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ABSTRACT 

  

The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 

2010 demonstrated the importance of synoptic oil-spill monitoring in coastal 

environments via remote-sensing methods. This study focuses on terrestrial oil-spill 

detection based on hyperspectral images acquired along the coastline of the Gulf of 

Mexico. A number of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 

imaging spectrometer images were investigated in this research collected over Bay 

Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 

2010.  

Various remote-sensing image processing techniques were employed to 

detect/identify oiled vegetation. Image-derived endmembers were extracted from the 

atmospherically- and geometrically-corrected hyperspectral AVIRIS data via Minimum 

Noise Fraction transform, Pixel Purity Index generation, and n-dimensional 

visualization. Extracted endmembers are then used as input to endmember-mapping 

algorithms Spectral Information Divergence (SID) and Mixture Tuned Matched Filtering 

(MTMF) to yield fractional-abundance images and crisp classification images. Field-
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based observations of the degree of oil accumulation along the coastline were also 

employed, as well as in situ measurements from the literature.  

Multiple Endmember Spectral Mixture Analysis (MESMA) was employed for 

oiled-vegetation detection and mapping in order to enable the number and types of 

endmembers to vary on a per-pixel basis, in contrast to simple Spectral Mixture Analysis 

(SMA). MESMA thus better allows accounting for spectral variability of oil (e.g., due to 

varying oil thicknesses, states of degradation, and the presence of different oil types, 

etc.) and other materials, including soils and salt marsh vegetation of varying types, 

which may or may not be affected by the oil spill. The classification results 

demonstrated that MESMA provides advantageous capabilities for mapping several 

oiled-vegetation classes along the Gulf of Mexico coastline, relative to the conventional 

approaches tested. 
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NOMENCLATURE 

 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer  

DWH Deepwater Horizon  

DOC Dissolved Organic Carbon 

EEA Endmember Extraction Algorithm  

ENVI™   ENvironment for Visualizing Images™ 

FLAASH   Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

GOM Gulf of Mexico 

JPL Jet Propulsion Laboratory 

km kilometer 

μm Micrometer  

MESMA Multiple Endmember Spectral Mixture Analysis 

MODTRAN  MODerate resolution atmospheric TRANsmission model 

MNF Minimum Noise Fraction Transformation 

MTMF Mixture Tuned Matched Filtering  

NASA  National Aeronautics and Space Administration 

nm Nanometer 

NIR   Near Infrared (700-1300 nm) 

NOAA National Oceanic and Atmospheric Administration 

PPI Pixel Purity Index 

SAR  Synthetic Aperture RADAR 
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SCAT Shoreline Cleanup and Assessment Technique 

SID Spectral Information Divergence  

SMA Spectral Mixture Analysis 

SWIR  Shortwave Infrared (1300-2500 nm) 

UV  Ultraviolet 

VIPER Visualization and Image Processing for Environmental Research  

VNIR/SWIR  Visible/Near Infrared/Shortwave Infrared (400-2500 nm) 
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CHAPTER I 

INTRODUCTION 

 

The Gulf of Mexico is one of the largest petroleum basins in the world 

(Galloway, 2009), located adjacent to the landmasses of the continental United States 

and Mexico. Therefore, given its oil fields, it plays an important role for the petroleum 

industry and the worldwide economy. Oil spills other than those associated with natural 

seeps have been occurring offshore during extraction and transportation of oil from 

offshore sources. In the course of oil and gas exploration and production in Gulf of 

Mexico, the Deepwater Horizon oil rig accident occurred between 20 April and 15 July 

2010, and it is recorded as the largest accidental marine oil spill in history of the 

petroleum industry, and approximately 200 million gallons crude oil was released into 

the Gulf of Mexico over the course of 87 days (Crone and Tolstoy, 2010) and resulted in 

extensive damage to human livelihoods and ecosystems. The spill oiled more than 1000 

miles (1600 km) of shoreline along the Gulf of Mexico and even a year later, more than 

500 miles (800 km) of shoreline was impacted by tar balls and/or light oiling (NOAA, 

2011). This oil-spill incident in the Gulf of Mexico demonstrated the importance of 

synoptic oil-spill monitoring in coastal environments via remote-sensing methods. Such 

monitoring can help to minimize the effects of oil spills by facilitating mapping the size, 

position, and landfall of spills along the coastline. Remote-sensing technology enables 

oil-spill observation over wide marine and terrestrial areas and can provide data at 

relatively low cost in comparison to in situ-based site observations. Various sensor types 
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offer differing capabilities for detecting/estimating oil on water and land. This research 

focuses on hyperspectral remote-sensing image analysis for oil detection along the Gulf 

of Mexico coastline. Hyperspectral remote sensing, also known as imaging 

spectroscopy, affords the potential for detailed identification of materials and better 

estimates of their abundances, relative to multispectral remote sensing (Salem et al., 

2001). Hyperspectral sensing often involves recording more than 200 wavelengths of 

reflected and emitted energy (e.g., Green et al., 1998). Therefore, spectral signatures of 

various types/states of oil can thus potentially be exploited with the use of hyperspectral 

image analysis. Extensive previous oil spill remote-sensing research has been conducted 

in open-ocean and coastal waters. The present research, however, aims to detect/map oil 

in coastal marsh vegetation areas based on hyperspectral image-derived endmembers. In 

particular, AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data (Green et al., 

1998) are employed in this research, which represents a well-calibrated image data 

source that can be utilized for rigorous application to detection of oiled vegetation in this 

context. This study therefore involves classification of hyperspectral AVIRIS image data 

to detect oiled vegetation along the Gulf of Mexico coastline, including along tidal 

channels, observed near the time frame of the Deepwater Horizon oil spill. 
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1.1 Study Site 

 

The northern Gulf of Mexico basin is one of the world's most active areas of 

petroleum exploration. Thus, there are thousands oil exploration rigs operating in this 

area. The Deepwater Horizon drilling platform exploded in the Gulf of Mexico 48 miles 

off the coast of Louisiana. Since the platform was located 210 km south east of New 

Orleans and less than 100 km from the Mississippi River delta, very large amount of oil 

from the Deepwater Horizon accident reached the Louisiana’s coast (Figure 1). This spill 

contaminated over 650 miles of coastal habitat centered primarily on Louisiana’s 

sensitive delta (National Commission 2011).  

 

Figure 1 Areas potentially affected by the Deepwater Horizon accident, April-July 2010 
(Niehaus, 2010). 
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Therefore Louisiana’s coast was the most heavily impacted area and Barataria 

Bay estuary in Louisiana was among the most heavily oil impacted coastal embayments. 

The project area covers the marshes specifically along the coastline of the Bay Jimmy, 

Wilkinson Bay, and Bay Chene Fleur within the Barataria Bay (Figure 2) in order to 

identify and map oiled vegetation and create an oil distribution map via analysis of 

AVIRIS image data. Barataria Basin encompasses an area of approximately 5,720 km2 

of open water and wetland areas, with vegetation mostly dominated by the saline 

marshes. Salt marshes generally entail more oil-sensitive vegetation than freshwater 

marshes, and the oil impact on vegetation is most significant in highly organic soils of 

salt marshes (Lin & Mendelssohn, 1996; Pezeshki et al., 2000).  
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Figure 2 Map showing the study area, which covers Bay Jimmy, Bay Chene Fleur, and 
Wilkinson Bay, LA, USA (Image source: ESRI ArcGIS online World Imagery). 
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1.2 Objectives 

 

In this research, a spectroscopic approach is used to detect oiled vegetation along 

the Gulf of Mexico in southern Louisiana. The first objective of the thesis research is to 

map oiled marsh vegetation observed near the time frame of the 2010 Deepwater 

Horizon (DWH) oil spill along the coastline based on hyperspectral NASA/Jet 

Propulsion Laboratory AVIRIS image data collected over Barataria Bay, Louisiana, 

USA with SID and MTMF endmember based hyperspectral classification methods. The 

second objective of this research is to map oiled marsh vegetation over the same study 

site by performing MESMA, developed by Roberts et al. (1998), which differs from SID 

and MTMF in terms of the capability of testing multiple endmembers combinations and 

endmember spectra for each pixel in the image. Given the advantage of MESMA over 

SID and MTMF, the overall objective of this research is to evaluate the performance 

three different endmember-based hyperspectral mapping methods in detection of oiled 

marsh vegetation by performing accuracy assessments. In particular, it will be 

determined whether significant differences in classification accuracies exist among the 

results generated by these algorithms. This study focuses on terrestrial oil spill detection, 

and multiple classification methods will be used to detect oil spills along the coastline of 

the Gulf of Mexico and adjacent wetland. The primary research question of this study is 

“Can coastal oil spills be detected and accurately mapped in marsh vegetation and along 

the coastline of the Gulf of Mexico with the application of hyperspectral image 

analyses?” This study is innovative because provides an extensive comparative analysis 
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of the efficacies of several important types of hyperspectral mapping methods, 

specifically applied to the problem of oiled vegetation detection based on NASA/Jet 

Propulsion Laboratory AVIRIS image analysis. This research contributes to growing 

literature in remote sensing and oil-detection analysis using hyperspectral AVIRIS 

image data. Since the DWH oil spill is currently the largest accidental marine oil spill in 

history, this review is set within the context of the DWH blowout in 2010, during which 

approximately 200 million gallons of South Louisiana crude oil was released into the 

Gulf of Mexico (Crone and Tolstoy, 2010). This spill contaminated over 650 miles of 

coastal habitat centered primarily on Louisiana’s sensitive delta (National Commission, 

2011). 

 

1.3 Significance of the Research 

 

1.3.1 Intellectual Merit 

 

This research contributes to debates on the capabilities of remote-sensing 

technology to detect oil in the coastal environment, particularly in the areas that have 

already experienced oil spills. Hyperspectral image analysis potentially allows 

separation of oil spills from background and produces spatial maps by exploiting the 

spectral signatures of oil. This is a capability that other sensor types likely do not 

possess. This study is significant because it focuses on the detection of oil spills in a 

dynamic coastal environment that needs to be more clearly understood via three different 
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endmember-based classification algorithms. The proposed methodology is innovative 

because MESMA and SID, which have been shown to be effective in other remote-

sensing contexts, have not previously been used for quantitative remote-sensing 

detection/classification of oiled vegetation. MTMF has only used on a very limited basis 

in this domain.    

 

1.3.2 Broader Impacts of Research  

 

Two broader impacts are anticipated from this research. 

Benefits to society 

 

Currently, there are thousands of offshore petroleum and gas exploration rigs 

operating a few miles away from the coast of Gulf of Mexico. Unexpected accidents 

may release crude oil over the sea surface and along coastline. Therefore, for the 

environmental agencies such as coastal conservation agencies, it is important to know 

how to manage with oil spills in a short and long term. This research provides a new 

methodological approach for identification and mapping oil spills in coastal 

environment. The detailed methodology described in this thesis will enhance the efforts 

of early oil slick detection and mapping during any emergency response in order to 

minimize the effects of oil spill to the coastal wetlands. Therefore, this study is also 

important in understanding the ecological and morphological impacts of oil spills on the 

marshlands, and along the coastline and tidal channels for the coastal wetlands 
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conservation agencies of Louisiana, as well as similar entities/agencies in other coastal 

areas. 

Enhancing scientific/technological understanding 

 

This research underlines the critical importance of remote-sensing technology 

and particularly emphasizes hyperspectral remote sensing in the application of oiled 

vegetation detection. This study will help to better establish a stronger understanding of 

the different factors affecting accuracies of oiled vegetation detection, which will 

contribute to future research by other scholars. It is expected that the methods 

investigated here will provide the scientific community with an improved understanding 

of the effectiveness of AVIRIS data in this application domain.  This methodology and 

knowledge can be applicable to different oil- spill related studies such as management, 

mapping, and monitoring. In addition, the results of this research will be distributed to 

the various scientific communities through publication in scientific journals. 

 

1.4 Organization of the Research 

 

The thesis is composed of six chapters. The content of each chapter is 

summarized below. 

Chapter I is an introduction to the subject of this research, its motivations and 

objectives including the significance and broader impacts of this research. Furthermore, 

the information about the study area of the research is provided in this chapter. 
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Chapter II is the literature review which provides a coherent and comprehensive 

summary of imaging spectrometer and different remote sensing technologies in the 

application of oil spill detection and mapping both in terrestrial and aquatic 

environments. In addition, this chapter also provides a background about the effects of 

oil spill on vegetation species and ecosystems. 

Chapter III is the materials and methods which include detailed information 

about the sensor characteristics and explain how this research was conducted by 

describing the methods and algorithms. Besides, the datasets used for the purpose of 

study and methods applied in processing the data are introduced in this chapter. 

Chapter IV is the results section which represents the findings of all methods 

presented.  

Chapter V is the accuracy assessments chapter which compares the three 

endmember based classification techniques based on their performance in detection of 

oil spilled vegetation along the Gulf of Mexico, Louisiana.   

Chapter VI is the discussion and conclusion in which the potential uncertainties 

of data analysis are discussed, recommendations for future research are made, and the 

summary of findings of this thesis is presented.   
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CHAPTER II 

LITERATURE REVIEW 

 

The review of the literature regarding oil spill monitoring and mapping via 

remote sensing applications consists of three major components. First the review of 

different remote sensing instruments and the oil spill detectability of these sensors under 

varying conditions. Second the review of oil spill detection studies via analysis of the 

AVIRIS image data. Third the review of oil spill impacts on vegetation and detection of 

oiled marsh vegetation via remote sensing methods. 

 

2.1 Oil Spill Detection and Remote Sensing  

 

Multiple instruments are capable of detecting oil spills using spaceborne and 

airborne platforms such as radar (synthetic aperture radar (SAR), side-looking airborne 

radar (SLAR)), UV, microwave radiometers, photographic cameras, video cameras, 

electro-optical sensors within the visible and infrared, and laser fluorosensors. As the 

studies of Fingas and Brown (1997) and Brekke and Solberg (2005) conclude, each 

instrument has strengths and deficiencies, so there is no single instrument that is best at 

detecting oil spills. Active sensors such as SAR have been commonly used for oil-spill 

detection due to their all-weather and all-day operation capabilities. From the sea 

surface, oil-related materials can be identified as dark spots. Therefore, dark-spot 

detection is a critical and fundamental step for the detection and monitoring of oil spill in 
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a marine environment (Shu et al., 2010). Researchers investigate sources that cause 

different oil slicks over the sea surface. They classified oil slick signatures on SAR 

images of the sea surface into three types: natural slicks, look-alikes, and man-made oil 

spills. For example, Akar et al. (2011) state that look-alikes are produced by atmospheric 

and oceanic processes which yield as dark patches in SAR images similar to oil slicks. In 

addition, oil detection depends on the local weather conditions that determine its fate on 

the water’s surface (Nirchio et al., 2005). Therefore, oil slicks are visible only for a 

limited range of wind speeds (Brekke and Solberg, 2005). There are also other important 

limitations, such as wind speed, physical, geometrical and geographical parameters that 

affect oil detectability that must be taken into account in order to discriminate between 

oil spills and look-alikes. Most of the oil spill detection studies concentrate on single 

frequency and single polarization SAR images; however, Brekke and Solberg include 

that the differences in multi-frequency and multi-polarization signatures can provide 

more accurate and effective results for identification and discrimination algorithms of oil 

slicks. Therefore, PolSAR data can provide extra information contained in the measured 

scattering matrices, allowing separation of oil spills from the ocean background in a 

physical domain (Liu et al. 2009).  They used two UAVSAR L-band polarimetric SAR 

images acquired during the Deepwater Horizon (DWH) oil spill accident in the Gulf of 

Mexico in 2010 to demonstrate the effectiveness of fully polarimetric SAR oil spill 

detection algorithms. Similarly, in a recent research Ramsey et al. (2011) examine the 

ability of the fully polarimetric high resolution L-band SAR sensor system to detect oil 

occurrences in wetlands area. Pre- and post-spill PolSAR images acquired by the 
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NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) were 

compared, and different decomposition methods were applied for rapid production of 

targeted oil-impact maps during emergency response. Migliaccio et al. (2007) applied 

the target decomposition theorem to identify oil spills from look-alikes in SIR-C/X SAR 

polarimetry data. Hu et al. (2003) proposed a method to detect and monitor oil spills in a 

turbid estuary. In another study in 2009, they demonstrated that MODIS imagery in 

conjunction with SAR imagery is capable to locate oil spills in the sea mainly under sun 

glint conditions. They tried to estimate the surface area of natural oil slicks in the NW 

Gulf of Mexico (GOM).Oil absorbs solar radiation and re-emits a portion of this energy 

as thermal energy. It is known that thermal infrared sensors observe thick oil slicks as 

hot; oil layers of intermediate thickness as cool; whereas thin oil is not possible to detect 

in this manner (Fingas and Brown, 1997). 

 

2.2 Oil Spill Detection via Imaging Spectrometer Data  

 

Regarding the use of hyperspectral data in this application domain, 

improvements in sensor technology have led to development of hyperspectral sensors, 

such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Green et al., 

1998). A hyperspectral image consists of tens to hundreds of spectral bands and can 

provide a detailed spectral identification of a feature, such as differentiating between 

light and crude oil, and detecting small concentrations of oil (Klemas et al., 2010). 

AVIRIS was the first airborne hyperspectral sensor to measure reflected solar radiation 
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from 400 nm to 2500 nm (Green et al., 1998). Recent studies have indicated the 

potential for using remote sensing to characterize oil contamination on the ocean's 

surface by using hyperspectral images (Lammoglia & Souza Filho, 2011). The spectral 

reflectance of a given pixel is characteristic of the mixture of component materials on 

the ground; each component has its unique spectral signature. Therefore, hyperspectral 

remote sensing provides highly accurate information about materials based upon their 

spectral signatures (Campbell, 2007). In previous studies, hydrocarbon absorption 

features have been identified in the reflective region of the electromagnetic spectrum 

(Hirschfeld and Hed, 1981; Cloutis, 1989; Gaffey et al., 1993; Clark et al., 2009). A 

major absorption feature was delineated at 1726 nm due to combination of symmetric 

and asymmetric CH2 (carbon-hydrogen) and CH3 stretches.  In addition, a hydrocarbon 

plateau in the 2300-2450 nm spectral regions was observed because of the different 

combinations of the C-H bonds (Cloutis, 1989; Gaffey et al., 1993). In oil spill-detection 

analysis, AVIRIS affords the potential for detailed identification of materials and better 

estimates of their abundance. This can minimize false alarms of features which may be 

mistakenly identified as oil spill by conventional multispectral sensors. The calibration 

to remove the effects of atmosphere on the apparent surface reflectance is a critical pre-

processing step for the detection of oil spills. Salem et al. (2002) conducted research on 

the monitoring of oil-slick movements, and the detection of spills along the shoreline. 

Utilizing oil spectral-feature analysis, the authors attempted to classify light oil and 

heavy oil. Salem et al. (2001) introduced a method by using spectral information 

provided by hyperspectral data to extract the spectral signature of oil and also to 
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discriminate different types of oil such as crude or light oil on the sea. In another similar 

study by Salem et al. (2004) conducted a research in order to monitor oil slicks 

movements, and identify spills on the shoreline. They performed the Spectral Angle 

Mapper (SAM) to identify oil spills and oil dispersant in water and shoreline. In another 

study, Clark et al. (2010) examined a method to derive oil thickness and the oil: water 

ratio from remotely-sensed NIR spectral absorption features. They applied a spectral 

feature identification method to data collected with the NASA AVIRIS sensor. Oil slicks 

with different thicknesses will lead to different spectral reflectance within the 

electromagnetic spectrum. The key aspect of the oil-spill detection method is a spectral 

feature analysis of two hydrocarbon absorption features, centered near 1.72 and 2.3 μm, 

which arise from the C\H bonds in oil (Cloutis, 1989). Salem and Kafatos (2001) found 

that a signature matching method based on airborne hyperspectral imaging is more 

accurate than conventional techniques, where the analysis is based on visual 

interpretation of oil color and its appearance in the satellite image. Sidike et al. (2012) 

applied spectral unmixing and partial spectral unmixing methods for oil spill detection in 

the ocean using the AVIRIS images. The results show that the partial unmixing 

technique, called Constrained Energy Minimization (CEM), provides the best result for 

oil spill detection. In recent research, Kokaly et al. (2013) have applied a spectroscopic 

analysis to AVIRIS data collected from low and medium altitudes during and after the 

Deepwater Horizon oil spill to detect oiled areas with physically-damaged canopies in 

the marshes of Barataria Bay. They used the hydrocarbon absorption features centered 



 

16 

 

near 1.72 and 2.3 μm, which arise from the C\H bonds in oil (Cloutis, 1989) in order to 

detect oiled vegetation.   

 

2.3 Effects of Oil on Vegetation  

 

The proposed study focuses on hyperspectral remote-sensing detection of oiled 

marsh vegetation. Oil spills can occur in both aquatic and terrestrial ecosystems; 

therefore, in order to understand the environmental impacts of oil spills on the dynamic 

ecosystem, the hydrocarbon contamination needs to be investigated on a large 

geographic scale, including vegetation, sediment etc., in addition to marine 

environments (Sammarco et al., 2013). Marshes, which constitute a major component of 

river, estuarine and coastal ecosystems, are extremely sensitive to oil pollution (Vega et 

al., 2009). Several studies have investigated petroleum hydrocarbon impacts on coastal 

ecosystems. Pezeshki et al. (2000) summarized the effects of petroleum hydrocarbons on 

marsh in two categories; the first one is chemical impacts of oil on vegetation, which 

vary greatly due to oil type and amount. The second effect is the physical impacts of oil 

on vegetation by coating of the plant foliage and soil surfaces. Oil reduces the 

transpiration rate by blocking stomata and intercellular spaces, and it causes reduction of 

photosynthesis. Therefore, critical changes are expected on the reflectance properties of 

vegetation species due to physical and chemical effects of oil. Based on this knowledge, 

this research aims to discriminate oiled vegetation from non-oiled vegetation. In this 

context, remote sensing can provide valuable information. For instance, Gilfillan et al. 
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(1995) performed an image analysis of historical aerial photographs to examine the 

effects of the Amoco Cadiz oil spill on marsh ecology, and they conclude that there were 

dramatic reductions in total vegetated area in the marshes due to the oil spill. Li et al. 

(2005) conducted a study to evaluate the potential of hyperspectral AVIRIS data to 

identify vegetation stress caused by petroleum contamination. They performed various 

analyses, including those based on vegetation indices (VI), “red-edge” detection, band 

absorption analysis, spectral mixture analysis, wavelet transform, and artificial neural 

networks. They concluded that the variation in vegetation spectra demonstrates the 

biochemical consequences due to oil stress. In another study, Mishra et al. (2012) 

quantified the short-term oil-spill impact on coastal salt marshes over a large area by 

combining Landsat data with ground experiments. Lin et al. (1996) mentioned that the 

impacts of oil on vegetation may exhibit several differences due to type of species, 

extent of oil coverage, and the season of the spill. Thus, detection of oil-impacted 

vegetation with remote sensing is challenging. Ramsey et al. (2011) examine the ability 

of a fully polarimetric, high-resolution L-band SAR sensor system to detect oil 

occurrences in wetland areas. Pre- and post-spill PolSAR images acquired by NASA’s 

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) were compared, and 

different decomposition methods were applied for rapid map production of targeted oil-

impacted areas during emergency response.  

This research utilizes Multiple Endmember Spectral Mixture Analysis 

(MESMA), a modified version of Spectral Mixture Analysis (SMA), to detect and 

classify oil spills within a set of AVIRIS images acquired over the Barataria Bay, 
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Louisiana. Roberts et al. (1998) developed multiple endmember spectral mixture 

analysis (MESMA), which allows endmembers to vary on a per-pixel basis. This study 

will also assess the classification accuracies of Mixture Tuned Matched Filtering 

(MTMF) (Boardman, 1998) and spectral information divergence (SID) (Kullback, 1959) 

as baseline algorithms. Oil spills occur in both aquatic and terrestrial environments. 

There are various efforts to provide more accurate oil-mapping methods; however, few 

studies have focused on comparing the efficacies of multiple algorithms for detecting 

oiled vegetation. This proposed research will fill this gap by processing different 

airborne sensor images. This research seeks to evaluate the relative advantages and 

disadvantages of different available hyperspectral-mapping algorithms in this application 

domain. 
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CHAPTER III  

MATERIALS AND METHODS 

 

The data sets used in this research consist of hyperspectral images acquired using 

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Shoreline Cleanup 

and Assessment Team (SCAT) oiling maps along Barataria Bay, Louisiana and NAIP 

orthophotographs. In addition, spectral information regarding healthy vegetation, oiled 

vegetation, and oiled dry marsh was utilized as ancillary data which are published in 

Kokaly et al. (2013).  

 

3.1 Data Sets  

3.1.1 Airborne Imaging Spectrometer Data  

 

In this research, hyperspectral AVIRIS images acquired near the time of the 

Deepwater Horizon accident in the Gulf of Mexico were analyzed in order to detect 

potential oiled marsh vegetation along the Gulf of Mexico coastline in southern 

Louisiana, USA. Four AVIRIS images, covering the vicinity of the Barataria Bay were 

used for developing/testing the proposed methodology. The AVIRIS hyperspectral 

image is obtained using the AVIRIS scanner from the Jet Propulsion Laboratory (JPL) 

that was installed on the NGS aircraft. The AVIRIS is a unique optical sensor that 

contains 224 different detectors, with a spectral bandwidth of approximately 10 

nanometers (nm) which allows covering the entire range between 380 nm and 2500 nm. 
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The AVIRIS is a whiskbroom scanning system, and it is flown as a research instrument 

on the NASA ER-2 aircraft at an altitude of approximately 20 km at about 730 km/hr, 

resulting in approximately 20 m pixels and a 10.5 km swath width. Since 1998, it has 

also been flown on a Twin Otter aircraft at low altitude—approximately 4 km above sea 

level at about 130 km/hr, yielding 2- to 4-m spatial resolution. The AVIRIS sensor 

collects data that can be used for characterization of the Earth's surface and atmosphere 

from geometrically coherent spectroradiometric measurements. The AVIRIS represents 

the current state-of-the-art airborne hyperspectral system (Porter and Enmark, 1987; 

Green et al., 1998). Hyperspectral data provide more information compared to 

multispectral data since it contains both spatial and spectral information from materials 

which are typically collected as a hyperspectral data cube.  
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Figure 3 Concept of Hyperspectral Imagery (Image Source: NEMO Project Office, 
United States Navy, 2004). 
 

The spectral cube is a three-dimensional array containing spatial resolution on 

the x- and y-axis, the number of contiguous spectral bands of the image on the z-axis. 

The dimensional thickness of z indicates the number of bands. Therefore, the 

combination of all wavelengths in a given spatial area provides complete spectral 

signatures of endmembers present in the scene (Figure 3). National Aeronautics and 

Space Administration (NASA) organized flights of advanced remote-sensing 

instruments to support the national oil-spill response during the Deepwater Horizon 

incident. As part of that response, data were collected using AVIRIS between 6 May and 

4 October, 2010 at the request of the National Oceanic and Atmospheric Administration. 
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AVIRIS extensively mapped the region affected by the spill during 456 flights in order 

to detect and quantify thick oil emulsions on the surface. Figure 4 shows the 456 

AVIRIS scenes that were collected as part of the scientific response to the Deepwater 

Horizon oil spill in the Gulf of Mexico. In this research four spatially-contiguous 

AVIRIS images are selected for oiled vegetation-detection analysis among those 456 

AVIRIS scenes; these scenes are: f100914t01p00r02, f100914t01p00r03, 

f100914t01p00r04, and f100914t01p00r05 (Figure 5). All AVIRIS images were 

downloaded from the NASA JPL Gulf Oil Spill Archive 

(http://aviris.jpl.nasa.gov/html/gulfoilspill.html).  

 

 

Figure 4 AVIRIS flights over the Gulf of Mexico (Image Source: NASA JPL Gulf Oil 
Spill Response). 
 

http://aviris.jpl.nasa.gov/html/gulfoilspill.html
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The first AVIRIS image consists of 1,068 samples and 10,635 lines, with 224 

bands and a ground pixel size of 3.5 m × 3.5 m, which may be appropriate for 

identification of oil spills along the coastline and adjacent terrestrial environment. The 

wavelength range of the sensor is from 365.92 nm to 2496.23 nm, and the spectral 

interval is approximately 10 nm. The second AVIRIS image consists of 1,052 samples 

and 10,780 lines, with 224 bands and a ground pixel size of 3.5 m × 3.5 m. The third 

AVIRIS image consists of 1,189 samples and 11,949 lines, with 224 bands and a ground 

pixel size of 3.4 m × 3.4 m. The fourth AVIRIS image consists of 1,155 samples and 

11,896 lines of 224 bands, with a ground pixel size of 3.5 m × 3.5 m. The data were 

collected on 14 September 2010 at altitudes of 4.15, 4.21, 4.24, 4.21 km, respectively. 

Each AVIRIS scene was first radiometrically corrected at the JPL in order to remove 

fundamental geometric errors associated with the motion of the vehicle during 

collection. Atmospheric correction must also be applied to remove further errors due to 

atmospheric effects such as absorption. Spectral analysis and classification techniques 

were performed by using the photogrammetric and remote-sensing software, the 

ENvironment for Visualizing Images™ (ENVI™) version 4.8. 
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(a)                    (b)              (c)              (d) 

Figure 5 The full AVIRIS color-composite images, displayed with bands 44, 31, and 21 
as R, G, B, acquired on September 14, 2010 over the Barataria Bay, LA, USA. (a) is the 
first AVIRIS image with scene ID f100914t01p00r02. (b), (c) and (d) are the 
second,third and fourth AVIRIS image with scene IDs f100914t01p00r03, 
f100914t01p00r04 and f100914t01p00r05, respectively. 
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3.1.2 SCAT Data  

 

The Shoreline Cleanup and Assessment Team (SCAT) survey consists of a team 

walking the shoreline or transiting close to shore by boat. The major purpose of SCAT 

team is to document several critical terms of oiling such as oil character, thickness, 

percent distribution, width and length of the oiled bands, tidal zone where the oil bands 

were observed, the average and maximum size of oil deposits (NOAA, 2011). The 

SCAT process was originated during the response to the 1989 Exxon Valdez oil spill 

(Owens, 1990). During the Deepwater Horizon response, the Unified Command 

managing the emergency response (lead by the Federal On-Scene Coordinator [U.S. 

Coast Guard] in consultation with the State On-Scene Coordinators from each State, and 

BP) established a Shoreline Cleanup Assessment Technique (SCAT) Program on 28 

April 2010 (Michel et al., 2013). The presence and/or absence of oil along the coastline 

of the Barataria Bay were reported on a nearly daily basis by SCAT (Boopathy, 2010). 

18 SCAT teams, consisting of Federal, State, local, and BP representatives, conducted 

field surveys to document the location, degree, and character of shoreline oiling. SCAT 

data on oiling characteristics were used routinely to generate maps and tabular data on 

degree of oiling by habitat over time. Oiling degree categories (heavy, moderate, light, 

very light, trace) were defined based on the width of oiling bands on the shoreline (as 

measured perpendicular to the shoreline), the percent cover of oil within the band, and 

oil thickness using a two-step process. These data were the basis for verification of the 

findings from this research. Nearly all oil remnants resulting from the Deepwater 

http://response.restoration.noaa.gov/oil-and-chemical-spills/significant-incidents/exxon-valdez-oil-spill
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Horizon accident have already been cleaned due to extensive cleanup effort. Therefore 

this situation made it impossible for this research to conduct fieldwork to the study area 

covering Bay Jimmy, Bay Chene Fleur, and Wilkinson Bay in southern Louisiana. The 

data from September 17, 2010 was requested from the National Oceanic and 

Atmospheric Administration (NOAA) (Figure 6). This data includes detailed oil spill 

map along the coastline of the Gulf of Mexico and summarizes the data collected in the 

field. It provides accurate information for accuracy assessments, since the in situ data 

acquisition is slightly after the AVIRIS image acquisition time which is September, 14 

2010. 

 

Figure 6 NOAA SCAT Map showing oiling degree categories along the Gulf of Mexico 
coastline as of September, 17 2010. The red box indicates the study site of this thesis. 
(URL: [gomex.erma.noaa.gov/erma.html]) 
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3.1.3 Aerial Imagery  

 

Image data from the National Agriculture Imagery Program (NAIP) were used as 

reference data for accuracy assessments. NAIP images are aerial photographs acquired 

during the agricultural growing season across the United States. Such images have a 1-m 

spatial resolution and are collected in natural color and/or color-infrared. All images are 

inspected for horizontal accuracy (required to be within 6 m of identifiable ground 

control points) and tonal quality. NAIP end products are digital orthorectified 

photographs that are available to the public within one year of acquisition. The aerial 

photographs were downloaded from the Unites States Department of Agriculture 

(USDA) website (http://datagateway.nrcs.usda.gov/GDGOrder.aspx). The NAIP images 

used in this research were acquired on 5 May and 10 November 2010, which is before 

and slightly after the acquisition of the AVIRIS images, respectively. 

 

3.2 Image Preprocessing 

 

There are many factors which affect the quality of the hyperspectral image data, 

ranging from the external factors to the internal factors such as sensor noise and sensor 

characteristics. Before continuing with further image-processing steps, AVIRIS spectral 

overlap channels (bands 33, 34, 97, 98, 160, 161 and 162) were discarded, leaving 217 

bands. The resulting image was then used as input to atmospheric correction algorithm 

http://datagateway.nrcs.usda.gov/GDGOrder.aspx
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and the remaining channels were examined in terms of noise after atmospheric 

correction.  

After the atmospheric correction, the bands with numbers 1-4, 107-116, 153-170, 

223 and 224 were selected as visually noisy and removed, resulting in a 186-band 

hyperspectral image. A total of 186 bands out of 224 bands were thus subjected to 

subsequent analyses, after eliminating the first few bands at wavelengths shorter than 

400 nm, the bands dominated by noise, as well as the spectral-overlap bands. All other 

image-processing techniques and mapping methods were applied to the noise-reduced 

and spectral overlap-discarded data. Due to the high number of channels, the size of the 

hyperspectral data set is large, and the processing usually requires long execution times. 

Therefore, in addition to eliminating some bands, the four AVIRIS images were 

spatially-subset in order to increase efficiency in terms of processing time for all image-

processing operations. The portions of the images that contain mostly water were 

excluded, whereas those portions containing mostly land were retained for further 

analyses. The resulting spatial subsets are given in Figure 7. Spatially-subsetting the 

larger images enable the analysis to focus on the regions of the scenes that are of 

primary interest in this study.   
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(a)                            (b)                          (c)                           (d) 

 
Figure 7 Retained spatial subsets of the full AVIRIS images, displayed with bands 44, 
31, and 21 as R,G,B, where portions of the full images that contain mostly water were 
excluded.a) is the first AVIRIS image with scene ID f100914t01p00r02. (b), (c) and (d) 
are the second,third and fourth AVIRIS image with scene IDs f100914t01p00r03, 
f100914t01p00r04 and f100914t01p00r05, respectively.  

 
 

3.2.1 Atmospheric Correction 

 

In order to achieve significant spectral signatures of the ground features, several 

preprocessing steps were applied to the AVIRIS hyperspectral images such as 

atmospheric correction, noise reduction. Each AVIRIS scene was first geometrically 

corrected at the Jet Propulsion Laboratory. It was then atmospherically corrected to 

surface reflectance using ENVI™ version 4.8. Atmospheric correction of satellite images 

is a critical image-preprocessing step, where the effects of the atmosphere are removed 

or markedly minimized. A variety of atmospheric-correction algorithms are available. In 
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this research, radiometric correction using the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH) algorithm was performed on the data. FLAASH is an 

ENVI™ module for retrieving spectral surface reflectance from hyperspectral radiance 

images. It is an efficient tool for pre-processing developed by Spectral Sciences, Inc., 

under the sponsorship of the U.S. Air Force Research Laboratory in order to improve the 

analyses of visible to shortwave infrared hyperspectral and multispectral imaging 

sensors (Matthew et al. 2000). The main objectives of FLAASH are to remove 

atmospheric effects caused by scattering and absorption and to convert radiance images 

to surface reflectance images. 

FLAASH uses the MODTRAN4 radiation transfer code in conjunction with 

standard MODTRAN model atmospheres and aerosol types. A correction for the 

"adjacency effect" pixel mixing due to surface-reflected radiance scattering and a 

function to compute the average scene visibility are also included with the utilities in 

FLAASH. It convert radiance image to surface reflectance and also provides cloud 

classification, and water vapor images as output images. In order to correct the AVIRIS 

image with FLAASH the specific image parameters are necessary which are sensor type, 

pixel size, ground elevation, scene center latitude/longitude, sensor altitude, visibility, 

flight date and flight time, atmospheric model, aerosol model, water vapor retrieval, 

spectral polishing, wavelength calibration. The input parameters necessary for FLAASH 

atmospheric correction are described below for the first AVIRIS scene with the ID 

f100914t01p00r02. Sensor type, for the present study is selected as AVIRIS. The image 

average time of collection (day/month/year) was available in the metadata file.  The data 
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were collected at 15:46 GMT on 14 September 2010. The latitude of calibrated AVIRIS 

image center is at 29°25'14.88"N and the longitude is 89°52'59.99"W. The sensor 

altitude was 4.1453 km, the average ground elevation was 0.3 m as derived from a 

USGS DEM, and the pixel size was 3.5 m. A visibility of 27.94 km was found to 

produce the best fit for the path radiance. Selection of FLAASH atmospheric model is 

based on latitudinal/seasonal dependence of surface temperature of the study area. Based 

on the location of study site for a September scene Mid-Latitude Summer (MLS) was 

selected along with the maritime aerosol model (Table 1). The use of FLAASH requires 

the sensor to incorporate the at least one of the following spectral ranges for atmospheric 

correction: 1050-1210 nm, 870-1020 nm and 770-870 nm with a spectral resolution of 

15 nm or better. Since the appropriate bands are available, the water retrieval option was 

set to “Yes”.  FLAASH includes a method for retrieving the water amount for each 

pixel, in this study the 1135 nm was selected for the water absorption feature. The entire 

spectral range of the dataset must be known, as well as the Full Width Half Minimum 

(FWHM) for each band and any gain and offset values used to convert the digital 

number (DN) values to radiance, preferably available in ASCII *.txt files. Spectral 

polishing provides artifact suppression. The absorption feature of 1135 nm was selected 

as recommended in Exelis FLAASH User’s Guide (2009). 
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Table 1 Selection of MODTRAN model atmospheres based on 
latitudinal/seasonal dependence of surface temperature (Source: Exelis FLAASH User’s 
Guide, 2009). The intersection of September and Latitude (-20) °N represents the aerosol 
model used in this research.  
 

Latitude 
(°N) January March May July September November 
80 SAW SAW SAW MLW MLW SAW 
70 SAW SAW SAW MLW MLW SAW 
60 MLW MLW MLW SAS SAS MLW 
50 MLW MLW MLW SAS SAS SAS 
40 SAS SAS SAS MLS MLS SAS 
30 MLS MLS MLS T T MLS 
20 T T T T T T 
10 T T T T T T 
0 T T T T T T 

-10 T T T T T T 
-20 T T T MLS MLS T 
-30 MLS MLS MLS MLS MLS MLS 
-40 SAS SAS SAS SAS SAS SAS 
-50 SAS SAS SAS MLW MLW SAS 
-60 MLW MLW MLW MLW MLW MLW 
-70 MLW MLW MLW MLW MLW MLW 
-80 MLW MLW MLW MLW MLW MLW 

 

 

Outputs from the FLAASH correction include a surface-reflectance image, a 

cloud classification map, and a water vapor map. The FLAASH surface-reflectance 

images were subset from 224 bands to 186 bands, primarily dropping bands that have 

strong atmospheric water vapor absorption in the SWIR.  The input parameters of the 

rest AVIRIS scenes (f100914t01p00r03, f100914t01p00r04, f100914t01p00r05) are 

provided in Table 2. 
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Table 2 Partial FLAASH input parameters for all AVIRIS images 
 

Partial FLAASH Input Parameters 

Scene IDs 
Altitude 

(km) 
Flight 
Date 

Acquisition 
Time 

(GMT) Center Coordinates 

 f100914t01p00r02 4.1453  9/14/2010 15:46  
 29°25'14.88"N 
89°52'59.99"W 

f100914t01p00r03 4.2062  9/14/2010 16:04  
 29°25'24.17"N 
89°54'20.96"W 

f100914t01p00r04  4.2367  9/14/2010 16:23  
 29°24'10.46"N 
89°55'31.26"W 

f100914t01p00r05 4.2062  9/14/2010 16:43  
 29°24'22.10"N 
89°56'42.56"W 

 

 

3.2.2 Creating Water and Boat Mask 

 

AVIRIS hyperspectral image processing includes the creation of mask of pixels 

that were of no interest. Thus, the first step of the image processing in this research was 

the elimination of any non-interest materials such as water and boats within the region of 

interest prior to further analysis. The water and boat features were identified to mask out 

in order to create a land-only image. The method used to separate the water and land 

from a remotely sensed image is based on the spectral difference between water and 

land. Masking of water was carried out by using AVIRIS band 153. After creating water 

mask, polygons were produced by drawing region of interests (ROIs) covering the 

surface features including boats and the waves induced by boats in order to analyze only 

land (Figure 8). After building the water and boat masks for all images, which are given 
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in Figure 9, they were applied to the AVIRIS scenes to mask classes that are not desired. 

Eliminating these areas allowed the analysis to focus on oil-spill areas along the 

coastline and adjacent backshore.   

   

      
(a)                                                   (b) 

 
Figure 8 Masking of non-interest features over the scene, (a) is the original AVIRIS 
image including boats and water, (b) is the masked, only land image in which all non-
interest materials were eliminated. 
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(a)                            (b) 

      
(c)                               (d)  

Figure 9 Combined water and boat masks applied to the AVIRIS scenes to create only 
land image, (a) is the water and boat mask for the first image and (b),(c) and (d) for the 
second, third and fourth AVIRIS images, respectively. 
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3.3 Minimum Noise Fraction Transformation (MNF) 

 

Once all appropriate water and boat masks were created for four only land 

AVIRIS images separately, the next step is the reduction of the spectral dimensionality 

of the imagery. There are 224 bands in each AVIRIS data. However many of these bands 

contain redundant information. Minimum Noise Fraction Transform (MNF) is designed 

to eliminate redundancy and segregate any noise in the image (Boardman and Kruse, 

1994). The MNF transformation was first developed as an alternative to the principal 

components analysis (PCA). It has all the properties of the PCA, including the primary 

characteristic of optimally concentrating the information content of the data in as small a 

number of components as possible (Lee et al., 1990). The MNF transform implemented 

in ENVI™ is modified from Green et al. (1988) and defined as two-step cascaded PCA. 

The first rotation is based on an estimated noise covariance matrix which decorrelates 

and rescales the data noise. The second rotation is a standard PCA of the noise-whitened 

data creates a set of components that contain weighted information about the variance 

across all bands in the raw dataset. The MNF transformation is chosen for this study 

because it is an efficient technique for reducing a large multiband data set into small 

number components that contain the majority of information. In addition MNF orders 

components in terms of image quality. The contribution of each component to the 

overall information in a multivariate data set is measured by an eigenvalue. The resulting 

MNF images with the highest eigenvalues indicate that they contain more information 

for further processing steps. According to Smith et al., (1985) and Boardman (1993) 
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spectrally pure pixels (i.e. endmembers) can be found at the vertices of the polygon that 

bounds the data space of the principal components; whereas the mixed pixels within the 

regions defined by these endmembers. The number of endmembers in the image is 

generally one more that the number of principal components, excluding noise and 

including shade (Adams et al., 1993). The number of bands for output can be selected 

optionally by examining the eigenimages in terms of spatial coherency and eigenvalues. 

The bands containing only noise are not used in subsequent processing.  

 

3.4 Pixel Purity Index (PPI) and N-Dimensional Visualizer 

 

After selecting the number of MNF bands, the next step is to perform the pixel 

purity index (PPI), developed by Boardman et al. (1995) in order to identify pure pixels. 

Finding pure signatures in hyperspectral imagery is a crucial task in hyperspectral image 

processing and there is several endmember extraction algorithms (EEAs) developed for 

this purpose. One of the most popular EEAs has been the pixel purity index (PPI) in 

hyperspectral image analysis for endmember extraction (Chein et al., 2006) and it is 

available in ENVI™ software.  It is an iterative algorithm, where an iterative rule is 

developed to improve each of the iterations until it reaches a final set of endmembers. 

The PPI is defined as finding the most “spectrally pure,” or extreme, pixels in 

multispectral and hyperspectral images (Boardman et al., 1995). The output image of the 

PPI provides a brightness map of how often a pixel was defined to be an extreme pixel.  
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The results of the PPI can be used as input for the n-Dimensional Visualizer tool in 

ENVI™. 

There are two alternatives to identify endmember spectra (Settle & Campbell, 

1998). The first one is reference endmember which can be derived from the field, and 

the second option is image endmember which utilizes spectra derived from the image. 

According to Drake et al. (1999), image endmembers presents two advantages, they are 

easily obtained and they have the same scale of measurement as the data. Since reference 

spectra are not available, image derived endmembers were collected in this study. 

After performing the pixel purity index, the next step is to visualize those pixels 

in n-D Visualizer in order to estimate the number of spectral endmembers and their pure 

spectral signatures. The n-D Visualizer was developed as an aid for identifying and 

distinguishing image pixels which correspond to mixing endmembers. ENVI's n-

Dimensional Visualizer provides an interactive tool for estimating the number of spectral 

endmembers and their pure spectral signatures. Smith et al. (1985) and Boardman (1993) 

state that spectrally pure pixels (endmembers) are found at the vertices of the polygon 

that bounds the data space; whereas the mixed pixels lie in the central region. Since the 

number of endmembers in an image is usually taken as one more that the number of 

principal components, it is expected that if n number MNF bands is selected for further 

analysis, n+1 endmember will be extracted during the n-D Visualizer application.  
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3.5 Classification Algorithms  

 

Three different image classification methods were applied to AVIRIS images in 

order to map oiled vegetation along, including Spectral Information Divergence, Mixture 

Tuned Matched Filtering and Multiple Endmember Spectral Mixture Analysis. 

 

 3.5.1 Spectral Information Divergence (SID)  

 

Spectral Information Divergence is a supervised classification algorithm used for 

the detection of an oil spill along the coastline of Gulf of Mexico and adjacent coastal 

environment by using hyperspectral data set. The supervised classification is the 

essential tool used for extracting quantitative information from remotely sensed image 

data (Richards, 1993). SID is a spectral classification method that uses a divergence 

measure to match pixels to reference spectra. The smaller the divergence, the more likely 

the pixels are similar. Pixels with a measurement greater than the specified maximum 

divergence threshold are not classified. Endmember spectra used by SID can come from 

ASCII files or spectral libraries, or can be extracted directly from an image as an ROI 

average. Chang (2000) demonstrated that SID can characterize spectral variability more 

effectively than the common used SAM. In addition Van der Meer (2006) also reported 

that SID outperforms the classical spectral matching techniques such as SAM. SID 

considers each pixel as a random variable and uses its spectral histogram to define a 

probability distribution. The spectral similarity between two pixels is then measured by 
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the discrepancy of probabilistic behaviors between their spectra. In order to determine 

which pixels are included in a specific class, SID uses a threshold value. In this research, 

threshold values for SID classification algorithm were tested between 0.04 and 0.08, 

with an increment value of 0.01. 

 

3.5.2 Mixture Tuned Matched Filtering (MTMF) 

 

The Mixture Tuned Matched Filtering (MTMF) algorithm builds upon the 

strengths of both matched filtering and spectral unmixing while avoiding the 

disadvantages of both (Boardman, 1998). MTMF is defined as a special type of spectral 

mixture analysis which is based on well-known signal processing methodologies 

(Harsanyi & Chang, 1994). MTMF does not require a priori knowledge of the 

background material spectral signatures. MTMF results using endmembers from n-D 

visualization produces two set of rule images, the first one is the MTMF score image and 

the second is an infeasibility image.  The MTMF score demonstrates the probability that 

the pixel contains the material that is being mapped and the infeasibility score shows the 

probability that the material in incorrectly mapped or are false positives. The MTMF 

uses two thresholds; one for the output of the matched filter (MF) and one for the 

infeasibility index. In this research, the tested threshold range for MF was between 0.3 

and 0.7, with an increment value of 0.1.  For the infeasibility index, the tested threshold 

range was between 3 and 8, with an increment value of 1. 
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3.5.3 Multiple Endmember Spectral Mixture Analysis (MESMA)  

 

Multiple endmember spectral analysis (MESMA) is an extension of spectral 

mixture analysis (SMA) which addresses spectral and spatial variability within material 

classes by allowing the number and type of endmembers to vary on a per pixel basis 

(Roberts et al., 1998).  SMA quantifies the proportions of land surface features within 

mixed pixels using knowledge of each feature's pure spectral response or “endmember.” 

A major limitation of SMA is that every image pixel is unmixed using the same 

endmember spectra. Multiple endmember spectral mixture analysis (MESMA) addresses 

these problems by testing multiple combinations of endmembers and endmember spectra 

for each pixel in the image (Roberts et al., 1998). Thus, MESMA increases the 

flexibility of simple SMA. By using VIPER Tools open-software (Roberts et al., 2007), 

MESMA unmixing can be accomplished with two, three or four endmembers, which is 

comprised of one, two or three endmember classes, coupled with a shade endmember 

(Dennison et al., 2003; Roberts et al., 1998). MESMA allows more than one endmember 

in the scene per ground component, and has proven to be effective in identifying 

different types of materials in a variety of environments. Various studies have 

successfully applied MESMA in urban and vegetated environments (Liu and Yang 2013, 

Thorp et al., 2013, Franke et al. 2009, Quintano et al. 2013). However, there has been no 

effort to map oiled vegetation by using MESMA and compare the classification results 

with different endmember-based classification algorithms. In this research, MESMA is 

applied to airborne AVIRIS data by the use of spatial constraints which are utilized as 
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criteria in discriminating different types of endmembers with similar spectral signatures 

in order to analyze the oil spill associated with the Deepwater Horizon accident in 

Barataria Bay.  
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CHAPTER IV 

RESULTS 

 

4.1 FLAASH Atmospheric Correction 

 

Atmospheric correction was performed using the FLAASH algorithm, which is 

available in the ENVI™ software. The AVIRIS water-masked land images, which were 

spatially- and spectrally-subset and in units of radiance, were used as input to FLAASH 

atmospheric correction. FLAASH is not able to process files in BIL format, so the input 

files were converted to BIP format. For FLAASH correct, the units of the input file must 

be scaled to units of μW/ (cm2*sr*nm); thus, the scale factor for each band was entered 

separately, which was provided in the metadata. FLAASH requires a number of input 

parameters. The input parameters used in this research are given in Chapter 3. FLAASH 

is designed for removal/minimization of atmospheric effects, and it converts the radiance 

image to a surface-reflectance image. The results of FLAASH atmospheric correction 

include a surface reflectance image (Figure 10), a cloud classification map, and water 

vapor map, for each AVIRIS image processed. As noted previously, noise bands were 

eliminated after atmospheric correction, leaving 186 bands of the original 224 bands. 

The atmospherically-corrected AVIRIS images constituted the basis of further image-

processing analysis.  
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(a)                           (b) 

 

       
         (c)                                (d) 

 
Figure 10 Surface-reflectance images of four AVIRIS subscenes over Barataria Bay, 
LA, USA, resulting from the  FLAASH atmoshperic correction. 
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The spectral profile of the wetland vegetation from the raw AVIRIS data (Figure 

11 (a)) and atmospherically-corrected AVIRIS image (Figure 11 (b)) were plotted in 

units of radiance and reflectance, respectively, in order to provide a visual comparison.  

The AVIRIS radiance spectrum reveals the domination of the spectrum by atmospheric 

effects, whereas the reflectance spectrum illustrates the spectrum after elimination of the 

atmospheric effects.  

 

 

Figure 11 a) AVIRIS radiance spectrum of marsh vegetation before atmospheric 
correction and b) AVIRIS reflectance spectrum of the same location after FLAASH 
atmospheric correction. 

(a) 

(b) 
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4.2 Minimum Noise Fraction Transformation (MNF) 

 

Before performing the MNF transform, image noise statistics were calculated. 

The noise statistics of the AVIRIS data were calculated from the data itself by drawing a 

polygon over a homogeneous portion of the image. The noise-estimation method 

employed is based on local pixel variance. Regarding outputs from the MNF 

transformation, as the band number increases, there is a decrease in spatial coherency 

due to noise. Typically, the first MNF band represents most of the total variance. The 

higher-order bands with decreasing variances are not necessary to represent the majority 

of the original image. Bands with large eigenvalues (greater than 1) contain data, and 

bands with eigenvalues near 1 contain noise. According to the MNF eigenvalue plots in 

Figure 12, the bands which contain the most information and the bands which contain 

predominantly noise can be determined. As expected, the MNF transform ordered the 

components in terms of image information content, as seen in Figure 13. With this 

knowledge, the number of MNF bands for each image to be propagated to subsequent 

analytical steps was determined via joint examination of the spatial coherency of the 

MNF images and the eigenvalues. Examination of the eigenimages and MNF scree plot 

revealed that the eigenvalues decrease sharply over the first 20 eigenvalues, and then 

flatten out. Based on this, the data were then reduced from 186 bands to the first 19 

MNF bands, as these 19 eigenimages contain most of the information in the first 

AVIRIS image. The MNF bands dominated by noise were not used in subsequent 
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processing. Regarding the other three AVIRIS images, the first 18, 23, and19 MNF 

bands were selected for further analysis, respectively, in this research.  

 

    
(a) (b) 

 

     
(c)                                                                    (d) 

 
Figure 12 Eigenvalues calculated by the Minimum Noise Fraction (MNF) transform 
analysis. a) MNF plot for the first AVIRIS image, whereas b), c), and d) represent the 
MNF transformation result for the second, third, and fourth image. The first 19 
eigenimages were carried forward in the analysis and contained most of the useful image 
information for the first image. 
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Figure 13 First 19 MNF transformed images of the hyperspectral AVIRIS image 1 with 
a scene ID of f100914t01p00r02. 
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Figure 13 Continued 
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The MNF results for the first AVIRIS hyperspectral image are provided in Figure 

13 (a)-(s), which demonstrate that higher-numbered bands contain more noise and 

significantly reduced image features, whereas the lower-numbered bands offer 

substantially higher information content. Lower-numbered bands also correspond to 

higher eigenvalues.  

  
 
4.3 Pixel Purity Index (PPI) and N-Dimensional Visualizer 

 

The Pixel Purity Index (PPI) algorithm was performed using ENVI™ image-

processing software on AVIRIS images to find the most spectrally-pure pixels in the 

AVIRIS data. For each AVIRIS image, the PPI algorithm was applied to the MNF bands 

selected for further analysis, as designated in the previous section. Since it is an iterative 

algorithm, the user inputs appropriate parameter values, such as number of iterations, the 

threshold value, etc. in order to extract a significant number of potential endmember 

pixels (endmember candidates). In this research, several PPI iteration values were tested, 

starting from 10,000 and ranging to 50,000 iterations. Interactively adjusting the number 

of PPI iterations and the PPI threshold produced different PPI results. In general, high 

PPI thresholds result in more pixels in PPI resultant images, including more impure 

pixels marked as extreme. In contrast, a very low PPI threshold may not select many 

mixed pixels, but also may not select all of the purest pixels in a given image. After 

completing the first iteration, a few pixels in the output image have values of one, and all 

the rest of the pixels have values of zero. After 20,000 iterations, a few pixels may have 



 

51 

 

values between 1 and 200, but most pixels still have values of zero. Once 30,000 

iterations are completed, pixels with the highest PPI values are found, and such pixels 

are likely closest to being corners of the data cloud representing the spectrally-purest 

pixels in the image. Higher iteration values have the ability to find poorly expressed 

endmembers that might be undetected if fewer iterations were completed. Since the oil 

spill pixels are expected to be relatively rare over the full image (compared to the total 

number of image pixels) and expected to be found presumably along the coastline of 

Barataria Bay landforms, a sufficiently large number of iterations was specified for the 

processing of all AVIRIS images. Therefore, the number of iterations was set to 50,000 

in order to increase the probability of detecting spectrally-unique materials. PPI yields a 

map of how often a pixel was identified as being the most spectrally pure during all of 

PPI iterations, and a plot which indicates the total number of pixels recorded as extreme. 

Figure 14 illustrates the results of PPI calculations, where the number of pixels marked 

as spectrally extreme is plotted as a function of PPI iteration, and where the PPI 

threshold was set to 2.5, and the total number of iterations was set to 50,000. The 

cumulative number of pixels that was found to be spectrally extreme was 4,156 pixels 

for the AVIRIS image 1. For the second, third and fourth AVIRIS images, 5,976 pixels, 

2,342 pixels, and 3,057 pixels were designated as spectrally-extreme/pure, respectively.  
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(a)                                                                       (b) 

 
 
 

      
                   (c)                                                                         (d) 

 
Figure 14 Pixel Purity Index plots derived from AVIRIS image processing. a), b), c) and 
d) give the PPI results by iteration for the first, second, third and fourth AVIRIS images, 
respectively. 
 

 

More likely endmember pixel candidates can be identified by thresholding the 

PPI image. The aim of this research is to detect oiled vegetation likely associated with 

the Deepwater Horizon accident along the coastline of Gulf of Mexico; it is expected 

that the number of oiled pixels recorded as extreme by PPI will be relatively low 

compared to the number of pixels representing other features in the AVIRIS images. In 
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an attempt to detect these relatively rare pixels, it was empirically-determined that a PPI 

threshold value of 15 was sufficient to detect oiled pixels over the AVIRIS images. As a 

result of this threshold, a total of PPI 453 pixels were selected for further processing out 

of 4,156 pixels for AVIRIS image 1. The pixels that were determined as being the most 

spectrally pure based on thresholding were then treated as input to the n-Dimensional 

Visualizer, which is an interactive tool to select endmembers in n-space. The n-D 

Visualizer constitutes a final step in the ENVI endmember-extraction process; executing 

this step in a manual manner is relatively subjective in nature. Therefore, automatic 

clustering was performed at this stage to obtain the purest pixel signatures, and 20 

endmember spectra were identified using the n-D Visualizer in this manner based on 

AVIRIS image 1. As noted in the methodology section, the number of endmembers that 

can be extracted from an image is usually taken as being the number MNF transform 

bands (or the inherent dimensionality of the data set) +1. Thus, a total of 20, 15, 24, and 

20 endmembers were extracted from the first, second, third and fourth AVIRIS images, 

respectively.  

Once the endmembers were extracted from the AVIRIS subimages, they were 

then manually labeled based on convergence of evidence from various sources. The 

sources of reference information used for endmember labeling include spectral signature 

characteristics of various materials from the literature, proximity to SCAT oil class 

areas, dissolved organic carbon (DOC) concentration values that fall within/nearby the 

same class as the endmember, and NAIP aerial orthophotographs. Kokaly et al. (2013) 

collected DOC concentration data at 10 oiled and 2 non-oiled sites in the Barataria Bay 
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area during 24-26 August 2010. A shapefile was created containing those DOC sampling 

points and associated DOC concentrations. Natter et al. (2012) noted that high DOC 

levels could be caused by oil components and/or increased organic substances released 

by microbial activities fueled by oil. The DOC concentrations for visibly-oiled sites 

ranged from 6.1 to 19.5 mg/L DOC, whereas the DOC concentrations at visibly-unoiled 

sites ranged from 8.4 to 9.1 mg/L DOC (Kokaly et al., 2013). Therefore the DOC 

concentrations greater than 9.1 mg/L DOC was used as threshold to decide whether the 

given site was oiled. As DOC concentrations increase at a given site, it is assumed for 

this research that that site entails a higher oil content compared to a sample location with 

a lower DOC concentration. In this research, these data were utilized as a type of 

evidence regarding the degree of oil present at a site during the endmember-labeling 

process. As part of this process, each spectral signature pertaining to land features were 

also compared with the spectral profiles of healthy marsh vegetation and oiled 

vegetation provided in Kokaly et al. (2013). As already demonstrated by Cloutis (1989), 

hydrocarbon-bearing reference objects are characterized by absorption maxima at 1730 

and 2310 nm. These absorption peaks are typical of the C-H stretch: in particular, 1730 

nm is the C-H stretch of the first Overtone band, and 2310 nm is the C-H stretch 

combination band. Therefore, in order to label an endmember, first, a given spectral 

profile was analyzed as to whether it contains any absorption peaks due to oil 

contamination. The spectral profiles from Kokaly et al. (2013) were thus also taken into 

account in order to compare the similarities of endmember profiles from n-D Visualizer. 

The coordinates of the pixels which are selected as extreme by n-D Visualizer are 
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located in the aerial photographs and the SCAT map in order to obtain any supporting 

evidence to label endmember spectral profiles correctly (e.g., as oiled marsh, marsh 

vegetation, etc.). If a given point was located along the coastline, endmember labeling 

was relatively straight forward compared with points falling within interior portions of 

coastal landforms since SCAT maps were produced according to in situ data collected 

along the shoreline of the Gulf of Mexico (Michel et al., 2013). In order to label the 

points located in the interior marshland areas, endmember spectral profiles were 

analyzed as to whether or not oil absorption features are present. If a given endmember 

profile does not contain absorption features consistent with oiled material spectra, then it 

is labeled after checking the endmember coordinates with respect to the SCAT map, 

proximity to DOC sample points, and the aerial photographs. The oiled dry marsh class 

represents senescent or non-green vegetation since the endmember spectrum of oiled dry 

marsh does not appear as healthy vegetation spectra. This may be due to the following 

reasons: exposure to a large amount of oil, the type of oil, and/or the type of vegetation. 

Figure 15 (a) gives a spectral profile for potentially oil-impacted vegetation which has 

two absorption peaks around 1730 and 2310 nm. Comparison of the AVIRIS image-

derived endmembers in the present study with spectra given in Kokaly et al. (2013) also 

provides similarities regarding absorption features. 

 



 

56 

 

  

Figure 15 Reference spectra of (a) oiled dry marsh and (b) non-oiled vegetation (Source: 
Kokaly et al. (2013)) 

 

In addition, NAIP aerial orthophotographs also provide high-spatial resolution 

information regarding the presence or absence of dark (likely oiled) patches spatially 

coincident with endmember locations. Thus, the endmember labeled as oiled dry marsh 

was identified with evidence of oil-spill contamination according to the SCAT map, 

aerial photographs, and ancillary data from the literature. However, endmember spectra 

for light-oiled marsh vegetation present as relatively healthy vegetation, though they also 

entail oil-absorption features centered near 1.7 and 2.3 μm.  Therefore, such spectra are 

labeled as light-oiled vegetation. Only for AVIRIS image 4 were medium- and heavy-

oiled vegetation endmembers identified due to deeper absorption features of oil, and the 

location of the endmembers, which fall within or nearby the corresponding (medium- 

and heavy-oiled) SCAT classes. Along the coastline of the study area, there are mixed 

pixels which may a combination of water/vegetation or water/oil or water/vegetation/oil. 

The reflectance spectra of mixed pixels do not look like healthy or senescent vegetation. 

Thus, this class was named as Mixed (oil/water/vegetation). Multiple endmembers were 

identified for several classes because of inherent within-class spectral variability. For 
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instance, after identifying wetland vegetation spectra, they were labeled as wetland 

vegetation 1 class, where that type of wetland veg has a high reflectance in a certain 

portion of the spectrum, and wetland vegetation 2 class, where that type of wetland veg 

has a lower reflectance in that same portion of the spectrum. Pre-accuracy assessment, a 

merging process was applied for each class type with multiple endmember. In summary, 

endmembers were labeled according to proximity to DOC sample points (with 

associated DOC concentration values), visual interpretation of aerial photographs 

regarding oiled-vegetation presence, and the SCAT oil-class map. As noted in the 

Discussion, some degree of subjectivity exists in the endmember-labeling process.  

Across all four AVIRIS subimages, there were 30 total endmembers that were 

collected to represent the wetland vegetation, including dry marsh.  There are several 

pixels that contain mixed features, such as water/vegetation or water/oil or 

water/oil/vegetation, which may be an artifact of the water-masking process. Thus 21 

total endmembers were selected to represent the mixed (oil/water/vegetation) class 

across all four AVIRIS subimages. Fourteen (14) and eleven (11) endmembers were 

selected to represent oiled dry mash and light oiled vegetation across all four AVIRIS 

images with the criteria of the oil existence on the given site in aerial photo, oil 

absorption features, and oil class map of SCAT, respectively. Only two (2) and one (1) 

endmembers were identified and labeled as medium- and heavy-oiled vegetation classes 

in the fourth AVIRIS image, respectively where the dominant criterion used for labeling 

these spectra was the SCAT map. Figure 16 (a)-(d) illustrates the extracted endmember 
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spectral signatures for the four AVIRIS subimages analyzed in this research, and Figure 

17 (a)-(f) illustrates the surface reflectance spectra of each endmember within the scene. 

 

 

 

 

Figure 16 Extracted endmember spectra for a) AVIRIS image 1; b) AVIRIS image 2; c) 
AVIRIS image 3; d) AVIRIS image 4, which used as input to SID, MTMF and MESMA 
algorithms. 

(a) 

(b) 
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Figure 16 Continued 

 

 

 

(c) 

(d) 
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Figure 17 Endmember spectra of six classes used in classification: a) oiled dry marsh; b) 
wetland vegetation; c) mixed; d) light-oiled vegetation; e) heavy-oiled vegetation; and  
f) medium-oiled vegetation.  
 
 

 

 

 

 

 

 

(a) (b) 

(d) (c) 

(e) (f) 
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4.4 Classification Algorithms 

 

Once all endmember-extraction and labeling processes were completed, labeled 

endmembers were mapped using the SID, MTMF, and MESMA algorithms. The 

performances of these classification algorithms are compared in terms of user’s 

accuracy, producer’s accuracy, overall accuracy, and Kappa coefficient of the resultant 

classified images in the accuracy assessment chapter (Chapter V), and some 

observations regarding computational efficiencies are also made. 

 

4.4.1 Spectral Information Divergence (SID)  

 

Spectral information divergence (SID) classification method was performed on 

the geometrically- and atmospherically-corrected hyperspectral spatial-subset images. 

SID is based on quantifying spectral similarities by using a predetermined reference 

spectrum. Several different thresholds were analyzed, and an optimized SID threshold 

value of 0.07 provided the best result in terms of minimizing the number of unclassified 

pixels within the hard classified image. The input image to the classifier was a masked 

image, but the mask should be specified/applied to the image during execution of the 

algorithm. Otherwise, the output classification map does not provide reasonable results. 

Once the SID output map was created, the endmembers that were labeled as dry marsh 

and healthy vegetation were merged together into a single class referred to as marsh 

vegetation. The subclasses of light-oiled vegetation were labeled as light-oiled 
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vegetation 1, light-oiled vegetation 2, and so on, due to differences in reflectance 

properties. Those subclasses were merged prior to classification. The same labeling and 

merging procedure was also performed for the mixed (oil/water/vegetation) and oiled 

dry marsh subclasses for each subimage independently. The output map of the SID 

classification results is shown in Figure 18. Mixed pixels including, water, marsh 

vegetation and/or oil are displayed in blue. The green color represents the marsh 

vegetation, whereas light-oiled vegetation is displayed in yellow, and oiled dry marsh 

vegetation is displayed in red. The colors assigned for each class are consistent across all 

hard classification maps. Results demonstrate that oiled dry marsh vegetation was 

observed along the coastlines of Bay Jimmy, Bay Chene Fleur, and Wilkinson Bay, even 

though some oiled dry marsh and light-oiled pixels are misclassified in the marshland 

area.  
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(a)                           (b) 
 

                   
                       (c)                                (d)                 
 

Figure 18 Hard classified images based on the SID classifier: a) AVIRIS image 1; b) 
AVIRIS image 2; c) AVIRIS image 3; d) AVIRIS image 4. 
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4.4.2 Mixture Tuned Matched Filterinig (MTMF)  

 

Mixture tuned matched filtering (MTMF) has been reported as a superior method 

relative to some other methods for detection of various materials in hyperspectral images 

(Boardman, 1998). The Mixture Tuned Matched Filtering algorithm consists of two 

phases; a Matched Filter calculation for abundance estimation and a Mixture Tuning 

calculation for the identification and rejection of false positives. MTMF method was 

performed on the MNF transformed data. For each endmember, MTMF produces one 

MF image and one infeasibility image. The output MF score and infeasibility images 

sets are utilized as input to a rule classifier in order to generate a hard MTMF classified 

image for a given subscene. Pixels with high MF and low infeasibility values are the 

most suitable values for accurately defining a class.  

MTMF AVIRIS-image-derived fractional abundance images were created via 

interactive stretching. Abundance estimates for marsh vegetation, oiled dry marsh, light-

oiled vegetation and mixed (oil/water/vegetation) endmembers are shown in Figure 19 as 

grayscale images. Brighter pixels in the abundance images represent endmembers with 

higher fractional abundances. For this visualization, the abundance image of marsh 

vegetation was stretched between 0.1 and 0.4, light-oiled vegetation was stretched 

between 0 and 0.68, oiled dry marsh was stretched between 0 and 0.7, and mixed (oil, 

water, vegetation) was stretched between 0 and 0.42.  

Maps can be produced from MTMF results by selecting hard thresholds for the 

target classes from a graphics display of MF score versus infeasibility score (Boardman, 
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1998). Thus, MF and infeasibility images values are evaluated using scatterplots of MF 

score versus infeasibility value. Due to the subjectivity of this mapping method, several 

thresholds are identified via trial-and-error based on the scatterplots and tested on 

AVIRIS Image 1. Based on this experimentation, the MF score threshold was set at 0.4, 

and the infeasibility threshold was set at 4.00 across all AVIRIS images. Note that the 

color assignments for different classes in the MTMF-based classified images are 

identical to those of SID—i.e., red for oiled dry marsh; yellow for light-oiled vegetation; 

blue for mixed (oil/water/vegetation); and green for marsh vegetation. As potentially 

evident in Figure 20, there are many misclassified pixels across the AVIRIS images 

(which is quantitatively assessed at the classification accuracy-assessment stage). The 

hard classification images demonstrate that light-oiled vegetation, mixed 

(oil/water/vegetation), and oiled dry marsh classes were confused with the marsh 

vegetation class.  
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                             (a)                                                             (b) 
  
 
                                      

                 
        

(c)                                                       (d)    
 
Figure 19 MTMF-based fractional abundance images for a) light-oiled vegetation; b) 
marsh vegetation; c) mixed (oil/water/vegetation); and d) oiled dry marsh. 
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(a)                           (b) 
 

                             
(c)                            (d)                     

 
Figure 20 The hard classified images based on MTMF classification: a) AVIRIS image 
1; b) AVIRIS image 2; c) AVIRIS image 3; and d) AVIRIS image 4. 
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4.4.3 Multiple Endmember Spectral Mixture Analysis (MESMA) 

 

In this research, MESMA was applied to map potentially oiled vegetation using 

AVIRIS hyperspectral data acquired after the Deepwater Horizon accident in Gulf of 

Mexico. An open-source plug-in for the ENVI™ software, referred to as Visualization 

and Image Processing for Environmental Research (VIPER) Tools (Roberts et al., 2007), 

was used to apply MESMA to these AVIRIS images. The atmospherically-corrected 

land-only AVIRIS images were used as input to the MESMA algorithm. Before applying 

MESMA, a given endmember set was specified as inputs as ROIs. The endmember file 

for AVIRIS image 1 contains 20 endmembers, representing materials within the image 

including oiled dry marsh vegetation, marsh vegetation, light-oiled vegetation, and 

mixed (oil/water/vegetation) classes.  

The VIPER Tools software used in this study allowed for fixing the minimum 

and maximum allowable fraction values; the maximum allowable shade fraction value; 

and the maximum allowable RMSE in obtaining MESMA classification images via 

application to the AVIRIS images. For the minimum allowable endmember fraction, 

thresholds can range from -0.5 to 1. For the maximum allowable endmember fraction, 

thresholds can range from 1 to 1.5. The threshold values of maximum shade fraction can 

range from 0 to 1. In this research, the minimum allowable endmember fraction, 

maximum allowable endmember fraction, and maximum allowable shade fraction were 

set to values of −0.30, 1.40, and 0.95, respectively for all images. In this study, 2- and 3-

endmember models were investigated in order to determine the best classification result. 
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However, Powell et al. (2007) note that the total number of endmembers in the potential 

models is inversely proportional to the computational efficiency and accuracy. Likewise, 

various studies demonstrate that 4-endmember models do not necessarily provide better 

performance than 3-endmember models (Fitzgerald et al., 2005; Powell et al., 2007). In 

this research, it was empirically-determined that 2-endmember models provide the best 

classification result.  

Figure 21 illustrates the results of MESMA hard classification as zoomed-in 

subimages, and the corresponding zoomed-in subsets of NAIP aerial orthophotographs 

containing dark patches, in order to provide a visual comparison between reference and 

classified data. MESMA-derived hard classified images are given in Figure 22. Patterns 

of MESMA-based classified pixels can be compared with those derived from SID and 

MTMF. 
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Figure 21 Zoomed-in/magnified subsets of NAIP aerial orthophotographs containing 
dark patches (left) and zoomed-in image subsets of MESMA hard classification images 
(right), with vegetation in green, oiled dry marsh in red, and mixed (oil/water/vegetation) 
in blue color. 
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(a)                               (b)         
 

                        
(c )           (d) 

 
Figure 22 Hard classified images derived from the MESMA algorithm: a) AVIRIS 
image 1; b) AVIRIS image 2; c) AVIRIS image 3; d) AVIRIS image 4. 
 



 

72 

 

CHAPTER V 

ACCURACY ASSESSMENT 

 

Results of three tested classification methods are evaluated in terms of their 

capacity to detect oiled vegetation along the coastline of the Gulf of Mexico and 

adjacent terrestrial environment via hard classification accuracy assessments.  

For the purpose of validation, 50 stratified random sample points per class were 

generated for each classification accuracy assessment. The classifications derived from 

AVIRIS images 1, 2, and 3 consist of four classes, translating to a total of 200 stratified 

random accuracy-assessment points per image (Congalton, 1991). Classified images 

derived from AVIRIS image 4 contain six classes; thus, a total of 300 stratified random 

accuracy-assessment points per classified image were employed in the evaluation of the 

image 4 results. The accuracy assessments were performed by comparing algorithm-

derived classification values associated with the randomly-selected pixels with the 

reference data. Three sources of reference data were utilized in the construction of the 

error matrices: (1) SCAT map which provides field-based observations of the degree of 

oil accumulation along the coastline; (2) high-spatial resolution aerial photographs 

acquired before and after the oil spill; and (3) in situ measurements taken from the 

literature. Once all the points for each class were compared with the reference data, the 

total number of correctly-classified and misclassified points was calculated. As shown in 

Tables 3-6, the error matrix was used to summarize the results of accuracy assessment 

by comparing the classification results with the reference data. The user’s accuracy 
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(errors of commission) and producer’s accuracy (errors of omission) for each class, as 

well as the overall accuracy, were reported in the error matrix (Congalton, 1991). The 

error matrix columns represent the ground reference values, and the rows contain the 

class values. 

The user’s accuracy is a map-based accuracy which refers to the probability that 

a pixel labeled as a certain land-cover class in the map is really put into this class in the 

classification image. It is calculated from the rows of the confusion matrix by counting 

total number of correct points in a class and dividing by the sum of total number of 

pixels in the rows. The producer’s accuracy is a reference-based accuracy which refers 

to the probability that a certain land-cover on the ground is classified as such. It is 

calculated from the columns of the confusion matrix by counting total number of correct 

points in a class and dividing by the sum of the total number of pixels in the column. 

Overall classification accuracy was calculated from this table by counting how many 

pixels were classified the same in the remote-sensing image and on the ground and 

dividing this by the total number of pixels (Congalton, 1991).  

In addition, the Kappa coefficient is computed for each classified image, and 

these values are summarized in Table 7, along with overall accuracy values. The Kappa 

coefficient provides an overall agreement between the remote-sensing classification and 

the reference data by taking non-diagonal cells into account, in addition to diagonal cells 

(Congalton 1991).  

Error matrices were generated for each classification method over the four 

AVIRIS images classified. Table 3 (a)-(c) gives the error matrices for AVIRIS image 1 
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accuracy assessments, which summarize the overall accuracy, producer’s accuracy, and 

user’s accuracy computed from the SID, MTMF, and MESMA classifications, 

respectively. According to Table 3, oiled dry marsh vegetation, mixed 

(oil/water/vegetation), light-oiled marsh vegetation, and marsh vegetation classes 

achieved an overall classification accuracy of 83.5% and a Kappa coefficient of  0.78 via 

MESMA, whereas the overall accuracies of the MTMF and SID classifications were 

52.5% and 71.5%, respectively, with Kappa coefficient values of 0.39 and 0.62, 

respectively. MTMF accuracy assessment results reveal that there are many confused 

and misclassified pixels in all classes with low producer’s accuracy and user’s accuracy 

while the results of MESMA show high accuracy for misclassified pixels. Regarding 

producer’s accuracy, the oiled dry marsh and light-oiled vegetation were mapped with 

high producer’s accuracy values and were consistent across all images in terms of 

MESMA results. The producer’s accuracies of the MTMF- and SID-classified images 

are lower than that of MESMA.  Oiled dry marsh and light-oiled vegetation are confused 

with marsh vegetation, particularly with the MTMF classification. 

Table 4 (a)-(c) gives the error matrices for AVIRIS image 2 accuracy 

assessments, which summarizes overall accuracy, producer’s accuracy, and user’s 

accuracy calculated from the SID, MTMF, and MESMA classifications, respectively. 

The hard classification results for AVIRIS image 2 derived from the SID, MTMF and 

MESMA algorithms entail overall accuracies ranging from 54.5% to 78.5%. The results 

indicate that MESMA classification accuracy is the highest for this image, with an 

overall accuracy of 78.5 %, whereas the overall accuracies of MTMF and SID 



 

75 

 

classification techniques are 54.5% and 70.5%, respectively, with Kappa coefficients of 

0.37 and 0.60, respectively. MTMF mostly misclassified marsh vegetation pixels as 

oiled dry marsh, mixed (water/oil/vegetation) and light-oiled vegetation. This confusion 

may occur because of the spectral similarity of classes with other endmember reference 

spectra.  

Table 5 (a)-(c) gives the error matrices for AVIRIS image 3 accuracy 

assessments, which summarize overall accuracy, producer’s accuracy, and user’s 

accuracy computed from the SID, MTMF, and MESMA classifications, respectively. 

MESMA performed with the highest overall accuracy (79%) and Kappa coefficient 

(0.72), and MTMF yielded the lowest overall accuracy (50.5%) and Kappa coefficient 

(0.34). Improvements were noted in producer’s accuracy of the oiled dry marsh class and 

light-oiled vegetation with the MESMA classification compared with MTMF results for 

this image. Producer’s and user’s accuracies for all land-cover classes were also higher 

for MESMA, relative to those derived from the other classification methods.  

Table 6 (a)-(c) gives the error matrices for AVIRIS image 4 accuracy 

assessments, which summarize overall accuracy, producer’s accuracy, and user’s 

accuracy computed from the SID, MTMF, and MESMA classifications, respectively. 

Different than the first three AVIRIS images, the fourth AVIRIS image contains six (6) 

classes total, enabling mapping of heavy-oiled vegetation and medium-oiled vegetation, 

as endmembers corresponding to those classes can be identified during the endmember-

labeling process. Therefore, the overall accuracies of the classifications were expected to 

be lower than those of the first three images due to the increase in the number of classes. 
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Accuracy-assessment results reveal that MESMA produced the most accurate results in 

terms of user’s and producer’s accuracies for oiled dry marsh and light-oiled classes, 

whereas MTMF generated the least accurate results. In the AVIRIS image, some spectral 

and spatial overlap likely exists in the medium-oiled, heavy-oiled, and light-oiled 

vegetation, which may also translate to spectral similarity of these endmembers.  

MESMA classification approach provides the best performance (highest 

classification accuracies) in detecting oiled vegetation along the coastline and in a 

terrestrial environment, whereas SID provides slightly lower overall classification 

accuracies compared to MESMA, and MTMF yields the lowest overall accuracy across 

all images.  Compared to MTMF, SID and MESMA approaches produce a more 

accurate representation of oiled vegetation and marsh vegetation classes. The fact that 

MESMA enables the number and types of endmembers to vary on a per-pixel basis 

likely contributes to its performance in this domain. Also, these results demonstrate that 

hyperspectral images can be utilized successfully to identify oiled vegetation in a coastal 

terrestrial environment with appropriate classification algorithms.  
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Table 3 Error matrices for AVIRIS image 1, showing overall accuracy, producer’s 
accuracy, and user’s accuracy calculated for the three classification techniques 
investigated: a) SID; b) MTMF; and c) MESMA algorithm results. 
 

 

 

 

(c) 

(b) 

(a) 
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Table 4 Error matrices for AVIRIS image 2, showing overall accuracy, producer’s 
accuracy, and user’s accuracy calculated for the three classification techniques 
investigated: a) SID; b) MTMF; and c) MESMA algorithm results. 
 

 

 

 

 

(c) 

(b) 

(a) 
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Table 5 Error matrices for AVIRIS image 3, showing overall accuracy, producer’s 
accuracy, and user’s accuracy calculated for the three classification techniques 
investigated: a) SID; b) MTMF; and c) MESMA algorithm results. 
 

 

(a) 

(b) 

(c) 
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Table 6 Error matrices for AVIRIS image 4, showing overall accuracy, producer’s 
accuracy, and user’s accuracy calculated for the three classification techniques 
investigated: a) SID; b) MTMF; and c) MESMA algorithm results. 
 

 

 

(a) 

(c) 

(b) 
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Table 7 Comparison of accuracy measurements of SID, MTMF and MESMA approach 

 
SID MTMF MESMA 

 

Overall 
Accuracy (%) 

Kappa 
Coefficient 

Overall 
Accuracy (%) 

Kappa 
Coefficient 

Overall 
Accuracy (%) 

Kappa 
Coefficient 

Image 01 71.50 0.62 52.50 0.37 83.50 0.78 
Image 02 70.50 0.60 54.50  0.39 78.50 0.71 
Image 03 68.50 0.58 50.50 0.34 79 0.72 
Image 04 63.67 0.56 36.00  0.23  71.67 0.66 

 

 

Table 8 Test for significant differences between error matrices for the classification 
algorithms for a) AVIRIS image 1; b) AVIRIS image 2; c) AVIRIS image 3; and d) 
AVIRIS image 4 
 

     

 

       

S = Significant result at the 95% confidence level 
NS = Non-Significant result at the 95% confidence level 
SID = Spectral information divergence 
MTMF = Mixture Tuned Matched Filtering 
MESMA = Multiple Endmember Spectral Mixture Analysis 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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Significance testing was also performed in a pairwise manner between error 

matrices by computing a Z statistic. The Z statistic used to determine if the classification 

is significantly better than a random result. At the 95% confidence level, the critical 

value would be 1.96 (Congalton & Green, 2008). Therefore, if the absolute value of the 

test Z statistic is greater than 1.96, the result is significant and it means that the 

classification is better than random. Table 8 (a)-(d) present the pairwise tests for 

significant differences between contingency tables for all the classification algorithms. 

All MESMA results yielded significantly higher classification accuracies at the 95% 

confidence level than MTMF and SID results (with the exception of SID vs. MESMA 

for Image 2) with Z statistics from the pairwise comparisons ranging between -1.8 to -

9.0. The results of the pairwise test for significance between MESMA and SID 

classification results are always significantly better than those of MTMF (at the 95% 

confidence level).  

In conclusion, while single endmember classification algorithms, SID and 

MTMF, cannot account for considerable spectral variation within a class, MESMA can 

also account for within-class variability. Therefore most materials were mapped at 

relatively high accuracies via MESMA approach. MESMA improved the overall, user’s 

and producer’s classification accuracies compared to SID and MTMF across all AVIRIS 

subimages, since it is capable of minimizing spectral confusion. 
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

An imaging spectroscopic approach was used to detect oiled vegetation along the 

Gulf of Mexico in southern Louisiana. FLAASH atmospheric correction, MNF 

transform, PPI image generation, and n-D Visualizer has been successfully performed to 

extract endmembers of target materials. AVIRIS hyperspectral image data collected over 

Barataria Bay, LA after the Deepwater Horizon oil rig accident have been analyzed with 

three different high-dimensional classification approaches, including SID, MTMF and 

MESMA. Regarding the identification of oiled vegetation, data analysis and accuracy 

assessment revealed that MESMA and SID performed well in identifying oiled marsh 

vegetation. 

 

6.1 Discussion 

 

This research focused on terrestrial oil-spill detection based on hyperspectral 

images. For this purpose, different remote-sensing image processing techniques were 

employed to identify oiled vegetation along the coastline of the Gulf of Mexico and in 

the marshland areas. Since all tasks performed in this research were interrelated to each 

other, the result from one step may affect the outcome of another step/method. 

Therefore, uncertainty or error associated with a given step could contribute to error in a 
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subsequent step. In this section, potential uncertainties of image processing throughout 

this research are discussed in order to improve classification accuracies of future studies.  

One source of uncertainty lies with the masking process used. The majority of oil-

impacted marsh vegetation was expected to be located along the coastline rather than the 

interior marshland areas. However, since detection of oil on the water surface was not 

the focus of the present research, a water mask (as well as associated boat and boat-wake 

masks) was created and applied. Due to (likely spatially-varying) inaccuracies associated 

with the thresholding step used for mask generation, some information loss regarding oil 

distribution along the shoreline may have occurred. 

During the noise- and dimensionality-reduction process, specific output MNF 

bands were selected for further analysis based on the premise that they contain most of 

the information content in the data set. Although the AVIRIS image set was 

preprocessed carefully by creating masks and performing atmospheric correction, the 

number of output MNF images may not yield the best result in terms of subsequent 

endmember-extraction and classification. Furthermore, it is possible that other 

dimensionality-reduction methods could accrue better results. 

There are several considerations regarding endmembers. First, field-derived 

endmembers can be used, in addition to image-derived endmembers, and the results 

could be compared in terms of accuracy. Endmembers derived from remote-sensor 

images were utilized in the present research. Since subjectivity can markedly enter into 

the endmember-extraction process, automatic clustering was performed to obtain the 

purest pixel signatures while minimizing analyst subjectivity. However, it is certainly 
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possible that optimal results may not be obtained in this manner, as some endmembers 

may be missed, and the technique may be sensitive to noise. Second, it is possible that 

more oiled-vegetation and healthy vegetation endmembers could be extracted from the 

images (e.g., if different dimensionality-reduction and/or endmember-extraction 

methods were used). Thus, more accurate classification results could potentially be 

accrued.   

Some subjectivity was also part of the endmember-labeling process. The sources 

of reference information used for endmember labeling include spectral signature 

characteristics from the literature, proximity to SCAT oil class areas, dissolved organic 

carbon (DOC) concentration values that fall within/nearby the same class as the 

endmember, and NAIP aerial photographs. Evidence from those sources contributed to  

endmember-labeling with high confidence. However, lack of access to spectral libraries 

containing spectra of scene materials (e.g., oil; different combinations oil types, 

thicknesses, and/or states; vegetation; and/or water types/conditions) acquired at/near 

the time of sensor overpass may have lead to some endmember mislabeling. 

Endmember labeling is an important issue in this study, as all the labeled endmembers 

were used as input to the classification algorithms, affecting oil-vegetation detection 

efforts, hard classification images, and the accuracy assessments.  

Classification accuracies for SID results are generally significantly lower than 

those for MESMA. However, for MTMF, classification accuracies across all AVIRIS 

images were significantly lower than those for SID and MESMA. The hard MTMF 

classification image exhibit marked differences in terms of misclassified pixels; this 



 

86 

 

issue may potentially at least partially be attributed to the nature of the classification 

input images used. The atmospherically- and geometrically-corrected AVIRIS images 

were used as input to SID and MESMA algorithms. However, the input data to MTMF 

was the output of the MNF transformed data. Therefore, the number of output MNF 

bands or the dimensionality-reduced information content could be insufficient for 

effective classification.  

The results show that oiled dry marsh and light-oiled vegetation were 

successfully detected in the AVIRIS-based MESMA analysis, whereas these classes 

could not be accurately mapped in the SID and MTMF classifications. In terms of user’s 

accuracies, the values for oiled dry marsh (68%) and light oiled vegetation (72%) were 

higher in the MESMA classification than the SID and MTMF and consistent across all 

AVIRIS images. However user’s accuracies were much lower for oiled dry marsh (44%) 

and light oiled vegetation (48) particularly for the MTMF classification. The reason 

could potentially be explained by the ability of MESMA to test multiple endmember 

combinations and endmember spectra for each pixel in the image. Regarding the 

MESMA approach, 2-endmember and 3-endmember models were constructed and 

applied, and based on visual examination, the target classes were better identified in the 

hard classification image of the 2-endmember MESMA model rather than the 3-

endmember model. When MESMA is applied to the AVIRIS data, oiled dry marsh and 

light-oiled vegetation are successfully discriminated. Accuracy-assessment results 

indicate that MESMA provides the most accurate hard classified images in terms of 

delineating oiled dry marsh, light-oiled vegetation and mixed (oil/water/vegetation) 
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classes. Besides, according to results of significance testing, there were statistically 

significant pairwise differences between multiple endmember classification algorithm, 

MESMA, and single endmember classification algorithms, SID and MTMF across all 

AVIRIS images with the exception of SID vs. MESMA for AVIRIS image 2.  The oil 

classes were finely discriminated in Image 4. The heavy and medium oiled marsh 

vegetation classes were identified in addition to light oiled marsh vegetation, oiled dry 

marsh, mixed (oil/water/vegetation) and marsh vegetation classes. Therefore, for Image 

4, the lower classification accuracies were acquired compare to Image 1, 2 and 3 due to 

larger number of classes and class specificity. 

 

                             
(a) (b)  

 

 
                                                 (c) 

 
Figure 23 Hard classified zoom images for endmember-based classification approaches: 
a) SID; b) MTMF; and c) MESMA. 
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(a)                                               (b) 

 

                         
                                            (c) 
 
Figure 24 Hard classified zoom images for endmember-based classification approaches: 
a) SID; b) MTMF; and c) MESMA. 
 

 
As shown in Figures 23 and 24, whereas oiled dry marsh, light-oiled vegetation 

and mixed (oil/water/vegetation) classes were accurately mapped across the SID and 

MESMA classifications, confusion among light-oiled vegetation, mixed 

(oil/water/vegetation) and marsh vegetation was observed in the MTMF results, as 

exhibited by the lower overall accuracy and Kappa coefficient, for example.  

In this research, three sources of information were utilized as reference data in 

the construction of the error matrices: (1) SCAT oil map, which provides field-based 

observations of the degree of oil accumulation along the coastline; (2) high-spatial 

resolution NAIP aerial orthophotographs acquired before and after the oil spill; and (3) 

in situ measurements from the literature. An important factor in determining the 
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accuracy of a classification is the reference information used. The limited amount of 

ground-observed reference data may influence the assessed accuracies. The limited 

availability of spectral libraries is another restriction on the use of hyperspectral data and 

may lead to incorrect assumptions about the accuracy of a classification. Spectral 

libraries for differing oil thicknesses, different oil types and/or states, as well as 

combinations of these with spectra of various soils, water conditions, and vegetation 

species need to be developed in order to improve the performance of classification 

algorithms. In addition, the accuracy assessments were performed using 50 stratified 

random points per class. In order to perform a potentially more sensitive/representative 

accuracy assessment, a larger number of stratified random accuracy-assessment points 

could be generated. It should be noted though that maximally-useful field data could not 

be collected for the study area at the time at which this research was conducted due to 

the passage of time since the Deepwater Horizon spill and the associated changes in the 

amount, state, and distribution of oil within the site (as well as the uncertainties 

associated with these changes). Clean-up efforts—to the extent they may have existed in 

this area—may have also had some effect. 

The persistence and distribution of oil within marshes depends on the vegetation 

species present and other factors (Stebbings, 1970). Thus, vegetation type within the 

study site likely plays an important role in determining the probability of oil existence at 

a given site. It is important to consider how the composition and concentration of oil are 

altered by weathering, including chemical, physical and biological processes. Due to 

degradation of oil in marsh vegetation over time, the chemical components of oil in such 
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an environment change over time, which in turn affects oil-reflectance features. 

Likewise, vegetation spectral features are also subject to critical changes due to physical 

and chemical effects of oil, which also has implications for detection of oil-impacted 

vegetation via remote sensing. 

The distribution of oil on the sea surface occurs under the influence of wind, 

water current, tides and temperature. Currents, wind and warm temperatures typically 

cause oil to spread faster. The Gulf of Mexico is a dynamic, almost landlocked body of 

water dominated by prevailing southeast winds and influenced by the Gulf Loop Current 

and Mississippi River flow (The University of Texas Marine Science Institute, Marine 

Education Services, 2013). The prevailing winds in this area are from the 

south/southeast during the summer, and the prevailing wind flow during the cold season 

is from the northeast.  

To assess oil distribution patterns on a localized scale as they relate to the 

classified images generated in this research, historical wind speed and wind direction 

data for Grand Isle station, which is the nearest weather station to the study site, were 

obtained from the NOAA National Data Buoy Center. The data set provides multiple 

records for each day in 2010. Since the AVIRIS images analyzed in this research were 

acquired on 14 September 2010, winds from the southeast with an average speed of 

~4.03 m/s were the most frequent from the beginning of the oil spill to the AVIRIS and 

NAIP image-acquisition dates, although weaker winds from different directions were 

also common during the same time period. The extent of oil resulting from the 

Deepwater Horizon spill varied widely on a daily basis due to changes in wind patterns 
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and ocean currents. Previous studies have shown an uneven distribution of hydrocarbons 

over the surface of the Gulf of Mexico (Camilli et al., 2010; Diercks et al., 2010; Hazen 

et al., 2010; Kujawinski et al., 2011; Valentine et al., 2010). Surface oil advection is 

particularly sensitive to wind velocities, because their relative strength and onshore 

direction can push oil toward the marshes of southeastern Louisiana (Dietrich et al., 

2012). Therefore, oil released from the Deepwater Horizon potentially migrated and 

spread quite far down the well head due to the influence of winds and currents. For 

instance, if the wind blows from southeast to northwest, which is the prevailing wind 

direction during the summer season, oil is more likely to be blown towards the Louisiana 

and Texas coasts. As an example, displayed in the Figure 25, the oiled dry marsh 

vegetation class was mapped along the southerly part of one of the islands in Barataria 

Bay by using MESMA and SID classification algorithms. 

 

  

Figure 25 Hard classified images for the following endmember-based classification 
approaches: a) SID; and b) MESMA 
 

Oil movement and distribution were likely affected by winds from the 

southeast/south during the summer; thus, oil was mostly accumulated along the 

southerly coastline. However, for coastlines of this island facing other directions, oiled 
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dry marsh vegetation or light-oiled marsh vegetation was rarely observed or not present 

in the AVIRIS-derived classified images or reference data. This example is for only one 

specific island; however, wind-driven processes likely affect the entire extents of the 

AVIRIS images. For instance, Dietrich et al. (2012) provide maps showing predicted 

and observed oil extents, including the wind vectors over the Gulf of Mexico (Figure 

26). The map also depicts how wind vectors affect oil migration along the coastline of 

the Gulf of Mexico. Oil may not reach or significantly accumulate on the northerly part 

of the island noted above due to wind and current patterns. Therefore, the distribution of 

oil was probably affected by wind speed, wind direction, and water currents. This 

situation may explain the oil distribution within the Barataria Bay marshes. 

 

 

Figure 26 Comparison of observed (solid blue) and predicted (red hatched) oil extents 
during the mid-June time period along the coastline of the Gulf of Mexico (Dietrich et 

al., 2012) 
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In general, when an oil leak is occurring at the ocean floor, if a strong current has 

the same direction as the wind, it will increase the wind effect. When considering the 

spatial variability in the amount of oil accumulation at different sites within the study 

area of this research, it is important to understand the morphological characteristics of 

the coast, prevailing wind directions and speeds, and water currents. Wind history, along 

with information on ocean currents, is very useful in understanding oil-distribution 

behaviors (Espedal, 2010).  

 

6.2 Conclusion 

 

This research addresses remote sensing, especially hyperspectral image analyses 

of the Gulf of Mexico coastline. The area encompassing Barataria Bay is one of the 

heavy impacted areas by the BP Deepwater Horizon oil spill incident and this study was 

conducted to analyze and extract valuable information from airborne image data to 

detect and map oiled vegetation resulting from the Deepwater Horizon accident along 

the coastline of the Barataria Bay. This research has two objectives focused on AVIRIS 

data, the first objective was to detect oiled vegetation observed near the time frame of 

the Deepwater Horizon accident in the Gulf of Mexico coastal environment via SID and 

MTMF classification methods and the second objective was to detect oiled marsh 

vegetation over the same study site by performing MESMA approach which allows the 

number and type of endmembers to vary in each pixel of the image different than the 
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SID and MTMF. The overall objective of this study was to understand and compare the 

capability of MEMSA relative to SID and MTMF in detection of oiled vegetation.  

In order to extract valuable information from hyperspectral images, the first task 

of this research study was the minimization of atmospheric effects by performing 

FLAASH atmospheric correction method. Image derived endmembers were extracted 

from the atmospherically and geometrically corrected hyperspectral AVIRIS data via 

MNF transform, PPI generation, and n-dimensional visualization. Extracted endmembers 

were then used as input to three different mapping algorithms; SID, MTMF and 

MESMA to yield fractional-abundance images and hard classification images. The 

overall accuracy, Kappa coefficient and Z Statistic were calculated in order to compare 

the performance of all classification algorithms. The classification results of MESMA 

algorithm performed much better than the SID and MTMF in detection of oiled 

vegetation along the coastline of the Bay Jimmy, Bay Chene Fleur, and Wilkinson Bay 

and in adjacent marshland area, with overall accuracies of 70-85%, and with Kappa 

coefficients of 0.7-0.8. All MESMA results yield significantly higher classification 

accuracies than MTMF and SID (at the 95% confidence level), (with the exception of 

SID vs. MESMA for Image 2), with Z statistics from the pairwise comparisons ranging 

between -1.8 to -9.0. MESMA and SID classification results are always significantly 

better than those of MTMF (at the 95% confidence level). For Image 4, lower 

classification accuracies were accrued (likely due to larger number of classes and class 

specificity); however, results for some algorithms are quite accurate given specificity of 

classes.  
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This research study contributes to debates on the effectiveness of AVIRIS data 

for the application of oil spill detection, and may suggest effective strategies for 

identifying oil spills in vegetated areas. In addition, this study entails importance in the 

case of an oil-spill accident; the methods and knowledge accrued here can be applied to 

formulate an effective environmental protection plan, and to reduce damage by 

predicting size and migration of oil. However, the major challenge of this study is the 

lack of spectral properties of oil spill in vegetated areas, therefore the spectral libraries of 

different oil amounts and combinations of oil with different soils, water and vegetation 

species need to be developed in order to improve the performance of classification 

algorithms. Another major challenge of this study is the limited amount of in situ data 

collected over the study area which is critical for an accuracy assessment, thus a large in 

situ database needs to be acquired to enhance the accuracy assessments process prior to 

oil spill detection and mapping studies for the future studies. 
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