ds

))
E0
x (5.13)

Ey =
(
1−

(
m
Ey

dx
dx +m

Ey

dy
dy +m

Ey

dI
dI +m

Ey

ds
ds

))
E0
y (5.14)
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Table V.11: Damage state variables for textile continuum damage model.

Formulation from

Variable Description textile UC

dx Fraction of crack opening in X tow
Area of CZs in tow with d=1

Area of all CZs in tow
dy Fraction of crack opening in Y tow

dI Interface and matrix pocket degradation
Total Udissipated

Total critical strain energy

ds Volume averaged shear damage parameter 1
Vtows

∫
tows

d12 dV

Gxy =
(
1−

(
m
Gxy

dx
dx +m

Gxy

dy
dy +m

Gxy

dI
dI +m

Gxy

ds
ds

))
G0
xy (5.15)

In these equations, the variables of the form mEx
dy

are influence parameters which

are the partial derivatives of a given normalized modulus with respect to a damage

state variable. They are assumed to be constant, and define (for the case of mEx
dy
)

what proportion of the x-direction Young’s modulus Ex is lost due to a change

in the y-tow cracking state variable dy. These parameters, given in table V.12,

were determined by examining the change in effective response as damage evolved

using the textile unit cell analyses for uniaxial and shear loading cases at room

temperature (∆T = −160◦C). For each load case, the damage state variables dx,

dy, dI , and ds were calculated from the damage state in the textile unit cell. Then,

the influence parameters were modified so that Eqs. 5.13, 5.14, and 5.15 predicted

an effective response as close as possible to the response obtained from the textile

unit cell analysis for these two load cases. The uniaxial and shear loading cases were

chosen to perform this calibration because of their simplicity, because between the
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Table V.12: Damage influence parameters.

Ex Ey Gxy

dx 0 0.05 0.19
dy 0.05 0 0.19
dI 1.2 1.2 2.3
ds 0.04 0.04 0.92

two of them, they exhibited all four of the different types of characteristic damage,

and because both of these load cases experience extended ranges of loading where

the evolution of one characteristic damage state dominates all the others, which

simplifies the process of isolating that damage state’s effect on the textile response.

All of the influence parameters related to the tow cracking state variables (dx and dy)

were determined from the stiffness degradation associated with y-tow cracking in the

uniaxial loading case. The degradation parameters associated with matrix pocket and

interface failure (dI) were determined from the property degradation that occurred

in the uniaxial loading case after the y-direction tows experienced crack opening.

The influence parameters associated with diffuse shear damage in the tows (ds) were

determined from the property degradation observed for the shear loading case as the

tows experienced diffuse shear damage. It would likely be possible to improve upon

the prediction of these influence parameters through the use of optimization methods

applied to a broader variety of applied loadings, but as will be shown in later sections,

the results obtained using this simpler approach were found to be satisfactory.

Some discussion of these parameters is warranted. Values of zero for mEx
dx

and

m
Ey

dy
indicate that matrix cracks in a tow do not affect the Young’s modulus in the

direction of that tow. Values of 0.05 for mEx
dy

and m
Ey

dx
signify that matrix cracks in a
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tow do cause a small reduction in the Young’s modulus for the direction normal to the

crack planes. This effect is limited due to the fact that most of the normal stiffness

in a given direction for the textile comes from the tows running in that direction.

Therefore, cracking in transverse tows has only a small effect on the Young’s modulus.

Tow cracking has a larger effect on the shear modulus as evidenced by values of 0.19

for m
Gxy

dx
and m

Gxy

dy
. This is because the tows carry most of the in-plane shear loading

in the textile, and cracking in the tows severely disrupts the load path for in-plane

shear. For this same reason, diffuse shear damage ds also has a large effect on the

overall shear stiffness of the textile as seen from m
Gxy

ds
= 0.92. Values of 0.04 for mEx

ds

and m
Ey

ds
indicate that diffuse shear damage only has a small effect on the transverse

moduli, which is expected since the development of diffuse shear damage in the tows

of the textile unit cell only changes the local shear modulus of the tow according to

Eq. 5.10, and not the tow’s local transverse Young’s modulus. Finally, the opening of

cohesive zones on the interfaces and within the matrix pocket has a moderate effect

on all of the in-plane moduli as seen from the values for mEx
dI

and m
Ey

dI
(1.2) and

m
Gxy

dI
(2.3). These values are considerably larger than the other influence parameters

because the observed values for dI in practice are quite low (less than 0.1). The

state variable dI is perhaps the least precise of the four damage measures in terms of

it’s effect on the overall textile response because it encompasses damage across such

a broad part of the textile unit cell, but based on the predictive capability of the

current model (which will be examined in later sections), it appears to be adequate to

predict the continued evolution of the in-plane properties with fairly good accuracy

after a tow has experienced cracking.
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V.D.2. Prediction of Damage State for Arbitrary Loadings

With the definition of damage state variables and a determination of how the

evolution of those state variables affects the overall response of the textile, the final

major aspect of the textile continuum damage model which must be developed is

determining the evolution of the damage state variables for an arbitrary in-plane

loading. Although it may be possible through a protracted study of the damage evo-

lution in the textile unit cell under various loadings to develop functional relation-

ships between applied loading, temperature, and the damage state variables, a much

simpler approach will be taken. Since only tensile and shear in-plane thermomechan-

ical loadings are being considered currently, it is feasible to sample the parameter

space of possible applied loads with a high density. This allows the damage state

for an arbitrary loading to be interpolated through a table-lookup of damage state

evolution for similar loadings whose damage evolution has been determined a priori

through textile unit cell analysis. The high-level approach for this is as follows:

1. Calculate the evolution of dx, dy, dI , and ds and the onset of critical failure

for a number of different reference load cases using textile unit cell progressive

failure analysis.

2. Organize the damage evolution and critical failure data for each reference load

case into a database organized by the ratio of the applied loading components.

3. For a new in-plane load, search the database for the reference load cases which

are most similar to the new load case.

4. Interpolate the critical failure load for the new load case from the similar ref-
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erence load cases in the database.

5. Interpolate the damage state variable evolution for the new load case from the

similar reference load cases in the database.

6. Predict the effective response for the new load case using the interpolated

damage states variables and Eqs. 5.13, 5.14, and 5.15.

This approach is carried out on load cases for the same temperature. If the behavior

is needed for a temperature that is different from the temperatures used to generate

databases of reference behaviors, the databases for the two nearest temperatures will

be used to determine the damage state variable evolutions for the loading. These

two behavior predictions will then be used to interpolate the damage state variable

evolution at the temperature of interest.

The analyses for reference load cases described in step 1 were performed for the

stress ratios σxx : σyy : σxy given in table V.13. No cases were examined in which

σyy > σxx. Due to the symmetry of the unit cell, the behavior from these cases can

be obtained from the load cases in table V.13 by swapping dx and dy. For instance,

the loading ratio 1σxx : 2σyy : 0σxy is effectively the same as 2σxx : 1σyy : 0σxy.

The only difference is that the x and y directions for one case are switched in the

other. Therefore, dx for 1σxx : 2σyy : 0σxy evolves in an identical manner to dy for

2σxx : 1σyy : 0σxy.

Once the damage state variable evolution and final failure loads are determined

for the reference load cases using textile unit cell analysis, they are stored in a

database as specified in step 2. The different behaviors are organized using a tri-

angulation performed in a normalized loading space. This will facilitate the process
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Table V.13: Stress ratios defining reference load cases for development of textile

continuum damage model.

σxx σyy σxy

1 0 0
2 1 0
1 1 0
12 0 1
12 6 1
12 12 1
6 0 1
6 3 1
6 6 1
0 0 1

of determining which reference load cases in the database are most similar to a new

load case. First, the stress components for each reference load case are normalized

by the failure stress for that load component. For instance, suppose that under pure

shear loading, the textile has a strength of Sxy = 80 MPa. In that case, the shear

component of loading for every reference load case is divided by 80 MPa. This is done

for all three components of mechanical loading. Then, these normalized loads are

projected onto a unit sphere in the normalized loading space. A Delaunay triangula-

tion is then carried out for the loads on this unit sphere. The resulting triangulation

is shown in Fig. V.30.

Identifying the reference load cases that are most similar to a new load (step

3) is accomplished as follows. First, the load components for the new load case are

normalized in the same manner as for the reference load cases (as described for step

2) and are then projected onto the triangulation. The reference load cases which
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Figure V.30: Triangulation of load cases in normalized stress space.

form the vertices of the triangle that the new load case projects onto are the similar

reference load cases that will be used for the interpolation. Area coordinates on

the triangle are utilized to determine how much each similar reference load case

contributes to the interpolated behavior for the new load case.

The first value that is interpolated for a new load case is the load at which

critical failure occurs (step 4). This is determined by interpolating the Euclidean

norm (the L2 norm, given in Eq. 5.16) of the critical failure stress for the similar

reference load cases.

∥∥σcrit∥∥ =

√
(σcritxx )2 +

(
σcrityy

)2
+
(
σcritxy

)2
(5.16)

It is assumed that the interpolated value will be the Euclidean norm of the critical

failure stress for the new load case. The stresses at failure can then be backed out
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for the new load case.

Next, the damage states are interpolated for the new load case (step 5). There is

some difference in the way that the different damage state variables are interpolated.

Interpolation of tow cracking dx and dy, as well as interfacial damage dI , is performed

using a load scaling parameter λ which starts at zero when the applied mechanical

load is zero and increases to one when the critical failure load is reached. This facili-

tates a direct comparison between the different load cases. Rather than interpolating

the value of the damage state variables at a given value of λ, interpolation will be

performed to determine the value of λ at which the damage state variable reaches a

given level of severity. This is done because these modes of damage, particularly tow

cracking, tend to evolve suddenly. Fig. V.31 provides an illustration of this. Assume

that the new load case being interpolated lies halfway between “Load 1” and “Load

2” (the similar reference load cases). One would expect that under this loading, the

actual behavior would be a sudden increase in d that occurs halfway between the λ

values when the similar reference load cases experience increases in d. However, if

one simply interpolates the value of d at a given value of λ, the incorrect behavior will

be obtained, with d increasing suddenly to a value of 0.5 when “Load 1” experiences

an increase in d, and then increasing to 1 after “Load 2” experiences an increase in

d. Instead, it is necessary to interpolate the value of λ at which d reaches a given

value for the new load case, which yields the desired result. One challenge that is

associated with this approach is that all of the similar reference load cases may not

reach the same maximum value of d. This is handled in the following manner. The

maximum value of d attained by any similar reference load case is determined first.
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Figure V.31: Example of damage state interpolation between behaviors for two load-

ings.

Then, when the interpolation is being performed, it is assumed for similar reference

load cases that do not reach this maximum d that they would reach that value at

some λ > 1 (i.e. if λ were to continue increasing without the occurrence of some

critical failure). The current implementation assumes that this value is λ = 1.1.

This approximation works well provided that the similar reference load cases are

sufficiently close to the new load case whose behavior is being interpolated.

The interpolation of the diffuse shear damage state variable ds is handled differ-

ently than the other damage state variables. As shown in Fig. V.29, the evolution

of diffuse shear damage correlates strongly with the applied σxy regardless of the

multiaxiality of the applied load. Therefore, the evolution of ds for the new load case

is determined using the relationship between ds and σxy for the similar reference load

case with the largest component of shear loading.
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V.D.3. Validation of Model

Several different trial cases were examined to determine the fitness of the cur-

rently described continuum damage model for several different cases.

V.D.3.a. Response Prediction Using Damage Parameters.

The first aspect of the model that was examined was the use of the four dam-

age state variables to predict the effective response of the textile. A great deal of

information regarding the distribution of crack opening and damage is lost when the

damage state in the textile is reduced to just four parameters, so it is important to

examine the effect this reduction in information has on the overall response predic-

tion. Figs. V.32 and V.33 show the predicted response at room temperature and near

cure temperature using Eqs. 5.13, 5.14, and 5.15 along with the influence parameters

given in table V.12. The responses from the continuum damage mechanics model

(lines) are compared to the responses determined directly from the textile unit-cell

model (dots) for a variety of different loads. The damage state variables for these

loadings are computed directly from the actual damage state in the textile unit cell

models (they are not interpolated) Therefore, these plots show the effect of using

Eqs. 5.13, 5.14, and 5.15 to predict the response with a reduced-order representation

of the damage state in the textile. Recall that the determination of the influence pa-

rameters in the degradation equations was accomplished by identifying values which

caused the predicted response under uniaxial load (Fig. V.32a) and shear load (Fig.

V.32j) to match as closely as possible to the response obtained from the textile unit

cell model. Therefore, these two load cases, and only these two load cases, should
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Figure V.32: Comparison of predicted effective response evolution (lines) to textile

unit cell analysis (dots) for various ratios of stress loading ∆T = −160
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Figure V.33: Comparison of predicted effective response evolution (lines) to textile

unit cell analysis (dots) for various ratios of stress loading ∆T = −10
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be considered “calibration” cases. The remainder of the loads constitute validation

cases, since they were not considered when calibrating the influence parameters. The

plots show that for all of the load cases examined, the predicted response evolution

compares very well with the response evolution determined directly from the textile

unit cell analyses. This indicates that the four damage state variables selected for

the textile continuum damage mechanics model characterize the damage state in the

textile unit cell in a manner that enables accurate prediction of the textile’s response.

V.D.3.b. Predicted Response from interpolated damage state.

The next aspect of the model that was examined is the accuracy of the table-

lookup approach for interpolating the damage state evolution of a load case that was

not examined through textile unit cell analysis a priori. This was done by choosing a

load state which differed from the reference load states used to populate the database

of behaviors for the textile. The load state chosen for this investigation was a stress

ratio of 90σxx : 10σyy : 3σxy. The damage evolution and response for this load

case were interpolated from similar reference load cases in the database. The load

case was also run directly using textile unit cell analysis. The interpolated damage

state variable evolution (lines) are compared to the damage state variable evolution

calculated directly from the textile unit cell model (dots) in Fig. V.34, and the

predicted response is compared to the interpolated response in Fig. V.35. These

analyses were performed with a temperature change from cure of ∆T = 60◦C.

The interpolated damage state variable evolution compared reasonably well with

the damage state evolution predicted from the textile unit cell analysis. The evolu-
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Figure V.34: Comparison of interpolated damage state variables (lines) with those

calculated from a textile unit-cell analysis (dots).
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Figure V.35: Comparison of predicted response using interpolated damage state

variables (lines) with response from a textile unit-cell analysis (dots).

tion of y tow cracking (dy) was predicted very well. The evolution of x tow cracking

(dx) was not predicted with as much accuracy. However, this damage state variable

suffered from the challenge previously described regarding interpolation of a damage

state that doesn’t occur in all of the similar reference load cases. Despite this diffi-

culty, the interpolation procedure did correctly predict that dx occurred for this load

case, although its extent was somewhat over-predicted. Shear damage in the tows

(ds) was predicted with fairly good accuracy considering that it stayed at a fairly low

level, and interface and matrix crack opening was also predicted with a reasonable

degree of accuracy. The critical failure stress for the textile was underestimated by a

little less than 10%. The response evolution predicted using the interpolated damage

state variables compared quite well with the prediction made directly using textile
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unit cell analysis. The inaccuracies related to interpolating the damage parameters

could be reduced by using more reference load states to build the database of damage

evolution behaviors.

V.D.3.c. Predicted Response for Nonproportional Loading

The final validation case which was examined presents considerably more diffi-

culty. The behavior under a damage-inducing non-proportional load was examined.

The stress history applied to the model is shown in Fig. V.36, and was applied with

a temperature change from cure of ∆T = −60◦C. The applied stress was tracked

by the scaling parameter λ, which increased from 0 to 1. For the first half of the

loading, a biaxial load state was applied up to a value of σxx = σyy = 300 MPa.

As noted from investigating the damage evolution under biaxial loading, 300 MPa

of biaxial stress is sufficient to cause extensive tow cracking in both tow directions

as well as accompanying damage in the interfaces and neat matrix pocket, but is

not sufficient to cause critical failure. When λ reached a value of 1
2
, the biaxial load

was removed and in-plane shear stress σxy was applied. The in-plane shear stress

σxy increased from a value of 0 at λ = 1
2
to a maximum value of σxy = 150 MPa at

λ = 1. Complete failure of the textile occurred before the shear stress reached its

maximum value.

The predicted behavior was obtained by first tracking the evolution of the dam-

age state variables using the biaxial reference load case. For 0 < λ < 1
2
, the response

was predicted with a high degree of accuracy since the load histories are essentially

the same between the reference load case in the database and the validation model.
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Figure V.36: Non-proportional load.

The slight differences may be attributed to different seedings of the strength values in

the tows of the textile unit cell models as well as the fact that the stress increase for

each load increment in the validation model is smaller than for the biaxial reference

load case in the database. Once the biaxial load is removed and the shear load is

applied, the value of a given damage state variable d in the textile was taken as the

maximum of either the value of d that was attained during the biaxial loading phase

or the value of d associated with the current shear load determined from the shear

reference load case. This value of d was then used to predict the effective response of

the textile. The resulting prediction and comparison to the response obtained from

a textile unit cell model subjected to the non-proportional loading are shown in Fig.

V.37. As seen in the figure, the evolution of the response during the second half of the

loading history was predicted with good accuracy up to the point of critical failure.

However, the critical failure stress was over-predicted considerably by the continuum

damage mechanics model when compared to the textile unit cell analysis. The reason

for this can be discerned by comparing the predicted evolution of the damage state
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Figure V.37: Predicted response for non-proportional loading (lines) compared to

micromechanics (dots).

variables to the damage state variables directly measured from the textile unit cell

analysis that was run for validation. This comparison is given in Fig. V.38. While

tow cracking (dx and dy) and shear damage (ds) compared favorably, there were very

large differences in the evolution of failure in the interfaces and neat matrix pockets

(dI) during the shear loading portion of the non-proportional loading (Fig. V.38c).

For this non-proportional loading case, the biaxial loading caused matrix cracks to

open, which in turn led to the development of crack opening on the interfaces and

in the neat matrix pockets. When shear loading was applied, these interfaces began

to fail at very low applied shear loads. This only happened because the tows had

already undergone cracking during the biaxial load phase. Furthermore, because

the tows were cracked, the interfaces and matrix pocket were part of the critical
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Figure V.38: Comparison of predicted damage state variable evolution (lines) to

damage parameter evolution from micromechanics (dots) for non-proportional load-

ing.
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load path under shear. Essentially, these structures in the textile held together the

cracked pieces of tow. Once the cohesive zones in these critical regions failed, the

textile was no longer capable of carrying shear load.

The predictive model did not pick up this behavior because the state variable

evolution for the shear reference load case is for a textile that does not contain

initially opened tow cracks. In an initially undamaged textile, interface and matrix

pocket failure does not occur under shear loading until the stress level in the tows is

high enough to cause the onset of tow cracking. Therefore, this non-proportional load

case provides an example of an interaction between failure modes that does not make

itself apparent under proportional loading (i.e., using a virgin textile unit cell loaded

under shear, one cannot observe the noted dependence of interfacial and matrix

failure on the pre-existence of tow cracks). Modifications would need to be made

to the described damage model to account for such interactions before it could be

accurately applied to structures which are subject to damage-inducing stress states

that experience large changes in proportionality. However, it should be pointed out

that when the textile unit cell analysis predicted final failure, the effective shear

modulus of the textile had degraded to less than 40% of its original value (which the

continuum damage model also predicted). If one were to use a criterion for critical

failure that was based on modulus degradation rather than the occurrence of an

instability under stress-controlled loading, then the continuum damage model would

likely provide an accurate prediction of critical failure (since critical failure would

likely be considered to have occurred some time before reaching a 60% loss of shear

stiffness).
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CHAPTER VI

CONCLUSION

A variety of aspects of composite behavior were investigated at both the fiber-

matrix scale and the textile unit cell scale. At the fiber-matrix scale, a method

was developed for the generation of random periodic microstructures. This mi-

crostructural model was utilized to determine the elastic properties of the fibers

from unidirectional lamina and neat matrix properties through the use of an inverse

analysis. This investigation showed that the predicted longitudinal shear modulus

G12 of the fiber exhibits a very strong dependence on the assumed micromechanics

model, with the random model yielding much lower values for G12 than analytical

micromechanics models. The other transverse properties, E2, G23, and ν12, exhibited

lower sensitivities to the micromechanics model.

An investigation into the stress fields in the matrix under thermal loading showed

that the nature of the stresses changed considerably in the inter-fiber regions for

microstructures with fibers that were very close to one another and microstructures

with more uniformly spaced fibers that were not in such close proximity. As a

result of these differences, it was noted that the two different microstructures will

predict different interactions between thermally-induced stresses and stresses from

transverse normal loading, with closely spaced fibers predicting that thermal cooling

will increase the load to failure initiation while microstructures with more space

between fibers tend to predict that cooling decreases the applied load required to

cause failure initiation.
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A progressive failure model was developed for the microstructure which ac-

counted for failure in the matrix through a quad-point property reduction scheme.

The in-situ matrix strength for the fiber-matrix model was then determined from

unidirectional lamina strengths using an inverse analysis. It was found that realistic

properties of matrix strength and realistic responses under both transverse tension

and longitudinal shear were obtained when the the local material properties were

decreased gradually for stresses which caused local ductile failure, and decreased

suddenly and completely for stresses which caused local brittle failure. The overall

progressive failure behavior under transverse normal load was found to be brittle,

with brittle failure occurring at one location in the microstructure and then growing

unstably until the failed region completely crossed the RVE. On the other hand,

failure under longitudinal shear occurred gradually, with ductile failure occurring

in many locations between fibers. This diffuse failure increased gradually until it

started to localize when the volume average shear stress acting on the fiber-matrix

RVE reached its maximum value.

A study of the effect of RVE size was undertaken for transverse normal loading,

since this loading tended to be highly sensitive to the onset of brittle failure at

any point in the microstructure. It was found that the lower-end of the strength

distributions obtained from a large number of realizations tended to remain fairly

consistent across a variety of RVE sizes, while the maximum value of the distribution

fell considerably as the RVE size was increased, indicating that larger RVEs predict

more consistently lower strengths due to the fact that they are more likely to contain

a microstructural feature that causes the onset of brittle failure at a lower applied
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loading.

Finally, a parametric study was conducted using the progressive failure fiber-

matrix model to determine how the predicted strength distribution changes with

temperature. It was found that as the temperature is decreased from the cure

temperature, the strength distribution tends to increase, further suggesting that

thermally-induced stresses from cooling after cure tend to increase the strength of

the composite. The thermal dependence of strength for a hexagonal array was found

to predict a considerably different trend, with the thermally induced stresses tending

to cause a strength reduction near room temperature, indicating that the predicted

thermal dependence varies for different microstructural assumptions.

Next, a study of the behavior at the textile scale was undertaken. The first

investigation that was performed examined the failure initiation behavior in the

textile for a variety of multiaxial loadings. An analysis tool was developed which

utilized superposition of stresses to rapidly determine the location of failure initiation

for a given loading as well as what type of failure occurred at the initiation location.

The initiation behaviors for different loads were then processed into categories based

on location and local failure mode. It was determined that under a broad variety of

multiaxial loads, textiles tend to experience just a few characteristic types of failure

initiation.

This superposition tool was also utilized to calculate the failure initiation enve-

lope for the textile under in-plane loads. The envelope was calculated for a variety

of different temperatures. It was found that different failure modes tended to be

distributed in contiguous regions across the failure envelope, meaning that similar

216



loads tended to result in the same type of failure. While temperature changes gave

rise to several new modes of failure, the distribution of modes on the envelope stayed

fairly consistent across the range of temperatures examined. It was also found that

temperature changes tended to cause failure initiation to happen earlier for some

kinds of loads and later for others.

Finally, progressive failure was investigated in the textile. A new progressive

failure model was developed which utilized cohesive elements to account for cracking

within the tows and matrix pocket as well as on the interfaces between tows and on

the interface between the tows and matrix pocket. Furthermore, a continuum damage

model was developed to account for the diffuse damage which was observed to occur

under longitudinal shear loading of the tows. The behavior of this continuum damage

model was calibrated from the response observed in the fiber-matrix analyses. Also,

the maximum tractions under normal and shear opening for the cohesive elements in

the tows were defined using the strength distributions from the fiber-matrix model

at a given temperature. Strength variability was introduced to the textile unit cell

model by assigning random strengths to the cohesive zone quadrature points at the

beginning of the analysis using these distributions.

The progressive failure of the textile unit cell was examined for a variety of in-

plane loadings comprised of tensile values of normal stress as well as shear. From

these analyses, four distinct modes of damage development were identified. These

modes were cracking of the x tows, cracking of the y tows, opening of the cohesive

zones in the matrix pocket and on the interfaces, and shear damage development in

the tows. Metrics were developed for tracking the evolution of each of these types of
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damage using a single parameter. By keeping track of the full effective compliance of

the textile unit cell models as they underwent progressive failure, it was possible to

characterize the effect each of these characteristic damage modes had on the effective

in-plane moduli of the textile as they evolved.

A continuum damage mechanics model for a plain weave textile composite was

developed using state variables based on the four identified characteristic damage

mode from the textile unit cell analyses. This model includes a degradation law for

the in-plane moduli based on the characterization that was performed for the effect

of each characteristic damage mode on the effective textile unit-cell compliance. A

comparison was made between the response predicted by this degradation law and

the response obtained directly from progressive failure analysis of a textile unit cell

for a wide variety of in-plane loads, and good agreement was found, indicating that

the chosen damage state variables are good choices for a reduced-order representation

of the damage state that exists in the textile. An approach for tracking the evolution

of the damage parameters for arbitrary loadings using a table-lookup approach was

developed, and was found to provide good predictions under proportional loading.

Under non-proportional loading, it was found that the continuum damage mechanics

model accurately predicted the effective response of the textile, but was unable to

capture some of the more complex interactions that can occur between the different

characteristic damage behaviors, leading to some inaccuracy in the prediction of

critical failure in the textile.
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[104] Moës, N., Dolbow, J., and Belytschko, T., “A finite element method for crack

growth without remeshing,” International Journal for Numerical Methods in

Engineering , Vol. 46, No. 1, 1999, pp. 131–150.

[105] Iarve, E. V., “Mesh independent modelling of cracks by using higher order

shape functions,” International Journal for Numerical Methods in Engineering ,

Vol. 56, No. 6, Feb. 2003, pp. 869–882.

[106] van der Meer, F. P. and Sluys, L. J., “A phantom node formulation with

mixed mode cohesive law for splitting in laminates,” International Journal of

Fracture, Vol. 158, No. 2, May 2009, pp. 107–124.
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APPENDIX A

PYTHON SCRIPT FOR FIBER-MATRIX RVE GENERATION

A.1 Fiber.py

############

# Fiber.py #

############

"""Fiber - Contains classes storing fiber data

Contained Classes:

Fiber - The basic class storing a fiber’s center and radius

PeriodicMasterFiber - A specialization of Fiber for use in periodic RVEs

PeriodicGhostFiber - A Fiber represents a PeriodicMasterFiber’s periodic

locations

"""

import matplotlib

import copy

import math

class Fiber:

"""The basic fiber class"""

def __init__(self,center,radius):

"""Create a fiber with a given center coordinate and radius"""

self.center = copy.deepcopy(center) # A list of form (x,y)

self.radius = copy.deepcopy(radius) #radius of fiber

def __str__(self):

return "Fiber Center: " + str(self.center) + ’\tr=’ + str(self.radius)

def overlaps_fiber(self,OtherFiber):

"""return true if this fiber overlaps OtherFiber, false otherwise"""

return sqrt( (OtherFiber.center[0]-self.center[0]) *

(OtherFiber.center[0]-self.center[0]) +

(OtherFiber.center[1]-self.center[1]) *

(OtherFiber.center[1]-self.center[1]) ) < \

self.radius + otherFiber.radius

def get_vector_to_other(self,OtherFiber):

"""Get a vector from this fiber’s center to another fiber’s center"""

return [a-b for (a,b) in zip(OtherFiber.center,self.center)]

def move(self,MoveVec):

"""Move the fiber by some vector"""

self.center = [a+b for (a,b) in zip(self.center,MoveVec)]

def draw(self,axes):

"""Draws the fiber on a matplotlib axes object"""

axes.add_patch(matplotlib.patches.Circle(self.center,

self.radius,

linewidth=0.1))
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class PeriodicMasterFiber(Fiber):

"""A class for storing a fiber that is in the RVE domain"""

def __init__(self,center,radius,index,RVEDims,GhostBoundaryDistance):

"""Generate a PeriodicMasterFiber object"""

Fiber.__init__(self,center,radius)

# Dimensions of the RVE (Xdim, Ydim)

self.RVEdims = RVEDims

# If the fiber is within this distance from a boundary, make a periodic

# ghost fiber

self.GhostBoundaryDistance = GhostBoundaryDistance

self.Index = copy.deepcopy(index)

self.calc_ghost_fibers()

# A list of nearby fibers to watch. Will need to be updated

# occasionally.

self.NeighborFibers = []

# How far this fiber has moved since the neighbors were last updated

self.VecMovedSinceLastNeighborUpdate = [0.0,0.0]

def __str__(self):

return ’\t’.join([str(self.Index),

str(self.center[0]),

str(self.center[1]),

str(self.radius)])

def calc_ghost_fibers(self):

"""Make periodic ghost fibers as needed"""

#First, get fiber in RVE bounds if it has moved out.

self.fix_periodicity()

self.GhostFibers = []

for i in range(2):

OtherIndex = 0

if i == 0:

OtherIndex = 1

if self.center[i] < self.GhostBoundaryDistance:

GhostCenter = [a for a in self.center]

GhostCenter[i] += self.RVEdims[i]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))

if self.center[OtherIndex] < self.GhostBoundaryDistance:

GhostCenter[OtherIndex] += self.RVEdims[OtherIndex]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))

elif self.center[OtherIndex] > \

self.RVEdims[OtherIndex] - self.GhostBoundaryDistance:

GhostCenter[OtherIndex] -= self.RVEdims[OtherIndex]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))

elif self.center[i] > self.RVEdims[i] - self.GhostBoundaryDistance:

GhostCenter = [a for a in self.center]

GhostCenter[i] -= self.RVEdims[i]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))

if self.center[OtherIndex] < self.GhostBoundaryDistance:

GhostCenter[OtherIndex] += self.RVEdims[OtherIndex]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))
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elif self.center[OtherIndex] > \

self.RVEdims[OtherIndex] - self.GhostBoundaryDistance:

GhostCenter[OtherIndex] -= self.RVEdims[OtherIndex]

self.GhostFibers.append(

PeriodicGhostFiber(GhostCenter,self.radius,self))

def move(self,MoveVec):

"""Move this fiber and all of its ghost fibers"""

Fiber.move(self,MoveVec)

self.VecMovedSinceLastNeighborUpdate = \

[a+b for a,b in zip(MoveVec,

self.VecMovedSinceLastNeighborUpdate)]

#since the ghost fiber’s move method just calls the master’s

#move method, we need to actually move the ghosts, so we

#use the base class’s move method

for ghost in self.GhostFibers:

Fiber.move(ghost,MoveVec)

def get_distance_since_last_neighbor_update(self):

"""Returns total distance moved since neighbors were last updated"""

return math.sqrt(sum(

[a*a for a in self.VecMovedSinceLastNeighborUpdate] ) )

def fix_periodicity(self):

"""Return fiber to within RVE boundaries if it has moved out"""

for i in range(2):

if self.center[i] < 0:

self.center[i] += self.RVEdims[i]

elif self.center[i] > self.RVEdims[i]:

self.center[i] -= self.RVEdims[i]

def get_index(self):

"""Retuns the index"""

return self.Index

def update_neighbor_fibers(self,

FiberCentersKDTree,

AllFibers,

FiberDiamsToSearch):

"""Finds Neighbor Fibers

Finds fibers within a certain distance of this one and adds to

NeighborFibers

Relies on a KD tree search to improve performance

"""

# Note - this starts off as a set since we don’t want to add a fiber

# more than once. It gets converted to a list sorted by index at the

# end of the neighbor fiber update since we want consistent ordering

self.NeighborFibers = set([])

self.VecMovedSinceLastNeighborUpdate = [0.0,0.0]

# Get the index numbers of the fibers within a certain distance of

# this one

NeighborFiberIndices = set(

FiberCentersKDTree.query(self.center,

k=len(AllFibers),

p=2,
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distance_upper_bound =

self.radius*2.0*FiberDiamsToSearch)[1])

# When you ask the KD tree for more nearest-neighbors than there

# actaully are within the given tolerance, it pads the result with the

# number of nearest neighbor values you asked for (in this case,

# len(AllFibers)). We don’t want this value in NeighborFiberIndices.

NeighborFiberIndices.remove(len(AllFibers))

for i in NeighborFiberIndices:

#print(i)

if AllFibers[i].get_index() > self.Index:

if AllFibers[i].__class__.__name__ == ’PeriodicMasterFiber’:

self.NeighborFibers.add(AllFibers[i])

elif AllFibers[i].__class__.__name__ == ’PeriodicGhostFiber’:

self.NeighborFibers.add(AllFibers[i].MasterFiber)

for gf in self.GhostFibers:

gf.update_neighbor_fibers(FiberCentersKDTree,

AllFibers,

FiberDiamsToSearch)

# We need to have consistent ordering.

# This command changes NeighborFibers to a list sorted by fiber index.

self.NeighborFibers = sorted(self.NeighborFibers,

key=lambda x:x.get_index())

def get_vector_to_other_periodic(self,OtherFiber,RVEDim):

"""

Returns the shortest vector going from this fiber to the other fiber

Accounts for periodicity

"""

result = self.get_vector_to_other(OtherFiber)

#Now modify result vector to account for periodicity

for i in range(2):

if result[i] > RVEDim[i]/2:

result[i] -= RVEDim[i]

elif result[i] < -RVEDim[i]/2:

result[i] += RVEDim[i]

return result

def fix_overlap_with_neighbors(self,eps = 1.0e-3):

"""

Fixes overlap

Fixes any overlap with neighbors.

Return true if any overlap was found.

"""

OverlapFound = False

for nf in self.NeighborFibers:

#Only move fibers with higher indices

#This _should_ be redundant since fibers only get added to

#neighbor fibers if they have a higher index.

if nf.Index < self.Index: continue

vecToOther = self.get_vector_to_other_periodic(nf,self.RVEdims)

dist = math.sqrt(sum([a*a for a in vecToOther]) )

SumRadii = self.radius + nf.radius

if dist < SumRadii:

OverlapFound = True

#Now move both fibers back from one another.

NormVec = [a/dist for a in vecToOther]
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ProportionToMoveThisFiber = nf.radius/SumRadii;

ProportionToMoveOtherFiber = 1.0-ProportionToMoveThisFiber

TotalMoveBack = SumRadii - dist + SumRadii*eps

NudgeVecThis = \

[-ProportionToMoveThisFiber*TotalMoveBack*a for a in NormVec]

NudegVecOther = \

[ProportionToMoveOtherFiber*TotalMoveBack*a for a in NormVec]

self.move(NudgeVecThis)

nf.move(NudegVecOther)

return OverlapFound

def draw(self,axes):

"""

Draws this fiber and all ghost fibers on the matplotlib axes object

"""

Fiber.draw(self,axes)

for ghost in self.GhostFibers:

ghost.draw(axes)

class PeriodicGhostFiber(Fiber):

"""

This class stores extra fibers that are periodic to a master fiber.

When the master fiber moves, the periodic fibers should move as well.

Similarly, moving this fiber will move the master fiber

"""

def __init__(self,center,radius,MasterFiber):

"""Create PeriodicGhostFiber with a reference to the master fiber"""

Fiber.__init__(self,center,radius)

self.MasterFiber = MasterFiber

def move(self,MoveVec):

"""

Move the master fiber

Note that this will move all the master’s ghost fibers including this

one

"""

self.MasterFiber.move(MoveVec)

def get_index(self):

"""Retuns the index of the master fiber"""

return self.MasterFiber.get_index()

def update_neighbor_fibers(self,

FiberCentersKDTree,

AllFibers,

FiberDiamsToSearch):

"""Finds Neighbor Fibers

Finds fibers within a certain distance of this one and adds to

NeighborFibers

Relies on a KD tree search to improve performance

"""

# Get the index numbers of the fibers within a certain distance of this

# one

NeighborFiberIndices = set(

FiberCentersKDTree.query(self.center,
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k=len(AllFibers),

p=2,

distance_upper_bound =

self.radius*2.0*FiberDiamsToSearch)[1])

# When you ask the KD tree for more nearest-neighbors than there

# actaully are within the given tolerance, it pads the result with

# the number of nearest neighbor values you asked for (in this case,

# len(AllFibers)). We don’t want this value in NeighborFiberIndices.

NeighborFiberIndices.remove(len(AllFibers))

for i in NeighborFiberIndices:

if AllFibers[i].get_index() > self.get_index():

if AllFibers[i].__class__.__name__ == ’PeriodicMasterFiber’:

self.MasterFiber.NeighborFibers.add(AllFibers[i])

elif AllFibers[i].__class__.__name__ == ’PeriodicGhostFiber’:

self.MasterFiber.NeighborFibers.add(

AllFibers[i].MasterFiber)

A.2 RandomFMGeometry.py

#######################

# RandomFMGeometry.py #

#######################

"""RandomFMGeometry - Methods for making random periodic fiber-matrix geometry

Functions:

make_RVE: Generates a random periodic RVE based on input parameters

write_RVE: Writes RVE geometry data to a file

"""

from scipy import spatial

#from numpy import random #This is not threadsafe

import random #The native random number generator in python is threadsafe.

import matplotlib.pyplot as plt

import Fiber

import math

import time

import os

import shutil

def main():

NumFibers = 1000

Vf = 0.70

AvDiam = 5.0e-6

(FiberData,RVEDim) = make_RVE(NumFibers,Vf,AvDiam)

write_RVE(FiberData,Vf,RVEDim,os.path.join(’RVE_Data’,’RandomRVE.txt’))

#plt.show()

def make_RVE( NumFibers,

Vf,

AvDiam,

DiamStdDev = 0.0,

RVEAspectRatio = 1.0,

Visualize = False,

ShowFinal = False,

Epsilon = 1.0e-3):

"""Makes a random periodic fiber-matrix RVE

250



Inputs:

NumFibers: Number of fibers in the RVE

Vf: Fiber volume fraction

AvDiam: Average fiber diameter

DiamStdDev: Standard deviation of fiber diameter (Defaults to zero)

RVEAspectRatio: W/H of RVE (Defaults to 1, or square)

Visualize: If True, makes image of fibers for each iteration

(Defaults to False)

ShowFinal: If True, displays a matplotlib window showing final

fiber locations (Defaults to False)

Epsilon: Extra distance, as % of average fiber diameter, that

two overlapping fibers are moved away from each other

during iteration (Defualts to 1.0e-3)

Outputs: (MasterFibers,RVEDim)

MasterFibers: The fibers in the RVE domain. Each fiber is only

output once even if it crosses an RVE boundary

RVEDim: The dimensions of the RVE in the form [w,h]

"""

start = time.time()

NumDiamsForNeighborSearch = 2

(RVEDim, MasterFibers) = make_fibers(NumFibers,

Vf,

AvDiam,

NumDiamsForGhostFibers =

NumDiamsForNeighborSearch+1)

#print(RVEDim)

recalculate_neighbors(MasterFibers,NumDiamsForNeighborSearch)

FoundOverlap = True

frame = None

fig = None

ax = None

if Visualize:

if os.path.isdir(’frames’):

shutil.rmtree(’frames’)

os.mkdir(’frames’)

frame=0

(fig,ax)=draw(MasterFibers,RVEDim,fig,ax,frame)

while(FoundOverlap):

FoundOverlap = iterate_on_interference(MasterFibers,Epsilon)

if Visualize:

frame += 1

draw(MasterFibers,RVEDim,fig,ax,frame)

NeedToRecalcNeighbors = False

for fiber in MasterFibers:

# if any fiber has moved more than half the neighbor search

# distance minus the radius, then we need to re-calculate the

# neighbors

if fiber.get_distance_since_last_neighbor_update() > \

fiber.radius * (NumDiamsForNeighborSearch-1):

NeedToRecalcNeighbors = True

break

if NeedToRecalcNeighbors:

recalculate_neighbors(MasterFibers,NumDiamsForNeighborSearch)

elapsed = time.time() - start

print("Total Time to generate RVE Geometry: " + str(elapsed) + ’ seconds’)

if ShowFinal:

draw(MasterFibers,RVEDim,fig,ax)
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plt.savefig(’RandomFiberMatrix.eps’,bbox_inches=’tight’)

plt.show()

return (MasterFibers,RVEDim)

def make_fibers(numFibers,

Vf,

AvDiam,

DiamStDev=0.0,

RVE_AR=1.0,

NumDiamsForGhostFibers=4):

"""Generates Master Fibers

Inputs:

numFibers: Number of fibers

Vf: Fiber Volume Fraction

AvDiam: Average Fiber Diameter

DiamStDev: Standard deviation of fiber diameters as a % of the average

diameter

RVE_AR: Aspect ratio of the RVE, w/h

"""

#radii = [a/2 for a in DiamStDev*AvDiam * random.randn(numFibers) + AvDiam]

radii = [random.gauss(AvDiam, DiamStDev)/2 for i in range(numFibers)]

AreaFibers = sum([math.pi*a*a for a in radii])

RVEArea = AreaFibers/Vf

h = math.sqrt(RVEArea/RVE_AR)

w = RVEArea/h

RVEDim = [w,h]

MasterFibers = []

#randvals = random.rand(numFibers,2)

randvals = [(random.random(), random.random()) for i in range(numFibers)]

for i in range(numFibers):

coord = [randvals[i][0]*w,randvals[i][1]*h]

MasterFibers.append(

Fiber.PeriodicMasterFiber(coord,

radii[i],

i,

RVEDim,

AvDiam*NumDiamsForGhostFibers))

return (RVEDim,MasterFibers)

def recalculate_neighbors(MasterFibers,FiberDiamsToSearch):

"""Recalculates ghost fibers and neighbor fibers"""

AllFibers = []

for fiber in MasterFibers:

fiber.calc_ghost_fibers()

AllFibers.append(fiber)

AllFibers.extend(fiber.GhostFibers)

#print(len(AllFibers))

AllFiberCenters = []

for fiber in AllFibers:

AllFiberCenters.append(fiber.center)

FiberCentersKDTree = spatial.KDTree(AllFiberCenters)

for fiber in MasterFibers:

fiber.update_neighbor_fibers(FiberCentersKDTree,

AllFibers,

FiberDiamsToSearch)

def iterate_on_interference(MasterFibers,epsilon):
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"""

Loops through all fibers and resolves interference if it is found to exist

"""

FoundOverlap = False

for fiber in MasterFibers:

FoundOverlap |= fiber.fix_overlap_with_neighbors(epsilon)

return FoundOverlap

def write_RVE( FiberData,

Vf,

RVEDim,

FileName):

"""Generates a file containing the RVE data, used by the mesh generator"""

file = open(FileName,’w’)

file.write(’\t’.join([str(len(FiberData)),

str(Vf),

str(RVEDim[0]),

str(RVEDim[1])])+’\n’)

for fiber in FiberData:

fiber.fix_periodicity()

file.write(str(fiber)+’\n’)

file.close()

def draw(Fibers,RVEDim,fig,ax,frame=None):

"""Draws the RVE in the input axes"""

if not fig:

fig = plt.figure()

if not ax:

ax = plt.axes()

else:

ax.clear()

ax.get_xaxis().set_ticks([])

ax.get_yaxis().set_ticks([])

for fiber in Fibers:

fiber.draw(ax)

ax.set_aspect(’equal’)

plt.xlim(0,RVEDim[0])

plt.ylim(0,RVEDim[1])

if frame:

plt.savefig(os.path.join(’frames’,

str(frame)+’_RVE.eps’),

transparent=True,

bbox_inches=’tight’)

return (fig,ax)

if __name__=="__main__":

main()
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