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ABSTRACT 

The present work carries out numerical simulations of viscous incompressible 

flow past a sphere or a spheroid at low Reynolds numbers. When the flow passes a 

sphere or a spheroid, the flow will have its motion changed because of the shear stress 

from the surface of the object. This change of motion also differs at different Reynolds 

numbers based on the geometry of the sphere or spheroid.  

Many fluids researchers have conducted experiments to investigate the variations 

of the flow past a sphere at low Reynolds numbers. But the research on flow past a 

spheroid mainly focuses on cases at high Reynolds numbers (Re>105). Up to date, 

numerical study on flow past a spheroid at low and intermediate Reynolds numbers 

(<1000) has not been done thoroughly.  

The first part of this work is to investigate variations of the flow past a sphere 

occurring with increasing Reynolds number up to 400. The code used in this thesis is 

OpenFOAM which is an open source package providing a solver based on the Finite 

Volume Method. To verify the accuracy of the simulations by the code, results for 

velocity, vorticity and drag coefficient at very low Reynolds number (Re<0.1) are 

compared with exact solutions by Stokes Law.  Then variations of the flow pattern are 

displayed up to Reynolds number 400. Some characteristics such as the drag coefficient, 

wake length and wake angle are recorded for contrast with data in publications. The 

wake length and separation angle both show logarithmic relationship with the Reynolds 
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number. Flow patterns such as streamline around the sphere and periodic shedding are 

also discussed on the ground of previous knowledge.   

The second part will investigate the flow past a prolate spheroid. Discussion on 

this topic is developed in the regime of low Reynolds number (Re<1000).  The present 

work investigates cases at very low Reynolds numbers (Re<0.1) and compares the 

results with exact solutions predicted by previous researchers. For higher Reynolds 

numbers, present work mainly focuses on studying variations of the drag coefficient with 

the Reynolds number and aspect ratio. The simulation shows that a spheroid has larger 

drag coefficient than a sphere at lower Reynolds numbers and then tends to be the 

smaller one for higher Reynolds numbers.  
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NOMENCLATURE 

a Major Axis Length of the Spheroid 

b Minor Axis Length of the Spheroid 

c Half Focal Length of the Spheroid 

CD Drag Coefficient 

CP Pressure Coefficient 

D Drag Force 

Dsphere Drag Force on a Sphere 

e Eccentricity of the Spheroid 

ex Unit Vector in x Axis 

ey Unit Vector in y Axis 

ez Unit Vector in z Axis 

g  Gravitational Acceleration   

L Characteristic Length for Reynolds Number 

p Pressure 

q Velocity at the Infinity 

r Radius of the Sphere or Spherical Coordinate 

Re Reynolds Number 

Ra Reynolds Number Based on a 

Rb Reynolds Number Based on b 

s Wake Length 
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t Time 

U Velocity Magnitude at the Inlet 

rU  Velocity along the Radial Direction  

U  Velocity along the Azimuth Angle Direction 

U  Velocity along the Zenith Angle Direction 

u Velocity along x Axis 

𝑉⃗  Velocity Vector 

v Velocity along y Axis 

w Velocity along z Axis 

υ Kinematic Viscosity 

𝜙 Potential Function 

𝛹 Stream Function 

𝜇 Dynamic Viscosity 

ω Vorticity 

  Azimuth Angle in the Spherical Coordinate 

  Zenith angle in the Spherical Coordinate 
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1. INTRODUCTION AND BACKGROUND 

1.1 Literature review 

It is known that the Stokes’ Law provides an approximated exact solution at 

sufficiently low Reynolds number for flow past a sphere. Lamb (1934) discussed 

detailed solutions for this type of flow in his book Hydrodynamics [1].  

There are many archived publications focus on investigations of the behavior of 

the flow past a sphere. Taneda (1956) photographically investigated flow past a sphere at 

Reynolds numbers from 5 to 300 [2]. He found the critical Reynolds number (Re=24) 

when a double-ring looking wake after the sphere begins to show up. He also 

investigated the variations of size and position of the wake with respect to the Reynolds 

number.  According to his test data, the wake length increases linearly with the 

logarithm of the Reynolds number. At a Reynolds number of about 130, he observed that 

the flow began to oscillate.   

Magarvey and Bishop (1961) photographically depicted wake configurations in a 

liquid due to the passage of a falling immiscible liquid drop (Carbon Tetrachloride) 

corresponding to Reynolds numbers between 10 and 2500 [3].  Although it is a liquid-

liquid system, both the pattern of the wake and the wake length data showed good 

correlation with that by Taneda. The paper reported that the transition from one wake to 

a double-ring wake behind the sphere occurs at a Reynolds number somewhat less than 

20. At Reynolds number 210, the authors observed a transition of the flow pattern from a 

symmetrical and single thread to an asymmetrical and double thread. Then at the 
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Reynolds number between 270 and 290, this double thread oscillated periodically.  After 

Reynolds number 290 up to 400, they reported a double row of vortex rings after the 

drop.  They were the first to find a linear relationship between the Strouhal number and 

Reynolds number for this range, which was reported to occur at Reynolds number 

between 290 and 700.  

Rimon and Cheng (1969) performed a numerical work for flow past a sphere at 

Reynolds number from 1 to 1000 [4]. Their work was based on a second order finite 

difference approximation both in time (Dufort- Frankel) and space. They compared their 

results for the wake length and wake angle with Taneda’s data and claimed that a 

recirculating eddy even existed at Reynolds number of 10.  

Roos and Willmarth (1971) presented specific experimental results of the drag 

coefficient on a sphere for Reynolds number ranging from 5.33 to 118300 [5].  These 

results contain test data at many Reynolds numbers and are frequently cited in 

subsequent publications. 

Nakamura (1976) used dye for visualization to examine the wake configurations 

after a sphere falls in water at terminal velocity [6]. He focused on the investigation of 

the wake shape, and more specifically, the separation angle of the wake. The results 

coincide well with Taneda’s work at Reynolds numbers larger than 30, but show 

significant discrepancies at Reynolds numbers lower than 30. He also found a critical 

Reynolds number (Re=7.3) at which the wake began to develop double-ring eddies and a 

critical Reynolds number (Re=190), where he found a double thread wake.   
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Fornberg(1988) reported situational results for wake length and drag coefficients 

for Reynolds numbers from 100 up to 2000 [7]. His results show agreement with 

Taneda(1965) and Roos & Willmarth(1971) at Reynolds number up to 200.    

Sakamoto and Haniu(1999) investigated the shedding frequency after Reynolds 

number 300 and found that the variations of the shedding can be classified by four 

regions [8]. Later they also (1995) attempted to explain the formation mechanism of the 

periodic shedding behind a sphere passed by a uniform shear flow at Reynolds numbers 

ranging from 200 to 3000 [9].  From the experiment, they observed a lower critical 

Reynolds number for vortex shedding and a higher Strouhal number for the shedding 

than that for a uniform incident flow. They also determined the variations of the Strouhal 

number with Reynolds number up to 3000.  

Johnson and Patel (1999) used a four-stage Runge-Kutta integration method to 

numerically simulate flow past a sphere up to Reynolds numbers of 300.  They identified 

three stages of the flow by means of the flow pattern: steady axisymmetric flow, steady 

non-axisymmetric flow and unsteady flow [10]. 

Tomboulides and Orszag (2000) are the first to present simulations of viscous 

incompressible flow past a sphere by using Direct Numerical Simulation (DNS) based 

on spectral methods [11]. The authors investigated characteristics of the flow for 

Reynolds numbers from 25 up to 1000. Their results include wake lengths, separation 

angles, pressure coefficients, vorticity patterns, and Strouhal numbers.  They compared 

these results with previous data and showed good correlation.  
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There are generally less publications on flow past spheroid than sphere. Bus as 

early as in 1910, Ossen proposed linearized equations of motion for an incompressible 

viscous flow past a rigid sphere when the Reynolds number is fairly small [12]. Oseen 

also gave an analytic solution for the drag force as a function of the aspect ratio and the 

Reynolds number in his book [13].  A fitting curve formula for the drag coefficient with 

respect to the Reynolds number was provided by [14]. 

Other researchers such as Aoi (1955) [15] and Breach (1961) [16] derived exact 

solutions of drag coefficients for flow past oblate and prolate spheroids at low Reynolds 

number. 

Rimon and Lugt (1969) numerically studied flow past oblate spheroids at 

Reynolds numbers of 10 and 100 [17]. They compared pressure and vorticity around the 

sphere at different aspect ratios and found the larger aspect ratio of the oblate spheroid 

is, the higher vorticity and pressure around it are, so as the drag coefficient on the 

spheroid is.  

Masliyah and Epstein (1970) studied the steady incompressible flow past oblate 

and prolate spheroids for Reynolds number up to 100 [18]. The aspect ratios they used 

were 5, 2 and 10/9 together for prolate spheroids and 0.2, 0.5, 0.9 for oblate spheroids, 

together with 1 representing the case of a sphere. They presented variations of pressure 

coefficients, drag coefficients and wake lengths with the Reynolds number at different 

aspectios.   

Chwang and Wu (1976) analyzed a uniform flow past a prolate spheroid at low 

Reynolds number [19]. By changing the slenderness ratio, they obtained results for drag 
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coefficient and compared their work with predictions by theories of Oberbeck [12] and 

Oseen[13] at low Reynolds numbers.  

1.2 Research methodology 

The simulations are performed by using OpenFOAM, an open source CFD 

program developed by using C++. The solver for present simulations is IcoFOAM which 

applies the Finite Volume Method with a transient solver based on the PISO (Pressure 

Implicit Splitting of Operators) algorithm for incompressible flow. The present work 

utilizes approximated exact solutions by Stokes [1] for flow past a sphere or a spheroid 

at low Reynolds numbers (Re<0.1) to benchmark the simulation results obtained by 

OpenFOAM. For higher Reynolds numbers (Re>1), present work studied variation of 

the flow pattern including the streamline profile and the wake length, as well as the drag 

coefficient. These numerical results are compared with published results by Taneda [2], 

Roos and Willmarth [4] and Orszag [10]. The second part of this work discusses 

simulations for flow past a spheroid at variable Reynolds number and spheroid aspect 

ratios. Simulations for drag coefficient at very low Reynolds numbers (Re<0.1) are 

compared with published exact solutions by Oseen[13]. Drag coefficients for spheroids 

with several aspect ratios at higher Reynolds number are also investigated and found to 

behave different relations with the results for a sphere.  
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2. NUMERICAL SIMULATION AT VERY LOW REYNOLDS NUMBER 

2.1 Basic theory for Stokes Flow 

The Navier-Stokes Equation for a Newtonian incompressible flow reads 

2V p
V V V g

t




 
      


 .                                                                      (2.1) 

The flow also satisfies the continuity equation:  

0V  .                                                                                                            (2.2) 

Neglect gravity and assume steady-state, then the Navier-Stokes equation 

becomes 

2 0
p

V



    .                                                                                              (2.3) 

From definition of the Reynolds number, 

Re
V L


 .                    (2.4.1) 

We know that for very low Reynolds number, Re<<1, the inertia effects are very 

small compared with viscous effects.   Such a flow is named Stokes flow named after the 

famous mathematician George Gabriel Stokes, or creeping flow. One of the most 

classical cases in low Reynolds-number hydrodynamics is the Stokes solution for steady 

flow past a sphere, which is refereed as the Stokes Law in this thesis. Applications of the 

Stokes law range from electron charges to the physics of aerosols. For better 

understanding the theory, this work rederives the solution as following. 
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Figure 1 Nomenclature of flow past a sphere 

 

                            

Figure 2 Spherical coordinate system of the flow 

The continuity equations gives 

0V  .         (2.4.2) 

With inertia effects neglected the Naiver-Stokes equation becomes 

2 0
p

V



    .        (2.4.3) 

 

r 
θ 

φ 

V 
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Conversion from the Cartesian coordinate system to the spherical coordinate 

system gives 

cos sin

sin sin

cos

x r

y r

z r

 

 







 

.        (2.5.1) 

And velocities converted to the spherical coordinate become 

           

cos sin sin sin cos

cos cos sin cos sin

sin sin cos sin

r

x y z
U U V W

x r y r z r

x y z
U U V W

x r y r z r

x y z
U U V

x r y r z r





  
    

  
    

  

  
   

  

      
     
     


      

     
     

      
     
     

 (2.5.2) 

For very slow flow, the flow is laminar and does not have rotation about z-axis,  

0U  .            (2.6) 

The continuity equation in the spherical coordinate gives 

2

2

1 1
( ) ( sin ) 0

sin
rr U U

r r r
 

 

 
 


.        (2.7) 

As r goes to infinity,  

sin

cosr

U U

U U

 



 



.           (2.8) 

In the spherical coordinate, the stream function  is defined as: 

2

1

sin

1

sin

rU
r

U
r r





 











 



.           (2.9) 

The stream function can be obtained by integration: 
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2 2sin
2

W
r  , r=  ,                                           (2.10.1) 

2( ) ( )V V V     .                           (2.10.2) 

Because of the continuity condition, 0V  , we can have  

2( )V V    ,        (2.11) 

where V   is the vorticity.  

Take curl of the N-S Equation,  

2( ) 0
p

V



     .        (2.12) 

0p   because p is a scalar, thus, 

2 ( ) 0V V    .       (2.13) 

Since
sin

e
V

r





 
  

 
, we have  

0
sin

e

r





 
  

 
 ,        (2.14) 

2
2

2 2

sin 1
0

sinr r




  

    
   

    
.      (2.15) 

With boundary conditions: 

0ru u   at r=a,          (2.16) 

2 2sin
2

U
r   at r  ,        (2.17) 

the stream function can be obtained as: 
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3
2 23

sin
2 2 2

U a ar
r

r
 

 
   

 
.        (2.18) 

Correspondingly, the velocities along r and   directions are: 

3

3

3

3

3
cos 1

2 2

3
sin 1

4 4

r

a a
u U

r r

a a
u U

r r






 
   

 

 
    

 

        (2.19) 

Meanwhile, other properties of the flow are as following. 

Vorticity,  
2

3 sin

2
Ua e

r



    .       (2.20) 

Pressure. From the N-S equation, 
3

cos
p Ua

r r








. Integrating both sides with 

respect to r yields 
3

3
cos

2

Ua
p p

r


  .       (2.21) 

The following part of this chapter would compare simulation results from exact 

solutions for velocity, vorticity and pressure. 

2.2 Comparison of simulation with theoretical predictions 

2.2.1 Velocity 

At 0   and , we can have sinθ=0, cos 1  and -1 respectively. In that case, 

the velocity is equal to radial velocity, ru u . Figure 3 and  

Figure 4 shows simulation results for streamlines and velocity magnitude at 

Reynolds number of 0.01. At such a low Reynolds number, the flow is symmetrical 

about the parallel centerline and shows diffusive profile in the velocity field.   
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Figure 3 Streamlines of flow past sphere at low Reynolds number (Re=0.01) 

 

 

 

Figure 4 Velocity magnitude contour for flow past sphere at Re=0.01 

            Figure 5, Figure 6 and Figure 7 demonstrate velocity magnitude versus x 

coordinate computed by present work and predictions by the Stokes Law, given in the 

Equation (2.16). The three cases apply different domains, with box length increasing 
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from 20a to 40a. As can be seen from the three figures, the two results by OpenFOAM 

and the Stokes Law show better agreement for larger domain. The difference for the two 

results is caused by the fact that OpenFOAM sets fixed inlet boundary conditions at the 

inlet and outlet and begins computation from there while the StokesLaw begins its 

calculation from the center of the sphere. It is not difficult to foresee that the difference 

will be negligibly small when the domain is sufficiently large.  

 

 

Figure 5 Velocity along θ=0  for L=20D (Re=0.01) 
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Figure 6 Velocity along θ=0  for L=30D (Re=0.01) 

 

Figure 7 Velocity along θ=0  for L=40D (Re=0.01) 
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2.2.2 Vorticity 

Equation (2.22) gives the expression for the vorticity: 

32
2 2 2

3 sin 3

2 2
( )

Uay
Ua e e

r
x y

 


    



.     (2.22) 

Equation (2.19) transforms the solution from the cylindrical coordinate system 

into the Cartesian coordinate system. For convenience of comparison, here this thesis 

only takes the results along the line x=4a.  Figure 8 shows the vorticity plotted in contour 

and Figure 9 to Figure 11 display predicted vorticity magnitude along the line at 

increasing domains. Figure 9 reveals that there is little relevance between situational 

results and magnitude of the Reynolds number provided that the Reynolds number is 

sufficiently small, since here we obtain almost the same results for Re=0.01 and Re=0.1. 

The three pictures from Figure 9 to Figure 11 denote that the larger the domain is the 

better the situational results coincide with the curves plotted from the Stokes law. When 

the height of the box is 40 diameters of the sphere, the two results agree with each other 

very well, see the Figure 11.  
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Figure 8 Vorticity contour for flow past sphere at low Reynolds number (Re=0.01) 

 

Figure 9 Vorticity magnitude along y=4a for H=15D (Re=0.01) 
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Figure 10 Vorticity magnitude along y=4a for H=20D (Re=0.01) 
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Figure 11 Vorticity magnitude along y=4a for H=30D (Re=0.01) 

2.2.3 Pressure 

From the stokes law, the pressure for stokes flow past a sphere is 
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Here a normalized pressure is defined as pressure coefficient, 
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Therefore, the Stokes Law actually predicts the pressure coefficient as following, 
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From the equation for pressure coefficient above, we can see that Cp is zero if 

θ=π/2, which means the pressure coefficient is zero along the vertical axis across the 

sphere center. Figure 12 shows that the pressure coefficient along the y axis predicted by 

the simulation is nearly zero, which correspond to previous prediction.  

 

 

Figure 12 Pressure coefficient along the y- axis across sphere center 

Figure 13 plots the pressure coefficient along the parallel line across the sphere 

center, where cosθ=-1 when x<0 and cosθ=1 when x>0. The pressure coefficient 

becomes,    
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Figure 13 Pressure coefficient along the x-axis across sphere center 

In summary of this chapter, by comparing with exact solutions for velocity, 

vorticiy and drag coefficient, OpenFOAM predict reliable situational results for a 

uniform flow past s sphere. As the channel goes bigger, the numerical results become 

more exact. After benchmark work of the code, simulations at higher Reynolds number 

and for flow past a spheroid will be discussed in next chapters.   
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3. FLOW PAST A SPHERE AT REYNOLDS NUMBER UP TO 500 

At Reynolds number increasing up to 500, the flow after the sphere displays 

different patterns. Many researchers have reported such variations of the flow pattern 

observed from experiments and simulations. The first chapter of this thesis has done a 

review on these publications. Sakamoto and Haniu defined classifications or stages of 

flow according to the flow pattern, but they did not include stokes flow at very low 

Reynolds number (Re<<1) and flow at low Reynolds number before vortex rings 

appears [8]. This thesis sums up all the results and classifies six stages from very low 

Reynolds number up to 500. The six stages are shown in the Figure 14. Please note that 

the boundaries between two stages are approximate values.  Table 1 shows 

corresponding flow characteristics and pattern pictures cited from previous publications. 

 

Figure 14 Stages of the flow past a sphere versus Reynolds number 
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      Table 1 Characteristics and pattern of the flow at different Reynolds numbers 

Stage Reynolds number Characteristics & Pattern 

I Re<< 1 Stokes flow 

 

II 1<Re<30 Single tale without rings 

 

III 30<Re<210 Single thread with vortex rings 

 

IV 210<Re<270 Double threads 
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Table 1 Continued  

Stage Reynolds number Characteristics & Pattern 

V 270<Re<290 Double threads with waves 

 

VI 290<Re<410 Vortex loops 

 
 

 

From the pattern pictures in the Table 1, descriptions of the above six stages can 

be made as following stages. 

Stage I. At very Reynolds number (Re<1.0), the streamline of the flow is 

symmetrical both vertically and horizontally.   

Stage II. A vortex sheet appears after the sphere.  

Stage III. Separation begins to occur at Reynolds number around 30 and generate 

a wake containing two oppositely rotating rings. The wake length and separation angle 

should change with the Reynolds number as previous publications reported.  
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Stage IV. For Reynolds number from 30 up to around 210, the flow solution 

remains axial symmetrical.  At Reynolds number 210, the flow begins to lose axial 

symmetry and break up into two vortex sheets while still remains planar symmetry until 

Reynolds number 270. 

Stage V. At Reynolds number around 270 up to 290, the flow shows periodic 

oscillation.   

Stage VI. At Reynolds number 290, the flow begins to generate vortex loops at a 

single frequency. 

Chapter I has already discussed the Stokes flow for the stage I. The next section 

of this chapter continues to discuss other stages.   

3.1 Wake length and wake angle versus Reynolds number 

Taneda (1956) experimentally investigates the wake length and wake angle of the 

flow past a sphere at Reynolds number up to about 200 [2]. He found that the wake 

length and wake angle shows a linear relation with the logarithm of the Reynolds 

number. The method he employed to measure the wake length is to take photographs of 

streak lines formed by aluminum powder. Orszag [11] and Fornberg [7] also published 

their situational results for wake length and claimed correlation with Taneda’s. 

As the Reynolds number is larger than a critical Reynolds number, the flow after 

the sphere will separate and form two symmetrical vortex rings rotating in reverse 

directions. There is a stagnation point in the rear of the two vortex rings [11]. Hereby the 

wake length is defined as the nominalized distance from the rear tip of the sphere to this 

stagnation point, as shown in Figure 15 (a- d) plot velocities along the centerline from 
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the surface of the sphere. It is can be seen that the velocity increase from negative to 

positive at some points as Reynolds numbers are larger than 30, which means the flow 

does not show any vortex rings until Reynolds number reaches 30.  Correspondingly, 

Taneda observed that the critical Reynolds number at which the vortex-ring begins to 

form after the sphere is about 24. Therefore, situational results by OpenFOAM well 

coincide with test data at this critical Reynolds number. Furthermore,  depicts the two 

results for wake length at increasing Reynolds number. The two results show very good 

agreement but a small difference at Reynolds number of 100. 

 

                   

Figure 15 Nomenclature of the streamline contour and coordinate 
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 (a) Re=20 

        

        (b) Re=30 

Figure 16 Velocity magnitude along the centerline after the sphere 
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           (c) Re=50 

 

        (d) Re=100 

Figure 16 Continued  
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To investigate discrepancies of the two results at Re=100, many uncontrollable 

factors have to be considered. In the experiment, the flow is confronted with 

disturbances from its surrounding and other unavoidable error cause by test rigs or 

testers, while in simulations the flow is not. Similarly, the difference of wake lengths 

may also come from measurement since the results from Taneda are measured from 

photographs.  

 

 

Figure 17 Wake lengths versus Reynolds number by OpenFOAM and Taneda 
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number becomes larger and produce more pressure drag. Streamline patterns for higher 

Reynolds numbers are not shown here because of instability of the flow.  

 

 

Figure 18 Flow patterns after the sphere at different Reynolds numbers 

 Figure 19 also shows the flow patterns for Reynolds number of 280 including 

velocity magnitude and vortex contours. As Table 1 shows, at Reynolds number of 280, 

Re=20 (b) Re=30 

(c) Re=50 (d) Re=100 
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the flow begin to have a wave after the sphere and the flow is symmetrical on one plane 

but asymmetrical on another, which is also demonstrated by Figure 19 (b) and (c). 

 

 

Figure 19 Velocity and vorticity fields for flow past a sphere at Re=280 

(a) Velocity magnitude  

(b) Vorticity contour about z-axis  

(c) Vorticity contour about y-axis  



 

30 

 

3.2 Drag coefficient for flow past a sphere 

Figure 20 shows the drag coefficients versus Reynolds number up to 10000 

predicted by various models for flow past a sphere. It can be seen from the figure that 

the drag coefficient decrease rapidly at lower Reynolds number and tend to be constant 

at Reynolds number around 1000. 

 

 

Figure 20 Predictions of various models for drag coefficient past a sphere 

To find out the reason for this phenomenon, discussion would be put on sources 
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frictional drag comes from the shear stress between the fluid and the body surface. This 

friction force is associated with the development of the boundary layer and caused by the 

velocity gradient in the vertical direction, i.e., /w du dy    in a Newtonian fluid. The 

pressure drag comes pressure difference between the front and rear parts of the obstacle 

passed by a flow at relatively higher Reynolds number (Re>20 for flow past a sphere).  

This drag is associated with the formation of a wake due to boundary layer separations. 

Both types of drags are because of viscosity since there would be no drag if the fluid is 

inviscid. But please also note that the two types of drags are induced by different flow 

phenomena. Generally speaking, frictional drag is important for attached flows and 

pressure drag is important for separated flows.   

At very low Reynolds number, when the inertia effect is very small and hence the 

drag is dominated by frictional component, the body is called as streamlined body and 

the flow is called Stokes Flow or Creeping Flow.  

In the previous chapter, flow at very low Reynolds numbers was discussed and 

the drag coefficient was also compared with the theoretical results from the Stokes law 

which predicts the drag coefficient for creeping flows: 

 
24

Re
DC  .         (3.1) 

But the Stokes law is only applicable at Reynolds number smaller than 0.5. Many 

researchers have been working on figuring out an approximate expression for predicting 

the drag coefficient on a sphere. Oseen [13] considered the inertia effects and developed 

a correction to the Stokes drag coefficient, 
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24(1 3Re/16)

Re
DC


 .        (3.2) 

Clift et al. [14] presented an equation proven to have very good correlation with 

experimental data by Roos and Willmarth [5] as:  

0.687

1.16

24 0.42
(1 0.15Re )

Re 1 42500Re
DC


  


.     (3.3) 

Drag coefficient.  Many researchers have published the correlation for drag 

coefficient versus the Reynolds number in uniform flow past a sphere [20, 21, 22, 23, 

24]. These correlations they claimed may differ, but as the Reynolds number goes very 

small all correlations lead to the same conclusion:   

Re 0

24
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D

d

C


 .                                                                    (3.4) 

Figure 21 displays the curve for drag coefficient plotted from Eqn. (3.4) and 

corresponding with simulation results given by OpenFOAM. OpenFOAM generally 

reports slight larger results. The largest difference is a little less than 2.8%. Again, this 

comparison proves that OpenFOAM is quite reliable,  
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Figure 21 Drag coefficient versus Re by Stokes Law and OpenFOAM 

As the angle of attack increases, boundary layer separation occurs due to high 

pressure gradient at top and rear parts of the body. This separation finally cause wake 

formation and makes pressure after the sphere drop. As a result, the pressure difference 

between the front and rear regions consequently increases. This is also the reason why 

the drag coefficient is higher for flow past a disk than a sphere, as reported in 

experiments by Roos and Willmarth [5].  A body is called bluff body when the drag is 

dominated by pressure drag.  
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Figure 22 Streamlines of the flow past a sphere at Re=50 

 

          

Figure 23 Pressure distribution of the flow past a sphere at Re=50  

Chapter 2 shows the wake size increases with the Reynolds number for steady 

flows past a sphere, indicating the separation zone grows larger and hence produces 

more pressure drag. The pressure drag becomes more and more dominant and finally the 

friction drag can be neglected at Reynolds numbers higher than 1000, and the drag 
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coefficient keep constant in the Newton regime, implying all the pressure is turned into 

eddy motion.   

The following section presents drag coefficients by the CFD simulation for 

Reynolds number ranging from 1 to around 300, as shown in Figure 24.  The situational 

results agrees closely with experimental data by Roos and Willmarth [5]. Both of the two 

drag coefficients falls rapidly before Reynolds number of 50 and then slows down 

decreasing afterwards. 

 

     

Figure 24 Drag coefficient versus Reynolds number for flow past a sphere    
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4. FLOW PAST A SPHEROID UP TO REYNOLDS NUMBER 400 

Compared to flow past a sphere, flow past a spheroid has been more and more 

studied by researchers in the field of biomedical technology and navy fluid mechanics.  

Figure 25 shows how a typical bacterium cell looks like. Then the motion of such a 

bacteria in body can be modeled as flow past a spheroid. Because the cells are tiny and 

body blood is very viscous, the Reynolds number is very small.  Biomedical researchers 

can also apply this fluid mechanics model in motion of a capsule since a capsule is in a 

similar shape of a spheroid [25].   

 

 

Figure 25  Structure of a bacterium cell 
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For naval researchers, study of this subject is important because the submarine 

can also be taken as a spheroid in shape. In such cases, the Reynolds number is very high 

since the size of a submarine is very large.  

          

 

Figure 26 Exterior of a submarine 

This work focuses on study of viscous flow past a spheroid at low Reynolds 

number.   

4.1 Viscous flow past a spheroid at very low Reynolds number (Re<1) 

Oseen, Aoi, and Breach [14, 15, 16] provide exact solutions for drag coefficient 

on a spheroid in a uniformly passing flow.  

The Stokes and Oseen expansions consider the problem of viscous flow with 

uniform free-stream velocity U in the x direction past an ellipsoid of revolution as 

2 2
2 2 2

2 2
1 ( , )

x r
r y z a b

a b
     .                           (4.1) 

Here the focal length 2c and eccentricity e are defined by 
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2 2 (0 1)c a b ea e     .                 (4.2) 

 

 

Figure 27 Nomenclature of a spheroid with top and side views 
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When e=1, the spheroid actually becomes a sphere. Please recall that the drag 

coefficient for a sphere at very low Reynolds number is 24 / ReD dC   and the 
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corresponding drag force is 
2 2 / 8 6sphere DC U d r   D  , where r is the radius of the 

sphere. It can be seen that 
sphereD coincides with the equation (25) as aR  is very small. 

 

 

Figure 28 Velocity of flow past a spheroid with aspect ratio of 2 at Re=200 

 

 

Figure 29 Streamline of flow past a spheroid with aspect ratio of 2 at Re=200 

Figure 30 plots drag coefficients versus the Reynolds number based on the minor 

axis length for three spheroids. The maximum Reynolds number studied here is 0.1 and 
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can be called the creeping flow or Stokes flow.  The solid lines are calculated from the 

Equation 24 and the circled dots are results by present simulation. The simulation shows 

excellent agreement at aspect ratio of 2. For larger aspect ratios, there are small 

discrepancies.  

 

 

Figure 30 Drag coefficients at very low Reynolds numbers on spheroids 

4.2 Flow past a spheroid at higher Reynolds number (1<Rb<500) 

Masliyah and Epstein [18] presented numerical study of steady flow past oblate 

and prolate spheroids for Reynolds number up to 100. They found that the drag 
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another word, a more disk-like shape does not always mean higher drag coefficient. 

Actually their results reveal that at lower Reynolds numbers the drag coefficient is lower 

for spheroids with smaller aspect ratio. Then the drag coefficient begins to increase with 

the aspect ratio when the Reynolds number is larger than a certain value (e.g., around 30 

for aspect ratio of 0.2) [18]. However, the publication did not find such kind of 

transmission for spheroids for Reynolds number up to 100. To investigate the case of the 

flow past a spheroid, this thesis has simulated a viscous incompressible flow past a 

spheroid for Reynolds number up to 1000 based on the minor axis.  

Figure 31 demonstrate a uniform flow past spheroids of four aspect ratios at 

Reynolds number up to 500 where aspect ratio of 1 refer to a sphere. In the region 

studied here, the drag coefficient decreases with the Reynolds number as the boundary 

layer gets thinner. The decreasing speed slows down when the Reynolds number grows. 

For a sphere, the drag coefficient keeps almost constant (CD≈ 0.4 ) between 
310 <Re<

52.5 10  which is referred to as the Newton regime [26].  

As can be seen from the figure, flows past spheroids of aspect ratio 1, 2, 5 and 10 

also show such a decreasing tendency. However, the present simulation shows an 

intersection of the curves at the Reynolds number of about 400 for the sphere and the 

spheroid with an aspect ratio of 2. Before the crossing, the drag coefficient increases 

with the aspect ratio. The more slender the spheroid is the higher drag coefficient it 

produces, so the sphere has the lowest drag coefficient. While after the crossing, the 

sphere reports a higher drag coefficient than the spheroid with aspect ratio of 2.  
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Figure 31 Drag coefficient for flow past a spheroid up to Reynolds number of 500 

The curve of sphere decreases very slowly at Reynolds number of 400 where the 

curves for prolate spheroids (a/b>1) are still dropping significantly. Therefore, the 

present study predict that the spheroids have a lower constant drag coefficient than the 

sphere (CD<0.4) at higher Reynolds number.   

The crossing of the curves in Figure 32 can be explained from constitution of the 

total drag. The total drag experienced by the object includes frictional drag and form 
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difference generated by flow motion. For any arbitrary object, the frictional drag on it 

always decreases with Reynolds number and tend to be negligible compared to pressure 

drag at high Reynolds number. However, the growth of pressure drag differs for 

different body shapes. Some bodies, such as spheroids, on which the pressure drag is 

small, can be called streamlined body; while for other bodies who experience large 

pressure drag are called blunt body, such as plate.   

As discussed in the previous chapter, the pressure drag becomes more and more 

dominant as the Reynolds number grows, finally making the drag coefficient curve reach 

a constant region where all the pressure loss after the body is due to the eddy motion.   

The larger the wake region is, the more pressure drag the sphere will experience. 

However, at same Reynolds numbers, the size of the wake region for a spheroid is 

smaller than a sphere [18].  

To sum up the discussion, the spheroid has larger frictional drag and hence lower 

drag coefficients at lower Reynolds numbers where the frictional drag is dominant and 

spheroid has larger surface area for friction. To the contrary, at the higher Reynolds 

number the pressure drag becomes dominant and the spheroid has smaller drag 

coefficients because of smaller separation areas.   
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Figure 32 Streamlines on a sphere and a spheroid at four different Reynolds numbers 
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4.3 Convergence study and mesh dependence of the simulation 

Convergence is critically important for a CFD simulation.  It is important to 

remember that a numerical simulation can only obtain approximations but never the 

exact solutions forever. The objective of a simulation is to yield reliable results for 

people. The word “reliable” here depends on how much accuracy does the CFD user 

need.  The more accurate a solution is demanded, the longer time or stronger hardware 

the computation cost. Sometimes it is not necessary to seek for highly accurate results in 

case that “reliable” means fairly accurate.   

Mesh density plays an important role in CFD simulations. An ideal meshed 

model should have independence of mesh sizing, i.e., the results does not change no 

matter how denser the mesh is changed. In reality, it is difficult to achieve a mesh 

independent solution even the smallest mesh available is applied. An economy way to do 

a simulation is to consider both mesh independence and computation efficiency. The 

CFD user should try to reduce the cost of a computation as far as the results controlled in 

the range satisfying the requirement of accuracy. Figure 34 shows the drag coefficient 

for flow past a sphere at Reynolds number of 50 computed by four simulations with 

increasing mesh density. By increasing the number of the mesh cells, it can be seen that 

the simulation with over 1 million cells results in a value showing good consistency with 

the previous case. This indicates that the simulation with over 1 million cells has reached 

a solution that is independent of the mesh resolution, and we can use the 0.9 million case 

for further analysis, since it provides a result within an acceptable difference.  
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Figure 33 Meshed model for a channel with a sphere 

 

 

 
Figure 34 Drag coefficients versus number of cells for flow past a sphere at Re=50 
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Figure 35 records variations of calculated drag coefficients with the time step for 

the four cases. With time step increases, all of the four results tend to converge and 

become constant at time step of around 50. It is also interesting to see that the speed of 

convergence is not relative to the mesh density. A finer meshed model means more 

computation, while coarser meshes take longer time to converge.  

 

 

Figure 35 Drag coefficients by four simulations versus time step 
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APPENDIX A 

The Naiver-Stokes equations for a viscous incompressible fluid are: 

0 u ,                 (1) 

2( )
p





    u u u .             (2) 

Introducing Stokes variables: 

* * */ , / , /x x a y y b z z b   ,           (3) 

and non-dimensionalizing the velocity vector and pressure  

* */ , ( ) /U p b p p U  u u ,           (4) 

where p  is the pressure at the infinity. 

Then the dimensionless Navier-Stokes equations become 

* * *

* * *
0

b u v w

a x y z

  
  

  
,              (5) 

* * * * *

* * * * *

2 2 2 2
*

2 *2 *2 *2

( ) ( )

( )

b x y z

b b
R u v w p

a x y z a y z

b

a x y z

    
     

    

  
  

  

u e e e

u

,    (6) 

where b

Ub
R


  is the Reynolds number respect to the semi-minor axis b. 

Correspondingly, another Reynolds number a

Ua
R


  is the Reynolds number based on 

the semi-major axis a. Following the ideas of Kaplun and Lagerstrom [1], assume the 

inner expansions for velocity and pressure to have the form: 
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* * * *

0 1 2 ...,   u u u u                (7.1) 

* * * *

0 1 2 ....p p p p                   (7.2) 

,where * * *

0 0 1, , , ...pu u are functions of * * *( , , ), ax y z R  and Rb. 

* * * *

1 1/ 0, / 0n n n np p  u u as 0bR  .     (7.3) 

Obviously, this inner expansion will satisfy the Naiver-Stokes Equation with the 

nonlinear term is zero or Stokes Equations: 

* 0 0u ,                (8.1) 

* 2 *

0p    0u  .                 (8.2) 

Now introducing the Oseen variables 

* * */ , ,a b bx Ux R x y R y z R z     and 
2( ) /p p p U  ,  (8.3) 

then the Naiver- Stokes Equations in outer variables are obtained 

* 0 u ,                 (9.1) 

2* * *( ) p   u u u .             (9.2) 

And the surface of the prolate sphere becomes 

2

2
2

b

bx
r R

a

 
  

 
.               (10) 

As the Reynolds number Rb tends to zero, the velocity vector u* at any fixed 

point will tend to be the free-stream value ey 

*

1 2 ...ye q q   u  ,              (11.1) 

1 2 ...,p p p    ,             (11.2) 
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where 1 1/ 0, / 0n n n nq q p p   as 0.bR   

Substitute equations (11) into (9) to yield 

1 0q  ,                   (12.1) 

2

1 11/q y p q     .             (12.2) 

The no-slip boundary condition on the spheroid surface gives 

* 0u on 
*2 *2 1x r  .                                                            (13) 

Chwang and Wu [19] show that the solution for the flow past a spheroid can be 

constructed by a line distribution of stokeslets and potential doublets between the foci 

x=-c and x=c given by 

1 2 1 2

2 2

1 2

[ ( ) ( ) ]

[( )[ ( ) ( ) ]

c

x y S x S y
c

c

D x D y
c

U U U U d

c U U d

    

     





     

    





u e e x e x e

x e x e

 ,          (14) 

( )
c

S x
c

p P d  


   x e  ,               (15) 

where x  e . 

The verify the no-slip boundary condition on the spheroid surface, u is written in 

the integrated form of u, which is  

1 2 1 2 1,0 1 2

2 1

1 2 3,0 1 1,1 2 1 2 1,02 2

1 1
(2 ) ( )

( ) 2

x y x y r x

x y

U U B r y
R R

x c x c
r y rB B y R R B

r r

   

   

 
       

 

    
        

  

u e e e e e e

e e

 ,      (16) 

where ( ) /r y zy z r e e e  is the unit radial vector in the y, z plane, α and β 

represent the mangnitute and directions of the stokeslet and doublet respectively,  
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2 2 1/2 2 2 1/2

2[( ) ] , [( ) ]R x c r R x c r      ,         (17.1) 

2
1,0 1,1 2 1 1,0

1

( )
log ,

( )

R x c
B B R R xB

R x c

 
   

 
 ,      (17.2) 

3,0 3,1 3,02

1 2 1 2

1 1 1
,

x c x c
B B xB

r R R R R

    
       

   
,      (17.3)

, ( ) ( 0,1,2,...; 1,1,3,5,...)
n

c

m n mc
B d n m

x





   


x   .    (17.4) 

On the spheroid surface,  

2 2
2 2 2

2 2
1 ( , )

x r
r y z a b

a b
      ,               (18.1) 

2 2 2 2

1 2(1 )( ), ,r e a x R a ex R a ex       ,             (18.2)  

1,0 3,0 2 2 2 2

1 2
log ,

1 (1 )( )

e e
B B

e e a e x


 

  
,          (18.3) 

where 
2 2/ /e c a a b a    

Then the surface velocity becomes 

2 22

1 1
0 1 1 1 1 2 2 2 2

2 22

2 2
2 2 2 22 2 2 2 2 2

2 21 2
2( ) log ( )

1 1

2 21
( ) log 2

1 1 1 ( )

x r
x

x r
y

b e xree
U

e e e e a e x

b x a re ee
U e y

e e e b a e x

 
  

 
  

 
         

   
             

e e
u e

e e
e

 .     (19) 

To set 0 0u , four equations for 1 2 1, ,    and 2 can be obtained and lead to 

solutions: 

2 2

1 2
1 2

2 2

2
;

1 1
2 (1 ) log 2 (3 1) log

1 1

U e U e

e e
e e e e

e e

  
 

    
 

  ,    (20.1)       
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2 2

1 1 2 22 2

1 1
;

2 2

e e

e e
   

 
  .         (20.2) 

The force on the speroid is  

2

_ _

1 2 1 1 2 2

( ) ( ) 8

8 ( ) 8 [ ]

s S
S spheroid V spheroid

c

x y F x F y
c

p dS P U dV

dx a U C U C

  

   


      

     

 



F n

e e e e

 ,        (21) 

where  

3 2 11
1

1

8 8 1
[ 2 (1 ) log ]

3 3 1
F

c e
C e e e

aU e

 
    


            (22.1) 

3 2 12
2

2

8 16 1
[2 (3 1) log ]

3 3 1
F

c e
C e e e

aU e

 
   


  .     (22.2)  

For the uniform flow past a prolate sphere, 
yUu e  

2

0 08 1 ( )
c

a a
c

U e R O R d   


     D ,                        (23) 

where 
2

0
2

2

1
2 (3 1) log

1

e

e
e e

e

 


 


. 

32
2

2 2

33
2

2 2

22 2
8 1 ( )

1 1
2 (3 1) log 2 (3 1) log

1 1

232
1 ( )

1 1
2 (3 1) log 2 (3 1) log

1 1

a
a

a
a

e Re c
U O R

e e
e e e e

e e

e RUae
O R

e e
e e e e

e e





 
 

     
    

  

 
 

    
    
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D
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