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ABSTRACT

A distributed system is a collection of computing entities that communicate with

each other to solve some problem. Distributed systems impact almost every aspect

of daily life (e.g., cellular networks and the Internet); however, it is hard to develop

services on top of distributed systems due to the unreliable nature of computing

entities and communication. As handheld devices with wireless communication ca-

pabilities become increasingly popular, the task of providing services becomes even

more challenging since dynamics, such as mobility, may cause the network topology

to change frequently. One way to ease this task is to develop collections of informa-

tion infrastructures which can serve as building blocks to design more complicated

services and can be analyzed independently.

The first part of the dissertation considers the dining philosophers problem (a

generalization of the mutual exclusion problem) in static networks. A solution to the

dining philosophers problem can be utilized when there is a need to prevent multiple

nodes from accessing some shared resource simultaneously. We present two algo-

rithms that solve the dining philosophers problem. The first algorithm considers an

asynchronous message-passing model while the second one considers an asynchronous

shared-memory model. Both algorithms are crash fault-tolerant in the sense that a

node crash only affects its local neighborhood in the network. We utilize failure

detectors (system services that provide some information about crash failures in the

system) to achieve such crash fault-tolerance. In addition to crash fault-tolerance,

the first algorithm provides fairness in accessing shared resources and the second

algorithm tolerates transient failures (unexpected corruptions to the system state).

Considering the message-passing model, we also provide a reduction such that given
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a crash fault-tolerant solution to our dining philosophers problem, we implement

the failure detector that we have utilized to solve our dining philosophers problem.

This reduction serves as the first step towards identifying the minimum information

regarding crash failures that is required to solve the dining philosophers problem at

hand.

In the second part of this dissertation, we present information infrastructures for

mobile ad hoc networks. In particular, we present solutions to the following problems

in mobile ad hoc environments: (1) maintaining neighbor knowledge, (2) neighbor

detection, and (3) leader election. The solutions to (1) and (3) consider a system

with perfectly synchronized clocks while the solution to (2) considers a system with

bounded clock drift. Services such as neighbor detection and maintaining neighbor

knowledge can serve as a building block for applications that require point-to-point

communication. A solution to the leader election problem can be used whenever

there is a need for a unique coordinator in the system to perform a special task.
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1. INTRODUCTION

A distributed system is a collection of computing entities that communicate with

each other to solve some problem. Distributed systems impact almost every aspect

of daily life (e.g., cellular networks and the Internet); however, it is hard to develop

services on top of distributed systems due to the unreliable nature of computing

entities and communication; node and link failures might occur due to hardware de-

terioration and message transmissions might be delayed due to message collisions and

interference. As handheld devices with wireless communication capabilities become

increasingly popular, the task of providing services becomes even more challeng-

ing since dynamics, such as mobility, may cause the network topology to change

frequently. One way to ease this task is to develop collections of information infras-

tructures which can serve as building blocks to design more complicated services and

can be analyzed independently.

This dissertation is divided into two parts based on the dynamicity of the system.

The first part presents information infrastructures for static networks and second part

presents information infrastructures for mobile ad hoc networks — networks in which

nodes are mobile and no fixed physical infrastructures, such as base stations, exist.

In the remainder of this section, we discuss the motivation, research goal, and the

novelty of the information infrastructures considered in this dissertation. We also

provide the organization of this dissertation.

1.1 Motivation and Research Goal

Our goal is to provide useful information infrastructures that serve as building

blocks for other problems to utilize. In particular, we consider the the following

information infrastructures in this dissertation:
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• Dining philosophers (generalized mutual exclusion),

• Maintaining neighbor knowledge,

• Neighbor detection, and

• Leader election.

We consider the dining philosophers problem in a network where nodes are static.

Maintaining neighbor knowledge, neighbor detection, and leader election are consid-

ered in a mobile ad hoc environment.

An algorithm that solves the dining philosophers problem can be utilized when

there is a need to prevent multiple nodes from accessing some shared resource simul-

taneously. Services such as neighbor detection and maintaining neighbor knowledge

can serve as building blocks for applications that require point-to-point communica-

tion. A solution to the leader election problem can be used whenever there is a need

for a unique coordinator in the system to perform a special task.

We examine each information infrastructure in more detail in the remainder of

this section.

1.1.1 Fault-Tolerant Dining Philosophers

The dining philosophers problem [24, 49], or simply dining, is a distributed re-

source allocation problem, in which each node repeatedly needs simultaneous ex-

clusive access to a set of shared resources in order to enter a special part of its

code, called the critical section. The sharing pattern is described by an arbitrary

“conflict” graph, each edge of which represents a resource shared by the two nodes

corresponding to the endpoints of the edge.

In large scale and long-lived systems, the likelihood of some node failing at some

point is high, thus sparking interest in fault-tolerant versions of the dining problem.

The ideal case would be for the dining algorithm to isolate each crashed node such
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that it does not impact any other correct nodes in the system. If the ideal case is

impossible to achieve, restricting the impact of the crash failure to a local neighbor-

hood would still be desirable. Failure locality [13, 14] is a metric that realizes this

concept; it is the maximum distance in the conflict graph between a crashed node p

and any other node that is blocked from entering its critical section.

In this dissertation, we provide two problem definitions that extend the classi-

cal dining philosophers problem in asynchronous systems — systems in which no

bounds on message delivery time and relative process speed exist. The first problem

definition considers failure locality 1 and fairness in accessing shared resources in an

asynchronous message passing model. The second definition also considers failure

locality 1, however, instead of fairness, it considers the presence of transient failures

(unexpected corruptions to the system state) in an asynchronous shared memory

model. In the asynchronous message passing model, nodes communicate by sending

and receiving messages through communication links. However, in the asynchronous

shared memory model, nodes communicate via performing read/write operations on

shared memory objects.

We also present two novel distributed algorithms, each algorithm solving each one

of the above mentioned problems. Each of the two algorithms is the first algorithm

for its corresponding problem.

Choy and Singh [14] showed that any dining algorithm implemented on an asyn-

chronous system must have failure locality at least 2. To circumvent this lowerbound,

our algorithms utilize failure detectors — system services that provide some infor-

mation about crash failures in the system — to achieve failure locality 1. The failure

detectors that we use are at most as powerful as the ones that are used to solve

failure-locality-0 dining [68, 69, 62, 65]; we are trading off failure locality to use fail-

ure detectors that seemingly provide less information regarding crash failures in the
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system.

Considering the message passing model, we also provide a reduction such that

given a crash fault-tolerant solution to our dining philosophers problem, we im-

plement the failure detector that we have utilized to solve our dining philosophers

problem. This reduction serves as the first step towards identifying the minimum

information regarding crash failures that is required to solve the dining philosophers

problem at hand.

1.1.2 Maintaining Neighbor Knowledge and Neighbor Detection

In wireless ad hoc networks, a fundamental problem for a node is to keep track

of its set of nearby nodes (neighbors). In this case, the challenge is to deal with

wireless broadcast interference and collisions. Difficulties are added when nodes are

mobile since frequent change of network topology requires the process of identifying

nearby neighbors to be ongoing. This problem of identifying nearby nodes serves as

a basis of distributed primitives such as routing ([60, 64]), location services ([2]), and

distributed token circulation ([50]).

In this dissertation, we present two solutions to the problem of identifying nearby

nodes. Each of the two solutions is the first solution for its corresponding system

model.

1.1.2.1 Maintaining Neighbor Knowledge in Road Networks

Assuming that, initially, each node knows its neighbors, we consider the prob-

lem of maintaining neighbor knowledge where node mobility is restricted to a two-

dimensional road network. A road network is a collection of one-dimensional lines

that may intersect each other. We can view vehicular ad hoc networks as nodes

(vehicles) with wireless communication capabilities moving on a road network.

For nodes to exchange neighbor information, we construct a deterministic collision-

4



free broadcast schedule which utilizes time division multiplexing and geographical

segmentation. Under certain constraints, our broadcast schedule tolerates node

movement on the road network while providing deterministic guarantees for each

node to maintain its dynamically changing set of neighbors.

We also provide a bound on how fast messages can travel in the road network given

our broadcast schedule. If nodes broadcast timestamped messages periodically, then

this bound is particularly useful when some node p needs to estimate the distance

between itself and another node q on the road network: when node p receives a

message m from q at time t, it can calculate an upper bound on the distance between

itself and q using time t, the timestamp value in m, message broadcast period, and

the bound on speed of message propagation.

Considering vehicular networks, we often observe that vehicles move in clusters

(due to, for instance, traffic lights). To this matter, we consider grouping nodes on

the road network into clusters and show that, under certain conditions, neighbor

knowledge is maintained when two different clusters move close to each other.

Our solution is an extension of the one-dimensional case in [27] and [70] to two-

dimensional space. One might think that extending the results in [27] and [70] would

be trivial since a road network is a collection of straight lines. However, since we

consider that the segmentation of each individual line is independent from each other

and there is no restriction on where lines intersect, providing analysis with respect to

intersection points becomes non-trivial. We perform a rigorous case-by-case analysis

whenever there is a need to consider intersection points in our analysis.

The material regarding maintaining neighbor knowledge in road networks has

been published in [18].
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1.1.2.2 Neighbor Detection in Mobile Ad Hoc Networks

Discovering neighboring nodes in mobile ad hoc networks becomes fully mean-

ingful when nodes identify neighbors that they can actually communicate with. We

provide a solution where, for any given node p, nodes that are identified as neighbors

of p can perform reliable point-to-point communication with p.

We build our solution on top of the abstract MAC layer [45] which handles the

scheduling of wireless transmissions (collision detection and contention management)

and provides message delay bounds for our solution to utilize. In this way, we can

focus on the algorithmic aspects of our solution without dealing with the scheduling

of wireless transmissions.

Our solution is based on nodes generating periodic hello messages where each

hello message contains sufficient information to help nodes to identify neighbors

with which they can communicate in a point-to-point manner. To make the problem

more suitable for a wider variety of situations, we consider clocks with bounded drift

rates.

To the best of our knowledge, our solution and the algorithm in [19] are the only

neighbor detection algorithms that consider the use of the abstract MAC layer. The

neighbor detection algorithm in [19] relies on geographical segmentation and each

mobile node to have future knowledge on joining or leaving a geographical segment.

However, our solution does not rely on geographical segmentation and does not

require mobile nodes to know their future whereabouts.

1.1.3 Leader Election in Mobile Ad Hoc Networks

Leader election is a process of identifying a unique existing node in the system.

In this dissertation, we consider the problem of electing a leader within a fixed region

where (1) nodes are mobile, (2) nodes communicate via wireless broadcast, and (3)
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clocks are synchronized. The advantage of considering a region is that leader election

can be performed by nodes that are relatively close to each other. If we consider

performing leader election among nodes that are connected but far apart from each

other, the amount of time that it takes to elect a leader and knowing which node

became the leader can be significant.

We assume that a message broadcast in the region is relayed through at most a

fixed number of hops to nodes that stayed in the region for a sufficiently long period

of time (in this case, we say that the region has a bounded communication diameter).

By having this assumption, any pair of mobile nodes in the region are not required

to be connected at all times (network partitions are allowed within the region) which

is a better fit for mobile ad hoc networks

We provide a novel problem definition, called the Regional Consecutive Leader

Election (RCLE) problem, by extending the classical leader election problem to the

ever changing environment of mobile ad hoc networks.

We prove that any algorithm in our model requires Ω(Dn) synchronous rounds

to solve the RCLE problem, where D is the communication diameter of the network

and n is the total number of nodes. We then present the first asymptotically optimal

fault-tolerant RCLE algorithm that elects a new leader whenever no leader is present

in the region and there exists at least one node in the region. Since our leader

election algorithm assumes that the region has a bounded communication diameter,

the question arises how to ensure that the region has a bounded communication

diameter? To answer this question, we provide a novel condition on node mobility

that ensures the existence of a bounded communication diameter within the region.

The material regarding regional consecutive leader election has been published in

[15, 16, 17].
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Chapter 7

Chapter 4

Chapter 5

Chapter 6

Distributed Algorithms 
for Mobile Ad Hoc Networks

Chapter 3

Chapter 2 Distributed Resource 
Allocation Algorithms 
for Static Networks

Conclusion

Figure 1.1: Dissertation organization: Sections 2 to 7.

1.2 Organization

Figure 1.1 shows how the remaining sections are organized. The first part of this

dissertation considers distributed resource allocation algorithms for static networks

and it consists of Sections 2 and 3. Sections 6, 4, and 5 constitutes the second part in

which distributed algorithms for mobile ad hoc networks are dealt with. The outline

of each section is as follows:

The dining philosophers problem with crash fault-tolerance and fairness in access-

ing the shared resource for message passing is considered in Section 2. The system

model and problem specification are given in Section 2.2. Utilizing a certain failure
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detector, a dining algorithm with failure locality 1 and fairness along with its proof

of correctness is presented in Section 2.3. In Section 2.4, we implement and prove

correct the failure detector that was originally used to solve our dining problem.

Section 2.5 discusses how our result relates to other variations of dining problems

and failure detectors.

Section 3 considers both crash and transient fault-tolerant dining for shared mem-

ory systems. Background and related work is provided in Section 3.2. The system

model and problem specification is provided in Section 3.3. Again, utilizing failure

detectors, a transient fault-tolerant failure-locality-1 dining algorithm is presented in

Section 3.4. The correctness proof of our dining algorithm is also included in Section

3.4.

Maintaining neighbor knowledge of mobile nodes in a road network is considered

in Section 4. Related work and the system model are presented in Sections 4.2 and

4.3, respectively. In Section 4.4, a deterministic collision-free broadcast schedule is

presented. Section 4.5 explains how the parameters used in Section 4 relate to one

another and then we show, in Section 4.6, that neighbor knowledge is maintained

throughout the execution of our broadcast schedule under the assumption that initial

neighbor knowledge is given. Given any two points A and B on the road network,

a lower bound on the speed of message propagation from A to B is obtained in

Section 4.7. In Section 4.8, we define clusters on the road network and show that,

under certain conditions, neighbor knowledge is maintained when two clusters merge

to form a new cluster. Section 4.9 discusses how initial neighbor knowledge can be

obtained and presents practical values for the parameters.

Section 5 considers the problem of each mobile node detecting neighboring mobile

nodes with which it can perform reliable point-to-point communication. Related

work is presented in 5.2. The system model is given in Section 5.3 and the problem
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specification is described in Section 5.4. Section 5.5 presents a periodic hello-based

neighbor detection algorithm and its proof of correctness is given in Section 5.6. In

Section 5.7, we apply parameter values to obtain the maximum distance between any

two nodes that guarantees them to perform reliable point-to-point communication

and compare the results of different parameter values.

Section 6 considers a problem of electing a leader among mobile nodes within a

fixed region, called Regional Consecutive Leader Election (RCLE). In Section 6.2,

we present related work that deals with leader election on mobile ad hoc networks.

The system model and the RCLE problem definition is given in Section 6.3. We

provide, in Section 6.4, a lower bound on the time it takes to elect a leader and

subsequently, in Section 6.5, we provide and prove correct an asymptotically optimal

RCLE algorithm. A condition on mobility, which guarantees the existence of a

bounded communication diameter, is presented in Section 6.6.

Finally, Section 7 concludes this dissertation by summarizing contributions and

providing future work.
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2. DINING PHILOSOPHERS WITH BOUNDED WAITING

AND FAILURE LOCALITY 1

In this section, we consider the dining philosophers problem, or simply dining,

in an asynchronous message passing system where processes are subject to crash

failures. Choy and Singh [14] showed that any asynchronous message-passing dining

algorithm must have failure locality at least 2. There are several existing algorithms

that solve dining with failure locality 2, showing that failure locality 2 is a tight

bound [13, 67]. To circumvent this lower bound, previous work [68, 69, 62, 65, 63]

has considered variations of dining along with utilizing failure detectors [11], system

services that provide information about process crashes that need not always be

correct.

Following this line of research, we present a specification for the BW -�SX-

FL1 problem requiring the following (BW and �SX stand for bounded waiting

and perpetual strong exclusion, respectively, and failure locality 1 is abbreviated as

FL1):

• Exclusion: No two neighbors (in the conflict graph) access their corresponding

critical sections simultaneously.

• FL1-progress: A correct process that is trying to enter its critical section even-

tually does so if it only has correct neighbors and no correct process stays in

its critical section forever.

• FL1-BW : If correct process p only has correct neighbors, then for any interval

in which p is trying to enter its critical section, no neighbor of p enters its

critical section more than a bounded1 number of times.

1The bound may be different in different executions. See Section 2.5.
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Recall from Section 1.1.1 that failure locality [13, 14] is a metric that corresponds

to the maximum distance in the conflict graph between a crashed process p and any

other process that is blocked from entering its critical section. Thus, FL1 indicates

that each correct process that is at least two hops away from any crashed process is

not blocked from entering its critical section.

We consider the local version of the well-known eventually perfect failure detec-

tor (♦P )2 [11] which repeatedly supplies each process p with a set of neighboring

processes suspected to have crashed. We denote the local version of ♦P as ♦P 1.

Roughly, ♦P 1 has the following properties:

• Completeness: From some time on, for each correct process p, every crashed

neighboring process of p is suspected by p.

• Accuracy: From some time on, for each correct process p, no correct neighbor-

ing process of p is suspected by p.

In this section, we consider that the output value of ♦P 1 is obtained via a query/response

mechanism as in [37].

The Exclusion and FL1-progress properties of BW -�SX-FL1 prevent simulta-

neous access to the critical section and provide eventual guarantees in accessing the

critical section, respectively. Exclusion and FL1-progress constitute the problem

statement in [63]. In [63], the authors show that the ♦P failure detector [11] is suf-

ficient to solve their problem. They also show that ♦P is a weakest3 failure detector

among the specific failure detectors introduced in [11] to solve their problem.

In addition to the Exclusion and FL1-progress properties, BW -�SX-FL1 in-

cludes an additional property. The FL1-BW property provides a level of fairness

2The specification of ♦P states that, eventually, (1) every crashed process is suspected by every
correct process, and (2) no correct process is suspected by any correct process.

3Weakest with respect to the relationship defined in [11] that is based on implementing one
failure detector using another one.
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in accessing the critical section between correct neighboring nodes (FL1-BW is a

failure-locality-1 version of the bounded waiting property defined in [68, 69]). This

is a desirable property for resource allocation when there is a need to prevent any

process from dominating a shared resource by using it too frequently.

Finding a weakest failure detector for a problem is a way to characterize the

minimum information regarding crash failures that is required to solve the problem.

Mutual reducibility is a common proof technique used to identify a weakest failure

detector. Suppose that, given a failure detector FD and a problem Q, we can solve

Q using FD and we can also implement FD with a solution to Q (that is, Q and

FD are mutually reducible). Now, for the sake of contradiction, suppose that there

exists a failure detector FD′ that is strictly weaker than FD (that is, FD′ can be

implemented using FD but it is impossible to implement FD using FD′) and Q can

be solved using FD′. Since FD′ can be used to solve Q and a solution to Q can

implement FD, by transitivity, FD′ can be used to implement FD. This contradicts

the assumption that FD′ is strictly weaker than FD. So, FD is indeed a weakest

failure detector for Q.

Now, a natural question arises: can we identify a weakest failure detector among

all failure detectors for solving dining (or at least a variation of dining) with failure

locality 1? We provide the first step towards identifying a weakest failure detector

for BW -�SX-FL1 by showing that failure detector ♦P 1 and a solution to BW -

�SX-FL1 are mutually reducible without preserving the underlying conflict graph

topology. In our case, the conflict graph topology considered in one direction of the

reduction is not necessarily the same in the other direction. Specifically, we first

show that ♦P 1 is sufficient to solve BW -�SX-FL1 on any topology, and then we

show the that using multiple instances of BW -�SX-FL1 on a “particular” (virtual)

conflict graph, we can extract ♦P 1. This has the following implication: considering
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an arbitrary conflict graph G and given ♦P 1, we can solve BW -�SX-FL1 on G

but using “this” solution of BW -�SX-FL1 on G (the solution is tied with G),

we may not be able to extract ♦P 1. Another implication is as follows: We have

already shown that if a failure detector FD and a problem Q are mutually reducible,

then FD is a weakest failure detector to solve Q. Considering a failure detector

FD′ that is strictly weaker than FD and can be used to solve Q, we have argued

using transitivity through Q to show that FD is implementable using FD′ which

provided the desired contradiction. Now, if we substitute FD and Q with ♦P 1 and

BW -�SX-FL1, respectively, then we might not be able to use transitivity through

BW -�SX-FL1 to show that ♦P 1 is implementable using FD′. This is again because

we can solve BW -�SX-FL1 using FD′ on an arbitrary conflict graph G, however,

using this solution which is tied with G, we might not be able to implement ♦P 1

(since G might not be the same as the particular graph used to extract ♦P 1). The

above two implications in turn implies that, in order to conform with the “classical”

notion of a weakest failure detector, mutual reducibility must preserve the underlying

topology.

Previous work in [68, 69, 62, 65] considered the dining philosophers problem

with wait-freedom and eventual weak exclusion. Wait-freedom corresponds to failure

locality 0 and eventual weak exclusion states that eventually, no two live4 neighbors

access the critical section simultaneously. The difference between the work in [68, 69]

and [62, 65] is that the former consider bounded waiting in accessing the critical

section in the problem statement and the latter do not. Also, the results in [62, 65]

show that ♦P 1 is a weakest failure detector which implies that wait-freedom and

eventual weak exclusion themselves encapsulate bounded waiting, however, similar to

our results, the results in [68, 69] show that ♦P 1 and a solution to the corresponding

4Live nodes are those nodes that have not yet crashed.
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dining problem are mutually reducible without preserving the underlying topology.

We solve the BW -�SX-FL1 problem by carefully combining the asynchronous

doorway technique in [68] and the concept of skepticism in [63]. For a process to

enter the critical section, it must first enter the doorway by obtaining permission from

all of its neighbors. Our solution satisfies the FL1-BW property by manipulating

permission requests to enter the doorway. The concept of skepticism is used to

satisfy all failure-locality-1 related properties: a process p becomes “skeptical” if

some process in p’s one-hop neighborhood is suspected by p’s local failure detector

and, as long as p is skeptical, p satisfies all requests from its neighbors.

In implementing ♦P 1, we use multiple instances of a solution to BW -�SX-FL1

as subroutines. In [69], the authors use a ping/ack protocol in conjunction with a

dining subroutine for a correct process to directly detect crash failures; by direct

detection, we mean that a correct node p detects a faulty neighbor q by directly

exchanging messages with q. We use a similar ping/ack protocol to directly detect

crash failures. However, there is a situation where direct detection is impossible.

In that case, we use the ping/ack protocol to detect faulty processes by means of

detecting starving5 processes. Since our dining subroutine satisfies the FL1-progress

property, the existence of a starving process corresponds to a crash failure in the

neighborhood (see Section 2.4 for details).

2.1 Contributions

We consider a dining philosophers problem with perpetual strong exclusion. Since

perpetual strong exclusion implies any other combination of eventual and/or weak

exclusion, our algorithm can be used to satisfy weaker exclusion guarantees. We show

that ♦P 1 is sufficient in solving the failure-locality-1 eventually bounded dining on

5Roughly, a correct process starves if it stops entering its critical section.
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any topology. We also show that ♦P 1 can be implemented using multiple instances of

BW -�SX-FL1 on a particular conflict graph. This serves as the first step towards

identifying a weakest failure detector among all failure detectors for solving a dining

problem with failure locality 1.

2.2 System Model and Problem Specification

Given a set Π of processes with unique ids and an undirected graph G with vertex

set Π, we now define the BW -�SX-FL1 problem for G. The set of events X (for

“exclusion”) is defined to be

X , {tryp, critp, exitp, remp, crashp : p ∈ Π}.

Given a sequence σ over X, for any p ∈ Π, define p to be faulty in σ if crashp appears

in σ and correct otherwise. For a finite sequence σ over X and any p ∈ Π, define

last(σ, p) to be the latest event in σ from {tryp, critp, exitp, remp}. If last(σ, p) is

remp (resp. tryp, critp, exitp), then we say that p is in its remainder (resp. trying,

critical, exiting) section. We say that Finite Eating holds for a sequence σ over X

if, for each correct p ∈ Π, σ|p does not end with critp. Also, for a sequence σ over

X, if p ∈ Π is correct and all of p’s neighbors in G are correct, then we say that p is

failure-insulated. A sequence σ over X satisfies the BW -�SX-FL1 specification for

G if it satisfies the following conditions:

• Well-formedness: For each p ∈ Π, if σ|p6 is infinite, then it is the infinite

repetition of tryp, critp, exitp, remp; if σ|p is finite, then it is either a prefix of

this infinite repetition or it consists of a prefix of this infinite repetition followed

by crashp.

• Exclusion: For each prefix σ′ of σ and each edge {p, q} in G, if last(σ′, p) =

critp, then last(σ′, q) 6= critq.

6σ|p indicates the sequence of events in σ that occurred at p.
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• Finite Exiting: For each correct p ∈ Π, σ|p does not end with exitp.

• FL1-progress: For each failure-insulated p ∈ Π, if Finite Eating holds for σ,

then σ|p does not end with tryp.

• FL1-BW : There exists an integer k > 0 such that for any two neighbors p ∈ Π

and q ∈ Π where p is failure-insulated, every infix of σ that starts with tryp

and ends with the next occurrence of critp contains at most k occurrences of

critq.

For any sequence σ over X, we say σ is user-correct for X if the shortest prefix

of σ to violate Well-formedness (if any) ends in either remp or critp for some p ∈ Π.

(The intuition is that the user of the BW -�SX-FL1 module is not the first to violate

Well-formedness; the user preserves Well-formedness)

Given a set Π of processes and an undirected graph G with vertex set Π, we now

define the ♦P 1 failure detector problem for G. For each process p ∈ Π on G, let

Np be the set of neighboring processes of p. The set of events D (for “detector”) is

defined to be

D , {queryp, response(S)p, crashp :

p ∈ Π, S ⊆ Np}.

We use the same definitions of faulty and correct as above.

A sequence σ over D satisfies the ♦P 1 specification if it satisfies the following

conditions:

• Well-formedness: For each p ∈ Π, if σ|p is infinite, it consists of alternating

queryp and responsep(.) events, starting with queryp; if σ|p is finite, then it is

either a prefix of such an infinite sequence or it consists of a prefix of such an

infinite sequence followed by crashp.

• Liveness: For each correct p ∈ Π, σ|p does not end with queryp.
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• Completeness: For each correct p ∈ Π, there is a suffix of σ in which the

parameter S of each occurrence of response(S)p contains every faulty neighbor

of p in G.

• Accuracy: For each correct p ∈ Π, there is a suffix of σ in which the parameter

S of each occurrence of response(S)p does not contain any correct neighbor of

p in G.

For any sequence σ over D, we say σ is user-correct for D if the shortest prefix of

σ to violate Well-formedness (if any) ends in responsep(.) for some p ∈ Π. (The

intuition is that the user of the failure detector module is not the first to violate

Well-formedness; the user preserves Well-formedness)

We model distributed algorithms as collections of state machines. Let Π be the

set of nodes on which a distributed algorithm is running, with one state machine

(process) per node. Each step of a process is triggered by an event and causes the

process to change its local state. Events are partitioned into input and output events.

An input event can occur at any time (i.e., it is always enabled), whereas an output

event can only happen (be enabled) if certain preconditions are true in the state of

the process.

We model a snapshot of the entire algorithm as a vector of states, one per process,

which is called a configuration. In an initial configuration, each process is in an

initial state. An execution of the algorithm is a sequence C0, e1, C1, e2, C2, . . . of

alternating configurations and events, beginning with an initial configuration, and

if finite, ending with a configuration, that satisfies the following properties for each

i ≥ 1. Suppose event ei occurs at process p.

• Event ei is enabled in the state of p in the preceding configuration Ci−1.

• The only difference between Ci−1 and Ci is that the state of p changes according

to p’s transition function (local algorithm).
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Our algorithms execute in a system in which the processes communicate through

an asynchronous message passing network, where the set of communication channels

is described by an undirected graph G. If edge {p, q} is in G, then there is a channel

from p to q and a channel from q to p. The set of events for interacting with the

message system is defined to be

N , {sendp(m, q), recvp(m, q), crashp :

{p, q} ∈ G and m ∈M},

where M is the set of messages. A sequence over N is said to satisfy the message-

passing specification if it captures the properties that each channel is reliable (does

not duplicate, alter, or inject messages, and does not lose messages sent to correct

processes), asynchronous (unbounded delays), and FIFO (messages in each channel

are delivered in the order in which they are sent). In addition, no recvp, sendp, or

crashp event occurs in the sequence after a crashp event occurs.

We next define what it means to be an algorithm for the BW -�SX-FL1 problem

for G in a message-passing system augmented with a ♦P 1 failure detector. Note that

the communication topology graph is the conflict graph. The set of input events is

{tryp, exitp, crashp, responsep(S), recvp(m, q) :

{p, q} ∈ G,S ⊆ Np,m ∈M}.

The set of output events is

{critp, remp, queryp, sendp(m, q) :

{p, q} ∈ G,m ∈M}.

Every execution E of the algorithm must satisfy the following property: If E satisfies

the following three conditions:
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1. E|N7 satisfies the message-passing specification,

2. either E|D is not user-correct for D or E|D satisfies the ♦P 1 specification,

3. E|X is user-correct for X,

then E|X satisfies the BW -�SX-FL1 specification.

Now we define what it means to be an algorithm for the ♦P 1 problem for G in a

message-passing system augmented withBW -�SX-FL1 subroutines. The algorithm

uses some number, say H, of instances of a solution to the BW -�SX-FL1 problem.

The h-th instance is for some undirected graph Gh with vertex set Θh where there

exists a function f that maps Θh to Π; ∃f : Θh → Π. For the h-th instance, we

denote the set of events by Xh = {trys, crits, exits, rems, crashp : s ∈ Θh, p = f(s)}.

We note that for each s ∈ Θh where f(s) = p, crashp is a “synonym” for crashs with

respect to the formal definition of the BW -�SX-FL1 problem.

The set of input events for the ♦P 1 algorithm is⋃H
h=1{crits, rems : s ∈ Θh} ∪ {crashp, queryp, recvp(m, q) : {p, q} ∈ G,m ∈M}.

The set of output events is⋃H
h=1{trys, exits : s ∈ Θh} ∪ {responsep(S),

sendp(m, q) : S ⊆ Np, {p, q} ∈ G,m ∈M}.

Every execution E of the algorithm must satisfy the following property: If E

satisfies the following three conditions:

1. E|N satisfies the message-passing specification,

2. for each h, 1 ≤ h ≤ H, either E|Xh is not user-correct for Xh or E|Xh satisfies

the BW -�SX-FL1 specification for Gh,

3. E|D is user-correct for D,

then E|D satisfies the ♦P 1 specification.

7E|N indicates the sequence of events in E with respect to set N .
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2.3 Solving BW -�SX-FL1 using ♦P 1

The algorithm in Figures 2.1, 2.2, and 2.3 solves the problem of BW -�SX-

FL1 using a solution to the ♦P 1 problem. Roughly speaking, this algorithm uses a

ping/ack protocol in conjunction with asynchronous doorways [13] to provide fairness

and uses a fork/request protocol to provide safety in entering a critical section. A

node has to first enter the doorway for it to enter its critical section.

The pseudocode in Figures 2.1, 2.2, 2.3, and the figures found on p. 45-48 uses

the following conventions:

• An immediate occurrence of an output event e is indicated as “generate e” in

the code.

• When node p crashes, we assume that p simply stops its execution.

• We assume that each action block is executed atomically.

2.3.1 Algorithm Overview

We first consider the case when a correct node p ∈ Π does not have any faulty

neighbors and ♦P 1 has stabilized such that S = ∅ for all events responsep(S) there-

after. In this case, skeptical = F holds; this indicates that p does not suspect any of

its neighbors to be faulty. When p enters a trying section, it sets variable dining to

try and sends ping messages to all its neighbors; variable dining keeps track of the

most recent occurrence of try and crit events. Node p then waits until it receives

ack messages from all of its neighbors to enter the doorway; the value of ack[q] tells

whether node p has received an ack message from its neighbor q and variable inside

is used to indicate whether a node is inside the doorway.

Upon receiving a ping message from a neighbor q, node p does not send an ack

message back to q if (1) p is inside the doorway, or (2) p already received a ping

message from q in the current trying section; otherwise p immediately sends an ack
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〈Variables and Initialization〉
1: Np; // neighbor set of p
2: ∀q ∈ Np : reqToken[q]; // initialized as in Section 2.3.1
3: ∀q ∈ Np : fork[q]; // initialized as in Section 2.3.1
4: dining ← rem; // dining state of p
5: inside← F ;
6: skeptical← F ;
7: ∀q ∈ Np : ack[q]← F ;
8: ∀q ∈ Np : replied[q]← F ;
9: ∀q ∈ Np : deferred[q]← F ;

10: generate queryp;

11: 〈When tryp occurs〉
12: dining ← try;
13: for all q ∈ Np do
14: generate sendp(〈ping〉, q);

15: 〈When recvp(〈ping〉, q) occurs〉
16: if (inside ∨ replied[q]) ∧ ¬skeptical then
17: deferred[q]← T ;
18: else
19: send ack to q;
20: if dining = try then
21: replied[q]← T ;

22: 〈When recvp(〈ack〉, q) occurs〉
23: ack[q]← T ;
24: if (∀r ∈ Np : ack[r]) ∧ (dining = try) ∧ ¬skeptical then
25: EnterDoorway();

Figure 2.1: Solving BW -�SX-FL1 with ♦P 1; code for node p (part 1 of 3).

22



26: 〈When recvp(〈request〉, q) occurs〉
27: reqToken[q]← T ;
28: if ¬inside ∨ ((dining = try) ∧ (p < q)) then
29: generate sendp(〈fork〉, q);
30: fork[q]← F ;
31: if inside then
32: generate sendp(〈request〉, q);
33: reqToken[q]← F ;

34: 〈When recvp(〈fork〉, q) occurs〉
35: fork[q]← T ;
36: if (dining = try) ∧ inside then
37: AllForks();

38: 〈When exitp occurs〉
39: dining ← exit;
40: SatisfyRequests();
41: generate remp;

42: 〈When responsep(S) occurs〉
43: if S 6= ∅ then
44: skeptical← T ;
45: if dining 6= crit then
46: SatisfyRequests();
47: else
48: skeptical← F ;
49: if (dining = try) ∧ ¬inside ∧ (∀q ∈ Np : ack[q]) then
50: EnterDoorway();
51: generate queryp;

Figure 2.2: Solving BW -�SX-FL1 with ♦P 1; code for node p (part 2 of 3).
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52: procedure AllForks()
53: if ∀q ∈ Np : fork[q] then
54: dining ← crit;
55: generate critp;

56: procedure EnterDoorway()
57: inside← T ;
58: for all q ∈ Np do
59: ack[q]← F ;
60: replied[q]← F ;
61: if (reqToken[q] ∧ ¬fork[q]) then
62: generate sendp(〈request〉, q);
63: reqToken[q]← F ;
64: AllForks();

65: procedure SatisfyRequests()
66: inside← F ;
67: for all q ∈ Np where (reqToken[q] ∧ fork[q]) do
68: generate sendp(〈fork〉, q);
69: fork[q]← F ;
70: for all q ∈ Np where deferred[q] do
71: generate sendp(〈ack〉, q);
72: deferred[q]← F ;

Figure 2.3: Solving BW -�SX-FL1 with ♦P 1; code for node p (part 3 of 3).

message to q. Arrays replied[·] and deferred[·] handle this action of deferring an ack

request which results in providing the FL1-BW property: no neighbor of p enters a

critical section more than two times while p is continuously in a trying section.

Node p uses array fork[·] to determine whether it can generate event critp (enter

the critical section). Array reqToken[·] is used to keep track of request messages

exchanged between p and its neighbors. For the algorithm in Figures 2.1, 2.2, and

2.3, we assume that arrays reqToken[·] and fork[·] are initialized as follows: for

each pair of neighboring nodes p ∈ Π and q ∈ Π, reqToken[p] = T if and only if

24



fork[q] = F . Node p sets fork[q] to T when it receives a fork message and fork[q]

to F when it sends a fork message. Similarly, node p sets reqToken[q] to T when it

receives a request message and reqToken[q] to F when it sends a request message.

For two neighboring nodes p and q, there exists a unique fork token (or simply

fork) and a unique request token shared between p and q such that fork[q] = T at

p (resp. fork[p] = T at q) corresponds to node p (resp. q) holding the fork and

reqToken[q] = T at p (resp. reqToken[p] = T at q) corresponds to node p (resp. q)

holding the request token.

When node p enters the doorway, p requests for the missing forks by sending

request messages to its neighbors and if p already holds all the forks, then p enters its

critical section. When p receives a request message from its neighbor q, p determines

whether it can immediately send the fork to q; node p sends the fork to q if (1) p is

outside the doorway, or (2) p is in its trying section and the id of q is greater than

p’s id. In the case when a fork request from node q is deferred at node p, the value

of reqToken[q] will remain as T until node p exits the critical section.

At node p, whenever event responsep(S) occurs with S = ∅, it checks the suit-

ability of entering the doorway; if p is in its trying section, outside of the doorway,

and received ack messages from all of its neighbors, then p enters the doorway.

When node p is in a trying section, inside the doorway, and holds all forks, then p

enters a critical section. When event exitp occurs at node p (when p enters an exiting

section), node p goes outside of the doorway, sends forks to those neighbors that sent

a request message to it, satisfies all deferred ack requests, and enters its remainder

section. This fork/request protocol basically provides the Exclusion property. Also,

the combination of the ping/ack protocol and the fork/request protocol provides

property FL1-progress.

Now, we consider the case when a correct node p ∈ Π has a faulty neighbor and
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♦P 1 has stabilized such that S 6= ∅ for all events responsep(S) thereafter. In this

case, skeptical = T holds; this indicates that p suspects it has a faulty neighbor.

First note that whenever event responsep(S) occurs with S 6= ∅ at node p, as long

as p is not in a critical section, p exits the doorway and satisfies all deferred fork and

ack requests. Upon receiving a ping message sent by a neighboring node q, node p

will immediately send back an ack message to q. Also, since skeptical = T holds,

node p will not enter the doorway even though it is in its trying section and received

ack messages from all of its neighbors. Note that p does not need to enter its critical

section if it has a crashed neighbor.

2.3.2 Proof Outline

In this section, we only provide an outline of the proof of the algorithm in Figures

2.1 2.2, and 2.3.

The Finite Exiting property directly follows from the pseudocode. Using the fact

that the variable dining correctly keeps track of the most recent occurrence of try

and crit events (Lemma 2.3.2), we show that crit and rem events only happen after

try and exit, respectively, which proves the Well-formedness property (Lemma 2.3.3).

To prove the Exclusion property (Lemma 2.3.7), we first identify invariants that are

true in every configuration of any execution (Lemma 2.3.6). The key invariants used

in showing the Exclusion property are: (a) the fork shared between any two neighbors

is unique, and (b) if a node is in its critical section, then it is inside the doorway and

holds all forks shared between itself and all of its neighbors.

The FL1-progress property (Lemma 2.3.14) is shown in two steps. We first prove

that for each correct node p that only has correct neighbors, if p is inside the doorway,

then it eventually enters its critical section. Then, we show that if p is outside the

doorway, then it eventually enters the doorway. Both steps rely on the assumption
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that no correct process stays in its critical section forever and have a similar proof

structure: We first show that if there exists a node that is not making progress, then

there is an array variable that stops changing its values (Lemmas 2.3.10 and 2.3.12).

We then show by means of contradiction that the array variable cannot be stabilized,

due to the total ordering of node ids and the total ordering of events in an execution

(Lemmas 2.3.11 and 2.3.13).

The following facts are used to show that the FL1-BW property holds (Lemma

2.3.15): Suppose node p is correct and only has correct neighbors. While node p is

continuously in a trying section and outside the doorway, the use of array variable

replied[·] shows that p does not send an ack message more than one time to any

neighboring node. Also, notice that if p is inside the doorway, then it does not send

ack messages to its neighbors.

2.3.3 Proof of Correctness

Let E be any execution of the algorithm in Figures 2.1, 2.2, and 2.3 such that

E|N satisfies the message-passing specification, either E|D is not user-correct for D

or E|D satisfies the ♦P 1 specification, and E|X is user-correct for X.

After the initial generation of output event queryp (line 10), subsequent queryp

events are generated only after event responsep(b) is enabled (line 51). Hence, E|D

is user-correct and we may assume that E|D satisfies the ♦P 1 specification.

2.3.3.1 Finite Exiting, Well-formedness, and Exclusion

Lemma 2.3.1. E|X satisfies Finite Exiting.

Proof. This follows directly from the code (lines 38-41).

Lemma 2.3.2. For every p ∈ Π and every prefix E ′ of E, if diningp = try, then

last(E ′|X, p) = tryp, and if diningp = crit, then last(E ′|X, p) = critp.
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Proof. Initially diningp = rem, so the lemma is vacuously true. When tryp occurs,

diningp is set to try. When critp occurs, diningp is set to crit. The only other time

when diningp changes is when exitp occurs, in which case diningp is set to exit.

Lemma 2.3.3. E|X satisfies Well-formedness.

Proof. Suppose in contradiction E|X does not satisfy Well-formedness. By the as-

sumption that E|X is user-correct for X, the first error is because the algorithm

outputs critp or remp at a wrong time. However, remp is only generated immedi-

ately after exitp occurs (cf. lines 38–41), which is correct.

But p only generates critp in AllForks, which is called in two places, line 37 and

line 64. Line 64 is part of EnterDoorway, which is called in two places, line 25 and

line 50. In all cases, we see from the code that diningp = try (lines 36, 24, 49) when

critp is generated. By Lemma 2.3.2, the most recent preceding event in X is tryp,

which is correct, a contradiction.

Thus E|X satisfies Well-formedness.

Definition 2.3.4. If forkp[q] = T , then we say p has a {p, q}-fork; if forkq[p] = T ,

then we say q has a {p, q}-fork; if a fork message is in transit from p to q, then we

say the channel from p to q has a {p, q}-fork; and if a fork message is in transit

from q to p, then we say the channel from q to p has a {p, q}-fork.

Definition 2.3.5. If reqTokenp[q] = T , then we say p has a {p, q}-request; if

reqTokenq[p] = T , then we say q has a {p, q}-request; if a request message is in

transit from p to q, then we say the channel from p to q has a {p, q}-request; and if

a request message is in transit from q to p, then we say the channel from q to p has

a {p, q}-request.

Lemma 2.3.6. The following are invariants (true in every configuration of E) for

all neighbors p and q.
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(A) There is exactly one {p, q}-fork.

(B) If diningp = crit, then forkp[q] = T and insidep = T .

(C) If a request message is in transit from p to q, then either a fork message

precedes the request message in the channel or q has the {p, q}-fork.

(D) If reqTokenp[q] = T , then a fork message is not in transit from q to p.

(E) There is exactly one {p, q}-request.

(Note: (B) can be proved independently, as can (E). (A), (C) and (D) need to

be proved all together, and they rely on (E).)

Proof. By induction on the configurations in E, which we denote C0, C1, . . ..

–(Base case) By the initialization, (A) through (E) are true in C0.

–(Inductive case) Suppose (A)-(E) are true in configuration Ct−1 and show they

are true in configuration Ct. We consider every possibility for the event taking the

system from Ct−1 to Ct. When tryp and recvp(ping, q) occur, no changes are made

that affect the truth of any of the predicates.

Case 1: The event is recvp(ack, q).

(A) No changes affect fork variables or fork messages. By the inductive hypoth-

esis, (A) is true in Ct−1 and thus it remains true in Ct.

(B) The only change that can affect (B) is if diningp is set to crit in line 54 of

AllForks, which is called from EnterDoorway. The check in line 53 of AllForks

ensures that forkp[q] is true, and the assignment in line 56 of enterDoorway

sets insidep to true.
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(C) The only change that can affect (C) is if p sends a request message to q in

line 62 of EnterDoorway. We must show that either a fork message precedes

the request message in the channel from p to q or q has the {p, q}-fork. Since

reqTokenp[q] = T in Ct−1, the inductive hypothesis (D) implies that a fork

message is not in transit from q to p. Since forkp[q] = F in Ct−1, the inductive

hypothesis (A) implies that either a fork message is in transit from p to q or

q has the fork in Ct−1. Thus (C) is true in Ct.

(D) The only change relevant to (D) is if reqTokenp[q] is set to false in line 63 of

EnterDoorway. However, in this case (D) is vacuously true in Ct.

(E) The only change relevant to (E) is if lines 61–63 are executed in EnterDoorway

and p sends a request message to q. In this case, the {p, q}-request moves from

being (uniquely) at p to being (uniquely) in transit from p to q. Uniqueness

follows from the inductive hypothesis (E).

Case 2: The event is recvp(request, q).

(A) In Ct−1, a request message is at the head of the channel from q to p (since

channels are FIFO). By the inductive hypothesis (C), forkp[q] = T in Ct−1.

By the inductive hypothesis (A), in Ct−1, no fork message is in transit from

p to q or from q to p, and forkq[p] = F . By the code, in Ct, either a fork

message is in transit from p to q and forkp[q] = F , or no fork message is in

transit from p to q and forkp[q] = T . Thus (A) still holds.

(B) The only change that could affect (B) is setting forkp[q] to false in line 30. But

this only happens if insidep is false (cf. line 28). By the inductive hypothesis

(B), diningp 6= crit in Ct−1. Thus diningp is still not equal to crit in Ct and

the change to forkp[q] does not invalidate (B) in Ct.

30



(C) If p sends a request message to q in line 32, it previously sends a fork message

to q in line 29.

(D) In Ct−1, a request message is at the head of the channel from q to p. Thus

by the inductive hypothesis (C), p has the {p, q}-fork and no fork message is

in transit between p and q in either direction in Ct−1. If reqTokenp[q] = T in

Ct (i.e., line 33 is not executed), then there is still no fork message in transit

from q to p.

Suppose p sends the fork to q. Then we must show that reqTokenq[p] = F .

This follows from the inductive hypothesis (E): since the request message is in

transit from q to p in Ct−1, it must be that reqTokenq[p] = F .

(E) If lines 32–33 are not executed, then the {p, q}-request goes from being (uniquely)

in transit from q to p to being (uniquely) at p. If lines 32–33 are executed, then

the {p, q}-request goes from being (uniquely) in transit from q to p to being

(uniquely) in transit from p to q (The uniqueness follows from the inductive

hypothesis (E)).

Case 3: The event is recvp(fork, q).

(A) In Ct−1, a fork message is at the head of the channel from q to p. By the

inductive hypothesis (A), in Ct−1, no fork message is in transit from p to q,

and forkp[q] and forkq[p] are both false. By the code, in Ct, no fork message

is in transit from q to p (since it is removed from the channel in order to be

received) and forkp[q] = T .

(B) The only change that can affect (B) is if diningp is set to crit in line 54 of

AllForks, which is called from line 37. The check in line 53 of AllForks ensures

that forkp[q] is true, and the check in line 36 ensures that insidep is true.
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(C) No change affects the validity of (C) in Ct.

(D) No change affects the validity of (D) in Ct.

(E) No change affects the validity of (E) in Ct.

Case 4: The event is exitp.

(A) The only changes that possibly affect (A) occur if lines 67–69 in SatisfyRequests

are executed. In this case, the fork changes from being (uniquely) at p to being

(uniquely) in transit from p to q. (The uniqueness is due to the inductive

hypothesis (A).)

(B) Since diningp is set to a value other than crit, (B) is vacuously true in Ct.

(C) The only change that possibly affects (C) occurs if p sends a fork message to

q in line 68 of SatisfyRequests. We must show that no request message is in

transit from q to p. By the code, reqTokenp[q] = T in Ct−1 (cf. line 67). By

the inductive hypothesis (E), there is no request message in transit.

(D) The only change that possibly affects (D) occurs if p sends a fork message to

q. We must show that reqTokenq[p] = F . In Ct−1, if p sends a fork message

to q, it must be that reqTokenp[q] = T . So by the inductive hypothesis (E),

reqTokenq[p] = F .

(E) No change affects the validity of (E) in Ct.

Case 5: The event is responsep(S).

(A) The only changes that possibly affect (A) are if lines 67–69 in SatisfyRequests

are executed. The same argument as for exitp holds.
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(B) Suppose S 6= ∅. Then changes relevant to (B) are only made if diningp is not

crit (cf. line 45), and so (B) is vacuously true in Ct.

Suppose S = ∅. The only change that can affect (B) is if diningp is set to crit

in line 54 of AllForks, which is called from EnterDoorway. The check in line

53 of AllForks ensures that forkp[q] is true, and the assignment in line 57 of

EnterDoorway sets insidep to true.

(C) Suppose S 6= ∅. The only change relevant to (C) is if p sends a fork message

to q in line 68 of SatisfyRequests. We must show that no request message is

in transit from q to p. By the code, reqTokenp[q] = T in Ct−1 (cf. line 67). By

the inductive hypothesis (E), there is no request message in transit.

Suppose S = ∅. The only change relevant to (C) is if p sends a request message

to q in line 62 of EnterDoorway. We must show that either a fork message

precedes the request message in the channel from p to q, or q has the {p, q}-

fork. Since reqTokenp[q] = T in Ct−1, the inductive hypothesis (D) implies

that a fork message is not in transit from q to p. Since forkp[q] = F in Ct−1,

the inductive hypothesis (A) implies that either a fork message is in transit

from p to q, or q has the {p, q}-fork in Ct−1. Thus (C) is true in Ct.

(D) Suppose S 6= ∅. The only change relevant to (D) is if p sends a fork message

to q in line 68 of SatisfyRequests. We must show that reqTokenq[p] = F . In

Ct−1, if p sends a fork message to q, it must be that reqTokenp[q] = T . So by

the inductive hypothesis (E), reqTokenq[p] = F .

Suppose S = ∅. The only change relevant to (D) is if reqTokenp[q] is set to

false in line 63 of EnterDoorway. However, in this case (D) is vacuously true

in Ct.
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(E) Suppose S 6= ∅. Then no change relevant to (E) is made in Ct.

Suppose S = ∅. The only change relevant to (E) occurs if lines 62–63 are

executed in EnterDoorway and p sends a request message to q. In this case,

the {p, q}-request moves from being (uniquely) at p to being (uniquely) in

transit from p to q (The uniqueness follows from the inductive hypothesis (E)).

Therefore, (A), (B), (C), (D), and (E) are invariants for all neighbors p and q.

Lemma 2.3.7. E|X satisfies Exclusion.

Proof. Suppose p and q are two processes that are neighbors in the conflict graph and

E ′ is a prefix of E such that last((E ′|X), p) is critp. Consider the configuration at

the end of E ′. By Lemma 2.3.2, diningp = crit. By Lemma 2.3.6(B), forkp[q] = T .

By Lemma 2.3.6(A), forkq[p] = F . By Lemma 2.3.6(B), diningq 6= crit. Thus, by

Lemma 2.3.2, Lemma 2.3.3, and the fact that diningp = exit when exitp occurs,

last(E ′|X, q) is not critq.

2.3.3.2 FL1-progress

Once a node enters a trying section, that node must (1) acquire acks from all

of its neighbors to enter the doorway and (2) when inside the doorway, acquire all

forks shared between itself and all of its neighbors to enter its critical section. We

first show that for each correct node p, if (a) p is in its trying section, (b) p is inside

the doorway, (c) all of p’s neighbors are correct, and (d) all correct neighbors of p

eventually exits their critical section, then p eventually enters its critical section.

Lemma 2.3.8. For all nodes p ∈ Π, when p enters a trying section, inside = F

holds.

Proof. Note that initially inside = F at p. Since user-correctness of E|X is assumed

(tryp is the first event in X that occurs at p), the first time p enters a trying section,
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inside = F holds. By the Well-formedness property (Lemma 2.3.3),for all future

occurrences of event tryp, there exists a preceding occurrence of event exitp which

calls SatisfyRequests() and sets inside to F . Since the value of inside can only be

modified to T by calling EnterDoorway() and EnterDoorway() can be called only

when p is in a trying section (Lemma 2.3.2 shows that dining = trying at p implies

that p is in a trying section), inside = F holds when p enters a trying section.

For all nodes p ∈ Π and q ∈ Np, we say that an ack message 〈ack〉 sent from q to

p is a consequence of a ping message 〈ping〉 sent from p to q if (1) q sends 〈ack〉 by

receiving 〈ping〉 from p (line 19) or (2) deferred[p] is modified from F to T at q by

receiving 〈ping〉 from p which enabled q to send 〈ack〉 by executing line 71.

Lemma 2.3.9. For all nodes p ∈ Π and q ∈ Np and for all occurrences of send events

sendp(〈ping〉, q), (1) the next successive send event sendp(〈ping〉′, q) (if any) occurs

only after an occurrence of recvp(〈ack〉, q) from q at some point after the occurrenct

of sendp(〈ping〉, q), and (2) this ack message 〈ack〉 is a consequence of 〈ping〉 and

it is the only ack message that p receives in between the transmissions of 〈ping〉 and

〈ping〉′.

Proof. We first prove part (1). Node p only sends a ping message to q when p

enters a trying section (line 14). Also, when p enters a trying section, inside = F

holds (Lemma 2.3.8). By the Well-formedness property (Lemma 2.3.3), between any

two trying sections, node p must enter a critical section. This implies that there

exists a call to EnterDoorway() between any two ping message transmissions. The

reason for this is that for p to enter a critical section, it must call AllForks(), and

for AllForks() to be called, inside = T must hold (the only way to set inside = T is

be calling EnterDoorway; line 57). For EnterDoorway() to be called, p must gather
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ack messages from all of its neighbors (lines 24 and 49) which further implies that p

must receive an ack message from q.

For part (2), note that by receiving one ping message from p, exactly one ack

message can be generated at q. This is because executing line 19 at q is a direct result

of receiving a ping message from p and executing line 71 at q is a result of deferred[p]

being T which is set by receiving a ping message from p (and after executing line 71,

deferred[p] is reset to F ). Applying part (1) proves the lemma.

We next show that if a failure-insulated node p ∈ Π does not enter its critical

section even though it is in a trying section and inside the doorway, then the values

in array fork[·] eventually stop changing.

Lemma 2.3.10. Suppose that there exists a failure-insulated node p ∈ Π. Also,

suppose that there exists a suffix E1 of E that begins with configuration Ct′ such that

p never enters its critical section even if p is in a trying section and inside = T

holds at p. Then, there exists a suffix of E in which for all nodes q ∈ Np, fork[q]

stops changing at p.

Proof. Since E|D satisfies the ♦P 1 specification, there exists a suffix E2 of E where

for all nodes r ∈ Π, every occurrence of event responser(S) returns S 6= ∅ if and

only if r has a faulty neighbor. For our proof, we consider the suffix E1 ∩ E2
8 of E.

First note that whenever node p sends a fork to its neighbor q, forkp[q] is set to

F and the only case that forkp[q] is set to T is when p receives a fork message from

q. If node p ever sends a fork message to its neighbor q, and if p ever receives a fork

message back from q (note that the fork is unique by Lemma 2.3.6(A)), then there

are four cases that node q could have sent the fork message back to p:

8For two suffixes E1 and E2 of an execution E, E1∩E2 corresponds to E1 (resp. E2) if E1 (resp.
E2) begins later than E2 (resp. E1). If E1 and E2 are equivalent, then E1 ∩E2 corresponds to E1.
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–(Case 1) q, which has a faulty neighbor, sent the fork by calling SatisfyRequests()

on line 46: In this case, skeptical = T holds at q forever. As a result, if q is ever

in a trying section, then EnterDoorway() is never called and thus inside = F holds

thereafter. Hence, q cannot send a request message to p which proves that there

exists a suffix of E in which forkp[q] stops changing.

–(Case 2) q, which is failure-insulated, sent the fork message by calling SatisfyRe-

quests() on line 40: Since we only consider suffix E1∩E2 of E, SatisfyRequests() can

only be called at q when it enters an exiting section; every occurrence of responseq(S)

in E1 ∩ E2 returns S = ∅. At the time when q sends the fork message, it must hold

the request token (line 67). For node q to reacquire the fork it must send a request

message to p by calling EnterDoorway(). Lemma 2.3.9 tells us that for node q to

call EnterDoorway(), it must send ping messages to all of its neighbors (by entering

a trying section) and then gather ack messages from all of its neighbors that are

consequences of those ping messages. However, since inside = T holds at node p,

the ping message from q will be deferred (line 16) and since p never enters its critical

section, the Well-formedness property (Lemma 2.3.3) shows that p never calls Sat-

isfyRequests(). Note that, by Lemma 2.3.9, p can only send an ack message back to

q by calling SatisfyRequests(). Hence, for Case 2, there exists a suffix of E in which

forkp[q] stops changing.

–(Case 3) q, which is failure-insulated, sent the fork message (line 29) when

inside = F holds: First note that the fork shared between p and q is unique by

Lemma 2.3.6(A). We further divide into two cases:

—(Case 3a) Suppose p > q: If q ever calls EnterDoorway() and sets inside to

T (for q to send a request message to p, inside = T must hold; see lines 31 and

57), and if p ever receives a request message from q, then p defers the fork request

due to the condition on line 28. The only case that node p can send the fork is
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by calling SatisfyReqeust() which can only be called by entering an exiting section

(since p is failure-insulated, in E1 ∩ E2, every occurrence of event responsep(S)

returns S = ∅ which prevents the call to SatisfyRequests() at line 46). Since p

never enters a critical section by assumption, p never enters an exiting section by the

Well-formedness property (Lemma 2.3.3). Hence, forkp[q] = T holds in E1 ∩ E2.

—(Case 3b) Suppose p < q. If q ever calls EnterDoorway() and sets inside to T

and if p ever receives a request message from q, then, different from Case 3a, p sends

the fork to q and then p immediately sends a request message to q (by FIFO message

delivery, q will receive the fork prior to receiving the request message). For q to send

back the fork to p, inside must to be set to F by calling SatisfyRequests() which can

only be done by entering an exiting section. This is because q being failure-insulated

ensures that, in E1 ∩ E2, every occurrence of event responseq(S) returns S = ∅

which in turn prevents the call to SatisfyRequests() at line 46. The rest of the proof

is similar to Case 2.

–(Case 4) q, which only has correct neighbors, sent the fork message (line 29)

when p > q and inside = T holds while q is in a trying section: The proof is similar

to Case 3a.

Lemma 2.3.11. Consider each failure-insulated node p ∈ Π. If (1) Finite Eating

holds for E|X, (2) p is in a trying section, and (3) inside = T holds at p, then p

eventually enters its critical section.

Proof. Suppose, in contradiction, that there exists a non-empty set U ⊆ Π of failure-

insulated nodes such that for all nodes u ∈ U , u is in its trying section and inside = T

holds at u but never enters its critical section. Then, by Lemma 2.3.10, there exists

a suffix E1 of E in which for all nodes in U , array fork[·] stops changing.

Since E|D satisfies the ♦P 1 specification, there exists a suffix E2 of E in which
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for all nodes r ∈ Π, every occurrence of event responser(S) returns S 6= ∅ if and

only if r has a faulty neighbor. We only consider suffix E1 ∩ E2 of E for our proof.

Since a node enters a critical section if it is in a trying section, inside the doorway,

and holds all of the forks shared between itself and its neighbors, for each node u ∈ U ,

there exists a node q ∈ Nu such that fork[u] = T holds at q. We first show that q

is in U and q > u. Suppose not. First note that since inside = T and fork[q] = F

holds at u, node u sends a request message to q. We consider four cases: If q has a

faulty neighbor, then eventually SatisfyRequests() is called (line 46) which enables

a fork message to be sent from q to u after q receives the request message. If q

is failure-insulated and if q ever enters its critical section or exiting section, the

Well-formedness property ensures that eventually SatisfyRequests() is called (line

40) which enables a fork to be sent from q to u after q receives the request message.

If q is failure-insulated and if inside = F holds at q, then upon receiving a request

message from u, q sends the fork to u (line 29). Finally, if q is failure-insulated, q is

in its trying section, inside = T holds at q, and q < u, then upon receiving a request

messege from u the condition on line 28 enables the fork to be sent from q to u. All

of the above four cases contradict the fact that array fork[·] of u stops changing.

Consider the directed “waits-for” graph W = (U,EW ) where vertices are nodes

in U and (u, q) is in EW if and only if fork[q] = F holds at u in E1 ∩E2. Since each

node in U is missing (waiting for) at least one fork, each vertex in W has at least

one outgoing edge, and thus there is a cycle in W (basic fact from graph theory).

This contradicts the total ordering of node ids since we just showed in the previous

paragraph that q > u holds for each edge (u, q) ∈ EW .

We now focus on showing that a node that is in a trying section but not inside

the doorway eventually enters the doorway. The structure of the proof is analogous
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to Lemma 2.3.10 and Lemma 2.3.11.

Lemma 2.3.12. Suppose that there exists a failure-insulated node p ∈ Π. Also,

suppose that there exists a suffix E1 of E in which p does not set inside to T even if

p is in a trying section and inside = F holds at p. Then, there exists a suffix of E

in which for all nodes q ∈ Np, ack[q] at p stops changing.

Proof. First note that, by Lemma 2.3.8, inside = F holds when p entered the trying

section and the only way to set inside to T is by calling EnterDoorway() (which

requires that all ack messages from p’s neighbors to be gathered). In E1, if node p

ever receives an ack message from q, then ack[q] remains as T until EnterDoorway()

is called which proves the lemma.

Lemma 2.3.13. Consider each failure-insulated node p ∈ Π. If (1) Finite Eating

holds for E|X, (2) p is in a trying section, and (3) inside = F holds at p, then p

eventually sets inside to T .

Proof. Suppose, in contradiction, that there exists a non-empty set U ⊆ Π of failure-

insulated nodes such that for all nodes u ∈ U , u is in its trying section and inside = F

holds at u but u never sets inside to T . Then, by Lemma 2.3.12, there exists a suffix

E1 of E in which for all nodes in U , array ack[·] stops changing.

Since E|D satisfies the ♦P 1 specification, there exists a suffix E2 of E in which

for all nodes r ∈ Π, every occurrence of event responser(S) returns S 6= ∅ if and

only if r has a faulty neighbor. We only consider suffix E1 ∩ E2 of E for our proof.

For each u ∈ U , there exists a node q ∈ Nu in its trying section such that

deferred[u] = T holds at q; because otherwise all neighbors of u must have executed

line 19 or lines 71 to 72 which results in u receiving ack messages from all of its

neighbors. We show that q is in U and last(E|X, q) occurs before last(E|X, u).
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Note that both last(E|X, q) and last(E|X, u) are try events by assumption. We

first show that q ∈ U . Suppose,in contradiction, that q /∈ U . If q has a faulty

neighbor, then eventually q calls SatisfyRequests() which enables q to send an ack

message to u, a contradiction. If q is failure-insulated and if ever q sets inside to T ,

enters a critical section, or enters an exiting section, then by Lemma 2.3.11 and the

Well-formedness property (Lemma 2.3.3), q eventually calls SatisfyRequests() which

again enables an ack message to be sent from q to u, a contradiction.

Now we show that last(E|X, q) occurs before last(E|X, u). Since q ∈ U , the only

case that q could have set deferred[u] to T for the last time is when replied[u] = T

(see the condition in line 16). This implies that when q sets replied[u] to T for the

last time, node q is in the trying section corresponding to last(E|X, q). Note that an

ack message 〈ack〉 is sent from q to u when q sets replied[u] to T for the last time. By

Lemma 2.3.9, q must have set deferred[u] to T for the last time by receiving a ping

message from u that was generated after u received message 〈ack〉. Hence, since a

ping message is transmitted only when a try event occurs, last(E|X, q) occurs before

last(E|X, u).

Consider the directed “waits-for” graph W = (U,EW ) where vertices are nodes in

U and (u, q) is in EW if and only if deferred[u] = T holds at q in E1∩E2. Since each

node in U is missing (waiting for) at least one ack, each vertex in W has at least one

outgoing edge, and thus there is a cycle in W (basic fact from graph theory). This

contradicts the ordering of (try) events in E since we just showed in the previous

paragraph that last(E|X, q) occurs before last(E|X, u) for each (u, q) ∈ EW .

Following lemma proves the FL1-progress property.

Lemma 2.3.14. E|X satisfies FL1-progress.

Proof. Lemma 2.3.13 and Lemma 2.3.11 directly provide the proof.
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2.3.3.3 FL1-BW

The proof of Lemma 2.3.15 is similar to the proof of Theorem 3 in [68].

Lemma 2.3.15. E|X satisfies FL1-BW .

Proof. Since E|D satisfies the ♦P 1 specification, there exists a suffix E1 of E in

which for all nodes r ∈ Π, every occurrence of event responser(S) returns S 6= ∅ if

and only if r has a faulty neighbor. Also, there exists a suffix E2 of E1 in which for

all nodes r ∈ Π, event responser(S) occurs at least once. Let H be the set of nodes

that are in a trying section at the beginning of E2. Then, by FL1-progress (Lemma

2.3.14), there exists a suffix E3 of E2 in which all correct nodes in H enter a critical

section. Hence, in E3, it holds that for all correct processes s ∈ Π, s enters a trying

section. We only consider E3 in our proof.

Consider any two neighboring nodes p ∈ Π and q ∈ Np where p is failure-insulated.

First note that skeptical = F holds at p in E3.

By the code, while p is continuously in a trying section, node p sends at most

one ack message to q; this is because when p receives a ping message from q for the

first time during the trying section, p may immediately send an ack message to q

(line 19) and set replied[q] to T (line 21), and when p receives a ping message for

the second time during the trying section, p may set deferred[q] to T (line 17, since

replied[q] = T at p) instead of directly sending an ack message.

From node q’s perspective, it may receive two ack messages from p while p is

in the trying section. This may happen when p sent an ack message just before p

enters the trying section; due to the assumption of unbounded message delay, this

ack message is in transit when p enters a trying section. As a result, since receiving

an ack message from p is a requirement for setting inside to T at q (by calling

EnterDoorway()) and inside = T is a requirement for q to enter its critical section,
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q may enter a critical section at most two times while p is in a trying section. This

implies that, after the occurrence of event tryp, there can be at most two occurrences

of event critq before event critp happens.

Finally, we state the main theorem of this section.

Theorem 2.3.16. The algorithm in Figures 2.1, 2.2, and 2.3 is an algorithm for

the BW -�SX-FL1 problem.

Proof. Let E be any execution of the algorithm in Figures 2.1, 2.2, and 2.3 such that

E|N satisfies the message-passing specification, either E|D is not user-correct for D

or E|D satisfies the ♦P 1 specification, and E|X is user-correct for X. Then, E|X

satisfies the BW -�SX-FL1 specification by Lemmas 2.3.3, 2.3.1, 2.3.7, 2.3.14, and

2.3.15.

2.4 Extracting ♦P 1 from a Solution to BW -�SX-FL1

In this section, we present an algorithm that implements the ♦P 1 failure detector

using multiple instances of BW -�SX-FL1. For each ordered pair (p, q) of nodes in

Π, the algorithm uses instance I(p, q) of problem BW -�SX-FL1 on the following

graph GI(p,q) (see Figure 2.4):

• The vertex set ΘI(p,q) of GI(p,q) consists of three threads on p and four threads

on q.

• Two threads on p are called hybrid threads, denoted h0 and h1, and the re-

maining thread on p is called the witness thread, denoted w.

• The four threads on q that are in ΘI(p,q)\{w, h0, h1} are called subject threads,

denoted si,j for all i, j ∈ {0, 1}.

• The edge set of GI(p,q) is {{h0, h1}, {hi, w}, {si,0, si,1}, {hi, si.j} : i, j ∈ {0, 1}}.
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node p

 nodes of G : 

 threads of GI(p,q) : 

 events : 

instance I(p, q)

(subroutine) : 
node q

 edges of GI(p,q) : 

 message channels : 

 h1

 s1,1

 s0,0

 s0,1

s1,0

h0

w

Figure 2.4: Instance I(p, q) of BW -�SX-FL1 and graph GI(p,q).

For each instance, the witness thread (Figure 2.5) monitors hybrid threads (Figure

2.6) and subject threads (Figure 2.7) are monitored by hybrid threads.

The number of instances used in our construction of ♦P 1 on the communication

topology graph G is 2|E| where E is the set of undirected edges of G.

When necessary for disambiguation, we will use I(p, q) as a superscript (e.g.,

h
I(p,q)
1 , wI(p,q), rem

I(p,q)
w ). In the algorithm, the variables at the two hybrid threads

on node p and the four subject threads on node q are disambiguated by subscripts.

Variables are shared9 between the two hybrid threads h0 and h1. Also, for all i ∈

{0, 1}, the two subject threads si,0 and si,1 share variables.

For convenience, we assume the following for the algorithm:fl1dining: For each

instance I(p, q), there exists a FIFO channel between the witness thread and each

9We assume atomic (linearizable) shared variables.
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Witness Thread w at node p:

(Variables and Initialization):
1: counter ← 0;
2: val← F ;
3: bound← 1;
4: generate tryw;

5: 〈When remw occurs〉
6: generate tryw;

7: 〈When critw occurs〉
8: counter ← counter + 1;
9: if counter > bound then

10: bound← counter;
11: W [p][q]← T ; // shared with d on node p
12: else
13: W [p][q]← F ; // shared with d on node p
14: generate exitw;

15: 〈When recvw(〈ping〉, hi) occurs〉 // hi on node p
16: counter ← 0;
17: generate sendw(〈ack〉, hi); // hi on node p

Figure 2.5: Extracting ♦P 1 from BW -�SX-FL1; code for witness thread of instance
I(p, q) where p ∈ Π and q ∈ Np.
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Hybrid Thread hi∈{0,1} at node p:

(Variables and Initialization):
1: counteri ← 0;
2: vali ← F ;
3: boundi ← 1;
4: criticali ← F ;
5: acki ← F ; // shared with h1−i on node p
6: generate tryhi ;
7: generate sendhi(〈ping〉, w); // w on node p

8: 〈When remhi occurs〉
9: generate tryhi ;

10: generate sendhi(〈ping〉, w); // w on node p

11: 〈When crithi occurs〉
12: criticali ← T ;
13: counteri ← counteri + 1;
14: if counteri > boundi then
15: boundi ← counteri;
16: H[p][q][i]← T ; // shared with d on node p
17: else
18: H[p][q][i]← F ; // shared with d on node p

19: 〈When recvhi(〈ack〉, w) occurs〉 // w on node p
20: acki ← T ;

21: 〈When recvhi(〈ping〉, si,j) occurs〉 // si,j on node q
22: counteri ← 0;
23: generate sendhi(〈ack〉, si,j); // si,j on node q

24: 〈When criticali ∧ acki ∧ ack1−i〉 // internal event
25: acki ← F ;
26: criticali ← F ;
27: generate exithi ;

Figure 2.6: Extracting ♦P 1 from BW -�SX-FL1; code for hybrid threads of instance
I(p, q) where p ∈ Π and q ∈ Np.
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Subject Thread si,j at node q where i, j ∈ {0, 1}:

(Variables and Initialization):
1: criticali,j ← F ;
2: acki,j ← F ; // shared with si,1−j on node q
3: generate trysi,j ;
4: generate sendsi,j(〈ping〉, hi); // hi on node p

5: 〈When remsi,j occurs〉
6: generate trysi,j ;
7: generate sendsi,j(〈ping〉, hi); // hi on node p

8: 〈When critsi,j occurs〉
9: criticali,j ← T ;

10: 〈When recvsi,j(〈ack〉, hi) occurs〉 // hi on node p
11: acki,j ← T ;

12: 〈When criticali,j ∧ acki,j ∧ acki,1−j〉 // internal event
13: acki,j ← F ;
14: criticali,j ← F ;
15: generate exitsi,j ;

Figure 2.7: Extracting ♦P 1 from BW -�SX-FL1; code for subject threads of in-
stance I(p, q) where p ∈ Π and q ∈ Np.

hybrid thread.

There is also a decision thread, denoted as d, for each node p ∈ Π (see Figure

2.8). It is important to note that there exists exactly one decision thread per node,

not per instance. The decision thread on node p determines the parameter S (the

suspicion set) of the output event responsep(S). The decision thread at node p

shares (atomic) variables with the witness and hybrid threads of instance I(p, q) for

all neighbors q of p.
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Decision Thread d at node p:

(Variables and Initialization):
1: Np; // neighbor set of p
2: S ← Np;
3: ∀q ∈ Np : W [p][q]← T ; // W [p][q] is shared with w of I(p, q)
4: ∀q ∈ Np,∀i ∈ {0, 1} : H[p][q][i]← T ; // H[p][q][i] is shared with hi of I(p, q)

5: 〈When queryp occurs〉
6: S ← {q : q ∈ Np,W [p][q] = T} ∪

{r : r ∈ Np, H[p][r][i] = T, i ∈ {0, 1}};
7: generate responsep(S);

Figure 2.8: Extracting ♦P 1 from BW -�SX-FL1; code for decision thread at node
p.

For any given instance I(p, q), hybrid threads h0 and h1 on node p monitor

whether node q crashed. This monitoring activity of each hybrid thread is only

possible if at least one of the hybrid threads does not starve. In the case when

both h0 and h1 starve, the monitoring activity of the witness thread w detects the

starvation of both hybrid threads. Note that, if node p is correct and the hybrid

threads on p starve, then the FL1-progress property tells us that p has a faulty

neighbor.

2.4.1 Algorithm Overview

2.4.1.1 Hybrid Thread hi∈{0,1} and Subject Threads si,0 and si,1 of I(p, q)

Subject thread si,j sends a ping message to hi while it is in its trying section.

Note that after si,j sends a ping message, it cannot send another ping message unless

it enters its exit section. Also, si,j cannot enter its exit section unless si,j enters

its critical section and both si,j and si,1−j receive an ack message from hi; variable
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criticali,j is used to keep track of whether si,j is in its critical section and variable

acki,j is used to check whether si,j received an ack message from hybrid thread hi

as a response to a ping message sent from si,j to hi. Moreover, just before entering

its exiting section, si,j sets acki,j to F which prevents si,1−j from entering its exit

section until si,j receives an ack message from hi. This protocol guarantees that (1)

at least one of si,0 or si,1 is in its trying or critical section when hi receives a ping

message and (2) at least one of si,0 or si,1 stays in its trying or critical section until

hi receives the next ping message.

Now we explain how witness thread hi on node p detects that q crashed. First

note that when q crashes, then all subject threads running on q crash as well. Each

time hi enters its critical section, it checks whether counteri is growing without

bound by comparing counteri with variable boundi; variable boundi keeps track of

the maximum value of counteri since the beginning of the execution of the algorithm

and it never decreases. Note that variable counteri is incremented when hi enters a

critical section. Also, note that, when hybrid thread hi receives a ping message from

a subject thread (either si,j or si,1−j), it resets the counteri variable. Suppose nodes

p and q are both correct. In this case, subject threads on q do not starve due to

FL1-progress. Since there exists a subject thread that is continuously in its trying

or critical section between any two consecutive ping message receptions at hi, the

FL1-BW property guarantees that counteri will be bounded. As a result, element

H[p][q][i] will be set to F from some time on. Now, suppose q is faulty. In this case,

if hi does not starve10, then variable counteri grows without bound since subject

threads will eventually stop sending ping messages to hi. Consequently, element

H[p][q][i] will be set to T from some time on.

10The BW -�SX-FL1 specification only guarantees nodes that are at least two hops away from
a failure to make progress; neighbors of a faulty thread may starve.
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2.4.1.2 Witness Thread w and Hybrid Threads h0 and h1 of I(p, q)

The interaction between the witness thread and the hybrid threads is similar to

the interaction between a hybrid thread and its subject threads except that, this time,

witness thread w monitors whether both h0 and h1 starve or not; the monitoring is

based on the fact that starving hybrid threads eventually stop sending ping messages

to w. By the FL1-progress property, the existence of a starving hybrid thread on

node p indicates that node q is faulty.

2.4.1.3 Decision Thread d at node p

The decision thread d at node p simply identifies each neighbor q of p where

either W [p][q] = T or H[p][q][i] = T holds for all i ∈ {0, 1}, and passes the set of

those identified neighbors of p, denoted S, to event responsep as a parameter.

2.4.2 Proof Outline

In this section, we provide an outline of the proof of the algorithm in Figures 2.5,

2.6, 2.7, and 2.8.

The code of Figure 2.8 shows that a response event immediately follows a query

event (lines 5–7). Thus, the Well-formedness (Lemma 2.4.1) and Liveness (Lemma

2.4.2) properties hold. To assist in proving both the Completeness property and

the Accuracy property, we first show that for all correct neighboring nodes p and q,

(1) our algorithm interacts with the I(p, q) subroutine properly (Lemma 2.4.3) and

(2) no thread in instance I(p, q) stays in its corresponding critical sections forever

(Lemma 2.4.4). For all correct neighboring nodes p and q, part (1) implies that

instance I(p, q) satisfies the BW -�SX-FL1 specification and part (2) implies that

each thread in I(p, q) that is in its trying section eventually enters its critical section.

The Completeness property is shown in the following way: Suppose a correct
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node p has a faulty neighbor q and consider instance I(p, q). The hybrid threads will

eventually stop receiving ping messages from subject threads. If at least one hybrid

thread does not starve, then the non-starving hybrid thread can detect the failure

using the FL1-BW property (Case 1 of Lemma 2.4.5). However, there is no progress

guarantee for the hybrid threads since their neighbor crashed. In the case when

both hybrid threads starve, the witness thread can detect that both of the hybrid

threads are starving using the FL1-BW property (Case 2 of Lemma 2.4.5). This

is because each starving hybrid thread stops sending ping messages to the witness

thread and it is guaranteed that the witness thread will progress by the the FL1-

progress property (the witness thread is two hops away from subject threads in the

conflict graph). Note that, by the FL1-progress property, the starvation of any

hybrid thread indicates that q is faulty.

The Accuracy property is shown using the following fact: If two neighboring nodes

p and q are both correct, then, at least one hybrid thread (resp. subject thread) of

instance I(p, q) is continuously in a trying section or a critical section during the

time in between any two consecutive ping message receptions at the witness thread

(resp. hybrid thread) of I(p, q) (Lemmas 2.4.7 and 2.4.8). This allows the witness

thread and each hybrid thread to obtain a bound on the number of times it enters

the critical section while at least one of its neighboring thread is continuously trying

to enter the critical section (Lemma 2.4.9). Note that such bounds exist due to the

FL1-BW property.

2.4.3 Proof of Correctness

Let E be any execution of the algorithm in Figures 2.5, 2.6, 2.7, and 2.8 such

that

• E|N satisfies the message-passing specification,
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• for each h, 1 ≤ h ≤ H, either E|Xh is not user-correct for Xh or E|Xh satisfies

the BW -�SX-FL1 specification, and

• E|D is user-correct for D.

2.4.3.1 Well-formedness and Liveness

Lemma 2.4.1. E|D satisfies Well-formedness.

Proof. Since user-correctness is assumed for E|D, it is sufficient to show that for all

nodes p ∈ Π, within (E|D)|p, event queryp (if any) is the only event in D\{crashp}

that immediately follows event responsep(·). By the code of Figure 2.8, a responsep(·)

event occurs only after the occurrence of a queryp event (lines 5–7). Hence, within

(E|X)|p, event responsep(·) cannot immediately follow a responsep(·) event which

proves the lemma.

Lemma 2.4.2. E|D satisfies Liveness.

Proof. It is direct from the code of Figure 2.8, that for all correct nodes p ∈ Π,

whenever a queryp event occurs, there is an immediate occurrence of responsep(·)

(lines 5–7).

2.4.3.2 Completeness

Before we prove the Completeness property, we show that for all nodes p ∈ Π

and q ∈ Np, E|XI(p,q) is user-correct.

Lemma 2.4.3. Consider each pair of neighboring nodes p ∈ Π and q ∈ Np. Then,

E|XI(p,q) is user-correct.

Proof. The proof requirement is to show that the shortest prefix of E|XI(p,q) to

violate Well-formedness (if any) ends in either remx or critx for some x ∈ ΘI(p,q).

Consider witness thread w at node p. Directly from the code in Figure 2.5, a tryw
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(resp. exitw) event only occurs immediately after the occurrence of a remw (resp.

critw) event.

Consider hybrid thread hi∈{0,1} at node p. Again, directly from the code, a tryhi

event only occurs immediately after the occurrence of a remhi event which implies

that a tryhi event does not immediately occur after a crithi event or an exithi event,

and an exithi event does not immediately occur after a remhi event. The proof

requirement is to show that exithi does not immediately occur after an exithi event

or a tryhi event. Suppose, in contradiction, that an exithi event occurs immediately

after an exithi . Then, when the former exithi event occurs, variable criticali is set

to F . For the latter exithi event to occur, criticali must be T . The only case that

the hybrid thread can set criticali to T is by an occurrence of a crithi event. This

implies that there must have been an occurrence of a crithi event in between the two

exithi events, a contradiction. Now, suppose, in contradiction, that an exithi event

occurs immediately after a tryhi event. For an exithi event to occur, criticali = T

must hold which shows that there exists an occurrence of a crithi event before the

exithi event happens. Let crit′hi be the latest crithi event that happened before the

occurrence of an exithi event. Then, in between crit′hi and the exithi event there

must exist a tryhi event which immediately follows a remhi event. If a remhi event

did not happen immediately after crit′hi , the only event that can occur immediately

after crit′hi is a tryhi event which contradicts the fact that a tryhi event only occurs

immediately after a remhi event.

The proof for the subject threads is similar to the proof for hybrid threads.

Now, we show that for all nodes p ∈ Π and q ∈ Np, if p and q are both correct,

then Finite Eating holds for E|XI(p,q).

Lemma 2.4.4. Consider each pair of neighboring nodes p ∈ Π and q ∈ Np where p
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is correct. Then, Finite Eating holds for E|XI(p,q).

Proof. Consider witness thread w at node q. Directly from the code in Figure 2.5,

there exists an immediate occurrence of an exitw event after a critw event.

Now, without loss of generality, consider hybrid thread h0 at node p. Note that

as long as user-correctness (preserving Well-formedness) holds, a correct algorithm

for solving BW -�SX-FL1 cannot violate Exclusion or Finite Exiting. Suppose, in

contradiction, hybrid thread h0 is in a critical section forever. Then, there exists a

last crith0 event that occurs. Let E1 be the suffix of E that begins with this event

crith0 . Then, in E1, variable critical0 of thread h0 is always T since the only case

that variable critical0 can be set to T is when h0 enters its critical section and the

only case that critical0 can be reset to F is when h0 enters an exiting section (lines

12 and 26 of Figure 2.6). Since E|XI(p,q) is user-correct by Lemma 2.4.3, there exists

a latest tryh0 event that occurs before the event crith0 . By the code of Figure 2.6,

immediately after h0 enters a trying section, a ping message is sent to the witness

thread w. By reliable message delivery, this ping message will arrive at w and w

will immediately send back an ack message to h0 (line 17 of Figure 2.5). Again by

reliable message delivery, h0 will receive the ack message from w. Let E2 be the

suffix of E that begins with the recv event which corresponds to this ack message

reception. Then, in E2, variable ack0 is forever T since the only case that variable

ack0 can be set to T is when h0 receives an ack message and the only case that ack0

can be reset to F is when h0 enters an exiting section (lines 20 and 25 of Figure 2.6).

Considering hybrid thread h1, note that, by the previous paragraph, h1 cannot

enter its critical section infinitely often because Exclusion will be violated (since

h0 is in its critical section forever). Since p is correct and E|XI(p,q) is user-correct

(by Lemma 2.4.3), h1 must be trapped in either a remainder, trying, critical, or
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exiting section forever. Thread h1 cannot be in its critical section forever, as it

violates Exclusion (since h0 is in a critical section forever). Thread h1 cannot be

in its exiting section forever, since Finite Exiting holds. Thread h1 cannot be in its

remainder section forever since, by lines 8–10 of Figure 2.6, a tryh1 event immediately

follows a remh1 event. Thus, h1 must be in its trying section forever.

By the code, when the last tryh1 event occurs at h1, thread h1 sends a ping

message to w and w will send back an ack message 〈ack〉 (by reliable message delivery

and line 17 of Figure 2.5). Let E3 be the suffix of E that begins with the recvh1 event

that corresponds to the reception of 〈ack〉. Then, in E3, variable ack1 is forever T

since ack1 can only be reset to F when an exith1 event occurs (lines 25–27 of Figure

2.6). Hence, in E1 ∩E2 ∩E3, the precondition on line 24 of Figure 2.6 for h0 to exit

a critical section (and enter an exiting section) is always T . This contradicts the

assumption that h0 is in its critical section forever.

The proof for the subject threads is similar to the proof for hybrid threads.

The following lemma shows that if a correct node p has faulty neighbor q, then

from some time on, every occurrence of event responsep(S) has q ∈ S.

Lemma 2.4.5. Consider each correct node p ∈ Π. If neighbor q of p is faulty, then

there exists a suffix of E such that every occurrence of event responsep(S) has q ∈ S.

Proof. By Lemma 2.4.3, E|XI(p,q) is user-correct. Thus, we may assume that E|XI(p,q)

satisfies the BW -�SX-FL1 specification for GI(p,q).Also, since Finite Eating holds

for E|XI(p,q) by Lemma 2.4.4, the FL1-progress property of the BW -�SX-FL1

specification guarantees that, for all threads τ in GI(p,q) that are two hops away from

a crashed thread in GI(p,q), if τ is in its trying section, then τ will eventually enter

its critical section.
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For the proof, we only consider instance I(p, q). If q is faulty, then there exists

a suffix E1 of E such that each subject thread on q stops sending ping messages to

hybrid threads on p. Consequently, there exists a suffix E2 of E such that each hybrid

thread on p stops receiving ping messages from subject threads on q. Depending on

the behavior of the hybrid threads, we divide into two cases.

–(Case 1) At least one hybrid thread enters its critical section infinitely often:

Without loss of generality, let h0 be the hybrid thread that enters it critical section

infinitely often. Note that the only way to decrease the value of counter0 at h0 is by

receiving a ping message from a subject thread which implies that, in E2, counter0

does not decrease. In E2, whenever crith0 occurs, counter0 at h0 is incremented by 1.

Thus, eventually, counter0 will exceed bound0 at h0 since counter0 never decreases

in E2.

Let E3 be a suffix of E2 that begins with a crith0 event where counter0 exceeds

bound0 for the first time after the beginning of E2. Since variable bound0 is set to the

current value of counter0 whenever counter0 exceeds bound0, variable counter0 will

exceed bound0 whenever crith0 occurs in E3. As a result, H[p][q][0] will be set to T

whenever crith0 happens in E3. Hence, in E3, set S of the decision thread d on node

p will include q permanently (line 6 of Figure 2.8). Consequently, every occurrence

of event responsep(S) in E3 will have q ∈ S.

–(Case 2) Both hybrid threads of I(p, q) starve: In this case, there exists a suffix

E4 of E such that both hybrid threads h0 and h1 (1) remain in a certain non-critical

section forever, and (2) do not send ping messages to the witness thread w. From

w’s perspective, this means that there exists a suffix E5 of E such that it does not

receive any ping messages from either h0 or h1. As a result, w does not reset counter

to 0 in E5 (line 16 of Figure 2.5). Note that the only way to decrease the value of

counter at w is by receiving a ping message from a subject thread which implies
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that, in E5, the value of counter at w does not decrease.

Since p is correct, by FL1-progress and Finite Exiting, and by the fact that event

tryw (resp. exitw) occurs immediately after the occurrence of event remw (resp.

critw) (lines 6 and 14 of Figure 2.5), event critw occurs infinitely often at w. In E5,

whenever critw occurs, counter at w is incremented by 1. Thus, eventually, counter

exceeds bound since counter never decreases in E5. The rest of the proof is similar

to (Case 1) except that, in this case, W [p][q] is set to T from some time on.

The Completeness property directly follows from Lemma 2.4.5.

Lemma 2.4.6. E|D satisfies Completeness.

2.4.3.3 Accuracy

As in [69], we define what is called a renewal interval. For all nodes p ∈ Π and

q ∈ Np, let W
I(p,q)
n be the n-th occurrence of a ping message reception at witness

thread wI(p,q). Then, for n ≥ 1, we denote E[W
I(p,q)
n ,W

I(p,q)
n+1 ] as an execution segment

of E that begins with W
I(p,q)
n and ends with W

I(p,q)
n+1 and we call this the n-th renewal

interval of wI(p,q) in E for instance I(p, q).

For a particular thread τ of instance I(p, q), we call an execution segment Eτ of

E a trying-critical section of τ if

• Eτ begins with a tryτ event,

• Eτ ends with an exitτ event,

• exactly one critτ occurs in Eτ , and

• no event in XI(p,q) of τ , except the above three events, occurs in Eτ .

Next we show that each renewal interval of a witness thread wI(p,q) is encompassed

by a trying-critical section of a subject thread h
I(p,q)
i∈{0,1} if nodes p and q are both correct
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and if p has no faulty neighbors. The proof of Lemma 2.4.7 is similar to the proof of

Lemma 1 in [69].

Lemma 2.4.7. Consider each pair of correct neighboring nodes p ∈ Π and q ∈ Np.

Then, for all n ≥ 1, (1) every renewal interval E[W
I(p,q)
n ,W

I(p,q)
n+1 ] is encompassed

by a trying-critical section of a hybrid thread h
I(p,q)
i∈{0,1} which does not send the ping

message that enables the occurrence of W
I(p,q)
n+1 , and (2) for each renewal interval

E[W
I(p,q)
n ,W

I(p,q)
n+1 ], both hybrid threads h

I(p,q)
0 and h

I(p,q)
1 are in a trying-critical section

when W
I(p,q)
n+1 occurs.

Proof. By Lemma 2.4.3, E|XI(p,q) is user-correct. Hence, we may assume that

E|XI(p,q) satisfies the BW -�SX-FL1 specification for GI(p,q). Also, since Finite

Eating holds for E|XI(p,q) by Lemma 2.4.4, the FL1-progress property of the BW -

�SX-FL1 specification guarantees that, for all threads τ in GI(p,q) that are two

hops away from a crashed thread in GI(p,q), if τ is in its trying section, then τ will

eventually enter its critical section. We prove by induction on n.

–(Base case; n = 1) Without loss of generality, let h0 be the hybrid thread

that sent the ping message which enabled the occurrence of W
I(p,q)
1 ; note that a ping

message is sent immediately after entering a trying section. Afterwards, h0 does

not leave its critical section until h0 receives an ack message from w. By the Well-

formedness property, this implies that h0 is in a trying-critical section when W
I(p,q)
1

occurs .

For h0 to leave the trying-critical section, h1 must receive an ack message from

w and set ack1 to T . For h1 to receive an ack message from w, h1 must send a ping

message to w since w sends an ack message only when it receives a ping message

(lines 15–17 of Figure 2.5). This implies that the occurrence of W
I(p,q)
2 is a result

of w receiving a ping message from h1. Hence, E[W
I(p,q)
1 ,W

I(p,q)
2 ] is encompassed by
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the trying-critical section of h0 and h0 did not send the ping message that enabled

the occurrence of W
I(p,q)
2 . Also, since h1 did not receive an ack message when W

I(p,q)
2

occurred, h1 is also in a trying-critical section when W
I(p,q)
2 occurred.

–(Inductive case) Suppose the lemma holds for the n-th renewal interval where

n ≥ 1. We prove for the n+ 1-th renewal interval.

Without loss of generality, let h0 be the subject thread that sent the ping message

which enabled the occurrence of W
I(p,q)
n . Note that, by the inductive hypothesis, both

h0 and h1 are in a trying-critical section when W
I(p,q)
n occurred. We first show that

the occurrence of W
I(p,q)
n+1 exists. Suppose, in contradiction, that the occurrence of

W
I(p,q)
n+1 does not exist. Then, since the Well-formedness property of E|XI(p,q) holds,

hi∈{0,1} must be trapped in either a remainder, trying, critical, or exiting section

forever. Thread hi cannot be in its remainder section forever because line 9 of Figure

2.6 directly shows that a tryhi event immediately follows a remhi event. Thread

hi cannot be in its critical, trying, or exiting section forever since Finite Eating,

FL1-progress, and Finite Exiting holds. Hence, we have a contradiction.

Since we know that the occurrence of W
I(p,q)
n+1 exists, there exists a hybrid thread

that enters an exiting section during E[W
I(p,q)
n ,W

I(p,q)
n+1 ]. Without loss of generality,

during E[W
I(p,q)
n ,W

I(p,q)
n+1 ], suppose h0 enters an exiting section earlier than h1 does.

Also, let e′ indicate the earliest exith0 event during E[W
I(p,q)
n ,W

I(p,q)
n+1 ]. Note that

when e′ occurs, variable ack0 is set to F which prevents h1 from entering an exiting

section if it were in a critical section. Also, note that after ack0 is set to F , it cannot

be reset to T unless h0 sends a ping message to w and receives the corresponding

ack message from w. As a result, h0 must have sent the ping message which enabled

the occurrence of W
I(p,q)
n+1 and, in between the occurrences of e′ and W

I(p,q)
n+1 , hybrid

thread h1 cannot enter an exiting section. In addition, since e′ is the first exit event in

E[W
I(p,q)
n ,W

I(p,q)
n+1 ], h1 does not enter an exiting section in between the occurrence of
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W
I(p,q)
n and the occurrence of e′. Hence, h1 remains in a trying-critical section during

E[W
I(p,q)
n ,W

I(p,q)
n+1 ] and it does not send the ping message that enables the occurrence

of W
I(p,q)
n+1 . Also, since a ping message is sent when h0 enters a trying section and

since h0 did not receive an ack message when W
I(p,q)
n+1 occurs, hybrid thread h0 is also

in a trying-critical section when W
I(p,q)
n+1 occurs. Lemma 2.4.7 holds.

Now, for all nodes p ∈ Π and q ∈ Np, let H
I(p,q)
i,n be the n-th occurrence of a ping

message reception at hybrid thread h
I(p,q)
i where i ∈ {0, 1}. For n ≥ 1, we denote

E[H
I(p,q)
i,n , H

I(p,q)
i,n+1 ] as an execution segment of E that begins with H

I(p,q)
i,n and ends

with H
I(p,q)
i,n+1 and we call this the n-th renewal interval of h

I(p,q)
i in E for instance

I(p, q).

Using similar arguments as in the proof of Lemma 2.4.7, we can show that the

following lemma holds:

Lemma 2.4.8. Consider each pair of correct neighboring nodes p ∈ Π and q ∈ Np.

Then, for all n ≥ 1, (1) every renewal interval E[H
I(p,q)
i,n , H

I(p,q)
i,n+1 ] is encompassed

by a trying-critical section of a subject thread s
I(p,q)
i,j where j ∈ {0, 1} which does

not send the ping message that enables the occurrence of H
I(p,q)
i,n+1 , and (2) for each

renewal interval E[H
I(p,q)
i,n ,W

I(p,q)
i,n+1 ], both subject threads h

I(p,q)
i,0 and h

I(p,q)
i,1 are in a

trying-critical section when H
I(p,q)
i,n+1 occurs.

Now, we prove that if neighboring nodes p and q are both correct, then from

some time on, every occurrence of event responsep(S) satisfies q 6∈ S. The proof of

Lemma 2.4.9 is similar to the proof of Theorem 2 in [69].

Lemma 2.4.9. Consider each pair of correct neighboring nodes p ∈ Π and q ∈ Np.

Then, there exists a suffix of E in which every occurrence of event responsep(S)

satisfies q 6∈ S.
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Proof. By Lemma 2.4.3, E|XI(p,q) is user-correct. Hence, we may assume that

E|XI(p,q) satisfies the BW -�SX-FL1 specification for GI(p,q). Also, since Finite

Eating holds for E|XI(p,q) by Lemma 2.4.4, the FL1-progress property of the BW -

�SX-FL1 specification guarantees that, for all threads τ in GI(p,q) that are two

hops away from a crashed thread in GI(p,q), if τ is in its trying section, then τ will

eventually enter its critical section.

By the FL1-BW property, there exists an integer k > 0 and there exists a suffix

E1 of E such that every infix σ1 of E1 that (1) starts with try
I(p,q)
hi∈{0,1}

and ends with

crit
I(p,q)
hi∈{0,1}

and (2) contains exactly one occurrence of crit
I(p,q)
hi∈{0,1}

, contains at most k

occurrences of crit
I(p,q)
w .

Let e1 and e2 be the event that initiates the first renewal interval of wI(p,q) in

E1 and the first try event of s
I(p,q)
i∈{0,1} in E1, respectively (since FL1-progress, Finite

Eating, and Finite Exiting hold, events e1 and e2 exist). Then, by Lemma 2.4.7, each

renewal interval RI of wI(p,q) that begins after the occurrence of both e1 and e2 is

encompassed by a trying-critical section of s
I(p,q)
i∈{0,1} and, within RI, wI(p,q) can enter

a critical section at most k times. This implies that, within RI, wI(p,q) may enter an

exiting section at most k + 1 times which in turn implies that the value of counter

at wI(p,q) after the occurrence of both e1 and e2 is bounded by k + 1.

Without loss of generality, suppose e2 occurs after e1. Then, before the occurrence

of e2, there exists a maximum value cm of variable counter at wI(p,q). Thus, variable

counter at wI(p,q) is bounded by max(cm, k + 1) in E and, due to lines 9 and 10 of

Figure 2.5, variable bound at wI(p,q) is also bounded by max(cm, k + 1) in E. Since

variable bound at wI(p,q) is bounded and never decreases and since we already know,

from the proof of Lemma 2.4.5, that crit
I(p,q)
w occurs infinitely often, there exists a

suffix E2 of E in which variable W [p][q] on node p is set to F permanently.

Using similar arguments as above along with Lemma 2.4.8, we can show that
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there exists a suffix of E in which, for all i ∈ {0, 1}, variable W [p][q][i] on node p

is set to F permanently (in this case, a hybrid thread hi corresponds to the above

witness thread and two subject threads si,0 and si,1 correspond to the above two

hybrid threads).

Hence, we can conclude that there exists a suffix E ′ of E such that set S of the

decision thread d on node p will not include q permanently (line 6 of Figure 2.8).

Consequently, every occurrence of event responsep(S) in E ′ satisfies q 6∈ S which

proves the lemma.

The Accuracy property directly follows from Lemma 2.4.9.

Lemma 2.4.10. E|D satisfies Accuracy.

Finally, we state the main theorem of this section.

Theorem 2.4.11. The algorithm in Figures 2.5, 2.6, 2.7, and 2.8 is an algorithm

for the ♦P 1 problem.

Proof. Let E be any execution of the algorithm in Figures 2.5, 2.6, 2.7, and 2.8 such

that

• E|N satisfies the message-passing specification,

• for each h, 1 ≤ h ≤ H, either E|Xh is not user-correct for Xh or E|Xh satisfies

the BW -�SX-FL1 specification, and

• E|D is user-correct for D.

Then, E|D satisfies the ♦P 1 specification by Lemmas 2.4.1, 2.4.2, 2.4.6, and 2.4.10.
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2.5 Discussion

2.5.1 Failure Locality and Exclusion Guarantees

As already mentioned, ♦P 1 is known to be a weakest failure detector for wait-

free eventual weak exclusion [62, 65]. The work in [65] discusses wait-free perpetual

weak exclusion and shows that the trusting failure detector T (refer to [22, 65] for

the specification) is necessary but not sufficient to solve wait-free perpetual weak

exclusion. It is known that ♦P is strictly weaker than T [22]. From these two

results, we can notice that it is more expensive to achieve wait-free perpetual weak

exclusion than wait-free eventual weak exclusion since the former requires a more

powerful failure detector.

Our result shows that ♦P 1 is sufficient to solve failure-locality-1 perpetual strong

exclusion. Since perpetual strong exclusion implies perpetual weak exclusion, ♦P 1 is

sufficient to solve failure-locality-1 perpetual weak exclusion. If we compare this to

the result for wait-free perpetual weak exclusion, we can observe that wait-freedom

(i.e. failure-locality-0) is more expensive to achieve than failure-locality-1 when per-

petual weak exclusion is considered.

2.5.2 Bounded Waiting

The algorithm in Figures 2.1, 2.2, and 2.3 actually satisfies a property stronger

than FL1-BW which we call FL1-♦k-BW : there exists an integer k > 0 that holds

for all executions such that if process p only has correct neighbors, then eventually,

for any interval in which p is trying to enter its critical section, no neighbor of p

enters its critical section more than k times. The algorithm satisfies FL1-♦k-BW

with k = 2. Note that FL1-♦k-BW implies FL1-BW . Since ♦P 1 can be extracted

from multiple instances of any solution to our dining problem that satisfies FL1-BW

and since our dining algorithm uses ♦P 1 to solve FL1-♦k-BW , FL1-BW and FL1-
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♦k-BW are mutually reducible (without preserving the underlying topology) in our

setting.

2.5.3 Mapping from an Instance to Participating Processes

Consider process p onG and consider instance I(p, q) and the conflict graphGI(p,q)

for any q ∈ Np. Note that the algorithm in Figures 2.5, 2.6, 2.7 and 2.8 assume that

all threads of I(p, q) know which processes are participating in I(p, q). What if the

threads of I(p, q) do not know which processes are participating in I(p, q)? In other

words, what if the witness thread and hybrid threads of I(p, q) on process p do not

know that the subject threads of I(p, q) are located at process q and vice versa? In

this case, it might not be possible for the witness and hybrid threads to identify

that q has crashed. However, it is still possible for the threads of I(p, q) on process

p to identify that some neighbor of p has crashed. This observation implies that

the construction in Section 2.4 can be used to extract the following failure detector,

named as the “local anonymous eventually perfect failure detector” and denoted as

?♦P 1, even when the threads of a certain instance do not know the participating

processes of that instance:

• From some time on, ?♦P 1 outputs true if there exists a crashed neighboring

process.

• From some time on, ?♦P 1 outputs false if all neighboring processes are correct.

Note that ?♦P 1 is weaker than ♦P 1 (?♦P 1 can be implemented with the use of ♦P 1)

since it simply outputs a boolean (instead of process ids) regarding the existence of

at least one crashed process within the neighborhood. ?♦P 1, which is a variant of

the anonymous perfect failure detector introduced in [32], falls into the category of

identity-free failure detectors [8]. The boolean-valued failure detectors in [8, 7, 23]

and [32] provide system-wide information (e.g. am I the leader? [8], am I the only
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correct process? [7, 23], is there a crashed process? [32]) whereas ?♦P 1 provides

local information regarding the existence of a crashed neighbor.

Now the question is “can we use ?♦P 1 to solve BW -�SX-FL1?”. It is easy to

verify that the answer is yes : the concept of skepticism directly tells us that the

required information from the failure detector is whether there exists a failure, not

who failed. Thus, we can conclude that ?♦P 1 and BW -�SX-FL1 are mutually

reducible (without preserving the underlying topology) when the mapping from an

instance to the processes that participate in that instance is not given.

In Section 3, we use the ?♦P 1 failure detector to design a failure-locality-1 dining

algorithm that tolerates unexpected corruptions to the system states.
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3. STABILIZING DINING PHILOSOPHERS WITH FAILURE LOCALITY 1

In this section, similar to Section 2, we consider failure-locality-1 dining where

we require that (1) eventually, no two neighbors in the conflict graph enter their

corresponding critical sections simultaneously, and (2) each correct process that is

trying to enter its critical section eventually does so if it is at least two hops away from

any other crashed process in the conflict graph. However, in addition to crash failures,

we take into account the presence of transient failures. Transient failures corresponds

to unexpected corruptions to the system state; the system can be in an arbitrary

system state after a transient failure occurs. Transient fault-tolerant algorithms are

also known as stabilizing algorithms. In designing distributed algorithms, achieving

transient and crash fault tolerance together is more difficult than achieving either

one of them separately, as for instance, recovery from a transient failure might be

disrupted by a later crash failure.

We consider a shared-memory system where processes communicate via read/write

operations on shared regular registers. Regularity states that each read operation

returns the value of some overlapping write operation or of the latest preceding write

operation.

As mentioned in Section 2, Choy and Singh [14] showed that any asynchronous

message-passing algorithm that solves dining must have failure locality at least

2. Although the failure-locality-2 lower bound in [14] is proved for asynchronous

message-passing systems, it also applies to asynchronous shared-memory systems.

This implies that failure-locality-1 dining cannot be solved in pure asynchrony. To

circumvent this lower bound, we augment the shared-memory system with the local

anonymous eventually perfect failure detector ?♦P 1 mentioned in Section 2.5, and
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show that this failure detector is sufficient to solve the problem at hand.

We propose an algorithm for solving stabilizing failure-locality-1 dining in asyn-

chronous shared-memory systems with regular registers. The algorithm is inspired by

the Asynchronous Doorway (ADW) algorithm in [13]. Our algorithm utilizes stabi-

lizing mutual exclusion subroutines which can be implemented using regular registers

(e.g., Dijkstra’s stabilizing token circulation algorithm using regular registers [25]).

3.1 Contributions

We present the problem specification for stabilizing failure-locality-1 dining; this

specification the first to consider both failure locality 1 and stabilization. We present

the first stabilizing failure-locality-1 dining algorithm in asynchronous shared-memory

systems using failure detectors along with shared regular registers. The proposed

algorithms are modular in the sense that they utilize stabilizing mutual exclusion

subroutines.

3.2 Background and Related Work

After the early non-fault-tolerant dining algorithms [12, 24, 49] were introduced,

there has been a significant body of work which considers fault-tolerant dining.

Stabilizing dining algorithms are presented in [4, 5, 10, 55, 59]. These algorithms

all consider read/write atomicity and are not crash fault tolerant. We assume the

use of regular registers, which are weaker than atomic registers. In addition, our

dining algorithms are crash fault tolerant.

Dining algorithms that consider both crash fault tolerance and stabilization are

presented in [57, 58, 66]. The dining algorithms in [57, 58] achieve failure locality

2. A wait-free (failure-locality-0) dining algorithm is presented in [66] which utilizes

♦P . We fill in the gap between wait-freedom and failure locality 2 by presenting a

failure-locality-1 stabilizing dining algorithm.
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In Section 3, we use the local anonymous eventually perfect failure detector ?♦P 1

and show that ?♦P 1 is sufficient to solve stabilizing failure-locality-1 dining. The

?♦P 1 failure detector returns a boolean value and has the following property: eventu-

ally, ?♦P 1 at process i returns true if and only if there exists a crashed neighboring

process of i. The ?♦P 1 failure detector can be implemented using ♦P in asyn-

chronous systems. This means that the failure detector (?♦P 1) that we are using to

solve stabilizing failure-locality-1 dining is at most as powerful as the failure detector

(♦P ) used in [66].

The correctness of our stabilizing failure-locality-1 dining algorithms relies on the

information provided by the underlying failure detector. Since we consider systems

prone to transient failures, the failure detector that we utilize must be stabilizing as

well. Here, we list previous work on stabilizing failure detector implementations. A

stabilizing version of ♦P is implemented in [46, 47] considering a message-passing

system in which at most one process can crash. Multiple crash failures are considered

in [6, 35]. Both [6] and [35] assume a message-passing system and the existence of

a bound on relative message delays in implementing a stabilizing version of the ♦P 1

failure detector (see Section 2 for the specification of ♦P 1); however, in [6], each

process utilizes its local clock to send heartbeat messages while the implementation

in [35] eliminates the use of local clocks.

There are several implementations of stabilizing failure detectors other than ♦P .

Stabilizing implementations of the Ω failure detector1 are presented in [21] and [26]

considering the message-passing model and the shared-memory model, respectively.

A stabilizing implementation of the Ω? failure detector, which is a variant of Ω that

eventually detects whether or not there exists a leader, is presented in [28] considering

1The Ω failure detector, which outputs a single process ID, has the following property: eventually,
every correct process outputs the process ID of some unique correct process forever.
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the population-protocol model2 [3].

3.3 System Model and Problem Specification

We consider a system that contains a set Π of n (dining) processes, where each

process is a state machine. Each process has a unique incorruptible ID and is known

to all the processes in the system. For convenience, we assume that the IDs form

the set {0, . . . , n− 1}; we refer to a process and its ID interchangeably. There is an

undirected graph G with vertex set Π, called the (dining) conflict graph. If {i, j} is

an edge of G, then we say that i and j are neighbors.

The state of a process i is modeled with a set of local variables, which we now

discuss.

Each process i has a local variable diningStatei through which it communicates

with the user of the dining philosophers algorithm. The user sets diningStatei to

“hungry” to indicate that it needs exclusive access to the set of resources for i.

Sometime later, the process should set diningStatei to “eating”, which is observed by

the user. While diningStatei is “eating”, the user accesses its critical section. When

the user is through eating, it sets diningStatei to “exiting” to tell i that it can do

some cleaning up, after which i should set diningStatei to “thinking”. This sequence

of updates to diningStatei can then repeat cyclically.

Process i has another local variable ?♦P 1
i through which it communicates with

the failure detector ?♦P 1 (the “local anonymous eventually perfect failure detector”).

This variable is set to true or false at appropriate times by the failure detector module

and is read (but never set) by process i. Recall from Section 2.5that the behavior of

the failure detector is that after some time, ?♦P 1
i is always false if i has no crashed

2In the population-protocol model, each process is modeled as a finite-state mobile sensor called
an agent. Distributed computation is carried out by agents meeting each other; two agents can
interact with each other only in the case when they meet. The interacting pattern is described by
a directed graph called the interaction graph.
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neighbors and is always true if i has at least one crashed neighbor.

The processes have access to a set of shared single-writer single-reader registers

that satisfy the consistency condition of regularity, through which they can commu-

nicate. Reads and writes on such registers are not instantaneous. Each operation

is invoked at some time and provides a response later. Regularity means that each

read returns the value of some overlapping write or of the latest preceding write. If

there is no preceding write, then any value can be returned. When a process invokes

an operation on a shared register, it blocks until receiving the response.

Certain subsets of processes synchronize among themselves using mutual exclu-

sion modules (i.e., subroutines). For any mutual exclusion module X, the partic-

ipants in X are all neighbors of each other in the dining conflict graph. For each

mutual exclusion module X in which it participates, (dining) process i has a local

variable X.mutexi. The mutual exclusion module X and process i communicate via

X.mutexi in somewhat the opposite way that diningStatei is used to communicate

between i and the dining user (since i is the user of the mutual exclusion module).

Process i, at an appropriate time, sets X.mutexi to “trying” when it needs access

to the corresponding critical section. Subsequently, the mutual exclusion module

should set X.mutexi to “critical”. When i no longer needs the critical section for

this mutual exclusion module, X.mutexi is set to “exiting”, and at some later point

the mutual exclusion module X should set the variable to “remainder”. This se-

quence of updates to X.mutexi can then repeat cyclically. Note that such stabilizing

mutual exclusion algorithms exist considering asynchronous shared-memory systems

with regular registers (e.g. a variation of Dijkstra’s stabilizing token circulation algo-

rithm using regular registers in [25]). This implies that, by assuming that processes

have access to mutual exclusion modules, we are not assuming anything more than

asynchronous shared-memory systems with regular registers.
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Process i can also have other local variables. However, other than the sharing of

diningStatei, mutexi, and ?♦P 1
i variables just described, the local variables of i are

private to the process.

We now proceed in more detail. We have the following kinds of steps, which are

assumed to occur instantaneously:

• a process crash: crashi for each i ∈ Π

• an update to the failure detector variable at a process: ?♦P 1
i is set to true or

false, i ∈ Π

• an update to the diningState variable of a process by the dining user: diningStatei

is set to “hungry” or “exiting” for each i ∈ Π

• an update to a mutex variable of a process by the corresponding mutual exclu-

sion module: X.mutexi is set to “critical” or “thinking” by X for each i ∈ Π

• process i ∈ Π executes some code

A step that is the execution of some code by process i must be in one of the

following formats:

1. changes to local variables only

2. changes to local variables followed by one invocation (read or write(v)) of an

operation on a shared register

3. one response for an operation (return(v) or ack) on a shared register followed

by changes to local variables

In the first case, the code is executed only if a certain predicate on i’s state, called

a guard, is true. The guard, together with the code, is called a guarded command.

In the second case, the code is also executed only if a guard is true. Shortly (in

the definition of an execution) we will require that the next step by i after a step of

case 2 must be a step of case 3. That is, these two consecutive steps must consist

of the invocation and response of a single shared register operation together with
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(optionally) some changes to local variables. In our pseudocode, we represent these

two steps as a single guarded command, but when this guarded command is executed,

it takes two steps, since operations on shared registers are not instantaneous.

A (dining) system state is a vector of process states, one per (dining) process.

Note that a system state does not record anything about the internals of the dining

user or the mutual exclusion modules (other than what is indicated by the local

mutex variables of the diner) or anything about the values of the shared registers.

An execution consists of an alternating sequence σ of system states and steps,

beginning with an (arbitrary) system state that satisfies the following conditions:

• There is at most one crash step per process, and if pi crashes, then there are

no later steps by pi, i ∈ Π. If a crash occurs for i, then i is said to be faulty,

otherwise it is correct.

• For each diner i ∈ Π, code steps by i that invoke a shared register operation or

contain a response to a shared register operation come in pairs (invoking step

first, responding step second), and the only other step by i that can come in

between is a crash. (Note that each operation response must be preceded by

an invocation for that operation.)3

• The invocations and responses on each shared register R satisfy regularity:

After extracting all the invocations and responses for R from all the code steps,

the values returned by the reads must satisfy regularity as defined above.

• Unless process i ∈ Π has crashed, every invocation of a shared register opera-

tion by process i has a response.

• The failure detector steps, which update the ?♦P 1 local variables, satisfy the

3For each process i, invocations and responses occurring in pairs prevent i from being in a state
in which, after a transient failure occurs, i is waiting for a response without having a preceding
invocation to the shared register. This is a common assumption for stabilizing algorithms that
involve read/write operations on shared registers. (e.g. [25, 34, 38])
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specification of ?♦P 1 given above.

• The dining user steps “preserve dining well-formedness” (from the user’s per-

spective), i.e., for each i ∈ Π, after some point, diningStatei is set to “hungry”

only if its current value is “thinking”, and diningStatei is set to “exiting” only

if its current value is “eating”.

• For each correct i ∈ Π, diningStatei is not forever eating.

• Each mutual exclusion module X is correct. I.e., there is a suffix σ′ of σ in

which the following are true:

– The steps by X “preserve mutex well-formedness” (from the implemen-

tor’s perspective), i.e., for each i ∈ Π, X.mutexi is set to “critical” only if

its current value is “trying”, and X.mutexi is set to “remainder” only if

its current value is “exiting”.

– If all the processes participating in X are correct, then, X.mutexi is not

forever “exiting” for each process i that is participating in X.

– Suppose that in some suffix σ′′ of σ′ all processes i that participate in

X “preserve mutex well-formedness” (from the user’s perspective), i.e.,

X.mutexi is set to “trying” only if its current value is “remainder”, and

X.mutexi is set to “exiting” only if its current value is “critical”. Then

the following are true in some suffix of σ′′:

∗ If i and j are both correct and both participate in X, then X.mutexi

and X.mutexj are not both equal to “critical” in any system state.

∗ If all the processes participating in X are correct and no process

participating in X is critical forever, then any process that is trying

in X eventually is critical.

• Each correct i ∈ Π is given infinitely many opportunities to take steps. (See

discussion below concerning pseudocode for more details.)
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Correctness condition: Our task is to design a distributed algorithm for the (dining)

processes in Π such that every execution has a suffix in which the following four

properties hold:

• Well-formedness: Each i ∈ Π “preserves dining well-formedness” (from the

implementor’s perspective), i.e., for all i ∈ Π, diningStatei is set to “eating”

only if the current value is “hungry”, and diningStatei is set to “thinking” only

if the current value is “exiting”.

• Finite Exiting: For each correct i ∈ Π, diningStatei is not forever “exiting”

(with respect to dining).

• Exclusion: If i and j are both correct and are neighbors, then diningStatei and

diningStatej are not both equal to “eating” in any system state.

• FL1 Liveness: If i ∈ Π is correct and all its neighbors are correct, then if

diningStatei is “hungry” in some state, there is a later system state in which

diningStatei is “eating”.

We say that an algorithm implements stabilizing failure-locality-1 dining if every

execution of the algorithm has a suffix in which the above correctness condition is

satisfied. We use the term “stabilizing” in the following sense: Consider each exe-

cution α of any distributed algorithm that satisfies the above correctness condition.

There can be a prefix of α in which some of the above four properties are violated

(this is because α begins with an arbitrary state). However, it is guaranteed that

the four properties are eventually and forever satisfied in α. That is, the system

stabilizes to a state s in α such that the execution starting at state s satisfies the

four properties.

Here is an explanation for how our pseudocode maps to this model of executions.

Pseudocode is presented as a set of guarded commands. If a guard is continuously

true, then eventually the corresponding command is executed. Each command in-
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cludes at most one shared register operation. If a command includes a shared register

operation, then this is actually two (instantaneous) steps: the first step ends with

the invocation of the operation, and the second step begins with the response of

the operation. If a command does not include a shared register operation, then it

corresponds to a single step.

3.4 ADW-based Stabilizing Dining

In this section, we present a stabilizing failure-locality-1 dining algorithm that

is based on the Asynchronous Doorway (ADW) algorithm in [13] and the concept

of skepticism in [63]. In the original ADW algorithm, each process shares a single

token called a fork with each of its neighbors. For a hungry process i to eat, it must

first enter the doorway by obtaining permission from all of its neighbors through a

ping/ack protocol. Only after process i enters the doorway, it requests for the missing

forks. Also, while i is inside the doorway, i does not give its neighbors permissions

to enter the doorway. The hungry process i can start to eat if it is both inside the

doorway and possesses all forks shared between itself and its neighbors. After eating,

i satisfies all deferred requests and exits the doorway. In our algorithm, we simulate

both the ping/ack and fork activities using multiple mutual exclusion modules.

Our algorithm also uses the concept of skepticism to satisfy the FL1 Liveness

condition: a process i becomes “skeptical” if and only if ?♦P 1
i is true and, as long as

p is skeptical, p satisfies all requests from its neighbors by going or remaining outside

the doorway.

3.4.1 Algorithm Description

Let Ni be the neighbor set of process i. For each pair of neighboring processes

i and j, we use two mutual exclusion modules to simulate the ping-ack activity in

entering the doorway; i and j are the only processes that participate in these two
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modules. The mutual exclusion module that simulates the activities of i sending

the ping and j ∈ Ni replying with an ack is denoted as Doorway(i,j) (note that

the superscript is an ordered pair). Doorway(i,j).mutexi = critical indicates that

process i obtained permission to enter the doorway from process j.

We also use mutual exclusion modules to simulate fork activities. For each pair

of neighboring processes i and j, the mutual exclusion module that is being used

to simulate a unique fork shared by i and j is denoted as Fork{i,j} (note that the

superscript is an unordered pair). Fork{i,j}.mutexi = critical indicates that the fork

shared between i and j is at process i.

3.4.1.1 Variables

Each process i has a local variable indoorsi ∈ {T, F}. Each pair of neighbor-

ing processes i and j share two single-writer-single-reader (SWSR) regular registers

Req(i,j) and Req(j,i) where the domain of each register is {T, F}; the first and second

element of the ordered pair on the superscript indicates the single writer and the

single reader, respectively. For each pair of neighboring processes i and j, process i

writes T to register Req(i,j) to tell process j that it needs the fork. For each process

j ∈ Ni, process i has a local variable localReq
(j,i)
i ∈ {T, F} that stores the most

recent value that is read from register Req(j,i).

3.4.1.2 Actions

The pseudocode of the actions is given in Figures 3.1 and 3.2, and described next.

For each correct process i, Action D.1 is always enabled. When Action D.1

is executed with respect to j ∈ Ni, i checks if j is requesting the fork by per-

forming a read operation on Req(j,i). If i reads T from Req(j,i), and if i is outside

the doorway, or inside the doorway but has lower id than j, then i releases the

fork by setting Fork{i.j}.mutexi to exiting. Action D.2 is enabled when i’s dining
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〈 Local Variables and Shared Registers 〉

1: local constant Ni; // neighbor set of i (incorruptible)
2: local variable diningStatei ∈ {thinking, hungry, eating, exiting};
3: local variable ?♦P 1

i ∈ {T, F};
4: local variable indoorsi ∈ {T, F};
5: ∀j ∈ Ni : local variables localReq

(j,i)
j ∈ {T, F};

6: ∀j ∈ Ni : local variables Doorway(i,j).mutexi ∈
{remainder, trying, critical, exiting};

7: ∀j ∈ Ni : local variables Doorway(j,i).mutexi ∈
{remainder, trying, critical, exiting};

8: ∀j ∈ Ni : local variables Fork{i,j}.mutexi ∈
{remainder, trying, critical, exiting};

9: ∀j ∈ Ni : SWSR registers Req(i,j), Req(j,i) ∈ {T, F};

〈 Program Actions 〉

10: {j ∈ Ni} → Action D.1

11: read localReq
(j,i)
i ← Req(j,i);

12: if localReq
(j,i)
i ∧ Fork{i,j}.mutexi = critical∧

(¬indoorsi ∨ (diningStatei = hungry ∧ indoorsi ∧ i < j)) then
13: Fork{i,j}.mutexi ← exiting;

14: {diningStatei = thinking Action D.2
∨diningStatei = exiting} →

15: indoorsi ← F ;
16: for all j ∈ Ni do
17: if Fork{i,j}.mutexi = critical then
18: Fork{i,j}.mutexi ← exiting;
19: if Doorway(j,i).mutexi = critical then
20: Doorway(j,i).mutexi ← exiting;
21: diningStatei ← thinking;

22: {j ∈ Ni ∧ ¬indoorsi} → Action D.3
23: write Req(i,j) ← F ;

Figure 3.1: ADW-based stabilizing failure-locality-1 dining algorithm; code for pro-
cess i (part 1 of 2).
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24: {diningStatei = hungry ∧ ¬indoorsi} → Action D.4
25: for all j ∈ Ni do
26: if Fork{i,j}.mutexi = critical then
27: Fork{i,j}.mutexi ← exiting;
28: if Doorway(j,i).mutexi = critical then
29: Doorway(j,i).mutexi ← exiting;
30: if ¬?♦P 1

i then
31: if ∀j ∈ Ni : Doorway(i,j).mutexi = critical then
32: indoorsi ← T ;
33: for all r ∈ Ni do
34: Doorway(i,r).mutexi ← exiting;
35: else
36: for all j ∈ Ni do
37: if Doorway(i,j).mutexi = remainder then
38: Doorway(i,j).mutexi ← trying;

39: {j ∈ Ni ∧ diningStatei = hungry Action D.5
∧indoorsi} →

40: if Doorway(j,i).mutexi = remainder then
41: Doorway(j,i).mutexi ← trying;
42: if Fork{i,j}.mutexi = remainder then
43: Fork{i,j}.mutexi ← trying;
44: if Fork{i,j}.mutexi = trying then
45: write Req(i,j) ← T ;

46: {diningStatei = hungry ∧ indoorsi Action D.6
∧(∀j ∈ Ni : Fork{i,j}.mutexi = critical)} →

47: diningStatei ← eating;

48: {?♦P 1
i ∧ diningStatei 6= eating} → Action D.7

49: indoorsi ← F ;

Figure 3.2: ADW-based stabilizing failure-locality-1 dining algorithm; code for pro-
cess i (part 2 of 2).
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state is either thinking or exiting. By executing Action D.2, i exits the doorway

(indoorsi = F ) and releases unnecessary resources that i was holding (by setting

both Fork{i.j}.mutexi and Doorway(j,i).mutexi to exiting), and changes its dining

state to thinking. Action D.3 is enabled when i is outside the doorway and when

this action is executed with respect to j ∈ Ni, i informs j that it does not need the

fork by setting Req(i,j) to F .

When process i is hungry, i enables different actions depending on whether i is

inside or outside the doorway. Action D.4 is enabled when i is hungry and outside the

doorway. Upon executing Action D.4, process i first releases unnecessary resources

(by setting both Fork{i.j}.mutexi and Doorway(j,i).mutexi to exiting) and then if

i obtained permission to enter the doorway from all of its neighbors (∀j ∈ Ni :

Doorway(i,j).mutexi = critical), then it enters the doorway by setting indoorsi to

T and immediately sets Doorway(i,j).mutexi to exiting for all j ∈ Ni. If i has not

yet obtained permission to enter the doorway from j ∈ Ni (Doorway(i,j).mutexi 6=

critical), then i asks for the permission by setting Doorway(i,j).mutexi to trying.

Note that we enforce the concept of skepticism by allowing process i to enter the

doorway only when i is not skeptical.

Action D.5 is enabled when i is hungry and inside the doorway. When Action D.5

is executed with respect to j ∈ Ni, if i does not have the fork shared between i and j,

i requests for the fork by setting Fork{i,j}.mutexi to trying and by informing j that

it needs the fork (by writing T to Req(i,j)). Process i also tries to enter the critical

section with respect to module Doorway(j,i). If i satisfies Doorway(j,i).mutexi =

critical, then j cannot enter its doorway; this prevents j from eating an infinite

number of times while i is continuously hungry.

Action D.6 is enabled when i is hungry, inside the doorway, and possesses all

forks shared between itself and all its neighbors. Process i simply starts to eat when
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this action is executed.

Finally, Action D.7 implements the concept of skepticism: if process i is not

eating and ?♦P 1
i suspects that there is a crashed neighbor (?♦P 1

i = T ), then i goes

outside the doorway.

3.4.2 Proof Outline

Here, we provide an outline of the proof. The complete proof of correctness is

presented in Section 3.4.3.

We first identify two stable predicates to assist our proofs (Lemmas 3.4.1–3.4.5).

The predicates are: for each correct process i, (1) if i is thinking, then i is outside

the doorway, and (2) if i is eating, then i is inside the doorway and it holds all forks

shared between itself and all of its neighbors.

The Well-formedness property and Finite Exiting property directly follows from

the pseudocode (Lemmas 3.4.6 and 3.4.8). Also, from the pseudocode, we imme-

diately observe that mutex well-formedness is preserved from the user’s perspective

(Lemma 3.4.7). This implies that the mutual exclusion modules used in our algo-

rithm are correct (we can utilize the safety and progress properties of the mutual

exclusion modules for our proofs).

The Exclusion property (Lemma 3.4.9) is shown using the second stable predicate

(explained above) and the safety property of mutual exclusion modules: there is an

infinite suffix of any arbitrary execution of the algorithm in which, (1) a unique fork

is shared between each process (since forks are modeled as mutual exclusion modules)

and (2) if a correct process i eats, then i holds all forks shared between itself and all

of its neighbors.

The FL1 Liveness property (Lemma 3.4.13) is shown in two steps. In the first

step, we show that each correct hungry process that is at least two hops away from
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any crashed process and is inside the doorway eventually eats. Specifically, we first

prove that if there exists a correct hungry process i that is at least two hops away

from any crashed process and is inside the doorway but never eats, then i must have

a correct hungry neighboring process j such that j is at least two hops away from any

crashed process, is inside the doorway, and i < j (Lemma 3.4.10); here, the property

of the ?♦P 1 is used to show the existence of such process j. Then, we derive a

contradiction using the total ordering of node ids (Lemma 3.4.11). The proofs utilize

the first stable predicate (explained above), and the safety/progress property of both

modules Doorway(·) and Fork{·}.

In the second step (Lemma 3.4.12), we show that each correct hungry process i

that is at least two hops away from any crashed process and is outside the doorway

eventually enters the doorway. The proof utilizes the progress property of modules

Doorway(i,j) for each j ∈ Ni.

3.4.3 Proof of Correctness

We first define the set of “diner safe” states for each process in the system,

and then we prove that the predicates that define the diner safe states are stable

predicates (predicates that eventually become true and remain true thereafter).

Diner Safe States. Process i is said to be in a diner safe state if ((diningStatei =

thinking) → ¬indoorsi) ∧ ((diningStatei = eating) → (indoorsi ∧ (∀j ∈ Ni :

Fork{i,j}.mutexi = critical))) is true. The system is said to be in a diner safe state

if and only if every live process (a process that has not yet crashed) is in a diner safe

state.

Fix σ to be an arbitrary execution of the algorithm in Figures 3.1 and 3.2, and

let s be an arbitrary state in σ. We first show that, for each correct process i,

predicate ((diningStatei = thinking) → ¬indoorsi) ∧ ((diningStatei = eating) →
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(indoorsi ∧ (∀j ∈ Ni : Fork{i,j}.mutexi = critical))) is a stable predicate in σ.

Lemma 3.4.1. For any process i, if (diningStatei = thinking)→ ¬indoorsi is true

in state s, then it remains true for each state s′ after s.

Proof. The proof is straightforward from the fact that (1) diningStatei is set to

thinking, only when variable indoorsi is set to F by Action D.2, and (2) variable

indoorsi is set to T only when diningStatei is hungry (Action D.4).

Lemma 3.4.2. For any process i, if (diningStatei = eating) → (indoorsi ∧ (∀j ∈

Ni : Fork{i,j}.mutexi = critical)) is true in state s, then it remains true for each

state s′ after s.

Proof. The proof is straightforward from the fact that (1) the precondition to set

diningStatei to eating is indoorsi = T and for all j ∈ Ni, Fork
{i,j}.mutexi = critical

by Action D.6, (2) variable indoorsi is set to F only when p is not eating (Actions

D.2 and D.7), and (3) for any j ∈ Ni, variable Fork{i,j}.mutexi is set to exiting or

trying only when i is not eating or indoorsi is F (Actions D.1, D.2 and D.4).

Lemma 3.4.3. For each correct process i, if the system is in a state s where

(diningStatei = thinking) → ¬indoorsi is false, then there exists a state s′ after s

such that (diningStatei = thinking)→ ¬indoorsi is true in s′.

Proof. The lemma immediately holds if process i becomes hungry, critical, or exiting.

Thus, we only need to consider the case when i is thinking in all states after s. In

this case, Action D.2 is enabled in s and remains enabled until executed. Thus,

Action D.2 is eventually executed at i and upon being executed, variable indoorsi

is set to F .

Lemma 3.4.4. For each correct process i, if the system is in a state s where

(diningStatei = eating) → (indoorsi ∧ (∀j ∈ Ni : Fork{i,j}.mutexi = critical))
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is false, then there exists a state s′ after s such that (diningStatei = eating) →

(indoorsi ∧ (∀j ∈ Ni : Fork{i,j}.mutexi = critical)) is true in s′.

Proof. Since each correct process does not eat forever in σ, there exists a state s′

after s in which diningStatei is not eating. Hence, in state s′, (diningStatep =

eating)→ (indoorsp ∧ (∀q ∈ Np : Fork{p,q}.mutexp = critical)) is true.

From Lemmas 3.4.1, 3.4.2, 3.4.3, and 3.4.4, we directly get:

Lemma 3.4.5. The system reaches a diner safe state and remains in a diner safe

state thereafter.

Now, we prove the four correctness conditions described in Section 3.3. We start

by showing the Well-formedness condition.

Lemma 3.4.6. There exists a suffix of σ in which Well-formedness is satisfied.

Proof. By the definition of execution and by Lemma 3.4.5, there exists an infinite

suffix σ′ of σ that (1) begins in a diner safe state and remains in a diner safe state

forever, and (2) dining well-formedness is preserved from the user’s perspective. Con-

sidering suffix σ′, the proof is straightforward from the fact that, for each process i,

(1) diningStatei is set to eating only if the current value of diningStatei is hungry

(Action D.6), and (2) diningStatei is set to thinking only if the current value of

diningStatei is either exiting or thinking (Action D.2).

To ensure that each mutual exclusion module X eventually satisfies the safety and

progress condition mentioned in Section 3.3, we show that X eventually preserves

mutex well-formedness:

Lemma 3.4.7. For each correct process i, there exists a suffix of σ in which each

mutual exclusion module that i participates in preserves mutex well-formedness.
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Proof. By the definition of execution and by Lemma 3.4.5, there exists an infinite

suffix σ′ of σ that (1) begins in a diner safe state and remains in a diner safe state for-

ever, and (2) mutex well-formedness is preserved from the implementor’s perspective.

For the proof, we only consider suffix σ′ of σ.

For each j ∈ Ni, there are three mutual exclusion modules that i participates in:

Doorway(i,j), Doorway(j,i), and Fork{i,j}. It is straightforward by Actions D.2, D.4,

and D.5 that both Doorway(i,j) and Doorway(j,i) preserve mutex well-formedness

from the user’s perspective. We can also directly see from Actions D.1, D.2, D.4, and

D.5 that Fork{i,j} preserves mutex well-formedness from the user’s perspective.

By Lemmas 3.4.5, 3.4.6, and 3.4.7, there exists an infinite suffix σ′ of σ that (1)

begins in a diner safe state and remains in a diner safe state forever, (2) dining well-

formedness is preserved from both the user’s and implementor’s perspective, and (3)

each mutual exclusion module preserves mutex well-formedness from both the user’s

and implementor’s perspective. In addition, by Lemma 3.4.7, there exists a suffix

σ′′ of σ′ in which each mutual exclusion module satisfies the safety and progress

conditions described in Section 3.3. For the remaining proofs, we only consider suffix

σ′′ of σ.

Since Action D.2 enforces each process i that satisfies diningStatei = exiting to

change its dining state to thinking, we immediately get the following lemma:

Lemma 3.4.8. σ′′ satisfies Finite Exiting.

Lemma 3.4.9. There exists a suffix of σ′′ in which Exclusion is satisfied.

Proof. Since each correct process does not eat forever in σ′′, there exists a suffix σ1

of σ′′ in which every correct process that eats starts eating in σ1.

Suppose, in contradiction, that in some state of σ1, there exist two correct neigh-

boring processes i and j that eat concurrently. First note that, in σ1, processes can
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only start to eat by executing Action D.6. By Lemma 3.4.2, as long as i (resp. j) is

eating, variable Fork{i,j}.mutexi (resp. Fork{i,j}.mutexj) remains as critical. This

implies that both Fork{i,j}.mutexi and Fork{i,j}.mutexj are set to critical while

i and j are eating concurrently which contradicts the safety condition of mutual

exclusion modules.

We prove FL1 Liveness in two parts: First we show that, for each process i

that is correct and does not have any crashed neighbors, if i is hungry and inside the

doorway (indoorsi = T ), then i eventually eats. Then, we show that, for each process

i that is correct and does not have any crashed neighbors, if i is hungry and outside

the doorway (indoorsi = F ), then i eventually enters the doorway (indoorsi = T ).

Lemma 3.4.10. Suppose some process i is correct and does not have any crashed

neighbors in σ′′. Also, suppose i is hungry and inside the doorway (indoorsi = T )

but never eats in σ′′. Then, there exists a process j ∈ Ni such that in an infinite

suffix of σ′′, j satisfies

(a) diningStatej = hungry,

(b) indoorsj = T

(c) j does not have any crashed neighbors,

(d) i < j, and

(e) Fork{i,j}.mutexj = critical.

Proof. Since all nodes in Ni are correct, there exists an infinite suffix σ1 of σ′′ in

which ?♦P 1
i is false. For this proof, we only consider suffix σ1.

Note that since i never eats, Action D.5 is always enabled and all other actions,

except D.1 and D.7, are always disabled at i in σ1. Also, note that since Action D.5

is always enabled at i in σ1, for all r ∈ Ni, if i is not yet in the critical section with
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respect to module Fork{i,r}, then process p always tries to enter the critical section

with respect to module Fork{i,r} by setting Fork{i,r}.mutexi to trying.

Claim. No process in Ni eats infinitely often in σ1.

Proof. Suppose, in contradiction, there exists a process r ∈ Ni that eats infinitely

often in σ1. Since Lemma 3.4.6 enforces r to execute Action D.2 infinitely often

(in order to transit from diningStater = eating to diningStater = thinking, Action

D.2 must be executed), r cannot satisfy Doorway(r,i).mutexr = critical in an infinite

suffix of σ1. Thus, by the progress condition of mutual exclusion modules, i satisfies

Doorway(r,i).mutexi = critical in an infinite suffix of σ1. This means that, at r, the

condition on line 31 of Action D.4 will eventually and forever evaluate to false which

in turn prevents r from enabling Action D.6 since variable indoorsr cannot be set

to T after setting it to F through Action D.2. A contradiction.

The above claim implies that every process in Ni is stuck in some dining state.

Since no correct process eats forever, processes in Ni cannot be eating eventu-

ally forever in σ1. Also, by Lemma 3.4.8, each process r ∈ Ni cannot satisfy

diningStater = exiting in an infinite suffix of σ1. Thus, every process in Ni must be

thinking or hungry in an infinite suffix of σ1.

Suppose every process in Ni is either thinking, or hungry and outside the door-

way eventually forever in σ1. In this case, at i, Action D.6 will be enabled until it is

executed since for any r ∈ Ni (1) diningStater = thinking implies that indoorsr = F

by Lemma 3.4.1, (2) if indoorsr = F holds eventually forever, then process r eventu-

ally and forever writes F to register Req(r,i) by Action D.3, (3) process p eventually

sets localReq
(r,i)
i to F by Action D.1 which in turn evaluates the condition on line

12 of Action D.1 to false eventually forever, (4) if diningStater = hungry and

indoorsr = F holds eventually forever, then Action D.4 ensures that process r exits
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its critical section with respect to module Fork{i,r}, and (5) process r will eventu-

ally never set Fork{i,r}.mutexr to trying because Action D.5 is disabled eventually

forever at r. However, this directly contradicts the assumption that i never eats in

σ1.

Thus, there exists a process r′ ∈ Ni that is eventually hungry forever in σ1,

however, r′ could be either inside the doorway eventually forever in σ1, or entering

and exiting the doorway infinitely often in σ1. By the code, the only case that r′

can exit the doorway without changing its dining state is when ?♦P 1
r′ becomes true.

Since ?♦P 1
r′ is guaranteed to eventually stabilize, r′ cannot enter and exit the doorway

infinitely often in σ1. In addition, if each process r′′ ∈ Ni that is eventually hungry

in σ1 has a crashed neighbor, then ?♦P 1
r′′ ensures that Action D.7 is enabled and the

condition on line 30 of Action D.4 evaluates to false eventually forever. In this case,

each process r′′ becomes hungry and outside the doorway eventually forever in σ1

which again implies that, at i, Action D.6 will be enabled until it is executed. Thus,

there must exist a process in Ni that is hungry and inside the doorway in an infinite

suffix of σ1 and does not have any crashed neighbors.

Now we show that among the processes in Ni that are hungry and inside the

doorway in an infinite suffix of σ1 and do not have any crashed neighbors, there

exists a process that has a greater id than i. Suppose, in contradiction, that for each

process r ∈ Np that is hungry and inside the doorway in an infinite suffix of σ′′ and

does not have any crashed neighbors, we have r < i. In this case, if Fork{i,r}.mutexi

is not yet critical, then the execution of Action D.5 at i ensures that eventually and

forever, T is written to register Req(i,r). Since Action D.1 is always enabled at r, r

reads T from Req(i,r) in an infinite suffix of σ1. This implies that, at r, the condition

on line 12 of Action D.1 evaluates to true eventually and forever which in turn tells

us that whenever Fork{i,r}.mutexr = critical holds at r, then Fork{i,r}.mutexr will
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eventually be set to exiting. On the other hand, at i, the condition on line 12 of

Action D.1 will evaluate to false in an infinite suffix of σ1 which implies that if i ever

satisfies Fork{i,r}.mutexi = critical in σ1, then for an infinite suffix of σ1, i satisfies

Fork{i,r}.mutexi = critical. Since process i continuously tries to enter the critical

section with respect to module Fork{i,r} (line 43 of Action D.5) and by the progress

condition of module Fork{i,r}, variable Fork{i,r}.mutexi is eventually and forever set

to critical in σ1. This causes Action D.6 to be enabled in infinite suffix of σ1 which

contradicts the assumption that i does not eat in σ1.

Finally, we show that for each process r ∈ Ni that is hungry and inside the door-

way in an infinite suffix of σ1, does not have any crashed neighbors, and has a greater

id than i, process r eventually and forever satisfies Fork{i,r}.mutexr = critical. Since

both i and r are eventually and forever hungry and inside the doorway, Actions D.1

and D.5 are always enabled at both i and r in an infinite suffix of σ1. In this case,

both i and r eventually and forever reads T from Req(r,i) and Req(i,r), respectively.

Thus, the condition on line 12 of Action D.1 ensures that in an infinite suffix of σ1,

Fork{i,r}.mutexi is eventually set to exiting whenever Fork{i,r}.mutexi = critical

holds and the progress condition of module Fork{i,r} guarantees that r eventually

sets Fork{i,r}.mutexr to critical. After setting Fork{i,r}.mutexr to critical, process

r cannot set Fork{i,r}.mutexr to exiting since the condition on line 12 of Action D.1

evaluates to false (r > i). Therefore, the lemma holds.

Lemma 3.4.11. Consider each process i that is correct and does not have any crashed

neighbors in σ′′. If i is hungry and inside the doorway (indoorsi = T ), then i

eventually eats in σ′′.

Proof. Suppose, in contradiction, that there exists a non-empty set U of processes

that are correct and do not have any crashed neighbors such that for all processes
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u ∈ U , u is hungry and inside the doorway but never eats in an infinite suffix of σ′′.

Using U , we construct the directed “waits-for” graph W = (U,EW ) where vertices are

processes in U and (u, q) is in EW if and only if u < q and Fork{u,q}.mutexq = critical

holds in an infinite suffix of σ′′. By Lemma 3.4.10, each vertex in W has at least one

outgoing edge, and thus there is a cycle in W (basic fact from graph theory). This

contradicts the total ordering of node ids.

Lemma 3.4.12. Consider each process i that is correct and does not have any crashed

neighbors in σ′′. If i is hungry and outside the doorway (indoorsi = F ), then i

eventually enters the doorway (indoorsi = T ) in σ′′.

Proof. Since all nodes in Ni are correct, there exists an infinite suffix σ1 of σ′′ in

which ?♦P 1
i is false. For this proof, we only consider suffix σ1.

Suppose, in contradiction, that i never enters the doorway. By Action D.4,

we notice that i enters the doorway when Doorway(i,j).mutexi = critical for all

j ∈ Ni. Also note that, for any j ∈ Ni, the only case that i exits the critical

section with respect to module Doorway(i,j) is when Doorway(i,r).mutexi = critical

for all r ∈ Ni (Action D.4). Thus, there must exist a process r′ ∈ Ni that satisfies

Doorway(i,r′).mutexr′ = critical in an infinite suffix of σ1 because otherwise the

progress condition of module Doorway(i,r′) ensures that Doorway(i,r′).mutexi to be

set to critical in an infinite suffix of σ1. This implies that both Actions D.2 and

D.4 are executed only finitely many times at r′ in σ1. In this case, r′ must satisfy

either diningStater′ = thinking, or diningStater′ = hungry and indoorsr′ = F in

an infinite suffix of σ1 because otherwise Lemma 3.4.11 and the fact that no process

eats forever in σ1 ensures that Action D.2 is executed infinitely often. However,

if r′ satisfies diningStater′ = thinking in an infinite suffix of σ1, then Action D.2

is executed infinitely often in σ1. Also, if r′ satisfies diningStater′ = hungry and
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indoorsr′ = F in an infinite suffix of σ1, then Action D.4 is executed infinitely often

in σ1. A contradiction.

From Lemmas 3.4.11 and 3.4.12, we directly get FL1 Liveness:

Lemma 3.4.13. σ′′ satisfies FL1 Liveness.

We showed that any execution satisfies Well-formedness, Finite Exiting, Exclu-

sion, and FL1 Liveness through Lemmas 3.4.6, 3.4.8, 3.4.9, and 3.4.13, respectively.

Therefore, we obtain the following theorem:

Theorem 3.4.14. The algorithm in Figures 3.1 and 3.2 implements stabilizing

failure-locality-1 dining.
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4. NEIGHBOR KNOWLEDGE OF MOBILE NODES IN A ROAD NETWORK

In this section, we provide a solution for nodes to maintain neighbor knowledge

where nodes communicate via wireless broadcast and are restricted to move on a

two-dimensional road network; a road network is roughly a collection of lines that

may intersect each other (see Section 4.3 for details). We can view vehicular ad hoc

networks as nodes (vehicles) with wireless communication capabilities moving on a

road network. Our solution is an extension of the one-dimensional case in [27] and

[70] to two-dimensional space.

Our solution provides deterministic guarantees for maintaining neighbor knowl-

edge. Our algorithm divides each line of the road network into segments and utilizes

time division multiplexing to avoid wireless broadcast interference and collisions.

Assuming that nodes are sufficiently close together, know their future trajectory,

and have initial neighbor knowledge, certain nodes (called leader nodes) are period-

ically identified for each segment. Leader nodes are the only nodes that broadcast

neighbor information; restricting wireless broadcasts to be performed only by leader

nodes eliminates the risk of collisions within each segment. For a given time unit,

leader nodes broadcast neighbor information (including trajectories) following a de-

terministic collision-free broadcast schedule. This broadcast schedule ensures that

simultaneous broadcasts performed by two different leader nodes do not interfere

with each other. All nodes update their neighbor knowledge for the next time unit

based on the information received from leader nodes. Other applications may utilize

the neighbor information provided by our solution to perform their own tasks. We

Part of this section is reprinted from the following paper: c©2012 IEEE. Reprinted, with permis-
sion, from Hyun Chul Chung, Saira Viqar, and Jennifer L. Welch, “Neighbor knowledge of mobile
nodes in a road network,” In proceedings of the 32nd IEEE International Conference on Distributed
Computing Systems (ICDCS), June 2012, pages 486-495.
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also provide a correctness proof for our solution.

In addition to maintaining neighbor knowledge, we show how fast a message can

travel in the network using our broadcast schedule. We first consider message prop-

agation on a single line and then extend the result to the road network. Specifically,

given any two points A and B on the road network, we provide a lower bound on

the speed of a message initially broadcast at point A in reaching point B.

We also consider grouping nodes on the same line into clusters where a node den-

sity requirement only holds within each cluster. Under certain conditions, we show

that neighbor knowledge is maintained within a cluster that is formed by merging

two clusters on the same line. Furthermore, we show that neighbor knowledge is

maintained within a cluster even after a single node merges into that cluster through

an intersection.

Our solution relies on nodes having initial neighbor knowledge. We address the

issue of obtaining initial neighbor knowledge based on a gossiping algorithm in [30].

We also discuss how to relax the assumption that every node knows its entire future

trajectory and provide practical values for the parameters used in this section.

4.1 Contributions

We present a deterministic solution for maintaining neighbor knowledge which

guarantees that each node in a two dimensional road network knows its neighboring

nodes at all times. This solution can serve as a black box which provides neighbor

information to other applications.

Considering the deterministic collision-free broadcast schedule presented as part

of our solution in maintaining neighbor knowledge, we determine how fast a message

can propagate on a two-dimensional road network by providing a lower bound on

the speed of message propagation.
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Finally, we consider dynamic clusters of nodes moving on a road network and

show, under certain conditions, how neighbor knowledge can be maintained even

when clusters merge with each other.

4.2 Related Work

Our algorithm is a generalization of the algorithm of Ellen et al. [27] and

Subramanian [70]. Their algorithm applies to nodes that are moving along a one-

dimensional line (for example vehicles moving along a single highway). They assume

that this one-dimensional line is divided into segments of equal size. These segments

are in turn partitioned into a finite number of colors. Segments of the same color are

spaced sufficiently apart so that nodes which occupy two different segments of the

same color can transmit simultaneously without message collisions. With the help

of this coloring of segments a collision-free schedule is designed, which allows nodes

to transmit messages, depending on their current location. However, their algorithm

cannot be applied to two-dimensional VANETs, with multiple adjacent lanes, or in-

tersecting roads. A natural, and non-trivial extension of their work is to deal with

the case of nodes approaching each other on intersections. We provide an algorithm

for nodes moving on a road network in which lines may intersect at any angle. In

addition to this, we provide an analysis of clusters of nodes gaining knowledge of

each other while merging.

In [73], the authors consider nodes moving on a two-dimensional plane. They

show how their communication schedule can provide neighborhood knowledge. They

do have some discussion about how different types of schedules may help in the

dissemination of information along a path of connected nodes on the plane. In their

work, they do not provide a characterization of the speed of message propagation

achieved by the schedule between two points on the plane. There is also no analysis
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of clusters of nodes merging on the plane.

In [19], a reliable neighbor discovery layer for mobile ad hoc networks is defined.

Two distributed algorithms are presented which implement this layer with varying

progress guarantees. However, these algorithms are implemented on top of a Medium

Access Control (MAC) Layer which is specified in [45]. This MAC Layer provides

upper bounds on the time for message delivery thereby abstracting away the lower

level details of collision detection, contention and scheduling. We adopt a more

integrated approach. Our algorithm handles contention and message collisions by

means of a deterministic collision-free broadcast schedule.

In [53] and [54], the authors show lower bounds for gossip in the case of static

nodes on a one-dimensional line. Different classes of algorithms are defined: singleton

algorithms in which only one node can transmit during one time-step, collision free

algorithms in which multiple nodes can transmit simultaneously as long as it does

not result in a message collision, and unrestricted algorithms in which no restrictions

are placed on the nodes. The authors show different lower bounds for the three

cases, in terms of the worst-case number of transmission slots required for all-to-

all communication (or gossip). Also, in [54], a gossiping algorithm is presented for

mobile ad hoc radio networks which uses the schedule defined in [27]. Bounds on the

speed of information propagation are presented in a setting where nodes move on a

one-dimensional line. In contrast to this, we analyze the worst case time required

for a message broadcast by a node p located at point A to reach point B on a

two-dimensional road network using our broadcast schedule.

4.3 System Model

We define a road network as a collection of one-dimensional lines that may inter-

sect each other where, for any two lines, there is no restriction on the intersecting
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Figure 4.1: A road network. Notice that the angle between two intersecting lines
need not be a right angle.

angle; see Figure 4.1. We consider a fixed road network in two-dimensional Euclidean

space where nodes move along the lines of the road network with a speed of at most

σ. We assume that nodes have unique ids and do not crash.

Nodes communicate via wireless broadcast. We consider a common communica-

tion radius R and a common interference radius R′ (≥ R): node p correctly receives

node q’s broadcast message if (1) q was within distance R of p during the entire

broadcast, and (2) there was no other node broadcasting a message within distance

R′ of p at any time while q was broadcasting its message.

Each one-dimensional line on the road network is divided into segments of size G.

The segmentation of each individual line is independent from each other; there are

no restrictions such as intersection points should correspond to segment boundaries,

etc. Consecutive segments on a line are numbered in increasing order and colored

with m colors 0, 1, ...,m− 1: segment s has a color of s mod m.

Nodes have synchronized clocks which allows nodes to utilize time division multi-

plexing. Time is divided into rounds where each round is further divided into u unit

length time slots. Broadcasts occur at the beginning of a time slot and the duration
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of a time slot is long enough for a node to broadcast a message by the end of the time

slot. Similar to segments on a line, consecutive rounds are numbered in increasing

order and colored with m colors 0, 1, ...,m− 1: round r has a color of r mod m. We

assume that three or more colors are used to color segments and rounds; m ≥ 3.

We assume that nodes initially know their future trajectory; each node p knows

its trajectory function fp(t) where, given a time t, it returns the exact location of p

on the road network. The trajectory function of a node may be exchanged among

nodes.

Throughout Section 4, we use the term Manhattan distance as follows: Manhattan

distance from point A to point B on a road network as the length of the shortest

path from A to B along the road network. If we just say “distance”, then it refers

to Euclidean distance. For two points A and B on the road network, we denote

distE(A,B) and distM(A,B) as the Euclidean and Manhattan distance between

point A and B on the road network, respectively. Also, for a given time instant and

for two nodes p and q, we denote distE(p, q) and distM(p, q) as the Euclidean and

Manhattan distance between p and q on the road network, respectively.

4.4 A Deterministic Broadcast Schedule

Our broadcast schedule is a small modification of that presented in [27] and [70].

Each m consecutive rounds, starting from round 0, makes up a phase1. Each line

` is assigned only a single time slot during each round for nodes on ` to broadcast

messages. We say that two lines `1 and `2 are nearby if there exists two points x1 and

x2 on `1 and `2, respectively, such that the Euclidean distance between x1 and x2 is

less than R +R′. If two lines that are nearby use the same time slot in each round,

1In [27] and [70], not all segments get a chance to broadcast in a phase since a phase consists
of m− 1 rounds. This causes difficulties in the analysis since the case of a node not being able to
broadcast in a phase has to be considered. In our schedule, every segment broadcasts in a phase
which eases the analysis.
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then broadcasts performed on those lines may interfere with each other. We assume

that a digital map is initially provided to all nodes in the network which allows each

node to know which line it is on and which time slot is assigned to that line. We

further assume that the time slot for each line on the digital map is assigned such

that any two lines that are nearby use different time slots in each round. This implies

that u, the number of time slots per round, is sufficiently large to handle inter-line

interference.

For each phase, exactly those nodes that are in segments of color c at the be-

ginning of the phase are allowed to broadcast during a round that has a color of c

within that phase. Notice that multiple nodes can be located in the same segment

at the beginning of a phase and these nodes have a potential of causing broadcast

interference. To avoid interference, nodes in segment s at the beginning of a phase

elect a leader node which is the only node that can broadcast on behalf of segment

s in that phase. Leader election at the beginning of a phase can be done by local

computation under a condition that every node in a segment at the beginning of a

phase know the trajectory function of one another in that segment (e.g. by selecting

the node with the lowest ID in a segment as the leader).

Our broadcast schedule is illustrated in Figure 4.2 (the figure shows two cases:

when m = 5 and when m = 6). Each row represents a round and each column

represents a segment. A “<” (named leftward broadcast) indicates a broadcast

that is in favor of propagating a message towards segments of decreasing order, a

“>” (named rightward broadcast) indicates a broadcast that is in favor of message

propagation towards segments of increasing order, and a broadcast that is favorable

to both directions is indicated by “<>”. In our schedule, (1) every segment gets a

chance to broadcast in every phase, (2) the segment that performed the last broadcast

in phase π again performs the first broadcast in phase π + 1, (3) the first and last

97



0      1      2      3      4      5      6      7      8      9     10    11    12    13    14    15
< >                                   < >                                   < >                                   < >0

 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

10
 

11
 

12

< >                                   < >                                   < >                                   < >

< >                                   < >                                   < >                                   < >

< >                                   < >                                   < > 
< >                                   < >                                   < > 

<                                      <                                      < 

<                                      <                                      < 

<                                      <                                      < 

<                                      <                                      < 

>                                      >                                      >

>                                      >                                      >

>                                      >                                      >

>                                      >                                      >

Segments

R
ou
nd
s

(a) When m = 5.

0      1      2      3      4      5      6      7      8      9     10    11    12    13    14    15
< >                                           < >                                           < >0

 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

10
 

11
 

12

Segments

R
ou
nd
s

< >                                           < >                                           < >

< >                                           < >                                           < >

< >                                           < >                                           < >
< >                                           < >                                           < >

<                                              <                                              <

<                                              <                                              <

>                                              >                                              >

>                                              >                                              >

>                                              >

>                                              >

<                                              <

<                                              <

(b) When m = 6.

Figure 4.2: Broadcast schedule examples.
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broadcast of each phase are both “<>”, (4) the second broadcast of phase π + 1

is “>” (resp. “<”) if the second last broadcast of phase π was “<” (resp. “>”),

and (5) leftward and rightward broadcasts within a phase are interleaved. Each

one-dimensional line in the road network follows this schedule. The drawback of our

schedule is that there is a delay in message propagation on phase boundaries since the

same segment broadcasts in two consecutive rounds. However, as m increases, phase

boundary delays occur less frequently which in turn means that phase boundary

delays become less influential in message propagation.

4.5 Assumptions and Constraints on Parameters

We have handled intra-segment and inter-line interference. However, the broad-

cast schedule is still exposed to inter-segment interference on a line; since segments

of the same color on the same line broadcast simultaneously, interference might oc-

cur if those segments are not sufficiently far apart. To take care of inter-segment

interference, we introduce the first constraint:

mG− 2muσ ≥ R +R′ (4.1)

where mG corresponds to the distance between two consecutive segments of the same

color and muσ is the maximum distance a node can move during a phase. Constraint

4.1 tells us that the broadcasts of two leader nodes, one representing segment s and

the other representing segment s + m on the same line, do not interfere with each

other even if the two nodes approach each other in maximum speed during a phase.

The following constraint tells us that we only allow nodes to cross at most one
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segment boundary in a phase:

muσ < G (4.2)

We assume a density requirement on the network: on each line, there exists at

least one node in every interval of length L at all times. We consider the following

constraint on L:

L ≤ (R− 3G− 8muσ)/2 (4.3)

We assume that the Manhattan distance between any two intersection points

is greater than L + 2G + 6muσ. This assumption enforces a node in between two

consecutive intersections A and B to remain in between A and B for a certain number

of phases.

We also assume that for each line on the road network, the distance between an

endpoint of the line and its nearest intersection is at least L+ 2G+ 6muσ.

In addition, we assume that each node p starts at the beginning of phase 0 and

possesses trajectory functions of other nodes within a distance of R + 2muσ from

p at the beginning of phase 0. We say that node p knows node q if p possesses q’s

trajectory function.

4.6 Maintaining Neighbor Knowledge

For simplicity, we assume that, when a leader node broadcasts, it broadcasts all

trajectory functions that it knows. This assumption may be relaxed, as in [27] and

[70], by making each node p to only keep trajectory functions of other nodes that

are nearby p (if p has the trajectory function of q, then p can decide whether or not

to dispose q’s trajectory function since p can calculate its distance to q at any given
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time). We now show that nodes maintain neighbor knowledge with the broadcast

schedule. More specifically, we show that each node p knows every other node that

is within Manhattan distance of R from itself at any given time (Theorem 4.6.2).

To do this, we first show that neighbor knowledge is maintained at the beginning of

each phase:

Lemma 4.6.1. For all phases π,

(a) if π > 1, then broadcast collisions do not occur during phase π − 1, and

(b) for all nodes p and q, if distM(p, q) ≤ R + 2muσ at the beginning of phase π,

then p knows q at the beginning of phase π.

Proof. We use induction on π. For the basis (π = 0), part (a) is vacuously true and

part (b) follows by our initialization assumptions.

For the inductive step, we assume that the lemma holds for phase π and we will

show that it holds for phase π + 1.

We first show part (a). Since we have assumed that any two lines that are nearby

use different time slots in each round, it is only required to show that collisions do

not occur within a single line during phase π.

The inductive hypothesis implies that for all nodes p and q, if distM(p, q) ≤ G at

the beginning of phase π, then p knows q at the beginning of phase π since

R + 2muσ ≥ 2L+ 3G+ 8muσ (by Constraint 4.3)

> G.

Thus, at the beginning of phase π, nodes in the same segment know each other

and a unique leader can be elected for each non-empty segment. Note that, by
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assumption, leaders are the only nodes that are allowed to broadcast on behalf of

their corresponding segments.

Due to our broadcast schedule, leaders representing different segments of the

same color may broadcast simultaneously during phase π. Also, at the beginning of

phase π, the distance between any two leaders that represent different segments of

the same color is at least mG. Note that due to the upper bound σ on node speed

and the fact that a phase lasts mu time, the maximum distance a node can travel

during a phase is muσ. Thus, during phase π, for all pair of leader nodes `1 and `2

that represent different segments of the same color, we get

distE(`1, `2) ≥ mG− 2muσ

≥ R +R′ (by Constraint 4.1)

which proves that broadcasts of `1 and `2 do not interfere with each other.

Now, we show part (b). First note that since the maximum Manhattan distance a

node can travel during a phase ismuσ, for all nodes p and q, if distM(p, q) ≤ R+2muσ

at the beginning of phase π + 1, then distM(p, q) ≤ R + 4muσ at the beginning of

phase π. Thus, it is sufficient to show that, during phase π, p learns about every

node q such that distM(p, q) ≤ R+ 4muσ at the beginning of phase π (if it does not

already know q).

If distM(p, q) ≤ R + 2muσ at the beginning of phase π, then by the inductive

hypothesis, p knows q at the beginning of phase π; thus p knows q at the beginning

of phase π+ 1. Now, assume that distM(p, q) > R+ 2muσ at the beginning of phase

π. We will show that there must exist a node ` such that

(i) ` is the leader of a segment during phase π,
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(ii) distM(p, `) ≤ R− 2muσ at the beginning of phase π, i.e., ` is within broadcast

range of p throughout phase π, and

(iii) distM(`, q) ≤ R + 2muσ at the beginning of phase π, i.e., ` knows q at the

beginning of phase π, by the inductive hypothesis.

Thus, p learns about q during phase π (if it does not already know q) and p knows

q at the beginning of phase π + 1.

–(Case 1) The path from p to q (along the lines of the road network) either consists

of a single line or the first line change occurs at distance at least L/2 + G + 2muσ:

Consider the interval Ileader of length L + 2G that resides on the same line as p lies

on at the beginning of phase π where (1) one endpoint is at distance 2muσ and the

other endpoint is at distance L+2G+2muσ from p, and (2) there exists a subinterval

of length at least L/2 +G that overlaps with the path from p to q (see Figures 4.3a

and 4.3b).

(i) By the density assumption, the subinterval of length L centered inside Ileader

contains at least one node r. Either r or another node in the same segment as

r is a leader for phase π. Since the segment length is G, somewhere in Ileader

there is a leader node `.

(ii) To show distM(p, `) ≤ R − 2muσ at the beginning of phase π, first note that

distM(p, `) ≤ L+ 2G+ 2muσ by the definition of Ileader. Then,

R− 2muσ

≥ 2L+ 3G+ 8muσ − 2muσ (by Constraint 4.3)

≥ L+ 2G+ 2muσ

≥ distM(p, `) (by note above)
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Figure 4.3: Proof of Lemma 4.6.1 (Case 1).

(iii) To show distM(`, q) ≤ R+2muσ at the beginning of phase π, we further divide

into two cases depending on the location of ` with respect to the intersection

where the first line change occurs:

—(Case 1a) A line change does not occur from p to q (see Figure 4.3a) or ` is

on the same side of the intersection as p (between point A and the intersection

in Figure 4.3b) at the beginning of phase π: In this case, ` is located within
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the path from p to q. Thus,

distM(`, q)

= distM(p, q)− distM(p, `)

≤ R + 4muσ − distM(p, `) (by assumption)

≤ R + 4muσ − 2muσ (by def. of Ileader)

= R + 2muσ

—(Case 1b) ` is on the other side of the intersection as p (between point B

and the intersection in Figure 4.3b) at the beginning of phase π: Since at least

half of Ileader is on the same side of the intersection as p, we get

distM(`, q)

≤ distM(p, q)− 2muσ

≤ R + 4muσ − 2muσ (by assumption)

= R + 2muσ

–(Case 2) The distance between p and the first intersection point on the path to q is

at least 2muσ but less than L/2+G+2muσ (see Figure 4.4a): Consider the interval

Ileader of length L+2G that resides on the intersecting line where (1) one endpoint is

on the intersection point, and (2) overlaps with the path from p to q. Note that, since

the distance between any two intersection points is at least L+ 2G+ 6muσ, no line

intersects Ileader. The Manhattan distance between p and any point in Ileader is at

most 3L/2 + 3G+ 2muσ. By Constraint 4.3, it follows that 3L/2 + 3G+ 2muσ ≤ R.

Thus, Ileader is entirely between p and q.
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Figure 4.4: Proof of Lemma 4.6.1 (Cases 2 and 3).

(i) Same as in (Case 1), there exists a leader node ` in Ileader at the beginning of

phase π.

(ii) To show distM(p, `) ≤ R− 2muσ at the beginning of phase π, note that

distM(p, `)

≤ 3L/2 + 3G+ 2muσ (` is in Ileader)

≤ R− L/2− 6muσ (by Constraint 4.3)

< R− 2muσ

(iii) To show distM(`, q) ≤ R + 2muσ at the beginning of phase π, first note that

distM(p, `) ≥ 2muσ since the distance between p and intersection is at least
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2muσ. Thus,

distM(`, q)

= distM(p, q)− distM(p, `)

≤ R + 4muσ − distM(p, `) (by assumption)

≤ R + 4muσ − 2muσ (by note above)

= R + 2muσ

–(Case 3) The distance between p and the first intersection point on the path to q

is less than 2muσ (see Figure 4.4b): Consider the interval Ileader of length L + 2G

that (1) resides on the intersecting line where one endpoint is at Manhattan distance

2muσ and the other endpoint is at Manhattan distance L+ 2G+ 2muσ from p, and

(2) overlaps with the path from p to q. Note that one endpoint of Ileader is at most

at distance 2muσ from the intersection. Since any two intersections are at least a

distance L + 2G + 6muσ apart, no line intersects Ileader. The Manhattan distance

between p and a point in Ileader is at most L + 2G + 2muσ. By Constraint 4.3, it

follows that L + 2G + 2muσ ≤ R. Thus, Ileader is entirely on the path from p to

q. For the rest of the proof, part (i) and (ii) is similar to (Case 1), and part (iii) is

similar to (Case 1a).

Using Lemma 4.6.1, we can show that, for any given node, knowledge about other

nodes within Manhattan distance of R can be maintained at all times:

Theorem 4.6.2. Every node knows every other node that is within a Manhattan

distance of R from itself at all times.

Proof. Since the time duration of each phase is mu and the maximum node speed

is bounded by σ, two nodes p and q that are separated by a Manhattan distance
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of at most R during phase π can be separated by a Manhattan distance of at most

R + 2muσ at the beginning of phase π. Hence, by Lemma 4.6.1, p and q already

knew each other at the beginning of phase π.

4.7 Speed of Message Propagation

For this section, we introduce the following constraint which says that the commu-

nication radius is strictly less than the half of the distance between two consecutive

segments of the same color on a same line:

R < bm/2cG. (4.4)

Note that the above constraint does not violate Constraints 4.1 to 4.3.

We analyze how fast messages can travel on the road network using our broadcast

schedule. To do so, we first analyze the speed of message propagation on a single

line. Specifically, we show that, considering message propagation from left to right

(message propagation from right to left will be analogous) on a single line, if a leader

node p representing segment s does a broadcast of “>” or “<>” at round r, then

there exists a constant c > 0 and a leader node q that represents a segment s + ∆

for some integer ∆ ≥ 0 such that q performs a broadcast of “>” or “<>” by round

r + c∆; this will show that the speed of information propagation on a single line is

at least one segment per c rounds.

Using the speed of message propagation on a single line, we analyze the speed of

information propagation on any given path in the road network. Specifically, given

points A and B on the road network where A is the location where some node p

broadcasts a message, we will analyze the worst case time required for the message

broadcast by p to reach B. The speed of message propagation can be easily calculated
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by dividing the distM(A,B) with the total time required for a message to reach B

from A. The basic idea of our analysis is as follows: We calculate the worst case

time δ1 required to reach point B from point A pretending that A and B lies on a

single line. Then, we calculate the worst case time delay δ2 caused by changing from

one line to another along the path from A to B by comparing it to the case when

that line change has not occurred. If a number of k line changes occurred along the

path from A to B, then the worst case total time of message propagation from A to

B would be at most δ1 + kδ2.

Before we delve into the analysis of the speed of information propagation, we

first make several observations on our schedule that are useful for our analysis. All

observations consider message propagation on a single line.

Observation 4.7.1. Suppose segment s is not scheduled to broadcast at the last

round of phase π. Then,

(a) if s did a broadcast of “<>” in round r of π, then segment s− 1 (resp. s+ 1)

does a leftward (resp. rightward) broadcast in round r + 1 or r + 2,

(b) if s did a leftward broadcast (“<”) in round r of π, then segment s− 1 does a

broadcast of “<>” or “<” in round r + 1 or r + 2, and

(c) if s did a rightward broadcast (“<”) in round r of π, then segment s + 1 does

a broadcast of “<>” or “>” in round r + 1 or r + 2

Observation 4.7.1 basically tells us that, within a phase, the difference of broad-

cast rounds of two adjacent segments is at most 2 assuming a single direction of

message propagation.

Observation 4.7.2. Suppose segment s is scheduled to broadcast at the last round r

of phase π. Then, segment s− 1 (resp. s+ 1) broadcasts in round r + 2 or r + 3.
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Observation 4.7.2, along with Observation 4.7.1, shows that the difference of

broadcast rounds of two adjacent segments is at most 3 assuming a single direction

of message propagation.

Observation 4.7.3. Suppose segment s is scheduled to do a broadcast of “<” (resp.

“>”) in phase π. Then, in phase π+ 1, segment s− 1 is scheduled to do a broadcast

of “>” (resp. “<”) or “<>”, segment s is scheduled to do a broadcast of “>” (resp.

“<”), and segment s+1 is scheduled to do a broadcast of “>” (resp. “<”) or “<>”.

Observation 4.7.3 says that for any three consecutive segments s−1, s, and s+ 1

where s does a leftward (resp. rightward) broadcast in phase π, all three segments

do a broadcast in favor of propagating the message towards segments of increasing

(resp. decreasing) order in phase π + 1.

Using the above observations, Lemma 4.7.4 provides the speed of message prop-

agation on a single line. We use a similar approach as in [27] and [70], however, our

analysis turns out to be simpler since, in our case, every segment broadcasts in every

phase.

Lemma 4.7.4. The speed of message propagation on a single line is at least one

segment per three rounds.

Proof. We prove with the assistance of Figure 4.5. Suppose node p, which is the

leader node of segment s at phase π, broadcasts a message m during phase π. We only

consider message propagation from left to right where node p performs a broadcast

of either “>” or “<>” during phase π (considering “<” will be analogous). Let s′

be the nearest segment on the left of s where it is scheduled to broadcast in the first

round of phase π. Also, let s′′ be the nearest segment on the right of s where it is

scheduled to broadcast in the first round of phase π+ 1 (See Figure 4.5a). Note that
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Figure 4.5: Proof of Lemma 4.7.4.

segment s itself can be the segment to broadcast in the first round of phase π or the

segment to broadcast in the last round of phase π.

We divide into two cases depending on the distance between segments s and s′′:

–(Case 1) The distance between s and s′′ is greater than L (Figure 4.5b): In this

case, by the density requirement, there exists a leader node q that represents segment

s+ i at the beginning of phase π where s+ i ∈ [s+ 1, s′′ − 1].

We show that q receives message m from p during phase π. The maximum

distance between p and q at the beginning of phase π is L+G. Even though p and

q move away from each other in maximum speed, the distance between p and q will
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be at most L+G+ 2muσ during phase π. Hence, at any given time during phase π,

distE(p, q) ≤ L+G+ 2muσ

≤ R− L− 2G− 6muσ (by Constraint 4.3)

< R

which implies that q receives m.

Since s′′ is the nearest segment to the right of s that broadcasts in the first round

of phase π + 1, q performs a rightward broadcast in phase π after p’s broadcast due

to the definition of our schedule. Hence, by Observation 4.7.1, if p broadcasts at

round r, then q does a rightward broadcast by round r + 2i.

–(Case 2) The distance between s and s′′ is at most L (Figure 4.5c): In this case,

there might not be a node in between segments s and s′′. Consider the interval Ileader

of length L+G from the right endpoint of segment s′′ towards segment s′+m. First

note that, due to the definition of our schedule, the distance between s′′ and s′ +m

(also the distance between s′′ and s′) is at least bm/2cG−G. We get

bm/2cG−G > R−G (by Constraint 4.4)

≥ 2L+ 2G+ 8muσ (by Constraint 4.3)

> L+G

which implies that Ileader is entirely in between s′′ and s′ +m.

By the density requirement, there exists a node q′ in Ileader at the beginning of

phase π+ 1. Let s+ i be the segment where node q′ lies on at the beginning of phase

π+ 1 where s+ i ∈ [s′′, s′+m−1] . Since the leader node of s+ i at the beginning of

phase π can be at most at distance G from q′, there exists a leader node q in Ileader
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that represents segment s+ i at the beginning of phase π + 1.

We show that q receives p’s broadcast message m in phase π. Since q is in Ileader

at the beginning of phase π+ 1, q could be a distance of at most muσ away from the

right endpoint of Ileader during phase π. Node p can be a distance of at most muσ

away from the left endpoint of segment s. Hence, nodes p and q can be a distance of

at most 2L+ 3G+ 2muσ away from each other during phase π. Thus, at any given

time during phase π,

distE(p, q) ≤ 2L+ 3G+ 2muσ

≤ R− 6muσ (by Constraint 4.3)

< R

which implies that q receives p’s broadcast during phase π.

By the definition of our schedule, q performs a rightward broadcast during phase

π+1. Also, since s′′ is the node that performs the first broadcast of phase π+1, s′′ is

also the segment that performs the last broadcast of phase π. Hence, by Observations

4.7.1 and 4.7.2, if p broadcast at round r, then q does a rightward broadcast by round

r + 3i.

Combining the results of (Case 1) and (Case 2), we obtain that the speed of

information propagation is at least one segment per three rounds.

The following lemma is useful in determining the time delay of changing the

direction of message propagation on a single line which in turn plays a key role in

determining the speed of message propagation.

Lemma 4.7.5. Let I be an interval of length L+ 2G+ 6muσ on a single line where

no other line intersects it and suppose that every node in I knows message m at some
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time t during phase π. Then,

(a) there exists a leader node that represents a segment in I such that it knows m

and performs a broadcast of “>” or “<>” by the end of phase π + 2, and

(b) there exists a leader node that represents a segment in I such that it knows m

and performs a broadcast of “<” or “<>” by the end of phase π + 2.

Proof. We only prove part (a); part (b) will be analogous. By the density require-

ment, during phase π, there exists a node p in an interval IL of length L that is

centered inside I; the left (resp. right) end of IL and the left (resp. right) end of I

are a distance of G+3muσ apart (see Figure 4.6). Let sπp be the segment where node

p was located at the beginning of phase π. At the beginning of phase π, node p could

be at most a distance of muσ from the left and right end of IL (since the maximum

distance a node can travel during a phase is bounded by muσ) and the leader node

q that represents segment sπp in phase π can be at most G + muσ from the left and

right end of IL since p and q have to be in the same segment at the beginning of

phase π. During phase π, node q can move at most G + 2muσ from the left and

right end of IL which implies that q will be in I all times during phase π. Thus, q

knows m at time t. If node q is scheduled to broadcast after time t within phase π

and performs a broadcast of “>” or “<>”, then we are done. The remaining cases
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we need to consider are:

–(Case 1) Node q performed a broadcast of “<” after time t within π: Consider

phase π + 1. Let sπ+1
p be the segment where node p is located at the beginning of

phase π+1. At the beginning of phase π+1, node p can be at most muσ apart from

the left and right end of IL and the leader node q′ that represents segment sπ+1
p in

phase π + 1 can be at most G+muσ apart from the left and right end of IL. At all

times during phase π, node q′ could have been at most G + 2muσ from the the left

and right end of IL since the maximum distance a node can travel during a phase is

bounded by muσ. Thus, q′ was in I at all times during phase π which implies that

q′ knows m. By Constraint 4.2, node p can be located in either sπp − 1, sπp , or sπp + 1

(sπ+1
p ∈ [sπp − 1, sπp + 1]). Hence, by Observation 4.7.3, q′ performs a broadcast of

“>” in phase π + 1.

–(Case 2) Node q was scheduled to broadcast before time t during phase π: In this

case, node q missed its chance to broadcast m during phase π. Consider phase π+1.

At the beginning of phase π+ 1, there exists a node p′ in interval IL (by the density

requirement). Let sπ+1
p′ be the segment where node p′ is located at the beginning of

phase π + 1. The leader node q1 that represents sπ+1
p′ in phase π + 1 can be located

at most G apart from the left and right end of IL. At all times during phase π, node

q1 could have been at most G + muσ from the left and right end of IL since the

maximum distance a node can travel during a phase is bounded by muσ. Thus, q1

was in I at all times during phase π which implies that q1 knows m. If q1 performs

a broadcast of “>” or “<>” in phase π + 1, then we are done.

The remaining is to consider the case of q1 performing a broadcast of “<” in

phase π + 1. Now, consider phase π + 2. Let sπ+2
p′ be the segment where node p′ is

located at the beginning of phase π + 2. Similar to node p and q′ in (Case 1), at

the beginning of phase π + 2, node p′ can be at most muσ apart from the left and
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right end of IL and the leader node q2 that represents segment sπ+2
p in phase π + 2

can be at most G+muσ apart from the left and right end of IL. At all times during

phase π, node q2 could have been at most G+ 3muσ from the the left and right end

of IL since the maximum distance a node can travel during two phases is bounded

by 2muσ (note that q2 is a leader node at the beginning of phase π + 2). Thus, q2

was in I at all times during phase π which implies that q2 knows m. The rest of the

proof is similar to (Case 1).

The following simple lemma tells us that in an interval of length L+ 2G+ 2muσ

on a single line, there always exists a leader node:

Lemma 4.7.6. Let I be an interval of length L+ 2G+ 2muσ on a single line where

no other line intersects. Then, during each phase π, there exists a leader node q that

remains in I at all times during π.

Proof. Suppose, in contradiction, that no such leader node exists. By the density

requirement, at the beginning phase π, there exists a node p in an interval IL of

length L that is centered inside I; the left (resp. right) end of IL and the left (resp.

right) end of I are a distance of G + muσ apart. Let sp be the segment where p

is located at the beginning of phase π. The leader node q representing segment sp

during phase π can be at most G apart from the left and right end of IL at the

beginning of π since p and q has to be in the same segment at the beginning of π.

Since the distance that a node can move during a phase is bounded by muσ, q can

be at most G+muσ apart from the left and right end of IL during phase π. Hence,

q remains within I at all times during phase π, a contradiction.

Considering message propagation from any source location S to any destination

point D on the road network where there is exactly one line change occurring along
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Figure 4.7: Proof of Lemma 4.7.7.

the shortest path from S to D, we determine the worst case amount of time message

propagation can be delayed due to a line change by comparing it to the case when

that line change has not occurred. Given a node p and a position D on the road

network, we say that node p, positioned at point S on the road network, performs a

well-directed broadcast towards position D on the road network if the direction (“>”,

“<”, or “<>”) of p’s broadcast is in favor of the direction of message propagation

along the shortest path from S to D on the road network.

Lemma 4.7.7. Let S and D be positions on the road network where exactly one line

change occurs along the shortest path from S to D on the road network. Suppose node

p performs a broadcast of message m at point S towards D at time t. Then, message

m reaches point D by time t+ 3u(ddistM(S,D)/Ge+ d(L+ 2G+ 6muσ)/Ge+ 2) +

3u(d(L+ 5G+ 6muσ)/Ge+ 1) + 6mu.

Proof. We prove with the assistance of Figure 4.7. Let `1 and `2 be lines where S

and D lies on, respectively. Also, let X be the point on the road network where `1

and `2 intersect. We divide into two cases depending on the angle α between `1 and

`2:
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–(Case 1) α ≤ π/2 (see Figure 4.7a): Let A be a point on `2 where distE(A,X) =

L + 2G + 6muσ and in between X and D. Note that no other line intersects in

between X and A since the distance between any two intersection point is greater

than L + 2G + 6muσ. We further divide into two cases depending on the distance

between S and X:

—(Case 1a) distE(S,X) ≤ L + 2G + 2muσ: We first show that when p broadcasts

message m at time t, every node in between X and A on `2 receives m. The require-

ment would be to show that the Euclidean distance between S and A is at most R.

distE(S,A) becomes maximum when α = π/2. We can obtain a relationship between

distE(S,A) and R as the following:

(distE(S,A))2

= (distE(X,S))2 + (distE(X,A))2

= (L+ 2G+ 2muσ)2 + (L+ 2G+ 6muσ)2

< (2L+ 3G+ 8muσ)2

≤ R2

Thus, we get distE(S,A) ≤ R.

By Lemma 4.7.5, at most three phases (3mu time) are needed for a leader node q

in between point X and point A that possesses m to perform a rightward broadcast

towards point D.

Let sp be the segment on line `1 where p is located at time t and let E indicate the

location of the endpoint of sp that is closer to S. Now, suppose S and D were on the

same single line. In order to directly apply Lemma 4.7.4, the segment sq on `2 that q

represents should be a segment that is entirely on the path from S to D and at least
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a Manhattan distance of G from E. However, sq might not satisfy these conditions

since the segmentation of `1 and `2 are independent from each other. Consider an

interval IG of length 3G on `2 that is entirely on the path from S to D where the

left endpoint resides on X. Since there is always a segment that is entirely in an

interval of length 2G, there exists a segment s′ of `2 in IG that is entirely on the

path from S to D and at least a Manhattan distance of G from E. Thus, if sq is

a segment that is located on the left of s′, we can apply Lemma 4.7.4 on the single

line by considering a time delay of which s′ being scheduled to perform a rightward

broadcast after q performing a rightward broadcast. This time delay can be at most

3u(d3G/Ge+ 1) = 12u since the speed of message propagation on a single line is one

segment per 3 rounds (by Lemma 4.7.4) and there is at most d3G/Ge+ 1 segments

of `2 that overlap with IG.

If S and D were on the same line, then, by Lemma 4.7.4, the amount of time

required for message m to reach D from S is at most 3u(ddistM(S,D)/Ge+ 1) since

the speed of message propagation on a single line is one segment per 3 rounds (by

Lemma 4.7.4) and there can be at most ddistM(S,D)/Ge+ 1 segments that overlap

with with the path from S to D. Hence, the amount of time required for message m to

reach D from S on the road network is at most 3u(ddistM(S,D)/Ge+1)+3mu+12u.

—(Case 1b) The distance from S to X is greater than L+2G+2muσ: In this case, we

need to consider an additional delay that can be caused by p performing a broadcast

that is not well-directed towards D. Let sp be the segment on line `1 where p is

located at time t and let Ip be an interval of length L + 2G + 6muσ on `1 such

that p is located in Ip at time t and there is no intersection point in Ip. Note that

such Ip exists since the distance between any two intersection points is greater than

L + 2G + 6muσ. When p broadcasts m at time t, all nodes in Ip receives m since

R > L+2G+6muσ by Consttraint 4.3. Now, by applying Lemma 4.7.5, there exists a
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leader node q in Ip that performs a well-directed broadcast towardsD by time t+3mu.

The time delay from q performing a well-directed broadcast to sp being scheduled

to perform a well-directed broadcast is at most 3u(d(L+ 2G+ 6muσ)/Ge+ 1) since

the speed of message propagation on a single line is one segment per 3 rounds (by

Lemma 4.7.4) and there is at most d(L + 2G + 6muσ)/Ge + 1 segments of `1 that

overlap with Ip.

Let I` be an interval of length L+ 2G+ 2muσ that is in between X and S where

one end point lies on X. Message m will make progress of at least one segment per

3 rounds towards the intersection point X (by Lemma 4.7.4) and m will reach a

leader node in I` (there exists a leader node in I` at all times due to Lemma 4.7.6)

which will rebroadcast m at some time t′ such that all nodes in between X and A

receives m at t′. The rest of the proof is similar to (Case 1a). Hence, the amount

of time required for message m to reach D from S on the road network is at most

3u(ddistM(S,D)/Ge+ d(L+ 2G+ 6muσ)/Ge+ 2) + 6mu+ 12u.

–(Case 2) α > π/2 (see Figure 4.7b): Let I` be an interval of length L+ 2G+ 2muσ

such that one end point lies on X and the other end point is at most a distance

of L + 2G + 2muσ apart from S. Let B be a point on `2 where distE(B,X) =

L + 2G + 6muσ and not in between X and D. Similar to (Case 1), all nodes in

between point B and X will receive message m by the broadcast performed by a

node in I` and, by Lemma 4.7.5, at most 3mu time will be needed for a leader node q

in between point X and point A to perform a rightward broadcast towards point D.

Also, similar to (Case 1b), the additional delay of 3mu+3u(d(L+2G+6muσ)/Ge+1)

(which can be caused by p performing a broadcast that is not well-directed towards

D) has to be considered.

Let IG be an interval of length 3G on `2 that is entirely on the path from S to

D where the left endpoint resides on X. Also, let s′ be a segment of `2 that is the
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rightmost segment among all segments that are entirely in IG. Now, suppose S and

D were on the same single line. Similar to (Case 1a), applying Lemma 4.7.4 requires

us to consider an additional time delay of which s′ being scheduled to perform a

rightward broadcast after q performing a rightward broadcast . This time delay can

be at most 3u(d(L + 5G + 6muσ)/Ge + 1) since the speed of message propagation

on a single line is one segment per 3 rounds (by Lemma 4.7.4) and there are at most

d(L+ 5G+ 6muσ)/Ge+ 1 segments of `2 that overlap with the path from B to the

right endpoint of IG. Hence, the amount of time required for message m to reach D

from S on the road network is at most 3u(ddistM(S,D)/Ge+d(L+2G+6muσ)/Ge+

2) + 3u(d(L+ 5G+ 6muσ)/Ge+ 1) + 6mu.

Finally, we determine the worst case amount of time required for a message m

broadcast at point S to reach point D where multiple line changes occur along the

shortest path from S to D on the road network. In this case, we can consider the

shortest path from S to D as a composition of intervals where, in each interval,

exactly one line change occurs. Also, we can consider that among all initial broad-

casts performed in each such intervals, the only broadcast that cannot be well-formed

towards D is the broadcast of m at point S. Hence, we obtain the following theorem:

Theorem 4.7.8. Let S and D be positions on the road network where k line changes

occur along the shortest path from S to D on the road network. Suppose node p

performs a broadcast of message m at point S at time t. Then, message m reaches

D by time t+ 3u(ddistM(S,D)/Ge+ d(L+ 2G+ 6muσ)/Ge+ 2) + 3ku(d(L+ 5G+

6muσ)/Ge+ 1) + 3mu(k + 1).

A lower bound on the speed of message propagation from point S to point D on

the road network can be easily obtained by dividing distM(S,D) with the total time

required for a message propagated at point S to reach point D:
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Corollary 4.7.9. Let S and D be positions on the road network where k line changes

occur along the shortest path from S to D on the road network. Suppose node p

performs a broadcast of message m at point S towards D at time t. Then, the speed

of propagating m from S to D is at least distM(S,D)/(3u(ddistM(S,D)/Ge+ d(L+

2G+ 6muσ)/Ge+ 2) + 3ku(d(L+ 5G+ 6muσ)/Ge+ 1) + 3mu(k + 1)).

4.8 Dynamic Clusters

In this section, we do not assume that the density requirement holds for the

entire road network. Instead, we consider grouping nodes into clusters on a single

line where the density requirement holds within each cluster. In addition, we assume

that nodes move infinitely often and L ≥ G.

Suppose node p lies on line ` at time t. We say that node p is an `-node at t if

there exists a time t′ > t such that (1) for all times during [t, t′], p lies on line ` and

(2) p moves during [t, t′]. Since we have assumed that nodes move infinitely often, a

node that is located at an intersection point of lines `1 and `2 at time t is either an

`1-node or an `2-node but not both.

Similar to [70], we define a cluster as a group of nodes in which the density

requirement holds:

Definition 4.8.1 (L-cluster). At any given time t, an L-cluster is a maximal set

of `-nodes that lie on the same one-dimensional line ` such that if we align the `-

nodes based on their position on line `, then the distance between any two consecutive

`-nodes is at most L.

Note that each L-cluster is defined on a single one-dimensional line. This means

that two nodes that are on different lines cannot be within the same L-cluster even

though they are at most a Manhattan distance of L apart from each other.
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At any given time, we call the nodes that are located at each end of an L-cluster

C as boundary nodes of C. We assume that, for each L-cluster, boundary nodes are

elected as leaders of their corresponding segment at the beginning of each phase.

Again, this could be done by local computation under a condition that every node in

a segment at the beginning of a phase know the trajectory function of one another in

that segment. Also, note that, at the beginning of each phase, two or more boundary

nodes of different L-clusters cannot be in the same segment since we have assumed

that L ≥ G.

We are interested in maintaining neighbor knowledge within an L-cluster C which

is formed as a result of (1) merging two L-clusters C1 and C2 on the same line where

neighbor knowledge was maintained in both C1 and C2 before the merge happened,

or (2) merging an L-cluster C1 and a single node p where, before the merge happened,

neighbor knowledge was maintained in C1 and node p was located on a line that is

different from the line that C1 lies on.

As in [70], we define knowledgeable L-clusters to formalize the above:

Definition 4.8.2 (Knowledgeable L-cluster). An L-cluster C, defined on line ` is

knowledgeable during a time interval if (1) it has the same set of `-nodes at every

instant of time during the time interval, and (2) at the beginning of each phase during

the time interval, every `-node in C knows every other `-node in C that is a distance

of at most R + 2muσ from itself.

Roughly speaking, a knowledgeable L-cluster is a cluster in which the density

requirement holds and neighbor knowledge is maintained.

By applying the same proof technique as in (Case 1) of Lemma 4.6.1, we obtain

the following simple lemma:
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Lemma 4.8.3. Suppose an L-cluster C, defined on line `, has the same set of `-

nodes in every instant of time in [t, t′′] and there exists a phase beginning at time

t′ ∈ [t, t′′] where every `-node in C knows every other `-node in C that is a distance

of at most R + 2muσ from itself. Then, C is knowledgeable during [t′, t′′].

4.8.1 Merging of Two L-clusters on the Same Line

Maintaining neighbor knowledge after merging two L-clusters has been already

discussed in [70]. The analysis given in [70] concentrates on handling the situation

of a boundary leader node not being able to broadcast in a phase (this situation may

occur since not all segments are scheduled to broadcast in a phase). However, it is

missing some details on why a node in one cluster gets to learn about other nodes

in a different cluster before the two clusters merge. We provide a rigorous analysis

that fills in the missing details.

The following simple lemma shows that if two nodes on the same line are a

distance of R − 3G apart, then it takes more than 4mu time for those nodes to

become a distance of L apart from each other.

Lemma 4.8.4. Let p and q be two nodes that are on the same line ` at time t.

Suppose both p and q only move on ` and the distance between p and q at time t is

R− 3G. Then, at time t+ 4mu, the distance between p and q is greater than L.

Proof. The time it takes for p and q to become a distance of L apart when both p
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and q approach each other in maximum speed is (using Constraint 4.3):

(R− 3G− L)/2σ

≥ (2L+ 3G+ 8muσ − 3G− L)/2σ (by Constraint 4.3)

= (L+ 8muσ)/2σ

> 4mu

Hence, the lemma is proven.

If a L-cluster is knowledgeable for a sufficiently long period of time, then each

node in the cluster not only maintains neighbor knowledge but also “gains” neighbor

knowledge within the cluster:

Lemma 4.8.5. Suppose L-cluster C, defined on line `, is knowledgeable from the

beginning of phase π to the beginning of phase π+k for some integer k ≥ 0. And, let

S be the set of `-nodes in C from the beginning of phase π to the beginning of phase

π + k. Then,

(a) at the beginning of phase π + i where i = 0, 1, ..., k, each node p in S knows

every other node in S that is at most a distance of R+i(L+G+2muσ)+2muσ

from itself, and

(b) at any time during phase π + i where i = 0, 1, ..., k, each node p in S knows

every other node in S that is at most a distance of R+ i(L+G+ 2muσ) from

itself.

Proof. We first show that, assuming part (a) holds, part (b) holds. Assume, at the

beginning of phase π + i, node p in S knows every other node in S that is at most a

distance of R+ i(L+G+2muσ)+2muσ apart from itself. Suppose, in contradiction,
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Figure 4.8: Proof of Lemma 4.8.5.

that there exists a node q in S that is at most a distance of R + i(L + G + 2muσ)

from p during phase π + i but does not know p. Since a node can move at most a

distance of muσ in a phase, the distance between p and q at the beginning of phase

π + i can be at most R+ i(L+G+ 2muσ) + 2muσ. Thus, p must have known q at

the beginning of phase π + i, a contradiction.

Now, we prove part (a) by induction on i. The base case (i = 0) immediately

follows from the definition of a knowledgeable L-cluster. For the inductive case, we

assume the lemma holds for phase π + i and we prove it for phase π + i + 1. Let `

be the line where C is defined on. As illustrated in Figure 4.8, consider an interval

Ileader of length L+ 2G+ 2muσ to the right of node p at the beginning of phase π+ i

where the right end interval Ileader is a distance of R−muσ apart from p (considering

Ileader to be at the left of p will be analogous). By Lemma 4.7.6, there exists a leader

node q′ that remains in Ileader during phase π + i. Note that, during phase π + i,

the distance between p and q′ can be at most R. Thus, p receives the broadcast of

q′during phase π + i.

By the inductive hypothesis and by the proof in the previous paragraph, leader

node q′ knows every node that is at most a distance of R+ (L+G+ 2muσ)i to the

right from itself during phase π + i. Let Iright be an interval at the end of phase

π + i such that p is located at the left end of Iright and p knows every node in Iright.
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We consider the worst case movement of p and q′ that minimizes the length of Iright.

The worst case position of p and q by the end of phase π+ i would be p being located

at a point that is a distance of muσ to the right of p’s position at the beginning

of phase π + i (point A in Figure 4.8) and q being located at the left end of Ileader

(point B in Figure 4.8). Since p receives the broadcast of q′ during phase π + i and

by Constraint 4.3, p will know every node that is at most a distance of

2R + (L+G+ 2muσ)i− (L+ 2G+ 4muσ)

≥ R + (L+G+ 2muσ)i+ (L+G+ 4muσ) (by Constraint 4.3)

= R + (L+G+ 2muσ)(i+ 1) + 2muσ

to its right at the end of phase π + i.

The following lemma assists in proving the main theorem of this section (Theorem

4.8.7). It is used when there is a need to determine how much information about an

L-cluster C2 is known by a node p in some other L-cluster C1 during a certain phase.

See the proof of Theorem 4.8.7 for details.

Lemma 4.8.6. Let C be an L-cluster defined on line `. Suppose node p knows every

`-node in C that is a distance of at most X from the left (resp. right) end of C at

the beginning of phase π where X ≥ 2muσ. And, let S be the set of `-nodes in C at

the beginning of phase π. Then, at all times t during phase π, node p knows every

node in S that is a distance of at most X−2muσ from the leftmost (resp. rightmost)

node among the nodes in S at time t.

Proof. Suppose, in contradiction, that, during phase π, there exists a node q that

is in S and is within a distance of X − 2muσ from the leftmost node among the

nodes in S but is not known to p. At the beginning of phase π, the distance between
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the left end of C and node q must have been greater than X because otherwise p

would have already known q. The distance between the left end of C and q becomes

minimal when the left boundary (leader) node q′ of C and q approach each other in

maximum speed during phase π. Even in this case, the distance between the left end

of C and q is always greater than X − 2muσ during phase π since both q and q′ can

move at most a distance of muσ during a phase, a contradiction.

Now, we show the main theorem of this section which tells us that a new L-cluster

C3, which is formed by merging two knowledgeable L-clusters C1 and C2, becomes

knowledgeable if C1 and C2 were sufficiently far apart before they merged:

Theorem 4.8.7. Let t′′, t, and t′ be times such that t′′ < t < t′. Suppose C3 is a

L-cluster on line ` that has the same set of `-nodes in every instant of time during

[t, t′]. Also, suppose that the `-nodes in C3 are partitioned into sets S1 and S2 during

[t′′, t) such that all nodes in S1 form a L-cluster C1 on ` and all nodes in S2 form a

L-cluster C2 on ` during [t′′, t). Without loss of generality, let C1 be located to the

left of C2 on `. If (1) C1 and C2 are both knowledgeable in [t′′, t) and (2) the distance

between the right end of C1 and the left end of C2 at time t′′ is at least R− 3G, then

C3 is knowledgeable in [t, t′].

Proof. Let tπ be the most recent time when a phase begins that is strictly less than

time t, and let π be the phase that begins at time tπ. We only need to show that, at

the beginning of phase π+ 1, every node in C3 knows every other node in C3 that is

at most a distance of R + 2muσ from itself; Lemma 4.8.3 will take care of the rest

of the phase beginnings after phase π + 1.

Since two clusters C1 and C2 were at least a distance of R− 3G apart at time t′′,

applying Lemma 4.8.4 yields t− t′′ > 4mu which in turn implies that, during [t′′, t],

there exists at least four phase beginnings. So, from the beginning of phase π− 3 to
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the beginning of phase π, both C1 and C2 were knowledgeable and, by Lemma 4.8.5,

we obtain that for all i = 0, ..., 3, (1) at the beginning of phase π − i, every node in

C1 (resp. C2) knows every other nodes in C1 (resp. C2) that is at most a distance

of R+ (L+G+ 2muσ)(3− i) + 2muσ from itself, and (2) at any time during phase

π − i, every node in C1 (resp. C2) knows every other nodes in C1 (resp. C2) that

is at most a distance of R + (L + G + 2muσ)(3− i) from itself. This shows that at

the beginning of phase π + 1, every node that is in S1 (resp. S2) knows every other

node that is in S1 (resp. S2) that is at most a distance of R + 3(L + G + 2muσ)

(> R + 2muσ) from itself.

It remains to show that, at the beginning of phase π+ 1, every node that is in S1

(resp. S2) knows every other node that is in S2 (resp. S1) that is at most a distance

of R + 2muσ from itself. Let p be a node in S1 (considering the case of p being in

S2 will be analogous). We denote the right boundary node of C1 at the beginning of

phase π as pπ and the left boundary node of C2 at the beginning of phase π as qπ.

Let X be the distance between p and pπ at the beginning of phase π. Depending on

the value of X, we divide into several cases:

–(Case 1) X ≤ R − L− 4muσ: We first show that p receives qπ’s broadcast during

phase π. At the beginning of π, the distance between pπ and qπ can be at most

L+ 2muσ. And, during phase π, both p and qπ can move at most a distance of muσ

away from each other. Thus, during phase π, the distance between p and qπ can be

at most R which implies that p receives qπ’s broadcast.

Now, we show that the information contained in qπ’s broadcast message is suffi-

cient enough for p to maintain neighbor knowledge. We already know that, during

phase π, qπ knows every node in S2 that is within a distance of R+3(L+G+2muσ)

from itself. Since p receives qπ’s broadcast during phase π, p will know, at the begin-

ning of phase π+1, every node in S2 that is within a distance of R+3(L+G+2muσ)
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Figure 4.9: Proof of Theorem 4.8.7 (Case 1).

from the leftmost node that is in S2. In worst case, qπ itself, at the beginning of

phase π+ 1, can still be the leftmost node in S2 by moving a distance of muσ to the

left during phase π, and node p could move a distance of muσ to the right causing qπ

to be located on the left of p and the distance between qπ and p to be at most 2muσ.

Even in this worst case, p will know every node in S2 that is within a distance of

R+ 3(L+G+ 2muσ)− 2muσ (> R+ 2muσ) to its right at the beginning of phase

π + 1 (see Figure 4.9). Hence, the lemma holds for (Case 1).

–(Case 2) R − L− 4muσ < X ≤ R − 2muσ : We first show that pπ receives qπ−1’s

broadcast during phase π−1. At the beginning of phase π−1, the distance between

pπ and pπ−1 can be at most 2muσ because otherwise pπ−1 will be located to the

right of pπ at the beginning of phase π. Also, at the beginning of phase π − 1, the

distance between pπ−1 and qπ−1 can be at most L+ 4muσ since a node in C1 and a

node in C2 becomes within a distance of L from each other for the first time during

phase π (the two nodes that first became within a distance of L from each other

during phase π can both move at most a distance of 2muσ away from each other

in two phases). Since both pπ and qπ−1 can move at most a distance of muσ away

from each other during phase π − 1, the distance between pπ and qπ−1 can be at

most L + 8muσ which is less than R by Constraint 4.3. Hence, pπ receives qπ−1’s

broadcast during phase π − 1. Note that, by Lemma 4.8.5, qπ−1 knows every node
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in S2 that is within a distance of R+ 2(L+G+ 2muσ) from the left end of C2 at all

times during phase π− 1 and as a result pπ knows every node in C2 that is within a

distance of R + 2(L+G+ 2muσ) from the left end of C2 at the beginning of phase

π.

The maximum distance between p and pπ is R− 2muσ at the beginning of phase

π. Both p and pπ can move at most a distance of muσ away from each other during

phase π. Thus, the distance between p and pπ can be at most a distance of R apart

from each other during phase π which implies that p receives pπ’s broadcast during

phase π. This means that p can receive qπ−1’s broadcast message indirectly through

pπ. Since pπ knows every node in C2 that is within a distance of R+2(L+G+2muσ)

from the left end of C2 at the beginning of phase π, Lemma 4.8.6 tells us that, at

all times t during phases π, pπ knows every node in S2 that is a distance of at most

R+ 2(L+G+ 2muσ)− 2muσ from the leftmost node in S at time t. Hence, p will

know every node in S2 that is within a distance of R + 2(L + G + 2muσ) − 2muσ

from the leftmost node in S2 at the beginning of phase π + 1 since p receives pπ’s

broadcast during phase π.

In worst case, node p can move at most a distance of muσ to its right during

phase π. Also, in worst case, pπ can still be the rightmost node in S1 and move a

distance of at most muσ to its right, and similarly qπ can still be the leftmost node

in S2 and move a distance of at most muσ during phase π. This may cause qπ to be

located on the left of pπ and the distance between qπ and pπ to be at most 2muσ in

worst case. So, at the beginning of phase π + 1, node p is located on the left of the

leftmost node in S2 (which is qπ in this case) and the distance between p and the

leftmost node in S2 is at least R − L − 7muσ > 0 (See Figure 4.10). Since node p

knows every node in S2 that is at most a distance of R+ 2(L+G+ 2muσ)− 2muσ

(> R + 2muσ) from the left most node in S2 at the beginning of phase π + 1 and p
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Figure 4.10: Proof of Theorem 4.8.7 (Case 2).

is located strictly left to the leftmost node in S2, the lemma holds for (Case 2).

–(Case 3) R− 2muσ < X ≤ R + 4muσ : By a similar argument as in (Case 2), the

distance between node between pπ−1 and qπ−2 is at most L+10muσ. By Constraints

4.2 and 4.3, we get L+ 10muσ < R. Hence, pπ−1 receives qπ−2’s broadcast message

during phase π − 2. Since, by Lemma 4.8.5, qπ−2 knows every node in S2 that is

within a distance of R + L + G + 2muσ from from the left end of C2 at all times

during phase π − 1, node pπ−1 knows every node in S2 that is within a distance of

R + L+G+ 2muσ from the left end of C2 at the beginning of phase π.

At the beginning of phase π, consider an interval Ileader of length L + 2G where

the left end point of Ileader is a distance of R−2muσ to the left of pπ (see Figure 4.11).

Since the density requirement holds for C1, there exists a leader node p′ in Ileader at

the beginning of phase π. We show that p′ receives pπ−1’s broadcast message during
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Figure 4.11: Proof of Theorem 4.8.7 (Case 3).

phase π − 1. Since pπ is the right boundary node of C1 at the beginning of phase

π, either pπ−1 = pπ or pπ−1 is located on the left of pπ at the beginning of phase π.

Also, the distance between pπ and pπ−1 should be at most 2muσ at the beginning of

phase π because otherwise pπ−1 could not have been positioned on the right of pπ at

the beginning of phase π − 1. So, the distance between p′ and pπ−1 can be at most

R during phase π− 1 since the distance between p′ and pπ−1 is at most R− 2muσ at

the beginning of phase π and both p′ and pπ−1 can move at most a distance of muσ

in a phase. Hence, p′ receives pπ−1’s broadcast during phase π− 1. This implies that

p′ receives qπ−2’s broadcast message indirectly through pπ−1.

The distance between p and p′ can be at most L+ 2G+ 6muσ at the beginning

of phase π. Since both p and p′ can move at most a distance of muσ, the distance

between p and p′ during phase π can be at most L+2G+8muσ. By Constraint 4.3, we

get L+ 2G+ 8muσ < R. Hence, p receives the broadcast message of p′ during phase

π. This implies that p receives qπ−2’s broadcast message indirectly through pπ−1 and

p′. By inductively applying Lemma 4.8.6, we obtain that node pπ−1 knows every node

in S2 that is within a distance of R+L+G− 2muσ (=R+L+G+ 2muσ− 4muσ)

from the leftmost node in S2 at the beginning of phase π + 1.

Similar to (Case 2), node p can move at most a distance of muσ to its right

during phase π in worst case. Also, in worst case, pπ can still be the rightmost node
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in S1 and move a distance of at most muσ to its right, and similarly qπ can still be

the leftmost node in S2 and move a distance of at most muσ during phase π. This

may cause qπ to be located on the left of pπ and the distance between qπ and pπ

to be at most 2muσ in worst case. So, at the beginning of phase π + 1, node p is

located on the left of the left most in S2 and the distance between p and the leftmost

node in S2 is at least R − 5muσ > 0. It is required for p to only know every node

in S2 that is at most a distance of 7muσ (= R + 2muσ − (R − 5muσ)) from the

leftmost node in S2 at the beginning of phase π + 1. By Constraints 4.2 and 4.3, we

get 7muσ < R + L+G− 2muσ. Hence, the lemma holds for (Case 3).

–(Case 4) X > R+4muσ : In this case, the distance between node p and the leftmost

node in S2 at the beginning of phase π+ 1 is greater than R+ 2muσ since nodes can

only move at most a distance of muσ during a phase. Hence, during phase π, there

is no need for p to learn nodes in S2.

4.8.2 Merging of an L-cluster and a Single Node on a Different Line

Since we consider a two-dimensional road network, nodes on line `1 can merge

into an L-cluster on line `2 through the intersection of `1 and `2. In this section,

we show how an L-cluster maintains neighbor knowledge even after a single node

merges into it through an intersection:

Theorem 4.8.8. Let t′′, t, and t′ be times such that t′′ < t < t′. Suppose C3 is a

L-cluster on line `1 that has the same set of `1-nodes in every instant of time during

[t, t′]. Also, suppose that the `1-nodes in C3 are partitioned into a set S1 and a single

node p during [t′′, t) such that all nodes in S1 form a L-cluster C1 on `1 during [t′′, t)

and node p is an `2-node in a L-cluster C2 on line `2 during [t′′, t) where `1 6= `2. If

(1) C1 and C2 are knowledgeable in [t′′, t) and (2) the Manhattan distance between

node p and the intersection of `1 and `2 at time t′′ is at least R − 3G− 5muσ, then
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C3 is knowledgeable in [t, t′].

Proof. Let tπ be the most recent time when a phase begins that is strictly less than

time t, and let π be the phase that begins at time tπ. Same as in the proof of

Theorem 4.8.7, we only need to show that, at the beginning of phase π + 1, every

node in C2 knows every other node in C2 that is at most a distance of R + 2muσ

apart from itself (applying Lemma 4.8.3 afterwards proves the theorem).

Since node p was at least a Manhattan distance of R − 3G − 5muσ apart from

the intersection point of lines `1 and `2 at time t′′, the difference between t and t′′ is:

(R− 3G− 5muσ)/σ

≥ (2L+ 3G+ 8muσ − 3G− 4muσ)/σ (by Constraint 4.3)

> 3muσ.

Thus, there are at least three phase beginnings during [t′′, t).

By the definition of a L-cluster, at time t, there exists a node q in S1 where

the distance between p and q is at most L. Let qπ and qπ−1 be leader nodes of the

segment where q was in at the beginning of phase π and π − 1, respectively.

We first show that p knows every node in S1 that is at most a distance of R+2muσ

from itself at the beginning of phase π+1. At the beginning of phase π, the distance

between node q and qπ can be at most G since they must be in the same segment.

During phase π, both q and qπ can move at most a distance of muσ. So, the

distance between q and qπ can be at most G + 2muσ during phase π. Since the

distance between p and q is at most L at some time (time t) during phase π, the

Manhattan distance between p and q during phase π can be at most L + 2muσ.

Hence, the Manhattan distance between p and qπ during phase π can be at most

L+G+ 4muσ which implies that p receives qπ’s broadcast message during phase π
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(since L+G+ 4muσ < R by Constraint 4.3). By Lemma 4.8.5, node qπ knows every

node in S1 that is at most a distance of R+2(L+G+2muσ)+2muσ from itself at the

beginning of phase π and, since p receives q′πs broadcast message during phase π, p

will know every node in S1 that is at most a distance of R+2(L+G+2muσ) from node

qπ at all times during phase π. Hence, p will know every node within a distance of

R+2muσ at the beginning of phase π+1 since R+2(L+G+2muσ)−(L+G+4muσ) >

R + 2muσ (by Constraint 4.2 and the assumption of L ≥ G).

The remaining is to show that, at the beginning of phase π + 1, every node q′ in

S1 that is at most a distance of R + 2muσ from node p knows p. Let pπ−2 be the

leader node of the segment where node p was in at the beginning of phase π − 2.

Since L-cluster C2 is knowledgeable at the beginning of phase π−2 and L ≥ G, node

pπ−2 knows p at the beginning of phase π − 2. We show that qπ−1 receives pπ−2’s

broadcast message during phase π−2. Since the Manhattan distance between nodes

p and q becomes at most L at some time (time t) during phase π, the Manhattan

distance between p and q can be at most L+ 6muσ during phase π − 2 (a node can

move at most a distance of 3muσ during three phases). The distance between nodes

p and pπ−2 can be at most G+ 2muσ during phase π − 2 since p and pπ−2 is in the

same segment at the beginning of phase π − 2. The distance between nodes q and

qπ−1 can be at most G + 2muσ during phase π − 2 since q and qπ−1 is in the same

segment at the beginning of phase π− 1. Hence, during phase π− 2, the Manhattan

distance between pπ−2 and qπ−1 can be at most L+ 2G+ 10muσ < R (by Constraint

4.2, Constraint 4.3, and the assumption of L ≥ G) which implies that qπ−1 receives

pπ−2’s broadcast message and gets to know p during phase π − 2.

Since nodes q and qπ−1 are in the same segment at the beginning of phase π− 1,

the distance between q and qπ−1 can be at most G+ 2muσ during phase π−1. Node

qπ−1 is a leader node which broadcasts during phase π − 1. Hence, at the beginning
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of phase π, every node that is at most a distance of R−G− 2muσ apart from node

q will know p by receiving qπ−1’s broadcast message.

Consider an interval Ileader of length L+ 2G on line `1 at the beginning of phase

π where (1) it is located on the right of node q (considering the case of Ileader being

located on the left of q will be analogous) and (2) the distance between q and the

right end of Ileader is R − G − 2muσ (See Figure 4.12a). Suppose, at the beginning

of phase π, the distance between q and the rightmost node in S1 is greater than

R −G− 2muσ (otherwise, every node in S1 that is located on the right of q at the

beginning of phase π already knows p). Then, since the density requirement holds in

C1 at the beginning of phase π, there exists a leader node q′ in Ileader at the beginning

of phase π. Also, node q′ knows p since it is at most a distance of R − G − 2muσ

apart from q at the beginning of phase π. We consider the worst case movement of

q and q′ during phase π such that the least number of nodes located on the right

of q learns about p. The worst case movement will be node q moving a distance

of muσ to its right and node q′, which is located at the right end of Ileader at the

beginning of phase π, moving a distance of muσ to its left during phase π. Note that

q′ broadcasts during phase π since it is a leader node (See Figure 4.12b). Hence, at

the beginning of phase π + 1, every node that is at most a distance of

R−G− 2muσ − (L+ 2G+ 2muσ) +R

= 2R− L− 3G− 4muσ

≥ R− L− 3G− 4muσ + (2L+ 3G+ 8muσ) (by Constraint 4.3)

= R + L+ 4muσ

from q knows p.

We already know that the distance between node p and q at the beginning of phase
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Figure 4.12: Proof of Theorem 4.8.8.

π+ 1 can be at most L+ 2muσ. Since (R+L+ 4muσ)− (L+ 2muσ) = R+ 2muσ,

every node in S1 that is at most a distance of R+ 2muσ from p at the beginning of

phase π + 1 knows p. Hence, the Theorem is proven.

4.9 Discussion

In this section, we address the issue of obtaining initial neighbor knowledge,

and discuss how to relax the assumption that every node knows its entire future

trajectory. We also discuss practical values for the parameters.

Up till now we have focused on maintaining neighbor knowledge as nodes move

in and out of each other’s broadcast range. If nodes possess some amount of neighbor

knowledge initially, then our solution allows nodes to keep this knowledge up-to-date.

Specifically, we have assumed that when nodes wake up initially, they already possess

138



knowledge about other nodes that are within a Manhattan distance of R + 2muσ.

In this section we address a special case of this problem of gaining initial knowledge.

We use the gossiping (all-to-all communication) algorithm in [30] as a black box.

For simplicity, we consider the case of the one-dimensional line. We assume that

nodes start up at the same time and remain within their original segment for some

period of time which we call the initialization phase. We also assume that there is

an upper bound v on the number of nodes present within one segment during the

initialization phase and this upper bound is known to all nodes. This is because the

algorithm given in [30] requires that all nodes know the linear upper bound on the

number of nodes participating in the algorithm. Note that v may be much smaller

than the total number of nodes in the entire network, which is n (v << n). Note

also that the nodes within one segment form a clique, since they are all within each

other’s broadcast range.

The initialization phase is divided into two parts. The first part is further divided

into a total of m periods. During period i, we run an initialization protocol in

segments of color i, while nodes in other segments listen. This initialization protocol

is based on the algorithm for gossip in undirected graphs with unknown topology

presented in [30]. This algorithm requires O(v log2 v log2 n) time slots. Hence, each

of the m periods in the first part of the initialization phase has O(v log2 v log2 n)

time slots. This algorithm performs gossiping in graphs with arbitrary topologies.

Therefore, it may be used for a clique, which is the topology formed by nodes in one

segment. Nodes also do not require collision detection capabilities or any previous

knowledge of the neighborhood in order to run this algorithm. Furthermore, it is

assumed in [30] that node ids come from a domain of size n and the actual number

of nodes participating in the algorithm may be smaller than n. This assumption fits

in with our model since there can be at most v nodes in one segment participating
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in one period and v << n.

In period i of part one of the initialization phase, nodes in segments of color i

run this gossiping algorithm from [30] and collect each other’s ids and trajectories.

Note that while the nodes of a certain segment (say s) run the algorithm, nodes in

neighboring segments which are contained within distance R − G of s successfully

receive the transmissions by the nodes in segment s. Hence, after m periods, all

nodes have received the ids and trajectories of nodes in segments contained within

distance R − G of their own segment. However, we require knowledge about nodes

within a distance of R+ 2muσ. This can be easily achieved in the second part of the

initialization phase. This part of the initialization phase is divided into two cycles.

Each cycle consists of m time slots. During time slot i of both cycles, a leader node

from each segment of color i simply transmits its entire id and trajectory list. The

leader node is the node with the smallest id in the segment.

In order to see why this achieves the desired initial knowledge consider the fol-

lowing. The exact number of segments entirely contained within distance R − G

of a segment is given by b(R − G)/Gc. Consider a segment s as shown in Figure

4.13. After part one all nodes in s know the ids and trajectories of all other nodes

in segments within distance (b(R − G)/Gc)G. Consider an interval Ileader of length

L + 2G that is located on the right side of s (analogous arguments hold for the left

side of s) where the distance between the left end of s and the right end of Ileader

is R. Due to the density assumption, during the initialization phase it is guaran-

teed that there is at least one leader node present in Ileader. In the worst case this

leader node may remain at the left end of Ileader for the entire duration of the ini-

tialization phase. When this leader node broadcasts in its time slot during cycle one

of part two, it will broadcast the ids and trajectories of all nodes within distance

(b(R−G)/Gc)G of its segment, which it has collected during part one. All nodes in
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Figure 4.13: Part two of the initialization phase.

segment s will receive the leader node’s broadcast successfully since the leader node

is within distance R of all nodes in s. Therefore, by the end of cycle one of part two

all nodes in s will know the ids and trajectories of all other nodes within distance

Dcycle1 = R−G− (L+ 2G) + (b(R−G)/Gc)G.

Now, in cycle two the same leader node (which stays in its original segment

during the entire initialization phase) transmits the ids and trajectories of nodes

within Dcycle1 of itself, which it has learnt during cycle one. Therefore, by the end

of cycle two of part two all nodes in s will know the ids and trajectories of all other

nodes within distance R − L− 3G + Dcycle1. Assume that L ≥ G as in Section 4.8.

Then we have the following:

R− L− 3G+Dcycle1

= R− L− 3G+ (R− L− 3G+ (b(R−G)/Gc)G)

≥ 2R− 2L− 6G+ ((R−G)/G− 1)G

= 3R− 2L− 8G

≥ R− 2L− 8G+ 2(2L+ 3G+ 8muσ) (by Constraint 4.3)

> R + 2muσ. (since L ≥ G)
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Hence, by the end of part two of the initialization phase all nodes in s will know the

ids and trajectories of all other nodes within distance R + 2muσ.

The challenging part of gaining initial knowledge is that the total number of

unique ids present in the entire network may be very large, and only a few of these

ids belong to nodes in one segment (recall that v << n). Learning about which of

these ids belong to neighbors deterministically, without collision detection, may take

a long time. However, the above protocol is deterministic and efficient, since it is sub-

quadratic in the maximum number of nodes in one segment and only polylogarithmic

in the total number of unique ids that may be present in the entire network.

Another important assumption that we have made is that nodes initially know

their entire future trajectory. Instead of having such a strong assumption, in each

round, the time slots that are not being used by our solution may be used for an

intra-segment communication protocol, so that nodes may transmit their trajectory

information to the current leader of the segment periodically. Hence, it may be

sufficient for nodes to know their trajectories for only a short interval of time in the

future. Such an intra-segment communication protocol may require an upper bound

on the number of nodes that can occupy a segment at a particular instant of time.

This is because only a limited number of time slots will be available in each round.

It is not hard to find practical values for the parameters that satisfy all constraints:

We let R and R′ to be 250 meters and 550 meters, respectively, which are typical

values for IEEE 802.11 ([29, 56]). Let one time slot duration be 600 microseconds

which is slightly greater than the GSM (Global System for Mobile Communications)

time slot duration 577 microseconds [1]. Also, let G = 40 meters, m = 30 colors, and

u = 6 milliseconds which corresponds to 10 time slots. Then, we can allow the upper

bound on the node speed to be σ < 108 kilometers/hour and the density parameter

to be L = 40 meters.
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5. NEIGHBOR DETECTION IN WIRELESS NETWORKS WITH

ARBITRARY MOTION

In this section, we provide a solution for each mobile node to keep track of its

dynamically changing set of neighbors with which it can perform reliable point-to-

point communication. Our solution tolerates arbitrary motion of the nodes as long

as there is an upper bound on the speed, allows unsynchronized clocks subject to

a bounded drift rate, and does not require any knowledge about the nodes’ future

locations. In addition, we use the abstract MAC layer [45] to provide reliable com-

munication between neighboring nodes. The abstract MAC layer (AML) takes care

of lower layer contention management and provides reliable broadcast with bounded

message delay. This means that by using the AML, we can focus on the algorithmic

aspects of the services provided on top of the AML; not worrying about scheduling

wireless transmissions. We use the reliable broadcast property of the abstract MAC

layer to provide reliable point-to-point communication where for each message there

exists a specific destination.

We introduce a neighbor detection algorithm that utilizes periodic hello messages

considering bounded clock drift. In our algorithm, two nodes do not become neigh-

bors simply because they are within each other’s communication radius. Instead, a

node pi considers some other node pj as its neighbor when it is ensured that an ap-

plication message sent from pi will be received by pj. The condition that two nodes

become neighbors depends on the message delay bounds (provided by the AML),

communication radius, hello period, and the maximum speed of a node. The key

strategy that our algorithm uses is the following: when nodes pi and pj are close

enough and pi receives pj’s hello message, then pi sets a deadline of being neighbors

143



with pj; if pi and pj remain close enough to each other as time goes on, then this

deadline is extended. More specifically, when nodes pi and pj are close enough and

pi considers node pj as its neighbor by receiving a hello message generated by pj,

then the deadline of pj being pi’s neighbor is set such that the next hello message

generated by pj is received by pi before the deadline is reached. This is to allow

pi to continue to consider pj as its neighbor by extending the deadline if pj is still

close enough to pi. The algorithm also provides a way for pj to consider pi as its

neighbor by letting pj to refer to the deadline already calculated by pi: If pi was

already considering pj as its neighbor, then pj may receive a hello message from pi,

which contains the amount of time left to reach pi’s deadline of considering pj as its

neighbor. At this point, node pj can estimate pi’s deadline and then calculate its

deadline of considering pi as its neighbor based on this estimation.

5.1 Challenges

The main challenges in obtaining the above mentioned deadlines are as follows:

• Since we use periodic hello messages, hello messages should be generated and

broadcast (sent to the AML) at the right time but, at the same time, we have

to handshake with the AML.

• Since hello messages are control messages that must be generated and broadcast

(sent to the AML) at the right time, they can interfere with regular application

message broadcasts (application message broadcasts can be blocked by hello

message broadcasts).

• Since we consider bounded clock drift, different nodes may have different hello

periods when measured in real time.

Our algorithm overcomes the above challenges in providing neighbor detection

with reliable point-to-point communication.
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5.2 Related Work.

Cornejo et al. [19] consider the use of abstract MAC layer for neighbor detection.

In their approach, the geographic space is divided into regions. Also, each node

knows its trajectory information up to the near future such that it can correctly join

or leave a region by notifying other neighboring nodes that it is planning to join

or leave the region. Similar to [19], our approach utilize the abstract MAC layer,

however, we do not require region information nor trajectory information. Instead,

we require periodic hello messages and each node knowing its correct location.

An ALOHA-like neighbor discovery algorithm is presented in [72]. The authors

further extend this algorithm by relaxing clock requirements, allowing different node

wake up times, not knowing the total number of nodes in the system, and adding

collision detection capability. The analysis of their algorithm is based on all nodes

forming a complete graph. In our approach, there is absolutely no restriction on the

network topology.

Liu [48] considers neighbor discovery in an environment where malicious nodes

can deceive benign nodes. The solution is based on nodes realizing tentative neigh-

bors and then using a neighbor validation function to see if they are truly neighbors.

Even though node deployment is not restricted to a certain network topology, the

paper considers the case of nodes being static after deployment. In our approach,

nodes are mobile and there is no restriction on the movement of nodes. However, we

do not consider malicious failures.

Neighbor discovery in multi-channel radio networks is discussed in [42] and [43].

Depending on each node’s id (to determine the assigned synchronous time slot)

and channel availability, a schedule for wireless transmission is determined. In our

approach, we delegate such scheduling to the abstract MAC layer and we do not
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require the clocks to be synchronized.

5.3 System Model

We consider a collection of mobile nodes sending and receiving messages among

each other by means of wireless broadcasts. We assume that each node has a unique

id, knows its own fixed communication radius (the communication radius can be

different for different nodes), and knows the maximum speed (denoted as σ) that

any node can move in the system.

Each node’s clock may not run at the same rate, however, clock drift is upper

bounded by ρ (0 ≤ ρ < 1) with respect to real time: if ∆ real time elapses, then the

amount of clock time that elapses is at most (1 + ρ)∆ and at least (1 − ρ)∆. We

further assume that the value of ρ is known to all nodes in the system. We do not

assume that the clocks are synchronized.

We further assume that nodes are correct, do not crash, and have equipment that

lets them know their correct location at any time. We also consider that the local

processing time at each node is 0.

Each node is organized with three layers (see Figure 5.1). The three layers are

described next.

The abstract MAC layer (AML) ensures reliable message delivery despite con-

tention. It also provides maximum message delay bounds for upper layers to utilize.

We assume that message delay bounds, F+
rcv and F+

ack from the abstract MAC layer,

are known to all nodes in the system where F+
rcv indicates the maximum message

delay for a node to receive a message (by rcv(m) in Figure 5.1) from another node

within communication radius and F+
ack indicates the maximum delay of a node receiv-

ing an acknowledgement (by ack(m) in Figure 5.1) for a message that it transmitted.

Typically, F+
ack ≥ F+

rcv (this is also assumed throughout Section 5). In order to utilize

146



Application Layer

Neighbor Detection &
Point-to-Point Communication

Layer

Abstract MAC Layer

Network

a
p
p
S

n
d
(m

)

a
p
p
R

cv
(m

)

L
U

(j
)

L
H

U
(j

)

L
D

(j
)

bc
a
st

(m
)

rc
v
(m

)

a
ck

(m
)

ti
m

e

lo
ca

ti
on

Figure 5.1: Layers of a node.
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message delay bounds, upper layers must follow the well-formedness condition of the

AML: a message should not be sent to the AML (bcast(m) in Figure 5.1) unless an

acknowledgement of the previous message (ack(m) in Figure 5.1) has been returned

by the AML.

The neighbor detection & point-to-point communication layer (ND/P2P) is re-

sponsible for detecting neighboring nodes and notifying applications about the the

current status (link up, link down, etc.) of neighboring nodes. As seen in Figure

5.1, notifications are through LU(j) (link up), LD(j) (link down), and LHU(j) (link

half-up). LU(j) occurring at node pi indicates that a communication link has been

established between pi and pj such that applications of pi can send/receive messages

to/from applications of pj. LHU(j) occurring at node pi indicates that a commu-

nication link has been established between pi and pj such that applications of pi

can receive messages from applications of pj but cannot send messages to pj. And

finally, LD(j) occurs at node pi indicates that applications of pi cannot send/receive

messages to/from applications of pj. We refer to LU(j), LHU(j), and LD(j) as

link state events. When LU(j) (resp. LHU(j); LD(j)) is the most recent link state

event, we say that the link state is link up (resp. link half-up; link down). Further-

more, the ND/P2P layer is responsible for sending application messages to the AML.

In order to conform with the well-formedness condition of the AML, the ND/P2P

layer includes a k-bounded send buffer where each message sent by the application

layer (appSnd(m) in Figure 5.1) is stored and sent to the AML one-by-one. Upon

receiving an application message (generated by a different node) from the AML (by

rcv(m) in Figure 5.1), the ND/P2P layer is also responsible for sending the received

message to the application layer (by appRcv(m) in Figure 5.1).

The application layer models the set of applications that utilize the notifications

provided by the ND/P2P layer (LU(j), LHU(j), and LD(j) in Figure 5.1) and also
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sends/receives messages to/from the ND/P2P layer (appSnd(m) and appRcv(m) in

Figure 5.1). We assume that the set of applications in the application layer at node

pi do not send messages to node pj if the most recent link state event with respect

to pj is not LU(j). For simplicity, we also assume that the set of applications in the

application layer send messages to the ND/P2P layer at a rate that does not overflow

the k-bounded send buffer. This assumption can be implemented by a hand-shaking

mechanism between the applications and the ND/P2P layer.

An execution γ is a sequence of events happening in the system where the events

are either application events (appSnd(m) and appRcv(m) in Figure 5.1), link state

events (LU(j), LHU(j), and LD(j) in Figure 5.1), abstract MAC layer events

(bcast(m), rcv(m), and ack(m) in Figure 5.1), or internal events (timers expiring

at each nodes). Each event in γ is associated with the real time at which it occurs.

Additional constraints on the execution, that are related to the problem of neighbor

detection, will be given in Section 5.4.

5.4 The Problem Specification

Let LSti (j) refer to the most recent link state event occurring at node pi with

respect to node pj at or before time t. LSti (j) can be either LU (link up), LHU (link

half up), or LD (link down).

For any execution γ of the system, we require the following constraints on γ:

• (Usability) An application send (appSnd(m) in Figure 5.1) should not occur

unless the current link state is LU and an application receive (appRcv(m) in

Figure 5.1) should not occur if the current link state is LD.

• (Validity) For all real times t, if LSti (j) = LU , then pi and pj are within each

other’s communication radius at time t.

• (Well-formedness) For all real times t and t′ where t < t′, suppose LSti (j) =
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LU and LSt
′
i (j) = LD. Then there exists a real time t′′ ∈ (t, t′) such that

LSt
′′
i (j) = LHU ; The link state does not change directly from LU to LD.

• (Progress) There exists positive reals xp, α
′
p, and α′′p where α′p ≤ α′′p such that,

for every real αp ≥ 0, if the distance between two nodes pi and pj is at most

xp for a time duration of [t, t+αp] (in real time), then both LSt
′
i (j) = LU and

LSt
′
j (i) = LU for all times t′ ∈ [t + α′p, t + αp + α′′p] (in real time); Roughly

speaking, this property says that if two nodes pi and pj stays close enough with

each other, then there is a time in the near future where both pi and pj will be

link up with each other.

• (Reliable Delivery) Each application send has a subsequent matching applica-

tion receive and each application receive has exactly one preceding application

send.

5.5 The Neighbor Detection Algorithm

We consider an algorithm where periodic hello messages are utilized in establish-

ing communication links. The algorithm uses two parameters, h and b (in addition

to ρ, σ, F+
rcv, and F+

ack), which we explain next. We assume that the value of the

hello period duration h in clock time is known to all nodes in the system. We select

the hello period h to satisfy h ≥ (b+ 2)F+
ack · 1+ρ

1−ρ where b is a parameter which indi-

cates the maximum number of application message broadcasts to the AML that we

want to allow during a hello period considering each broadcast taking F+
ack amount

of real time. Each hello message of node pi consists of the following five fields: 1)

id : node id of pi; 2) location : pi’s location when the hello message is generated;

3) radius : communication radius of pi; 4) neighbors : pi’s current neighbor set

(all nodes pj where LSi(j) is either LU or LHU); 5) remaining : an array where

remaining[j] indicates the amount of local clock time left until reaching the time
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that the applications of pi should stop sending messages to node pj.

To allow hello messages to be sent to the AML every h local time units while

satisfying the well-formedness condition of the AML, we disallow application mes-

sages to be sent to the AML in the local time duration of [t − (1 + ρ)F+
ack, t] where

t is each local time the hello message is scheduled to be sent to the AML (note that

the amount of local time (1 + ρ)F+
ack in real time is always greater than or equal

to the amount of real time F+
ack). We call this time duration the pre-hello interval.

Note that since we are assuming clock drift, nodes may generate hello messages at

different times (in real time).

For our algorithm, we assume that kF+
ack ≥ h/(1 + ρ). We also assume the

following functions for our algorithm:nd:

• Loc(): returns the current location; provided by the GPS.

• LC() : returns the current local clock time.

• closeEnough(loc1, rad1, loc2, rad2) : returns true iff the following formula is

satisfied :

dist(loc1, loc2) + 2σ((h/(1− ρ) + F+
rcv + 2d kF+

ack

h/(1+ρ)
eF+

ack) · 1+ρ
1−ρ + kF+

ack + F+
rcv) ≤

min(rad1, rad2) where function dist(φ1, φ2) returns the Euclidean distance be-

tween location φ1 and φ2.

– 2σ corresponds to the maximum speed in which two nodes moving away

from each other.

– In our algorithm, closeEnough() is called at some node pi only when a hello

message is received from some other node pj. The parameters passed to

closeEnough() are pi’s current location, pi’s communication radius, pj’s

location when the hello message was generated, and pj’s communication

radius. If closeEnough() returns true at pi, then pi sets a deadline of

which pi should stop sending application messages to pj. The deadline
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is determined under the condition that before the deadline is reached,

the next hello message from pj should be received by pi. In the above

formula, (h/(1 − ρ) + F+
rcv) · 1+ρ

1−ρ accounts for the amount of time (in

real time) in reaching this deadline (in every h local time units a hello

message is generated and it takes at most F+
rcv (real) time to receive the

hello message).

– An additional F+
rcv accounts for the time the hello message of pj was in

transit.

– kF+
ack + 2d kF+

ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ accounts for the total (real) time in emptying

the k-bounded send buffer if the buffer is full. kF+
ack corresponds to the

maximum overhead in emptying the k-bounded send buffer when applica-

tion message broadcast has is no interference with control (hello) message

broadcast. However, since, in our case, hello messages are broadcast every

h local time units, hello message broadcasts may interfere with applica-

tion message broadcasts. 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ accounts for the total time

of hello messages interfering with the k consecutive messages in the send

buffer. This is because d kF+
ack

h/(1+ρ)
e corresponds to the maximum number of

hello message broadcasts during kF+
ack amount of (real) time and for each

hello message broadcast there is a pre-hello interval and a F+
ack time for

receiving an ack for the transmitted hello message.

– Now, suppose closeEnough() returned true at pi by receiving a hello mes-

sage generated by pj. We can deduce from the above that pj will receive

pi’s application messages that were sent before reaching the deadline since

even after pi sends an application message just before the deadline, pi and

pj will be within each other’s communication radius for a time duration

of emptying the k-bounded send buffer even though pi and pj are moving
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away from each other in maximum speed.

Furthermore, we define the following macros for our algorithm :

• Neighbors : {j | status[j] = LU or LHU}

• SU1 : rmn[i] · 1−ρ
1+ρ
− (1 + ρ)F+

rcv

• RU1 : If rmn[i] ≥ 0, then rmn[i] · 1+ρ
1−ρ + (1 + ρ)(kF+

ack + 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ).

Otherwise, rmn[i] · 1−ρ
1+ρ

+ (1 + ρ)(kF+
ack + 2d kF+

ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ).

• SU2 : h · 1+ρ
1−ρ + (1 + ρ)F+

rcv

• RU2 : h · 1+ρ
1−ρ + (1 + ρ)(F+

rcv + kF+
ack + 2d kF+

ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ)

Formulas SU1, RU1, SU2, and RU2 are used in the algorithm when a hello message

is received. We first explain SU2 and RU2. Suppose node pi receives a hello message

from pj and closeEnough() returned true at pi at pi’s local time t. Then, the deadline

for pi to stop sending application messages to pj is set as t+SU2 (called the sending

deadline) and the deadline for pi to even stop receiving application messages from

pj is set as t+RU2 (called the receiving deadline). SU2 and RU2 are both based on

the formula that makes closeEnough() to return true. However, they refer to local

clock time rather than real time. First, note that SU2 corresponds to the amount

of (local) time of pi receiving pj’s next hello message even if pi’s clock runs at the

fastest rate and pj’s clock runs at the slowest rate. Next, note that SU2/(1 − ρ) =

(h/(1− ρ) + F+
rcv) · 1+ρ

1−ρ . This means that even if pi’s clock runs at the slowest rate,

the amount of local time SU2 in real time will not exceed the amount of real time

(h/(1−ρ)+F+
rcv) · 1+ρ

1−ρ . So, since closeEnough() returned true, we can deduce that pj

will receive pi’s application messages that were sent before reaching t+SU2. Formula

RU2 simply considers the amount of (local) time in emptying the k-bounded send

buffer after the sending deadline t+ SU2.

We now explain SU1 and RU1. Suppose node pi receives a hello message helloj

from pj at pi’s local time t where i ∈ helloj.neighbors (pi was considered as pj’s
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neighbor at the time when helloj was generated). Then, formulas SU1 and RU1 are

used in setting the sending and receiving deadlines at pi (as t + SU1 and t + RU1,

respectively) referring to helloj.remaining[i] (=rmn[i]) which was set based on pj’s

local clock. Setting pi’s deadlines in this way is to allow pi to consider pj as its

neighbor even though closeEnough() did not return true (pi gets a chance to send

application messages to pj). Since pi’s clock and pj’s clock may run at different rates,

pi can only estimate the deadlines set at pj. In estimating pj’s sending deadline,

it is important that pi does not set its sending deadline to be greater than pj’s

sending deadline when both deadlines are transformed into real time. Formula SU1

guarantees this since 1) the amount of pi’s local time (helloj.remaining[i]) · 1−ρ
1+ρ

in

real time does not exceed the amount of pj’s local time helloj.remaining[i] in real

time even if pi’s clock runs at the slowest rate and pj’s clock runs at the fastest

rate, and 2) it also considers the maximum (local) time helloj might have been in

transit ((1 + ρ)F+
rcv). In determining pi’s receiving deadline, it is important that pi’s

receiving deadline is set such that pi receives all application messages from pj that

was sent before reaching pj’s sending deadline. Formula RU1 guarantees this since,

in calculating the pi’s receive deadline, pi first considers the greatest possible value

of the sending deadline in local time referring to helloj.remaining[i] (the situation

where helloj is instantaneously received by pi and pi’s clock runs at the fastest rate

(resp. slowest rate) while pj’s clock runs at the slowest rate (resp. fastest rate)

considering helloj.remaining[i] ≥ 0 (resp. helloj.remaining[i] < 0)) and then adds

the the amount of (local) time in emptying the k-bounded send buffer.

We now describe the neighbor detection algorithm (the ND/P2P layer of node

pi). The pseudocode is given in Figures 5.2 and 5.3.

There are seven main variables used in the algorithm: 1) R stores the communi-

cation radius of node pi, 2) sendUntil is an array where sendUntil[j] indicates the
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〈Variables and Initialization〉
1: R← communication radius of node pi;
2: sendUntil; // array[1..n]; initialized to 0
3: receiveUntil; // array[1..n]; initialized to 0
4: remaining; // array[1..n]; initialized to 0
5: sendQueue; // the k-bounded send queue; initialized to ∅
6: recvBuff ; // array[1..n] of queues; initialized to ∅
7: state; // array[1..n]; initialized to LD

8: 〈When LC() is a multiple of h〉
9: ∀j ∈ Neighbors : remaining[j]← sendUntil[j]− LC();

// send a hello msg to AML
10: broadcast hello(i,Loc(), R,Neighbors, remaining);

11: 〈When hello(j, loc, rad, nbrs, rmn) is received〉
12: if i ∈ nbrs then
13: updateDeadlines(j, LC() + SU1, LC() +RU1);
14: if closeEnough(Loc(),R,loc,rad) then
15: updateDeadlines(j, LC() + SU2, LC() +RU2);

16: 〈When LC() = sendUntil[j]〉
17: state[j]← LHU ;
18: enable LHU(j); // an event that goes to the application layer

19: 〈When LC() = recvUntil[j]〉
20: state[j]← LD;
21: enable LD(j); // an event that goes to the application layer

22: 〈When app msg m is received from application layer〉
23: enqueue(sendQueue,m);

Figure 5.2: ND/P2P layer; code for node pi (part 1 of 2).
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24: 〈When (sendQueue 6= ∅) ∧ (LC() is not in a pre-hello interval) ∧
(pi is not waiting for an ack of a previously broadcast msg from the AML)〉

25: broadcast dequeue(sendQueue); // send to AML

26: 〈When app msg m is received from pj〉
27: if m is destined for pi then
28: if state[j] 6= LD then
29: deliver m to application layer;
30: else
31: enqueue(recvBuff [j],m); // store msgs that arrived “early”

32: procedure updateDeadlines(j, s, r)
33: if sendUntil[j] < s then
34: sendUntil[j]← s;
35: if state[j] 6= LU then
36: state[j]← LU ;
37: deliverPendingAppMsgs(j); // deliver msgs that arrived “early”
38: enable LU(j); // an event that goes to the application layer
39: if recvUntil[j] < r then
40: recvUntil[j]← r;
41: if state[j] = LD then
42: state[j]← LHU ;
43: deliverPendingAppMsgs(j); // deliver msgs that arrived “early”
44: enable LHU(j); // an event that goes to the application layer

45: procedure deliverPendingAppMsgs(j)
46: deliver each app msg in recvBuff [j] to application layer;

Figure 5.3: ND/P2P layer; code for node pi (part 2 of 2).
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local time that the applications of pi should stop sending messages to node pj (the

sending deadline), 3) receiveUntil is an array where receiveUntil[j] indicates the

local time that the applications of pi should stop receiving messages from node pj

(the receiving deadline), 4) remaining is an array that is only temporarily used when

a hello message is constructed where remaining[j] indicates the local time remain-

ing until applications of pi should stop sending messages to node pj, 5) sendQueue

corresponds to the k-bounded send queue, 6) recvBuff is an array of queues where

recvBuff [j] stores the messages received by pj when the link state is LD, and finally

7) state is an array where state[j] indicates the current link state with respect to pj.

In every h local time units, a hello message is broadcasted (sent to the AML).

When node pi receives a hello message from node pj, pi first checks if the hello

message contains the information regarding pi being pj’s neighbor. If so, then pi

attempts to update sendUntil[j] and recvUntil[j] by calling updateDeadlines().

The parameter values passed to updateDeadlines() are estimates of sendUntil[i] and

recvUntil[i] at pj (LC()+SU1 and LC()+RU1). Procedure updateDeadlines() only

allows sendUntil[j] and recvUntil[j] to be updated when the parameters passed to

updateDeadlines() is greater than sendUntil[j] and/or recvUntil[j]. If sendUntil[j]

gets to be updated, then the link state with respect to pj either remains or changes

to LU . And, if recvUntil[j] gets to be updated, then the link state with respect

to pj either remains or changes to LU or LHU . If the link state with respect to

pj changed to LU or LHU , then each application message from pj in recvBuff [j]

(messages that arrived “early” from pj) will be delivered to the application layer.

If pi receives a hello message from node pj and a call to closeEnough() returns

true (line 14 in Figure 5.2), then updateDeadlines() is called with different parameter

values than the values mentioned in the previous paragraph. These parameter values

(LC()+SU2 and LC()+RU2) guarantee that the link state will be LU (if it was not
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already LU) and while the link state is LU , pi will receive pj’s next hello message

(see Lemmas 5.6.7 and 5.6.9 in Section 5.6).

If the sending deadline with respect to node pj is reached (LC()=sendUntil[j]) at

pi, then pi changes its link state with respect to pj to LHU . This stops applications

from sending messages to pj while still allows them to receive messages from pj. And,

if the receiving deadline with respect to node pj is reached (LC()=recvUntil[j]) at pi,

then pi changes its link state with respect to pj to LD. This makes the applications

of pi to stop sending and receiving messages regarding pj.

When an application message is received by the application layer, then the mes-

sage is simply enqueued in the k-bounded send buffer sendQueue.

In order to broadcast a message in the sendQueue (sending it to AML), the

following three conditions must be satisfied: 1) sendQueue must not be empty, 2)

the current local time (LC()) must not be in the pre-hello interval, 3) the ND/P2P

layer must not be waiting for an ack of a previously broadcast message from the

AML (this is to conform with the well-formedness condition of the AML).

When an application message is received from node pj at pi, then depending on the

current link state, the received message is either directly delivered to the application

or stored in recvBuff [j]: if the current link state is LU or LHU , then deliver the

received message to the application layer; otherwise, store it in recvBuff [j] for later

delivery when the link becomes either LU or LHU . This is to prevent applications

from receiving messages while the current link state is LD.

5.6 Proof of Correctness

An overview of the proofs is as follows. Our objective is to prove that the five

properties mentioned in Section 5.4 are satisfied. The usability property (Lemma

5.6.1) is trivially proven by inspecting the code. In proving the well-formedness
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property (Theorem 5.6.6), we show that when a node is link up with some other

node pj, the deadline for sending messages to pj is reached (causing the link state

to change to LHU) prior to changing the link state with respect to pj to LD by

utilizing the fact that the link is up with respect to pj at time t if and only if the

deadline for sending messages to pj is some time after t (Lemma 5.6.5).

The proof of the validity property (Theorem 5.6.8) is based on how the deadline

for sending messages to a certain node is set (again using Lemma 5.6.5). There

are two ways in setting the deadline: executing line 15 or line 13 of Figure 5.2. In

the case of executing line 15, we show the desired result by using the fact that the

function closeEnough() returning true has the meaning of two nodes being within

each other’s communication radius for a certain time duration (Lemma 5.6.7). In

the case of executing line 13, we reason about how formula SU1 gives us the desired

result.

The proof of the progress property (Theorem 5.6.10) is based on the fact that

when two nodes are close enough, they will receive each other’s hello message (Lemma

5.6.9) even though they move away from each other and by receiving each other’s

hello message, function closeEnough() will return true which will cause the link state

to be LU for both nodes.

In proving the reliable delivery property (Theorem 5.6.11), we first use the no

duplication property of the AML (no two receive events are caused by the same

broadcast event) to show that no two application receives are caused by the same

application send. Then, we show that application messages sent to pj by pi while

the link is up are guaranteed to be received by the ND/P2P layer of pj. Finally it is

shown that the application message at the ND/P2P layer of pj will be delivered to

the application layer of pj.

Throughout the analysis, we denote the value of variable var of node pi at time
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t as varti . Fix γ to be an arbitrary execution of the algorithm in Figures 5.2 and 5.3.

By the assumption that an application send occurs only when the current link

state is up and by the fact that an application receive does not occur while the link

state is LD (line 31 of the pseudocode), we immediately get the following lemma:

Lemma 5.6.1. γ satisfies the usability property.

The next lemma shows that the values of both sendUntil and recvUntil does not

decrease over time.

Lemma 5.6.2. For all nodes pi and pj and for all times t and t′ where t ≤ t′,

sendUntilti[j] ≤ sendUntilt
′
i [j] and recvUntilti[j] ≤ recvUntilt

′
i [j].

Proof. The proof is straightforward from the fact that (1) the only way to update

sendUntili[j] and/or recvUntili[j] is by calling updateDeadlines(), and (2) updat-

eDeadline() only allows updates to sendUntili[j] and/or recvUntili[j] when a greater

parameter value is passed to it (lines 33 and 39).

The following lemma and corollary shows that at any given time, the value of

sendUntil[j] is at most the value of recvUntil[j].

Lemma 5.6.3. Suppose, at time t1, updateDeadlines(j, , ) is executed for the first

time at node pi by receiving a hello message from node pj. Then, sendUntilti[j] <

recvUntilti[j] for all times t ≥ t1.

Proof. When updateDeadlines(j, s, r) is called at lines 13 or 15 at some time t′,

we have 0 < s < r since 0 < t′ + SU1 < t′ + RU1 and 0 < t′ + SU2 < t′ +

RU2. Since the only way to update sendUntili[j] and recvUntili[j] is by calling

updateDeadlines(j, , ) and since sendUntili[j] and recvUntili[j] is updated only

when their current value is less than s and r, respectively, it is straightforward that

sendUntilti[j] < recvUntilti[j] for all times t ≥ t1.
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Corollary 5.6.4. For all nodes pi and pj and for all times t, sendUntilti[j] ≤

recvUntilti[j].

Proof. The proof is immediate from Lemma 5.6.3 and the fact that for all nodes, the

elements of sendUntil and recvUntil are initialized to 0.

The following lemma is the key lemma in proving the well-formedness and validity

property which says that the link state is link up with respect to some node pj at a

given time t if and only if the value of sendUntil[j] is greater than t.

Lemma 5.6.5. For all nodes pi and pj and for all times t, LSti (j) = LU if and only

if sendUntilti[j] > t (in pi’s local time).

Proof. (⇒) Suppose, in contradiction, that sendUntilti[j] ≤ t. This implies that

there exists a local time t′(≤ t) such that t′ = sendUntilti[j]. If t′ = 0, then we have

LSt
′
i (j) = LD by the initialization code. If t′ 6= 0, then we have LSt

′
i (j) = LHU

at local time t′ by line 17. Hence, at local time t′, we have a link state that is not

LU . Now, since LSti (j) = LU , there exists a local time during [t′, t] where line 36 is

executed. In order to execute 36, sendUntili[j] must have been modified to a greater

value than t′ during [t′, t]. Since sendUntili[j] is nondecreasing over time by Lemma

5.6.2, it must be that sendUntilti[j] > t′, a conradiction.

(⇐) Suppose, in contradiction, that LSti (j) 6= LU . We distinguish two cases:

–(Case 1; LSti (j) = LD): In this case, we have either sendUntilti[j] = 0 by the

initialization code or recvUntilti[j] ≤ t by the fact that the only case the link state

becomes LD is when LC()= recvUntili[j] (line 20). If sendUntilti[j] = 0, then we

directly get a contradiction since sendUntilti[j] > t ≥ 0. If recvUntilti[j] ≤ t, then

by Corollary 5.6.4, sendUntilti[j] ≤ recvUntilti[j] ≤ t, a contradiction.

–(Case 2; LSti (j) = LHU): This case implies that there exists a time prior or equal to
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time t such that the link state became LHU . Let t′(≤ t) be the latest local time that

the link state became LHU . By the code, either line 42 or 17 was executed at time

t′. Also, since the link state remains as LHU during [t′, t], we have sendUntilt
′
i [j] =

sendUntilti[j]. If line 17 was executed at time t′, then it is straightforward that

t′ = sendUntilt
′
i [j]. Thus, we get sendUntilti[j] = t′ ≤ t, a contradiction. If line 42

was executed at time t′, then the latest link state prior to time t′ must have been LD

by line 41. This implies that there exists a time prior to time t′ such that the link

state became LD. Let t′′(< t′) be the latest local time that the link state became

LD. We have recvUntilt
′′
i [j] = t′′ by line 20. During [t′′, t′) updateDeadlines() must

not have been called because otherwise the link state must have changed to either LU

or LHU by the fact that sendUntilt
′′
i [j] ≤ recvUntilt

′′
i [j] = t′′ (Corollary 5.6.4) and

the fact that updateDealine() is called with parameters that have a values greater

than the current local time value. Moreover, the if-condition at line 33 should have

been evalutated to false because otherwise the if-condition at line 41 would have

evaluated to false. Hence, sendUntili[j] was not updated during [t′′, t′] and we get

sendUntilt
′′
i [j] = sendUntilt

′
i [j] = sendUntilti[j]. Therefore, since sendUntilt

′′
i [j] ≤

recvUntilt
′′
i [j] = t′′, we finally get sendUntilti[j] ≤ t′′ < t, a contradiction.

The following theorem shows that the well-formedness property holds. It uses

both lemmas 5.6.3 and 5.6.5 in obtaining a contradiction in the situation where the

link state changes directly from LU to LD.

Theorem 5.6.6. γ satisfies the well-formedness property.

Proof. Suppose, for two nodes pi and pj, that LSti (j) = LU and LSt
′
i (j) = LD where

t < t′ in real time. Now, suppose, in contradiction, that for all real times t′′ ∈ (t, t′),

LSt
′′
i (j) 6= LHU . Since LSt

′
i (j) = LD, we have recvUntilt

′
i [j] ≤ t′ in real time. Also,

since LSti (j) = LU , we know that updateDeadlines() is called at least once. So, by
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Lemma 5.6.3 and Lemma 5.6.5, we get t < sendUntilt
′
i [j] < recvUntilt

′
i [j] ≤ t′ in real

time. This implies that there exists a real time t1 ∈ (t, t′) such that sendUntilt1i [j] =

t1 in real time which results in executing line 17, a contradiction.

The next lemma shows that the function closeEnough() returning true has the

meaning of two nodes being within each other’s communication radius for a certain

time duration.

Lemma 5.6.7. Suppose, at real time t, node pi received a hello message from node pj

and closeEnough() returned true. Then, pi and pj will be in each other’s communica-

tion radius during [t, t+T ] in real time where T = (h/(1−ρ)+F+
rcv+2d kF+

ack

h/(1+ρ)
eF+

ack) ·
1+ρ
1−ρ + kF+

ack.

Proof. If instantaneous message delivery is assumed, the condition that needs to be

satisfied for closeEnough() to return true simply guarantees that pi and pj remain in

each other’s communication radius during [t, t + T + F+
rcv] in real time even though

pi and pj moves in the maximum speed (=σ) away from each other. However, in

our case, the hello message generated by pj might have took F+
rcv real time to reach

pi. Hence, we can say that pi and pj will be in each other’s communication radius

during [t, t+ T ] in real time.

The following theorem shows that the validity property holds. Using Lemma

5.6.5, the proof is based on how sendUntili[j] is set at pi.

Theorem 5.6.8. γ satisfies the validity property.

Proof. First, let T = (h/(1 − ρ) + F+
rcv + 2d kF+

ack

h/(1+ρ)
eF+

ack) · 1+ρ
1−ρ + kF+

ack. Suppose

LSti (j) = LU at local time t. By Lemma 5.6.5, we know that LSti (j) = LU if and

only if sendUntilti[j] > t. We distinguish two cases based on how sendUntili[j] was

set:

163



–(Case 1; By line 15 (at local time t′)): In this case, the call to closeEnough()

returned true. When closeEnough() returns true, it is guaranteed by Lemma 5.6.7

that pi and pj remain in each other’s communication radius for at least T amount

of time in real time from time t′. At line 15, we set sendUntili[j] = t′ + SU2. Since

0 ≤ ρ < 1, the amount of local time SU2 in real time is always less than the amount

of real time T . Hence, pi and pj will remain in each other’s communication radius

until time sendUntili[j] in pi’s local time.

–(Case 2; By line 13): In this case, sendUntili[j] was updated by helloj.remaining[i].

For two nodes pi and pj where LSt1i (j) = LD and LSt1j (j) = LD for some real

time t1, respectively, line 15 must be executed first to execute line 13 since either

j ∈ Neighborsi or i ∈ Neighborsj must first be satisfied to execute line 13. Hence,

for this case, it suffices to prove that (1) when sendUntili[j] is set by executing line

15 at pi at time t, pi and pj are within each other’s communication radius until time

sendUntilti[j] and (2) assuming that helloj was generated by pj at pj’s local time

tj and it is guaranteed that pi and pj remain within each other’s communication

radius at least until tj + helloj.remaining[i] in pj’s local time, if sendUntili[j] is

set by executing line 13 at pi at time t, then pi and pj are within each other’s

communication radius until time sendUntilti[j]. Part (1) is already proven in (Case

1). We focus on part (2). By the code, sendUntili[j] is set by the formula ti +

helloj.remaining[i] · 1−ρ
1+ρ
− (1 + ρ)F+

rcv where ti is pi’s local time when pi receives

helloj. First note that helloj.remaining[i] > 0 because otherwise sendUntili[j] will

not have been set in the first place. Since 0 ≤ ρ < 1, the amount of pj’s local time

helloj.remaining[i] in real time is always greater than or equal to the amount of pi’s

local time helloj.remaining[i]· 1−ρ
1+ρ

in real time. In worst case, helloj might have took

F+
rcv real time from when pj generating helloj to pi receiving helloj. Again, since

0 ≤ ρ < 1, the amount of pi’s local time (1+ρ)F+
rcv in real time is always greater than
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or equal to F+
rcv in real time. Hence, we get that pj’s local time tj+helloj.remaining[i]

in real time is greater than or equal to pi’s local time sendUntiltii [j] in real time.

Therefore, pi and pj will remain in each other’s communication radius until time

sendUntiltii [j] in pi’s local time.

The following lemma shows how two nodes remaining in each other’s communi-

cation radius for a specific time duration implies that both nodes will receive each

other’s hello message.

Lemma 5.6.9. Suppose nodes pi and pj remain in each other’s communication radius

for the entire time duration of [t, t+ h/(1− ρ) + F+
rcv] in real time. Then, pi and pj

will receive at least one of each other’s hello message during [t, t+ h/(1− ρ) + F+
rcv]

in real time.

Proof. Since the clock drift is bounded by ρ where 0 ≤ ρ < 1 and each node generates

and broadcasts a hello message every h time units with respect to its local clock, each

node generates and broadcasts at least one hello message during a time duration of

size h/(1 − ρ) in real time (the amount of time h/(1 − ρ) in real time corresponds

to the amount of local time h for the node with the slowest clock rate). Hence,

considering the message delay bound F+
rcv in real time, pi and pj receive each other’s

hello message during [t, t+ h/(1− ρ) + F+
rcv] in real time.

The next theorem shows that the progress property holds for certain values of

xp, α
′
p, and α′′p.

Theorem 5.6.10. Let DC = 2σ(h/(1− ρ) +F+
rcv + 2d kF+

ack

h/(1+ρ)
eF+

ack) · 1+ρ
1−ρ + 2σ(F+

rcv +

kF+
ack). γ satisfies the progress property with xp = min(Ri, Rj)−2σ( h

1−ρ+F+
rcv)−DC,

α′p = h
1−ρ + F+

rcv, and α′′p = h
1−ρ + F+

rcv.
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Proof. Without loss of generality, suppose two nodes pi and pj are within distance

xp at real time t′. dist(pi, pj) ≤ xp at time t′ guarantees that pi and pj remain in

each other’s communication radius for at least the amount of time h/(1− ρ) + F+
rcv

in real time even though both pi and pj moves at a maximum speed (σ) away from

each other. Applying Lemma 5.6.9, we get that pi and pj receives each other’s hello

message during [t′, t′ + h/(1− ρ) + F+
rcv] in real time. Furthermore, dist(pi, pj) ≤ xp

at time t′ also guarantees that by receiving the hello message during [t′, t′ + h/(1−

ρ) + F+
rcv] in real time, the call to closeEnough() returns true causing the link state

to be LU if the link state was not LU and the link state to remain in LU otherwise.

Now, without loss of generality, suppose that pi and pj are within distance xp for

all times during [t, t+αp] in real time. By the above argument, it is clear that at real

time t+h/(1−ρ)+F+
rcv(= t+α′p) the link state of both pi and pj are LU . Also, from

real time t+ αp to real time t+ αp + α′′p, each call to closeEnough() will return true

at both pi and pj. When closeEnough() returns true at pi (resp. pj), sendUntili[j]

(resp. sendUntilj[i]) is set to at least SU2. Considering the worst case, the amount

of local time SU2 can be at least SU2/(1+ρ) = α′′p in real time. Also, considering the

worst case, closeEnough() might have returned true at time t+αp. Hence, until real

time t+αp + SU2/(1 + ρ) = t+αp +α′′p, LSi(j) = LU and LSj(i) = LU . Therefore,

we have LSt1i (j) = LU and LSt1j (i) = LU for all t1 ∈ [t + α′p, t + αp + α′′p] in real

time.

The final theorem shows that the reliable delivery property holds.

Theorem 5.6.11. γ satisfies the reliable delivery property.

Proof. The AML guarantees the no duplication property. This property says, for a

node pk, no two receive events at pk are caused by the same broadcast event. Since the

ND/P2P layer simply forwards application messages to the AML, we can say that,
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for a node pk, no two application receives are caused by the same application send.

So, for the reliable delivery property, it only remains to prove that an application

message sent from pi to pj while pi’s link state is LU with respect to pj is received

by the application layer of pj.

Without loss of generality, suppose node pi sends an application message at local

time t to node pj while LSti (j) = LU . Notice how sendUntili[j] and recvUntili[j]

is set by lines 13 and 15. By the values of SU1, RU1, SU2, and RU2, sendUntili[j]

and recvUntili[j] satisfies sendUntilt
′
i [j] + (1 + ρ)(kF+

ack + 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ) ≤

recvUntilt
′
i [j] for all local time t′. If the last update to sendUntili[j] before local

time t was by calling updateDeadlines() at line 15, then Lemma 5.6.7 implies that,

starting from local time sendUntilti[j], during the next 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ + kF+

ack

amount of time in real time, pi and pj will be within each other’s communication

radius. Even if the the most recent update to sendUntili[j] before local time t was

by calling updateDeadlines() at line 13, we still have that starting from local time

sendUntilti[j], during the next 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ + kF+

ack amount of time in real

time, pi and pj will be within each other’s communication radius. This is because

formula SU1 guarantees that sendUntilti[j] is set to a local time value such that the

real time left for pi to reach the local time sendUntilti[j] is less than or equal to the

real time left for pj to reach its local time sendUntil
tj
j [i] where tj is the local time of

pj that is equal to pi’s local time t when both are transformed to real time (see the

proof of Theorem 5.6.8 (Case 2)).

Now, recall that kF+
ack is the upper bound on the total real time of empty-

ing the the k-bounded buffer if the buffer is full (when there is no control (hello)

message interference) and 2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ is the upper bound on the total real

time of hello message transmissions interfering with k consecutive application mes-

sages in the k-bounded send buffer. Thus, a message already in the k-bounded
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send buffer is guaranteed to be sent to the AML within the amount of real time

kF+
ack + 2d kF+

ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ − F+

ack. From the previous paragraph and by Lemma

5.6.5, we therefore have that the ND/P2P layer of pj receives the application mes-

sage sent by pi while LSti (j) = LU .

It remains to show that the application layer of pj receives the message by pi.

Considering pi, if sendUntilti[j] was set by calling updateDeadlines() at line 15 at

real time t′′ (pi’s local time t in real time corresponds to t′′), then by Lemma 5.6.7

and 5.6.9, pj will receive helloi from pi until t′′+ h/(1− ρ) +F+
rcv in real time. Upon

pj receiving helloi from pi at pj’s local time t′j, the call to updateDeadline() at line 13

and the value of RU1 ensures that recvUntil
t′j
j [i] in real time is greater than or equal

to pi’s local time sendUntilti[j] in real time plus kF+
ack + 2d kF+

ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ in real

time. Hence, for all t1 ∈ [t′j, recvUntil
t′j
j [i]) in pj’s local time, LSt1j (i) 6= LD holds.

Thus, by lines 37, 43, and 29, the application message sent by pi will be delivered

to pj’s application layer. Now, if sendUntilti[j] was set by calling updateDeadlines()

at line 13 at real time t′′ (pi’s local time t in real time corresponds to t′′), then,

by formula SU1, sendUntilti[j] in real time is less than sendUntil
t′′j
j [i] in real time

where pi’s local time t and pj’s local time t′′j have the same time value when both are

transformed to real time. Since sendUntilt
′
j [i]+(1+ρ)(kF+

ack+2d kF+
ack

h/(1+ρ)
eF+

ack · 1+ρ
1−ρ) ≤

recvUntilt
′
j [i] holds for all local times t′ and LSt2j (i) 6= LD holds for all local times

t2 ∈ [sendUntilt
′
j [i], recvUntilt

′
j [i]), lines 37, 43, and 29 guarantee that the application

message sent by pi will be delivered to pj’s application layer.

5.7 Discussion

In this section, we apply parameter values to obtain the maximum distance be-

tween two nodes that guarantee link up with each other and compare the results of

different parameter values.
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Figure 5.4: Max distance between two nodes for guaranteed link up with each other
(xp of Theorem 5.6.10) when max speed is 50km/h.

-150

-100

-50

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100

M
ax

d
is
ta
n
ce

fo
r
gu

ar
an

te
ed

L
in
k
U
p
(m

)

Max # of broadcasts to AML per hello period

Frcv = Fack = 0.01s
Frcv = Fack = 0.02s

Figure 5.5: Max distance between two nodes for guaranteed link up with each other
(xp of Theorem 5.6.10) when max speed is 100km/h.

169



-40

-20

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

M
ax

d
is
ta
n
ce

fo
r
gu

ar
an

te
ed

L
in
k
U
p
(m

)

Max # of broadcasts to AML per hello period

Frcv = Fack = 0.01s

Figure 5.6: Max distance between two nodes for guaranteed link up with each other
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Figures 5.4, 5.5, and 5.6 show the xp value (the maximum distance between two

nodes to guarantee link up with each other) of Theorem 5.6.10 for different F+
rcv and

F+
ack values and different σ values by increasing the maximum number of broadcasts

to the AML per hello period (parameter b; see Section 5.5) given R = 250 meters

(typical value for IEEE 802.11 [29, 56]), k = 110 (maximum size of the send buffer),

ρ = 10−6, and h = (b+ 2)F+
ack · 1+ρ

1−ρ .

Figure 5.4 shows the xp value by ranging b from 1 to 100 where nodes move in a

maximum speed of 50km/h (an urban area considering vehicles as nodes). Expecting

that F+
rcv and F+

ack to be tens of milliseconds (ms) and assuming that F+
rcv = F+

ack,

we have considered three cases for the values of F+
ack: 10ms, 20ms, and 50ms. For

the cases of 10ms and 20ms, the xp values stay above 160 meters and 71 meters,

respectively, even though b = 100. For the case of 50ms, the xp value hits its
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maximum value 34.7203 meters when b = 8 and we also get that xp > 0 only when

b ranges from 2 to 27. So, Figure 5.4 shows that a large xp value can be obtained

even though having a large b, when F+
ack ranges from 10ms to 20ms. The reason why

the xp value first increases and then gradually decreases as b grows is as follows: In

our algorithm, when node pi’s link state becomes link up with respect to node pj by

calling closeEnough(), we require that the next hello message from pj to be received

by pi. So, as the hello period h grows large (=as b grows large) pi and pj have to

be closer to each other to guarantee link up with each other. However, as h grows

large (=as b grows large), there will be fewer hello message broadcasts interfering

with application message broadcasts which means that pi and pj can be farther away

from each other but still guarantee link up with each other. The increase and decrease

of the xp value is showing the result of this trade-off.

Figure 5.5 shows the case when nodes move in a maximum speed of 100km/h (a

regular highway considering vehicles as nodes). In this case, even F+
rcv = F+

ack = 10ms

is still suitable in obtaining a large value of xp for large values of b. Considering

an even higher maximum speed of 160km/h (the autobahn considering vehicles as

nodes), Figure 5.6 shows that even F+
rcv = F+

ack = 10ms is not suitable in obtaining

a large value of xp for large values of b. However, for a small value of b (≤ 50),

F+
rcv = F+

ack = 10ms is still suitable in getting a large value of xp.
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6. REGIONAL CONSECUTIVE LEADER ELECTION

IN MOBILE AD HOC NETWORKS

We consider leader election in a fixed geographic region R with bounded com-

munication diameter which allows leader election to be performed among nodes that

are relatively close to each other (leader election is performed in a local fashion). By

bounded communication diameter we mean that if a node in R initiates the propa-

gation of a message at some time t, then the message will be relayed through a fixed

maximum number of hops D to any node that stays in the region sufficiently long

after time t — this is formally defined as D-connectedness in Section 6.3.

In this section, we solve the Regional Consecutive Leader Election (RCLE) prob-

lem which was originally introduced in [16]. Roughly speaking, the RCLE problem

requires the following:

(Agreement) All nodes in the region that elect a leader elect the same leader.

(Termination) If some live1 node p remains in the region for a sufficiently long period

of time, then p must elect a leader.

(Validity) If some live node p in the region elects a leader, then that leader node

must have been in the region in the recent past.

(Stability) If some live node p in the region stops considering some other node q as

the leader, then q has either crashed or left the region in the recent past.

We provide a lower bound with respect to the (Termination) property of the

Part of this section is reprinted from the following paper: Hyun Chul Chung, Peter
Robinson, and Jennifer L. Welch, “Optimal regional consecutive leader election in mobile ad-
hoc networks,” In proceedings of the 7th ACM SIGACT/SIGMOBILE Workshop on Foun-
dations of Mobile Computing (FOMC 2011), c©2011 ACM, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1998476.1998485.

1Live nodes are those nodes that have not yet crashed or have already recovered from a crash.
See Section 6.3.
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RCLE problem. More specifically, we prove that any algorithm requires Ω(Dn)

rounds for electing a leader, where D is the bounded communication diameter of

the network and n is the total number of nodes in the system. Also, we provide a

novel algorithm that solves the RCLE problem. The provided algorithm guarantees

termination in O(Dn) rounds which shows that our algorithm is asymptotically tight

with respect to time complexity. Our algorithm does not rely on the knowledge of

the number of nodes in the system nor on a common start-up time.

Since the proposed algorithm solves the RCLE problem under the assumption

that the region has a bounded communication diameter, the question arises how to

ensure that the region has a bounded communication diameter? To answer this ques-

tion, we can think of restricting the nodes to follow a certain condition on mobility.

We provide a novel and intuitive condition on mobility that ensures the existence of a

bounded communication diameter. The proposed mobility condition requires nodes

to move in a way such that the propagated information makes a certain amount of

progress towards its destination in each round while not relying on a fixed coordinate

system.

6.1 Contributions

We define D-connectedness which is weaker than usual connectivity assumptions

in the sense that it allows scenarios where a set of nodes within the region of interest

are temporarily partitioned.

We introduce the RCLE problem by extending the leader election problem to the

ever changing environment of mobile ad hoc networks.

We prove a lower bound with respect to the (Termination) property of the RCLE

problem and then present and prove correct an asymptotically optimal crash fault-

tolerant algorithm that solves the RCLE problem.
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Finally, we provide a condition on mobility that allows us to obtain a bounded

communication diameter within the region of interest.

6.2 Related Work

Geographical information has been widely used in mobile ad hoc environments

(e.g., [40, 41, 39]). However, there are only a few papers that consider location infor-

mation in solving leader election in MANETs. Chung et al. [16] provide an algorithm

that solves the RCLE problem with a message bit complexity of O(n(log n+ log r))

per node per round. The algorithm of [16] runs under the assumption that nodes

have access to synchronized clocks. Also, [16] provides a condition on mobility that

guarantees the existence of a bounded communication diameter. However, this mo-

bility condition becomes highly restrictive in some situations because of the fact that

it relies on a fixed coordinate system. In Section 6, we significantly improve on the

results of [16], by providing an algorithm that solves the RCLE problem with a mes-

sage bit complexity of O(log n + log r) per node per round without requiring nodes

to have access to synchronized clocks. We also provide a mobility condition that is

less restrictive in the sense that it does not rely on any fixed coordinate system. In

addition, we provide a lower bound on the number of rounds for a node to elect a

leader.

In Kuhn et al. [45], the entire geographical space is divided into regions where

nodes in a region forms a single hop network. A leader is elected for each region

and these leaders form a backbone for message propagation. Our approach differs

from [45], since we consider a single fixed region in which nodes exchange messages

through multi-hop communication.

Hatzis et al. [33] provide an algorithm where a leader is elected by nodes encoun-

tering each other. When two or more nodes meet, they decide on which one of them
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continues to participate in electing a leader. The entire space is divided into non-

intersecting subspaces and nodes get to meet each other when they fall into the same

subspace. Furthermore, a probabilistic analysis is given considering the movement

of nodes as random walks. In Section 6.6, we provide a condition on mobility that

gives a deterministic bound on message propagation.

Leader election algorithms presented in [9, 20, 36, 51, 52, 61] and [71] consider a

mobile environment where geographical information is not used. In addition, they

all consider networks that can have an arbitrarily large communication diameter.

Our approach considers leader election in a region with a bounded communication

diameter which is a better fit for situations when leader election is needed only among

nearby nodes.

6.3 System Model and Problem Specification

We consider a system consisting of a set Π of nodes that move in two-dimensional

Euclidean space. Each node has a unique id and communicates with other nodes via

wireless broadcast.

We assume that nodes execute in synchronous rounds of communication and

computation, where each round lasts ∆ time, for an appropriately chosen value

∆. Such rounds can be provided by, for instance, the use of the abstract MAC

layer [45]. This round abstraction allows us to focus on the algorithmic aspects;

the collision-free scheduling of wireless transmissions, while nevertheless being an

important problem, is assumed by the round abstraction. It is important to note that

the round abstraction does not provide nodes with additional timing information.

That is, we neither require nodes to be equipped with synchronized clocks nor assume

that nodes can access the current round number.

Every node executes an instance of a distributed algorithm and is modeled as
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a deterministic state machine. In more detail, each round begins with broadcasts

by the nodes and continues with nodes receiving certain broadcasts. We denote the

(possibly infinite) set of messages that can be generated by the algorithm as M.

At the end of each round, each node uses its current state and the set of messages

received during the round to change its state and decide what to broadcast at the

beginning of the next round. An execution of an algorithm is simply an infinite

sequence of rounds.

Nodes can fail by crashing and might recover from the crash after some non-

zero number of rounds; a node reinitializes its state upon recovery. We assume that

processing done at the end of each round takes 0 time units and only live nodes—

nodes that have not crashed or have already recovered—operate during a round. As

we do not assume that all nodes startup at the exact same time, we simply model

nodes that have not yet booted (not yet recovered) as crashed nodes.

We focus on a specific region R of the two-dimensional space in which the nodes

are present. Every node has access to geographical information with respect to

region R by using functions EnteredSinceLastRound() and Location() which can

be provided by an underlying location service.

Calling function Location() yields the exact position in the Euclidean space of

the querying node, whereas function EnteredSinceLastRound() evaluates to true if

(a) the node has entered R since the end of the last round or (b) the node has just

recovered from a crash inside R.

To specify which broadcasts are received by a node in a round, we use the notion

of two nodes p and q being connected in the round: this means that throughout

the round, the Euclidean distance between p and q is at most C, the (common)

communication radius. If p and q are live and connected throughout a round, node

p receives exactly one copy of the message that is broadcast by q at the beginning
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of the round (p can also possibly receive a message from a node that is within C at

some point during the round). Thus, communication is timely and reliable, with no

lost, corrupted or spurious messages.

For each round r, we define the following sets of nodes, depending on their location

with respect to region R:

• Πr
A = {pi ∈ Π | pi is live and within R throughout round r}.

• Πr
E = {pi ∈ Π | pi is live and within R at the end of round r}.

• Πr
B = {pi ∈ Π | pi is live and within R at the beginning of round r}.

For rounds ra and rb with ra ≤ rb, we define Π
[ra,rb]
A as the set {pi ∈ Π | ∀r, ra ≤ r ≤

rb : pi ∈ Πr
A}.

Sometimes we only care about a prefix of an execution S until some round r; we

denote this by S|r. Executions S and S ′ are indistinguishable for a node p, if p receives

the same messages in S and the values of Location() and EnteredSinceLastRound()

are the same at p in S and S ′, for all rounds r. Intuitively speaking, node p observes

an indistinguishable environment in both executions.

Given a particular execution, we define a Just-In-Time (JIT) path starting at

round r from node p to node q of length m to be a sequence of nodes p = v0, v1 . . . , vm =

q such that, for all i, 0 ≤ i < m, vi ∈ Πr+i
B , vi is live throughout r + i, vi+1 ∈ Πr+i

A ,

and vi and vi+1 are connected in round r + i.

Without any assumptions on the mobility pattern of the nodes, it is impossible

to guarantee the existence of JIT paths. Thus, we are motivated to assume that

every execution satisfies the following property, which was originally introduced in

[16] and is also related to the “dynamic diameter” of [44].

Assumption 6.3.1 (D-Connectedness). There exists an integer D such that for

every pair of nodes p and q, and every round r, the following holds: if p ∈ Πr
B, p is
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live throughout r, and q ∈ Π
[r,r+D−1]
A , then there exists a JIT path starting at round

r from p to q of length at most D.

Intuitively speaking, Assumption 6.3.1 guarantees the existence of a JIT path

from p to q, if node q stays sufficiently long inside the region, starting at the time

when p sends its message. We further assume that the value of D is known to all

nodes in the system.

6.3.1 Problem Specification

We assume that every node has access to a special variable leader that is either

set to ⊥ or contains a node id. We denote the value of leader at node pi at the end of

round r as leaderrpi . If pi has crashed before or in round r and has not yet recovered

(or has not yet booted), we assume that leaderrpi =⊥.

Definition 6.3.2. An algorithm A solves the regional consecutive leader election

(RCLE) problem if there exist integer bounds BT , BV , and BS such that the following

properties are satisfied for every D-connected execution of A:

∀r ∈ N ∀pi, pj ∈ Πr
E :
((

leaderrpi 6=⊥6= leaderrpj

)
⇒

(
leaderrpi = leaderrpj

))
(Agreement)

∀r ∈ N ∀pj ∈ Π:
( (
∃pi ∈ Πr

E : leaderrpi = j
)

⇒
(
∃r′ ∈ [r −BV , r] :

(
pj ∈ Πr′

B ∧ leaderr
′

pj
= j
)))

(Validity)

∀r ∈ N ∀pi ∈ Π:
(

(∀r1 ∈ [r, r +BT ] : pi ∈ Πr1
A )

⇒
(
∃r2 ∈ [r, r +BT ] : leaderr2pi 6=⊥

) )
(Termination)

∀r1, r2 ∈ N ∀pj ∈ Π:
((

r1 < r2 ∧ pi ∈ Π
[r1,r2]
A ∧ leaderr1pi = j ∧ leaderr2pi 6= j

)
⇒ (∃r ∈ [r1 −BS, r2] : pj /∈ Πr

A)
)

(Stability)
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Property (Validity) ensures that only nodes, which have recently been inside the

region (i.e. within bounded time) and have claimed to be the leader, can be elected

as the leader, whereas (Stability) guarantees that the leader only changes when the

previous leader node crashed or is no longer in the region. Note that (Termination)

only requires a node to elect a leader if it remains in the region for a sufficiently

long period of time.

6.4 A Lower Bound on Time Complexity

In this section, we will prove a lower bound on the time (i.e. number of rounds)

that it takes until a newly incoming node has set its leader variable in the worst case.

Lemma 6.4.1. Let A be an algorithm that solves the RCLE problem. Then there is

an execution such that the following hold:

(a) For all r ∈ [1, D) and for all pi ∈ Π
[1,D)
A we have that leaderrpi =⊥;

(b) |Π[1,∞)
A | = Θ(n).

Proof. Assume in contradiction that no such execution exists. First, consider the

execution S where all nodes in Π are in Π
[1,∞)
A and are all pairwise disconnected

during [1, D). Moreover, in round D, the connectivity graph of nodes in the region

is fully connected, and from round D+ 1 on, the connectivity graph is arbitrary, but

with the restriction that D-connectedness holds. By assumption, the set of nodes

P ⊆ Π
[1,D]
A , such that every pi ∈ P claims to be the leader in some round during

[1, D) in S, is nonempty. Due to (Stability), every node pi ∈ P still has leaderDpi = i,

which, by (Agreement), implies that |P | = 1, i.e., P = {pj}, for some node pj. Now

consider the execution S ′ that is identical to S for all nodes in Π \ {pj} and where

pj is not inside the region during [1, D]. Clearly S ′ is indistinguishable from S for

all nodes in Π \ {pj} until round D, and thus no node inside the region terminates

before round D. Note that execution S ′ satisfies (a) and (b), therefore providing a
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contradiction.

Theorem 6.4.2. Let A be an algorithm that solves the RCLE problem and suppose

that A satisfies termination with some bound BT . Then it holds that BT = Ω(Dn).

Proof. We will show by induction that there exists a permutation π, a sequence of

executions (Sk)1≤k≤n, and a sequence of rounds (rk)1≤k≤n, such that node pπ(i) takes

ri ≥ iD rounds before setting its leader variable in execution Si, for 1 ≤ i ≤ n.

Lemma 6.4.1 shows that there is some execution S1 where no node terminates

before round D. Since algorithm A is correct, some node pπ(1) is the first one to claim

to be the leader in some round r1 ≥ D in S1; this provides us with the induction

base. Considering property (Validity) we have that

∀r ∈ [1, r1) ∀pj ∈ Πr
A : leaderrpj =⊥ .

Moreover, no other node apart from pπ(1) can set its leader variable in round r1. To

see why this is the case, assume that pπ(1) crashed at the beginning of round r1 and

some node p′ has leaderr1p′ = π(1). Clearly, since pπ(1) crashed and thus never claimed

to be the leader, we have a violation to (Validity).

Note that we can assume that pπ(1) is connected to every other node in round r1.

We will make use of this assumption in the induction step below.

For the induction step, suppose that, for some i ∈ [1, n), node pπ(i) has claimed

to be the leader in round ri, i.e., leaderripπ(i) = i, and assume that nodes in

P = Π \ {pπ(1), . . . , pπ(i)}

have not yet set their leader variable by round ri in execution Si. By using the same

argument as for pπ(1) in the induction base, we can assume that only pπ(i) sets its
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leader variable in round ri. More specifically, the induction hypothesis tells us that

∀r ∈ [1, ri] ⊇ [1, iD] : leaderrpj =⊥ ,

for all nodes pj ∈ P , and that pπ(i) is connected to every node in Πri
A during round

ri. Now consider the following execution Si+1: During rounds [1, ri), execution Si+1

is equivalent to the prefix Si|[1,ri), but we assume that node pπ(i) exits the region at

the end of round ri in Si+1, just before electing itself as the leader. Furthermore, if

i > 1, node pπ(i−1) reenters the region at the end of ri. The nodes in P remain in the

region forever in execution Si+1. Let π(i + 1) be such that pπ(i+1) is the first node

that claims to be the leader in Si+1 in some round ri+1 > ri.

We will now show that ri+1 − ri ≥ D. Suppose that this is false and consider

execution S ′i+1 that is identical until round ri + D to Si+1, for all nodes except

for pπ(i). The only difference is that pπ(i) does not leave the region, but instead is

disconnected from all other nodes during rounds (ri, ri+D). Note that this does not

violate D-connectedness, since by assumption pπ(i) is connected to every node in Πri
A

in ri and we can assume that execution S ′i+1 is chosen in a way such that this is also

true in ri + D. Considering that S ′i+1 is indistinguishable for pi+1 from execution

Si+1 up to round ri +D − 1 ≥ ri+1, node pi+1 must claim to be the leader in round

ri+1, and since (Stability) holds, pi also still claims to be the leader in ri+1. As this

would be a contradiction to (Agreement), it follows that ri+1 − ri ≥ D.

By the induction hypothesis and the fact that A satisfies (Validity), we have that

∀r ∈ [1, ri+1] ⊇ [1, (i+ 1)D] : leaderrpj =⊥ ,

for any node pj ∈ P \ {pπ(i+1)} in execution Si+1.
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This proves that some node pπ(n) does not terminate before round nD, as required.

6.5 An Optimal RCLE Algorithm

The pseudocode of the optimal RCLE algorithm is given in Figures 6.1 and 6.2.

We will first describe the building blocks of the algorithm and then take a closer look

at the election process. We denote the value of variable var at node pi at the end of

round r as varrpi .

6.5.1 Variables and Timers

Since nodes do not have access to clocks, each node employs a local counter

enteredSince for measuring the number of rounds that have passed since the node

entered the region. On the other hand, local variable attemptNum represents each

node’s view of the number of times that nodes have attempted to elect a leader.

The algorithm makes heavy use of timers, which are local counter variables with

a special interface that can easily be implemented in any round-based system. By

executing startTimer(T, offset) in round r, a node pi can set its timer T to expire

in offset rounds. That is, the predicate expired(T ) will be true in round r+offset at

pi and any following round until some other timer has been started.2 Also, from the

call of startTimer(T, offset) on until round r+offset−1, the predicate running(T )

will hold at pi. Moreover, the call of startTimer(T, offset) will stop any other timer

T ′ at pi from running (and expiring).

6.5.2 Message Fields

A node pi communicates with other nodes by broadcasting messages consisting of

5 fields. If the oid field (see below) of the message contains the id of node pg, we say

2Recall that pi does not know the actual round number, as we do not assume access to clocks.
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〈 Variables and Initialization 〉
1: leader, candidate←⊥; in Π ∪ {⊥}
2: enteredSince, longest← −1; in Z
3: attemptNum← 0; in N
4: nullMsg ← 〈I, 0, 0, 3D, i〉; in M; constant
5: toSend, prevToSend← nullMsg; in M
6: Timer waitT , electT , leaderT ;

7: if EnteredSinceLastRound() then
8: stop all timers;
9: initialize variables (as above);

10: startTimer(waitT , 5D);

11: enteredSince← enteredSince+ 1;
12: incTimeStamps(recBuf ∪ {toSend, prevToSend});
13: longest← max(longest+1, {m.entSince | m ∈ recBuf});
14: msg ← max{m ∈ (recBuf ∪ nullMsg)};

15: if msg > toSend then
16: toSend← msg;
17: attemptNum← msg.attNum;
18: if ¬running(waitT ) then
19: if msg.type = L then
20: leader ← msg.oid;
21: startTimer(leaderT , 2D −msg.age);
22: else
23: leader ←⊥;
24: if msg.oid = i then
25: candidate←⊥;
26: else
27: candidate← msg.oid;
28: startTimer(electT , 2D −msg.age);

Figure 6.1: Optimal RCLE algorithm; code for node pi (part 1 of 2).
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29: if expired(waitT ) then
30: if (longest > enteredSince) ∧ differ(prevToSend, toSend) then
31: longest← enteredSince;
32: prevToSend← toSend;
33: startTimer(waitT , 5D);
34: else
35: if toSend.type = L then
36: if toSend.oid 6= i then
37: leader ← toSend.oid;
38: startTimer(leaderT, 2D − toSend.age);
39: else
40: startTimer(electT, 2D − toSend.age);

41: if expired(electT ) then
42: if candidate = i then
43: leader ← i;
44: attemptNum← attemptNum+ 1;
45: toSend← 〈L, attemptNum, enteredSince, 0, i〉;
46: startTimer(leaderT ,D);
47: else
48: startTimer(leaderT , 3D − toSend.age);

49: if expired(leaderT ) then
50: if leader = i then
51: toSend← 〈L, attemptNum, enteredSince, 0, i〉;
52: startTimer(leaderT ,D);
53: else
54: startInstance();

55: if toSend 6= nullMsg then
56: broadcast toSend at the start of next round;

57: procedure startInstance()
58: leader ←⊥;
59: candidate← i;
60: attemptNum← attemptNum+ 1;
61: toSend← 〈I, attemptNum, enteredSince, 0, i〉;
62: startTimer(electT , 2D);

Figure 6.2: Optimal RCLE algorithm; code for node pi (part 2 of 2).

184



that pg has generated the message. Considering some round rs, we will now describe

the fields of a message m that was generated (i.e. initially broadcast) by node pg in

round rg and which is broadcast in round rs > rg by some node ps:

1. type: We distinguish between so called leader messages (m.type = L), which

are generated only by nodes that claim to be the leader, and instance messages

(m.type = I).

2. attNum: This field contains the value of attemptNum at generator pg in round

rg.

3. entSince: The time stamp entSince corresponds to the number of rounds that

have passed since pg has entered the region, assuming it has not yet exited.

That is, m.entSince = enteredSincerspg .

4. age: The value of m.age is the number of rounds since the message has been

generated, i.e., m.age = rs − rg.

5. oid: This field simply contains the id of the generator, i.e., m.oid = g.

Note that the values of fields m.entSince and m.age need to be adapted in every

round, since pg continuously increases its variable enteredSince as long as it is in the

region. This is ensured by calling the function incTimeStamps(M) in Line 12, which

takes a set M of messages and increases the value of m.entSince and m.age by 1,

for every m ∈ M . For example, if the message 〈I, a, e, 0, i〉 is generated in round r

by node pi, its fields will have the values 〈I, a, e+ k, k, i〉 by round r + k. When we

consider a message m with the field values of some specific round r, we denote this

as mr. We will omit the superscript r, when it is clear from the context.

6.5.3 Priority and Similarity of Messages

As we aim for low message complexity, it is important to ensure that relevant

information is still propagated within the region. To this end, we introduce a rela-
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tion on messages, which is first used by the algorithm to select the most “important”

received message msg in Line 14 and then in Line 15, in order to check if the infor-

mation contained in msg is relevant for the node.

We say that message m1 = 〈t1, a1, e1, r1, i〉 has priority over message m2 =

〈t2, a2, e2, r2, j〉, denoted by m1 > m2, iff one of the following conditions hold:

1. (t1 = L) ∧ (t2 = L) ∧ ((a1 > a2) ∨ ((a1 = a2) ∧ (r1 < r2)) ∨ ((a1 = a2) ∧ (r1 =

r2) ∧ (i > j))).

2. (t1 = I) ∧ (t2 = L) ∧ (a1 > a2).

3. (t1 = L) ∧ (t2 = I) ∧ (a1 ≥ a2).

4. (t1 = I) ∧ (t2 = I) ∧ ((a1 > a2) ∨ ((a1 = a2) ∧ (e1 > e2)) ∨ ((a1 = a2) ∧ (e1 =

e2) ∧ (r1 > r2)) ∨ ((a1 = a2) ∧ (e1 = e2) ∧ (r1 = r2) ∧ (i > j))).

For two messages of different message types, the message that has a higher value

in its attNum field has higher priority than the other; if even the values in their

attNum fields are the same, then the leader message takes priority over the instance

message. For two leader messages, the message that has a higher value in its attNum

field has higher priority than the other; if the values in their attNum fields are the

same, then the one that was generated later has priority over the other; if the two

messages were even generated at the same round, then the one with the higher oid

takes priority over the other. Finally, for two instance messages, they simply follow

lexicographical ordering.

Furthermore, messages m1 and m2 are called similar, if they are either identical

or both leader messages that were generated by the same node, having the same

value in the field attNum. Predicate differ(m1,m2) (see Line 30) holds if m1 and
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m2 are not similar, formally,

differ(m1,m2) ≡ (m1 6= m2) ∧ ¬ (m1 = 〈L, a, , , j〉 ∧m2 = 〈L, a, , , j〉) .

We will make use of this notion of similarity for determining when to exit the waiting

phase (see Section 6.5.4.1).

6.5.4 Description of the Election Process

Depending on which timer is running (waitT , electT , or leaderT ) and the state

of variable leader, we distinguish nodes to be in one of 3 phases: waiting phase,

election phase, or leader phase.

6.5.4.1 Waiting Phase

When a node pi enters the region, it resets its state to the initial configuration

(Line 7 et seq.). It also sets its timer waitT to expire in 5D rounds (Line 10)

and thus starts waiting by entering the so called initial waiting phase. Moreover, pi

marks the round when it has entered by setting its variable enteredSince to 0, which

will be incremented until pi leaves the region. In every computing step, pi chooses

the greatest received message (Line 14) with respect to the priority relation and

updates its variables toSend and attemptNumber accordingly. Node pi also stores

the maximum value of the entSince fields of the received messages in its variable

longest, which corresponds to the current value of variable enteredSince of the node

that has been in the region longest. While pi is in the waiting phase, it restricts itself

on forwarding the message stored in toSend and performs no computation otherwise.

When the timer waitT expires for the first time, pi checks if itself has entered the

region earliest and if the messages stored in variables prevToSend and toSend are

not similar. If some node has entered before pi did, pi will restart waitT and starts
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another waiting phase of length 5D rounds. This process will repeat itself until either

(a) all previously entered nodes have left the region, or (b) pi has received similar

messages in two consecutive waiting phases. Note that the latter will happen when

some (previously entered) node claims to be the leader.

6.5.4.2 Election Phase

When pi does not reset its timer waitT , it sets its timer leaderT or electT instead,

the expiration of which depends on the message stored in pi’s toSend variable; we

call nodes where ¬running(waitT ) is true, “non-waiting” nodes. If pi, while running

either timer leaderT or electT , receives an instance message m1 that has higher

priority than the stored message in its variable toSend, then pi stops the currently

running timer and starts timer electT with the expiration round being set to 2D −

m1.age rounds after the current round. This allows nodes to synchronize their electT

timers based on the highest priority message in R. In the round when leaderT

expires, pi calls startInstance(), assuming that pi has not received a leader message

from some other node so far. In startInstance(), node pi sets its electT timer,

generates an instance message mi and listens for (higher priority) messages. In the

round when electT expires, pi checks if variable toSend still contains message mi. If

so, node pi concludes that there are no other nodes in the region that have priority

and elects itself as the leader. Otherwise, pi waits for a leader message from the node

whose id is stored in variable toSend (by starting timer leaderT ) and updates its

leader variable upon reception of such a message.

6.5.4.3 Leader Phase

If pi itself is the leader, it periodically generates leader messages by expiring and

resetting the timer leaderT every D rounds, until it leaves the region (or crashes).

If, on the other hand, pi assumes that some node pj is the leader, it simply waits for
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leader messages from pj by periodically setting leaderT . Should pj leave the region,

pi will call startInstance() (Line 54) upon expiring timer leaderT , and return to

the election phase.

6.5.5 Proof Outline

In this section, we give a brief intuition why our algorithm is correct, i.e., satisfies

Definition 6.3.2.

When a node p receives a leader message m and therefore updates its leader

variable, it sets timer leaderT to expire exactly 2D rounds after m was generated.

If p receives no further leader message, its timer leaderT will expire and it will reset

its leader variable; thus (validity) holds (see Lemma 6.5.7).

For (agreement) (see Lemma 6.5.8), we first observe that the message priority

relation ensures correct propagation of the highest priority message (Lemma 6.5.4),

which ensures that no two nodes will contain distinct messages in their toSend vari-

able after the election phase. Moreover, if some node claims to be the leader, no

higher priority instance messages have been created in the near past (Lemma 6.5.5)

or will be created while the leader does not change (Corollary 6.5.6).

Corollary 6.5.6 is also instrumental for showing (stability) (see Lemma 6.5.11),

since it is used in the proof of the crucial Lemma 6.5.10, which states that the leader

node does not change unless it crashes or leaves the region.

The proof of the (termination) (see Lemma 6.5.22) property consists of two parts:

First, we show that if some node p remains in region R for a sufficiently long amount

of time (in the worst case 15D + 10(n− 1)D rounds where n is the total number of

nodes), then p must exit its waiting phase, i.e., ¬running(waitT ) holds at p. The

basic idea behind the proof of this part is that, after every sequence of 10D rounds, if

node p decides to remain in the waiting phase, then, during those 10D rounds, there
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must be a non-waiting node q that crashed or left the region. This idea is enforced by

Line 30, since differ(prevToSend, toSend) becomes true when p decides to stay in

the waiting period; if, on the other hand, q elected itself as the leader and stayed alive

in R long enough, then differ(prevToSend, toSend) will become false, thus causing

p to stop waiting. Even if q reenters region R after leaving R, q will not directly

cause p to remain in its waiting phase since the condition longest > enteredSince

in Line 30 will evaluate to false due to enteredSinceq < enteredSincep; note that in

this case p was already inside R when q reenters.

For the rest of the termination proof, we show that if node p remains in region

R sufficiently long enough after exiting its waiting phase (in the worst case 7D +

4(n − 1)D rounds), then p elects a leader by setting its leader variable. The worst

case scenario would be that all “better” candidate leaders leave region R or crash

sparsely (i.e. one-by-one) without ever electing themselves as the actual leader and,

finally, p electing itself as the leader. The basic idea behind the proof of this part is

that the nodes that enter R after p exits its waiting phase will keep waiting as long

as p is live and does not elect a leader (which is the case by assumption). This is true

because p, along with the other non-waiting nodes in R, will generate new instance

messages at least every 4D rounds. Our D-connectedness assumption ensures that

nodes in their waiting phase receive new instance messages at least every 5D rounds

so when Line 30 is executed, it will evaluate to true, causing these nodes to keep

waiting.

6.5.6 Proof of Correctness

The following lemma follows directly by inspecting the code.

Lemma 6.5.1. Suppose that pi ∈ Π
[r,r+k]
A , for some k ≥ 0. Then, for all r′ ∈ [r, r+k],

(a) toSendr
′
pi
.attNum = attemptNumr′

pi
.

190



(b) attemptNumr′
pi

is non-decreasing.

Lemma 6.5.2. Suppose that pi ∈ Π
[r,r+k]
A , for some k ≥ 0. Then, for all r′ ∈

[r+1, r+k] where incTimeStamps(toSendr
′−1
pi

) 6= toSendr
′
pi

, we have that toSendr
′
pi
>

toSendr
′−1
pi

and toSendr
′
pi
.attNum ≥ toSendr

′−1
pi

.attNum.

Proof. Let m1 = toSendr
′−1
pi

and m2 = toSendr
′
pi

. Now, suppose in contradiction, for

some r′ ∈ [r + 1, r + k] where

incTimeStamps(m1) 6= m2, (6.1)

it holds that

(m2 ≤ m1) ∨ (m2.attNum < m1.attNum).

By (6.1), message m2 must be assigned to toSendr
′
pi

by either line 16, line 45, line 51,

or line 61. We consider four cases:

(Case 1 ) m2 was assigned to toSendr
′
pi

by line 16: In order for m2 to be assigned

by line 16, the if-condition in line 15 must evaluate to true which directly yields a

contradiction.

(Case 2 ) m2 was assigned to toSendr
′
pi

by line 45: Notice that attemptNum is

incremented just before executing line 45. Hence, Lemma 6.5.1.(a) tells us that

m1.attNum < m2.attNum which yields m1 < m2 by the definition of the message

priority relation, a contradition.

(Case 3 ) m2 was assigned to toSendr
′
pi

by line 51: If m1.type = I, then Lemma 6.5.1

implies that m1.attNum ≤ m2.attNum. Hence, the definition of the message prior-

ity relation gives us m1 < m2 since m2.type = L, a contradiction. If m1.type = L,

then, due to line 12, m1 becomes at least 1 rounds old (i.e., m1.age ≥ 1). Also, by

Lemma 6.5.1, we know that m1.attNum ≤ m2.attNum. Hence, by the definition
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of the message priority relation, we always get m2 > m1 since m1.age < m2.age at

round r′ (m1.age ≥ 1 and m2.age = 0 at round r′), a contradiction.

(Case 4 ) m2 was assigned to toSendr
′
pi

by line 61: The proof is similar to (Case

2 ).

Lemma 6.5.3. The following statements are true if leaderrpi = pi:

(a) Node pi did not pass the if-condition in Line 15 during rounds (r − 2D, r].

(b) pi ∈ Πr−5D
E and pi ∈ Π

(r−5D,r]
A .

Proof. (a). Assume in contradiction that pi received a message m that enabled it to

pass the if-condition in Line 15 in some round r′ ∈ (r − 2D, r]. We divide into two

cases:

(Case 1 ) running(waitT ) holds at pi at round r′: There must exist a round during

(r′, r] where ¬running(waitT ) holds at pi since leaderrpi 6=⊥. Let r′′ ∈ (r′, r] be

the earliest round when ¬running(waitT ) holds at pi. Note that r − r′′ < 2D.

Considering that, after the generation of an instance message by pi, it requires exactly

2D rounds to execute Line 43, leaderpi must be set to pi using Line 20 during [r′′, r].

This implies that pi received a leader message ml that was generated by itself. If ml

was generated at rl ∈ [r′′, r], then Line 15 will prevent Line 20 from being executed

since toSendrlpi already contains ml and, in any subsequent rounds after rl, toSendpi

contains ml or some message that has higher priority than ml (by Lemma 6.5.2),

a contradiction. If ml was not generated during [r′′, r], then it must have been

generated before or at round r′′ − 5D because of the fact that every node stays in

their waiting phase for at least 5D before ¬running(waitT ) holds and during the

waiting phase no messages are generated. This shows that ml.age > 2D at round r′′.

Then, at round r′′, the if-condition at Line 35 evaluates to true, however, leaderpi

will not be set by Line 37 (it will remain as leaderpi =⊥) since ml.oid = pi, a
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contradiction.

(Case 2 ) ¬running(waitT ) holds at pi at round r′: If m.type = L and m.oid = pi,

then, similar to (Case 1 ), it must be that m was generated before the most recent

round when pi entered region R (m was generated at least 5D rounds before round

r). Since ¬running(waitT ) holds at pi at round r′, there exists a round re (≤ r′)

where ¬running(waitT ) holds at pi at round re and running(waitT ) holds at pi at

round re− 1. Note that m.age ≤ re− 5D at round re. Thus, similar to (Case 1 ), at

round re, the if-condition at Line 35 evaluates to true, however, leaderpi will not be

set by Line 37 (it will remain as leaderpi =⊥) since m.oid = pi. This implies that

toSendpi ≥ m by the end of round re. Hence, by Lemma 6.5.2 and the fact that

r′ ≥ re, pi cannot evaluate the if-condition in Line 15 to true, a contradiction.

Ifm.type = I or (m.type = L andm.oid 6= pi), there must exist a round r′′ ∈ [r′, r]

where either Line 20 or Line 43 is executed. The rest of the proof is similar to (Case

1).

(b). The proof is immediate by inspecting the code; after node pi enters region

R, it runs its waitT timer at least 5D rounds and while timer waitT is running, pi

does not update its leader variable (Lines 19 to 28 are not executed).

6.5.6.1 Agreement and Validity

Lemma 6.5.4 (Priority Propagation). Suppose that p1 broadcasts a message m in

round r. Then, for every pj ∈ Π
[r,r+D]
A , it holds that toSendr+Dpj

≥ mr+D.

Proof. For the sake of a contradiction, assume that there exists some node pj ∈

Π
[r,r+D]
A such that pj has toSendr+Dpj

< mr+D. We know that there exists a JIT path

from p1 to pj starting in round r; w.l.o.g., assume that this JIT path is p1 → p2 →

· · · → pk → · · · → pj, where pk is the first node that has toSendr+k−1
pk

< mr+k−1.

We will now show by induction that for i ∈ [1, k], every node pi, on the JIT path
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has toSendr+i−1
pi

≥ mr+i−1, which, together with Lemma 6.5.2, yields the required

contradiction. For the induction base, we have by assumption that toSendrp1 = mr.

For i > 1, the induction hypothesis tells us that toSendr+i−2
pi−1

≥ mr+i−2. Moreover,

by assumption pi has an incoming link from pi−1 during round r+ i− 1, thus clearly

toSendr+i−1
pi

≥ mr+i−1. What remains to show is that for all r′ ∈ (r + i− 1, r + D],

we have that toSendr
′
pi
≥ mr′ . But this follows directly from the message priority

relation and Lemma 6.5.2.

Lemma 6.5.5 (Dominating Leader). Let p` be a node in Π
[r`,r`+D]
A that generates

m` = 〈L, a`, , 0, `〉 in round r` and suppose that toSendr`−1
p`

.type 6= L; that is, p`

claims to be the new leader in round r`. Then, no instance message mj with aj > a`

is generated during [r` − 3D, r` +D).

Proof. Assume in contradiction that some node pj generates such a message mj in

round rj. We divide into two cases:

(Case 1 ) rj ∈ [r` − 3D, r` −D]: By Lemma 6.5.4, p` must receive a message m with

m.attNum ≥ mj.attNum > attemptNump`

by round r`, contradicting Lemma 6.5.1.

(Case 2 ) rj ∈ (r` − D, r` + D]: We know that expired(leaderT ) holds for node pj

in round rj; let m′j be the message that was in variable toSendpj when pj passed

Line 49. Note that

m′j.attNum = mj.attNum− 1 ≥ m`.attNum (6.2)

by assumption. Since pj called startInstance() in Line 54, we know that leaderpj 6=

j. Thus, pj did not set leaderT using Line 52 and we can observe that timer leaderT
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is always set such that its expiration date is at least 2D later than the round when

m′j was generated. It follows that m′j was broadcast (not necessarily by pj) during

rounds [rj − 2D, rj). By Lemmas 6.5.4, it follows that p` has set its toSend variable

to some message m′′ ≥ m′j by round r` − 1.

First consider the case where m′′.type = L: The priority relation together with

(6.2) imply a contradiction to toSendr`−1
p`
6= L. If m′′.type = I, then the execution

of Line 44 by p` in r` provides a contradiction to (6.2).

Corollary 6.5.6 (Continuously Dominating Leader). Suppose that there is an inte-

ger λ > 0, such that node p` generates leader messages in every round in {r` + kD |

k ∈ [0, λ]}, which all have the fixed value a` in the field attNum, and suppose that

toSendr`−1
p`

.type 6= L. Then, no instance message mj with aj > a` is generated during

the interval of rounds [r` − 3D, r` + λD).

Proof. Assume in contradiction that some node generates a message mj with aj > a`

in round r ∈ [r`−3D, r`+(λ−1)D]. The case r ∈ [r`−3D, r`+D] follows immediately

by Lemma 6.5.5.

Next, we will show that the result also holds for r ∈ [r` + D, r` + (λ− 1)D]. By

Lemma 6.5.4, it follows that p` will receive a message m′ ≥ mj by round r + D,

causing it to pass Line 15. But since, pi still generates a leader message m′ in some

round in r` + λD with m′.attNum = a`, this is a contradiction.

Finally, we need to consider the case where r ∈ (r`+(λ−1)D, r`+λD], for λ > 1:

Note that node pj must have called startInstance() in round r after its leaderT

timer expired. Let m′ be the message that caused pj to previously set leaderT ,

i.e., toSendr−1
pj

= m′. Note that m′ (or some greater message) is also received by

p`. Moreover, since node pj must have previously been in the waiting phase, we

know that pj ∈ Π
(r−5D,r]
A , i.e., pj has received some leader message generated by
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p`. Therefore, either p` passes the if-condition in Line 15 upon receiving m′, and

thus does not generate a leader message in round r` + λD, or pj does not pass the

if-condition in Line 15 upon receiving m′, and thus does not set its timer leaderT to

expire according to m′.age. Both cases yield a contradiction.

Lemma 6.5.7 (Validity). The algorithm in Figures 6.1 and 6.2 satisfies property

(validity) with bound BV = 2D − 1.

Proof. Suppose that some node pi has leaderrpi = j. This implies that pi is no

longer in the waiting phase, and thus ¬running(waitT ) holds at pi in round r. If

i = j, then (Validity) trivially holds; therefore assume that i 6= j. By the code,

if pi sets leaderpi ← j then pi has received a leader message m generated by node

pj in round rj, i.e., toSendripi = m, for some round ri. Note that pi sets its timer

leaderT to expire in round rj + 2D. W.l.o.g., we can assume that ri is the round

where pi updates its leader variable the last time before r. Again, by the code,

it follows that if pi received any message m′ > m during (ri, r], it would update

its leader variable, which is a contradiction; thus we have that toSendrpi = mr. If

mr.age ≥ 2D, then expired(leaderT ) would have been true in some round in [ri, r],

and hence leaderrpi 6= j by Line 58, again yielding a contradiction. On the other

hand, if mr.age < 2D, it follows that rj ≥ r − 2D + 1, which means that pj was

inside the region in round r − 2D + 1 or some later round, i.e., BV = 2D − 1, as

required.

Lemma 6.5.8 (Agreement). The algorithm in Figures 6.1 and 6.2 guarantees prop-

erty (Agreement).

Proof. For the sake of a contradiction, assume that there is a D-connected execution

where property (Agreement) is violated the first time in some round r2, and let p1
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and p2 be nodes such that leaderr2p1 = v1 6= v2 = leaderr2p2 . Without loss of generality,

let r1 be the round when p1 has updated leaderp1 the last time before r2 and assume

that r1 ≤ r2. Depending on how p1 and p2 updated their variable leader (Lines 20

or 43; the case of using Line 37 will be analogous to the case of using Line 20), we

distinguish several cases:

(Case 1 ) Nodes p1 and p2 both used Line 43 (i.e., p1 and p2 both claim to be the

leader): This implies that p1 and p2 both passed the check expired(electT ) in Line 41.

By Lemma 6.5.3.(b), we know that p1 ∈ Π
(r1−2D,r2]
A and p2 ∈ Π

(r2−2D,r2]
A . Let m1 resp.

m2 be the instance messages generated by p1 resp. p2 in round r1 − 2D resp. round

r2 − 2D:

(Case 1a) r1 ≤ r2−D: Let m` be the leader message generated by p1 in round r1. By

Lemma 6.5.4, we know that p2 must have received some message m′1 ≥ m` by round

r2. By assumption, p2 could not have passed Line 15, therefore, m2 > m1. Since p1

remains inside the region until round r2, however, it follows again by Lemma 6.5.4

that p1 must have also received some message m′2 ≥ m2 > m` by round r2, causing

p1 to reset its leader variable and thus yielding a contradiction.

(Case 1b) r1 > r2−D: Since r1− 2D ≤ r2− 2D, it follows by Lemma 6.5.3.(b) that

nodes p1 and p2 are in Π
(r2−2D,r2−D]
A . Then, because of Lemma 6.5.4, we know that

either p1 or p2 passes the if-condition in Line 15 in some round in (r2 − 2D, r2 −D].

Applying Lemma 6.5.3.(a) provides a contradiction.

(Case 2 ) p1 used Line 43 and p2 used Line 20: This implies that p2 received a leader

message from some distinct node v2. Let rv be the most recent round before round

r2 in which v2 considers itself as the leader, i.e., rv < r2 and v2 ∈ Πrv
E . Recall the

assumption that the first violation of agreement happened in round r2. It follows

that rv < r1, otherwise this violation would have already taken place in round rv.

We distinguish several cases, depending on when rv takes place:
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(Case 2a) r1− 2D > rv: Since r2 ≥ r1 we have r2− 2D > rv. Considering that node

v2 does not generate any leader messages during (rv, r2), it follows by the fact that p2

received such a message in r2 that p2 sets its timer leaderT according to the age field

of v2’s leader message mv. Clearly we have mv.age > 2D, and thus expired(leaderT )

holds in round r2, causing p2 to reset its leader variable to ⊥, a contradiction.

(Case 2b) r1 − D ≥ rv: By (Case 2a) we know that rv ≥ r1 − 2D, i.e., rv ∈

[r1 − 2D, r1 − D]. Since v2 is in Πrv
E , applying Lemma 6.5.4 shows that p1 receives

some message m′ that is at least as high as v2’s leader message m in some round

r′ ∈ (rv, r1]. By assumption, p1 does not pass the if-condition in Line 15, therefore

p1’s instance message m1 > m′. On the other hand, we know that p2 does pass

Line 15 in round r2 by receiving m, i.e., m1 > m′ ≥ m. Since p1 sends m1 in round

r1 − 2D, Lemma 6.5.4 tells us that p2 must have received a message that is at least

as great as m1 before round r2. Therefore, p2 cannot pass Line 15 in round r2 by

receiving m.

(Case 2c) r1 −D < rv: We know that rv < r1, which means that rv ∈ (r1 −D, r1).

The proof is similar to (Case 2b). In particular, it follows that the instance message

m1 must be greater than the leader message m of v2, which in turn means that p2

cannot have pass Line 15 in round r2 by receiving m.

(Case 3 ) p1 used Line 20 and p2 used Line 43: This implies that p1 received a leader

message mv from node v1. Let rv be the most recent round before r1 that v1 considers

itself as the leader, i.e., rv < r1. We further distinguish two cases:

(Case 3a) r1 ≤ r2 − D: Note that, by Lemma 6.5.4, p2 must have received some

message m′ ≥ mv by round r2, but since p2 does not pass the if-condition in Line 15,

it must be that m2 > m′ ≥ mv. Moreover, p1 receives m2 before round r2, and since

p1 still has leaderr2p1 = v1, p1 does not pass Line 15 during (r1, r2], contradicting the

fact that m2 > mv.
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(Case 3b) r1 > r2 −D: First, assume that rv ≤ r2 −D: By Lemma 6.5.4, we know

that p2 receives some message m′ ≥ mv by round r2, and, by Lemma 6.5.3.(a), we

have m2 > m′ > mv. Moreover, p1 receives some message m′′ ≥ m2 > mv by round

r1, thus it cannot be that leaderr2p1 = v1. For the case where rv > r2−D, we can use

an analogous argument as in (Case 2c).

(Case 4 ) p1 and p2 both used Line 20: This implies that there are distinct nodes

v1 and v2 that generate leader messages in rounds r′1(≤ r1 − 1) and r′2(≤ r2 − 1),

respectively. We assume that r′1 ≤ r′2; the case r′1 > r′2 follows analogously. Note that

p1 receives the leader message 〈L, a1, , v1〉 from v1 in round r1. Clearly it holds that

r′2 − r′1 < 2D, otherwise p1 would have executed startInstance() in Line 54 and

updated its leader variable during (r1, r2], therefore violating the assumption that r1

was the last update before r2. Thus we can restrict our treatment to two cases:

(Case 4a) r′1 ∈ (r′2−2D, r′2−D): We know that leader
r′1
v2 6= v2, since we assumed that

the first violation of agreement happened at r2 > r′1. Considering that leader
r′2
v2 = v2,

it follows that the electT timer of node v2 must expire in some round r′′2 ∈ (r′1, r
′
2]. It

follows that the instance message in toSendv2 must be greater than the leader message

generated by v1 in round r′1, otherwise r2 would have passed Line 15, contradicting

Lemma 6.5.3.(a). But this directly contradicts Corollary 6.5.6.

(Case 4b) r′1 ∈ [r′2 − D, r′2): By Lemma 6.5.3.(b), we know that v1 ∈ Π
r′1−2D
E and

v1 ∈ Π
(r′1−2D,r′1]
A .

First suppose that both, v1 and v2 generate their respective first leader message

in round r′1 resp. r′2. Then, by Lemma 6.5.4 it follows that one of them will receive a

message greater than or equal to the instance message of the respective other node,

and thus pass Line 15 during [r′2 −D, r′2), a contradiction.

If both, v1 and v2 have also generated a leader message in r′1−D resp. r′2−D, we

immediately have a contradiction to the assumption that r2 is the earliest round when
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agreement is violated. Now consider the case where v2 also generates a leader message

in r′2−D, while v1 still has leaderrv1 6= v1 for r ∈ [r′1, r
′
1−2D]. It follows that v1 receives

the message that was in toSend
r′2−2D
v2 before round r′1. If toSend

r′2−2D
v2 .type = L, we

know by Corollary 6.5.6 that v1 will pass Line 15, which contradicts Lemma 6.5.3.

On the other hand, if toSend
r′2−2D
v2 .type = I and v1 does not pass Line 15, then, by

Lemma 6.5.4, v2 will receive some message equal or greater to v1’s instance message

and pass Line 15, a contradiction.

6.5.6.2 Stability

Lemma 6.5.9. Suppose that leaderrpi = pi. Then, at round r, pi does not run its

waitT nor its electT timer, i.e., ¬running(waitT )rpi ∧ ¬running(electT )rpi hold.

Proof. Note that the only place where pi sets its leader variable to its own id is in

Line 43. First, assume that running(waitT )rpi holds. Observe that timer waitT is

only set in Line 10 upon pi entering the region in some round r1 < r. Moreover,

pi does not start any other timer until waitT has expired. Thus pi does not pass

Line 41 during [r1, r], a contradiction.

Now, suppose that ¬running(electT )rpi holds. In that case pi must have executed

startTimer(electT , 2D) in Line 62, which means that pi has reset its leader variable

in Line 58. Again, pi does not pass Line 41 before round r, which provides the

contradiction.

The next lemma shows that if a node claims to be the leader, it continues to do

so until it crashes or leaves the region.

Lemma 6.5.10. Suppose that leaderr1pi = pi and p1 ∈ Π
(r1,r2]
A . Then it holds for all

r ∈ (r1, r2] that leaderrpi = pi.
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Proof. Assume for the sake of a contradiction that there is a round r ∈ (r1, r2] such

that leaderrpi 6= pi; choose r such that it is the earliest round after r1 where this

happens.

First, suppose that pi updated its leader variable in Line 58. Lemma 6.5.9 tells

us that pi does not pass the if-checks in Lines 29 or 41, and since leaderr−1
pi

= i, node

pi does not execute Line 54 in round r; therefore pi does not call startInstance()

in round r.

Observe that pi generates a leader message at some round r′ where r − r′ < D,

since r is the earliest round after r1 where pi is not a leader. Then, Corollary 6.5.6

and (Agreement) provides a contradiction

Now, suppose that pi executed Line 20 in r by receiving a leader message m` that

was generated by itself before entering the region for the last time before r. Consid-

ering that pi contains a newer leader message in toSendrpi , this yields a contradiction

to the priority relation on leader messages, since m` < toSendrpi and thus pi does

not pass the if-condition in Line 15. Thus, if pi executed Line 20, it must be that pi

received a leader message mk = 〈L, , , pk〉 in round r that was generated by some

distinct node pk in round rk where

mk.attNum > attemptNumr
pi

. (6.3)

By the agreement property (Lemma 6.5.8), we know that rk < r1 because pk only

generates leader messages when leaderrkpk = pk. Together with the fact that some

node broadcasts mk in all rounds in [rk, r), the D-connectedness assumption yields

upper and lower bounds on rk, i.e., rk ∈ (r1 − D, r1). Note that Lemma 6.5.3.(b)

tells us that pi ∈ Π
(r1−2D,r1]
A . Again, applying the agreement property shows that

leaderrkpi 6= pi, thus the electT of pi must have expired during (rk, r1], for leaderr1pi = pi
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to hold. If pk has previously generated a leader message in rk−D, or if r1− rk ≥ D,

a leader message of pk will be received by pi before r1, contradicting (6.3). Thus we

can assume that r1 − rk < D. If pk has leaderrk−1
pk

6= k, then the instance message

m′k that is in toSendrk−1
pk

is broadcast during [rk − 2D, rk) by pk and therefore also

received by pi. Since

m′k.attNum = mk.attNum− 1

and pi increases its variable attemptNum by exactly one before generating the leader

message in r1, it follows that pi must have passed Line 15, again a contradiction.

Lemma 6.5.11 (Stability). The algorithm in Figures 6.1 and 6.2 satisfies property

(Stability) with bound BS = 2D − 1.

Proof. For the sake of a contradiction, suppose that for rounds r1 and r2, where

r1 < r2, it holds that

leaderr1pi = pj ∧ leaderr2pi 6= pj,

and assume that pi ∈ Π
[r1,r2]
A and pj ∈ Π

[r1−BS ,r2]
A .

Let r ∈ (r1, r2] be the earliest round where pi sets leaderrpi such that leaderrpi 6= pj.

If j = i, Lemma 6.5.10 tells us that pi must have left the region during (r1, r]; we

can therefore restrict ourselves to the case where j 6= i. Note that it is sufficient

to consider the case where pi updates its leader variable in either Lines 20, 23 or

Line 58, since for setting the leader via Line 43, pi needs to execute Line 58 first.

Consider the case where pi used Line 58. Let rj be the latest round before r1

where pj still claims to be the leader. We can assume that either pi did not receive

a leader message from pj that was generated during (r − 2D, r] or, pi did receive

such a leader message from pj but subsequently also received a message mk from

some node pk 6= pj that enabled it to pass Line 19. In the former case, it follows by
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Lemma 6.5.10 and the fact that a leader generates new leader messages in intervals

of D rounds that there must be a round after rj where pj left the region, yielding

a contradiction. In the case where pi receives message mk, it follows by the code of

the algorithm that r is not the earliest round after r1 where pi updates its leader

variable, a contradiction.

Now, consider the case where pi used Lines 20 or 23, i.e., pi received a message

mk in round r generated by some node pk in round rk, where pk 6= pj and such that

mk.attNum > toSendrpi .attNum. (6.4)

If mk was generated before or at round r − 3D, it follows by Lemma 6.5.4 that pj

will pass Line 15 by receiving some message ≥ mk before generating the last leader

message and therefore still being inside the region; a contradiction to Lemma 6.5.10.

Thus, mk was generated in round rk ∈ (r − 3D, r). Corollary 6.5.6 tells us that

mk.type = L, which by Lemma 6.5.8 implies that rk ∈ (r − 3D, r1). If rk ≥ rj,

Lemma 6.5.8 implies that pj must have left the region and we are done. Therefore,

consider the case where rk < rj. If rj − rk > D, we again have a contradiction to

Lemma 6.5.10 due to (6.4); therefore rj − rk < D. For the case where pk already

generated a leader message in rk−D, the contradiction again follows by (6.4), hence,

we can assume that running(electT )pk holds during [rk−2D, rk) and toSendpk .type =

I. If

toSend.attNumrk−1
pk

> toSend.attNumrk−1
pj

,

we have a contradiction since pj will pass Line 15 before rj; otherwise, it must be

that

toSend.attNumrk−1
pk

= toSend.attNumrk−1
pj

.
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This, however, implies that toSend.typerk−1
pj

= L, and, since pk will receive this leader

message before rj, it will not generate a leader message itself, a contradiction.

6.5.6.3 Termination

We say that node p expired message m at round r, if p expired its leaderT timer

at r and called startInstance() while having m in its toSend variable just before

the generation of a new message. In addition, we say that a message m caused the

generation of instance message m′ at round r, if there exists a node p such that it

expired message m at round r and as a consequence p generated m′ in round r.

The next lemma is immediate from the code.

Lemma 6.5.12. A node stays live at least 5D rounds in R before starting/expiring

any timer other than the waitT timer. In other words, it requires at least 5D rounds

to expire the waitT timer.

Lemma 6.5.13. Suppose some node p expired message m at round r. Then the

following holds:

(a) If m.type = L (i.e. m is a leader message), m must have been generated before

or at r − 2D.

(b) If m.type = I (i.e. m is an instance message), m must have been generated

before or at r − 3D.

Proof. (a) Suppose, in contradiction, that leader message m was generated during

(r− 2D, r]. If m was generated by p, then Line 54 will simply not be executed since

Line 50 will become true. If m was not generated by p, then, by Line 21, p must not

have expired its leaderT timer by r since leaderT is set to expire exactly 2D rounds

after the generation of the leader message.

(b) Suppose, in contradiction, that instance message m was generated during (r −
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3D, r]. Let r′ ∈ (r − 3D, r] be the earliest round where toSend
[r′,r)
p = m. We divide

into two cases:

(Case 1 ) Instance message m was generated by p: In this case, p ∈ Π
[r′,r]
A and p must

not be running its waitT timer during [r′, r] because otherwise p must have reentered

region R and Lemma 6.5.12 prevents p from expiring m at r. If p generated m at

r′′ ∈ (r− 3D, r′), then Lemma 6.5.2 implies that toSend
[r′′,r)
p = m which contradicts

the fact that r′ is the earliest round where toSend
[r′,r)
p = m. So, r′ is the round when

p generated m. We further divide into two cases:

(Case 1a) r′ ≤ r− 2D: By the code, Line 62 is executed when m is generated. Also,

Lemma 6.5.2 tells us that Line 15 does not become true until round r. So, by the

code, electT timer will expire with Line 42 being true causing the generation of a

leader message m′ by round r where m′ > m. Hence, toSendrp 6= m.

(Case 1b) r′ > r−2D: Same as in (Case 1a), Line 62 is executed when m is generated

and Line 15 will not become true until round r. Hence, by the code, electT timer

will still be running at round r at p since electT timer is set to expire 2D rounds

after the generation of message m.

(Case 2 ) Instance message m was not generated by p: We further divide into two

cases:

(Case 2a) Node p is running its waitT timer at round r′: Since p expires m at round

r, there exists a round r′′ ∈ (r′, r] where p stops running its waitT timer. By the

code, p executes Line 40 at r′′. Let r1 ∈ (r − 3D, r] be the round when m was

generated. The execution of Line 40 sets p’s electT timer to expire at round r′′+ 2D

and after the electT timer expires, by Line 48, an additional D rounds is needed to

expire the leaderT timer. Hence, p does not expire m at round r.

(Case 2b) Node p is not running its waitT timer at round r′: The proof is similar to

(Case 2a) except that Line 28 is executed instead of Line 40.
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Lemma 6.5.14. Suppose instance message m was generated by p at round r. Let

m′ be the message that caused the generation of m at p at round r (m′ < m). Then,

for all rq ∈ [r −D, r + D], any node q ∈ Π
[rq−D,rq ]
A has in toSend

rq
q either m′ or an

instance message generated by expiring m′.

Proof. Suppose not. We divide into two cases:

(Case 1 ) For some rq ∈ [r − D, r], some node q ∈ Π
[rq−D,rq ]
A has a message m1 in

toSend
rq
q wherem1 6= m′ andm1 was not generated by expiringm′: By Lemma 6.5.13,

m′ must have been generated before or at r−2D and by Assumption 6.3.1 and Lemma

6.5.4, m′ is the highest priority instance message in R until round r−D. Message m1

must have been generated during (r−D, r] because otherwise, by Assumption 6.3.1,

Lemma 6.5.12, and Lemma 6.5.4, p receives m1 or some message that has higher

priority than m1 by round r if m1 > m′ and q receives m′ or some message that has

higher priority than m′ by round r −D otherwise. A contradiction.

Now, suppose m1 is a leader message. Let p1 be the node that generated m1.

Then, p1 must have generated an instance message m′′ at round r1 ∈ (r−3D, r−2D]

since it requires exactly 2D rounds for leader message m1 to be generated after the

generation of m′′. By Assumption 6.3.1, Lemma 6.5.12, and Lemma 6.5.4, p receives

m′′ or some message > m′′ by round r if m′′ > m, and p1 receives m′ or some message

that has higher priority than m′ by r −D otherwise. A contradiction.

From the above, we can restrict m1 to be an instance message generated during

(r−D, r]. Then, there exists a message m2 that caused the generation of m1 at some

node q′ at round r′ ∈ (r−D, r]. Message m2 must be m2 < m′ because otherwise, by

Assumption 6.3.1, Lemma 6.5.12, and Lemma 6.5.4, q receives m2 or some message

that has higher priority than m2 by round r which yields a contradiction.

Now, by Lemma 6.5.13, m2 must be generated before or at round r − 2D. But,
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by round r′, node q′ must receive m′ or some message that has higher priority than

m′ (again by Assumption 6.3.1, Lemma 6.5.12, and Lemma 6.5.4), Hence, m1 does

not exist, a contradiction.

(Case 2 ) For some rq ∈ (r, r + D], some node q ∈ Π
[rq−D,rq ]
A has a message m1 in

toSend
rq
q where m1 6= m′ and m1 was not generated by expiring m′: By (Case 1 ),

m1 must have been generated during (r, r + D]. The rest of the proof is similar to

(Case 1 ).

Lemma 6.5.15. Suppose instance message m was generated by p at round r. Let

m′ be the message that caused the generation of m at p at round r (m′ < m). Then,

for all rq ∈ [r −D, r +D], any node q that is live, in R, and not running its waitT

timer at rq has in toSend
rq
q either m′ or an instance message generated by expiring

m′.

Proof. The proof is direct from Lemma 6.5.12 and Lemma 6.5.14.

Lemma 6.5.16. For any two instance messages m1 and m2 that were generated by p1

and p2 by expiring the same message m at rounds r1 and r2, respectively, |r1−r2| < D

holds.

Proof. First note that bothm1 andm2 have higher priority thanm, andm1.attNum =

m2.attNum. Without loss of generality, suppose m1 has higher priority than m2 (p1

entered R ealier than p2 or p1 and p2 entered R at the same round) and (r2−r1) ≥ D.

By Assumption 6.3.1, Lemma 6.5.12, and Lemma 6.5.4, p2 receives m1 or some mes-

sage that has higher priority than m1 by round r2. Hence, by Lemma 6.5.2, p2 will

not expire m, a contradiction.

Lemma 6.5.17. Suppose message m′ caused the generation of instance message m

(m > m′) at node p at round r. Let m1 be the highest priority instance message that
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was generated by any node by expiring m′ and let p1 be the node that generated m1.

Also, let r1 be the round when m1 was generated. Then, the following holds:

(a) If p1 ∈ Πr1+2D
E and p1 is not running its waitT timer at r1 + 2D, then p1 elects

itself as the leader at round r1 + 2D.

(b) For each node q(6= p1) that is not running its waitT timer at r1 + 3D and

q ∈ Πr1+3D
E , it holds for all r′ ∈ [r1 + 2D, r1 + 3D] that toSendr

′
q = m1, if p1

did not elect itself as the leader.

(c) For any node q(6= p1) that is not running its waitT timer at r1 + 2D and

q ∈ Πr1+2D
E , it holds that q expires its electT timer at round r1 + 2D and sets

its leaderT timer to expire at r1 + 3D.

Proof. (a) Suppose, in contradiction, that p1 did not elect itself as the leader at

round r1 + 2D. This means that p1 received a message m2 during [r1, r1 + 2D] where

m2 > m1. By Lemma 6.5.15 and the fact that m1 was the highest priority instance

message that was ever generated by expiring m′, m2 must have been generated during

(r1 + D, r1 + 2D) by expiring a message m′′ that was in turn generated by expiring

m′. By Lemma 6.5.16, the earliest round that m′′ can be generated is r1−D. Hence,

Lemma 6.5.13 implies that m′′ cannot become ≥ 3D rounds old (i.e., cannot expire)

until round r1 + 2D. A contradiction.

(b) Suppose, in contradiction that for some r2 ∈ [r1 + 2D, r1 + 3D], toSendr2q =

m2 6= m1. Let r2 be the round when m2 was generated by some node p2. By Lemma

6.5.15 and the fact that m1 was the highest priority instance message that was ever

generated by expiring m′, m2 must have been generated at r′′ ∈ (r1 + D, r1 + 3D].

We divide into two cases:

(Case 1 ) m2 is a leader message: Then, p2 must have generated an instance mes-

sage m′2 at round r′′ − 2D ∈ (r1 − D, r1 + D] and toSendr
′′
p2

= m′2 holds before p2
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called startInstance(). By Lemma 6.5.15, m′2 must be the same as either m′ or

some message generated by expiring m′. By Assumption 6.3.1, Lemma 6.5.12, and

Lemma 6.5.4, p2 receives m1 or some message that has higher priority than m1 by

round r′′−D(< r1 +2D), since m1 is the highest priority instance message generated

by a node by expiring m′. Hence, by Lemma 6.5.2, toSendr
′′
p2
> m′2, a contradiction.

(Case 2 ) m2 is an instance message: Then, there exists a message m′2 that ex-

pired at p2 at r′′. By Lemma 6.5.13, m′2 must have been generated before or at

r′′ − 2D(< r1 +D). By Lemma 6.5.15 and the fact that m1 was the highest priority

instance message that was ever generated by expiring m′, we have m′2 < m1. Hence,

by Assumption 6.3.1, Lemma 6.5.12, and Lemma 6.5.4, p2 receives m1 or some mes-

sage that has higher priority than m1 by round r′′ preventing m′2 to expire at p2 at

round r′′ (by Lemma 6.5.2). A contradiction.

(c) Suppose q does not expire its electT timer at r1+2D. This means that toSendr1+2D
q

does not contain m1 because otherwise Line 28 enforces q to set its electT timer to

expire at round r1 +2D. Assumption 6.3.1 and Lemma 6.5.15 implies that, by round

r1 +D, q receives m1 and toSendr1+D
q = m1. So, in order for q to not expire its electT

timer at r1 + 2D, q must receive some message m2 > m1 during (r1 + D, r1 + 2D].

The rest of the proof is similar to (Case 1 ) and (Case 2 ) of (b).

Lemma 6.5.18. Suppose node q entered R at round r. Consider the three rounds

r+5iD, r+5(i+1)D, and r+5(i+2)D, for i ≥ 2, and assume that waitT is running

for all r′ ∈ [r+ 5iD, r+ 5(i+ 2)D). If q decides not to stop running waitT at round

r + 5(i + 2)D, then at least one node that was live, inside R, and not running its

waitT timer crashed or left region R during [r + 5(i− 1)D −D, r + 5(i+ 2)D].

Proof. For some k(≥ 2), letm1, m2, andm3 be the message contained in toSendr+5kD
q ,

toSend
r+5(k+1)D
q , and variable toSend

r+5(k+2)D
q , respectively. Suppose that all nodes
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that are still live, in R, and not running their waitT timer do not crash or leave

region R during [r + 5(k − 1)D −D, r + 5(k + 2)D]. We divide into five cases:

(Case 1 ) m1 is a leader message and m2 is an instance message: In this case, m1

must have been generated during (r + 5(k − 1)D −D, r + 5kD] because otherwise,

by Assumption 6.3.1, q receives m1 by round r + 5(k − 1)D and as a consequence

differ(prevToSend, toSend) will return false causing q to stop running its waitT

timer at round r+ 5kD. This means that there exists a node q′ that elected itself as

the leader during (r+5(k−1)D−D, r+5kD]. Applying (stability) and Corollary 6.5.6

on q tells us that q crashed or left the region during (r+5(k−1)D−D, r+5(k+1)D].

A contradiction.

(Case 2 ) m1 is a leader message and m2 is a leader message (m1 6= m2): The proof

of this case is similar to (Case 1 ).

(Case 3 ) m1 is an instance message and m2 is an instance message: Similar to

(Case 1 ), m1 must have been generated during (r + 5(k − 1)D − D, r + 5kD].

This means that there exists a message m′ that caused the generation of m1 at

r′ ∈ (r + 5(k − 1)D − D, r + 5kD]. By Lemma 6.5.17.(a), the node, say q′′, that

generated the highest priority instance message m′′ by expiring m′ elects itself as the

leader and by Lemma 6.5.16, the round that q′′ elects itself as the leader cannot be

later than r+ 5kD+ 3D (D rounds for the difference between the generation round

of m1 and m′′, and 2D rounds for m′′ electing itself as the leader). Again, applying

(stability) and Corollary 6.5.6 tells us that q must have crashed or left the region

during (r + 5(k − 1)D −D, r + 5(k + 1)D], A contradiction.

(Case 4 ) m1 is an instance message, m2 is a leader message, and m3 is a leader

message: Simply applying (Case 2 ) on m2 and m3 gives us a contradiction.

(Case 5 ) m1 is an instance message, m2 is a leader message, and m3 is an instance

message: Applying (Case 1 ) on m2 and m3 provides us with a contradiction.
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Lemma 6.5.19. Suppose that node p stops running its waitT timer at round r. If

p ∈ Π
[r,r+4D]
A , p is not running its waitT timer during [r, r+4D], and p does not elect

a leader other than itself during [r, r+ 4D], then there exists a round rp ∈ [r, r+ 4D]

such that p generates an instance message.

Proof. We distinguish the following four cases:

(Case 1 ) An expired (2D rounds old or older) leader message was in toSendrp: In this

case, Line 36 to Line 38 will be executed and in turn Line 49 will evaluate to true at

round r. Since Line 36 prevents p from electing itself as the leader, startInstance()

will be called at Line 54. Hence, p generates an instance message by executing Line 61

at round r.

(Case 2 ) An expired (3D rounds old or older) instance message was in toSendrp:

In this case, Line 40 will be executed and in turn Line 41 evaluates to true. Also,

Line 42 evaluates to false since initially candidate =⊥. So, Line 48 will be executed

and in turn Line 49 will evaluate to true at round r. Now, since initially leader =⊥,

Line 50 will evaluate to false causing Line 54 to be executed. Hence, p generates an

instance message by executing Line 61 at round r.

(Case 3 ) A non-expired (less than 2D rounds old) leader message was in toSendrp:

Let m be the leader message in toSendrp. If m was not generated by p, then Line 37 is

executed at round r which contradicts the assumption that p does not elect a leader

other than itself during [r, r + 4D]. If m was generated by p, then Lemma 6.5.12

implies that m was generated before round r−5D which contradicts the assumption

that m is less than 2D rounds old.

(Case 4 ) A non-expired (less than 3D rounds old) instance message was in toSendrp:

Let m be the instance message in toSendrp and let m′ be the message that caused

the generation m. Also, let r′ ∈ (r − 3D, r] be the round when m was generated
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(since m did not expire at round r, m must have been generated during (r− 3D, r]).

By Lemma 6.5.16, the highest priority instance message, say m1, that was ever

generated by expiring m′ is generated at r1 ∈ (r′ − D, r′ + D). Also, by Lemma

6.5.17.(a) and Lemma 6.5.17.(b), for each node q ∈ Πr1+3D
E , toSendr1+3D

q = m1 and

the leaderT timer expires at r1 +3D. Hence, startInstance() is executed (Line 54)

at r1 + 3D ∈ (r − D, r + 4D). If r1 + 3D ∈ (r, r + 4D), then we are done. If

r1 + 3D ∈ (r − D, r], then, by Assumption 6.3.1 and Lemma 6.5.4, p also must

have received m1 or some message that has higher priority than m1 by r1 + 3D.

Variable toSendrp cannot have m in it because it will contradict Lemma 6.5.2 since

m < m1.

Lemma 6.5.20. Suppose that node p generates an instance message m at round r. If

p ∈ Π
[r,r+4D]
A , p is not running its waitT timer during [r, r+4D], and p does not elect

a leader other than itself during [r, r+ 4D], then there exists a round rp ∈ (r, r+ 4D]

such that p generates an instance message.

Proof. The proof is similar to (Case 4 ) of Lemma 6.5.19.

Lemma 6.5.21. Suppose node q enters R at round r and there exists a node p that

is live, in R, and not running its waitT timer at round r. Then, q does not stop

running its waitT timer unless p elects a leader, crashes, or leaves region R.

Proof. By Lemma 6.5.19 and Lemma 6.5.20, we know that p generates an instance

message at least every 4D rounds as long as p does not crash, leave the region, or

elect a leader. So, by Assumption 6.3.1 and Lemma 6.5.4, q receives the instance

message generated by p or some message that has higher priority than it at least

every 5D rounds. Along with Lemma 6.5.17, the above implies that q receives a new

message every 5D rounds from a node that entered earlier than itself. Hence, Line 30

will evaluate to true which causes q to start its waitT timer again.

212



Lemma 6.5.22 (Termination). The algorithm in Figures 6.1 and 6.2 satisfies (ter-

mination) with bound BT = 22D + 14(n− 1)D where n is the total number of nodes

in the system.

Proof. Suppose that node p entered R at round re. For the sake of a contradiction,

we assume that p ∈ Πre
E , p ∈ Π

(re,re+22D+14(n−1)D]
A , and for all r ∈ [re, re+22D+14(n−

1)D], leaderrp =⊥. The worst case bound on BT can be obtained if the adversary

causes p to run its waitT timer as long as possible and, after p stops running its waitT

timer, the adversary forces p to delay its decision as long as possible. By Lemma

6.5.18, we know that, after round re+10D, at least one node that was not running its

waitT timer crashes or leaves region R in every 10D rounds if p manages to run its

waitT timer continuously during those 10D rounds. However, this can happen only

at most n− 1 times because there can be at most n− 1 nodes not running its waitT

timer. Also, Lemma 6.5.18 implies that even in the case where a node q that has

left the region (resp. crashed) reenters (resp. recovers from its crash inside R) it will

always hold that enteredSinceq < enteredSincep upon reentering (resp. recovering).

Therefore, all newly generated messages m will have m.entSince < enteredSincep

from round re + 10D + 10(n − 1)D on. Hence, Line 30 evaluates to false at round

re + 10D + 10(n− 1)D + 5D causing timer waitT to stop running.

Now, we consider the worst case for delaying p’s decision after p stops running

its waitT timer; let rw be the respective earliest round when ¬running(waitT )rwp

holds. Note that rw can be at most re + 15D+ 10(n− 1)D. Let rf be the first round

after rw + D when p generates an instance message. By assumption, we know that

p did not elect a leader during [rw, rf + 4D]. Therefore, Lemma 6.5.19 and Lemma

6.5.20 imply that rf ∈ (rw + D, rw + 5D], since p generates an instance message

every 4D rounds if it did not elect a leader. Let mf be such an instance message
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generated by p at round rf . We know that there exists a message m′ that caused

the generation of mf . Let m′f be the highest priority instance message that was

ever generated by expiring m′ and let p′f be the node that generated m′f . Lemma

6.5.17.(a) tells us that if p′f does not crash or leaves region R, then p′f elects itself

as the leader by round rf + 3D (by Lemma 6.5.16, m′f can be generated as late as

rf +D and it takes 2D rounds to elect itself as the leader). To delay p’s decision as

long as possible, we consider the case of node p′f crashing or leaving region R after

generating m′f but before electing itself as the leader. Note that even if p′f reenters

R (resp. recovers in R) after leaving R (resp. crashing), the round that p′f reenters

R (resp. recovers in R) cannot be less than rw since, by Lemma 6.5.16, mf can only

be generated as early as rf −D > rw. So, as long as p is live, in R, and not running

its waitT timer, Lemma 6.5.21 prevents p′f from stopping its waitT timer after its

reentry (resp. recovery). Now, since p′f did not elect itself as the leader, we know by

Lemma 6.5.20 that p will generate a new instance message by round rf + 4D. The

above can happen at most n− 1 times since there can be at most n− 1 nodes that

are not running their waitT timer along with p. So, after round rf + 4(n − 1)D, p

will be the only node that is live, in R, and not running its waitT timer and p will

elect itself as the leader by round rf + 4(n− 1)D+ 2D (since p is the only node left,

it will be the only node generating an instance message). Hence, in the worst case,

p elects a leader by round rw + 7D + 4(n− 1)D since rf is at most rw + 5D.

For node p, the overall worst case would be taking 15D + 10(n − 1)D rounds

for stopping its waitT timer and taking 7D + 4(n − 1)D for electing a leader after

stopping its waitT timer. Summing up shows that in the worst case, by round

re + 15D + 10(n− 1)D + 7D + 4(n− 1)D = re + 22D + 14(n− 1)D, node p elects a

leader, a contradiction.
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We obtain the following theorem directly from Lemmas 6.5.7, 6.5.8, 6.5.11, and

6.5.22:

Theorem 6.5.23. The algorithm in Figures 6.1 and 6.2 solves the RCLE problem

with bounds BV = BS = 2D − 1 and BT = 22D + 14D(n− 1) = O(nD).

6.6 A Condition on Mobility

In this section, we provide a condition on mobility that implies Assumption 6.3.1

with a bounded communication diameter D. Our mobility condition generalizes the

mobility condition of [16] in a way such that it no longer depends on a specific

coordinate system. We assume region R to be a 2-dimensional convex polygon. In

addition, we assume that nodes move at a speed bounded by some constant σ.

We first define some basic properties for our mobility condition. Let δ be a fixed

constant such that 0 < δ ≤ C −∆σ.3 Given two positions φ1 and φ2, let dist(φ1, φ2)

be the Euclidean distance between φ1 and φ2.

Definition 6.6.1. Let p0, p1, . . . , pn−1 be a sequence of nodes such that pi is at posi-

tion φi at the beginning of round r + i, 0 ≤ i ≤ n− 1, and let φn be any position in

R. The sequence of positions φ0, φ1, . . . , φn is called a proper propagation sequence

from p0 to φn starting at round r, denoted as P r
φ0→φn, if it holds that

(a) φ0 and φn are both in R,

(b) pi broadcasts in round r + i,

(c) pi and pi+1 are live and connected in round r+ i, 0 ≤ i ≤ n−2, and throughout

round r + n− 1, pn−1 is live and within distance C of φn,

(d) δ ≤ dist(φi, φi+1), and

3Recall from Section 6.3 that C refers to the communication radius and ∆ denotes the round
duration. We allow a range of values for δ to accommodate a range of mobility patterns.
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Figure 6.3: Worst case information propagation. Points S and F corresponds to φi
and φn, respectively. The shaded region of the circle that is uniquely defined by S
and F , corresponds to the geographic region in which φi+1 must lie. Points A and B
represent the worst case for information propagation.

(e) for 0 ≤ i ≤ n − 2, at the beginning of round r + i + 1, φi+1 lies within R and

within a circle that is uniquely defined by positions φi and φn, which serve as

the two endpoints of the axis of the circle.

Similar to the properties of the well-directed propagation sequence defined in [16],

property (d) of Definition 6.6.1 says that information gets closer to its destination in

each round and property (e) of Definition 6.6.1 says that as information propagates

to its destination, it should reside within a certain geographic sector (see Figure

6.3). Also, note that Definition 6.6.1 corresponds to a JIT path if a real node resides

at position φn. However, notice that Definition 6.6.1 is independent of any specific

coordinate system.

The following assumption states our mobility condition:

Assumption 6.6.2 (Mobility Condition). For every node pi that is live throughout
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round r and broadcasts a message at the beginning of round r at position φi in R, and

for all positions φj in R, there exists a proper propagation sequence P r
φi→φj starting

at round r.

Given the above mobility condition, it is possible to obtain the bounded commu-

nication diameter D of region R:

Theorem 6.6.3. Suppose that nodes follow the mobility condition given by Assump-

tion 6.6.2. Then, property D-connectedness is ensured with D = dL2−(C−∆σ)2

δ2
e where

L is the maximum Euclidean distance between any two points in R.

Proof. The proof is given with the assistance of Figure 6.3. Consider some node pi

that participates in P r
φi→φn , where 0 ≤ i ≤ n− 1, and suppose that at the beginning

of round r + i, node pi broadcasts information I at position S (=φi) which needs to

be propagated to position F (=φn) as depicted in Figure 6.3. By properties (d) and

(e) of Definition 6.6.1, pi+1, which obtained information I from pi, has to be in the

shaded region of Figure 6.3 at the beginning of round r + i + 1. Within the shaded

region of Figure 6.3, the position farthest away from F is either A or B. This means

that, in worst case, φi+1 (the position of pi+1 at the beginning of round r + i + 1)

can be either A or B. Without loss of generality, suppose φi+1 = A. Let hi be

the Euclidean distance between φi and φn. Since angle ∠SAF is a right angle by

construction, we obtain the recursive formula

h2
i+1 = h2

i − δ2. (6.5)
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Since L is the maximum Euclidean distance between any two points in R, we have

h0 = L in the worst case. From this, we can obtain the following closed-form solution

to (6.5):

hi+1 =
√
L2 − iδ2

Now, suppose that hk+1 ≤ C − ∆σ. In this case, pk+1 will be within C of φn

throughout round r + k + 1 since the maximum distance that a node can move is

bounded by ∆σ. Applying this to the above closed-form solution yields

hk+1 =
√
L2 − kδ2 ≤ C −∆σ

and therefore

L2 − (C −∆σ)2

δ2
≤ k.

Since k is the worst case number of hops for an information I to reach its destination,

we can conclude that the bounded communication diameter isD =
⌈
L2−(C−∆σ)2

δ2

⌉
.
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7. CONCLUSION: SUMMARY AND FUTURE WORK

In this section, we summarize our contributions and provide future work.

7.1 Distributed Resource Allocation Algorithms for Static Networks

We have provided two distributed resource allocation algorithms for static net-

works, specifically, two distributed algorithms that solve the dining philosophers

problem with failure locality 1. Since it is impossible to design any failure-locality-1

dining algorithm in asynchronous systems [14], we utilized failure detectors to design

our algorithms.

7.1.1 Dining with Bounded Waiting and Failure Locality 1

In Section 2, we provided the formal problem definition of perpetual strong ex-

clusion with bounded waiting and failure locality 1 (BW -�SX-FL1) and presented

a message-passing algorithm that solves BW -�SX-FL1 using the local version of

the eventually perfect failure detector (♦P 1).

Our algorithm carefully combines the doorway technique presented in [68] and the

concept of skepticism in [63]. The exclusion property is ensured by a fork/request

protocol and the progress property is guaranteed by preventing each node p from

entering its doorway if their exists a neighboring node of p that is already in its

doorway. The fairness property is ensured by blocking each node p from entering its

doorway if any neighbor q of p, while continously trying to access its critical section,

gave permission to p to enter its doorway more than a bounded number of times.

In addition to solving BW -�SX-FL1, we provided the first step towards identi-

fying a weakest failure detector for BW -�SX-FL1 by implementing failure detector

♦P 1 using multiple instances of BW -�SX-FL1.
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Our mutual reduction does not necessarily preserve the underlying conflict graph

topology; the conflict graph topology considered in one direction of the reduction

is not necessarily the same in the other direction. For future work, we would like

to identify the weakest failure detector X for solving BW -�SX-FL1 by showing

that X and BW -�SX-FL1 are mutually reducible to each other while preserving

the underlying conflict graph topology. In addition, we would like to identify weak-

est failure detectors for variations of the dining philosophers problem that consider

failure locality 1.

7.1.2 Stabilizing Dining with Failure Locality 1

In Section 3, we presented a solution for stabilizing (transient fault-tolerant)

failure-locality-1 dining considering shared memory systems with regular registers.

We utilized the anonymous local eventually perfect failure detector (?♦P 1) to obtain

our results. Our algorithm borrowed the concept of asynchronous doorways from

[13], however, instead of implementing the doorway using a ping/ack protocol (as

done in Section 2), we implemented the doorways using stabilizing mutual exclusion

subroutines. We also used stabilizing mutual exclusion subroutines to handle fork

activities instead of handling it with a fork/request protocol (as done in Section 2).

The use of mutual exclusion subroutines makes our algorithm modular.

Notice, in Section 3, we did not specify any ?♦P 1 implementation. For future

work, it will be interesting to seek for an implementation of ?♦P 1 on partially syn-

chronous shared memory systems using regular registers. In fact, finding an imple-

mentation of ♦P 1 will suffice since ♦P 1 implies ?♦P 1. One idea would be to simulate

the message passing protocol used for implementing ♦P 1 in [6, 35] with read/write

operations on shared regular registers.

Our algorithm has the following liveness guarantee: each correct hungry process
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p that is at least two hops away from any crashed process eventually eats. This

property still allows a hungry neighbor of p to overtake p unboundedly many times

in accessing the shared resource (the algorithm presented in Section 3 does not have a

fairness property as in the algorithm in Section 2). An interesting future work would

be to design a stabilizing failure-locality-1 dining algorithm that satisfies bounded

waiting: the algorithm should guarantee that is a correct process p only has correct

neighbors, then eventually, for any interval in which p is continuously hungry, no

neighbor of p eats more than a bounded number of times.

7.2 Distributed Algorithms for Mobile Ad Hoc Networks

We have provided three distributed algorithms for mobile ad hoc networks that

can serve as building blocks in designing other useful applications. Specifically, we

have presented algorithms for (1) maintaining neighbor knowledge, (2) neighbor de-

tection, and (3) leader election.

7.2.1 Maintaining Neighbor Knowledge in a Road Network

We have presented, in Section 4, a deterministic solution for nodes to main-

tain neighbor knowledge where nodes communicate via wireless broadcast and are

restricted move on a two-dimensional road network. Our solution includes geograph-

ical segmentation and constructing a deterministic collision-free broadcast schedule

for nodes to exchange neighbor information Considering our broadcast schedule, we

have provided a lower bound on the speed of message propagation on a road network.

We relaxed the density requirement and considered dynamic clusters on a road

network. We showed that, under a certain condition, neighbor knowledge is main-

tained when clusters move close to each other. We discussed how we could obtain

initial neighbor knowledge using the gossiping algorithm in [30]. We also presented

practical values for the parameters that satisfy all constraints in Section 4; this in-
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directly shows that the assumptions and constraints in Section 4 do not contradict

each other.

Our definition of a road network does not contain any restriction on the intersect-

ing angle between any two lines. This makes our setting applicable to not only urban

vehicular networks, where the network topology resembles a perfect grid network, but

also suburban vehicular networks.

For future work, it will be interesting to seek for different broadcast schedules

that are suitable on two-dimensional space and provide better lower bounds on the

speed of message propagation. Another topic for future work would be to provide

a definition of two-dimensional cluster (recall that one-dimensional clusters were

considered in Section 4) and see if neighbor knowledge can be maintained when two

(or more) two-dimensional clusters merge.

7.2.2 Hello-based Neighbor Detection Using the Abstract MAC Layer

In Section 5, we have presented a periodic hello-based neighbor detection algo-

rithm that tolerates bounded clock drift using the abstract MAC layer [45]. The

main challenges were to develop a handshaking mechanism between hello message

broadcasts and application message broadcasts. Our neighbor detection algorithm

generated and broadcast hello messages at the right time by defining pre-hello inter-

vals and blocking application messages to be sent to the abstract MAC layer during

each of these intervals. Our neighbor detection algorithm also guaranteed reliable

point-to-point communication of application messages by taking into account the fol-

lowing time durations in becoming link up with a nearby node: (1) the time it takes

to flush all of the message out of the k-bounded send buffer without any interfer-

ence, (2) the sum of pre-hello intervals that appear during the course of flushing the

k-bounded send buffer, and (3) the bounded message delay for each hello message
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that was broadcast during the course of flushing the k-bounded send buffer.

Our algorithm has an advantage of not requiring trajectory information (notice

that trajectory functions are used in Section 4). However, there is a trade-off in which

the distance between two nodes must be somewhat closer than their communication

radius for them to become link up with each other.

For future work, it will be interesting to explore variations of hello message based

approaches such as event-based hello (where upper layer messages affect the trans-

mission time of the hello message) and adaptive hello (where hello messages are

broadcast depending on the movement speed of a node) [31] instead of periodic hello

and compare their performance when used with the abstract MAC layer for neighbor

detection.

7.2.3 Regional Consecutive Leader Election

In Section 6, we formally stated the Regional Consecutive Leader Election (RCLE)

problem and proved that any algorithm requires Ω(Dn) synchronous rounds for solv-

ing the RCLE problem in the worst case where D is the bounded communication

diameter and n is the total number of nodes in the system. Then, we presented

and proved correct a fault-tolerant algorithm that solves the RCLE problem. Our

algorithm is proven to be asymptotically optimal with respect to the Ω(Dn) lower

bound. In addition, our algorithm solves the RCLE problem with a low message

bit complexity per node per round compared to the previous work in [16]. We also

introduced a novel condition on the mobility of nodes that ensures appropriate in-

formation propagation among the nodes in the region of interest.

By considering a fixed region, leader election is performed among nodes that

are relatively close to each other. This is an advantage over other leader election

algorithms that consider an arbitrary network diameter. Our system model in Section
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6 allows nodes in the region to be temporarily partitioned. This is an advantage over

other leader election algorithms that require continuous connectivity.

As mentioned in Section 6, our algorithm is crash fault-tolerant; periodic leader

messages enables the detection of a crashed leader. An important open question is

how to deal with malicious nodes in our setting; what if a non-leader node generates

leader messages to pretend that it is the leader?, what if a non-leader node pretends

that it has entered the region the earliest to become the next leader?, etc.

If nodes move in the region in accordance with our condition on mobility, then it

is shown that a bounded communication diameter exists. Future work on this topic

involves exploring different mobility conditions that are restrictive enough to guar-

antee a bounded communication diameter while, on the other hand, being flexible

enough for real world applications.
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